1 #include "callchain.h" 2 #include "debug.h" 3 #include "event.h" 4 #include "evsel.h" 5 #include "hist.h" 6 #include "machine.h" 7 #include "map.h" 8 #include "sort.h" 9 #include "strlist.h" 10 #include "thread.h" 11 #include "vdso.h" 12 #include <stdbool.h> 13 #include <symbol/kallsyms.h> 14 #include "unwind.h" 15 #include "linux/hash.h" 16 17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 18 19 static void dsos__init(struct dsos *dsos) 20 { 21 INIT_LIST_HEAD(&dsos->head); 22 dsos->root = RB_ROOT; 23 pthread_rwlock_init(&dsos->lock, NULL); 24 } 25 26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 27 { 28 memset(machine, 0, sizeof(*machine)); 29 map_groups__init(&machine->kmaps, machine); 30 RB_CLEAR_NODE(&machine->rb_node); 31 dsos__init(&machine->dsos); 32 33 machine->threads = RB_ROOT; 34 pthread_rwlock_init(&machine->threads_lock, NULL); 35 machine->nr_threads = 0; 36 INIT_LIST_HEAD(&machine->dead_threads); 37 machine->last_match = NULL; 38 39 machine->vdso_info = NULL; 40 machine->env = NULL; 41 42 machine->pid = pid; 43 44 machine->symbol_filter = NULL; 45 machine->id_hdr_size = 0; 46 machine->comm_exec = false; 47 machine->kernel_start = 0; 48 49 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps)); 50 51 machine->root_dir = strdup(root_dir); 52 if (machine->root_dir == NULL) 53 return -ENOMEM; 54 55 if (pid != HOST_KERNEL_ID) { 56 struct thread *thread = machine__findnew_thread(machine, -1, 57 pid); 58 char comm[64]; 59 60 if (thread == NULL) 61 return -ENOMEM; 62 63 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 64 thread__set_comm(thread, comm, 0); 65 thread__put(thread); 66 } 67 68 machine->current_tid = NULL; 69 70 return 0; 71 } 72 73 struct machine *machine__new_host(void) 74 { 75 struct machine *machine = malloc(sizeof(*machine)); 76 77 if (machine != NULL) { 78 machine__init(machine, "", HOST_KERNEL_ID); 79 80 if (machine__create_kernel_maps(machine) < 0) 81 goto out_delete; 82 } 83 84 return machine; 85 out_delete: 86 free(machine); 87 return NULL; 88 } 89 90 static void dsos__purge(struct dsos *dsos) 91 { 92 struct dso *pos, *n; 93 94 pthread_rwlock_wrlock(&dsos->lock); 95 96 list_for_each_entry_safe(pos, n, &dsos->head, node) { 97 RB_CLEAR_NODE(&pos->rb_node); 98 pos->root = NULL; 99 list_del_init(&pos->node); 100 dso__put(pos); 101 } 102 103 pthread_rwlock_unlock(&dsos->lock); 104 } 105 106 static void dsos__exit(struct dsos *dsos) 107 { 108 dsos__purge(dsos); 109 pthread_rwlock_destroy(&dsos->lock); 110 } 111 112 void machine__delete_threads(struct machine *machine) 113 { 114 struct rb_node *nd; 115 116 pthread_rwlock_wrlock(&machine->threads_lock); 117 nd = rb_first(&machine->threads); 118 while (nd) { 119 struct thread *t = rb_entry(nd, struct thread, rb_node); 120 121 nd = rb_next(nd); 122 __machine__remove_thread(machine, t, false); 123 } 124 pthread_rwlock_unlock(&machine->threads_lock); 125 } 126 127 void machine__exit(struct machine *machine) 128 { 129 machine__destroy_kernel_maps(machine); 130 map_groups__exit(&machine->kmaps); 131 dsos__exit(&machine->dsos); 132 machine__exit_vdso(machine); 133 zfree(&machine->root_dir); 134 zfree(&machine->current_tid); 135 pthread_rwlock_destroy(&machine->threads_lock); 136 } 137 138 void machine__delete(struct machine *machine) 139 { 140 machine__exit(machine); 141 free(machine); 142 } 143 144 void machines__init(struct machines *machines) 145 { 146 machine__init(&machines->host, "", HOST_KERNEL_ID); 147 machines->guests = RB_ROOT; 148 machines->symbol_filter = NULL; 149 } 150 151 void machines__exit(struct machines *machines) 152 { 153 machine__exit(&machines->host); 154 /* XXX exit guest */ 155 } 156 157 struct machine *machines__add(struct machines *machines, pid_t pid, 158 const char *root_dir) 159 { 160 struct rb_node **p = &machines->guests.rb_node; 161 struct rb_node *parent = NULL; 162 struct machine *pos, *machine = malloc(sizeof(*machine)); 163 164 if (machine == NULL) 165 return NULL; 166 167 if (machine__init(machine, root_dir, pid) != 0) { 168 free(machine); 169 return NULL; 170 } 171 172 machine->symbol_filter = machines->symbol_filter; 173 174 while (*p != NULL) { 175 parent = *p; 176 pos = rb_entry(parent, struct machine, rb_node); 177 if (pid < pos->pid) 178 p = &(*p)->rb_left; 179 else 180 p = &(*p)->rb_right; 181 } 182 183 rb_link_node(&machine->rb_node, parent, p); 184 rb_insert_color(&machine->rb_node, &machines->guests); 185 186 return machine; 187 } 188 189 void machines__set_symbol_filter(struct machines *machines, 190 symbol_filter_t symbol_filter) 191 { 192 struct rb_node *nd; 193 194 machines->symbol_filter = symbol_filter; 195 machines->host.symbol_filter = symbol_filter; 196 197 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 198 struct machine *machine = rb_entry(nd, struct machine, rb_node); 199 200 machine->symbol_filter = symbol_filter; 201 } 202 } 203 204 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 205 { 206 struct rb_node *nd; 207 208 machines->host.comm_exec = comm_exec; 209 210 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 211 struct machine *machine = rb_entry(nd, struct machine, rb_node); 212 213 machine->comm_exec = comm_exec; 214 } 215 } 216 217 struct machine *machines__find(struct machines *machines, pid_t pid) 218 { 219 struct rb_node **p = &machines->guests.rb_node; 220 struct rb_node *parent = NULL; 221 struct machine *machine; 222 struct machine *default_machine = NULL; 223 224 if (pid == HOST_KERNEL_ID) 225 return &machines->host; 226 227 while (*p != NULL) { 228 parent = *p; 229 machine = rb_entry(parent, struct machine, rb_node); 230 if (pid < machine->pid) 231 p = &(*p)->rb_left; 232 