xref: /linux/tools/perf/util/machine.c (revision 1947b92464c3268381604bbe2ac977a3fd78192f)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "path.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "sort.h"
23 #include "strlist.h"
24 #include "target.h"
25 #include "thread.h"
26 #include "util.h"
27 #include "vdso.h"
28 #include <stdbool.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <unistd.h>
32 #include "unwind.h"
33 #include "linux/hash.h"
34 #include "asm/bug.h"
35 #include "bpf-event.h"
36 #include <internal/lib.h> // page_size
37 #include "cgroup.h"
38 #include "arm64-frame-pointer-unwind-support.h"
39 
40 #include <linux/ctype.h>
41 #include <symbol/kallsyms.h>
42 #include <linux/mman.h>
43 #include <linux/string.h>
44 #include <linux/zalloc.h>
45 
46 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
47 				     struct thread *th, bool lock);
48 
49 static struct dso *machine__kernel_dso(struct machine *machine)
50 {
51 	return map__dso(machine->vmlinux_map);
52 }
53 
54 static void dsos__init(struct dsos *dsos)
55 {
56 	INIT_LIST_HEAD(&dsos->head);
57 	dsos->root = RB_ROOT;
58 	init_rwsem(&dsos->lock);
59 }
60 
61 static void machine__threads_init(struct machine *machine)
62 {
63 	int i;
64 
65 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
66 		struct threads *threads = &machine->threads[i];
67 		threads->entries = RB_ROOT_CACHED;
68 		init_rwsem(&threads->lock);
69 		threads->nr = 0;
70 		threads->last_match = NULL;
71 	}
72 }
73 
74 static int thread_rb_node__cmp_tid(const void *key, const struct rb_node *nd)
75 {
76 	int to_find = (int) *((pid_t *)key);
77 
78 	return to_find - (int)thread__tid(rb_entry(nd, struct thread_rb_node, rb_node)->thread);
79 }
80 
81 static struct thread_rb_node *thread_rb_node__find(const struct thread *th,
82 						   struct rb_root *tree)
83 {
84 	pid_t to_find = thread__tid(th);
85 	struct rb_node *nd = rb_find(&to_find, tree, thread_rb_node__cmp_tid);
86 
87 	return rb_entry(nd, struct thread_rb_node, rb_node);
88 }
89 
90 static int machine__set_mmap_name(struct machine *machine)
91 {
92 	if (machine__is_host(machine))
93 		machine->mmap_name = strdup("[kernel.kallsyms]");
94 	else if (machine__is_default_guest(machine))
95 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
96 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
97 			  machine->pid) < 0)
98 		machine->mmap_name = NULL;
99 
100 	return machine->mmap_name ? 0 : -ENOMEM;
101 }
102 
103 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
104 {
105 	char comm[64];
106 
107 	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
108 	thread__set_comm(thread, comm, 0);
109 }
110 
111 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
112 {
113 	int err = -ENOMEM;
114 
115 	memset(machine, 0, sizeof(*machine));
116 	machine->kmaps = maps__new(machine);
117 	if (machine->kmaps == NULL)
118 		return -ENOMEM;
119 
120 	RB_CLEAR_NODE(&machine->rb_node);
121 	dsos__init(&machine->dsos);
122 
123 	machine__threads_init(machine);
124 
125 	machine->vdso_info = NULL;
126 	machine->env = NULL;
127 
128 	machine->pid = pid;
129 
130 	machine->id_hdr_size = 0;
131 	machine->kptr_restrict_warned = false;
132 	machine->comm_exec = false;
133 	machine->kernel_start = 0;
134 	machine->vmlinux_map = NULL;
135 
136 	machine->root_dir = strdup(root_dir);
137 	if (machine->root_dir == NULL)
138 		goto out;
139 
140 	if (machine__set_mmap_name(machine))
141 		goto out;
142 
143 	if (pid != HOST_KERNEL_ID) {
144 		struct thread *thread = machine__findnew_thread(machine, -1,
145 								pid);
146 
147 		if (thread == NULL)
148 			goto out;
149 
150 		thread__set_guest_comm(thread, pid);
151 		thread__put(thread);
152 	}
153 
154 	machine->current_tid = NULL;
155 	err = 0;
156 
157 out:
158 	if (err) {
159 		zfree(&machine->kmaps);
160 		zfree(&machine->root_dir);
161 		zfree(&machine->mmap_name);
162 	}
163 	return 0;
164 }
165 
166 struct machine *machine__new_host(void)
167 {
168 	struct machine *machine = malloc(sizeof(*machine));
169 
170 	if (machine != NULL) {
171 		machine__init(machine, "", HOST_KERNEL_ID);
172 
173 		if (machine__create_kernel_maps(machine) < 0)
174 			goto out_delete;
175 	}
176 
177 	return machine;
178 out_delete:
179 	free(machine);
180 	return NULL;
181 }
182 
183 struct machine *machine__new_kallsyms(void)
184 {
185 	struct machine *machine = machine__new_host();
186 	/*
187 	 * FIXME:
188 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
189 	 *    ask for not using the kcore parsing code, once this one is fixed
190 	 *    to create a map per module.
191 	 */
192 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
193 		machine__delete(machine);
194 		machine = NULL;
195 	}
196 
197 	return machine;
198 }
199 
200 static void dsos__purge(struct dsos *dsos)
201 {
202 	struct dso *pos, *n;
203 
204 	down_write(&dsos->lock);
205 
206 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
207 		RB_CLEAR_NODE(&pos->rb_node);
208 		pos->root = NULL;
209 		list_del_init(&pos->node);
210 		dso__put(pos);
211 	}
212 
213 	up_write(&dsos->lock);
214 }
215 
216 static void dsos__exit(struct dsos *dsos)
217 {
218 	dsos__purge(dsos);
219 	exit_rwsem(&dsos->lock);
220 }
221 
222 void machine__delete_threads(struct machine *machine)
223 {
224 	struct rb_node *nd;
225 	int i;
226 
227 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
228 		struct threads *threads = &machine->threads[i];
229 		down_write(&threads->lock);
230 		nd = rb_first_cached(&threads->entries);
231 		while (nd) {
232 			struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
233 
234 			nd = rb_next(nd);
235 			__machine__remove_thread(machine, trb, trb->thread, false);
236 		}
237 		up_write(&threads->lock);
238 	}
239 }
240 
241 void machine__exit(struct machine *machine)
242 {
243 	int i;
244 
245 	if (machine == NULL)
246 		return;
247 
248 	machine__destroy_kernel_maps(machine);
249 	maps__zput(machine->kmaps);
250 	dsos__exit(&machine->dsos);
251 	machine__exit_vdso(machine);
252 	zfree(&machine->root_dir);
253 	zfree(&machine->mmap_name);
254 	zfree(&machine->current_tid);
255 	zfree(&machine->kallsyms_filename);
256 
257 	machine__delete_threads(machine);
258 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
259 		struct threads *threads = &machine->threads[i];
260 
261 		exit_rwsem(&threads->lock);
262 	}
263 }
264 
265 void machine__delete(struct machine *machine)
266 {
267 	if (machine) {
268 		machine__exit(machine);
269 		free(machine);
270 	}
271 }
272 
273 void machines__init(struct machines *machines)
274 {
275 	machine__init(&machines->host, "", HOST_KERNEL_ID);
276 	machines->guests = RB_ROOT_CACHED;
277 }
278 
279 void machines__exit(struct machines *machines)
280 {
281 	machine__exit(&machines->host);
282 	/* XXX exit guest */
283 }
284 
285 struct machine *machines__add(struct machines *machines, pid_t pid,
286 			      const char *root_dir)
287 {
288 	struct rb_node **p = &machines->guests.rb_root.rb_node;
289 	struct rb_node *parent = NULL;
290 	struct machine *pos, *machine = malloc(sizeof(*machine));
291 	bool leftmost = true;
292 
293 	if (machine == NULL)
294 		return NULL;
295 
296 	if (machine__init(machine, root_dir, pid) != 0) {
297 		free(machine);
298 		return NULL;
299 	}
300 
301 	while (*p != NULL) {
302 		parent = *p;
303 		pos = rb_entry(parent, struct machine, rb_node);
304 		if (pid < pos->pid)
305 			p = &(*p)->rb_left;
306 		else {
307 			p = &(*p)->rb_right;
308 			leftmost = false;
309 		}
310 	}
311 
312 	rb_link_node(&machine->rb_node, parent, p);
313 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
314 
315 	machine->machines = machines;
316 
317 	return machine;
318 }
319 
320 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
321 {
322 	struct rb_node *nd;
323 
324 	machines->host.comm_exec = comm_exec;
325 
326 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
327 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
328 
329 		machine->comm_exec = comm_exec;
330 	}
331 }
332 
333 struct machine *machines__find(struct machines *machines, pid_t pid)
334 {
335 	struct rb_node **p = &machines->guests.rb_root.rb_node;
336 	struct rb_node *parent = NULL;
337 	struct machine *machine;
338 	struct machine *default_machine = NULL;
339 
340 	if (pid == HOST_KERNEL_ID)
341 		return &machines->host;
342 
343 	while (*p != NULL) {
344 		parent = *p;
345 		machine = rb_entry(parent, struct machine, rb_node);
346 		if (pid < machine->pid)
347 			p = &(*p)->rb_left;
348 		else if (pid > machine->pid)
349 			p = &(*p)->rb_right;
350 		else
351 			return machine;
352 		if (!machine->pid)
353 			default_machine = machine;
354 	}
355 
356 	return default_machine;
357 }
358 
359 struct machine *machines__findnew(struct machines *machines, pid_t pid)
360 {
361 	char path[PATH_MAX];
362 	const char *root_dir = "";
363 	struct machine *machine = machines__find(machines, pid);
364 
365 	if (machine && (machine->pid == pid))
366 		goto out;
367 
368 	if ((pid != HOST_KERNEL_ID) &&
369 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
370 	    (symbol_conf.guestmount)) {
371 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
372 		if (access(path, R_OK)) {
373 			static struct strlist *seen;
374 
375 			if (!seen)
376 				seen = strlist__new(NULL, NULL);
377 
378 			if (!strlist__has_entry(seen, path)) {
379 				pr_err("Can't access file %s\n", path);
380 				strlist__add(seen, path);
381 			}
382 			machine = NULL;
383 			goto out;
384 		}
385 		root_dir = path;
386 	}
387 
388 	machine = machines__add(machines, pid, root_dir);
389 out:
390 	return machine;
391 }
392 
393 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
394 {
395 	struct machine *machine = machines__find(machines, pid);
396 
397 	if (!machine)
398 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
399 	return machine;
400 }
401 
402 /*
403  * A common case for KVM test programs is that the test program acts as the
404  * hypervisor, creating, running and destroying the virtual machine, and
405  * providing the guest object code from its own object code. In this case,
406  * the VM is not running an OS, but only the functions loaded into it by the
407  * hypervisor test program, and conveniently, loaded at the same virtual
408  * addresses.
409  *
410  * Normally to resolve addresses, MMAP events are needed to map addresses
411  * back to the object code and debug symbols for that object code.
412  *
413  * Currently, there is no way to get such mapping information from guests
414  * but, in the scenario described above, the guest has the same mappings
415  * as the hypervisor, so support for that scenario can be achieved.
416  *
417  * To support that, copy the host thread's maps to the guest thread's maps.
418  * Note, we do not discover the guest until we encounter a guest event,
419  * which works well because it is not until then that we know that the host
420  * thread's maps have been set up.
421  *
422  * This function returns the guest thread. Apart from keeping the data
423  * structures sane, using a thread belonging to the guest machine, instead
424  * of the host thread, allows it to have its own comm (refer
425  * thread__set_guest_comm()).
426  */
427 static struct thread *findnew_guest_code(struct machine *machine,
428 					 struct machine *host_machine,
429 					 pid_t pid)
430 {
431 	struct thread *host_thread;
432 	struct thread *thread;
433 	int err;
434 
435 	if (!machine)
436 		return NULL;
437 
438 	thread = machine__findnew_thread(machine, -1, pid);
439 	if (!thread)
440 		return NULL;
441 
442 	/* Assume maps are set up if there are any */
443 	if (!maps__empty(thread__maps(thread)))
444 		return thread;
445 
446 	host_thread = machine__find_thread(host_machine, -1, pid);
447 	if (!host_thread)
448 		goto out_err;
449 
450 	thread__set_guest_comm(thread, pid);
451 
452 	/*
453 	 * Guest code can be found in hypervisor process at the same address
454 	 * so copy host maps.
