xref: /linux/tools/perf/util/machine.c (revision 1ee54195a305fae3955642af8528bdf67496d353)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 
37 #include <linux/ctype.h>
38 #include <symbol/kallsyms.h>
39 #include <linux/mman.h>
40 #include <linux/string.h>
41 #include <linux/zalloc.h>
42 
43 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
44 
45 static struct dso *machine__kernel_dso(struct machine *machine)
46 {
47 	return machine->vmlinux_map->dso;
48 }
49 
50 static void dsos__init(struct dsos *dsos)
51 {
52 	INIT_LIST_HEAD(&dsos->head);
53 	dsos->root = RB_ROOT;
54 	init_rwsem(&dsos->lock);
55 }
56 
57 static void machine__threads_init(struct machine *machine)
58 {
59 	int i;
60 
61 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
62 		struct threads *threads = &machine->threads[i];
63 		threads->entries = RB_ROOT_CACHED;
64 		init_rwsem(&threads->lock);
65 		threads->nr = 0;
66 		INIT_LIST_HEAD(&threads->dead);
67 		threads->last_match = NULL;
68 	}
69 }
70 
71 static int machine__set_mmap_name(struct machine *machine)
72 {
73 	if (machine__is_host(machine))
74 		machine->mmap_name = strdup("[kernel.kallsyms]");
75 	else if (machine__is_default_guest(machine))
76 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
77 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
78 			  machine->pid) < 0)
79 		machine->mmap_name = NULL;
80 
81 	return machine->mmap_name ? 0 : -ENOMEM;
82 }
83 
84 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
85 {
86 	int err = -ENOMEM;
87 
88 	memset(machine, 0, sizeof(*machine));
89 	map_groups__init(&machine->kmaps, machine);
90 	RB_CLEAR_NODE(&machine->rb_node);
91 	dsos__init(&machine->dsos);
92 
93 	machine__threads_init(machine);
94 
95 	machine->vdso_info = NULL;
96 	machine->env = NULL;
97 
98 	machine->pid = pid;
99 
100 	machine->id_hdr_size = 0;
101 	machine->kptr_restrict_warned = false;
102 	machine->comm_exec = false;
103 	machine->kernel_start = 0;
104 	machine->vmlinux_map = NULL;
105 
106 	machine->root_dir = strdup(root_dir);
107 	if (machine->root_dir == NULL)
108 		return -ENOMEM;
109 
110 	if (machine__set_mmap_name(machine))
111 		goto out;
112 
113 	if (pid != HOST_KERNEL_ID) {
114 		struct thread *thread = machine__findnew_thread(machine, -1,
115 								pid);
116 		char comm[64];
117 
118 		if (thread == NULL)
119 			goto out;
120 
121 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
122 		thread__set_comm(thread, comm, 0);
123 		thread__put(thread);
124 	}
125 
126 	machine->current_tid = NULL;
127 	err = 0;
128 
129 out:
130 	if (err) {
131 		zfree(&machine->root_dir);
132 		zfree(&machine->mmap_name);
133 	}
134 	return 0;
135 }
136 
137 struct machine *machine__new_host(void)
138 {
139 	struct machine *machine = malloc(sizeof(*machine));
140 
141 	if (machine != NULL) {
142 		machine__init(machine, "", HOST_KERNEL_ID);
143 
144 		if (machine__create_kernel_maps(machine) < 0)
145 			goto out_delete;
146 	}
147 
148 	return machine;
149 out_delete:
150 	free(machine);
151 	return NULL;
152 }
153 
154 struct machine *machine__new_kallsyms(void)
155 {
156 	struct machine *machine = machine__new_host();
157 	/*
158 	 * FIXME:
159 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
160 	 *    ask for not using the kcore parsing code, once this one is fixed
161 	 *    to create a map per module.
162 	 */
163 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
164 		machine__delete(machine);
165 		machine = NULL;
166 	}
167 
168 	return machine;
169 }
170 
171 static void dsos__purge(struct dsos *dsos)
172 {
173 	struct dso *pos, *n;
174 
175 	down_write(&dsos->lock);
176 
177 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
178 		RB_CLEAR_NODE(&pos->rb_node);
179 		pos->root = NULL;
180 		list_del_init(&pos->node);
181 		dso__put(pos);
182 	}
183 
184 	up_write(&dsos->lock);
185 }
186 
187 static void dsos__exit(struct dsos *dsos)
188 {
189 	dsos__purge(dsos);
190 	exit_rwsem(&dsos->lock);
191 }
192 
193 void machine__delete_threads(struct machine *machine)
194 {
195 	struct rb_node *nd;
196 	int i;
197 
198 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
199 		struct threads *threads = &machine->threads[i];
200 		down_write(&threads->lock);
201 		nd = rb_first_cached(&threads->entries);
202 		while (nd) {
203 			struct thread *t = rb_entry(nd, struct thread, rb_node);
204 
205 			nd = rb_next(nd);
206 			__machine__remove_thread(machine, t, false);
207 		}
208 		up_write(&threads->lock);
209 	}
210 }
211 
212 void machine__exit(struct machine *machine)
213 {
214 	int i;
215 
216 	if (machine == NULL)
217 		return;
218 
219 	machine__destroy_kernel_maps(machine);
220 	map_groups__exit(&machine->kmaps);
221 	dsos__exit(&machine->dsos);
222 	machine__exit_vdso(machine);
223 	zfree(&machine->root_dir);
224 	zfree(&machine->mmap_name);
225 	zfree(&machine->current_tid);
226 
227 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
228 		struct threads *threads = &machine->threads[i];
229 		struct thread *thread, *n;
230 		/*
231 		 * Forget about the dead, at this point whatever threads were
232 		 * left in the dead lists better have a reference count taken
233 		 * by who is using them, and then, when they drop those references
234 		 * and it finally hits zero, thread__put() will check and see that
235 		 * its not in the dead threads list and will not try to remove it
236 		 * from there, just calling thread__delete() straight away.
237 		 */
238 		list_for_each_entry_safe(thread, n, &threads->dead, node)
239 			list_del_init(&thread->node);
240 
241 		exit_rwsem(&threads->lock);
242 	}
243 }
244 
245 void machine__delete(struct machine *machine)
246 {
247 	if (machine) {
248 		machine__exit(machine);
249 		free(machine);
250 	}
251 }
252 
253 void machines__init(struct machines *machines)
254 {
255 	machine__init(&machines->host, "", HOST_KERNEL_ID);
256 	machines->guests = RB_ROOT_CACHED;
257 }
258 
259 void machines__exit(struct machines *machines)
260 {
261 	machine__exit(&machines->host);
262 	/* XXX exit guest */
263 }
264 
265 struct machine *machines__add(struct machines *machines, pid_t pid,
266 			      const char *root_dir)
267 {
268 	struct rb_node **p = &machines->guests.rb_root.rb_node;
269 	struct rb_node *parent = NULL;
270 	struct machine *pos, *machine = malloc(sizeof(*machine));
271 	bool leftmost = true;
272 
273 	if (machine == NULL)
274 		return NULL;
275 
276 	if (machine__init(machine, root_dir, pid) != 0) {
277 		free(machine);
278 		return NULL;
279 	}
280 
281 	while (*p != NULL) {
282 		parent = *p;
283 		pos = rb_entry(parent, struct machine, rb_node);
284 		if (pid < pos->pid)
285 			p = &(*p)->rb_left;
286 		else {
287 			p = &(*p)->rb_right;
288 			leftmost = false;
289 		}
290 	}
291 
292 	rb_link_node(&machine->rb_node, parent, p);
293 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
294 
295 	return machine;
296 }
297 
298 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
299 {
300 	struct rb_node *nd;
301 
302 	machines->host.comm_exec = comm_exec;
303 
304 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
305 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
306 
307 		machine->comm_exec = comm_exec;
308 	}
309 }
310 
311 struct machine *machines__find(struct machines *machines, pid_t pid)
312 {
313 	struct rb_node **p = &machines->guests.rb_root.rb_node;
314 	struct rb_node *parent = NULL;
315 	struct machine *machine;
316 	struct machine *default_machine = NULL;
317 
318 	if (pid == HOST_KERNEL_ID)
319 		return &machines->host;
320 
321 	while (*p != NULL) {
322 		parent = *p;
323 		machine = rb_entry(parent, struct machine, rb_node);
324 		if (pid < machine->pid)
325 			p = &(*p)->rb_left;
326 		else if (pid > machine->pid)
327 			p = &(*p)->rb_right;
328 		else
329 			return machine;
330 		if (!machine->pid)
331 			default_machine = machine;
332 	}
333 
334 	return default_machine;
335 }
336 
337 struct machine *machines__findnew(struct machines *machines, pid_t pid)
338 {
339 	char path[PATH_MAX];
340 	const char *root_dir = "";
341 	struct machine *machine = machines__find(machines, pid);
342 
343 	if (machine && (machine->pid == pid))
344 		goto out;
345 
346 	if ((pid != HOST_KERNEL_ID) &&
347 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
348 	    (symbol_conf.guestmount)) {
349 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
350 		if (access(path, R_OK)) {
351 			static struct strlist *seen;
352 
353 			if (!seen)
354 				seen = strlist__new(NULL, NULL);
355 
356 			if (!strlist__has_entry(seen, path)) {
357 				pr_err("Can't access file %s\n", path);
358 				strlist__add(seen, path);
359 			}
360 			machine = NULL;
361 			goto out;
362 		}
363 		root_dir = path;
364 	}
365 
366 	machine = machines__add(machines, pid, root_dir);
367 out:
368 	return machine;
369 }
370 
371 void machines__process_guests(struct machines *machines,
372 			      machine__process_t process, void *data)
373 {
374 	struct rb_node *nd;
375 
376 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
377 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
378 		process(pos, data);
379 	}
380 }
381 
382 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
383 {
384 	struct rb_node *node;
385 	struct machine *machine;
386 
387 	machines->host.id_hdr_size = id_hdr_size;
388 
389 	for (node = rb_first_cached(&machines->guests); node;
390 	     node = rb_next(node)) {
391 		machine = rb_entry(node, struct machine, rb_node);
392 		machine->id_hdr_size = id_hdr_size;
393 	}
394 
395 	return;
396 }
397 
398 static void machine__update_thread_pid(struct machine *machine,
399 				       struct thread *th, pid_t pid)
400 {
401 	struct thread *leader;
402 
403 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
404 		return;
405 
406 	th->pid_ = pid;
407 
408 	if (th->pid_ == th->tid)
409 		return;
410 
411 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
412 	if (!leader)
413 		goto out_err;
414 
415 	if (!leader->mg)
416 		leader->mg = map_groups__new(machine);
417 
418 	if (!leader->mg)
419 		goto out_err;
420 
421 	if (th->mg == leader->mg)
422 		return;
423 
424 	if (th->mg) {
425 		/*
426 		 * Maps are created from MMAP events which provide the pid and
427 		 * tid.  Consequently there never should be any maps on a thread
428 		 * with an unknown pid.  Just print an error if there are.
