1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "srcline.h" 20 #include "symbol.h" 21 #include "sort.h" 22 #include "strlist.h" 23 #include "target.h" 24 #include "thread.h" 25 #include "util.h" 26 #include "vdso.h" 27 #include <stdbool.h> 28 #include <sys/types.h> 29 #include <sys/stat.h> 30 #include <unistd.h> 31 #include "unwind.h" 32 #include "linux/hash.h" 33 #include "asm/bug.h" 34 #include "bpf-event.h" 35 #include <internal/lib.h> // page_size 36 37 #include <linux/ctype.h> 38 #include <symbol/kallsyms.h> 39 #include <linux/mman.h> 40 #include <linux/string.h> 41 #include <linux/zalloc.h> 42 43 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 44 45 static struct dso *machine__kernel_dso(struct machine *machine) 46 { 47 return machine->vmlinux_map->dso; 48 } 49 50 static void dsos__init(struct dsos *dsos) 51 { 52 INIT_LIST_HEAD(&dsos->head); 53 dsos->root = RB_ROOT; 54 init_rwsem(&dsos->lock); 55 } 56 57 static void machine__threads_init(struct machine *machine) 58 { 59 int i; 60 61 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 62 struct threads *threads = &machine->threads[i]; 63 threads->entries = RB_ROOT_CACHED; 64 init_rwsem(&threads->lock); 65 threads->nr = 0; 66 INIT_LIST_HEAD(&threads->dead); 67 threads->last_match = NULL; 68 } 69 } 70 71 static int machine__set_mmap_name(struct machine *machine) 72 { 73 if (machine__is_host(machine)) 74 machine->mmap_name = strdup("[kernel.kallsyms]"); 75 else if (machine__is_default_guest(machine)) 76 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 77 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 78 machine->pid) < 0) 79 machine->mmap_name = NULL; 80 81 return machine->mmap_name ? 0 : -ENOMEM; 82 } 83 84 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 85 { 86 int err = -ENOMEM; 87 88 memset(machine, 0, sizeof(*machine)); 89 map_groups__init(&machine->kmaps, machine); 90 RB_CLEAR_NODE(&machine->rb_node); 91 dsos__init(&machine->dsos); 92 93 machine__threads_init(machine); 94 95 machine->vdso_info = NULL; 96 machine->env = NULL; 97 98 machine->pid = pid; 99 100 machine->id_hdr_size = 0; 101 machine->kptr_restrict_warned = false; 102 machine->comm_exec = false; 103 machine->kernel_start = 0; 104 machine->vmlinux_map = NULL; 105 106 machine->root_dir = strdup(root_dir); 107 if (machine->root_dir == NULL) 108 return -ENOMEM; 109 110 if (machine__set_mmap_name(machine)) 111 goto out; 112 113 if (pid != HOST_KERNEL_ID) { 114 struct thread *thread = machine__findnew_thread(machine, -1, 115 pid); 116 char comm[64]; 117 118 if (thread == NULL) 119 goto out; 120 121 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 122 thread__set_comm(thread, comm, 0); 123 thread__put(thread); 124 } 125 126 machine->current_tid = NULL; 127 err = 0; 128 129 out: 130 if (err) { 131 zfree(&machine->root_dir); 132 zfree(&machine->mmap_name); 133 } 134 return 0; 135 } 136 137 struct machine *machine__new_host(void) 138 { 139 struct machine *machine = malloc(sizeof(*machine)); 140 141 if (machine != NULL) { 142 machine__init(machine, "", HOST_KERNEL_ID); 143 144 if (machine__create_kernel_maps(machine) < 0) 145 goto out_delete; 146 } 147 148 return machine; 149 out_delete: 150 free(machine); 151 return NULL; 152 } 153 154 struct machine *machine__new_kallsyms(void) 155 { 156 struct machine *machine = machine__new_host(); 157 /* 158 * FIXME: 159 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 160 * ask for not using the kcore parsing code, once this one is fixed 161 * to create a map per module. 162 */ 163 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 164 machine__delete(machine); 165 machine = NULL; 166 } 167 168 return machine; 169 } 170 171 static void dsos__purge(struct dsos *dsos) 172 { 173 struct dso *pos, *n; 174 175 down_write(&dsos->lock); 176 177 list_for_each_entry_safe(pos, n, &dsos->head, node) { 178 RB_CLEAR_NODE(&pos->rb_node); 179 pos->root = NULL; 180 list_del_init(&pos->node); 181 dso__put(pos); 182 } 183 184 up_write(&dsos->lock); 185 } 186 187 static void dsos__exit(struct dsos *dsos) 188 { 189 dsos__purge(dsos); 190 exit_rwsem(&dsos->lock); 191 } 192 193 void machine__delete_threads(struct machine *machine) 194 { 195 struct rb_node *nd; 196 int i; 197 198 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 199 struct threads *threads = &machine->threads[i]; 200 down_write(&threads->lock); 201 nd = rb_first_cached(&threads->entries); 202 while (nd) { 203 struct thread *t = rb_entry(nd, struct thread, rb_node); 204 205 nd = rb_next(nd); 206 __machine__remove_thread(machine, t, false); 207 } 208 up_write(&threads->lock); 209 } 210 } 211 212 void machine__exit(struct machine *machine) 213 { 214 int i; 215 216 if (machine == NULL) 217 return; 218 219 machine__destroy_kernel_maps(machine); 220 map_groups__exit(&machine->kmaps); 221 dsos__exit(&machine->dsos); 222 machine__exit_vdso(machine); 223 zfree(&machine->root_dir); 224 zfree(&machine->mmap_name); 225 zfree(&machine->current_tid); 226 227 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 228 struct threads *threads = &machine->threads[i]; 229 struct thread *thread, *n; 230 /* 231 * Forget about the dead, at this point whatever threads were 232 * left in the dead lists better have a reference count taken 233 * by who is using them, and then, when they drop those references 234 * and it finally hits zero, thread__put() will check and see that 235 * its not in the dead threads list and will not try to remove it 236 * from there, just calling thread__delete() straight away. 237 */ 238 list_for_each_entry_safe(thread, n, &threads->dead, node) 239 list_del_init(&thread->node); 240 241 exit_rwsem(&threads->lock); 242 } 243 } 244 245 void machine__delete(struct machine *machine) 246 { 247 if (machine) { 248 machine__exit(machine); 249 free(machine); 250 } 251 } 252 253 void machines__init(struct machines *machines) 254 { 255 machine__init(&machines->host, "", HOST_KERNEL_ID); 256 machines->guests = RB_ROOT_CACHED; 257 } 258 259 void machines__exit(struct machines *machines) 260 { 261 machine__exit(&machines->host); 262 /* XXX exit guest */ 263 } 264 265 struct machine *machines__add(struct machines *machines, pid_t pid, 266 const char *root_dir) 267 { 268 struct rb_node **p = &machines->guests.rb_root.rb_node; 269 struct rb_node *parent = NULL; 270 struct machine *pos, *machine = malloc(sizeof(*machine)); 271 bool leftmost = true; 272 273 if (machine == NULL) 274 return NULL; 275 276 if (machine__init(machine, root_dir, pid) != 0) { 277 free(machine); 278 return NULL; 279 } 280 281 while (*p != NULL) { 282 parent = *p; 283 pos = rb_entry(parent, struct machine, rb_node); 284 if (pid < pos->pid) 285 p = &(*p)->rb_left; 286 else { 287 p = &(*p)->rb_right; 288 leftmost = false; 289 } 290 } 291 292 rb_link_node(&machine->rb_node, parent, p); 293 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 294 295 return machine; 296 } 297 298 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 299 { 300 struct rb_node *nd; 301 302 machines->host.comm_exec = comm_exec; 303 304 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 305 struct machine *machine = rb_entry(nd, struct machine, rb_node); 306 307 machine->comm_exec = comm_exec; 308 } 309 } 310 311 struct machine *machines__find(struct machines *machines, pid_t pid) 312 { 313 struct rb_node **p = &machines->guests.rb_root.rb_node; 314 struct rb_node *parent = NULL; 315 struct machine *machine; 316 struct machine *default_machine = NULL; 317 318 if (pid == HOST_KERNEL_ID) 319 return &machines->host; 320 321 while (*p != NULL) { 322 parent = *p; 323 machine = rb_entry(parent, struct machine, rb_node); 324 if (pid < machine->pid) 325 p = &(*p)->rb_left; 326 else if (pid > machine->pid) 327 p = &(*p)->rb_right; 328 else 329 return machine; 330 if (!machine->pid) 331 default_machine = machine; 332 } 333 334 return default_machine; 335 } 336 337 struct machine *machines__findnew(struct machines *machines, pid_t pid) 338 { 339 char path[PATH_MAX]; 340 const char *root_dir = ""; 341 struct machine *machine = machines__find(machines, pid); 342 343 if (machine && (machine->pid == pid)) 344 goto out; 345 346 if ((pid != HOST_KERNEL_ID) && 347 (pid != DEFAULT_GUEST_KERNEL_ID) && 348 (symbol_conf.guestmount)) { 349 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 350 if (access(path, R_OK)) { 351 static struct strlist *seen; 352 353 if (!seen) 354 seen = strlist__new(NULL, NULL); 355 356 if (!strlist__has_entry(seen, path)) { 357 pr_err("Can't access file %s\n", path); 358 strlist__add(seen, path); 359 } 360 machine = NULL; 361 goto out; 362 } 363 root_dir = path; 364 } 365 366 machine = machines__add(machines, pid, root_dir); 367 out: 368 return machine; 369 } 370 371 void machines__process_guests(struct machines *machines, 372 machine__process_t process, void *data) 373 { 374 struct rb_node *nd; 375 376 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 377 struct machine *pos = rb_entry(nd, struct machine, rb_node); 