455 	 */
456 	err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
457 	thread__put(host_thread);
458 	if (err)
459 		goto out_err;
460 
461 	return thread;
462 
463 out_err:
464 	thread__zput(thread);
465 	return NULL;
466 }
467 
468 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
469 {
470 	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
471 	struct machine *machine = machines__findnew(machines, pid);
472 
473 	return findnew_guest_code(machine, host_machine, pid);
474 }
475 
476 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
477 {
478 	struct machines *machines = machine->machines;
479 	struct machine *host_machine;
480 
481 	if (!machines)
482 		return NULL;
483 
484 	host_machine = machines__find(machines, HOST_KERNEL_ID);
485 
486 	return findnew_guest_code(machine, host_machine, pid);
487 }
488 
489 void machines__process_guests(struct machines *machines,
490 			      machine__process_t process, void *data)
491 {
492 	struct rb_node *nd;
493 
494 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
495 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
496 		process(pos, data);
497 	}
498 }
499 
500 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
501 {
502 	struct rb_node *node;
503 	struct machine *machine;
504 
505 	machines->host.id_hdr_size = id_hdr_size;
506 
507 	for (node = rb_first_cached(&machines->guests); node;
508 	     node = rb_next(node)) {
509 		machine = rb_entry(node, struct machine, rb_node);
510 		machine->id_hdr_size = id_hdr_size;
511 	}
512 
513 	return;
514 }
515 
516 static void machine__update_thread_pid(struct machine *machine,
517 				       struct thread *th, pid_t pid)
518 {
519 	struct thread *leader;
520 
521 	if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
522 		return;
523 
524 	thread__set_pid(th, pid);
525 
526 	if (thread__pid(th) == thread__tid(th))
527 		return;
528 
529 	leader = __machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
530 	if (!leader)
531 		goto out_err;
532 
533 	if (!thread__maps(leader))
534 		thread__set_maps(leader, maps__new(machine));
535 
536 	if (!thread__maps(leader))
537 		goto out_err;
538 
539 	if (thread__maps(th) == thread__maps(leader))
540 		goto out_put;
541 
542 	if (thread__maps(th)) {
543 		/*
544 		 * Maps are created from MMAP events which provide the pid and
545 		 * tid.  Consequently there never should be any maps on a thread
546 		 * with an unknown pid.  Just print an error if there are.
547 		 */
548 		if (!maps__empty(thread__maps(th)))
549 			pr_err("Discarding thread maps for %d:%d\n",
550 				thread__pid(th), thread__tid(th));
551 		maps__put(thread__maps(th));
552 	}
553 
554 	thread__set_maps(th, maps__get(thread__maps(leader)));
555 out_put:
556 	thread__put(leader);
557 	return;
558 out_err:
559 	pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
560 	goto out_put;
561 }
562 
563 /*
564  * Front-end cache - TID lookups come in blocks,
565  * so most of the time we dont have to look up
566  * the full rbtree:
567  */
568 static struct thread*
569 __threads__get_last_match(struct threads *threads, struct machine *machine,
570 			  int pid, int tid)
571 {
572 	struct thread *th;
573 
574 	th = threads->last_match;
575 	if (th != NULL) {
576 		if (thread__tid(th) == tid) {
577 			machine__update_thread_pid(machine, th, pid);
578 			return thread__get(th);
579 		}
580 		thread__put(threads->last_match);
581 		threads->last_match = NULL;
582 	}
583 
584 	return NULL;
585 }
586 
587 static struct thread*
588 threads__get_last_match(struct threads *threads, struct machine *machine,
589 			int pid, int tid)
590 {
591 	struct thread *th = NULL;
592 
593 	if (perf_singlethreaded)
594 		th = __threads__get_last_match(threads, machine, pid, tid);
595 
596 	return th;
597 }
598 
599 static void
600 __threads__set_last_match(struct threads *threads, struct thread *th)
601 {
602 	thread__put(threads->last_match);
603 	threads->last_match = thread__get(th);
604 }
605 
606 static void
607 threads__set_last_match(struct threads *threads, struct thread *th)
608 {
609 	if (perf_singlethreaded)
610 		__threads__set_last_match(threads, th);
611 }
612 
613 /*
614  * Caller must eventually drop thread->refcnt returned with a successful
615  * lookup/new thread inserted.
616  */
617 static struct thread *____machine__findnew_thread(struct machine *machine,
618 						  struct threads *threads,
619 						  pid_t pid, pid_t tid,
620 						  bool create)
621 {
622 	struct rb_node **p = &threads->entries.rb_root.rb_node;
623 	struct rb_node *parent = NULL;
624 	struct thread *th;
625 	struct thread_rb_node *nd;
626 	bool leftmost = true;
627 
628 	th = threads__get_last_match(threads, machine, pid, tid);
629 	if (th)
630 		return th;
631 
632 	while (*p != NULL) {
633 		parent = *p;
634 		th = rb_entry(parent, struct thread_rb_node, rb_node)->thread;
635 
636 		if (thread__tid(th) == tid) {
637 			threads__set_last_match(threads, th);
638 			machine__update_thread_pid(machine, th, pid);
639 			return thread__get(th);
640 		}
641 
642 		if (tid < thread__tid(th))
643 			p = &(*p)->rb_left;
644 		else {
645 			p = &(*p)->rb_right;
646 			leftmost = false;
647 		}
648 	}
649 
650 	if (!create)
651 		return NULL;
652 
653 	th = thread__new(pid, tid);
654 	if (th == NULL)
655 		return NULL;
656 
657 	nd = malloc(sizeof(*nd));
658 	if (nd == NULL) {
659 		thread__put(th);
660 		return NULL;
661 	}
662 	nd->thread = th;
663 
664 	rb_link_node(&nd->rb_node, parent, p);
665 	rb_insert_color_cached(&nd->rb_node, &threads->entries, leftmost);
666 	/*
667 	 * We have to initialize maps separately after rb tree is updated.
668 	 *
669 	 * The reason is that we call machine__findnew_thread within
670 	 * thread__init_maps to find the thread leader and that would screwed
671 	 * the rb tree.
672 	 */
673 	if (thread__init_maps(th, machine)) {
674 		pr_err("Thread init failed thread %d\n", pid);
675 		rb_erase_cached(&nd->rb_node, &threads->entries);
676 		RB_CLEAR_NODE(&nd->rb_node);
677 		free(nd);
678 		thread__put(th);
679 		return NULL;
680 	}
681 	/*
682 	 * It is now in the rbtree, get a ref
683 	 */
684 	threads__set_last_match(threads, th);
685 	++threads->nr;
686 
687 	return thread__get(th);
688 }
689 
690 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
691 {
692 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
693 }
694 
695 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
696 				       pid_t tid)
697 {
698 	struct threads *threads = machine__threads(machine, tid);
699 	struct thread *th;
700 
701 	down_write(&threads->lock);
702 	th = __machine__findnew_thread(machine, pid, tid);
703 	up_write(&threads->lock);
704 	return th;
705 }
706 
707 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
708 				    pid_t tid)
709 {
710 	struct threads *threads = machine__threads(machine, tid);
711 	struct thread *th;
712 
713 	down_read(&threads->lock);
714 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
715 	up_read(&threads->lock);
716 	return th;
717 }
718 
719 /*
720  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
721  * So here a single thread is created for that, but actually there is a separate
722  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
723  * is only 1. That causes problems for some tools, requiring workarounds. For
724  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
725  */
726 struct thread *machine__idle_thread(struct machine *machine)
727 {
728 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
729 
730 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
731 	    thread__set_namespaces(thread, 0, NULL))
732 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
733 
734 	return thread;
735 }
736 
737 struct comm *machine__thread_exec_comm(struct machine *machine,
738 				       struct thread *thread)
739 {
740 	if (machine->comm_exec)
741 		return thread__exec_comm(thread);
742 	else
743 		return thread__comm(thread);
744 }
745 
746 int machine__process_comm_event(struct machine *machine, union perf_event *event,
747 				struct perf_sample *sample)
748 {
749 	struct thread *thread = machine__findnew_thread(machine,
750 							event->comm.pid,
751 							event->comm.tid);
752 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
753 	int err = 0;
754 
755 	if (exec)
756 		machine->comm_exec = true;
757 
758 	if (dump_trace)
759 		perf_event__fprintf_comm(event, stdout);
760 
761 	if (thread == NULL ||
762 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
763 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
764 		err = -1;
765 	}
766 
767 	thread__put(thread);
768 
769 	return err;
770 }
771 
772 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
773 				      union perf_event *event,
774 				      struct perf_sample *sample __maybe_unused)
775 {
776 	struct thread *thread = machine__findnew_thread(machine,
777 							event->namespaces.pid,
778 							event->namespaces.tid);
779 	int err = 0;
780 
781 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
782 		  "\nWARNING: kernel seems to support more namespaces than perf"
783 		  " tool.\nTry updating the perf tool..\n\n");
784 
785 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
786 		  "\nWARNING: perf tool seems to support more namespaces than"
787 		  " the kernel.\nTry updating the kernel..\n\n");
788 
789 	if (dump_trace)
790 		perf_event__fprintf_namespaces(event, stdout);
791 
792 	if (thread == NULL ||
793 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
794 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
795 		err = -1;
796 	}
797 
798 	thread__put(thread);
799 
800 	return err;
801 }
802 
803 int machine__process_cgroup_event(struct machine *machine,
804 				  union perf_event *event,
805 				  struct perf_sample *sample __maybe_unused)
806 {
807 	struct cgroup *cgrp;
808 
809 	if (dump_trace)
810 		perf_event__fprintf_cgroup(event, stdout);
811 
812 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
813 	if (cgrp == NULL)
814 		return -ENOMEM;
815 
816 	return 0;
817 }
818 
819 int machine__process_lost_event(struct machine *machine __maybe_unused,
820 				union perf_event *event, struct perf_sample *sample __maybe_unused)
821 {
822 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
823 		    event->lost.id, event->lost.lost);
824 	return 0;
825 }
826 
827 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
828 					union perf_event *event, struct perf_sample *sample)
829 {
830 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
831 		    sample->id, event->lost_samples.lost);
832 	return 0;
833 }
834 
835 static struct dso *machine__findnew_module_dso(struct machine *machine,
836 					       struct kmod_path *m,
837 					       const char *filename)
838 {
839 	struct dso *dso;
840 
841 	down_write(&machine->dsos.lock);
842 
843 	dso = __dsos__find(&machine->dsos, m->name, true);
844 	if (!dso) {
845 		dso = __dsos__addnew(&machine->dsos, m->name);
846 		if (dso == NULL)
847 			goto out_unlock;
848 
849 		dso__set_module_info(dso, m, machine);
850 		dso__set_long_name(dso, strdup(filename), true);
851 		dso->kernel = DSO_SPACE__KERNEL;
852 	}
853 
854 	dso__get(dso);
855 out_unlock:
856 	up_write(&machine->dsos.lock);
857 	return dso;
858 }
859 
860 int machine__process_aux_event(struct machine *machine __maybe_unused,
861 			       union perf_event *event)
862 {
863 	if (dump_trace)
864 		perf_event__fprintf_aux(event, stdout);
865 	return 0;
866 }
867 
868 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
869 					union perf_event *event)
870 {
871 	if (dump_trace)
872 		perf_event__fprintf_itrace_start(event, stdout);
873 	return 0;
874 }
875 
876 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
877 					    union perf_event *event)
878 {
879 	if (dump_trace)
880 		perf_event__fprintf_aux_output_hw_id(event, stdout);
881 	return 0;
882 }
883 
884 int machine__process_switch_event(struct machine *machine __maybe_unused,
885 				  union perf_event *event)
886 {
887 	if (dump_trace)
888 		perf_event__fprintf_switch(event, stdout);
889 	return 0;
890 }
891 
892 static int machine__process_ksymbol_register(struct machine *machine,
893 					     union perf_event *event,
894 					     struct perf_sample *sample __maybe_unused)
895 {
896 	struct symbol *sym;
897 	struct dso *dso;
898 	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
899 	int err = 0;
900 
901 	if (!map) {
902 		dso = dso__new(event->ksymbol.name);
903 
904 		if (!dso) {
905 			err = -ENOMEM;
906 			goto out;
907 		}
908 		dso->kernel = DSO_SPACE__KERNEL;
909 		map = map__new2(0, dso);
910 		dso__put(dso);
911 		if (!map) {
912 			err = -ENOMEM;
913 			goto out;
914 		}
915 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
916 			dso->binary_type = DSO_BINARY_TYPE__OOL;
917 			dso->data.file_size = event->ksymbol.len;
918 			dso__set_loaded(dso);
919 		}
920 
921 		map__set_start(map, event->ksymbol.addr);
922 		map__set_end(map, map__start(map) + event->ksymbol.len);
923 		err = maps__insert(machine__kernel_maps(machine), map);
924 		if (err) {
925 			err = -ENOMEM;
926 			goto out;
927 		}
928 
929 		dso__set_loaded(dso);
930 
931 		if (is_bpf_image(event->ksymbol.name)) {
932 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
933 			dso__set_long_name(dso, "", false);
934 		}
935 	} else {
936 		dso = map__dso(map);
937 	}
938 
939 	sym = symbol__new(map__map_ip(map, map__start(map)),
940 			  event->ksymbol.len,
941 			  0, 0, event->ksymbol.name);
942 	if (!sym) {
943 		err = -ENOMEM;
944 		goto out;
945 	}
946 	dso__insert_symbol(dso, sym);
947 out:
948 	map__put(map);
949 	return err;
950 }
951 
952 static int machine__process_ksymbol_unregister(struct machine *machine,
953 					       union perf_event *event,
954 					       struct perf_sample *sample __maybe_unused)
955 {
956 	struct symbol *sym;
957 	struct map *map;
958 
959 	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
960 	if (!map)
961 		return 0;
962 
963 	if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
964 		maps__remove(machine__kernel_maps(machine), map);
965 	else {
966 		struct dso *dso = map__dso(map);
967 
968 		sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
969 		if (sym)
970 			dso__delete_symbol(dso, sym);
971 	}
972 	map__put(map);
973 	return 0;
974 }
975 
976 int machine__process_ksymbol(struct machine *machine __maybe_unused,
977 			     union perf_event *event,
978 			     struct perf_sample *sample)
979 {
980 	if (dump_trace)
981 		perf_event__fprintf_ksymbol(event, stdout);
982 
983 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
984 		return machine__process_ksymbol_unregister(machine, event,
985 							   sample);
986 	return machine__process_ksymbol_register(machine, event, sample);
987 }
988 
989 int machine__process_text_poke(struct machine *machine, union perf_event *event,
990 			       struct perf_sample *sample __maybe_unused)
991 {
992 	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
993 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
994 	struct dso *dso = map ? map__dso(map) : NULL;
995 
996 	if (dump_trace)
997 		perf_event__fprintf_text_poke(event, machine, stdout);
998 
999 	if (!event->text_poke.new_len)
1000 		goto out;
1001 
1002 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
1003 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
1004 		goto out;
1005 	}
1006 
1007 	if (dso) {
1008 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
1009 		int ret;
1010 
1011 		/*
1012 		 * Kernel maps might be changed when loading symbols so loading
1013 		 * must be done prior to using kernel maps.