429 		 */
430 		if (!map_groups__empty(th->mg))
431 			pr_err("Discarding thread maps for %d:%d\n",
432 			       th->pid_, th->tid);
433 		map_groups__put(th->mg);
434 	}
435 
436 	th->mg = map_groups__get(leader->mg);
437 out_put:
438 	thread__put(leader);
439 	return;
440 out_err:
441 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
442 	goto out_put;
443 }
444 
445 /*
446  * Front-end cache - TID lookups come in blocks,
447  * so most of the time we dont have to look up
448  * the full rbtree:
449  */
450 static struct thread*
451 __threads__get_last_match(struct threads *threads, struct machine *machine,
452 			  int pid, int tid)
453 {
454 	struct thread *th;
455 
456 	th = threads->last_match;
457 	if (th != NULL) {
458 		if (th->tid == tid) {
459 			machine__update_thread_pid(machine, th, pid);
460 			return thread__get(th);
461 		}
462 
463 		threads->last_match = NULL;
464 	}
465 
466 	return NULL;
467 }
468 
469 static struct thread*
470 threads__get_last_match(struct threads *threads, struct machine *machine,
471 			int pid, int tid)
472 {
473 	struct thread *th = NULL;
474 
475 	if (perf_singlethreaded)
476 		th = __threads__get_last_match(threads, machine, pid, tid);
477 
478 	return th;
479 }
480 
481 static void
482 __threads__set_last_match(struct threads *threads, struct thread *th)
483 {
484 	threads->last_match = th;
485 }
486 
487 static void
488 threads__set_last_match(struct threads *threads, struct thread *th)
489 {
490 	if (perf_singlethreaded)
491 		__threads__set_last_match(threads, th);
492 }
493 
494 /*
495  * Caller must eventually drop thread->refcnt returned with a successful
496  * lookup/new thread inserted.
497  */
498 static struct thread *____machine__findnew_thread(struct machine *machine,
499 						  struct threads *threads,
500 						  pid_t pid, pid_t tid,
501 						  bool create)
502 {
503 	struct rb_node **p = &threads->entries.rb_root.rb_node;
504 	struct rb_node *parent = NULL;
505 	struct thread *th;
506 	bool leftmost = true;
507 
508 	th = threads__get_last_match(threads, machine, pid, tid);
509 	if (th)
510 		return th;
511 
512 	while (*p != NULL) {
513 		parent = *p;
514 		th = rb_entry(parent, struct thread, rb_node);
515 
516 		if (th->tid == tid) {
517 			threads__set_last_match(threads, th);
518 			machine__update_thread_pid(machine, th, pid);
519 			return thread__get(th);
520 		}
521 
522 		if (tid < th->tid)
523 			p = &(*p)->rb_left;
524 		else {
525 			p = &(*p)->rb_right;
526 			leftmost = false;
527 		}
528 	}
529 
530 	if (!create)
531 		return NULL;
532 
533 	th = thread__new(pid, tid);
534 	if (th != NULL) {
535 		rb_link_node(&th->rb_node, parent, p);
536 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
537 
538 		/*
539 		 * We have to initialize map_groups separately
540 		 * after rb tree is updated.
541 		 *
542 		 * The reason is that we call machine__findnew_thread
543 		 * within thread__init_map_groups to find the thread
544 		 * leader and that would screwed the rb tree.
545 		 */
546 		if (thread__init_map_groups(th, machine)) {
547 			rb_erase_cached(&th->rb_node, &threads->entries);
548 			RB_CLEAR_NODE(&th->rb_node);
549 			thread__put(th);
550 			return NULL;
551 		}
552 		/*
553 		 * It is now in the rbtree, get a ref
554 		 */
555 		thread__get(th);
556 		threads__set_last_match(threads, th);
557 		++threads->nr;
558 	}
559 
560 	return th;
561 }
562 
563 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
564 {
565 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
566 }
567 
568 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
569 				       pid_t tid)
570 {
571 	struct threads *threads = machine__threads(machine, tid);
572 	struct thread *th;
573 
574 	down_write(&threads->lock);
575 	th = __machine__findnew_thread(machine, pid, tid);
576 	up_write(&threads->lock);
577 	return th;
578 }
579 
580 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
581 				    pid_t tid)
582 {
583 	struct threads *threads = machine__threads(machine, tid);
584 	struct thread *th;
585 
586 	down_read(&threads->lock);
587 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
588 	up_read(&threads->lock);
589 	return th;
590 }
591 
592 struct comm *machine__thread_exec_comm(struct machine *machine,
593 				       struct thread *thread)
594 {
595 	if (machine->comm_exec)
596 		return thread__exec_comm(thread);
597 	else
598 		return thread__comm(thread);
599 }
600 
601 int machine__process_comm_event(struct machine *machine, union perf_event *event,
602 				struct perf_sample *sample)
603 {
604 	struct thread *thread = machine__findnew_thread(machine,
605 							event->comm.pid,
606 							event->comm.tid);
607 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608 	int err = 0;
609 
610 	if (exec)
611 		machine->comm_exec = true;
612 
613 	if (dump_trace)
614 		perf_event__fprintf_comm(event, stdout);
615 
616 	if (thread == NULL ||
617 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619 		err = -1;
620 	}
621 
622 	thread__put(thread);
623 
624 	return err;
625 }
626 
627 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
628 				      union perf_event *event,
629 				      struct perf_sample *sample __maybe_unused)
630 {
631 	struct thread *thread = machine__findnew_thread(machine,
632 							event->namespaces.pid,
633 							event->namespaces.tid);
634 	int err = 0;
635 
636 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
637 		  "\nWARNING: kernel seems to support more namespaces than perf"
638 		  " tool.\nTry updating the perf tool..\n\n");
639 
640 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
641 		  "\nWARNING: perf tool seems to support more namespaces than"
642 		  " the kernel.\nTry updating the kernel..\n\n");
643 
644 	if (dump_trace)
645 		perf_event__fprintf_namespaces(event, stdout);
646 
647 	if (thread == NULL ||
648 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
649 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
650 		err = -1;
651 	}
652 
653 	thread__put(thread);
654 
655 	return err;
656 }
657 
658 int machine__process_lost_event(struct machine *machine __maybe_unused,
659 				union perf_event *event, struct perf_sample *sample __maybe_unused)
660 {
661 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
662 		    event->lost.id, event->lost.lost);
663 	return 0;
664 }
665 
666 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
667 					union perf_event *event, struct perf_sample *sample)
668 {
669 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
670 		    sample->id, event->lost_samples.lost);
671 	return 0;
672 }
673 
674 static struct dso *machine__findnew_module_dso(struct machine *machine,
675 					       struct kmod_path *m,
676 					       const char *filename)
677 {
678 	struct dso *dso;
679 
680 	down_write(&machine->dsos.lock);
681 
682 	dso = __dsos__find(&machine->dsos, m->name, true);
683 	if (!dso) {
684 		dso = __dsos__addnew(&machine->dsos, m->name);
685 		if (dso == NULL)
686 			goto out_unlock;
687 
688 		dso__set_module_info(dso, m, machine);
689 		dso__set_long_name(dso, strdup(filename), true);
690 	}
691 
692 	dso__get(dso);
693 out_unlock:
694 	up_write(&machine->dsos.lock);
695 	return dso;
696 }
697 
698 int machine__process_aux_event(struct machine *machine __maybe_unused,
699 			       union perf_event *event)
700 {
701 	if (dump_trace)
702 		perf_event__fprintf_aux(event, stdout);
703 	return 0;
704 }
705 
706 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
707 					union perf_event *event)
708 {
709 	if (dump_trace)
710 		perf_event__fprintf_itrace_start(event, stdout);
711 	return 0;
712 }
713 
714 int machine__process_switch_event(struct machine *machine __maybe_unused,
715 				  union perf_event *event)
716 {
717 	if (dump_trace)
718 		perf_event__fprintf_switch(event, stdout);
719 	return 0;
720 }
721 
722 static int machine__process_ksymbol_register(struct machine *machine,
723 					     union perf_event *event,
724 					     struct perf_sample *sample __maybe_unused)
725 {
726 	struct symbol *sym;
727 	struct map *map;
728 
729 	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
730 	if (!map) {
731 		map = dso__new_map(event->ksymbol.name);
732 		if (!map)
733 			return -ENOMEM;
734 
735 		map->start = event->ksymbol.addr;
736 		map->end = map->start + event->ksymbol.len;
737 		map_groups__insert(&machine->kmaps, map);
738 	}
739 
740 	sym = symbol__new(map->map_ip(map, map->start),
741 			  event->ksymbol.len,
742 			  0, 0, event->ksymbol.name);
743 	if (!sym)
744 		return -ENOMEM;
745 	dso__insert_symbol(map->dso, sym);
746 	return 0;
747 }
748 
749 static int machine__process_ksymbol_unregister(struct machine *machine,
750 					       union perf_event *event,
751 					       struct perf_sample *sample __maybe_unused)
752 {
753 	struct map *map;
754 
755 	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
756 	if (map)
757 		map_groups__remove(&machine->kmaps, map);
758 
759 	return 0;
760 }
761 
762 int machine__process_ksymbol(struct machine *machine __maybe_unused,
763 			     union perf_event *event,
764 			     struct perf_sample *sample)
765 {
766 	if (dump_trace)
767 		perf_event__fprintf_ksymbol(event, stdout);
768 
769 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
770 		return machine__process_ksymbol_unregister(machine, event,
771 							   sample);
772 	return machine__process_ksymbol_register(machine, event, sample);
773 }
774 
775 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
776 					      const char *filename)
777 {
778 	struct map *map = NULL;
779 	struct kmod_path m;
780 	struct dso *dso;
781 
782 	if (kmod_path__parse_name(&m, filename))
783 		return NULL;
784 
785 	dso = machine__findnew_module_dso(machine, &m, filename);
786 	if (dso == NULL)
787 		goto out;
788 
789 	map = map__new2(start, dso);
790 	if (map == NULL)
791 		goto out;
792 
793 	map_groups__insert(&machine->kmaps, map);
794 
795 	/* Put the map here because map_groups__insert alread got it */
796 	map__put(map);
797 out:
798 	/* put the dso here, corresponding to  machine__findnew_module_dso */
799 	dso__put(dso);
800 	zfree(&m.name);
801 	return map;
802 }
803 
804 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
805 {
806 	struct rb_node *nd;
807 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
808 
809 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
810 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
811 		ret += __dsos__fprintf(&pos->dsos.head, fp);
812 	}
813 
814 	return ret;
815 }
816 
817 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
818 				     bool (skip)(struct dso *dso, int parm), int parm)
819 {
820 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
821 }
822 
823 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