else if (pid > machine->pid) 233 p = &(*p)->rb_right; 234 else 235 return machine; 236 if (!machine->pid) 237 default_machine = machine; 238 } 239 240 return default_machine; 241 } 242 243 struct machine *machines__findnew(struct machines *machines, pid_t pid) 244 { 245 char path[PATH_MAX]; 246 const char *root_dir = ""; 247 struct machine *machine = machines__find(machines, pid); 248 249 if (machine && (machine->pid == pid)) 250 goto out; 251 252 if ((pid != HOST_KERNEL_ID) && 253 (pid != DEFAULT_GUEST_KERNEL_ID) && 254 (symbol_conf.guestmount)) { 255 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 256 if (access(path, R_OK)) { 257 static struct strlist *seen; 258 259 if (!seen) 260 seen = strlist__new(NULL, NULL); 261 262 if (!strlist__has_entry(seen, path)) { 263 pr_err("Can't access file %s\n", path); 264 strlist__add(seen, path); 265 } 266 machine = NULL; 267 goto out; 268 } 269 root_dir = path; 270 } 271 272 machine = machines__add(machines, pid, root_dir); 273 out: 274 return machine; 275 } 276 277 void machines__process_guests(struct machines *machines, 278 machine__process_t process, void *data) 279 { 280 struct rb_node *nd; 281 282 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 283 struct machine *pos = rb_entry(nd, struct machine, rb_node); 284 process(pos, data); 285 } 286 } 287 288 char *machine__mmap_name(struct machine *machine, char *bf, size_t size) 289 { 290 if (machine__is_host(machine)) 291 snprintf(bf, size, "[%s]", "kernel.kallsyms"); 292 else if (machine__is_default_guest(machine)) 293 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms"); 294 else { 295 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms", 296 machine->pid); 297 } 298 299 return bf; 300 } 301 302 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 303 { 304 struct rb_node *node; 305 struct machine *machine; 306 307 machines->host.id_hdr_size = id_hdr_size; 308 309 for (node = rb_first(&machines->guests); node; node = rb_next(node)) { 310 machine = rb_entry(node, struct machine, rb_node); 311 machine->id_hdr_size = id_hdr_size; 312 } 313 314 return; 315 } 316 317 static void machine__update_thread_pid(struct machine *machine, 318 struct thread *th, pid_t pid) 319 { 320 struct thread *leader; 321 322 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 323 return; 324 325 th->pid_ = pid; 326 327 if (th->pid_ == th->tid) 328 return; 329 330 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 331 if (!leader) 332 goto out_err; 333 334 if (!leader->mg) 335 leader->mg = map_groups__new(machine); 336 337 if (!leader->mg) 338 goto out_err; 339 340 if (th->mg == leader->mg) 341 return; 342 343 if (th->mg) { 344 /* 345 * Maps are created from MMAP events which provide the pid and 346 * tid. Consequently there never should be any maps on a thread 347 * with an unknown pid. Just print an error if there are. 348 */ 349 if (!map_groups__empty(th->mg)) 350 pr_err("Discarding thread maps for %d:%d\n", 351 th->pid_, th->tid); 352 map_groups__put(th->mg); 353 } 354 355 th->mg = map_groups__get(leader->mg); 356 out_put: 357 thread__put(leader); 358 return; 359 out_err: 360 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 361 goto out_put; 362 } 363 364 /* 365 * Caller must eventually drop thread->refcnt returned with a successful 366 * lookup/new thread inserted. 367 */ 368 static struct thread *____machine__findnew_thread(struct machine *machine, 369 pid_t pid, pid_t tid, 370 bool create) 371 { 372 struct rb_node **p = &machine->threads.rb_node; 373 struct rb_node *parent = NULL; 374 struct thread *th; 375 376 /* 377 * Front-end cache - TID lookups come in blocks, 378 * so most of the time we dont have to look up 379 * the full rbtree: 380 */ 381 th = machine->last_match; 382 if (th != NULL) { 383 if (th->tid == tid) { 384 machine__update_thread_pid(machine, th, pid); 385 return thread__get(th); 386 } 387 388 machine->last_match = NULL; 389 } 390 391 while (*p != NULL) { 392 parent = *p; 393 th = rb_entry(parent, struct thread, rb_node); 394 395 if (th->tid == tid) { 396 machine->last_match = th; 397 machine__update_thread_pid(machine, th, pid); 398 return thread__get(th); 399 } 400 401 if (tid < th->tid) 402 p = &(*p)->rb_left; 403 else 404 p = &(*p)->rb_right; 405 } 406 407 if (!create) 408 return NULL; 409 410 th = thread__new(pid, tid); 411 if (th != NULL) { 412 rb_link_node(&th->rb_node, parent, p); 413 rb_insert_color(&th->rb_node, &machine->threads); 414 415 /* 416 * We have to initialize map_groups separately 417 * after rb tree is updated. 418 * 419 * The reason is that we call machine__findnew_thread 420 * within thread__init_map_groups to find the thread 421 * leader and that would screwed the rb tree. 422 */ 423 if (thread__init_map_groups(th, machine)) { 424 rb_erase_init(&th->rb_node, &machine->threads); 425 RB_CLEAR_NODE(&th->rb_node); 426 thread__put(th); 427 return NULL; 428 } 429 /* 430 * It is now in the rbtree, get a ref 431 */ 432 thread__get(th); 433 machine->last_match = th; 434 ++machine->nr_threads; 435 } 436 437 return th; 438 } 439 440 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 441 { 442 return ____machine__findnew_thread(machine, pid, tid, true); 443 } 444 445 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 446 pid_t tid) 447 { 448 struct thread *th; 449 450 pthread_rwlock_wrlock(&machine->threads_lock); 451 th = __machine__findnew_thread(machine, pid, tid); 452 pthread_rwlock_unlock(&machine->threads_lock); 453 return th; 454 } 455 456 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 457 pid_t tid) 458 { 459 struct thread *th; 460 pthread_rwlock_rdlock(&machine->threads_lock); 461 th = ____machine__findnew_thread(machine, pid, tid, false); 462 pthread_rwlock_unlock(&machine->threads_lock); 463 return th; 464 } 465 466 struct comm *machine__thread_exec_comm(struct machine *machine, 467 struct thread *thread) 468 { 469 if (machine->comm_exec) 470 return thread__exec_comm(thread); 471 else 472 return thread__comm(thread); 473 } 474 475 int machine__process_comm_event(struct machine *machine, union perf_event *event, 476 struct perf_sample *sample) 477 { 478 struct thread *thread = machine__findnew_thread(machine, 479 event->comm.pid, 480 event->comm.tid); 481 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 482 int err = 0; 483 484 if (exec) 485 machine->comm_exec = true; 486 487 if (dump_trace) 488 perf_event__fprintf_comm(event, stdout); 489 490 if (thread == NULL || 491 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 492 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 493 err = -1; 494 } 495 496 thread__put(thread); 497 498 return err; 499 } 500 501 int machine__process_lost_event(struct machine *machine __maybe_unused, 502 union perf_event *event, struct perf_sample *sample __maybe_unused) 503 { 504 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 505 event->lost.id, event->lost.lost); 506 return 0; 507 } 508 509 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 510 union perf_event *event, struct perf_sample *sample) 511 { 512 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 513 sample->id, event->lost_samples.lost); 514 return 0; 515 } 516 517 static struct dso *machine__findnew_module_dso(struct machine *machine, 518 struct kmod_path *m, 519 const char *filename) 520 { 521 struct dso *dso; 522 523 pthread_rwlock_wrlock(&machine->dsos.lock); 524 525 dso = __dsos__find(&machine->dsos, m->name, true); 526 if (!dso) { 527 dso = __dsos__addnew(&machine->dsos, m->name); 528 if (dso == NULL) 529 goto out_unlock; 530 531 if (machine__is_host(machine)) 532 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE; 533 else 534 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE; 535 536 /* _KMODULE_COMP should be next to _KMODULE */ 537 if (m->kmod && m->comp) 538 dso->symtab_type++; 539 540 dso__set_short_name(dso, strdup(m->name), true); 541 dso__set_long_name(dso, strdup(filename), true); 542 } 543 544 dso__get(dso); 545 out_unlock: 546 pthread_rwlock_unlock(&machine->dsos.lock); 547 return dso; 548 } 549 550 int machine__process_aux_event(struct machine *machine __maybe_unused, 551 union perf_event *event) 552 { 553 if (dump_trace) 554 perf_event__fprintf_aux(event, stdout); 555 return 0; 556 } 557 558 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 559 union perf_event *event) 560 { 561 if (dump_trace) 562 perf_event__fprintf_itrace_start(event, stdout); 563 return 0; 564 } 565 566 int machine__process_switch_event(struct machine *machine __maybe_unused, 567 union perf_event *event) 568 { 569 if (dump_trace) 570 perf_event__fprintf_switch(event, stdout); 571 return 0; 572 } 573 574 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 575 { 576 const char *dup_filename; 577 578 if (!filename || !dso || !dso->long_name) 579 return; 580 if (dso->long_name[0] != '[') 581 return; 582 if (!strchr(filename, '/')) 583 return; 584 585 dup_filename = strdup(filename); 586 if (!dup_filename) 587 return; 588 589 dso__set_long_name(dso, dup_filename, true); 590 } 591 592 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 593 const char *filename) 594 { 595 struct map *map = NULL; 596 struct dso *dso = NULL; 597 struct kmod_path m; 598 599 if (kmod_path__parse_name(&m, filename)) 600 return NULL; 601 602 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION, 603 m.name); 604 if (map) { 605 /* 606 * If the map's dso is an offline module, give dso__load() 607 * a chance to find the file path of that module by fixing 608 * long_name. 609 */ 610 dso__adjust_kmod_long_name(map->dso, filename); 611 goto out; 612 } 613 614 dso = machine__findnew_module_dso(machine, &m, filename); 615 if (dso == NULL) 616 goto out; 617 618 map = map__new2(start, dso, MAP__FUNCTION); 619 if (map == NULL) 620 goto out; 621 622 map_groups__insert(&machine->kmaps, map); 623 624 /* Put the map here because map_groups__insert alread got it */ 625 map__put(map); 626 out: 627 /* put the dso here, corresponding to machine__findnew_module_dso */ 628 dso__put(dso); 629 free(m.name); 630 return map; 631 } 632 633 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 634 { 635 struct rb_node *nd; 636 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 637 638 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 639 struct machine *pos = rb_entry(nd, struct machine, rb_node); 640 ret += __dsos__fprintf(&pos->dsos.head, fp); 641 } 642 643 return ret; 644 } 645 646 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 647 bool (skip)(struct dso *dso, int parm), int parm) 648 { 649 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 650 } 651 652 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 653 bool (skip)(struct dso *dso, int parm), int parm) 654 { 655 struct rb_node *nd; 656 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 657 658 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 659 struct machine *pos = rb_entry(nd, struct machine, rb_node); 660 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 661 } 662 return ret; 663 } 664 665 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 666 { 667 int i; 668 size_t printed = 0; 669 struct dso *kdso = machine__kernel_map(machine)->dso; 670 671 if (kdso->has_build_id) { 672 char filename[PATH_MAX]; 673 if (dso__build_id_filename(kdso, filename, sizeof(filename))) 674 printed += fprintf(fp, "[0] %s\n", filename); 675 } 676 677 for (i = 0; i < vmlinux_path__nr_entries; ++i) 678 printed += fprintf(fp, "[%d] %s\n", 679 i + kdso->has_build_id, vmlinux_path[i]); 680 681 return printed; 682 } 683 684 size_t machine__fprintf(struct machine *machine, FILE *fp) 685 { 686 size_t ret; 687 struct rb_node *nd; 688 689 pthread_rwlock_rdlock(&machine->threads_lock); 690 691 ret = fprintf(fp, "Threads: %u\n", machine->nr_threads); 692 693 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 694 struct thread *pos = rb_entry(nd, struct thread, rb_node); 695 696 ret += thread__fprintf(pos, fp); 697 } 698 699 pthread_rwlock_unlock(&machine->threads_lock); 700 701 return ret; 702 } 703 704 static struct dso *machine__get_kernel(struct machine *machine) 705 { 706 const char *vmlinux_name = NULL; 707 struct dso *kernel; 708 709 if (machine__is_host(machine)) { 710 vmlinux_name = symbol_conf.vmlinux_name; 711 if (!vmlinux_name) 712 vmlinux_name = "[kernel.kallsyms]"; 713 714 kernel = machine__findnew_kernel(machine, vmlinux_name, 715 "[kernel]", DSO_TYPE_KERNEL); 716 } else { 717 char bf[PATH_MAX]; 718 719 if (machine__is_default_guest(machine)) 720 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 721 if (!vmlinux_name) 722 vmlinux_name = machine__mmap_name(machine, bf, 723 sizeof(bf)); 724 725 kernel = machine__findnew_kernel(machine, vmlinux_name, 726 "[guest.kernel]", 727 DSO_TYPE_GUEST_KERNEL); 728 } 729 730 if (kernel != NULL && (!kernel->has_build_id)) 731 dso__read_running_kernel_build_id(kernel, machine); 732 733 return kernel; 734 } 735 736 struct process_args { 737 u64 start; 738 }; 739 740 static void machine__get_kallsyms_filename(struct machine *machine, char *buf, 741 size_t bufsz) 742 { 743 if (machine__is_default_guest(machine)) 744 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 745 else 746 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 747 } 748 749 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 750 751 /* Figure out the start address of kernel map from /proc/kallsyms. 752 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 753 * symbol_name if it's not that important. 754 */ 755 static u64 machine__get_running_kernel_start(struct machine *machine, 756 const char **symbol_name) 757 { 758 char filename[PATH_MAX]; 759 int i; 760 const char *name; 761 u64 addr = 0; 762 763 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 764 765 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 766 return 0; 767 768 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 769 addr = kallsyms__get_function_start(filename, name); 770 if (addr) 771 break; 772 } 773 774 if (symbol_name) 775 *symbol_name = name; 776 777 return addr; 778 } 779 780 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 781 { 782 enum map_type type; 783 u64 start = machine__get_running_kernel_start(machine, NULL); 784 785 /* In case of renewal the kernel map, destroy previous one */ 786 machine__destroy_kernel_maps(machine); 787 788 for (type = 0; type < MAP__NR_TYPES; ++type) { 789 struct kmap *kmap; 790 struct map *map; 791 792 machine->vmlinux_maps[type] = map__new2(start, kernel, type); 793 if (machine->vmlinux_maps[type] == NULL) 794 return -1; 795 796 machine->vmlinux_maps[type]->map_ip = 797 machine->vmlinux_maps[type]->unmap_ip = 798 identity__map_ip; 799 map = __machine__kernel_map(machine, type); 800 kmap = map__kmap(map); 801 if (!kmap) 802 return -1; 803 804 kmap->kmaps = &machine->kmaps; 805 map_groups__insert(&machine->kmaps, map); 806 } 807 808 return 0; 809 } 810 811 void machine__destroy_kernel_maps(struct machine *machine) 812 { 813 enum map_type type; 814 815 for (type = 0; type < MAP__NR_TYPES; ++type) { 816 struct kmap *kmap; 817 struct map *map = __machine__kernel_map(machine, type); 818 819 if (map == NULL) 820 continue; 821 822 kmap = map__kmap(map); 823 map_groups__remove(&machine->kmaps, map); 824 if (kmap && kmap->ref_reloc_sym) { 825 /* 826 * ref_reloc_sym is shared among all maps, so free just 827 * on one of them. 828 */ 829 if (type == MAP__FUNCTION) { 830 zfree((char **)&kmap->ref_reloc_sym->name); 831 zfree(&kmap->ref_reloc_sym); 832 } else 833 kmap->ref_reloc_sym = NULL; 834 } 835 836 map__put(machine->vmlinux_maps[type]); 837 machine->vmlinux_maps[type] = NULL; 838 } 839 } 840 841 int machines__create_guest_kernel_maps(struct machines *machines) 842 { 843 int ret = 0; 844 struct dirent **namelist = NULL; 845 int i, items = 0; 846 char path[PATH_MAX]; 847 pid_t pid; 848 char *endp; 849 850 if (symbol_conf.default_guest_vmlinux_name || 851 symbol_conf.default_guest_modules || 852 symbol_conf.default_guest_kallsyms) { 853 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 854 } 855 856 if (symbol_conf.guestmount) { 857 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 858 if (items <= 0) 859 return -ENOENT; 860 for (i = 0; i < items; i++) { 861 if (!isdigit(namelist[i]->d_name[0])) { 862 /* Filter out . and .. */ 863 continue; 864 } 865 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 866 if ((*endp != '\0') || 867 (endp == namelist[i]->d_name) || 868 (errno == ERANGE)) { 869 pr_debug("invalid directory (%s). Skipping.