378 process(pos, data); 379 } 380 } 381 382 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 383 { 384 struct rb_node *node; 385 struct machine *machine; 386 387 machines->host.id_hdr_size = id_hdr_size; 388 389 for (node = rb_first_cached(&machines->guests); node; 390 node = rb_next(node)) { 391 machine = rb_entry(node, struct machine, rb_node); 392 machine->id_hdr_size = id_hdr_size; 393 } 394 395 return; 396 } 397 398 static void machine__update_thread_pid(struct machine *machine, 399 struct thread *th, pid_t pid) 400 { 401 struct thread *leader; 402 403 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 404 return; 405 406 th->pid_ = pid; 407 408 if (th->pid_ == th->tid) 409 return; 410 411 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 412 if (!leader) 413 goto out_err; 414 415 if (!leader->mg) 416 leader->mg = map_groups__new(machine); 417 418 if (!leader->mg) 419 goto out_err; 420 421 if (th->mg == leader->mg) 422 return; 423 424 if (th->mg) { 425 /* 426 * Maps are created from MMAP events which provide the pid and 427 * tid. Consequently there never should be any maps on a thread 428 * with an unknown pid. Just print an error if there are. 429 */ 430 if (!map_groups__empty(th->mg)) 431 pr_err("Discarding thread maps for %d:%d\n", 432 th->pid_, th->tid); 433 map_groups__put(th->mg); 434 } 435 436 th->mg = map_groups__get(leader->mg); 437 out_put: 438 thread__put(leader); 439 return; 440 out_err: 441 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 442 goto out_put; 443 } 444 445 /* 446 * Front-end cache - TID lookups come in blocks, 447 * so most of the time we dont have to look up 448 * the full rbtree: 449 */ 450 static struct thread* 451 __threads__get_last_match(struct threads *threads, struct machine *machine, 452 int pid, int tid) 453 { 454 struct thread *th; 455 456 th = threads->last_match; 457 if (th != NULL) { 458 if (th->tid == tid) { 459 machine__update_thread_pid(machine, th, pid); 460 return thread__get(th); 461 } 462 463 threads->last_match = NULL; 464 } 465 466 return NULL; 467 } 468 469 static struct thread* 470 threads__get_last_match(struct threads *threads, struct machine *machine, 471 int pid, int tid) 472 { 473 struct thread *th = NULL; 474 475 if (perf_singlethreaded) 476 th = __threads__get_last_match(threads, machine, pid, tid); 477 478 return th; 479 } 480 481 static void 482 __threads__set_last_match(struct threads *threads, struct thread *th) 483 { 484 threads->last_match = th; 485 } 486 487 static void 488 threads__set_last_match(struct threads *threads, struct thread *th) 489 { 490 if (perf_singlethreaded) 491 __threads__set_last_match(threads, th); 492 } 493 494 /* 495 * Caller must eventually drop thread->refcnt returned with a successful 496 * lookup/new thread inserted. 497 */ 498 static struct thread *____machine__findnew_thread(struct machine *machine, 499 struct threads *threads, 500 pid_t pid, pid_t tid, 501 bool create) 502 { 503 struct rb_node **p = &threads->entries.rb_root.rb_node; 504 struct rb_node *parent = NULL; 505 struct thread *th; 506 bool leftmost = true; 507 508 th = threads__get_last_match(threads, machine, pid, tid); 509 if (th) 510 return th; 511 512 while (*p != NULL) { 513 parent = *p; 514 th = rb_entry(parent, struct thread, rb_node); 515 516 if (th->tid == tid) { 517 threads__set_last_match(threads, th); 518 machine__update_thread_pid(machine, th, pid); 519 return thread__get(th); 520 } 521 522 if (tid < th->tid) 523 p = &(*p)->rb_left; 524 else { 525 p = &(*p)->rb_right; 526 leftmost = false; 527 } 528 } 529 530 if (!create) 531 return NULL; 532 533 th = thread__new(pid, tid); 534 if (th != NULL) { 535 rb_link_node(&th->rb_node, parent, p); 536 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 537 538 /* 539 * We have to initialize map_groups separately 540 * after rb tree is updated. 541 * 542 * The reason is that we call machine__findnew_thread 543 * within thread__init_map_groups to find the thread 544 * leader and that would screwed the rb tree. 545 */ 546 if (thread__init_map_groups(th, machine)) { 547 rb_erase_cached(&th->rb_node, &threads->entries); 548 RB_CLEAR_NODE(&th->rb_node); 549 thread__put(th); 550 return NULL; 551 } 552 /* 553 * It is now in the rbtree, get a ref 554 */ 555 thread__get(th); 556 threads__set_last_match(threads, th); 557 ++threads->nr; 558 } 559 560 return th; 561 } 562 563 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 564 { 565 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 566 } 567 568 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 569 pid_t tid) 570 { 571 struct threads *threads = machine__threads(machine, tid); 572 struct thread *th; 573 574 down_write(&threads->lock); 575 th = __machine__findnew_thread(machine, pid, tid); 576 up_write(&threads->lock); 577 return th; 578 } 579 580 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 581 pid_t tid) 582 { 583 struct threads *threads = machine__threads(machine, tid); 584 struct thread *th; 585 586 down_read(&threads->lock); 587 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 588 up_read(&threads->lock); 589 return th; 590 } 591 592 struct comm *machine__thread_exec_comm(struct machine *machine, 593 struct thread *thread) 594 { 595 if (machine->comm_exec) 596 return thread__exec_comm(thread); 597 else 598 return thread__comm(thread); 599 } 600 601 int machine__process_comm_event(struct machine *machine, union perf_event *event, 602 struct perf_sample *sample) 603 { 604 struct thread *thread = machine__findnew_thread(machine, 605 event->comm.pid, 606 event->comm.tid); 607 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 608 int err = 0; 609 610 if (exec) 611 machine->comm_exec = true; 612 613 if (dump_trace) 614 perf_event__fprintf_comm(event, stdout); 615 616 if (thread == NULL || 617 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 618 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 619 err = -1; 620 } 621 622 thread__put(thread); 623 624 return err; 625 } 626 627 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 628 union perf_event *event, 629 struct perf_sample *sample __maybe_unused) 630 { 631 struct thread *thread = machine__findnew_thread(machine, 632 event->namespaces.pid, 633 event->namespaces.tid); 634 int err = 0; 635 636 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 637 "\nWARNING: kernel seems to support more namespaces than perf" 638 " tool.\nTry updating the perf tool..\n\n"); 639 640 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 641 "\nWARNING: perf tool seems to support more namespaces than" 642 " the kernel.\nTry updating the kernel..\n\n"); 643 644 if (dump_trace) 645 perf_event__fprintf_namespaces(event, stdout); 646 647 if (thread == NULL || 648 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 649 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 650 err = -1; 651 } 652 653 thread__put(thread); 654 655 return err; 656 } 657 658 int machine__process_lost_event(struct machine *machine __maybe_unused, 659 union perf_event *event, struct perf_sample *sample __maybe_unused) 660 { 661 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 662 event->lost.id, event->lost.lost); 663 return 0; 664 } 665 666 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 667 union perf_event *event, struct perf_sample *sample) 668 { 669 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 670 sample->id, event->lost_samples.lost); 671 return 0; 672 } 673 674 static struct dso *machine__findnew_module_dso(struct machine *machine, 675 struct kmod_path *m, 676 const char *filename) 677 { 678 struct dso *dso; 679 680 down_write(&machine->dsos.lock); 681 682 dso = __dsos__find(&machine->dsos, m->name, true); 683 if (!dso) { 684 dso = __dsos__addnew(&machine->dsos, m->name); 685 if (dso == NULL) 686 goto out_unlock; 687 688 dso__set_module_info(dso, m, machine); 689 dso__set_long_name(dso, strdup(filename), true); 690 } 691 692 dso__get(dso); 693 out_unlock: 694 up_write(&machine->dsos.lock); 695 return dso; 696 } 697 698 int machine__process_aux_event(struct machine *machine __maybe_unused, 699 union perf_event *event) 700 { 701 if (dump_trace) 702 perf_event__fprintf_aux(event, stdout); 703 return 0; 704 } 705 706 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 707 union perf_event *event) 708 { 709 if (dump_trace) 710 perf_event__fprintf_itrace_start(event, stdout); 711 return 0; 712 } 713 714 int machine__process_switch_event(struct machine *machine __maybe_unused, 715 union perf_event *event) 716 { 717 if (dump_trace) 718 perf_event__fprintf_switch(event, stdout); 719 return 0; 720 } 721 722 static int machine__process_ksymbol_register(struct machine *machine, 723 union perf_event *event, 724 struct perf_sample *sample __maybe_unused) 725 { 726 struct symbol *sym; 727 struct map *map; 728 729 map = map_groups__find(&machine->kmaps, event->ksymbol.addr); 730 if (!map) { 731 map = dso__new_map(event->ksymbol.name); 732 if (!map) 733 return -ENOMEM; 