824 				     bool (skip)(struct dso *dso, int parm), int parm)
825 {
826 	struct rb_node *nd;
827 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
828 
829 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
830 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
831 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
832 	}
833 	return ret;
834 }
835 
836 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
837 {
838 	int i;
839 	size_t printed = 0;
840 	struct dso *kdso = machine__kernel_dso(machine);
841 
842 	if (kdso->has_build_id) {
843 		char filename[PATH_MAX];
844 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
845 					   false))
846 			printed += fprintf(fp, "[0] %s\n", filename);
847 	}
848 
849 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
850 		printed += fprintf(fp, "[%d] %s\n",
851 				   i + kdso->has_build_id, vmlinux_path[i]);
852 
853 	return printed;
854 }
855 
856 size_t machine__fprintf(struct machine *machine, FILE *fp)
857 {
858 	struct rb_node *nd;
859 	size_t ret;
860 	int i;
861 
862 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
863 		struct threads *threads = &machine->threads[i];
864 
865 		down_read(&threads->lock);
866 
867 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
868 
869 		for (nd = rb_first_cached(&threads->entries); nd;
870 		     nd = rb_next(nd)) {
871 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
872 
873 			ret += thread__fprintf(pos, fp);
874 		}
875 
876 		up_read(&threads->lock);
877 	}
878 	return ret;
879 }
880 
881 static struct dso *machine__get_kernel(struct machine *machine)
882 {
883 	const char *vmlinux_name = machine->mmap_name;
884 	struct dso *kernel;
885 
886 	if (machine__is_host(machine)) {
887 		if (symbol_conf.vmlinux_name)
888 			vmlinux_name = symbol_conf.vmlinux_name;
889 
890 		kernel = machine__findnew_kernel(machine, vmlinux_name,
891 						 "[kernel]", DSO_TYPE_KERNEL);
892 	} else {
893 		if (symbol_conf.default_guest_vmlinux_name)
894 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
895 
896 		kernel = machine__findnew_kernel(machine, vmlinux_name,
897 						 "[guest.kernel]",
898 						 DSO_TYPE_GUEST_KERNEL);
899 	}
900 
901 	if (kernel != NULL && (!kernel->has_build_id))
902 		dso__read_running_kernel_build_id(kernel, machine);
903 
904 	return kernel;
905 }
906 
907 struct process_args {
908 	u64 start;
909 };
910 
911 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
912 				    size_t bufsz)
913 {
914 	if (machine__is_default_guest(machine))
915 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
916 	else
917 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
918 }
919 
920 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
921 
922 /* Figure out the start address of kernel map from /proc/kallsyms.
923  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
924  * symbol_name if it's not that important.
925  */
926 static int machine__get_running_kernel_start(struct machine *machine,
927 					     const char **symbol_name,
928 					     u64 *start, u64 *end)
929 {
930 	char filename[PATH_MAX];
931 	int i, err = -1;
932 	const char *name;
933 	u64 addr = 0;
934 
935 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
936 
937 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
938 		return 0;
939 
940 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
941 		err = kallsyms__get_function_start(filename, name, &addr);
942 		if (!err)
943 			break;
944 	}
945 
946 	if (err)
947 		return -1;
948 
949 	if (symbol_name)
950 		*symbol_name = name;
951 
952 	*start = addr;
953 
954 	err = kallsyms__get_function_start(filename, "_etext", &addr);
955 	if (!err)
956 		*end = addr;
957 
958 	return 0;
959 }
960 
961 int machine__create_extra_kernel_map(struct machine *machine,
962 				     struct dso *kernel,
963 				     struct extra_kernel_map *xm)
964 {
965 	struct kmap *kmap;
966 	struct map *map;
967 
968 	map = map__new2(xm->start, kernel);
969 	if (!map)
970 		return -1;
971 
972 	map->end   = xm->end;
973 	map->pgoff = xm->pgoff;
974 
975 	kmap = map__kmap(map);
976 
977 	kmap->kmaps = &machine->kmaps;
978 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
979 
980 	map_groups__insert(&machine->kmaps, map);
981 
982 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
983 		  kmap->name, map->start, map->end);
984 
985 	map__put(map);
986 
987 	return 0;
988 }
989 
990 static u64 find_entry_trampoline(struct dso *dso)
991 {
992 	/* Duplicates are removed so lookup all aliases */
993 	const char *syms[] = {
994 		"_entry_trampoline",
995 		"__entry_trampoline_start",
996 		"entry_SYSCALL_64_trampoline",
997 	};
998 	struct symbol *sym = dso__first_symbol(dso);
999 	unsigned int i;
1000 
1001 	for (; sym; sym = dso__next_symbol(sym)) {
1002 		if (sym->binding != STB_GLOBAL)
1003 			continue;
1004 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1005 			if (!strcmp(sym->name, syms[i]))
1006 				return sym->start;
1007 		}
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 /*
1014  * These values can be used for kernels that do not have symbols for the entry
1015  * trampolines in kallsyms.
1016  */
1017 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1018 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1019 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1020 
1021 /* Map x86_64 PTI entry trampolines */
1022 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1023 					  struct dso *kernel)
1024 {
1025 	struct map_groups *kmaps = &machine->kmaps;
1026 	struct maps *maps = &kmaps->maps;
1027 	int nr_cpus_avail, cpu;
1028 	bool found = false;
1029 	struct map *map;
1030 	u64 pgoff;
1031 
1032 	/*
1033 	 * In the vmlinux case, pgoff is a virtual address which must now be
1034 	 * mapped to a vmlinux offset.
1035 	 */
1036 	maps__for_each_entry(maps, map) {
1037 		struct kmap *kmap = __map__kmap(map);
1038 		struct map *dest_map;
1039 
1040 		if (!kmap || !is_entry_trampoline(kmap->name))
1041 			continue;
1042 
1043 		dest_map = map_groups__find(kmaps, map->pgoff);
1044 		if (dest_map != map)
1045 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1046 		found = true;
1047 	}
1048 	if (found || machine->trampolines_mapped)
1049 		return 0;
1050 
1051 	pgoff = find_entry_trampoline(kernel);
1052 	if (!pgoff)
1053 		return 0;
1054 
1055 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1056 
1057 	/* Add a 1 page map for each CPU's entry trampoline */
1058 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1059 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1060 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1061 			 X86_64_ENTRY_TRAMPOLINE;
1062 		struct extra_kernel_map xm = {
1063 			.start = va,
1064 			.end   = va + page_size,
1065 			.pgoff = pgoff,
1066 		};
1067 
1068 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1069 
1070 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1071 			return -1;
1072 	}
1073 
1074 	machine->trampolines_mapped = nr_cpus_avail;
1075 
1076 	return 0;
1077 }
1078 
1079 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1080 					     struct dso *kernel __maybe_unused)
1081 {
1082 	return 0;
1083 }
1084 
1085 static int
1086 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1087 {
1088 	struct kmap *kmap;
1089 	struct map *map;
1090 
1091 	/* In case of renewal the kernel map, destroy previous one */
1092 	machine__destroy_kernel_maps(machine);
1093 
1094 	machine->vmlinux_map = map__new2(0, kernel);
1095 	if (machine->vmlinux_map == NULL)
1096 		return -1;
1097 
1098 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1099 	map = machine__kernel_map(machine);
1100 	kmap = map__kmap(map);
1101 	if (!kmap)
1102 		return -1;
1103 
1104 	kmap->kmaps = &machine->kmaps;
1105 	map_groups__insert(&machine->kmaps, map);
1106 
1107 	return 0;
1108 }
1109 
1110 void machine__destroy_kernel_maps(struct machine *machine)
1111 {
1112 	struct kmap *kmap;
1113 	struct map *map = machine__kernel_map(machine);
1114 
1115 	if (map == NULL)
1116 		return;
1117 
1118 	kmap = map__kmap(map);
1119 	map_groups__remove(&machine->kmaps, map);
1120 	if (kmap && kmap->ref_reloc_sym) {
1121 		zfree((char **)&kmap->ref_reloc_sym->name);
1122 		zfree(&kmap->ref_reloc_sym);
1123 	}
1124 
1125 	map__zput(machine->vmlinux_map);
1126 }
1127 
1128 int machines__create_guest_kernel_maps(struct machines *machines)
1129 {
1130 	int ret = 0;
1131 	struct dirent **namelist = NULL;
1132 	int i, items = 0;
1133 	char path[PATH_MAX];
1134 	pid_t pid;
1135 	char *endp;
1136 
1137 	if (symbol_conf.default_guest_vmlinux_name ||
1138 	    symbol_conf.default_guest_modules ||
1139 	    symbol_conf.default_guest_kallsyms) {
1140 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1141 	}
1142 
1143 	if (symbol_conf.guestmount) {
1144 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1145 		if (items <= 0)
1146 			return -ENOENT;
1147 		for (i = 0; i < items; i++) {
1148 			if (!isdigit(namelist[i]->d_name[0])) {
1149 				/* Filter out . and .. */
1150 				continue;
1151 			}
1152 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1153 			if ((*endp != '\0') ||
1154 			    (endp == namelist[i]->d_name) ||
1155 			    (errno == ERANGE)) {
1156 				pr_debug("invalid directory (%s). Skipping.\n",
1157 					 namelist[i]->d_name);
1158 				continue;
1159 			}
1160 			sprintf(path, "%s/%s/proc/kallsyms",
1161 				symbol_conf.guestmount,
1162 				namelist[i]->d_name);
1163 			ret = access(path, R_OK);
1164 			if (ret) {
1165 				pr_debug("Can't access file %s\n", path);
1166 				goto failure;
1167 			}
1168 			machines__create_kernel_maps(machines, pid);
1169 		}
1170 failure:
1171 		free(namelist);
1172 	}
1173 
1174 	return ret;
1175 }
1176 
1177 void machines__destroy_kernel_maps(struct machines *machines)
1178 {
1179 	struct rb_node *next = rb_first_cached(&machines->guests);
1180 
1181 	machine__destroy_kernel_maps(&machines->host);
1182 
1183 	while (next) {
1184 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1185 
1186 		next = rb_next(&pos->rb_node);
1187 		rb_erase_cached(&pos->rb_node, &machines->guests);
1188 		machine__delete(pos);
1189 	}
1190 }
1191 
1192 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1193 {
1194 	struct machine *machine = machines__findnew(machines, pid);
1195 
1196 	if (machine == NULL)
1197 		return -1;
1198 
1199 	return machine__create_kernel_maps(machine);
1200 }
1201 
1202 int machine__load_kallsyms(struct machine *machine, const char *filename)
1203 {
1204 	struct map *map = machine__kernel_map(machine);
1205 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1206 
1207 	if (ret > 0) {
1208 		dso__set_loaded(map->dso);
1209 		/*
1210 		 * Since /proc/kallsyms will have multiple sessions for the
1211 		 * kernel, with modules between them, fixup the end of all
1212 		 * sections.