1014 		 */
1015 		map__load(map);
1016 		ret = dso__data_write_cache_addr(dso, map, machine,
1017 						 event->text_poke.addr,
1018 						 new_bytes,
1019 						 event->text_poke.new_len);
1020 		if (ret != event->text_poke.new_len)
1021 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
1022 				 event->text_poke.addr);
1023 	} else {
1024 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
1025 			 event->text_poke.addr);
1026 	}
1027 out:
1028 	map__put(map);
1029 	return 0;
1030 }
1031 
1032 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1033 					      const char *filename)
1034 {
1035 	struct map *map = NULL;
1036 	struct kmod_path m;
1037 	struct dso *dso;
1038 	int err;
1039 
1040 	if (kmod_path__parse_name(&m, filename))
1041 		return NULL;
1042 
1043 	dso = machine__findnew_module_dso(machine, &m, filename);
1044 	if (dso == NULL)
1045 		goto out;
1046 
1047 	map = map__new2(start, dso);
1048 	if (map == NULL)
1049 		goto out;
1050 
1051 	err = maps__insert(machine__kernel_maps(machine), map);
1052 	/* If maps__insert failed, return NULL. */
1053 	if (err) {
1054 		map__put(map);
1055 		map = NULL;
1056 	}
1057 out:
1058 	/* put the dso here, corresponding to  machine__findnew_module_dso */
1059 	dso__put(dso);
1060 	zfree(&m.name);
1061 	return map;
1062 }
1063 
1064 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1065 {
1066 	struct rb_node *nd;
1067 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1068 
1069 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1070 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1071 		ret += __dsos__fprintf(&pos->dsos.head, fp);
1072 	}
1073 
1074 	return ret;
1075 }
1076 
1077 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1078 				     bool (skip)(struct dso *dso, int parm), int parm)
1079 {
1080 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1081 }
1082 
1083 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1084 				     bool (skip)(struct dso *dso, int parm), int parm)
1085 {
1086 	struct rb_node *nd;
1087 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1088 
1089 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1090 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1091 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1092 	}
1093 	return ret;
1094 }
1095 
1096 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1097 {
1098 	int i;
1099 	size_t printed = 0;
1100 	struct dso *kdso = machine__kernel_dso(machine);
1101 
1102 	if (kdso->has_build_id) {
1103 		char filename[PATH_MAX];
1104 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
1105 					   false))
1106 			printed += fprintf(fp, "[0] %s\n", filename);
1107 	}
1108 
1109 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
1110 		printed += fprintf(fp, "[%d] %s\n",
1111 				   i + kdso->has_build_id, vmlinux_path[i]);
1112 
1113 	return printed;
1114 }
1115 
1116 size_t machine__fprintf(struct machine *machine, FILE *fp)
1117 {
1118 	struct rb_node *nd;
1119 	size_t ret;
1120 	int i;
1121 
1122 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1123 		struct threads *threads = &machine->threads[i];
1124 
1125 		down_read(&threads->lock);
1126 
1127 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
1128 
1129 		for (nd = rb_first_cached(&threads->entries); nd;
1130 		     nd = rb_next(nd)) {
1131 			struct thread *pos = rb_entry(nd, struct thread_rb_node, rb_node)->thread;
1132 
1133 			ret += thread__fprintf(pos, fp);
1134 		}
1135 
1136 		up_read(&threads->lock);
1137 	}
1138 	return ret;
1139 }
1140 
1141 static struct dso *machine__get_kernel(struct machine *machine)
1142 {
1143 	const char *vmlinux_name = machine->mmap_name;
1144 	struct dso *kernel;
1145 
1146 	if (machine__is_host(machine)) {
1147 		if (symbol_conf.vmlinux_name)
1148 			vmlinux_name = symbol_conf.vmlinux_name;
1149 
1150 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1151 						 "[kernel]", DSO_SPACE__KERNEL);
1152 	} else {
1153 		if (symbol_conf.default_guest_vmlinux_name)
1154 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1155 
1156 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1157 						 "[guest.kernel]",
1158 						 DSO_SPACE__KERNEL_GUEST);
1159 	}
1160 
1161 	if (kernel != NULL && (!kernel->has_build_id))
1162 		dso__read_running_kernel_build_id(kernel, machine);
1163 
1164 	return kernel;
1165 }
1166 
1167 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1168 				    size_t bufsz)
1169 {
1170 	if (machine__is_default_guest(machine))
1171 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1172 	else
1173 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1174 }
1175 
1176 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1177 
1178 /* Figure out the start address of kernel map from /proc/kallsyms.
1179  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1180  * symbol_name if it's not that important.
1181  */
1182 static int machine__get_running_kernel_start(struct machine *machine,
1183 					     const char **symbol_name,
1184 					     u64 *start, u64 *end)
1185 {
1186 	char filename[PATH_MAX];
1187 	int i, err = -1;
1188 	const char *name;
1189 	u64 addr = 0;
1190 
1191 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1192 
1193 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1194 		return 0;
1195 
1196 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1197 		err = kallsyms__get_function_start(filename, name, &addr);
1198 		if (!err)
1199 			break;
1200 	}
1201 
1202 	if (err)
1203 		return -1;
1204 
1205 	if (symbol_name)
1206 		*symbol_name = name;
1207 
1208 	*start = addr;
1209 
1210 	err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1211 	if (err)
1212 		err = kallsyms__get_function_start(filename, "_etext", &addr);
1213 	if (!err)
1214 		*end = addr;
1215 
1216 	return 0;
1217 }
1218 
1219 int machine__create_extra_kernel_map(struct machine *machine,
1220 				     struct dso *kernel,
1221 				     struct extra_kernel_map *xm)
1222 {
1223 	struct kmap *kmap;
1224 	struct map *map;
1225 	int err;
1226 
1227 	map = map__new2(xm->start, kernel);
1228 	if (!map)
1229 		return -ENOMEM;
1230 
1231 	map__set_end(map, xm->end);
1232 	map__set_pgoff(map, xm->pgoff);
1233 
1234 	kmap = map__kmap(map);
1235 
1236 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1237 
1238 	err = maps__insert(machine__kernel_maps(machine), map);
1239 
1240 	if (!err) {
1241 		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1242 			kmap->name, map__start(map), map__end(map));
1243 	}
1244 
1245 	map__put(map);
1246 
1247 	return err;
1248 }
1249 
1250 static u64 find_entry_trampoline(struct dso *dso)
1251 {
1252 	/* Duplicates are removed so lookup all aliases */
1253 	const char *syms[] = {
1254 		"_entry_trampoline",
1255 		"__entry_trampoline_start",
1256 		"entry_SYSCALL_64_trampoline",
1257 	};
1258 	struct symbol *sym = dso__first_symbol(dso);
1259 	unsigned int i;
1260 
1261 	for (; sym; sym = dso__next_symbol(sym)) {
1262 		if (sym->binding != STB_GLOBAL)
1263 			continue;
1264 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1265 			if (!strcmp(sym->name, syms[i]))
1266 				return sym->start;
1267 		}
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 /*
1274  * These values can be used for kernels that do not have symbols for the entry
1275  * trampolines in kallsyms.
1276  */
1277 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1278 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1279 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1280 
1281 struct machine__map_x86_64_entry_trampolines_args {
1282 	struct maps *kmaps;
1283 	bool found;
1284 };
1285 
1286 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1287 {
1288 	struct machine__map_x86_64_entry_trampolines_args *args = data;
1289 	struct map *dest_map;
1290 	struct kmap *kmap = __map__kmap(map);
1291 
1292 	if (!kmap || !is_entry_trampoline(kmap->name))
1293 		return 0;
1294 
1295 	dest_map = maps__find(args->kmaps, map__pgoff(map));
1296 	if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1297 		map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1298 
1299 	map__put(dest_map);
1300 	args->found = true;
1301 	return 0;
1302 }
1303 
1304 /* Map x86_64 PTI entry trampolines */
1305 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1306 					  struct dso *kernel)
1307 {
1308 	struct machine__map_x86_64_entry_trampolines_args args = {
1309 		.kmaps = machine__kernel_maps(machine),
1310 		.found = false,
1311 	};
1312 	int nr_cpus_avail, cpu;
1313 	u64 pgoff;
1314 
1315 	/*
1316 	 * In the vmlinux case, pgoff is a virtual address which must now be
1317 	 * mapped to a vmlinux offset.