734 735 map->start = event->ksymbol.addr; 736 map->end = map->start + event->ksymbol.len; 737 map_groups__insert(&machine->kmaps, map); 738 } 739 740 sym = symbol__new(map->map_ip(map, map->start), 741 event->ksymbol.len, 742 0, 0, event->ksymbol.name); 743 if (!sym) 744 return -ENOMEM; 745 dso__insert_symbol(map->dso, sym); 746 return 0; 747 } 748 749 static int machine__process_ksymbol_unregister(struct machine *machine, 750 union perf_event *event, 751 struct perf_sample *sample __maybe_unused) 752 { 753 struct map *map; 754 755 map = map_groups__find(&machine->kmaps, event->ksymbol.addr); 756 if (map) 757 map_groups__remove(&machine->kmaps, map); 758 759 return 0; 760 } 761 762 int machine__process_ksymbol(struct machine *machine __maybe_unused, 763 union perf_event *event, 764 struct perf_sample *sample) 765 { 766 if (dump_trace) 767 perf_event__fprintf_ksymbol(event, stdout); 768 769 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 770 return machine__process_ksymbol_unregister(machine, event, 771 sample); 772 return machine__process_ksymbol_register(machine, event, sample); 773 } 774 775 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 776 const char *filename) 777 { 778 struct map *map = NULL; 779 struct kmod_path m; 780 struct dso *dso; 781 782 if (kmod_path__parse_name(&m, filename)) 783 return NULL; 784 785 dso = machine__findnew_module_dso(machine, &m, filename); 786 if (dso == NULL) 787 goto out; 788 789 map = map__new2(start, dso); 790 if (map == NULL) 791 goto out; 792 793 map_groups__insert(&machine->kmaps, map); 794 795 /* Put the map here because map_groups__insert alread got it */ 796 map__put(map); 797 out: 798 /* put the dso here, corresponding to machine__findnew_module_dso */ 799 dso__put(dso); 800 zfree(&m.name); 801 return map; 802 } 803 804 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 805 { 806 struct rb_node *nd; 807 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 808 809 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 810 struct machine *pos = rb_entry(nd, struct machine, rb_node); 811 ret += __dsos__fprintf(&pos->dsos.head, fp); 812 } 813 814 return ret; 815 } 816 817 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 818 bool (skip)(struct dso *dso, int parm), int parm) 819 { 820 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 821 } 822 823 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 824 bool (skip)(struct dso *dso, int parm), int parm) 825 { 826 struct rb_node *nd; 827 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 828 829 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 830 struct machine *pos = rb_entry(nd, struct machine, rb_node); 831 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 832 } 833 return ret; 834 } 835 836 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 837 { 838 int i; 839 size_t printed = 0; 840 struct dso *kdso = machine__kernel_dso(machine); 841 842 if (kdso->has_build_id) { 843 char filename[PATH_MAX]; 844 if (dso__build_id_filename(kdso, filename, sizeof(filename), 845 false)) 846 printed += fprintf(fp, "[0] %s\n", filename); 847 } 848 849 for (i = 0; i < vmlinux_path__nr_entries; ++i) 850 printed += fprintf(fp, "[%d] %s\n", 851 i + kdso->has_build_id, vmlinux_path[i]); 852 853 return printed; 854 } 855 856 size_t machine__fprintf(struct machine *machine, FILE *fp) 857 { 858 struct rb_node *nd; 859 size_t ret; 860 int i; 861 862 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 863 struct threads *threads = &machine->threads[i]; 864 865 down_read(&threads->lock); 866 867 ret = fprintf(fp, "Threads: %u\n", threads->nr); 868 869 for (nd = rb_first_cached(&threads->entries); nd; 870 nd = rb_next(nd)) { 871 struct thread *pos = rb_entry(nd, struct thread, rb_node); 872 873 ret += thread__fprintf(pos, fp); 874 } 875 876 up_read(&threads->lock); 877 } 878 return ret; 879 } 880 881 static struct dso *machine__get_kernel(struct machine *machine) 882 { 883 const char *vmlinux_name = machine->mmap_name; 884 struct dso *kernel; 885 886 if (machine__is_host(machine)) { 887 if (symbol_conf.vmlinux_name) 888 vmlinux_name = symbol_conf.vmlinux_name; 889 890 kernel = machine__findnew_kernel(machine, vmlinux_name, 891 "[kernel]", DSO_TYPE_KERNEL); 892 } else { 893 if (symbol_conf.default_guest_vmlinux_name) 894 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 895 896 kernel = machine__findnew_kernel(machine, vmlinux_name, 897 "[guest.kernel]", 898 DSO_TYPE_GUEST_KERNEL); 899 } 900 901 if (kernel != NULL && (!kernel->has_build_id)) 902 dso__read_running_kernel_build_id(kernel, machine); 903 904 return kernel; 905 } 906 907 struct process_args { 908 u64 start; 909 }; 910 911 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 912 size_t bufsz) 913 { 914 if (machine__is_default_guest(machine)) 915 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 916 else 917 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 918 } 919 920 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 921 922 /* Figure out the start address of kernel map from /proc/kallsyms. 923 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 924 * symbol_name if it's not that important. 925 */ 926 static int machine__get_running_kernel_start(struct machine *machine, 927 const char **symbol_name, 928 u64 *start, u64 *end) 929 { 930 char filename[PATH_MAX]; 931 int i, err = -1; 932 const char *name; 933 u64 addr = 0; 934 935 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 936 937 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 938 return 0; 939 940 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 941 err = kallsyms__get_function_start(filename, name, &addr); 942 if (!err) 943 break; 944 } 945 946 if (err) 947 return -1; 948 949 if (symbol_name) 950 *symbol_name = name; 951 952 *start = addr; 953 954 err = kallsyms__get_function_start(filename, "_etext", &addr); 955 if (!err) 956 *end = addr; 957 958 return 0; 959 } 960 961 int machine__create_extra_kernel_map(struct machine *machine, 962 struct dso *kernel, 963 struct extra_kernel_map *xm) 964 { 965 struct kmap *kmap; 966 struct map *map; 967 968 map = map__new2(xm->start, kernel); 969 if (!map) 970 return -1; 971 972 map->end = xm->end; 973 map->pgoff = xm->pgoff; 974 975 kmap = map__kmap(map); 976 977 kmap->kmaps = &machine->kmaps; 978 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 979 980 map_groups__insert(&machine->kmaps, map); 981 982 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 983 kmap->name, map->start, map->end); 984 985 map__put(map); 986 987 return 0; 988 } 989 990 static u64 find_entry_trampoline(struct dso *dso) 991 { 992 /* Duplicates are removed so lookup all aliases */ 993 const char *syms[] = { 994 "_entry_trampoline", 995 "__entry_trampoline_start", 996 "entry_SYSCALL_64_trampoline", 997 }; 998 struct symbol *sym = dso__first_symbol(dso); 999 unsigned int i; 1000 1001 for (; sym; sym = dso__next_symbol(sym)) { 1002 if (sym->binding != STB_GLOBAL) 1003 continue; 1004 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1005 if (!strcmp(sym->name, syms[i])) 1006 return sym->start; 1007 } 1008 } 1009 1010 return 0; 1011 } 1012 1013 /* 1014 * These values can be used for kernels that do not have symbols for the entry 1015 * trampolines in kallsyms. 1016 */ 1017 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1018 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1019 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1020 1021 /* Map x86_64 PTI entry trampolines */ 1022 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1023 struct dso *kernel) 1024 { 1025 struct map_groups *kmaps = &machine->kmaps; 1026 struct maps *maps = &kmaps->maps; 1027 int nr_cpus_avail, cpu; 1028 bool found = false; 1029 struct map *map; 1030 u64 pgoff; 1031 1032 /* 1033 * In the vmlinux case, pgoff is a virtual address which must now be 1034 * mapped to a vmlinux offset. 