\n", 870 namelist[i]->d_name); 871 continue; 872 } 873 sprintf(path, "%s/%s/proc/kallsyms", 874 symbol_conf.guestmount, 875 namelist[i]->d_name); 876 ret = access(path, R_OK); 877 if (ret) { 878 pr_debug("Can't access file %s\n", path); 879 goto failure; 880 } 881 machines__create_kernel_maps(machines, pid); 882 } 883 failure: 884 free(namelist); 885 } 886 887 return ret; 888 } 889 890 void machines__destroy_kernel_maps(struct machines *machines) 891 { 892 struct rb_node *next = rb_first(&machines->guests); 893 894 machine__destroy_kernel_maps(&machines->host); 895 896 while (next) { 897 struct machine *pos = rb_entry(next, struct machine, rb_node); 898 899 next = rb_next(&pos->rb_node); 900 rb_erase(&pos->rb_node, &machines->guests); 901 machine__delete(pos); 902 } 903 } 904 905 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 906 { 907 struct machine *machine = machines__findnew(machines, pid); 908 909 if (machine == NULL) 910 return -1; 911 912 return machine__create_kernel_maps(machine); 913 } 914 915 int __machine__load_kallsyms(struct machine *machine, const char *filename, 916 enum map_type type, bool no_kcore, symbol_filter_t filter) 917 { 918 struct map *map = machine__kernel_map(machine); 919 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore, filter); 920 921 if (ret > 0) { 922 dso__set_loaded(map->dso, type); 923 /* 924 * Since /proc/kallsyms will have multiple sessions for the 925 * kernel, with modules between them, fixup the end of all 926 * sections. 927 */ 928 __map_groups__fixup_end(&machine->kmaps, type); 929 } 930 931 return ret; 932 } 933 934 int machine__load_kallsyms(struct machine *machine, const char *filename, 935 enum map_type type, symbol_filter_t filter) 936 { 937 return __machine__load_kallsyms(machine, filename, type, false, filter); 938 } 939 940 int machine__load_vmlinux_path(struct machine *machine, enum map_type type, 941 symbol_filter_t filter) 942 { 943 struct map *map = machine__kernel_map(machine); 944 int ret = dso__load_vmlinux_path(map->dso, map, filter); 945 946 if (ret > 0) 947 dso__set_loaded(map->dso, type); 948 949 return ret; 950 } 951 952 static void map_groups__fixup_end(struct map_groups *mg) 953 { 954 int i; 955 for (i = 0; i < MAP__NR_TYPES; ++i) 956 __map_groups__fixup_end(mg, i); 957 } 958 959 static char *get_kernel_version(const char *root_dir) 960 { 961 char version[PATH_MAX]; 962 FILE *file; 963 char *name, *tmp; 964 const char *prefix = "Linux version "; 965 966 sprintf(version, "%s/proc/version", root_dir); 967 file = fopen(version, "r"); 968 if (!file) 969 return NULL; 970 971 version[0] = '\0'; 972 tmp = fgets(version, sizeof(version), file); 973 fclose(file); 974 975 name = strstr(version, prefix); 976 if (!name) 977 return NULL; 978 name += strlen(prefix); 979 tmp = strchr(name, ' '); 980 if (tmp) 981 *tmp = '\0'; 982 983 return strdup(name); 984 } 985 986 static bool is_kmod_dso(struct dso *dso) 987 { 988 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 989 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 990 } 991 992 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 993 struct kmod_path *m) 994 { 995 struct map *map; 996 char *long_name; 997 998 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name); 999 if (map == NULL) 1000 return 0; 1001 1002 long_name = strdup(path); 1003 if (long_name == NULL) 1004 return -ENOMEM; 1005 1006 dso__set_long_name(map->dso, long_name, true); 1007 dso__kernel_module_get_build_id(map->dso, ""); 1008 1009 /* 1010 * Full name could reveal us kmod compression, so 1011 * we need to update the symtab_type if needed. 1012 */ 1013 if (m->comp && is_kmod_dso(map->dso)) 1014 map->dso->symtab_type++; 1015 1016 return 0; 1017 } 1018 1019 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1020 const char *dir_name, int depth) 1021 { 1022 struct dirent *dent; 1023 DIR *dir = opendir(dir_name); 1024 int ret = 0; 1025 1026 if (!dir) { 1027 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1028 return -1; 1029 } 1030 1031 while ((dent = readdir(dir)) != NULL) { 1032 char path[PATH_MAX]; 1033 struct stat st; 1034 1035 /*sshfs might return bad dent->d_type, so we have to stat*/ 1036 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1037 if (stat(path, &st)) 1038 continue; 1039 1040 if (S_ISDIR(st.st_mode)) { 1041 if (!strcmp(dent->d_name, ".") || 1042 !strcmp(dent->d_name, "..")) 1043 continue; 1044 1045 /* Do not follow top-level source and build symlinks */ 1046 if (depth == 0) { 1047 if (!strcmp(dent->d_name, "source") || 1048 !strcmp(dent->d_name, "build")) 1049 continue; 1050 } 1051 1052 ret = map_groups__set_modules_path_dir(mg, path, 1053 depth + 1); 1054 if (ret < 0) 1055 goto out; 1056 } else { 1057 struct kmod_path m; 1058 1059 ret = kmod_path__parse_name(&m, dent->d_name); 1060 if (ret) 1061 goto out; 1062 1063 if (m.kmod) 1064 ret = map_groups__set_module_path(mg, path, &m); 1065 1066 free(m.name); 1067 1068 if (ret) 1069 goto out; 1070 } 1071 } 1072 1073 out: 1074 closedir(dir); 1075 return ret; 1076 } 1077 1078 static int machine__set_modules_path(struct machine *machine) 1079 { 1080 char *version; 1081 char modules_path[PATH_MAX]; 1082 1083 version = get_kernel_version(machine->root_dir); 1084 if (!version) 1085 return -1; 1086 1087 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1088 machine->root_dir, version); 1089 free(version); 1090 1091 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1092 } 1093 1094 static int machine__create_module(void *arg, const char *name, u64 start) 1095 { 1096 struct machine *machine = arg; 1097 struct map *map; 1098 1099 map = machine__findnew_module_map(machine, start, name); 1100 if (map == NULL) 1101 return -1; 1102 1103 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1104 1105 return 0; 1106 } 1107 1108 static int machine__create_modules(struct machine *machine) 1109 { 1110 const char *modules; 1111 char path[PATH_MAX]; 1112 1113 if (machine__is_default_guest(machine)) { 1114 modules = symbol_conf.default_guest_modules; 1115 } else { 1116 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1117 modules = path; 1118 } 1119 1120 if (symbol__restricted_filename(modules, "/proc/modules")) 1121 return -1; 1122 1123 if (modules__parse(modules, machine, machine__create_module)) 1124 return -1; 1125 1126 if (!machine__set_modules_path(machine)) 1127 return 0; 1128 1129 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1130 1131 return 0; 1132 } 1133 1134 int machine__create_kernel_maps(struct machine *machine) 1135 { 1136 struct dso *kernel = machine__get_kernel(machine); 1137 const char *name; 1138 u64 addr = machine__get_running_kernel_start(machine, &name); 1139 int ret; 1140 1141 if (!addr || kernel == NULL) 1142 return -1; 1143 1144 ret = __machine__create_kernel_maps(machine, kernel); 1145 dso__put(kernel); 1146 if (ret < 0) 1147 return -1; 1148 1149 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1150 if (machine__is_host(machine)) 1151 pr_debug("Problems creating module maps, " 1152 "continuing anyway...\n"); 1153 else 1154 pr_debug("Problems creating module maps for guest %d, " 1155 "continuing anyway...\n", machine->pid); 1156 } 1157 1158 /* 1159 * Now that we have all the maps created, just set the ->end of them: 1160 */ 1161 map_groups__fixup_end(&machine->kmaps); 1162 1163 if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, 1164 addr)) { 1165 machine__destroy_kernel_maps(machine); 1166 return -1; 1167 } 1168 1169 return 0; 1170 } 1171 1172 static void machine__set_kernel_mmap_len(struct machine *machine, 1173 union perf_event *event) 1174 { 1175 int i; 1176 1177 for (i = 0; i < MAP__NR_TYPES; i++) { 1178 machine->vmlinux_maps[i]->start = event->mmap.start; 1179 machine->vmlinux_maps[i]->end = (event->mmap.start + 1180 event->mmap.len); 1181 /* 1182 * Be a bit paranoid here, some perf.data file came with 1183 * a zero sized synthesized MMAP event for the kernel. 1184 */ 1185 if (machine->vmlinux_maps[i]->end == 0) 1186 machine->vmlinux_maps[i]->end = ~0ULL; 1187 } 1188 } 1189 1190 static bool machine__uses_kcore(struct machine *machine) 1191 { 1192 struct dso *dso; 1193 1194 list_for_each_entry(dso, &machine->dsos.head, node) { 1195 if (dso__is_kcore(dso)) 1196 return true; 1197 } 1198 1199 return false; 1200 } 1201 1202 static int machine__process_kernel_mmap_event(struct machine *machine, 1203 union perf_event *event) 1204 { 1205 struct map *map; 1206 char kmmap_prefix[PATH_MAX]; 1207 enum dso_kernel_type kernel_type; 1208 bool is_kernel_mmap; 1209 1210 /* If we have maps from kcore then we do not need or want any others */ 1211 if (machine__uses_kcore(machine)) 1212 return 0; 1213 1214 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix)); 1215 if (machine__is_host(machine)) 1216 kernel_type = DSO_TYPE_KERNEL; 1217 else 1218 kernel_type = DSO_TYPE_GUEST_KERNEL; 1219 1220 is_kernel_mmap = memcmp(event->mmap.filename, 1221 kmmap_prefix, 1222 strlen(kmmap_prefix) - 1) == 0; 1223 if (event->mmap.filename[0] == '/' || 1224 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1225 map = machine__findnew_module_map(machine, event->mmap.start, 1226 event->mmap.filename); 1227 if (map == NULL) 1228 goto out_problem; 1229 1230 map->end = map->start + event->mmap.len; 1231 } else if (is_kernel_mmap) { 1232 const char *symbol_name = (event->mmap.filename + 1233 strlen(kmmap_prefix)); 1234 /* 1235 * Should be there already, from the build-id table in 1236 * the header. 1237 */ 1238 struct dso *kernel = NULL; 1239 struct dso *dso; 1240 1241 pthread_rwlock_rdlock(&machine->dsos.lock); 1242 1243 list_for_each_entry(dso, &machine->dsos.head, node) { 1244 1245 /* 1246 * The cpumode passed to is_kernel_module is not the 1247 * cpumode of *this* event. If we insist on passing 1248 * correct cpumode to is_kernel_module, we should 1249 * record the cpumode when we adding this dso to the 1250 * linked list. 1251 * 1252 * However we don't really need passing correct 1253 * cpumode. We know the correct cpumode must be kernel 1254 * mode (if not, we should not link it onto kernel_dsos 1255 * list). 1256 * 1257 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1258 * is_kernel_module() treats it as a kernel cpumode. 1259 */ 1260 1261 if (!dso->kernel || 1262 is_kernel_module(dso->long_name, 1263 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1264 continue; 1265 1266 1267 kernel = dso; 1268 break; 1269 } 1270 1271 pthread_rwlock_unlock(&machine->dsos.lock); 1272 1273 if (kernel == NULL) 1274 kernel = machine__findnew_dso(machine, kmmap_prefix); 1275 if (kernel == NULL) 1276 goto out_problem; 1277 1278 kernel->kernel = kernel_type; 1279 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1280 dso__put(kernel); 1281 goto out_problem; 1282 } 1283 1284 if (strstr(kernel->long_name, "vmlinux")) 1285 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1286 1287 machine__set_kernel_mmap_len(machine, event); 1288 1289 /* 1290 * Avoid using a zero address (kptr_restrict) for the ref reloc 1291 * symbol. Effectively having zero here means that at record 1292 * time /proc/sys/kernel/kptr_restrict was non zero. 1293 */ 1294 if (event->mmap.pgoff != 0) { 1295 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, 1296 symbol_name, 1297 event->mmap.pgoff); 1298 } 1299 1300 if (machine__is_default_guest(machine)) { 1301 /* 1302 * preload dso of guest kernel and modules 1303 */ 1304 dso__load(kernel, machine__kernel_map(machine), NULL); 1305 } 1306 } 1307 return 0; 1308 out_problem: 1309 return -1; 1310 } 1311 1312 int machine__process_mmap2_event(struct machine *machine, 1313 union perf_event *event, 1314 struct perf_sample *sample) 1315 { 1316 struct thread *thread; 1317 struct map *map; 1318 enum map_type type; 1319 int ret = 0; 1320 1321 if (dump_trace) 1322 perf_event__fprintf_mmap2(event, stdout); 