1213 		 */
1214 		map_groups__fixup_end(&machine->kmaps);
1215 	}
1216 
1217 	return ret;
1218 }
1219 
1220 int machine__load_vmlinux_path(struct machine *machine)
1221 {
1222 	struct map *map = machine__kernel_map(machine);
1223 	int ret = dso__load_vmlinux_path(map->dso, map);
1224 
1225 	if (ret > 0)
1226 		dso__set_loaded(map->dso);
1227 
1228 	return ret;
1229 }
1230 
1231 static char *get_kernel_version(const char *root_dir)
1232 {
1233 	char version[PATH_MAX];
1234 	FILE *file;
1235 	char *name, *tmp;
1236 	const char *prefix = "Linux version ";
1237 
1238 	sprintf(version, "%s/proc/version", root_dir);
1239 	file = fopen(version, "r");
1240 	if (!file)
1241 		return NULL;
1242 
1243 	tmp = fgets(version, sizeof(version), file);
1244 	fclose(file);
1245 	if (!tmp)
1246 		return NULL;
1247 
1248 	name = strstr(version, prefix);
1249 	if (!name)
1250 		return NULL;
1251 	name += strlen(prefix);
1252 	tmp = strchr(name, ' ');
1253 	if (tmp)
1254 		*tmp = '\0';
1255 
1256 	return strdup(name);
1257 }
1258 
1259 static bool is_kmod_dso(struct dso *dso)
1260 {
1261 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1262 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1263 }
1264 
1265 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1266 				       struct kmod_path *m)
1267 {
1268 	char *long_name;
1269 	struct map *map = map_groups__find_by_name(mg, m->name);
1270 
1271 	if (map == NULL)
1272 		return 0;
1273 
1274 	long_name = strdup(path);
1275 	if (long_name == NULL)
1276 		return -ENOMEM;
1277 
1278 	dso__set_long_name(map->dso, long_name, true);
1279 	dso__kernel_module_get_build_id(map->dso, "");
1280 
1281 	/*
1282 	 * Full name could reveal us kmod compression, so
1283 	 * we need to update the symtab_type if needed.
1284 	 */
1285 	if (m->comp && is_kmod_dso(map->dso)) {
1286 		map->dso->symtab_type++;
1287 		map->dso->comp = m->comp;
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1294 				const char *dir_name, int depth)
1295 {
1296 	struct dirent *dent;
1297 	DIR *dir = opendir(dir_name);
1298 	int ret = 0;
1299 
1300 	if (!dir) {
1301 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1302 		return -1;
1303 	}
1304 
1305 	while ((dent = readdir(dir)) != NULL) {
1306 		char path[PATH_MAX];
1307 		struct stat st;
1308 
1309 		/*sshfs might return bad dent->d_type, so we have to stat*/
1310 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1311 		if (stat(path, &st))
1312 			continue;
1313 
1314 		if (S_ISDIR(st.st_mode)) {
1315 			if (!strcmp(dent->d_name, ".") ||
1316 			    !strcmp(dent->d_name, ".."))
1317 				continue;
1318 
1319 			/* Do not follow top-level source and build symlinks */
1320 			if (depth == 0) {
1321 				if (!strcmp(dent->d_name, "source") ||
1322 				    !strcmp(dent->d_name, "build"))
1323 					continue;
1324 			}
1325 
1326 			ret = map_groups__set_modules_path_dir(mg, path,
1327 							       depth + 1);
1328 			if (ret < 0)
1329 				goto out;
1330 		} else {
1331 			struct kmod_path m;
1332 
1333 			ret = kmod_path__parse_name(&m, dent->d_name);
1334 			if (ret)
1335 				goto out;
1336 
1337 			if (m.kmod)
1338 				ret = map_groups__set_module_path(mg, path, &m);
1339 
1340 			zfree(&m.name);
1341 
1342 			if (ret)
1343 				goto out;
1344 		}
1345 	}
1346 
1347 out:
1348 	closedir(dir);
1349 	return ret;
1350 }
1351 
1352 static int machine__set_modules_path(struct machine *machine)
1353 {
1354 	char *version;
1355 	char modules_path[PATH_MAX];
1356 
1357 	version = get_kernel_version(machine->root_dir);
1358 	if (!version)
1359 		return -1;
1360 
1361 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1362 		 machine->root_dir, version);
1363 	free(version);
1364 
1365 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1366 }
1367 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1368 				u64 *size __maybe_unused,
1369 				const char *name __maybe_unused)
1370 {
1371 	return 0;
1372 }
1373 
1374 static int machine__create_module(void *arg, const char *name, u64 start,
1375 				  u64 size)
1376 {
1377 	struct machine *machine = arg;
1378 	struct map *map;
1379 
1380 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1381 		return -1;
1382 
1383 	map = machine__addnew_module_map(machine, start, name);
1384 	if (map == NULL)
1385 		return -1;
1386 	map->end = start + size;
1387 
1388 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1389 
1390 	return 0;
1391 }
1392 
1393 static int machine__create_modules(struct machine *machine)
1394 {
1395 	const char *modules;
1396 	char path[PATH_MAX];
1397 
1398 	if (machine__is_default_guest(machine)) {
1399 		modules = symbol_conf.default_guest_modules;
1400 	} else {
1401 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1402 		modules = path;
1403 	}
1404 
1405 	if (symbol__restricted_filename(modules, "/proc/modules"))
1406 		return -1;
1407 
1408 	if (modules__parse(modules, machine, machine__create_module))
1409 		return -1;
1410 
1411 	if (!machine__set_modules_path(machine))
1412 		return 0;
1413 
1414 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1415 
1416 	return 0;
1417 }
1418 
1419 static void machine__set_kernel_mmap(struct machine *machine,
1420 				     u64 start, u64 end)
1421 {
1422 	machine->vmlinux_map->start = start;
1423 	machine->vmlinux_map->end   = end;
1424 	/*
1425 	 * Be a bit paranoid here, some perf.data file came with
1426 	 * a zero sized synthesized MMAP event for the kernel.