1318 	 */
1319 	maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1320 
1321 	if (args.found || machine->trampolines_mapped)
1322 		return 0;
1323 
1324 	pgoff = find_entry_trampoline(kernel);
1325 	if (!pgoff)
1326 		return 0;
1327 
1328 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1329 
1330 	/* Add a 1 page map for each CPU's entry trampoline */
1331 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1332 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1333 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1334 			 X86_64_ENTRY_TRAMPOLINE;
1335 		struct extra_kernel_map xm = {
1336 			.start = va,
1337 			.end   = va + page_size,
1338 			.pgoff = pgoff,
1339 		};
1340 
1341 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1342 
1343 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1344 			return -1;
1345 	}
1346 
1347 	machine->trampolines_mapped = nr_cpus_avail;
1348 
1349 	return 0;
1350 }
1351 
1352 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1353 					     struct dso *kernel __maybe_unused)
1354 {
1355 	return 0;
1356 }
1357 
1358 static int
1359 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1360 {
1361 	/* In case of renewal the kernel map, destroy previous one */
1362 	machine__destroy_kernel_maps(machine);
1363 
1364 	map__put(machine->vmlinux_map);
1365 	machine->vmlinux_map = map__new2(0, kernel);
1366 	if (machine->vmlinux_map == NULL)
1367 		return -ENOMEM;
1368 
1369 	map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1370 	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1371 }
1372 
1373 void machine__destroy_kernel_maps(struct machine *machine)
1374 {
1375 	struct kmap *kmap;
1376 	struct map *map = machine__kernel_map(machine);
1377 
1378 	if (map == NULL)
1379 		return;
1380 
1381 	kmap = map__kmap(map);
1382 	maps__remove(machine__kernel_maps(machine), map);
1383 	if (kmap && kmap->ref_reloc_sym) {
1384 		zfree((char **)&kmap->ref_reloc_sym->name);
1385 		zfree(&kmap->ref_reloc_sym);
1386 	}
1387 
1388 	map__zput(machine->vmlinux_map);
1389 }
1390 
1391 int machines__create_guest_kernel_maps(struct machines *machines)
1392 {
1393 	int ret = 0;
1394 	struct dirent **namelist = NULL;
1395 	int i, items = 0;
1396 	char path[PATH_MAX];
1397 	pid_t pid;
1398 	char *endp;
1399 
1400 	if (symbol_conf.default_guest_vmlinux_name ||
1401 	    symbol_conf.default_guest_modules ||
1402 	    symbol_conf.default_guest_kallsyms) {
1403 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1404 	}
1405 
1406 	if (symbol_conf.guestmount) {
1407 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1408 		if (items <= 0)
1409 			return -ENOENT;
1410 		for (i = 0; i < items; i++) {
1411 			if (!isdigit(namelist[i]->d_name[0])) {
1412 				/* Filter out . and .. */
1413 				continue;
1414 			}
1415 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1416 			if ((*endp != '\0') ||
1417 			    (endp == namelist[i]->d_name) ||
1418 			    (errno == ERANGE)) {
1419 				pr_debug("invalid directory (%s). Skipping.\n",
1420 					 namelist[i]->d_name);
1421 				continue;
1422 			}
1423 			sprintf(path, "%s/%s/proc/kallsyms",
1424 				symbol_conf.guestmount,
1425 				namelist[i]->d_name);
1426 			ret = access(path, R_OK);
1427 			if (ret) {
1428 				pr_debug("Can't access file %s\n", path);
1429 				goto failure;
1430 			}
1431 			machines__create_kernel_maps(machines, pid);
1432 		}
1433 failure:
1434 		free(namelist);
1435 	}
1436 
1437 	return ret;
1438 }
1439 
1440 void machines__destroy_kernel_maps(struct machines *machines)
1441 {
1442 	struct rb_node *next = rb_first_cached(&machines->guests);
1443 
1444 	machine__destroy_kernel_maps(&machines->host);
1445 
1446 	while (next) {
1447 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1448 
1449 		next = rb_next(&pos->rb_node);
1450 		rb_erase_cached(&pos->rb_node, &machines->guests);
1451 		machine__delete(pos);
1452 	}
1453 }
1454 
1455 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1456 {
1457 	struct machine *machine = machines__findnew(machines, pid);
1458 
1459 	if (machine == NULL)
1460 		return -1;
1461 
1462 	return machine__create_kernel_maps(machine);
1463 }
1464 
1465 int machine__load_kallsyms(struct machine *machine, const char *filename)
1466 {
1467 	struct map *map = machine__kernel_map(machine);
1468 	struct dso *dso = map__dso(map);
1469 	int ret = __dso__load_kallsyms(dso, filename, map, true);
1470 
1471 	if (ret > 0) {
1472 		dso__set_loaded(dso);
1473 		/*
1474 		 * Since /proc/kallsyms will have multiple sessions for the
1475 		 * kernel, with modules between them, fixup the end of all
1476 		 * sections.
1477 		 */
1478 		maps__fixup_end(machine__kernel_maps(machine));
1479 	}
1480 
1481 	return ret;
1482 }
1483 
1484 int machine__load_vmlinux_path(struct machine *machine)
1485 {
1486 	struct map *map = machine__kernel_map(machine);
1487 	struct dso *dso = map__dso(map);
1488 	int ret = dso__load_vmlinux_path(dso, map);
1489 
1490 	if (ret > 0)
1491 		dso__set_loaded(dso);
1492 
1493 	return ret;
1494 }
1495 
1496 static char *get_kernel_version(const char *root_dir)
1497 {
1498 	char version[PATH_MAX];
1499 	FILE *file;
1500 	char *name, *tmp;
1501 	const char *prefix = "Linux version ";
1502 
1503 	sprintf(version, "%s/proc/version", root_dir);
1504 	file = fopen(version, "r");
1505 	if (!file)
1506 		return NULL;
1507 
1508 	tmp = fgets(version, sizeof(version), file);
1509 	fclose(file);
1510 	if (!tmp)
1511 		return NULL;
1512 
1513 	name = strstr(version, prefix);
1514 	if (!name)
1515 		return NULL;
1516 	name += strlen(prefix);
1517 	tmp = strchr(name, ' ');
1518 	if (tmp)
1519 		*tmp = '\0';
1520 
1521 	return strdup(name);
1522 }
1523 
1524 static bool is_kmod_dso(struct dso *dso)
1525 {
1526 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1527 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1528 }
1529 
1530 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1531 {
1532 	char *long_name;
1533 	struct dso *dso;
1534 	struct map *map = maps__find_by_name(maps, m->name);
1535 
1536 	if (map == NULL)
1537 		return 0;
1538 
1539 	long_name = strdup(path);
1540 	if (long_name == NULL) {
1541 		map__put(map);
1542 		return -ENOMEM;
1543 	}
1544 
1545 	dso = map__dso(map);
1546 	dso__set_long_name(dso, long_name, true);
1547 	dso__kernel_module_get_build_id(dso, "");
1548 
1549 	/*
1550 	 * Full name could reveal us kmod compression, so
1551 	 * we need to update the symtab_type if needed.
1552 	 */
1553 	if (m->comp && is_kmod_dso(dso)) {
1554 		dso->symtab_type++;
1555 		dso->comp = m->comp;
1556 	}
1557 	map__put(map);
1558 	return 0;
1559 }
1560 
1561 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1562 {
1563 	struct dirent *dent;
1564 	DIR *dir = opendir(dir_name);
1565 	int ret = 0;
1566 
1567 	if (!dir) {
1568 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1569 		return -1;
1570 	}
1571 
1572 	while ((dent = readdir(dir)) != NULL) {
1573 		char path[PATH_MAX];
1574 		struct stat st;
1575 
1576 		/*sshfs might return bad dent->d_type, so we have to stat*/
1577 		path__join(path, sizeof(path), dir_name, dent->d_name);
1578 		if (stat(path, &st))
1579 			continue;
1580 
1581 		if (S_ISDIR(st.st_mode)) {
1582 			if (!strcmp(dent->d_name, ".") ||
1583 			    !strcmp(dent->d_name, ".."))
1584 				continue;
1585 
1586 			/* Do not follow top-level source and build symlinks */
1587 			if (depth == 0) {
1588 				if (!strcmp(dent->d_name, "source") ||
1589 				    !strcmp(dent->d_name, "build"))
1590 					continue;
1591 			}
1592 
1593 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1594 			if (ret < 0)
1595 				goto out;
1596 		} else {
1597 			struct kmod_path m;
1598 
1599 			ret = kmod_path__parse_name(&m, dent->d_name);
1600 			if (ret)
1601 				goto out;
1602 
1603 			if (m.kmod)
1604 				ret = maps__set_module_path(maps, path, &m);
1605 
1606 			zfree(&m.name);
1607 
1608 			if (ret)
1609 				goto out;
1610 		}
1611 	}
1612 
1613 out:
1614 	closedir(dir);
1615 	return ret;
1616 }
1617 
1618 static int machine__set_modules_path(struct machine *machine)
1619 {
1620 	char *version;
1621 	char modules_path[PATH_MAX];
1622 
1623 	version = get_kernel_version(machine->root_dir);
1624 	if (!version)
1625 		return -1;
1626 
1627 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1628 		 machine->root_dir, version);
1629 	free(version);
1630 
1631 	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1632 }
1633 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1634 				u64 *size __maybe_unused,
1635 				const char *name __maybe_unused)
1636 {
1637 	return 0;
1638 }
1639 
1640 static int machine__create_module(void *arg, const char *name, u64 start,
1641 				  u64 size)
1642 {
1643 	struct machine *machine = arg;
1644 	struct map *map;
1645 
1646 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1647 		return -1;
1648 
1649 	map = machine__addnew_module_map(machine, start, name);
1650 	if (map == NULL)
1651 		return -1;
1652 	map__set_end(map, start + size);
1653 
1654 	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1655 	map__put(map);
1656 	return 0;
1657 }
1658 
1659 static int machine__create_modules(struct machine *machine)
1660 {
1661 	const char *modules;
1662 	char path[PATH_MAX];
1663 
1664 	if (machine__is_default_guest(machine)) {
1665 		modules = symbol_conf.default_guest_modules;
1666 	} else {
1667 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1668 		modules = path;
1669 	}
1670 
1671 	if (symbol__restricted_filename(modules, "/proc/modules"))
1672 		return -1;
1673 
1674 	if (modules__parse(modules, machine, machine__create_module))
1675 		return -1;
1676 
1677 	if (!machine__set_modules_path(machine))
1678 		return 0;
1679 
1680 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1681 
1682 	return 0;
1683 }
1684 
1685 static void machine__set_kernel_mmap(struct machine *machine,
1686 				     u64 start, u64 end)
1687 {
1688 	map__set_start(machine->vmlinux_map, start);
1689 	map__set_end(machine->vmlinux_map, end);
1690 	/*
1691 	 * Be a bit paranoid here, some perf.data file came with
1692 	 * a zero sized synthesized MMAP event for the kernel.
1693 	 */
1694 	if (start == 0 && end == 0)
1695 		map__set_end(machine->vmlinux_map, ~0ULL);
1696 }
1697 
1698 static int machine__update_kernel_mmap(struct machine *machine,
1699 				     u64 start, u64 end)
1700 {
1701 	struct map *orig, *updated;
1702 	int err;
1703 
1704 	orig = machine->vmlinux_map;
1705 	updated = map__get(orig);
1706 
1707 	machine->vmlinux_map = updated;
1708 	machine__set_kernel_mmap(machine, start, end);
1709 	maps__remove(machine__kernel_maps(machine), orig);
1710 	err = maps__insert(machine__kernel_maps(machine), updated);
1711 	map__put(orig);
1712 
1713 	return err;
1714 }
1715 
1716 int machine__create_kernel_maps(struct machine *machine)
1717 {
1718 	struct dso *kernel = machine__get_kernel(machine);
1719 	const char *name = NULL;
1720 	u64 start = 0, end = ~0ULL;
1721 	int ret;
1722 
1723 	if (kernel == NULL)
1724 		return -1;
1725 
1726 	ret = __machine__create_kernel_maps(machine, kernel);
1727 	if (ret < 0)
1728 		goto out_put;
1729 
1730 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1731 		if (machine__is_host(machine))
1732 			pr_debug("Problems creating module maps, "
1733 				 "continuing anyway...\n");
1734 		else
1735 			pr_debug("Problems creating module maps for guest %d, "
1736 				 "continuing anyway...\n", machine->pid);
1737 	}
1738 
1739 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1740 		if (name &&
1741 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1742 			machine__destroy_kernel_maps(machine);
1743 			ret = -1;
1744 			goto out_put;
1745 		}
1746 
1747 		/*
1748 		 * we have a real start address now, so re-order the kmaps
1749 		 * assume it's the last in the kmaps
1750 		 */
1751 		ret = machine__update_kernel_mmap(machine, start, end);
1752 		if (ret < 0)
1753 			goto out_put;
1754 	}
1755 
1756 	if (machine__create_extra_kernel_maps(machine, kernel))
1757 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1758 
1759 	if (end == ~0ULL) {
1760 		/* update end address of the kernel map using adjacent module address */
1761 		struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1762 							 machine__kernel_map(machine));
1763 
1764 		if (next) {
1765 			machine__set_kernel_mmap(machine, start, map__start(next));
1766 			map__put(next);
1767 		}
1768 	}
1769 
1770 out_put:
1771 	dso__put(kernel);
1772 	return ret;
1773 }
1774 
1775 static bool machine__uses_kcore(struct machine *machine)
1776 {
1777 	struct dso *dso;
1778 
1779 	list_for_each_entry(dso, &machine->dsos.head, node) {
1780 		if (dso__is_kcore(dso))
1781 			return true;
1782 	}
1783 
1784 	return false;
1785 }
1786 
1787 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1788 					     struct extra_kernel_map *xm)
1789 {
1790 	return machine__is(machine, "x86_64") &&
1791 	       is_entry_trampoline(xm->name);
1792 }
1793 
1794 static int machine__process_extra_kernel_map(struct machine *machine,
1795 					     struct extra_kernel_map *xm)
1796 {
1797 	struct dso *kernel = machine__kernel_dso(machine);
1798 
1799 	if (kernel == NULL)
1800 		return -1;
1801 
1802 	return machine__create_extra_kernel_map(machine, kernel, xm);
1803 }
1804 
1805 static int machine__process_kernel_mmap_event(struct machine *machine,
1806 					      struct extra_kernel_map *xm,
1807 					      struct build_id *bid)
1808 {
1809 	enum dso_space_type dso_space;
1810 	bool is_kernel_mmap;
1811 	const char *mmap_name = machine->mmap_name;
1812 
1813 	/* If we have maps from kcore then we do not need or want any others */
1814 	if (machine__uses_kcore(machine))
1815 		return 0;
1816 
1817 	if (machine__is_host(machine))
1818 		dso_space = DSO_SPACE__KERNEL;
1819 	else
1820 		dso_space = DSO_SPACE__KERNEL_GUEST;
1821 
1822 	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1823 	if (!is_kernel_mmap && !machine__is_host(machine)) {
1824 		/*
1825 		 * If the event was recorded inside the guest and injected into
1826 		 * the host perf.data file, then it will match a host mmap_name,
1827 		 * so try that - see machine__set_mmap_name().