1323 1324 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1325 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1326 ret = machine__process_kernel_mmap_event(machine, event); 1327 if (ret < 0) 1328 goto out_problem; 1329 return 0; 1330 } 1331 1332 thread = machine__findnew_thread(machine, event->mmap2.pid, 1333 event->mmap2.tid); 1334 if (thread == NULL) 1335 goto out_problem; 1336 1337 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1338 type = MAP__VARIABLE; 1339 else 1340 type = MAP__FUNCTION; 1341 1342 map = map__new(machine, event->mmap2.start, 1343 event->mmap2.len, event->mmap2.pgoff, 1344 event->mmap2.pid, event->mmap2.maj, 1345 event->mmap2.min, event->mmap2.ino, 1346 event->mmap2.ino_generation, 1347 event->mmap2.prot, 1348 event->mmap2.flags, 1349 event->mmap2.filename, type, thread); 1350 1351 if (map == NULL) 1352 goto out_problem_map; 1353 1354 thread__insert_map(thread, map); 1355 thread__put(thread); 1356 map__put(map); 1357 return 0; 1358 1359 out_problem_map: 1360 thread__put(thread); 1361 out_problem: 1362 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1363 return 0; 1364 } 1365 1366 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1367 struct perf_sample *sample) 1368 { 1369 struct thread *thread; 1370 struct map *map; 1371 enum map_type type; 1372 int ret = 0; 1373 1374 if (dump_trace) 1375 perf_event__fprintf_mmap(event, stdout); 1376 1377 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1378 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1379 ret = machine__process_kernel_mmap_event(machine, event); 1380 if (ret < 0) 1381 goto out_problem; 1382 return 0; 1383 } 1384 1385 thread = machine__findnew_thread(machine, event->mmap.pid, 1386 event->mmap.tid); 1387 if (thread == NULL) 1388 goto out_problem; 1389 1390 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1391 type = MAP__VARIABLE; 1392 else 1393 type = MAP__FUNCTION; 1394 1395 map = map__new(machine, event->mmap.start, 1396 event->mmap.len, event->mmap.pgoff, 1397 event->mmap.pid, 0, 0, 0, 0, 0, 0, 1398 event->mmap.filename, 1399 type, thread); 1400 1401 if (map == NULL) 1402 goto out_problem_map; 1403 1404 thread__insert_map(thread, map); 1405 thread__put(thread); 1406 map__put(map); 1407 return 0; 1408 1409 out_problem_map: 1410 thread__put(thread); 1411 out_problem: 1412 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1413 return 0; 1414 } 1415 1416 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1417 { 1418 if (machine->last_match == th) 1419 machine->last_match = NULL; 1420 1421 BUG_ON(atomic_read(&th->refcnt) == 0); 1422 if (lock) 1423 pthread_rwlock_wrlock(&machine->threads_lock); 1424 rb_erase_init(&th->rb_node, &machine->threads); 1425 RB_CLEAR_NODE(&th->rb_node); 1426 --machine->nr_threads; 1427 /* 1428 * Move it first to the dead_threads list, then drop the reference, 1429 * if this is the last reference, then the thread__delete destructor 1430 * will be called and we will remove it from the dead_threads list. 1431 */ 1432 list_add_tail(&th->node, &machine->dead_threads); 1433 if (lock) 1434 pthread_rwlock_unlock(&machine->threads_lock); 1435 thread__put(th); 1436 } 1437 1438 void machine__remove_thread(struct machine *machine, struct thread *th) 1439 { 1440 return __machine__remove_thread(machine, th, true); 1441 } 1442 1443 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1444 struct perf_sample *sample) 1445 { 1446 struct thread *thread = machine__find_thread(machine, 1447 event->fork.pid, 1448 event->fork.tid); 1449 struct thread *parent = machine__findnew_thread(machine, 1450 event->fork.ppid, 1451 event->fork.ptid); 1452 int err = 0; 1453 1454 if (dump_trace) 1455 perf_event__fprintf_task(event, stdout); 1456 1457 /* 1458 * There may be an existing thread that is not actually the parent, 1459 * either because we are processing events out of order, or because the 1460 * (fork) event that would have removed the thread was lost. Assume the 1461 * latter case and continue on as best we can. 1462 */ 1463 if (parent->pid_ != (pid_t)event->fork.ppid) { 1464 dump_printf("removing erroneous parent thread %d/%d\n", 1465 parent->pid_, parent->tid); 1466 machine__remove_thread(machine, parent); 1467 thread__put(parent); 1468 parent = machine__findnew_thread(machine, event->fork.ppid, 1469 event->fork.ptid); 1470 } 1471 1472 /* if a thread currently exists for the thread id remove it */ 1473 if (thread != NULL) { 1474 machine__remove_thread(machine, thread); 1475 thread__put(thread); 1476 } 1477 1478 thread = machine__findnew_thread(machine, event->fork.pid, 1479 event->fork.tid); 1480 1481 if (thread == NULL || parent == NULL || 1482 thread__fork(thread, parent, sample->time) < 0) { 1483 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1484 err = -1; 1485 } 1486 thread__put(thread); 1487 thread__put(parent); 1488 1489 return err; 1490 } 1491 1492 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1493 struct perf_sample *sample __maybe_unused) 1494 { 1495 struct thread *thread = machine__find_thread(machine, 1496 event->fork.pid, 1497 event->fork.tid); 1498 1499 if (dump_trace) 1500 perf_event__fprintf_task(event, stdout); 1501 1502 if (thread != NULL) { 1503 thread__exited(thread); 1504 thread__put(thread); 1505 } 1506 1507 return 0; 1508 } 1509 1510 int machine__process_event(struct machine *machine, union perf_event *event, 1511 struct perf_sample *sample) 1512 { 1513 int ret; 1514 1515 switch (event->header.type) { 1516 case PERF_RECORD_COMM: 1517 ret = machine__process_comm_event(machine, event, sample); break; 1518 case PERF_RECORD_MMAP: 1519 ret = machine__process_mmap_event(machine, event, sample); break; 