1427 	 */
1428 	if (start == 0 && end == 0)
1429 		machine->vmlinux_map->end = ~0ULL;
1430 }
1431 
1432 static void machine__update_kernel_mmap(struct machine *machine,
1433 				     u64 start, u64 end)
1434 {
1435 	struct map *map = machine__kernel_map(machine);
1436 
1437 	map__get(map);
1438 	map_groups__remove(&machine->kmaps, map);
1439 
1440 	machine__set_kernel_mmap(machine, start, end);
1441 
1442 	map_groups__insert(&machine->kmaps, map);
1443 	map__put(map);
1444 }
1445 
1446 int machine__create_kernel_maps(struct machine *machine)
1447 {
1448 	struct dso *kernel = machine__get_kernel(machine);
1449 	const char *name = NULL;
1450 	struct map *map;
1451 	u64 start = 0, end = ~0ULL;
1452 	int ret;
1453 
1454 	if (kernel == NULL)
1455 		return -1;
1456 
1457 	ret = __machine__create_kernel_maps(machine, kernel);
1458 	if (ret < 0)
1459 		goto out_put;
1460 
1461 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1462 		if (machine__is_host(machine))
1463 			pr_debug("Problems creating module maps, "
1464 				 "continuing anyway...\n");
1465 		else
1466 			pr_debug("Problems creating module maps for guest %d, "
1467 				 "continuing anyway...\n", machine->pid);
1468 	}
1469 
1470 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1471 		if (name &&
1472 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1473 			machine__destroy_kernel_maps(machine);
1474 			ret = -1;
1475 			goto out_put;
1476 		}
1477 
1478 		/*
1479 		 * we have a real start address now, so re-order the kmaps
1480 		 * assume it's the last in the kmaps
1481 		 */
1482 		machine__update_kernel_mmap(machine, start, end);
1483 	}
1484 
1485 	if (machine__create_extra_kernel_maps(machine, kernel))
1486 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1487 
1488 	if (end == ~0ULL) {
1489 		/* update end address of the kernel map using adjacent module address */
1490 		map = map__next(machine__kernel_map(machine));
1491 		if (map)
1492 			machine__set_kernel_mmap(machine, start, map->start);
1493 	}
1494 
1495 out_put:
1496 	dso__put(kernel);
1497 	return ret;
1498 }
1499 
1500 static bool machine__uses_kcore(struct machine *machine)
1501 {
1502 	struct dso *dso;
1503 
1504 	list_for_each_entry(dso, &machine->dsos.head, node) {
1505 		if (dso__is_kcore(dso))
1506 			return true;
1507 	}
1508 
1509 	return false;
1510 }
1511 
1512 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1513 					     union perf_event *event)
1514 {
1515 	return machine__is(machine, "x86_64") &&
1516 	       is_entry_trampoline(event->mmap.filename);
1517 }
1518 
1519 static int machine__process_extra_kernel_map(struct machine *machine,
1520 					     union perf_event *event)
1521 {
1522 	struct dso *kernel = machine__kernel_dso(machine);
1523 	struct extra_kernel_map xm = {
1524 		.start = event->mmap.start,
1525 		.end   = event->mmap.start + event->mmap.len,
1526 		.pgoff = event->mmap.pgoff,
1527 	};
1528 
1529 	if (kernel == NULL)
1530 		return -1;
1531 
1532 	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1533 
1534 	return machine__create_extra_kernel_map(machine, kernel, &xm);
1535 }
1536 
1537 static int machine__process_kernel_mmap_event(struct machine *machine,
1538 					      union perf_event *event)
1539 {
1540 	struct map *map;
1541 	enum dso_kernel_type kernel_type;
1542 	bool is_kernel_mmap;
1543 
1544 	/* If we have maps from kcore then we do not need or want any others */
1545 	if (machine__uses_kcore(machine))
1546 		return 0;
1547 
1548 	if (machine__is_host(machine))
1549 		kernel_type = DSO_TYPE_KERNEL;
1550 	else
1551 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1552 
1553 	is_kernel_mmap = memcmp(event->mmap.filename,
1554 				machine->mmap_name,
1555 				strlen(machine->mmap_name) - 1) == 0;
1556 	if (event->mmap.filename[0] == '/' ||
1557 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1558 		map = machine__addnew_module_map(machine, event->mmap.start,
1559 						 event->mmap.filename);
1560 		if (map == NULL)
1561 			goto out_problem;
1562 
1563 		map->end = map->start + event->mmap.len;
1564 	} else if (is_kernel_mmap) {
1565 		const char *symbol_name = (event->mmap.filename +
1566 				strlen(machine->mmap_name));
1567 		/*
1568 		 * Should be there already, from the build-id table in
1569 		 * the header.
1570 		 */
1571 		struct dso *kernel = NULL;
1572 		struct dso *dso;
1573 
1574 		down_read(&machine->dsos.lock);
1575 
1576 		list_for_each_entry(dso, &machine->dsos.head, node) {
1577 
1578 			/*
1579 			 * The cpumode passed to is_kernel_module is not the
1580 			 * cpumode of *this* event. If we insist on passing
1581 			 * correct cpumode to is_kernel_module, we should
1582 			 * record the cpumode when we adding this dso to the
1583 			 * linked list.
1584 			 *
1585 			 * However we don't really need passing correct
1586 			 * cpumode.  We know the correct cpumode must be kernel
1587 			 * mode (if not, we should not link it onto kernel_dsos
1588 			 * list).
1589 			 *
1590 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1591 			 * is_kernel_module() treats it as a kernel cpumode.
1592 			 */
1593 
1594 			if (!dso->kernel ||
1595 			    is_kernel_module(dso->long_name,
1596 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1597 				continue;
1598 
1599 
1600 			kernel = dso;
1601 			break;
1602 		}
1603 
1604 		up_read(&machine->dsos.lock);
1605 
1606 		if (kernel == NULL)
1607 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1608 		if (kernel == NULL)
1609 			goto out_problem;
1610 
1611 		kernel->kernel = kernel_type;
1612 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1613 			dso__put(kernel);
1614 			goto out_problem;
1615 		}
1616 
1617 		if (strstr(kernel->long_name, "vmlinux"))
1618 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1619 
1620 		machine__update_kernel_mmap(machine, event->mmap.start,
1621 					 event->mmap.start + event->mmap.len);
1622 
1623 		/*
1624 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1625 		 * symbol. Effectively having zero here means that at record
1626 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1627 		 */
1628 		if (event->mmap.pgoff != 0) {
1629 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1630 							symbol_name,
1631 							event->mmap.pgoff);
1632 		}
1633 
1634 		if (machine__is_default_guest(machine)) {
1635 			/*
1636 			 * preload dso of guest kernel and modules
1637 			 */
1638 			dso__load(kernel, machine__kernel_map(machine));
1639 		}
1640 	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1641 		return machine__process_extra_kernel_map(machine, event);
1642 	}
1643 	return 0;
1644 out_problem:
1645 	return -1;
1646 }
1647 
1648 int machine__process_mmap2_event(struct machine *machine,
1649 				 union perf_event *event,
1650 				 struct perf_sample *sample)
1651 {
1652 	struct thread *thread;
1653 	struct map *map;
1654 	struct dso_id dso_id = {
1655 		.maj = event->mmap2.maj,
1656 		.min = event->mmap2.min,
1657 		.ino = event->mmap2.ino,
1658 		.ino_generation = event->mmap2.ino_generation,
1659 	};
1660 	int ret = 0;
1661 
1662 	if (dump_trace)
1663 		perf_event__fprintf_mmap2(event, stdout);
1664 
1665 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1666 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1667 		ret = machine__process_kernel_mmap_event(machine, event);
1668 		if (ret < 0)
1669 			goto out_problem;
1670 		return 0;
1671 	}
1672 
1673 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1674 					event->mmap2.tid);
1675 	if (thread == NULL)
1676 		goto out_problem;
1677 
1678 	map = map__new(machine, event->mmap2.start,
1679 			event->mmap2.len, event->mmap2.pgoff,
1680 			&dso_id, event->mmap2.prot,
1681 			event->mmap2.flags,
1682 			event->mmap2.filename, thread);
1683 
1684 	if (map == NULL)
1685 		goto out_problem_map;
1686 
1687 	ret = thread__insert_map(thread, map);
1688 	if (ret)
1689 		goto out_problem_insert;
1690 
1691 	thread__put(thread);
1692 	map__put(map);
1693 	return 0;
1694 
1695 out_problem_insert:
1696 	map__put(map);
1697 out_problem_map:
1698 	thread__put(thread);
1699 out_problem:
1700 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1701 	return 0;
1702 }
1703 
1704 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1705 				struct perf_sample *sample)
1706 {
1707 	struct thread *thread;
1708 	struct map *map;
1709 	u32 prot = 0;
1710 	int ret = 0;
1711 
1712 	if (dump_trace)
1713 		perf_event__fprintf_mmap(event, stdout);
1714 
1715 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1716 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1717 		ret = machine__process_kernel_mmap_event(machine, event);
1718 		if (ret < 0)
1719 			goto out_problem;
1720 		return 0;
1721 	}
1722 
1723 	thread = machine__findnew_thread(machine, event->mmap.pid,
1724 					 event->mmap.tid);
1725 	if (thread == NULL)
1726 		goto out_problem;
1727 
1728 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1729 		prot = PROT_EXEC;
1730 
1731 	map = map__new(machine, event->mmap.start,
1732 			event->mmap.len, event->mmap.pgoff,
1733 			NULL, prot, 0, event->mmap.filename, thread);
1734 
1735 	if (map == NULL)
1736 		goto out_problem_map;
1737 
1738 	ret = thread__insert_map(thread, map);
1739 	if (ret)
1740 		goto out_problem_insert;
1741 
1742 	thread__put(thread);
1743 	map__put(map);
1744 	return 0;
1745 
1746 out_problem_insert:
1747 	map__put(map);
1748 out_problem_map:
1749 	thread__put(thread);
1750 out_problem:
1751 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1752 	return 0;
1753 }
1754 
1755 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1756 {
1757 	struct threads *threads = machine__threads(machine, th->tid);
1758 
1759 	if (threads->last_match == th)
1760 		threads__set_last_match(threads, NULL);
1761 
1762 	if (lock)
1763 		down_write(&threads->lock);
1764 
1765 	BUG_ON(refcount_read(&th->refcnt) == 0);
1766 
1767 	rb_erase_cached(&th->rb_node, &threads->entries);
1768 	RB_CLEAR_NODE(&th->rb_node);
1769 	--threads->nr;
1770 	/*
1771 	 * Move it first to the dead_threads list, then drop the reference,
1772 	 * if this is the last reference, then the thread__delete destructor
1773 	 * will be called and we will remove it from the dead_threads list.
1774 	 */
1775 	list_add_tail(&th->node, &threads->dead);
1776 
1777 	/*
1778 	 * We need to do the put here because if this is the last refcount,
1779 	 * then we will be touching the threads->dead head when removing the
1780 	 * thread.
1781 	 */
1782 	thread__put(th);
1783 
1784 	if (lock)
1785 		up_write(&threads->lock);
1786 }
1787 
1788 void machine__remove_thread(struct machine *machine, struct thread *th)
1789 {
1790 	return __machine__remove_thread(machine, th, true);
1791 }
1792 
1793 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1794 				struct perf_sample *sample)
1795 {
1796 	struct thread *thread = machine__find_thread(machine,
1797 						     event->fork.pid,
1798 						     event->fork.tid);
1799 	struct thread *parent = machine__findnew_thread(machine,
1800 							event->fork.ppid,
1801 							event->fork.ptid);
1802 	bool do_maps_clone = true;
1803 	int err = 0;
1804 
1805 	if (dump_trace)
1806 		perf_event__fprintf_task(event, stdout);
1807 
1808 	/*
1809 	 * There may be an existing thread that is not actually the parent,
1810 	 * either because we are processing events out of order, or because the
1811 	 * (fork) event that would have removed the thread was lost. Assume the
1812 	 * latter case and continue on as best we can.