1828 		 */
1829 		mmap_name = "[kernel.kallsyms]";
1830 		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1831 	}
1832 	if (xm->name[0] == '/' ||
1833 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1834 		struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1835 
1836 		if (map == NULL)
1837 			goto out_problem;
1838 
1839 		map__set_end(map, map__start(map) + xm->end - xm->start);
1840 
1841 		if (build_id__is_defined(bid))
1842 			dso__set_build_id(map__dso(map), bid);
1843 
1844 		map__put(map);
1845 	} else if (is_kernel_mmap) {
1846 		const char *symbol_name = xm->name + strlen(mmap_name);
1847 		/*
1848 		 * Should be there already, from the build-id table in
1849 		 * the header.
1850 		 */
1851 		struct dso *kernel = NULL;
1852 		struct dso *dso;
1853 
1854 		down_read(&machine->dsos.lock);
1855 
1856 		list_for_each_entry(dso, &machine->dsos.head, node) {
1857 
1858 			/*
1859 			 * The cpumode passed to is_kernel_module is not the
1860 			 * cpumode of *this* event. If we insist on passing
1861 			 * correct cpumode to is_kernel_module, we should
1862 			 * record the cpumode when we adding this dso to the
1863 			 * linked list.
1864 			 *
1865 			 * However we don't really need passing correct
1866 			 * cpumode.  We know the correct cpumode must be kernel
1867 			 * mode (if not, we should not link it onto kernel_dsos
1868 			 * list).
1869 			 *
1870 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1871 			 * is_kernel_module() treats it as a kernel cpumode.
1872 			 */
1873 
1874 			if (!dso->kernel ||
1875 			    is_kernel_module(dso->long_name,
1876 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1877 				continue;
1878 
1879 
1880 			kernel = dso__get(dso);
1881 			break;
1882 		}
1883 
1884 		up_read(&machine->dsos.lock);
1885 
1886 		if (kernel == NULL)
1887 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1888 		if (kernel == NULL)
1889 			goto out_problem;
1890 
1891 		kernel->kernel = dso_space;
1892 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1893 			dso__put(kernel);
1894 			goto out_problem;
1895 		}
1896 
1897 		if (strstr(kernel->long_name, "vmlinux"))
1898 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1899 
1900 		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1901 			dso__put(kernel);
1902 			goto out_problem;
1903 		}
1904 
1905 		if (build_id__is_defined(bid))
1906 			dso__set_build_id(kernel, bid);
1907 
1908 		/*
1909 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1910 		 * symbol. Effectively having zero here means that at record
1911 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1912 		 */
1913 		if (xm->pgoff != 0) {
1914 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1915 							symbol_name,
1916 							xm->pgoff);
1917 		}
1918 
1919 		if (machine__is_default_guest(machine)) {
1920 			/*
1921 			 * preload dso of guest kernel and modules
1922 			 */
1923 			dso__load(kernel, machine__kernel_map(machine));
1924 		}
1925 		dso__put(kernel);
1926 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1927 		return machine__process_extra_kernel_map(machine, xm);
1928 	}
1929 	return 0;
1930 out_problem:
1931 	return -1;
1932 }
1933 
1934 int machine__process_mmap2_event(struct machine *machine,
1935 				 union perf_event *event,
1936 				 struct perf_sample *sample)
1937 {
1938 	struct thread *thread;
1939 	struct map *map;
1940 	struct dso_id dso_id = {
1941 		.maj = event->mmap2.maj,
1942 		.min = event->mmap2.min,
1943 		.ino = event->mmap2.ino,
1944 		.ino_generation = event->mmap2.ino_generation,
1945 	};
1946 	struct build_id __bid, *bid = NULL;
1947 	int ret = 0;
1948 
1949 	if (dump_trace)
1950 		perf_event__fprintf_mmap2(event, stdout);
1951 
1952 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1953 		bid = &__bid;
1954 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1955 	}
1956 
1957 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1958 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1959 		struct extra_kernel_map xm = {
1960 			.start = event->mmap2.start,
1961 			.end   = event->mmap2.start + event->mmap2.len,
1962 			.pgoff = event->mmap2.pgoff,
1963 		};
1964 
1965 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1966 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1967 		if (ret < 0)
1968 			goto out_problem;
1969 		return 0;
1970 	}
1971 
1972 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1973 					event->mmap2.tid);
1974 	if (thread == NULL)
1975 		goto out_problem;
1976 
1977 	map = map__new(machine, event->mmap2.start,
1978 			event->mmap2.len, event->mmap2.pgoff,
1979 			&dso_id, event->mmap2.prot,
1980 			event->mmap2.flags, bid,
1981 			event->mmap2.filename, thread);
1982 
1983 	if (map == NULL)
1984 		goto out_problem_map;
1985 
1986 	ret = thread__insert_map(thread, map);
1987 	if (ret)
1988 		goto out_problem_insert;
1989 
1990 	thread__put(thread);
1991 	map__put(map);
1992 	return 0;
1993 
1994 out_problem_insert:
1995 	map__put(map);
1996 out_problem_map:
1997 	thread__put(thread);
1998 out_problem:
1999 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
2000 	return 0;
2001 }
2002 
2003 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
2004 				struct perf_sample *sample)
2005 {
2006 	struct thread *thread;
2007 	struct map *map;
2008 	u32 prot = 0;
2009 	int ret = 0;
2010 
2011 	if (dump_trace)
2012 		perf_event__fprintf_mmap(event, stdout);
2013 
2014 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
2015 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
2016 		struct extra_kernel_map xm = {
2017 			.start = event->mmap.start,
2018 			.end   = event->mmap.start + event->mmap.len,
2019 			.pgoff = event->mmap.pgoff,
2020 		};
2021 
2022 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
2023 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
2024 		if (ret < 0)
2025 			goto out_problem;
2026 		return 0;
2027 	}
2028 
2029 	thread = machine__findnew_thread(machine, event->mmap.pid,
2030 					 event->mmap.tid);
2031 	if (thread == NULL)
2032 		goto out_problem;
2033 
2034 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
2035 		prot = PROT_EXEC;
2036 
2037 	map = map__new(machine, event->mmap.start,
2038 			event->mmap.len, event->mmap.pgoff,
2039 			NULL, prot, 0, NULL, event->mmap.filename, thread);
2040 
2041 	if (map == NULL)
2042 		goto out_problem_map;
2043 
2044 	ret = thread__insert_map(thread, map);
2045 	if (ret)
2046 		goto out_problem_insert;
2047 
2048 	thread__put(thread);
2049 	map__put(map);
2050 	return 0;
2051 
2052 out_problem_insert:
2053 	map__put(map);
2054 out_problem_map:
2055 	thread__put(thread);
2056 out_problem:
2057 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
2058 	return 0;
2059 }
2060 
2061 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
2062 				     struct thread *th, bool lock)
2063 {
2064 	struct threads *threads = machine__threads(machine, thread__tid(th));
2065 
2066 	if (!nd)
2067 		nd = thread_rb_node__find(th, &threads->entries.rb_root);
2068 
2069 	if (threads->last_match && RC_CHK_EQUAL(threads->last_match, th))
2070 		threads__set_last_match(threads, NULL);
2071 
2072 	if (lock)
2073 		down_write(&threads->lock);
2074 
2075 	BUG_ON(refcount_read(thread__refcnt(th)) == 0);
2076 
2077 	thread__put(nd->thread);
2078 	rb_erase_cached(&nd->rb_node, &threads->entries);
2079 	RB_CLEAR_NODE(&nd->rb_node);
2080 	--threads->nr;
2081 
2082 	free(nd);
2083 
2084 	if (lock)
2085 		up_write(&threads->lock);
2086 }
2087 
2088 void machine__remove_thread(struct machine *machine, struct thread *th)
2089 {
2090 	return __machine__remove_thread(machine, NULL, th, true);
2091 }
2092 
2093 int machine__process_fork_event(struct machine *machine, union perf_event *event,
2094 				struct perf_sample *sample)
2095 {
2096 	struct thread *thread = machine__find_thread(machine,
2097 						     event->fork.pid,
2098 						     event->fork.tid);
2099 	struct thread *parent = machine__findnew_thread(machine,
2100 							event->fork.ppid,
2101 							event->fork.ptid);
2102 	bool do_maps_clone = true;
2103 	int err = 0;
2104 
2105 	if (dump_trace)
2106 		perf_event__fprintf_task(event, stdout);
2107 
2108 	/*
2109 	 * There may be an existing thread that is not actually the parent,
2110 	 * either because we are processing events out of order, or because the
2111 	 * (fork) event that would have removed the thread was lost. Assume the
2112 	 * latter case and continue on as best we can.
2113 	 */
2114 	if (thread__pid(parent) != (pid_t)event->fork.ppid) {
2115 		dump_printf("removing erroneous parent thread %d/%d\n",
2116 			    thread__pid(parent), thread__tid(parent));
2117 		machine__remove_thread(machine, parent);
2118 		thread__put(parent);
2119 		parent = machine__findnew_thread(machine, event->fork.ppid,
2120 						 event->fork.ptid);
2121 	}
2122 
2123 	/* if a thread currently exists for the thread id remove it */
2124 	if (thread != NULL) {
2125 		machine__remove_thread(machine, thread);
2126 		thread__put(thread);
2127 	}
2128 
2129 	thread = machine__findnew_thread(machine, event->fork.pid,
2130 					 event->fork.tid);
2131 	/*
2132 	 * When synthesizing FORK events, we are trying to create thread
2133 	 * objects for the already running tasks on the machine.
2134 	 *
2135 	 * Normally, for a kernel FORK event, we want to clone the parent's
2136 	 * maps because that is what the kernel just did.
2137 	 *
2138 	 * But when synthesizing, this should not be done.  If we do, we end up
2139 	 * with overlapping maps as we process the synthesized MMAP2 events that
2140 	 * get delivered shortly thereafter.
2141 	 *
2142 	 * Use the FORK event misc flags in an internal way to signal this
2143 	 * situation, so we can elide the map clone when appropriate.
2144 	 */
2145 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2146 		do_maps_clone = false;
2147 
2148 	if (thread == NULL || parent == NULL ||
2149 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2150 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2151 		err = -1;
2152 	}
2153 	thread__put(thread);
2154 	thread__put(parent);
2155 
2156 	return err;
2157 }
2158 
2159 int machine__process_exit_event(struct machine *machine, union perf_event *event,
2160 				struct perf_sample *sample __maybe_unused)
2161 {
2162 	struct thread *thread = machine__find_thread(machine,
2163 						     event->fork.pid,
2164 						     event->fork.tid);
2165 
2166 	if (dump_trace)
2167 		perf_event__fprintf_task(event, stdout);
2168 
2169 	if (thread != NULL) {
2170 		if (symbol_conf.keep_exited_threads)
2171 			thread__set_exited(thread, /*exited=*/true);
2172 		else
2173 			machine__remove_thread(machine, thread);
2174 	}
2175 	thread__put(thread);
2176 	return 0;
2177 }
2178 
2179 int machine__process_event(struct machine *machine, union perf_event *event,
2180 			   struct perf_sample *sample)
2181 {
2182 	int ret;
2183 
2184 	switch (event->header.type) {
2185 	case PERF_RECORD_COMM:
2186 		ret = machine__process_comm_event(machine, event, sample); break;
2187 	case PERF_RECORD_MMAP:
2188 		ret = machine__process_mmap_event(machine, event, sample); break;
2189 	case PERF_RECORD_NAMESPACES:
2190 		ret = machine__process_namespaces_event(machine, event, sample); break;
2191 	case PERF_RECORD_CGROUP:
2192 		ret = machine__process_cgroup_event(machine, event, sample); break;
2193 	case PERF_RECORD_MMAP2:
2194 		ret = machine__process_mmap2_event(machine, event, sample); break;
2195 	case PERF_RECORD_FORK:
2196 		ret = machine__process_fork_event(machine, event, sample); break;
2197 	case PERF_RECORD_EXIT:
2198 		ret = machine__process_exit_event(machine, event, sample); break;
2199 	case PERF_RECORD_LOST:
2200 		ret = machine__process_lost_event(machine, event, sample); break;
2201 	case PERF_RECORD_AUX:
2202 		ret = machine__process_aux_event(machine, event); break;
2203 	case PERF_RECORD_ITRACE_START:
2204 		ret = machine__process_itrace_start_event(machine, event); break;
2205 	case PERF_RECORD_LOST_SAMPLES:
2206 		ret = machine__process_lost_samples_event(machine, event, sample); break;
2207 	case PERF_RECORD_SWITCH:
2208 	case PERF_RECORD_SWITCH_CPU_WIDE:
2209 		ret = machine__process_switch_event(machine, event); break;
2210 	case PERF_RECORD_KSYMBOL:
2211 		ret = machine__process_ksymbol(machine, event, sample); break;
2212 	case PERF_RECORD_BPF_EVENT:
2213 		ret = machine__process_bpf(machine, event, sample); break;
2214 	case PERF_RECORD_TEXT_POKE:
2215 		ret = machine__process_text_poke(machine, event, sample); break;
2216 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2217 		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2218 	default:
2219 		ret = -1;
2220 		break;
2221 	}
2222 
2223 	return ret;
2224 }
2225 
2226 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2227 {
2228 	return regexec(regex, sym->name, 0, NULL, 0) == 0;
2229 }
2230 
2231 static void ip__resolve_ams(struct thread *thread,
2232 			    struct addr_map_symbol *ams,
2233 			    u64 ip)
2234 {
2235 	struct addr_location al;
2236 
2237 	addr_location__init(&al);
2238 	/*
2239 	 * We cannot use the header.misc hint to determine whether a
2240 	 * branch stack address is user, kernel, guest, hypervisor.