1035 */ 1036 maps__for_each_entry(maps, map) { 1037 struct kmap *kmap = __map__kmap(map); 1038 struct map *dest_map; 1039 1040 if (!kmap || !is_entry_trampoline(kmap->name)) 1041 continue; 1042 1043 dest_map = map_groups__find(kmaps, map->pgoff); 1044 if (dest_map != map) 1045 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1046 found = true; 1047 } 1048 if (found || machine->trampolines_mapped) 1049 return 0; 1050 1051 pgoff = find_entry_trampoline(kernel); 1052 if (!pgoff) 1053 return 0; 1054 1055 nr_cpus_avail = machine__nr_cpus_avail(machine); 1056 1057 /* Add a 1 page map for each CPU's entry trampoline */ 1058 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1059 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1060 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1061 X86_64_ENTRY_TRAMPOLINE; 1062 struct extra_kernel_map xm = { 1063 .start = va, 1064 .end = va + page_size, 1065 .pgoff = pgoff, 1066 }; 1067 1068 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1069 1070 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1071 return -1; 1072 } 1073 1074 machine->trampolines_mapped = nr_cpus_avail; 1075 1076 return 0; 1077 } 1078 1079 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1080 struct dso *kernel __maybe_unused) 1081 { 1082 return 0; 1083 } 1084 1085 static int 1086 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1087 { 1088 struct kmap *kmap; 1089 struct map *map; 1090 1091 /* In case of renewal the kernel map, destroy previous one */ 1092 machine__destroy_kernel_maps(machine); 1093 1094 machine->vmlinux_map = map__new2(0, kernel); 1095 if (machine->vmlinux_map == NULL) 1096 return -1; 1097 1098 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1099 map = machine__kernel_map(machine); 1100 kmap = map__kmap(map); 1101 if (!kmap) 1102 return -1; 1103 1104 kmap->kmaps = &machine->kmaps; 1105 map_groups__insert(&machine->kmaps, map); 1106 1107 return 0; 1108 } 1109 1110 void machine__destroy_kernel_maps(struct machine *machine) 1111 { 1112 struct kmap *kmap; 1113 struct map *map = machine__kernel_map(machine); 1114 1115 if (map == NULL) 1116 return; 1117 1118 kmap = map__kmap(map); 1119 map_groups__remove(&machine->kmaps, map); 1120 if (kmap && kmap->ref_reloc_sym) { 1121 zfree((char **)&kmap->ref_reloc_sym->name); 1122 zfree(&kmap->ref_reloc_sym); 1123 } 1124 1125 map__zput(machine->vmlinux_map); 1126 } 1127 1128 int machines__create_guest_kernel_maps(struct machines *machines) 1129 { 1130 int ret = 0; 1131 struct dirent **namelist = NULL; 1132 int i, items = 0; 1133 char path[PATH_MAX]; 1134 pid_t pid; 1135 char *endp; 1136 1137 if (symbol_conf.default_guest_vmlinux_name || 1138 symbol_conf.default_guest_modules || 1139 symbol_conf.default_guest_kallsyms) { 1140 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1141 } 1142 1143 if (symbol_conf.guestmount) { 1144 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1145 if (items <= 0) 1146 return -ENOENT; 1147 for (i = 0; i < items; i++) { 1148 if (!isdigit(namelist[i]->d_name[0])) { 1149 /* Filter out . and .. */ 1150 continue; 1151 } 1152 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1153 if ((*endp != '\0') || 1154 (endp == namelist[i]->d_name) || 1155 (errno == ERANGE)) { 1156 pr_debug("invalid directory (%s). Skipping.\n", 1157 namelist[i]->d_name); 1158 continue; 1159 } 1160 sprintf(path, "%s/%s/proc/kallsyms", 1161 symbol_conf.guestmount, 1162 namelist[i]->d_name); 1163 ret = access(path, R_OK); 1164 if (ret) { 1165 pr_debug("Can't access file %s\n", path); 1166 goto failure; 1167 } 1168 machines__create_kernel_maps(machines, pid); 1169 } 1170 failure: 1171 free(namelist); 1172 } 1173 1174 return ret; 1175 } 1176 1177 void machines__destroy_kernel_maps(struct machines *machines) 1178 { 1179 struct rb_node *next = rb_first_cached(&machines->guests); 1180 1181 machine__destroy_kernel_maps(&machines->host); 1182 1183 while (next) { 1184 struct machine *pos = rb_entry(next, struct machine, rb_node); 1185 1186 next = rb_next(&pos->rb_node); 1187 rb_erase_cached(&pos->rb_node, &machines->guests); 1188 machine__delete(pos); 1189 } 1190 } 1191 1192 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1193 { 1194 struct machine *machine = machines__findnew(machines, pid); 1195 1196 if (machine == NULL) 1197 return -1; 1198 1199 return machine__create_kernel_maps(machine); 1200 } 1201 1202 int machine__load_kallsyms(struct machine *machine, const char *filename) 1203 { 1204 struct map *map = machine__kernel_map(machine); 1205 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1206 1207 if (ret > 0) { 1208 dso__set_loaded(map->dso); 1209 /* 1210 * Since /proc/kallsyms will have multiple sessions for the 1211 * kernel, with modules between them, fixup the end of all 1212 * sections. 1213 */ 1214 map_groups__fixup_end(&machine->kmaps); 1215 } 1216 1217 return ret; 1218 } 1219 1220 int machine__load_vmlinux_path(struct machine *machine) 1221 { 1222 struct map *map = machine__kernel_map(machine); 1223 int ret = dso__load_vmlinux_path(map->dso, map); 1224 1225 if (ret > 0) 1226 dso__set_loaded(map->dso); 1227 1228 return ret; 1229 } 1230 1231 static char *get_kernel_version(const char *root_dir) 1232 { 1233 char version[PATH_MAX]; 1234 FILE *file; 1235 char *name, *tmp; 1236 const char *prefix = "Linux version "; 1237 1238 sprintf(version, "%s/proc/version", root_dir); 1239 file = fopen(version, "r"); 1240 if (!file) 1241 return NULL; 1242 1243 tmp = fgets(version, sizeof(version), file); 1244 fclose(file); 1245 if (!tmp) 1246 return NULL; 1247 1248 name = strstr(version, prefix); 1249 if (!name) 1250 return NULL; 1251 name += strlen(prefix); 1252 tmp = strchr(name, ' '); 1253 if (tmp) 1254 *tmp = '\0'; 1255 1256 return strdup(name); 1257 } 1258 1259 static bool is_kmod_dso(struct dso *dso) 1260 { 1261 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1262 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1263 } 1264 1265 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1266 struct kmod_path *m) 1267 { 1268 char *long_name; 1269 struct map *map = map_groups__find_by_name(mg, m->name); 1270 1271 if (map == NULL) 1272 return 0; 1273 1274 long_name = strdup(path); 1275 if (long_name == NULL) 1276 return -ENOMEM; 1277 1278 dso__set_long_name(map->dso, long_name, true); 1279 dso__kernel_module_get_build_id(map->dso, ""); 1280 1281 /* 1282 * Full name could reveal us kmod compression, so 1283 * we need to update the symtab_type if needed. 1284 */ 1285 if (m->comp && is_kmod_dso(map->dso)) { 1286 map->dso->symtab_type++; 1287 map->dso->comp = m->comp; 1288 } 1289 1290 return 0; 1291 } 1292 1293 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1294 const char *dir_name, int depth) 1295 { 1296 struct dirent *dent; 1297 DIR *dir = opendir(dir_name); 1298 int ret = 0; 1299 1300 if (!dir) { 1301 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1302 return -1; 1303 } 1304 1305 while ((dent = readdir(dir)) != NULL) { 1306 char path[PATH_MAX]; 1307 struct stat st; 1308 1309 /*sshfs might return bad dent->d_type, so we have to stat*/ 1310 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1311 if (stat(path, &st)) 1312 continue; 1313 1314 if (S_ISDIR(st.st_mode)) { 1315 if (!strcmp(dent->d_name, ".") || 1316 !strcmp(dent->d_name, "..")) 1317 continue; 1318 1319 /* Do not follow top-level source and build symlinks */ 1320 if (depth == 0) { 1321 if (!strcmp(dent->d_name, "source") || 1322 !strcmp(dent->d_name, "build")) 1323 continue; 1324 } 1325 1326 ret = map_groups__set_modules_path_dir(mg, path, 1327 depth + 1); 1328 if (ret < 0) 1329 goto out; 1330 } else { 1331 struct kmod_path m; 1332 1333 ret = kmod_path__parse_name(&m, dent->d_name); 1334 if (ret) 1335 goto out; 1336 1337 if (m.kmod) 1338 ret = map_groups__set_module_path(mg, path, &m); 1339 1340 zfree(&m.name); 1341 1342 if (ret) 1343 goto out; 1344 } 1345 } 1346 1347 out: 1348 closedir(dir); 1349 return ret; 1350 } 1351 1352 static int machine__set_modules_path(struct machine *machine) 1353 { 1354 char *version; 1355 char modules_path[PATH_MAX]; 1356 1357 version = get_kernel_version(machine->root_dir); 1358 if (!version) 1359 return -1; 1360 1361 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1362 machine->root_dir, version); 1363 free(version); 1364 1365 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1366 } 1367 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1368 u64 *size __maybe_unused, 1369 const char *name __maybe_unused) 1370 { 1371 return 0; 1372 } 1373 1374 static int machine__create_module(void *arg, const char *name, u64 start, 1375 u64 size) 1376 { 1377 struct machine *machine = arg; 1378 struct map *map; 1379 1380 if (arch__fix_module_text_start(&start, &size, name) < 0) 1381 return -1; 1382 1383 map = machine__addnew_module_map(machine, start, name); 1384 if (map == NULL) 1385 return -1; 1386 map->end = start + size; 1387 1388 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1389 1390 return 0; 1391 } 1392 1393 static int machine__create_modules(struct machine *machine) 1394 { 1395 const char *modules; 1396 char path[PATH_MAX]; 1397 1398 if (machine__is_default_guest(machine)) { 1399 modules = symbol_conf.default_guest_modules; 1400 } else { 1401 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1402 modules = path; 1403 } 1404 1405 if (symbol__restricted_filename(modules, "/proc/modules")) 1406 return -1; 1407 1408 if (modules__parse(modules, machine, machine__create_module)) 1409 return -1; 1410 1411 if (!machine__set_modules_path(machine)) 1412 return 0; 1413 1414 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1415 1416 return 0; 1417 } 1418 1419 static void machine__set_kernel_mmap(struct machine *machine, 1420 u64 start, u64 end) 1421 { 1422 machine->vmlinux_map->start = start; 1423 machine->vmlinux_map->end = end; 1424 /* 1425 * Be a bit paranoid here, some perf.data file came with 1426 * a zero sized synthesized MMAP event for the kernel. 