1813 	 */
1814 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1815 		dump_printf("removing erroneous parent thread %d/%d\n",
1816 			    parent->pid_, parent->tid);
1817 		machine__remove_thread(machine, parent);
1818 		thread__put(parent);
1819 		parent = machine__findnew_thread(machine, event->fork.ppid,
1820 						 event->fork.ptid);
1821 	}
1822 
1823 	/* if a thread currently exists for the thread id remove it */
1824 	if (thread != NULL) {
1825 		machine__remove_thread(machine, thread);
1826 		thread__put(thread);
1827 	}
1828 
1829 	thread = machine__findnew_thread(machine, event->fork.pid,
1830 					 event->fork.tid);
1831 	/*
1832 	 * When synthesizing FORK events, we are trying to create thread
1833 	 * objects for the already running tasks on the machine.
1834 	 *
1835 	 * Normally, for a kernel FORK event, we want to clone the parent's
1836 	 * maps because that is what the kernel just did.
1837 	 *
1838 	 * But when synthesizing, this should not be done.  If we do, we end up
1839 	 * with overlapping maps as we process the sythesized MMAP2 events that
1840 	 * get delivered shortly thereafter.
1841 	 *
1842 	 * Use the FORK event misc flags in an internal way to signal this
1843 	 * situation, so we can elide the map clone when appropriate.
1844 	 */
1845 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1846 		do_maps_clone = false;
1847 
1848 	if (thread == NULL || parent == NULL ||
1849 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1850 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1851 		err = -1;
1852 	}
1853 	thread__put(thread);
1854 	thread__put(parent);
1855 
1856 	return err;
1857 }
1858 
1859 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1860 				struct perf_sample *sample __maybe_unused)
1861 {
1862 	struct thread *thread = machine__find_thread(machine,
1863 						     event->fork.pid,
1864 						     event->fork.tid);
1865 
1866 	if (dump_trace)
1867 		perf_event__fprintf_task(event, stdout);
1868 
1869 	if (thread != NULL) {
1870 		thread__exited(thread);
1871 		thread__put(thread);
1872 	}
1873 
1874 	return 0;
1875 }
1876 
1877 int machine__process_event(struct machine *machine, union perf_event *event,
1878 			   struct perf_sample *sample)
1879 {
1880 	int ret;
1881 
1882 	switch (event->header.type) {
1883 	case PERF_RECORD_COMM:
1884 		ret = machine__process_comm_event(machine, event, sample); break;
1885 	case PERF_RECORD_MMAP:
1886 		ret = machine__process_mmap_event(machine, event, sample); break;
1887 	case PERF_RECORD_NAMESPACES:
1888 		ret = machine__process_namespaces_event(machine, event, sample); break;
1889 	case PERF_RECORD_MMAP2:
1890 		ret = machine__process_mmap2_event(machine, event, sample); break;
1891 	case PERF_RECORD_FORK:
1892 		ret = machine__process_fork_event(machine, event, sample); break;
1893 	case PERF_RECORD_EXIT:
1894 		ret = machine__process_exit_event(machine, event, sample); break;
1895 	case PERF_RECORD_LOST:
1896 		ret = machine__process_lost_event(machine, event, sample); break;
1897 	case PERF_RECORD_AUX:
1898 		ret = machine__process_aux_event(machine, event); break;
1899 	case PERF_RECORD_ITRACE_START:
1900 		ret = machine__process_itrace_start_event(machine, event); break;
1901 	case PERF_RECORD_LOST_SAMPLES:
1902 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1903 	case PERF_RECORD_SWITCH:
1904 	case PERF_RECORD_SWITCH_CPU_WIDE:
1905 		ret = machine__process_switch_event(machine, event); break;
1906 	case PERF_RECORD_KSYMBOL:
1907 		ret = machine__process_ksymbol(machine, event, sample); break;
1908 	case PERF_RECORD_BPF_EVENT:
1909 		ret = machine__process_bpf(machine, event, sample); break;
1910 	default:
1911 		ret = -1;
1912 		break;
1913 	}
1914 
1915 	return ret;
1916 }
1917 
1918 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1919 {
1920 	if (!regexec(regex, sym->name, 0, NULL, 0))
1921 		return 1;
1922 	return 0;
1923 }
1924 
1925 static void ip__resolve_ams(struct thread *thread,
1926 			    struct addr_map_symbol *ams,
1927 			    u64 ip)
1928 {
1929 	struct addr_location al;
1930 
1931 	memset(&al, 0, sizeof(al));
1932 	/*
1933 	 * We cannot use the header.misc hint to determine whether a
1934 	 * branch stack address is user, kernel, guest, hypervisor.
1935 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1936 	 * Thus, we have to try consecutively until we find a match
1937 	 * or else, the symbol is unknown
1938 	 */
1939 	thread__find_cpumode_addr_location(thread, ip, &al);
1940 
1941 	ams->addr = ip;
1942 	ams->al_addr = al.addr;
1943 	ams->ms.mg  = al.mg;
1944 	ams->ms.sym = al.sym;
1945 	ams->ms.map = al.map;
1946 	ams->phys_addr = 0;
1947 }
1948 
1949 static void ip__resolve_data(struct thread *thread,
1950 			     u8 m, struct addr_map_symbol *ams,
1951 			     u64 addr, u64 phys_addr)
1952 {
1953 	struct addr_location al;
1954 
1955 	memset(&al, 0, sizeof(al));
1956 
1957 	thread__find_symbol(thread, m, addr, &al);
1958 
1959 	ams->addr = addr;
1960 	ams->al_addr = al.addr;
1961 	ams->ms.mg  = al.mg;
1962 	ams->ms.sym = al.sym;
1963 	ams->ms.map = al.map;
1964 	ams->phys_addr = phys_addr;
1965 }
1966 
1967 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1968 				     struct addr_location *al)
1969 {
1970 	struct mem_info *mi = mem_info__new();
1971 
1972 	if (!mi)
1973 		return NULL;
1974 
1975 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1976 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1977 			 sample->addr, sample->phys_addr);
1978 	mi->data_src.val = sample->data_src;
1979 
1980 	return mi;
1981 }
1982 
1983 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
1984 {
1985 	struct map *map = ms->map;
1986 	char *srcline = NULL;
1987 
1988 	if (!map || callchain_param.key == CCKEY_FUNCTION)
1989 		return srcline;
1990 
1991 	srcline = srcline__tree_find(&map->dso->srclines, ip);
1992 	if (!srcline) {
1993 		bool show_sym = false;
1994 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1995 
1996 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1997 				      ms->sym, show_sym, show_addr, ip);
1998 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
1999 	}
2000 
2001 	return srcline;
2002 }
2003 
2004 struct iterations {
2005 	int nr_loop_iter;
2006 	u64 cycles;
2007 };
2008 
2009 static int add_callchain_ip(struct thread *thread,
2010 			    struct callchain_cursor *cursor,
2011 			    struct symbol **parent,
2012 			    struct addr_location *root_al,
2013 			    u8 *cpumode,
2014 			    u64 ip,
2015 			    bool branch,
2016 			    struct branch_flags *flags,
2017 			    struct iterations *iter,
2018 			    u64 branch_from)
2019 {
2020 	struct map_symbol ms;
2021 	struct addr_location al;
2022 	int nr_loop_iter = 0;
2023 	u64 iter_cycles = 0;
2024 	const char *srcline = NULL;
2025 
2026 	al.filtered = 0;
2027 	al.sym = NULL;
2028 	if (!cpumode) {
2029 		thread__find_cpumode_addr_location(thread, ip, &al);
2030 	} else {
2031 		if (ip >= PERF_CONTEXT_MAX) {
2032 			switch (ip) {
2033 			case PERF_CONTEXT_HV:
2034 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2035 				break;
2036 			case PERF_CONTEXT_KERNEL:
2037 				*cpumode = PERF_RECORD_MISC_KERNEL;
2038 				break;
2039 			case PERF_CONTEXT_USER:
2040 				*cpumode = PERF_RECORD_MISC_USER;
2041 				break;
2042 			default:
2043 				pr_debug("invalid callchain context: "
2044 					 "%"PRId64"\n", (s64) ip);
2045 				/*
2046 				 * It seems the callchain is corrupted.
2047 				 * Discard all.