2241 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2242 	 * Thus, we have to try consecutively until we find a match
2243 	 * or else, the symbol is unknown
2244 	 */
2245 	thread__find_cpumode_addr_location(thread, ip, &al);
2246 
2247 	ams->addr = ip;
2248 	ams->al_addr = al.addr;
2249 	ams->al_level = al.level;
2250 	ams->ms.maps = maps__get(al.maps);
2251 	ams->ms.sym = al.sym;
2252 	ams->ms.map = map__get(al.map);
2253 	ams->phys_addr = 0;
2254 	ams->data_page_size = 0;
2255 	addr_location__exit(&al);
2256 }
2257 
2258 static void ip__resolve_data(struct thread *thread,
2259 			     u8 m, struct addr_map_symbol *ams,
2260 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2261 {
2262 	struct addr_location al;
2263 
2264 	addr_location__init(&al);
2265 
2266 	thread__find_symbol(thread, m, addr, &al);
2267 
2268 	ams->addr = addr;
2269 	ams->al_addr = al.addr;
2270 	ams->al_level = al.level;
2271 	ams->ms.maps = maps__get(al.maps);
2272 	ams->ms.sym = al.sym;
2273 	ams->ms.map = map__get(al.map);
2274 	ams->phys_addr = phys_addr;
2275 	ams->data_page_size = daddr_page_size;
2276 	addr_location__exit(&al);
2277 }
2278 
2279 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2280 				     struct addr_location *al)
2281 {
2282 	struct mem_info *mi = mem_info__new();
2283 
2284 	if (!mi)
2285 		return NULL;
2286 
2287 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2288 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2289 			 sample->addr, sample->phys_addr,
2290 			 sample->data_page_size);
2291 	mi->data_src.val = sample->data_src;
2292 
2293 	return mi;
2294 }
2295 
2296 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2297 {
2298 	struct map *map = ms->map;
2299 	char *srcline = NULL;
2300 	struct dso *dso;
2301 
2302 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2303 		return srcline;
2304 
2305 	dso = map__dso(map);
2306 	srcline = srcline__tree_find(&dso->srclines, ip);
2307 	if (!srcline) {
2308 		bool show_sym = false;
2309 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2310 
2311 		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2312 				      ms->sym, show_sym, show_addr, ip);
2313 		srcline__tree_insert(&dso->srclines, ip, srcline);
2314 	}
2315 
2316 	return srcline;
2317 }
2318 
2319 struct iterations {
2320 	int nr_loop_iter;
2321 	u64 cycles;
2322 };
2323 
2324 static int add_callchain_ip(struct thread *thread,
2325 			    struct callchain_cursor *cursor,
2326 			    struct symbol **parent,
2327 			    struct addr_location *root_al,
2328 			    u8 *cpumode,
2329 			    u64 ip,
2330 			    bool branch,
2331 			    struct branch_flags *flags,
2332 			    struct iterations *iter,
2333 			    u64 branch_from)
2334 {
2335 	struct map_symbol ms = {};
2336 	struct addr_location al;
2337 	int nr_loop_iter = 0, err = 0;
2338 	u64 iter_cycles = 0;
2339 	const char *srcline = NULL;
2340 
2341 	addr_location__init(&al);
2342 	al.filtered = 0;
2343 	al.sym = NULL;
2344 	al.srcline = NULL;
2345 	if (!cpumode) {
2346 		thread__find_cpumode_addr_location(thread, ip, &al);
2347 	} else {
2348 		if (ip >= PERF_CONTEXT_MAX) {
2349 			switch (ip) {
2350 			case PERF_CONTEXT_HV:
2351 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2352 				break;
2353 			case PERF_CONTEXT_KERNEL:
2354 				*cpumode = PERF_RECORD_MISC_KERNEL;
2355 				break;
2356 			case PERF_CONTEXT_USER:
2357 				*cpumode = PERF_RECORD_MISC_USER;
2358 				break;
2359 			default:
2360 				pr_debug("invalid callchain context: "
2361 					 "%"PRId64"\n", (s64) ip);
2362 				/*
2363 				 * It seems the callchain is corrupted.
2364 				 * Discard all.
2365 				 */
2366 				callchain_cursor_reset(cursor);
2367 				err = 1;
2368 				goto out;
2369 			}
2370 			goto out;
2371 		}
2372 		thread__find_symbol(thread, *cpumode, ip, &al);
2373 	}
2374 
2375 	if (al.sym != NULL) {
2376 		if (perf_hpp_list.parent && !*parent &&
2377 		    symbol__match_regex(al.sym, &parent_regex))
2378 			*parent = al.sym;
2379 		else if (have_ignore_callees && root_al &&
2380 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2381 			/* Treat this symbol as the root,
2382 			   forgetting its callees. */
2383 			addr_location__copy(root_al, &al);
2384 			callchain_cursor_reset(cursor);
2385 		}
2386 	}
2387 
2388 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2389 		goto out;
2390 
2391 	if (iter) {
2392 		nr_loop_iter = iter->nr_loop_iter;
2393 		iter_cycles = iter->cycles;
2394 	}
2395 
2396 	ms.maps = maps__get(al.maps);
2397 	ms.map = map__get(al.map);
2398 	ms.sym = al.sym;
2399 	srcline = callchain_srcline(&ms, al.addr);
2400 	err = callchain_cursor_append(cursor, ip, &ms,
2401 				      branch, flags, nr_loop_iter,
2402 				      iter_cycles, branch_from, srcline);
2403 out:
2404 	addr_location__exit(&al);
2405 	map_symbol__exit(&ms);
2406 	return err;
2407 }
2408 
2409 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2410 					   struct addr_location *al)
2411 {
2412 	unsigned int i;
2413 	const struct branch_stack *bs = sample->branch_stack;
2414 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2415 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2416 
2417 	if (!bi)
2418 		return NULL;
2419 
2420 	for (i = 0; i < bs->nr; i++) {
2421 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2422 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2423 		bi[i].flags = entries[i].flags;
2424 	}
2425 	return bi;
2426 }
2427 
2428 static void save_iterations(struct iterations *iter,
2429 			    struct branch_entry *be, int nr)
2430 {
2431 	int i;
2432 
2433 	iter->nr_loop_iter++;
2434 	iter->cycles = 0;
2435 
2436 	for (i = 0; i < nr; i++)
2437 		iter->cycles += be[i].flags.cycles;
2438 }
2439 
2440 #define CHASHSZ 127
2441 #define CHASHBITS 7
2442 #define NO_ENTRY 0xff
2443 
2444 #define PERF_MAX_BRANCH_DEPTH 127
2445 
2446 /* Remove loops. */
2447 static int remove_loops(struct branch_entry *l, int nr,
2448 			struct iterations *iter)
2449 {
2450 	int i, j, off;
2451 	unsigned char chash[CHASHSZ];
2452 
2453 	memset(chash, NO_ENTRY, sizeof(chash));
2454 
2455 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2456 
2457 	for (i = 0; i < nr; i++) {
2458 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2459 
2460 		/* no collision handling for now */
2461 		if (chash[h] == NO_ENTRY) {
2462 			chash[h] = i;
2463 		} else if (l[chash[h]].from == l[i].from) {
2464 			bool is_loop = true;
2465 			/* check if it is a real loop */
2466 			off = 0;
2467 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2468 				if (l[j].from != l[i + off].from) {
2469 					is_loop = false;
2470 					break;
2471 				}
2472 			if (is_loop) {
2473 				j = nr - (i + off);
2474 				if (j > 0) {
2475 					save_iterations(iter + i + off,
2476 						l + i, off);
2477 
2478 					memmove(iter + i, iter + i + off,
2479 						j * sizeof(*iter));
2480 
2481 					memmove(l + i, l + i + off,
2482 						j * sizeof(*l));
2483 				}
2484 
2485 				nr -= off;
2486 			}
2487 		}
2488 	}
2489 	return nr;
2490 }
2491 
2492 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2493 				       struct callchain_cursor *cursor,
2494 				       struct perf_sample *sample,
2495 				       struct symbol **parent,
2496 				       struct addr_location *root_al,
2497 				       u64 branch_from,
2498 				       bool callee, int end)
2499 {
2500 	struct ip_callchain *chain = sample->callchain;
2501 	u8 cpumode = PERF_RECORD_MISC_USER;
2502 	int err, i;
2503 
2504 	if (callee) {
2505 		for (i = 0; i < end + 1; i++) {
2506 			err = add_callchain_ip(thread, cursor, parent,
2507 					       root_al, &cpumode, chain->ips[i],
2508 					       false, NULL, NULL, branch_from);
2509 			if (err)
2510 				return err;
2511 		}
2512 		return 0;
2513 	}
2514 
2515 	for (i = end; i >= 0; i--) {
2516 		err = add_callchain_ip(thread, cursor, parent,
2517 				       root_al, &cpumode, chain->ips[i],
2518 				       false, NULL, NULL, branch_from);
2519 		if (err)
2520 			return err;
2521 	}
2522 
2523 	return 0;
2524 }
2525 
2526 static void save_lbr_cursor_node(struct thread *thread,
2527 				 struct callchain_cursor *cursor,
2528 				 int idx)
2529 {
2530 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2531 
2532 	if (!lbr_stitch)
2533 		return;
2534 
2535 	if (cursor->pos == cursor->nr) {
2536 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2537 		return;
2538 	}
2539 
2540 	if (!cursor->curr)
2541 		cursor->curr = cursor->first;
2542 	else
2543 		cursor->curr = cursor->curr->next;
2544 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2545 	       sizeof(struct callchain_cursor_node));
2546 
2547 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2548 	cursor->pos++;
2549 }
2550 
2551 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2552 				    struct callchain_cursor *cursor,
2553 				    struct perf_sample *sample,
2554 				    struct symbol **parent,
2555 				    struct addr_location *root_al,
2556 				    u64 *branch_from,
2557 				    bool callee)
2558 {
2559 	struct branch_stack *lbr_stack = sample->branch_stack;
2560 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2561 	u8 cpumode = PERF_RECORD_MISC_USER;
2562 	int lbr_nr = lbr_stack->nr;
2563 	struct branch_flags *flags;
2564 	int err, i;
2565 	u64 ip;
2566 
2567 	/*
2568 	 * The curr and pos are not used in writing session. They are cleared
2569 	 * in callchain_cursor_commit() when the writing session is closed.
2570 	 * Using curr and pos to track the current cursor node.
2571 	 */
2572 	if (thread__lbr_stitch(thread)) {
2573 		cursor->curr = NULL;
2574 		cursor->pos = cursor->nr;
2575 		if (cursor->nr) {
2576 			cursor->curr = cursor->first;
2577 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2578 				cursor->curr = cursor->curr->next;
2579 		}
2580 	}
2581 
2582 	if (callee) {
2583 		/* Add LBR ip from first entries.to */
2584 		ip = entries[0].to;
2585 		flags = &entries[0].flags;
2586 		*branch_from = entries[0].from;
2587 		err = add_callchain_ip(thread, cursor, parent,
2588 				       root_al, &cpumode, ip,
2589 				       true, flags, NULL,
2590 				       *branch_from);
2591 		if (err)
2592 			return err;
2593 
2594 		/*
2595 		 * The number of cursor node increases.
2596 		 * Move the current cursor node.
2597 		 * But does not need to save current cursor node for entry 0.
2598 		 * It's impossible to stitch the whole LBRs of previous sample.