1427 */ 1428 if (start == 0 && end == 0) 1429 machine->vmlinux_map->end = ~0ULL; 1430 } 1431 1432 static void machine__update_kernel_mmap(struct machine *machine, 1433 u64 start, u64 end) 1434 { 1435 struct map *map = machine__kernel_map(machine); 1436 1437 map__get(map); 1438 map_groups__remove(&machine->kmaps, map); 1439 1440 machine__set_kernel_mmap(machine, start, end); 1441 1442 map_groups__insert(&machine->kmaps, map); 1443 map__put(map); 1444 } 1445 1446 int machine__create_kernel_maps(struct machine *machine) 1447 { 1448 struct dso *kernel = machine__get_kernel(machine); 1449 const char *name = NULL; 1450 struct map *map; 1451 u64 start = 0, end = ~0ULL; 1452 int ret; 1453 1454 if (kernel == NULL) 1455 return -1; 1456 1457 ret = __machine__create_kernel_maps(machine, kernel); 1458 if (ret < 0) 1459 goto out_put; 1460 1461 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1462 if (machine__is_host(machine)) 1463 pr_debug("Problems creating module maps, " 1464 "continuing anyway...\n"); 1465 else 1466 pr_debug("Problems creating module maps for guest %d, " 1467 "continuing anyway...\n", machine->pid); 1468 } 1469 1470 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1471 if (name && 1472 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1473 machine__destroy_kernel_maps(machine); 1474 ret = -1; 1475 goto out_put; 1476 } 1477 1478 /* 1479 * we have a real start address now, so re-order the kmaps 1480 * assume it's the last in the kmaps 1481 */ 1482 machine__update_kernel_mmap(machine, start, end); 1483 } 1484 1485 if (machine__create_extra_kernel_maps(machine, kernel)) 1486 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1487 1488 if (end == ~0ULL) { 1489 /* update end address of the kernel map using adjacent module address */ 1490 map = map__next(machine__kernel_map(machine)); 1491 if (map) 1492 machine__set_kernel_mmap(machine, start, map->start); 1493 } 1494 1495 out_put: 1496 dso__put(kernel); 1497 return ret; 1498 } 1499 1500 static bool machine__uses_kcore(struct machine *machine) 1501 { 1502 struct dso *dso; 1503 1504 list_for_each_entry(dso, &machine->dsos.head, node) { 1505 if (dso__is_kcore(dso)) 1506 return true; 1507 } 1508 1509 return false; 1510 } 1511 1512 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1513 union perf_event *event) 1514 { 1515 return machine__is(machine, "x86_64") && 1516 is_entry_trampoline(event->mmap.filename); 1517 } 1518 1519 static int machine__process_extra_kernel_map(struct machine *machine, 1520 union perf_event *event) 1521 { 1522 struct dso *kernel = machine__kernel_dso(machine); 1523 struct extra_kernel_map xm = { 1524 .start = event->mmap.start, 1525 .end = event->mmap.start + event->mmap.len, 1526 .pgoff = event->mmap.pgoff, 1527 }; 1528 1529 if (kernel == NULL) 1530 return -1; 1531 1532 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1533 1534 return machine__create_extra_kernel_map(machine, kernel, &xm); 1535 } 1536 1537 static int machine__process_kernel_mmap_event(struct machine *machine, 1538 union perf_event *event) 1539 { 1540 struct map *map; 1541 enum dso_kernel_type kernel_type; 1542 bool is_kernel_mmap; 1543 1544 /* If we have maps from kcore then we do not need or want any others */ 1545 if (machine__uses_kcore(machine)) 1546 return 0; 1547 1548 if (machine__is_host(machine)) 1549 kernel_type = DSO_TYPE_KERNEL; 1550 else 1551 kernel_type = DSO_TYPE_GUEST_KERNEL; 1552 1553 is_kernel_mmap = memcmp(event->mmap.filename, 1554 machine->mmap_name, 1555 strlen(machine->mmap_name) - 1) == 0; 1556 if (event->mmap.filename[0] == '/' || 1557 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1558 map = machine__addnew_module_map(machine, event->mmap.start, 1559 event->mmap.filename); 1560 if (map == NULL) 1561 goto out_problem; 1562 1563 map->end = map->start + event->mmap.len; 1564 } else if (is_kernel_mmap) { 1565 const char *symbol_name = (event->mmap.filename + 1566 strlen(machine->mmap_name)); 1567 /* 1568 * Should be there already, from the build-id table in 1569 * the header. 1570 */ 1571 struct dso *kernel = NULL; 1572 struct dso *dso; 1573 1574 down_read(&machine->dsos.lock); 1575 1576 list_for_each_entry(dso, &machine->dsos.head, node) { 1577 1578 /* 1579 * The cpumode passed to is_kernel_module is not the 1580 * cpumode of *this* event. If we insist on passing 1581 * correct cpumode to is_kernel_module, we should 1582 * record the cpumode when we adding this dso to the 1583 * linked list. 1584 * 1585 * However we don't really need passing correct 1586 * cpumode. We know the correct cpumode must be kernel 1587 * mode (if not, we should not link it onto kernel_dsos 1588 * list). 1589 * 1590 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1591 * is_kernel_module() treats it as a kernel cpumode. 1592 */ 1593 1594 if (!dso->kernel || 1595 is_kernel_module(dso->long_name, 1596 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1597 continue; 1598 1599 1600 kernel = dso; 1601 break; 1602 } 1603 1604 up_read(&machine->dsos.lock); 1605 1606 if (kernel == NULL) 1607 kernel = machine__findnew_dso(machine, machine->mmap_name); 1608 if (kernel == NULL) 1609 goto out_problem; 1610 1611 kernel->kernel = kernel_type; 1612 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1613 dso__put(kernel); 1614 goto out_problem; 1615 } 1616 1617 if (strstr(kernel->long_name, "vmlinux")) 1618 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1619 1620 machine__update_kernel_mmap(machine, event->mmap.start, 1621 event->mmap.start + event->mmap.len); 1622 1623 /* 1624 * Avoid using a zero address (kptr_restrict) for the ref reloc 1625 * symbol. Effectively having zero here means that at record 1626 * time /proc/sys/kernel/kptr_restrict was non zero. 1627 */ 1628 if (event->mmap.pgoff != 0) { 1629 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1630 symbol_name, 1631 event->mmap.pgoff); 1632 } 1633 1634 if (machine__is_default_guest(machine)) { 1635 /* 1636 * preload dso of guest kernel and modules 1637 */ 1638 dso__load(kernel, machine__kernel_map(machine)); 1639 } 1640 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1641 return machine__process_extra_kernel_map(machine, event); 1642 } 1643 return 0; 1644 out_problem: 1645 return -1; 1646 } 1647 1648 int machine__process_mmap2_event(struct machine *machine, 1649 union perf_event *event, 1650 struct perf_sample *sample) 1651 { 1652 struct thread *thread; 1653 struct map *map; 1654 struct dso_id dso_id = { 1655 .maj = event->mmap2.maj, 1656 .min = event->mmap2.min, 1657 .ino = event->mmap2.ino, 1658 .ino_generation = event->mmap2.ino_generation, 1659 }; 1660 int ret = 0; 1661 1662 if (dump_trace) 1663 perf_event__fprintf_mmap2(event, stdout); 1664 1665 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1666 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1667 ret = machine__process_kernel_mmap_event(machine, event); 1668 if (ret < 0) 1669 goto out_problem; 1670 return 0; 1671 } 1672 1673 thread = machine__findnew_thread(machine, event->mmap2.pid, 1674 event->mmap2.tid); 1675 if (thread == NULL) 1676 goto out_problem; 1677 1678 map = map__new(machine, event->mmap2.start, 1679 event->mmap2.len, event->mmap2.pgoff, 1680 &dso_id, event->mmap2.prot, 1681 event->mmap2.flags, 1682 event->mmap2.filename, thread); 1683 1684 if (map == NULL) 1685 goto out_problem_map; 1686 1687 ret = thread__insert_map(thread, map); 1688 if (ret) 1689 goto out_problem_insert; 1690 1691 thread__put(thread); 1692 map__put(map); 1693 return 0; 1694 1695 out_problem_insert: 1696 map__put(map); 1697 out_problem_map: 1698 thread__put(thread); 1699 out_problem: 1700 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1701 return 0; 1702 } 1703 1704 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1705 struct perf_sample *sample) 1706 { 1707 struct thread *thread; 1708 struct map *map; 1709 u32 prot = 0; 1710 int ret = 0; 1711 1712 if (dump_trace) 1713 perf_event__fprintf_mmap(event, stdout); 1714 1715 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1716 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1717 ret = machine__process_kernel_mmap_event(machine, event); 1718 if (ret < 0) 1719 goto out_problem; 1720 return 0; 1721 } 1722 1723 thread = machine__findnew_thread(machine, event->mmap.pid, 1724 event->mmap.tid); 1725 if (thread == NULL) 1726 goto out_problem; 1727 1728 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1729 prot = PROT_EXEC; 1730 1731 map = map__new(machine, event->mmap.start, 1732 event->mmap.len, event->mmap.pgoff, 1733 NULL, prot, 0, event->mmap.filename, thread); 1734 1735 if (map == NULL) 1736 goto out_problem_map; 1737 1738 ret = thread__insert_map(thread, map); 1739 if (ret) 1740 goto out_problem_insert; 1741 1742 thread__put(thread); 1743 map__put(map); 1744 return 0; 1745 1746 out_problem_insert: 1747 map__put(map); 1748 out_problem_map: 1749 thread__put(thread); 1750 out_problem: 1751 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1752 return 0; 1753 } 1754 1755 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1756 { 1757 struct threads *threads = machine__threads(machine, th->tid); 1758 1759 if (threads->last_match == th) 1760 threads__set_last_match(threads, NULL); 1761 1762 if (lock) 1763 down_write(&threads->lock); 1764 1765 BUG_ON(refcount_read(&th->refcnt) == 0); 1766 1767 rb_erase_cached(&th->rb_node, &threads->entries); 1768 RB_CLEAR_NODE(&th->rb_node); 1769 --threads->nr; 1770 /* 1771 * Move it first to the dead_threads list, then drop the reference, 1772 * if this is the last reference, then the thread__delete destructor 1773 * will be called and we will remove it from the dead_threads list. 1774 */ 1775 list_add_tail(&th->node, &threads->dead); 1776 1777 /* 1778 * We need to do the put here because if this is the last refcount, 1779 * then we will be touching the threads->dead head when removing the 1780 * thread. 