2048 				 */
2049 				callchain_cursor_reset(cursor);
2050 				return 1;
2051 			}
2052 			return 0;
2053 		}
2054 		thread__find_symbol(thread, *cpumode, ip, &al);
2055 	}
2056 
2057 	if (al.sym != NULL) {
2058 		if (perf_hpp_list.parent && !*parent &&
2059 		    symbol__match_regex(al.sym, &parent_regex))
2060 			*parent = al.sym;
2061 		else if (have_ignore_callees && root_al &&
2062 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2063 			/* Treat this symbol as the root,
2064 			   forgetting its callees. */
2065 			*root_al = al;
2066 			callchain_cursor_reset(cursor);
2067 		}
2068 	}
2069 
2070 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2071 		return 0;
2072 
2073 	if (iter) {
2074 		nr_loop_iter = iter->nr_loop_iter;
2075 		iter_cycles = iter->cycles;
2076 	}
2077 
2078 	ms.mg  = al.mg;
2079 	ms.map = al.map;
2080 	ms.sym = al.sym;
2081 	srcline = callchain_srcline(&ms, al.addr);
2082 	return callchain_cursor_append(cursor, ip, &ms,
2083 				       branch, flags, nr_loop_iter,
2084 				       iter_cycles, branch_from, srcline);
2085 }
2086 
2087 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2088 					   struct addr_location *al)
2089 {
2090 	unsigned int i;
2091 	const struct branch_stack *bs = sample->branch_stack;
2092 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2093 
2094 	if (!bi)
2095 		return NULL;
2096 
2097 	for (i = 0; i < bs->nr; i++) {
2098 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2099 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2100 		bi[i].flags = bs->entries[i].flags;
2101 	}
2102 	return bi;
2103 }
2104 
2105 static void save_iterations(struct iterations *iter,
2106 			    struct branch_entry *be, int nr)
2107 {
2108 	int i;
2109 
2110 	iter->nr_loop_iter++;
2111 	iter->cycles = 0;
2112 
2113 	for (i = 0; i < nr; i++)
2114 		iter->cycles += be[i].flags.cycles;
2115 }
2116 
2117 #define CHASHSZ 127
2118 #define CHASHBITS 7
2119 #define NO_ENTRY 0xff
2120 
2121 #define PERF_MAX_BRANCH_DEPTH 127
2122 
2123 /* Remove loops. */
2124 static int remove_loops(struct branch_entry *l, int nr,
2125 			struct iterations *iter)
2126 {
2127 	int i, j, off;
2128 	unsigned char chash[CHASHSZ];
2129 
2130 	memset(chash, NO_ENTRY, sizeof(chash));
2131 
2132 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2133 
2134 	for (i = 0; i < nr; i++) {
2135 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2136 
2137 		/* no collision handling for now */
2138 		if (chash[h] == NO_ENTRY) {
2139 			chash[h] = i;
2140 		} else if (l[chash[h]].from == l[i].from) {
2141 			bool is_loop = true;
2142 			/* check if it is a real loop */
2143 			off = 0;
2144 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2145 				if (l[j].from != l[i + off].from) {
2146 					is_loop = false;
2147 					break;
2148 				}
2149 			if (is_loop) {
2150 				j = nr - (i + off);
2151 				if (j > 0) {
2152 					save_iterations(iter + i + off,
2153 						l + i, off);
2154 
2155 					memmove(iter + i, iter + i + off,
2156 						j * sizeof(*iter));
2157 
2158 					memmove(l + i, l + i + off,
2159 						j * sizeof(*l));
2160 				}
2161 
2162 				nr -= off;
2163 			}
2164 		}
2165 	}
2166 	return nr;
2167 }
2168 
2169 /*
2170  * Recolve LBR callstack chain sample
2171  * Return:
2172  * 1 on success get LBR callchain information
2173  * 0 no available LBR callchain information, should try fp
2174  * negative error code on other errors.
2175  */
2176 static int resolve_lbr_callchain_sample(struct thread *thread,
2177 					struct callchain_cursor *cursor,
2178 					struct perf_sample *sample,
2179 					struct symbol **parent,
2180 					struct addr_location *root_al,
2181 					int max_stack)
2182 {
2183 	struct ip_callchain *chain = sample->callchain;
2184 	int chain_nr = min(max_stack, (int)chain->nr), i;
2185 	u8 cpumode = PERF_RECORD_MISC_USER;
2186 	u64 ip, branch_from = 0;
2187 
2188 	for (i = 0; i < chain_nr; i++) {
2189 		if (chain->ips[i] == PERF_CONTEXT_USER)
2190 			break;
2191 	}
2192 
2193 	/* LBR only affects the user callchain */
2194 	if (i != chain_nr) {
2195 		struct branch_stack *lbr_stack = sample->branch_stack;
2196 		int lbr_nr = lbr_stack->nr, j, k;
2197 		bool branch;
2198 		struct branch_flags *flags;
2199 		/*
2200 		 * LBR callstack can only get user call chain.
2201 		 * The mix_chain_nr is kernel call chain
2202 		 * number plus LBR user call chain number.
2203 		 * i is kernel call chain number,
2204 		 * 1 is PERF_CONTEXT_USER,
2205 		 * lbr_nr + 1 is the user call chain number.
2206 		 * For details, please refer to the comments
2207 		 * in callchain__printf
2208 		 */
2209 		int mix_chain_nr = i + 1 + lbr_nr + 1;
2210 
2211 		for (j = 0; j < mix_chain_nr; j++) {
2212 			int err;
2213 			branch = false;
2214 			flags = NULL;
2215 
2216 			if (callchain_param.order == ORDER_CALLEE) {
2217 				if (j < i + 1)
2218 					ip = chain->ips[j];
2219 				else if (j > i + 1) {
2220 					k = j - i - 2;
2221 					ip = lbr_stack->entries[k].from;
2222 					branch = true;
2223 					flags = &lbr_stack->entries[k].flags;
2224 				} else {
2225 					ip = lbr_stack->entries[0].to;
2226 					branch = true;
2227 					flags = &lbr_stack->entries[0].flags;
2228 					branch_from =
2229 						lbr_stack->entries[0].from;
2230 				}
2231 			} else {
2232 				if (j < lbr_nr) {
2233 					k = lbr_nr - j - 1;
2234 					ip = lbr_stack->entries[k].from;
2235 					branch = true;
2236 					flags = &lbr_stack->entries[k].flags;
2237 				}
2238 				else if (j > lbr_nr)
2239 					ip = chain->ips[i + 1 - (j - lbr_nr)];
2240 				else {
2241 					ip = lbr_stack->entries[0].to;
2242 					branch = true;
2243 					flags = &lbr_stack->entries[0].flags;
2244 					branch_from =
2245 						lbr_stack->entries[0].from;
2246 				}
2247 			}
2248 
2249 			err = add_callchain_ip(thread, cursor, parent,
2250 					       root_al, &cpumode, ip,
2251 					       branch, flags, NULL,
2252 					       branch_from);
2253 			if (err)
2254 				return (err < 0) ? err : 0;
2255 		}
2256 		return 1;
2257 	}
2258 
2259 	return 0;
2260 }
2261 
2262 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2263 			     struct callchain_cursor *cursor,
2264 			     struct symbol **parent,
2265 			     struct addr_location *root_al,
2266 			     u8 *cpumode, int ent)
2267 {
2268 	int err = 0;
2269 
2270 	while (--ent >= 0) {
2271 		u64 ip = chain->ips[ent];
2272 
2273 		if (ip >= PERF_CONTEXT_MAX) {
2274 			err = add_callchain_ip(thread, cursor, parent,
2275 					       root_al, cpumode, ip,
2276 					       false, NULL, NULL, 0);
2277 			break;
2278 		}
2279 	}
2280 	return err;
2281 }
2282 
2283 static int thread__resolve_callchain_sample(struct thread *thread,
2284 					    struct callchain_cursor *cursor,
2285 					    struct evsel *evsel,
2286 					    struct perf_sample *sample,
2287 					    struct symbol **parent,
2288 					    struct addr_location *root_al,
2289 					    int max_stack)
2290 {
2291 	struct branch_stack *branch = sample->branch_stack;
2292 	struct ip_callchain *chain = sample->callchain;
2293 	int chain_nr = 0;
2294 	u8 cpumode = PERF_RECORD_MISC_USER;
2295 	int i, j, err, nr_entries;
2296 	int skip_idx = -1;
2297 	int first_call = 0;
2298 
2299 	if (chain)
2300 		chain_nr = chain->nr;
2301 
2302 	if (perf_evsel__has_branch_callstack(evsel)) {
2303 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2304 						   root_al, max_stack);
2305 		if (err)
2306 			return (err < 0) ? err : 0;
2307 	}
2308 
2309 	/*
2310 	 * Based on DWARF debug information, some architectures skip
2311 	 * a callchain entry saved by the kernel.
2312 	 */
2313 	skip_idx = arch_skip_callchain_idx(thread, chain);
2314 
2315 	/*
2316 	 * Add branches to call stack for easier browsing. This gives
2317 	 * more context for a sample than just the callers.
2318 	 *
2319 	 * This uses individual histograms of paths compared to the
2320 	 * aggregated histograms the normal LBR mode uses.
2321 	 *
2322 	 * Limitations for now:
2323 	 * - No extra filters
2324 	 * - No annotations (should annotate somehow)
2325 	 */
2326 
2327 	if (branch && callchain_param.branch_callstack) {
2328 		int nr = min(max_stack, (int)branch->nr);
2329 		struct branch_entry be[nr];
2330 		struct iterations iter[nr];
2331 
2332 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2333 			pr_warning("corrupted branch chain. skipping...\n");
2334 			goto check_calls;
2335 		}
2336 
2337 		for (i = 0; i < nr; i++) {
2338 			if (callchain_param.order == ORDER_CALLEE) {
2339 				be[i] = branch->entries[i];
2340 
2341 				if (chain == NULL)
2342 					continue;
2343 
2344 				/*
2345 				 * Check for overlap into the callchain.
2346 				 * The return address is one off compared to
2347 				 * the branch entry. To adjust for this
2348 				 * assume the calling instruction is not longer
2349 				 * than 8 bytes.