2599 		 */
2600 		if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2601 			if (!cursor->curr)
2602 				cursor->curr = cursor->first;
2603 			else
2604 				cursor->curr = cursor->curr->next;
2605 			cursor->pos++;
2606 		}
2607 
2608 		/* Add LBR ip from entries.from one by one. */
2609 		for (i = 0; i < lbr_nr; i++) {
2610 			ip = entries[i].from;
2611 			flags = &entries[i].flags;
2612 			err = add_callchain_ip(thread, cursor, parent,
2613 					       root_al, &cpumode, ip,
2614 					       true, flags, NULL,
2615 					       *branch_from);
2616 			if (err)
2617 				return err;
2618 			save_lbr_cursor_node(thread, cursor, i);
2619 		}
2620 		return 0;
2621 	}
2622 
2623 	/* Add LBR ip from entries.from one by one. */
2624 	for (i = lbr_nr - 1; i >= 0; i--) {
2625 		ip = entries[i].from;
2626 		flags = &entries[i].flags;
2627 		err = add_callchain_ip(thread, cursor, parent,
2628 				       root_al, &cpumode, ip,
2629 				       true, flags, NULL,
2630 				       *branch_from);
2631 		if (err)
2632 			return err;
2633 		save_lbr_cursor_node(thread, cursor, i);
2634 	}
2635 
2636 	if (lbr_nr > 0) {
2637 		/* Add LBR ip from first entries.to */
2638 		ip = entries[0].to;
2639 		flags = &entries[0].flags;
2640 		*branch_from = entries[0].from;
2641 		err = add_callchain_ip(thread, cursor, parent,
2642 				root_al, &cpumode, ip,
2643 				true, flags, NULL,
2644 				*branch_from);
2645 		if (err)
2646 			return err;
2647 	}
2648 
2649 	return 0;
2650 }
2651 
2652 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2653 					     struct callchain_cursor *cursor)
2654 {
2655 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2656 	struct callchain_cursor_node *cnode;
2657 	struct stitch_list *stitch_node;
2658 	int err;
2659 
2660 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2661 		cnode = &stitch_node->cursor;
2662 
2663 		err = callchain_cursor_append(cursor, cnode->ip,
2664 					      &cnode->ms,
2665 					      cnode->branch,
2666 					      &cnode->branch_flags,
2667 					      cnode->nr_loop_iter,
2668 					      cnode->iter_cycles,
2669 					      cnode->branch_from,
2670 					      cnode->srcline);
2671 		if (err)
2672 			return err;
2673 	}
2674 	return 0;
2675 }
2676 
2677 static struct stitch_list *get_stitch_node(struct thread *thread)
2678 {
2679 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2680 	struct stitch_list *stitch_node;
2681 
2682 	if (!list_empty(&lbr_stitch->free_lists)) {
2683 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2684 					       struct stitch_list, node);
2685 		list_del(&stitch_node->node);
2686 
2687 		return stitch_node;
2688 	}
2689 
2690 	return malloc(sizeof(struct stitch_list));
2691 }
2692 
2693 static bool has_stitched_lbr(struct thread *thread,
2694 			     struct perf_sample *cur,
2695 			     struct perf_sample *prev,
2696 			     unsigned int max_lbr,
2697 			     bool callee)
2698 {
2699 	struct branch_stack *cur_stack = cur->branch_stack;
2700 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2701 	struct branch_stack *prev_stack = prev->branch_stack;
2702 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2703 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2704 	int i, j, nr_identical_branches = 0;
2705 	struct stitch_list *stitch_node;
2706 	u64 cur_base, distance;
2707 
2708 	if (!cur_stack || !prev_stack)
2709 		return false;
2710 
2711 	/* Find the physical index of the base-of-stack for current sample. */
2712 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2713 
2714 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2715 						     (max_lbr + prev_stack->hw_idx - cur_base);
2716 	/* Previous sample has shorter stack. Nothing can be stitched. */
2717 	if (distance + 1 > prev_stack->nr)
2718 		return false;
2719 
2720 	/*
2721 	 * Check if there are identical LBRs between two samples.
2722 	 * Identical LBRs must have same from, to and flags values. Also,
2723 	 * they have to be saved in the same LBR registers (same physical
2724 	 * index).
2725 	 *
2726 	 * Starts from the base-of-stack of current sample.
2727 	 */
2728 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2729 		if ((prev_entries[i].from != cur_entries[j].from) ||
2730 		    (prev_entries[i].to != cur_entries[j].to) ||
2731 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2732 			break;
2733 		nr_identical_branches++;
2734 	}
2735 
2736 	if (!nr_identical_branches)
2737 		return false;
2738 
2739 	/*
2740 	 * Save the LBRs between the base-of-stack of previous sample
2741 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2742 	 * These LBRs will be stitched later.
2743 	 */
2744 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2745 
2746 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2747 			continue;
2748 
2749 		stitch_node = get_stitch_node(thread);
2750 		if (!stitch_node)
2751 			return false;
2752 
2753 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2754 		       sizeof(struct callchain_cursor_node));
2755 
2756 		if (callee)
2757 			list_add(&stitch_node->node, &lbr_stitch->lists);
2758 		else
2759 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2760 	}
2761 
2762 	return true;
2763 }
2764 
2765 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2766 {
2767 	if (thread__lbr_stitch(thread))
2768 		return true;
2769 
2770 	thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2771 	if (!thread__lbr_stitch(thread))
2772 		goto err;
2773 
2774 	thread__lbr_stitch(thread)->prev_lbr_cursor =
2775 		calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2776 	if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2777 		goto free_lbr_stitch;
2778 
2779 	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2780 	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2781 
2782 	return true;
2783 
2784 free_lbr_stitch:
2785 	free(thread__lbr_stitch(thread));
2786 	thread__set_lbr_stitch(thread, NULL);
2787 err:
2788 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2789 	thread__set_lbr_stitch_enable(thread, false);
2790 	return false;
2791 }
2792 
2793 /*
2794  * Resolve LBR callstack chain sample
2795  * Return:
2796  * 1 on success get LBR callchain information
2797  * 0 no available LBR callchain information, should try fp
2798  * negative error code on other errors.
2799  */
2800 static int resolve_lbr_callchain_sample(struct thread *thread,
2801 					struct callchain_cursor *cursor,
2802 					struct perf_sample *sample,
2803 					struct symbol **parent,
2804 					struct addr_location *root_al,
2805 					int max_stack,
2806 					unsigned int max_lbr)
2807 {
2808 	bool callee = (callchain_param.order == ORDER_CALLEE);
2809 	struct ip_callchain *chain = sample->callchain;
2810 	int chain_nr = min(max_stack, (int)chain->nr), i;
2811 	struct lbr_stitch *lbr_stitch;
2812 	bool stitched_lbr = false;
2813 	u64 branch_from = 0;
2814 	int err;
2815 
2816 	for (i = 0; i < chain_nr; i++) {
2817 		if (chain->ips[i] == PERF_CONTEXT_USER)
2818 			break;
2819 	}
2820 
2821 	/* LBR only affects the user callchain */
2822 	if (i == chain_nr)
2823 		return 0;
2824 
2825 	if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2826 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2827 		lbr_stitch = thread__lbr_stitch(thread);
2828 
2829 		stitched_lbr = has_stitched_lbr(thread, sample,
2830 						&lbr_stitch->prev_sample,
2831 						max_lbr, callee);
2832 
2833 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2834 			list_replace_init(&lbr_stitch->lists,
2835 					  &lbr_stitch->free_lists);
2836 		}
2837 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2838 	}
2839 
2840 	if (callee) {
2841 		/* Add kernel ip */
2842 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2843 						  parent, root_al, branch_from,
2844 						  true, i);
2845 		if (err)
2846 			goto error;
2847 
2848 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2849 					       root_al, &branch_from, true);
2850 		if (err)
2851 			goto error;
2852 
2853 		if (stitched_lbr) {
2854 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2855 			if (err)
2856 				goto error;
2857 		}
2858 
2859 	} else {
2860 		if (stitched_lbr) {
2861 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2862 			if (err)
2863 				goto error;
2864 		}
2865 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2866 					       root_al, &branch_from, false);
2867 		if (err)
2868 			goto error;
2869 
2870 		/* Add kernel ip */
2871 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2872 						  parent, root_al, branch_from,
2873 						  false, i);
2874 		if (err)
2875 			goto error;
2876 	}
2877 	return 1;
2878 
2879 error:
2880 	return (err < 0) ? err : 0;
2881 }
2882 
2883 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2884 			     struct callchain_cursor *cursor,
2885 			     struct symbol **parent,
2886 			     struct addr_location *root_al,
2887 			     u8 *cpumode, int ent)
2888 {
2889 	int err = 0;
2890 
2891 	while (--ent >= 0) {
2892 		u64 ip = chain->ips[ent];
2893 
2894 		if (ip >= PERF_CONTEXT_MAX) {
2895 			err = add_callchain_ip(thread, cursor, parent,
2896 					       root_al, cpumode, ip,
2897 					       false, NULL, NULL, 0);
2898 			break;
2899 		}
2900 	}
2901 	return err;
2902 }
2903 
2904 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2905 		struct thread *thread, int usr_idx)
2906 {
2907 	if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2908 		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2909 	else
2910 		return 0;
2911 }
2912 
2913 static int thread__resolve_callchain_sample(struct thread *thread,
2914 					    struct callchain_cursor *cursor,
2915 					    struct evsel *evsel,
2916 					    struct perf_sample *sample,
2917 					    struct symbol **parent,
2918 					    struct addr_location *root_al,
2919 					    int max_stack)
2920 {
2921 	struct branch_stack *branch = sample->branch_stack;
2922 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2923 	struct ip_callchain *chain = sample->callchain;
2924 	int chain_nr = 0;
2925 	u8 cpumode = PERF_RECORD_MISC_USER;
2926 	int i, j, err, nr_entries, usr_idx;
2927 	int skip_idx = -1;
2928 	int first_call = 0;
2929 	u64 leaf_frame_caller;
2930 
2931 	if (chain)
2932 		chain_nr = chain->nr;
2933 
2934 	if (evsel__has_branch_callstack(evsel)) {
2935 		struct perf_env *env = evsel__env(evsel);
2936 
2937 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2938 						   root_al, max_stack,
2939 						   !env ? 0 : env->max_branches);
2940 		if (err)
2941 			return (err < 0) ? err : 0;
2942 	}
2943 
2944 	/*
2945 	 * Based on DWARF debug information, some architectures skip
2946 	 * a callchain entry saved by the kernel.
2947 	 */
2948 	skip_idx = arch_skip_callchain_idx(thread, chain);
2949 
2950 	/*
2951 	 * Add branches to call stack for easier browsing. This gives
2952 	 * more context for a sample than just the callers.
2953 	 *
2954 	 * This uses individual histograms of paths compared to the
2955 	 * aggregated histograms the normal LBR mode uses.
2956 	 *
2957 	 * Limitations for now:
2958 	 * - No extra filters
2959 	 * - No annotations (should annotate somehow)
2960 	 */
2961 
2962 	if (branch && callchain_param.branch_callstack) {
2963 		int nr = min(max_stack, (int)branch->nr);
2964 		struct branch_entry be[nr];
2965 		struct iterations iter[nr];
2966 
2967 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2968 			pr_warning("corrupted branch chain. skipping...\n");
2969 			goto check_calls;
2970 		}
2971 
2972 		for (i = 0; i < nr; i++) {
2973 			if (callchain_param.order == ORDER_CALLEE) {
2974 				be[i] = entries[i];
2975 
2976 				if (chain == NULL)
2977 					continue;
2978 
2979 				/*
2980 				 * Check for overlap into the callchain.
2981 				 * The return address is one off compared to
2982 				 * the branch entry. To adjust for this
2983 				 * assume the calling instruction is not longer
2984 				 * than 8 bytes.