1781 */ 1782 thread__put(th); 1783 1784 if (lock) 1785 up_write(&threads->lock); 1786 } 1787 1788 void machine__remove_thread(struct machine *machine, struct thread *th) 1789 { 1790 return __machine__remove_thread(machine, th, true); 1791 } 1792 1793 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1794 struct perf_sample *sample) 1795 { 1796 struct thread *thread = machine__find_thread(machine, 1797 event->fork.pid, 1798 event->fork.tid); 1799 struct thread *parent = machine__findnew_thread(machine, 1800 event->fork.ppid, 1801 event->fork.ptid); 1802 bool do_maps_clone = true; 1803 int err = 0; 1804 1805 if (dump_trace) 1806 perf_event__fprintf_task(event, stdout); 1807 1808 /* 1809 * There may be an existing thread that is not actually the parent, 1810 * either because we are processing events out of order, or because the 1811 * (fork) event that would have removed the thread was lost. Assume the 1812 * latter case and continue on as best we can. 1813 */ 1814 if (parent->pid_ != (pid_t)event->fork.ppid) { 1815 dump_printf("removing erroneous parent thread %d/%d\n", 1816 parent->pid_, parent->tid); 1817 machine__remove_thread(machine, parent); 1818 thread__put(parent); 1819 parent = machine__findnew_thread(machine, event->fork.ppid, 1820 event->fork.ptid); 1821 } 1822 1823 /* if a thread currently exists for the thread id remove it */ 1824 if (thread != NULL) { 1825 machine__remove_thread(machine, thread); 1826 thread__put(thread); 1827 } 1828 1829 thread = machine__findnew_thread(machine, event->fork.pid, 1830 event->fork.tid); 1831 /* 1832 * When synthesizing FORK events, we are trying to create thread 1833 * objects for the already running tasks on the machine. 1834 * 1835 * Normally, for a kernel FORK event, we want to clone the parent's 1836 * maps because that is what the kernel just did. 1837 * 1838 * But when synthesizing, this should not be done. If we do, we end up 1839 * with overlapping maps as we process the sythesized MMAP2 events that 1840 * get delivered shortly thereafter. 1841 * 1842 * Use the FORK event misc flags in an internal way to signal this 1843 * situation, so we can elide the map clone when appropriate. 1844 */ 1845 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1846 do_maps_clone = false; 1847 1848 if (thread == NULL || parent == NULL || 1849 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1850 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1851 err = -1; 1852 } 1853 thread__put(thread); 1854 thread__put(parent); 1855 1856 return err; 1857 } 1858 1859 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1860 struct perf_sample *sample __maybe_unused) 1861 { 1862 struct thread *thread = machine__find_thread(machine, 1863 event->fork.pid, 1864 event->fork.tid); 1865 1866 if (dump_trace) 1867 perf_event__fprintf_task(event, stdout); 1868 1869 if (thread != NULL) { 1870 thread__exited(thread); 1871 thread__put(thread); 1872 } 1873 1874 return 0; 1875 } 1876 1877 int machine__process_event(struct machine *machine, union perf_event *event, 1878 struct perf_sample *sample) 1879 { 1880 int ret; 1881 1882 switch (event->header.type) { 1883 case PERF_RECORD_COMM: 1884 ret = machine__process_comm_event(machine, event, sample); break; 1885 case PERF_RECORD_MMAP: 1886 ret = machine__process_mmap_event(machine, event, sample); break; 1887 case PERF_RECORD_NAMESPACES: 1888 ret = machine__process_namespaces_event(machine, event, sample); break; 1889 case PERF_RECORD_MMAP2: 1890 ret = machine__process_mmap2_event(machine, event, sample); break; 1891 case PERF_RECORD_FORK: 1892 ret = machine__process_fork_event(machine, event, sample); break; 1893 case PERF_RECORD_EXIT: 1894 ret = machine__process_exit_event(machine, event, sample); break; 1895 case PERF_RECORD_LOST: 1896 ret = machine__process_lost_event(machine, event, sample); break; 1897 case PERF_RECORD_AUX: 1898 ret = machine__process_aux_event(machine, event); break; 1899 case PERF_RECORD_ITRACE_START: 1900 ret = machine__process_itrace_start_event(machine, event); break; 1901 case PERF_RECORD_LOST_SAMPLES: 1902 ret = machine__process_lost_samples_event(machine, event, sample); break; 1903 case PERF_RECORD_SWITCH: 1904 case PERF_RECORD_SWITCH_CPU_WIDE: 1905 ret = machine__process_switch_event(machine, event); break; 1906 case PERF_RECORD_KSYMBOL: 1907 ret = machine__process_ksymbol(machine, event, sample); break; 1908 case PERF_RECORD_BPF_EVENT: 1909 ret = machine__process_bpf(machine, event, sample); break; 1910 default: 1911 ret = -1; 1912 break; 1913 } 1914 1915 return ret; 1916 } 1917 1918 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1919 { 1920 if (!regexec(regex, sym->name, 0, NULL, 0)) 1921 return 1; 1922 return 0; 1923 } 1924 1925 static void ip__resolve_ams(struct thread *thread, 1926 struct addr_map_symbol *ams, 1927 u64 ip) 1928 { 1929 struct addr_location al; 1930 1931 memset(&al, 0, sizeof(al)); 1932 /* 1933 * We cannot use the header.misc hint to determine whether a 1934 * branch stack address is user, kernel, guest, hypervisor. 1935 * Branches may straddle the kernel/user/hypervisor boundaries. 1936 * Thus, we have to try consecutively until we find a match 1937 * or else, the symbol is unknown 1938 */ 1939 thread__find_cpumode_addr_location(thread, ip, &al); 1940 1941 ams->addr = ip; 1942 ams->al_addr = al.addr; 1943 ams->ms.mg = al.mg; 1944 ams->ms.sym = al.sym; 1945 ams->ms.map = al.map; 1946 ams->phys_addr = 0; 1947 } 1948 1949 static void ip__resolve_data(struct thread *thread, 1950 u8 m, struct addr_map_symbol *ams, 1951 u64 addr, u64 phys_addr) 1952 { 1953 struct addr_location al; 1954 1955 memset(&al, 0, sizeof(al)); 1956 1957 thread__find_symbol(thread, m, addr, &al); 1958 1959 ams->addr = addr; 1960 ams->al_addr = al.addr; 1961 ams->ms.mg = al.mg; 1962 ams->ms.sym = al.sym; 1963 ams->ms.map = al.map; 1964 ams->phys_addr = phys_addr; 1965 } 1966 1967 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1968 struct addr_location *al) 1969 { 1970 struct mem_info *mi = mem_info__new(); 1971 1972 if (!mi) 1973 return NULL; 1974 1975 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1976 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 1977 sample->addr, sample->phys_addr); 1978 mi->data_src.val = sample->data_src; 1979 1980 return mi; 1981 } 1982 1983 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 1984 { 1985 struct map *map = ms->map; 1986 char *srcline = NULL; 1987 1988 if (!map || callchain_param.key == CCKEY_FUNCTION) 1989 return srcline; 1990 1991 srcline = srcline__tree_find(&map->dso->srclines, ip); 1992 if (!srcline) { 1993 bool show_sym = false; 1994 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 1995 1996 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 1997 ms->sym, show_sym, show_addr, ip); 1998 srcline__tree_insert(&map->dso->srclines, ip, srcline); 1999 } 2000 2001 return srcline; 2002 } 2003 2004 struct iterations { 2005 int nr_loop_iter; 2006 u64 cycles; 2007 }; 2008 2009 static int add_callchain_ip(struct thread *thread, 2010 struct callchain_cursor *cursor, 2011 struct symbol **parent, 2012 struct addr_location *root_al, 2013 u8 *cpumode, 2014 u64 ip, 2015 bool branch, 2016 struct branch_flags *flags, 2017 struct iterations *iter, 2018 u64 branch_from) 2019 { 2020 struct map_symbol ms; 2021 struct addr_location al; 2022 int nr_loop_iter = 0; 2023 u64 iter_cycles = 0; 2024 const char *srcline = NULL; 2025 2026 al.filtered = 0; 2027 al.sym = NULL; 2028 if (!cpumode) { 2029 thread__find_cpumode_addr_location(thread, ip, &al); 2030 } else { 2031 if (ip >= PERF_CONTEXT_MAX) { 2032 switch (ip) { 2033 case PERF_CONTEXT_HV: 2034 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2035 break; 2036 case PERF_CONTEXT_KERNEL: 2037 *cpumode = PERF_RECORD_MISC_KERNEL; 2038 break; 2039 case PERF_CONTEXT_USER: 2040 *cpumode = PERF_RECORD_MISC_USER; 2041 break; 2042 default: 2043 pr_debug("invalid callchain context: " 2044 "%"PRId64"\n", (s64) ip); 2045 /* 2046 * It seems the callchain is corrupted. 2047 * Discard all. 2048 */ 2049 callchain_cursor_reset(cursor); 2050 return 1; 2051 } 2052 return 0; 2053 } 2054 thread__find_symbol(thread, *cpumode, ip, &al); 2055 } 2056 2057 if (al.sym != NULL) { 2058 if (perf_hpp_list.parent && !