2350 				 */
2351 				if (i == skip_idx ||
2352 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2353 					first_call++;
2354 				else if (be[i].from < chain->ips[first_call] &&
2355 				    be[i].from >= chain->ips[first_call] - 8)
2356 					first_call++;
2357 			} else
2358 				be[i] = branch->entries[branch->nr - i - 1];
2359 		}
2360 
2361 		memset(iter, 0, sizeof(struct iterations) * nr);
2362 		nr = remove_loops(be, nr, iter);
2363 
2364 		for (i = 0; i < nr; i++) {
2365 			err = add_callchain_ip(thread, cursor, parent,
2366 					       root_al,
2367 					       NULL, be[i].to,
2368 					       true, &be[i].flags,
2369 					       NULL, be[i].from);
2370 
2371 			if (!err)
2372 				err = add_callchain_ip(thread, cursor, parent, root_al,
2373 						       NULL, be[i].from,
2374 						       true, &be[i].flags,
2375 						       &iter[i], 0);
2376 			if (err == -EINVAL)
2377 				break;
2378 			if (err)
2379 				return err;
2380 		}
2381 
2382 		if (chain_nr == 0)
2383 			return 0;
2384 
2385 		chain_nr -= nr;
2386 	}
2387 
2388 check_calls:
2389 	if (chain && callchain_param.order != ORDER_CALLEE) {
2390 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2391 					&cpumode, chain->nr - first_call);
2392 		if (err)
2393 			return (err < 0) ? err : 0;
2394 	}
2395 	for (i = first_call, nr_entries = 0;
2396 	     i < chain_nr && nr_entries < max_stack; i++) {
2397 		u64 ip;
2398 
2399 		if (callchain_param.order == ORDER_CALLEE)
2400 			j = i;
2401 		else
2402 			j = chain->nr - i - 1;
2403 
2404 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2405 		if (j == skip_idx)
2406 			continue;
2407 #endif
2408 		ip = chain->ips[j];
2409 		if (ip < PERF_CONTEXT_MAX)
2410                        ++nr_entries;
2411 		else if (callchain_param.order != ORDER_CALLEE) {
2412 			err = find_prev_cpumode(chain, thread, cursor, parent,
2413 						root_al, &cpumode, j);
2414 			if (err)
2415 				return (err < 0) ? err : 0;
2416 			continue;
2417 		}
2418 
2419 		err = add_callchain_ip(thread, cursor, parent,
2420 				       root_al, &cpumode, ip,
2421 				       false, NULL, NULL, 0);
2422 
2423 		if (err)
2424 			return (err < 0) ? err : 0;
2425 	}
2426 
2427 	return 0;
2428 }
2429 
2430 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2431 {
2432 	struct symbol *sym = ms->sym;
2433 	struct map *map = ms->map;
2434 	struct inline_node *inline_node;
2435 	struct inline_list *ilist;
2436 	u64 addr;
2437 	int ret = 1;
2438 
2439 	if (!symbol_conf.inline_name || !map || !sym)
2440 		return ret;
2441 
2442 	addr = map__map_ip(map, ip);
2443 	addr = map__rip_2objdump(map, addr);
2444 
2445 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2446 	if (!inline_node) {
2447 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2448 		if (!inline_node)
2449 			return ret;
2450 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2451 	}
2452 
2453 	list_for_each_entry(ilist, &inline_node->val, list) {
2454 		struct map_symbol ilist_ms = {
2455 			.map = map,
2456 			.sym = ilist->symbol,
2457 		};
2458 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2459 					      NULL, 0, 0, 0, ilist->srcline);
2460 
2461 		if (ret != 0)
2462 			return ret;
2463 	}
2464 
2465 	return ret;
2466 }
2467 
2468 static int unwind_entry(struct unwind_entry *entry, void *arg)
2469 {
2470 	struct callchain_cursor *cursor = arg;
2471 	const char *srcline = NULL;
2472 	u64 addr = entry->ip;
2473 
2474 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2475 		return 0;
2476 
2477 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2478 		return 0;
2479 
2480 	/*
2481 	 * Convert entry->ip from a virtual address to an offset in
2482 	 * its corresponding binary.
2483 	 */
2484 	if (entry->ms.map)
2485 		addr = map__map_ip(entry->ms.map, entry->ip);
2486 
2487 	srcline = callchain_srcline(&entry->ms, addr);
2488 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2489 				       false, NULL, 0, 0, 0, srcline);
2490 }
2491 
2492 static int thread__resolve_callchain_unwind(struct thread *thread,
2493 					    struct callchain_cursor *cursor,
2494 					    struct evsel *evsel,
2495 					    struct perf_sample *sample,
2496 					    int max_stack)
2497 {
2498 	/* Can we do dwarf post unwind? */
2499 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2500 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2501 		return 0;
2502 
2503 	/* Bail out if nothing was captured. */
2504 	if ((!sample->user_regs.regs) ||
2505 	    (!sample->user_stack.size))
2506 		return 0;
2507 
2508 	return unwind__get_entries(unwind_entry, cursor,
2509 				   thread, sample, max_stack);
2510 }
2511 
2512 int thread__resolve_callchain(struct thread *thread,
2513 			      struct callchain_cursor *cursor,
2514 			      struct evsel *evsel,
2515 			      struct perf_sample *sample,
2516 			      struct symbol **parent,
2517 			      struct addr_location *root_al,
2518 			      int max_stack)
2519 {
2520 	int ret = 0;
2521 
2522 	callchain_cursor_reset(cursor);
2523 
2524 	if (callchain_param.order == ORDER_CALLEE) {
2525 		ret = thread__resolve_callchain_sample(thread, cursor,
2526 						       evsel, sample,
2527 						       parent, root_al,
2528 						       max_stack);
2529 		if (ret)
2530 			return ret;
2531 		ret = thread__resolve_callchain_unwind(thread, cursor,
2532 						       evsel, sample,
2533 						       max_stack);
2534 	} else {
2535 		ret = thread__resolve_callchain_unwind(thread, cursor,
2536 						       evsel, sample,
2537 						       max_stack);
2538 		if (ret)
2539 			return ret;
2540 		ret = thread__resolve_callchain_sample(thread, cursor,
2541 						       evsel, sample,
2542 						       parent, root_al,
2543 						       max_stack);
2544 	}
2545 
2546 	return ret;
2547 }
2548 
2549 int machine__for_each_thread(struct machine *machine,
2550 			     int (*fn)(struct thread *thread, void *p),
2551 			     void *priv)
2552 {
2553 	struct threads *threads;
2554 	struct rb_node *nd;
2555 	struct thread *thread;
2556 	int rc = 0;
2557 	int i;
2558 
2559 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2560 		threads = &machine->threads[i];
2561 		for (nd = rb_first_cached(&threads->entries); nd;
2562 		     nd = rb_next(nd)) {
2563 			thread = rb_entry(nd, struct thread, rb_node);
2564 			rc = fn(thread, priv);
2565 			if (rc != 0)
2566 				return rc;
2567 		}
2568 
2569 		list_for_each_entry(thread, &threads->dead, node) {
2570 			rc = fn(thread, priv);
2571 			if (rc != 0)
2572 				return rc;
2573 		}
2574 	}
2575 	return rc;
2576 }
2577 
2578 int machines__for_each_thread(struct machines *machines,
2579 			      int (*fn)(struct thread *thread, void *p),
2580 			      void *priv)
2581 {
2582 	struct rb_node *nd;
2583 	int rc = 0;
2584 
2585 	rc = machine__for_each_thread(&machines->host, fn, priv);
2586 	if (rc != 0)
2587 		return rc;
2588 
2589 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2590 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2591 
2592 		rc = machine__for_each_thread(machine, fn, priv);
2593 		if (rc != 0)
2594 			return rc;
2595 	}
2596 	return rc;
2597 }
2598 
2599 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2600 {
2601 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2602 
2603 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2604 		return -1;
2605 
2606 	return machine->current_tid[cpu];
2607 }
2608 
2609 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2610 			     pid_t tid)
2611 {
2612 	struct thread *thread;
2613 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2614 
2615 	if (cpu < 0)
2616 		return -EINVAL;
2617 
2618 	if (!machine->current_tid) {
2619 		int i;
2620 
2621 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2622 		if (!machine->current_tid)
2623 			return -ENOMEM;
2624 		for (i = 0; i < nr_cpus; i++)
2625 			machine->current_tid[i] = -1;
2626 	}
2627 
2628 	if (cpu >= nr_cpus) {
2629 		pr_err("Requested CPU %d too large. ", cpu);
2630 		pr_err("Consider raising MAX_NR_CPUS\n");
2631 		return -EINVAL;
2632 	}
2633 
2634 	machine->current_tid[cpu] = tid;
2635 
2636 	thread = machine__findnew_thread(machine, pid, tid);
2637 	if (!thread)
2638 		return -ENOMEM;
2639 
2640 	thread->cpu = cpu;
2641 	thread__put(thread);
2642 
2643 	return 0;
2644 }
2645 
2646 /*
2647  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2648  * normalized arch is needed.
2649  */
2650 bool machine__is(struct machine *machine, const char *arch)
2651 {
2652 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2653 }
2654 
2655 int machine__nr_cpus_avail(struct machine *machine)
2656 {
2657 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2658 }
2659 
2660 int machine__get_kernel_start(struct machine *machine)
2661 {
2662 	struct map *map = machine__kernel_map(machine);
2663 	int err = 0;
2664 
2665 	/*
2666 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2667 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2668 	 * all addresses including kernel addresses are less than 2^32.  In
2669 	 * that case (32-bit system), if the kernel mapping is unknown, all
2670 	 * addresses will be assumed to be in user space - see
2671 	 * machine__kernel_ip().
2672 	 */
2673 	machine->kernel_start = 1ULL << 63;
2674 	if (map) {
2675 		err = map__load(map);
2676 		/*
2677 		 * On x86_64, PTI entry trampolines are less than the
2678 		 * start of kernel text, but still above 2^63. So leave
2679 		 * kernel_start = 1ULL << 63 for x86_64.
2680 		 */
2681 		if (!err && !machine__is(machine, "x86_64"))
2682 			machine->kernel_start = map->start;
2683 	}
2684 	return err;
2685 }
2686 
2687 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2688 {
2689 	u8 addr_cpumode = cpumode;
2690 	bool kernel_ip;
2691 
2692 	if (!machine->single_address_space)
2693 		goto out;
2694 
2695 	kernel_ip = machine__kernel_ip(machine, addr);
2696 	switch (cpumode) {
2697 	case PERF_RECORD_MISC_KERNEL:
2698 	case PERF_RECORD_MISC_USER:
2699 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2700 					   PERF_RECORD_MISC_USER;
2701 		break;
2702 	case PERF_RECORD_MISC_GUEST_KERNEL:
2703 	case PERF_RECORD_MISC_GUEST_USER:
2704 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2705 					   PERF_RECORD_MISC_GUEST_USER;
2706 		break;
2707 	default:
2708 		break;
2709 	}
2710 out:
2711 	return addr_cpumode;
2712 }
2713 
2714 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
2715 {
2716 	return dsos__findnew_id(&machine->dsos, filename, id);
2717 }
2718 
2719 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2720 {
2721 	return machine__findnew_dso_id(machine, filename, NULL);
2722 }
2723 
2724 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2725 {
2726 	struct machine *machine = vmachine;
2727 	struct map *map;
2728 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2729 
2730 	if (sym == NULL)
2731 		return NULL;
2732 
2733 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2734 	*addrp = map->unmap_ip(map, sym->start);
2735 	return sym->name;
2736 }
2737