2985 				 */
2986 				if (i == skip_idx ||
2987 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2988 					first_call++;
2989 				else if (be[i].from < chain->ips[first_call] &&
2990 				    be[i].from >= chain->ips[first_call] - 8)
2991 					first_call++;
2992 			} else
2993 				be[i] = entries[branch->nr - i - 1];
2994 		}
2995 
2996 		memset(iter, 0, sizeof(struct iterations) * nr);
2997 		nr = remove_loops(be, nr, iter);
2998 
2999 		for (i = 0; i < nr; i++) {
3000 			err = add_callchain_ip(thread, cursor, parent,
3001 					       root_al,
3002 					       NULL, be[i].to,
3003 					       true, &be[i].flags,
3004 					       NULL, be[i].from);
3005 
3006 			if (!err)
3007 				err = add_callchain_ip(thread, cursor, parent, root_al,
3008 						       NULL, be[i].from,
3009 						       true, &be[i].flags,
3010 						       &iter[i], 0);
3011 			if (err == -EINVAL)
3012 				break;
3013 			if (err)
3014 				return err;
3015 		}
3016 
3017 		if (chain_nr == 0)
3018 			return 0;
3019 
3020 		chain_nr -= nr;
3021 	}
3022 
3023 check_calls:
3024 	if (chain && callchain_param.order != ORDER_CALLEE) {
3025 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
3026 					&cpumode, chain->nr - first_call);
3027 		if (err)
3028 			return (err < 0) ? err : 0;
3029 	}
3030 	for (i = first_call, nr_entries = 0;
3031 	     i < chain_nr && nr_entries < max_stack; i++) {
3032 		u64 ip;
3033 
3034 		if (callchain_param.order == ORDER_CALLEE)
3035 			j = i;
3036 		else
3037 			j = chain->nr - i - 1;
3038 
3039 #ifdef HAVE_SKIP_CALLCHAIN_IDX
3040 		if (j == skip_idx)
3041 			continue;
3042 #endif
3043 		ip = chain->ips[j];
3044 		if (ip < PERF_CONTEXT_MAX)
3045                        ++nr_entries;
3046 		else if (callchain_param.order != ORDER_CALLEE) {
3047 			err = find_prev_cpumode(chain, thread, cursor, parent,
3048 						root_al, &cpumode, j);
3049 			if (err)
3050 				return (err < 0) ? err : 0;
3051 			continue;
3052 		}
3053 
3054 		/*
3055 		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
3056 		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
3057 		 * the index will be different in order to add the missing frame
3058 		 * at the right place.
3059 		 */
3060 
3061 		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
3062 
3063 		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
3064 
3065 			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
3066 
3067 			/*
3068 			 * check if leaf_frame_Caller != ip to not add the same
3069 			 * value twice.
3070 			 */
3071 
3072 			if (leaf_frame_caller && leaf_frame_caller != ip) {
3073 
3074 				err = add_callchain_ip(thread, cursor, parent,
3075 					       root_al, &cpumode, leaf_frame_caller,
3076 					       false, NULL, NULL, 0);
3077 				if (err)
3078 					return (err < 0) ? err : 0;
3079 			}
3080 		}
3081 
3082 		err = add_callchain_ip(thread, cursor, parent,
3083 				       root_al, &cpumode, ip,
3084 				       false, NULL, NULL, 0);
3085 
3086 		if (err)
3087 			return (err < 0) ? err : 0;
3088 	}
3089 
3090 	return 0;
3091 }
3092 
3093 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3094 {
3095 	struct symbol *sym = ms->sym;
3096 	struct map *map = ms->map;
3097 	struct inline_node *inline_node;
3098 	struct inline_list *ilist;
3099 	struct dso *dso;
3100 	u64 addr;
3101 	int ret = 1;
3102 	struct map_symbol ilist_ms;
3103 
3104 	if (!symbol_conf.inline_name || !map || !sym)
3105 		return ret;
3106 
3107 	addr = map__dso_map_ip(map, ip);
3108 	addr = map__rip_2objdump(map, addr);
3109 	dso = map__dso(map);
3110 
3111 	inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
3112 	if (!inline_node) {
3113 		inline_node = dso__parse_addr_inlines(dso, addr, sym);
3114 		if (!inline_node)
3115 			return ret;
3116 		inlines__tree_insert(&dso->inlined_nodes, inline_node);
3117 	}
3118 
3119 	ilist_ms = (struct map_symbol) {
3120 		.maps = maps__get(ms->maps),
3121 		.map = map__get(map),
3122 	};
3123 	list_for_each_entry(ilist, &inline_node->val, list) {
3124 		ilist_ms.sym = ilist->symbol;
3125 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3126 					      NULL, 0, 0, 0, ilist->srcline);
3127 
3128 		if (ret != 0)
3129 			return ret;
3130 	}
3131 	map_symbol__exit(&ilist_ms);
3132 
3133 	return ret;
3134 }
3135 
3136 static int unwind_entry(struct unwind_entry *entry, void *arg)
3137 {
3138 	struct callchain_cursor *cursor = arg;
3139 	const char *srcline = NULL;
3140 	u64 addr = entry->ip;
3141 
3142 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3143 		return 0;
3144 
3145 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3146 		return 0;
3147 
3148 	/*
3149 	 * Convert entry->ip from a virtual address to an offset in
3150 	 * its corresponding binary.
3151 	 */
3152 	if (entry->ms.map)
3153 		addr = map__dso_map_ip(entry->ms.map, entry->ip);
3154 
3155 	srcline = callchain_srcline(&entry->ms, addr);
3156 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3157 				       false, NULL, 0, 0, 0, srcline);
3158 }
3159 
3160 static int thread__resolve_callchain_unwind(struct thread *thread,
3161 					    struct callchain_cursor *cursor,
3162 					    struct evsel *evsel,
3163 					    struct perf_sample *sample,
3164 					    int max_stack)
3165 {
3166 	/* Can we do dwarf post unwind? */
3167 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3168 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3169 		return 0;
3170 
3171 	/* Bail out if nothing was captured. */
3172 	if ((!sample->user_regs.regs) ||
3173 	    (!sample->user_stack.size))
3174 		return 0;
3175 
3176 	return unwind__get_entries(unwind_entry, cursor,
3177 				   thread, sample, max_stack, false);
3178 }
3179 
3180 int thread__resolve_callchain(struct thread *thread,
3181 			      struct callchain_cursor *cursor,
3182 			      struct evsel *evsel,
3183 			      struct perf_sample *sample,
3184 			      struct symbol **parent,
3185 			      struct addr_location *root_al,
3186 			      int max_stack)
3187 {
3188 	int ret = 0;
3189 
3190 	if (cursor == NULL)
3191 		return -ENOMEM;
3192 
3193 	callchain_cursor_reset(cursor);
3194 
3195 	if (callchain_param.order == ORDER_CALLEE) {
3196 		ret = thread__resolve_callchain_sample(thread, cursor,
3197 						       evsel, sample,
3198 						       parent, root_al,
3199 						       max_stack);
3200 		if (ret)
3201 			return ret;
3202 		ret = thread__resolve_callchain_unwind(thread, cursor,
3203 						       evsel, sample,
3204 						       max_stack);
3205 	} else {
3206 		ret = thread__resolve_callchain_unwind(thread, cursor,
3207 						       evsel, sample,
3208 						       max_stack);
3209 		if (ret)
3210 			return ret;
3211 		ret = thread__resolve_callchain_sample(thread, cursor,
3212 						       evsel, sample,
3213 						       parent, root_al,
3214 						       max_stack);
3215 	}
3216 
3217 	return ret;
3218 }
3219 
3220 int machine__for_each_thread(struct machine *machine,
3221 			     int (*fn)(struct thread *thread, void *p),
3222 			     void *priv)
3223 {
3224 	struct threads *threads;
3225 	struct rb_node *nd;
3226 	int rc = 0;
3227 	int i;
3228 
3229 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3230 		threads = &machine->threads[i];
3231 		for (nd = rb_first_cached(&threads->entries); nd;
3232 		     nd = rb_next(nd)) {
3233 			struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
3234 
3235 			rc = fn(trb->thread, priv);
3236 			if (rc != 0)
3237 				return rc;
3238 		}
3239 	}
3240 	return rc;
3241 }
3242 
3243 int machines__for_each_thread(struct machines *machines,
3244 			      int (*fn)(struct thread *thread, void *p),
3245 			      void *priv)
3246 {
3247 	struct rb_node *nd;
3248 	int rc = 0;
3249 
3250 	rc = machine__for_each_thread(&machines->host, fn, priv);
3251 	if (rc != 0)
3252 		return rc;
3253 
3254 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3255 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3256 
3257 		rc = machine__for_each_thread(machine, fn, priv);
3258 		if (rc != 0)
3259 			return rc;
3260 	}
3261 	return rc;
3262 }
3263 
3264 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3265 {
3266 	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3267 		return -1;
3268 
3269 	return machine->current_tid[cpu];
3270 }
3271 
3272 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3273 			     pid_t tid)
3274 {
3275 	struct thread *thread;
3276 	const pid_t init_val = -1;
3277 
3278 	if (cpu < 0)
3279 		return -EINVAL;
3280 
3281 	if (realloc_array_as_needed(machine->current_tid,
3282 				    machine->current_tid_sz,
3283 				    (unsigned int)cpu,
3284 				    &init_val))
3285 		return -ENOMEM;
3286 
3287 	machine->current_tid[cpu] = tid;
3288 
3289 	thread = machine__findnew_thread(machine, pid, tid);
3290 	if (!thread)
3291 		return -ENOMEM;
3292 
3293 	thread__set_cpu(thread, cpu);
3294 	thread__put(thread);
3295 
3296 	return 0;
3297 }
3298 
3299 /*
3300  * Compares the raw arch string. N.B. see instead perf_env__arch() or
3301  * machine__normalized_is() if a normalized arch is needed.
3302  */
3303 bool machine__is(struct machine *machine, const char *arch)
3304 {
3305 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3306 }
3307 
3308 bool machine__normalized_is(struct machine *machine, const char *arch)
3309 {
3310 	return machine && !strcmp(perf_env__arch(machine->env), arch);
3311 }
3312 
3313 int machine__nr_cpus_avail(struct machine *machine)
3314 {
3315 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3316 }
3317 
3318 int machine__get_kernel_start(struct machine *machine)
3319 {
3320 	struct map *map = machine__kernel_map(machine);
3321 	int err = 0;
3322 
3323 	/*
3324 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3325 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3326 	 * all addresses including kernel addresses are less than 2^32.  In
3327 	 * that case (32-bit system), if the kernel mapping is unknown, all
3328 	 * addresses will be assumed to be in user space - see
3329 	 * machine__kernel_ip().
3330 	 */
3331 	machine->kernel_start = 1ULL << 63;
3332 	if (map) {
3333 		err = map__load(map);
3334 		/*
3335 		 * On x86_64, PTI entry trampolines are less than the
3336 		 * start of kernel text, but still above 2^63. So leave
3337 		 * kernel_start = 1ULL << 63 for x86_64.
3338 		 */
3339 		if (!err && !machine__is(machine, "x86_64"))
3340 			machine->kernel_start = map__start(map);
3341 	}
3342 	return err;
3343 }
3344 
3345 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3346 {
3347 	u8 addr_cpumode = cpumode;
3348 	bool kernel_ip;
3349 
3350 	if (!machine->single_address_space)
3351 		goto out;
3352 
3353 	kernel_ip = machine__kernel_ip(machine, addr);
3354 	switch (cpumode) {
3355 	case PERF_RECORD_MISC_KERNEL:
3356 	case PERF_RECORD_MISC_USER:
3357 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3358 					   PERF_RECORD_MISC_USER;
3359 		break;
3360 	case PERF_RECORD_MISC_GUEST_KERNEL:
3361 	case PERF_RECORD_MISC_GUEST_USER:
3362 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3363 					   PERF_RECORD_MISC_GUEST_USER;
3364 		break;
3365 	default:
3366 		break;
3367 	}
3368 out:
3369 	return addr_cpumode;
3370 }
3371 
3372 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3373 {
3374 	return dsos__findnew_id(&machine->dsos, filename, id);
3375 }
3376 
3377 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3378 {
3379 	return machine__findnew_dso_id(machine, filename, NULL);
3380 }
3381 
3382 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3383 {
3384 	struct machine *machine = vmachine;
3385 	struct map *map;
3386 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3387 
3388 	if (sym == NULL)
3389 		return NULL;
3390 
3391 	*modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3392 	*addrp = map__unmap_ip(map, sym->start);
3393 	return sym->name;
3394 }
3395 
3396 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3397 {
3398 	struct dso *pos;
3399 	int err = 0;
3400 
3401 	list_for_each_entry(pos, &machine->dsos.head, node) {
3402 		if (fn(pos, machine, priv))
3403 			err = -1;
3404 	}
3405 	return err;
3406 }
3407 
3408 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3409 {
3410 	struct maps *maps = machine__kernel_maps(machine);
3411 
3412 	return maps__for_each_map(maps, fn, priv);
3413 }
3414 
3415 bool machine__is_lock_function(struct machine *machine, u64 addr)
3416 {
3417 	if (!machine->sched.text_start) {
3418 		struct map *kmap;
3419 		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3420 
3421 		if (!sym) {
3422 			/* to avoid retry */
3423 			machine->sched.text_start = 1;
3424 			return false;
3425 		}
3426 
3427 		machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3428 
3429 		/* should not fail from here */
3430 		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3431 		machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3432 
3433 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3434 		machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3435 
3436 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3437 		machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3438 	}
3439 
3440 	/* failed to get kernel symbols */
3441 	if (machine->sched.text_start == 1)
3442 		return false;
3443 
3444 	/* mutex and rwsem functions are in sched text section */
3445 	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3446 		return true;
3447 
3448 	/* spinlock functions are in lock text section */
3449 	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3450 		return true;
3451 
3452 	return false;
3453 }
3454