*parent && 2059 symbol__match_regex(al.sym, &parent_regex)) 2060 *parent = al.sym; 2061 else if (have_ignore_callees && root_al && 2062 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2063 /* Treat this symbol as the root, 2064 forgetting its callees. */ 2065 *root_al = al; 2066 callchain_cursor_reset(cursor); 2067 } 2068 } 2069 2070 if (symbol_conf.hide_unresolved && al.sym == NULL) 2071 return 0; 2072 2073 if (iter) { 2074 nr_loop_iter = iter->nr_loop_iter; 2075 iter_cycles = iter->cycles; 2076 } 2077 2078 ms.mg = al.mg; 2079 ms.map = al.map; 2080 ms.sym = al.sym; 2081 srcline = callchain_srcline(&ms, al.addr); 2082 return callchain_cursor_append(cursor, ip, &ms, 2083 branch, flags, nr_loop_iter, 2084 iter_cycles, branch_from, srcline); 2085 } 2086 2087 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2088 struct addr_location *al) 2089 { 2090 unsigned int i; 2091 const struct branch_stack *bs = sample->branch_stack; 2092 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2093 2094 if (!bi) 2095 return NULL; 2096 2097 for (i = 0; i < bs->nr; i++) { 2098 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 2099 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 2100 bi[i].flags = bs->entries[i].flags; 2101 } 2102 return bi; 2103 } 2104 2105 static void save_iterations(struct iterations *iter, 2106 struct branch_entry *be, int nr) 2107 { 2108 int i; 2109 2110 iter->nr_loop_iter++; 2111 iter->cycles = 0; 2112 2113 for (i = 0; i < nr; i++) 2114 iter->cycles += be[i].flags.cycles; 2115 } 2116 2117 #define CHASHSZ 127 2118 #define CHASHBITS 7 2119 #define NO_ENTRY 0xff 2120 2121 #define PERF_MAX_BRANCH_DEPTH 127 2122 2123 /* Remove loops. */ 2124 static int remove_loops(struct branch_entry *l, int nr, 2125 struct iterations *iter) 2126 { 2127 int i, j, off; 2128 unsigned char chash[CHASHSZ]; 2129 2130 memset(chash, NO_ENTRY, sizeof(chash)); 2131 2132 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2133 2134 for (i = 0; i < nr; i++) { 2135 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2136 2137 /* no collision handling for now */ 2138 if (chash[h] == NO_ENTRY) { 2139 chash[h] = i; 2140 } else if (l[chash[h]].from == l[i].from) { 2141 bool is_loop = true; 2142 /* check if it is a real loop */ 2143 off = 0; 2144 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2145 if (l[j].from != l[i + off].from) { 2146 is_loop = false; 2147 break; 2148 } 2149 if (is_loop) { 2150 j = nr - (i + off); 2151 if (j > 0) { 2152 save_iterations(iter + i + off, 2153 l + i, off); 2154 2155 memmove(iter + i, iter + i + off, 2156 j * sizeof(*iter)); 2157 2158 memmove(l + i, l + i + off, 2159 j * sizeof(*l)); 2160 } 2161 2162 nr -= off; 2163 } 2164 } 2165 } 2166 return nr; 2167 } 2168 2169 /* 2170 * Recolve LBR callstack chain sample 2171 * Return: 2172 * 1 on success get LBR callchain information 2173 * 0 no available LBR callchain information, should try fp 2174 * negative error code on other errors. 2175 */ 2176 static int resolve_lbr_callchain_sample(struct thread *thread, 2177 struct callchain_cursor *cursor, 2178 struct perf_sample *sample, 2179 struct symbol **parent, 2180 struct addr_location *root_al, 2181 int max_stack) 2182 { 2183 struct ip_callchain *chain = sample->callchain; 2184 int chain_nr = min(max_stack, (int)chain->nr), i; 2185 u8 cpumode = PERF_RECORD_MISC_USER; 2186 u64 ip, branch_from = 0; 2187 2188 for (i = 0; i < chain_nr; i++) { 2189 if (chain->ips[i] == PERF_CONTEXT_USER) 2190 break; 2191 } 2192 2193 /* LBR only affects the user callchain */ 2194 if (i != chain_nr) { 2195 struct branch_stack *lbr_stack = sample->branch_stack; 2196 int lbr_nr = lbr_stack->nr, j, k; 2197 bool branch; 2198 struct branch_flags *flags; 2199 /* 2200 * LBR callstack can only get user call chain. 2201 * The mix_chain_nr is kernel call chain 2202 * number plus LBR user call chain number. 2203 * i is kernel call chain number, 2204 * 1 is PERF_CONTEXT_USER, 2205 * lbr_nr + 1 is the user call chain number. 2206 * For details, please refer to the comments 2207 * in callchain__printf 2208 */ 2209 int mix_chain_nr = i + 1 + lbr_nr + 1; 2210 2211 for (j = 0; j < mix_chain_nr; j++) { 2212 int err; 2213 branch = false; 2214 flags = NULL; 2215 2216 if (callchain_param.order == ORDER_CALLEE) { 2217 if (j < i + 1) 2218 ip = chain->ips[j]; 2219 else if (j > i + 1) { 2220 k = j - i - 2; 2221 ip = lbr_stack->entries[k].from; 2222 branch = true; 2223 flags = &lbr_stack->entries[k].flags; 2224 } else { 2225 ip = lbr_stack->entries[0].to; 2226 branch = true; 2227 flags = &lbr_stack->entries[0].flags; 2228 branch_from = 2229 lbr_stack->entries[0].from; 2230 } 2231 } else { 2232 if (j < lbr_nr) { 2233 k = lbr_nr - j - 1; 2234 ip = lbr_stack->entries[k].from; 2235 branch = true; 2236 flags = &lbr_stack->entries[k].flags; 2237 } 2238 else if (j > lbr_nr) 2239 ip = chain->ips[i + 1 - (j - lbr_nr)]; 2240 else { 2241 ip = lbr_stack->entries[0].to; 2242 branch = true; 2243 flags = &lbr_stack->entries[0].flags; 2244 branch_from = 2245 lbr_stack->entries[0].from; 2246 } 2247 } 2248 2249 err = add_callchain_ip(thread, cursor, parent, 2250 root_al, &cpumode, ip, 2251 branch, flags, NULL, 2252 branch_from); 2253 if (err) 2254 return (err < 0) ? err : 0; 2255 } 2256 return 1; 2257 } 2258 2259 return 0; 2260 } 2261 2262 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2263 struct callchain_cursor *cursor, 2264 struct symbol **parent, 2265 struct addr_location *root_al, 2266 u8 *cpumode, int ent) 2267 { 2268 int err = 0; 2269 2270 while (--ent >= 0) { 2271 u64 ip = chain->ips[ent]; 2272 2273 if (ip >= PERF_CONTEXT_MAX) { 2274 err = add_callchain_ip(thread, cursor, parent, 2275 root_al, cpumode, ip, 2276 false, NULL, NULL, 0); 2277 break; 2278 } 2279 } 2280 return err; 2281 } 2282 2283 static int thread__resolve_callchain_sample(struct thread *thread, 2284 struct callchain_cursor *cursor, 2285 struct evsel *evsel, 2286 struct perf_sample *sample, 2287 struct symbol **parent, 2288 struct addr_location *root_al, 2289 int max_stack) 2290 { 2291 struct branch_stack *branch = sample->branch_stack; 2292 struct ip_callchain *chain = sample->callchain; 2293 int chain_nr = 0; 2294 u8 cpumode = PERF_RECORD_MISC_USER; 2295 int i, j, err, nr_entries; 2296 int skip_idx = -1; 2297 int first_call = 0; 2298 2299 if (chain) 2300 chain_nr = chain->nr; 2301 2302 if (perf_evsel__has_branch_callstack(evsel)) { 2303 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2304 root_al, max_stack); 2305 if (err) 2306 return (err < 0) ? err : 0; 2307 } 2308 2309 /* 2310 * Based on DWARF debug information, some architectures skip 2311 * a callchain entry saved by the kernel. 2312 */ 2313 skip_idx = arch_skip_callchain_idx(thread, chain); 2314 2315 /* 2316 * Add branches to call stack for easier browsing. This gives 2317 * more context for a sample than just the callers. 2318 * 2319 * This uses individual histograms of paths compared to the 2320 * aggregated histograms the normal LBR mode uses. 2321 * 2322 * Limitations for now: 2323 * - No extra filters 2324 * - No annotations (should annotate somehow) 2325 */ 2326 2327 if (branch && callchain_param.branch_callstack) { 2328 int nr = min(max_stack, (int)branch->nr); 2329 struct branch_entry be[nr]; 2330 struct iterations iter[nr]; 2331 2332 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2333 pr_warning("corrupted branch chain. skipping...\n"); 2334 goto check_calls; 2335 } 2336 2337 for (i = 0; i < nr; i++) { 2338 if (callchain_param.order == ORDER_CALLEE) { 2339 be[i] = branch->entries[i]; 2340 2341 if (chain == NULL) 2342 continue; 2343 2344 /* 2345 * Check for overlap into the callchain. 2346 * The return address is one off compared to 2347 * the branch entry. To adjust for this 2348 * assume the calling instruction is not longer 2349 * than 8 bytes. 2350 */ 2351 if (i == skip_idx || 2352 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2353 first_call++; 2354 else if (be[i].from < chain->ips[first_call] && 2355 be[i].from >= chain->ips[first_call] - 8) 2356 first_call++; 2357 } else 2358 be[i] = branch->entries[branch->nr - i - 1]; 2359 } 2360 2361 memset(iter, 0, sizeof(struct iterations) * nr); 2362 nr = remove_loops(be, nr, iter); 2363 2364 for (i = 0; i < nr; i++) { 2365 err = add_callchain_ip(thread, cursor, parent, 2366 root_al, 2367 NULL, be[i].to, 2368 true, &be[i].flags, 2369 NULL, be[i].from); 2370 2371 if (!err) 2372 err = add_callchain_ip(thread, cursor, parent, root_al, 2373 NULL, be[i].from, 2374 true, &be[i].flags, 2375 &iter[i], 0); 2376 if (err == -EINVAL) 2377 break; 2378 if (err) 2379 return err; 2380 } 2381 2382 if (chain_nr == 0) 2383 return 0; 2384 2385 chain_nr -= nr; 2386 } 2387 2388 check_calls: 2389 if (chain && callchain_param.order != ORDER_CALLEE) { 2390 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2391 &cpumode, chain->nr - first_call); 2392 if (err) 2393 return (err < 0) ? err : 0; 2394 } 2395 for (i = first_call, nr_entries = 0; 2396 i < chain_nr && nr_entries < max_stack; i++) { 2397 u64 ip; 2398 2399 if (callchain_param.order == ORDER_CALLEE) 2400 j = i; 2401 else 2402 j = chain->nr - i - 1; 2403 2404 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2405 if (j == skip_idx) 2406 continue; 2407 #endif 2408 ip = chain->ips[j]; 2409 if (ip < PERF_CONTEXT_MAX) 2410 ++nr_entries; 2411 else if (callchain_param.order != ORDER_CALLEE) { 2412 err = find_prev_cpumode(chain, thread, cursor, parent, 2413 root_al, &cpumode, j); 2414 if (err) 2415 return (err < 0) ? err : 0; 2416 continue; 2417 } 2418 2419 err = add_callchain_ip(thread, cursor, parent, 2420 root_al, &cpumode, ip, 2421 false, NULL, NULL, 0); 2422 2423 if (err) 2424 return (err < 0) ? err : 0; 2425 } 2426 2427 return 0; 2428 } 2429 2430 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2431 { 2432 struct symbol *sym = ms->sym; 2433 struct map *map = ms->map; 2434 struct inline_node *inline_node; 2435 struct inline_list *ilist; 2436 u64 addr; 2437 int ret = 1; 2438 2439 if (!symbol_conf.inline_name || !map || !sym) 2440 return ret; 2441 2442 addr = map__map_ip(map, ip); 2443 addr = map__rip_2objdump(map, addr); 2444 2445 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2446 if (!inline_node) { 2447 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2448 if (!inline_node) 2449 return ret; 2450 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2451 } 2452 2453 list_for_each_entry(ilist, &inline_node->val, list) { 2454 struct map_symbol ilist_ms = { 2455 .map = map, 2456 .sym = ilist->symbol, 2457 }; 2458 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2459 NULL, 0, 0, 0, ilist->srcline); 2460 2461 if (ret != 0) 2462 return ret; 2463 } 2464 2465 return ret; 2466 } 2467 2468 static int unwind_entry(struct unwind_entry *entry, void *arg) 2469 { 2470 struct callchain_cursor *cursor = arg; 2471 const char *srcline = NULL; 2472 u64 addr = entry->ip; 2473 2474 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2475 return 0; 2476 2477 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2478 return 0; 2479 2480 /* 2481 * Convert entry->ip from a virtual address to an offset in 2482 * its corresponding binary. 2483 */ 2484 if (entry->ms.map) 2485 addr = map__map_ip(entry->ms.map, entry->ip); 2486 2487 srcline = callchain_srcline(&entry->ms, addr); 2488 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2489 false, NULL, 0, 0, 0, srcline); 2490 } 2491 2492 static int thread__resolve_callchain_unwind(struct thread *thread, 2493 struct callchain_cursor *cursor, 2494 struct evsel *evsel, 2495 struct perf_sample *sample, 2496 int max_stack) 2497 { 2498 /* Can we do dwarf post unwind? */ 2499 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2500 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2501 return 0; 2502 2503 /* Bail out if nothing was captured. */ 2504 if ((!sample->user_regs.regs) || 2505 (!sample->user_stack.size)) 2506 return 0; 2507 2508 return unwind__get_entries(unwind_entry, cursor, 2509 thread, sample, max_stack); 2510 } 2511 2512 int thread__resolve_callchain(struct thread *thread, 2513 struct callchain_cursor *cursor, 2514 struct evsel *evsel, 2515 struct perf_sample *sample, 2516 struct symbol **parent, 2517 struct addr_location *root_al, 2518 int max_stack) 2519 { 2520 int ret = 0; 2521 2522 callchain_cursor_reset(cursor); 2523 2524 if (callchain_param.order == ORDER_CALLEE) { 2525 ret = thread__resolve_callchain_sample(thread, cursor, 2526 evsel, sample, 2527 parent, root_al, 2528 max_stack); 2529 if (ret) 2530 return ret; 2531 ret = thread__resolve_callchain_unwind(thread, cursor, 2532 evsel, sample, 2533 max_stack); 2534 } else { 2535 ret = thread__resolve_callchain_unwind(thread, cursor, 2536 evsel, sample, 2537 max_stack); 2538 if (ret) 2539 return ret; 2540 ret = thread__resolve_callchain_sample(thread, cursor, 2541 evsel, sample, 2542 parent, root_al, 2543 max_stack); 2544 } 2545 2546 return ret; 2547 } 2548 2549 int machine__for_each_thread(struct machine *machine, 2550 int (*fn)(struct thread *thread, void *p), 2551 void *priv) 2552 { 2553 struct threads *threads; 2554 struct rb_node *nd; 2555 struct thread *thread; 2556 int rc = 0; 2557 int i; 2558 2559 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2560 threads = &machine->threads[i]; 2561 for (nd = rb_first_cached(&threads->entries); nd; 2562 nd = rb_next(nd)) { 2563 thread = rb_entry(nd, struct thread, rb_node); 2564 rc = fn(thread, priv); 2565 if (rc != 0) 2566 return rc; 2567 } 2568 2569 list_for_each_entry(thread, &threads->dead, node) { 2570 rc = fn(thread, priv); 2571 if (rc != 0) 2572 return rc; 2573 } 2574 } 2575 return rc; 2576 } 2577 2578 int machines__for_each_thread(struct machines *machines, 2579 int (*fn)(struct thread *thread, void *p), 2580 void *priv) 2581 { 2582 struct rb_node *nd; 2583 int rc = 0; 2584 2585 rc = machine__for_each_thread(&machines->host, fn, priv); 2586 if (rc != 0) 2587 return rc; 2588 2589 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2590 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2591 2592 rc = machine__for_each_thread(machine, fn, priv); 2593 if (rc != 0) 2594 return rc; 2595 } 2596 return rc; 2597 } 2598 2599 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2600 { 2601 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2602 2603 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 2604 return -1; 2605 2606 return machine->current_tid[cpu]; 2607 } 2608 2609 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2610 pid_t tid) 2611 { 2612 struct thread *thread; 2613 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2614 2615 if (cpu < 0) 2616 return -EINVAL; 2617 2618 if (!machine->current_tid) { 2619 int i; 2620 2621 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 2622 if (!machine->current_tid) 2623 return -ENOMEM; 2624 for (i = 0; i < nr_cpus; i++) 2625 machine->current_tid[i] = -1; 2626 } 2627 2628 if (cpu >= nr_cpus) { 2629 pr_err("Requested CPU %d too large. ", cpu); 2630 pr_err("Consider raising MAX_NR_CPUS\n"); 2631 return -EINVAL; 2632 } 2633 2634 machine->current_tid[cpu] = tid; 2635 2636 thread = machine__findnew_thread(machine, pid, tid); 2637 if (!thread) 2638 return -ENOMEM; 2639 2640 thread->cpu = cpu; 2641 thread__put(thread); 2642 2643 return 0; 2644 } 2645 2646 /* 2647 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 2648 * normalized arch is needed. 2649 */ 2650 bool machine__is(struct machine *machine, const char *arch) 2651 { 2652 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 2653 } 2654 2655 int machine__nr_cpus_avail(struct machine *machine) 2656 { 2657 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 2658 } 2659 2660 int machine__get_kernel_start(struct machine *machine) 2661 { 2662 struct map *map = machine__kernel_map(machine); 2663 int err = 0; 2664 2665 /* 2666 * The only addresses above 2^63 are kernel addresses of a 64-bit 2667 * kernel. Note that addresses are unsigned so that on a 32-bit system 2668 * all addresses including kernel addresses are less than 2^32. In 2669 * that case (32-bit system), if the kernel mapping is unknown, all 2670 * addresses will be assumed to be in user space - see 2671 * machine__kernel_ip(). 2672 */ 2673 machine->kernel_start = 1ULL << 63; 2674 if (map) { 2675 err = map__load(map); 2676 /* 2677 * On x86_64, PTI entry trampolines are less than the 2678 * start of kernel text, but still above 2^63. So leave 2679 * kernel_start = 1ULL << 63 for x86_64. 2680 */ 2681 if (!err && !machine__is(machine, "x86_64")) 2682 machine->kernel_start = map->start; 2683 } 2684 return err; 2685 } 2686 2687 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 2688 { 2689 u8 addr_cpumode = cpumode; 2690 bool kernel_ip; 2691 2692 if (!machine->single_address_space) 2693 goto out; 2694 2695 kernel_ip = machine__kernel_ip(machine, addr); 2696 switch (cpumode) { 2697 case PERF_RECORD_MISC_KERNEL: 2698 case PERF_RECORD_MISC_USER: 2699 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 2700 PERF_RECORD_MISC_USER; 2701 break; 2702 case PERF_RECORD_MISC_GUEST_KERNEL: 2703 case PERF_RECORD_MISC_GUEST_USER: 2704 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 2705 PERF_RECORD_MISC_GUEST_USER; 2706 break; 2707 default: 2708 break; 2709 } 2710 out: 2711 return addr_cpumode; 2712 } 2713 2714 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 2715 { 2716 return dsos__findnew_id(&machine->dsos, filename, id); 2717 } 2718 2719 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2720 { 2721 return machine__findnew_dso_id(machine, filename, NULL); 2722 } 2723 2724 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2725 { 2726 struct machine *machine = vmachine; 2727 struct map *map; 2728 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 2729 2730 if (sym == NULL) 2731 return NULL; 2732 2733 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2734 *addrp = map->unmap_ip(map, sym->start); 2735 return sym->name; 2736 } 2737