1520 case PERF_RECORD_MMAP2: 1521 ret = machine__process_mmap2_event(machine, event, sample); break; 1522 case PERF_RECORD_FORK: 1523 ret = machine__process_fork_event(machine, event, sample); break; 1524 case PERF_RECORD_EXIT: 1525 ret = machine__process_exit_event(machine, event, sample); break; 1526 case PERF_RECORD_LOST: 1527 ret = machine__process_lost_event(machine, event, sample); break; 1528 case PERF_RECORD_AUX: 1529 ret = machine__process_aux_event(machine, event); break; 1530 case PERF_RECORD_ITRACE_START: 1531 ret = machine__process_itrace_start_event(machine, event); break; 1532 case PERF_RECORD_LOST_SAMPLES: 1533 ret = machine__process_lost_samples_event(machine, event, sample); break; 1534 case PERF_RECORD_SWITCH: 1535 case PERF_RECORD_SWITCH_CPU_WIDE: 1536 ret = machine__process_switch_event(machine, event); break; 1537 default: 1538 ret = -1; 1539 break; 1540 } 1541 1542 return ret; 1543 } 1544 1545 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1546 { 1547 if (sym->name && !regexec(regex, sym->name, 0, NULL, 0)) 1548 return 1; 1549 return 0; 1550 } 1551 1552 static void ip__resolve_ams(struct thread *thread, 1553 struct addr_map_symbol *ams, 1554 u64 ip) 1555 { 1556 struct addr_location al; 1557 1558 memset(&al, 0, sizeof(al)); 1559 /* 1560 * We cannot use the header.misc hint to determine whether a 1561 * branch stack address is user, kernel, guest, hypervisor. 1562 * Branches may straddle the kernel/user/hypervisor boundaries. 1563 * Thus, we have to try consecutively until we find a match 1564 * or else, the symbol is unknown 1565 */ 1566 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al); 1567 1568 ams->addr = ip; 1569 ams->al_addr = al.addr; 1570 ams->sym = al.sym; 1571 ams->map = al.map; 1572 } 1573 1574 static void ip__resolve_data(struct thread *thread, 1575 u8 m, struct addr_map_symbol *ams, u64 addr) 1576 { 1577 struct addr_location al; 1578 1579 memset(&al, 0, sizeof(al)); 1580 1581 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al); 1582 if (al.map == NULL) { 1583 /* 1584 * some shared data regions have execute bit set which puts 1585 * their mapping in the MAP__FUNCTION type array. 1586 * Check there as a fallback option before dropping the sample. 1587 */ 1588 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al); 1589 } 1590 1591 ams->addr = addr; 1592 ams->al_addr = al.addr; 1593 ams->sym = al.sym; 1594 ams->map = al.map; 1595 } 1596 1597 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1598 struct addr_location *al) 1599 { 1600 struct mem_info *mi = zalloc(sizeof(*mi)); 1601 1602 if (!mi) 1603 return NULL; 1604 1605 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1606 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr); 1607 mi->data_src.val = sample->data_src; 1608 1609 return mi; 1610 } 1611 1612 static int add_callchain_ip(struct thread *thread, 1613 struct callchain_cursor *cursor, 1614 struct symbol **parent, 1615 struct addr_location *root_al, 1616 u8 *cpumode, 1617 u64 ip) 1618 { 1619 struct addr_location al; 1620 1621 al.filtered = 0; 1622 al.sym = NULL; 1623 if (!cpumode) { 1624 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, 1625 ip, &al); 1626 } else { 1627 if (ip >= PERF_CONTEXT_MAX) { 1628 switch (ip) { 1629 case PERF_CONTEXT_HV: 1630 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 1631 break; 1632 case PERF_CONTEXT_KERNEL: 1633 *cpumode = PERF_RECORD_MISC_KERNEL; 1634 break; 1635 case PERF_CONTEXT_USER: 1636 *cpumode = PERF_RECORD_MISC_USER; 1637 break; 1638 default: 1639 pr_debug("invalid callchain context: " 1640 "%"PRId64"\n", (s64) ip); 1641 /* 1642 * It seems the callchain is corrupted. 1643 * Discard all. 1644 */ 1645 callchain_cursor_reset(cursor); 1646 return 1; 1647 } 1648 return 0; 1649 } 1650 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION, 1651 ip, &al); 1652 } 1653 1654 if (al.sym != NULL) { 1655 if (perf_hpp_list.parent && !*parent && 1656 symbol__match_regex(al.sym, &parent_regex)) 1657 *parent = al.sym; 1658 else if (have_ignore_callees && root_al && 1659 symbol__match_regex(al.sym, &ignore_callees_regex)) { 1660 /* Treat this symbol as the root, 1661 forgetting its callees. */ 1662 *root_al = al; 1663 callchain_cursor_reset(cursor); 1664 } 1665 } 1666 1667 if (symbol_conf.hide_unresolved && al.sym == NULL) 1668 return 0; 1669 return callchain_cursor_append(cursor, al.addr, al.map, al.sym); 1670 } 1671 1672 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 1673 struct addr_location *al) 1674 { 1675 unsigned int i; 1676 const struct branch_stack *bs = sample->branch_stack; 1677 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 1678 1679 if (!bi) 1680 return NULL; 1681 1682 for (i = 0; i < bs->nr; i++) { 1683 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 1684 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 1685 bi[i].flags = bs->entries[i].flags; 1686 } 1687 return bi; 1688 } 1689 1690 #define CHASHSZ 127 1691 #define CHASHBITS 7 1692 #define NO_ENTRY 0xff 1693 1694 #define PERF_MAX_BRANCH_DEPTH 127 1695 1696 /* Remove loops. */ 1697 static int remove_loops(struct branch_entry *l, int nr) 1698 { 1699 int i, j, off; 1700 unsigned char chash[CHASHSZ]; 1701 1702 memset(chash, NO_ENTRY, sizeof(chash)); 1703 1704 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 1705 1706 for (i = 0; i < nr; i++) { 1707 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 1708 1709 /* no collision handling for now */ 1710 if (chash[h] == NO_ENTRY) { 1711 chash[h] = i; 1712 } else if (l[chash[h]].from == l[i].from) { 1713 bool is_loop = true; 1714 /* check if it is a real loop */ 1715 off = 0; 1716 for (j = chash[h]; j < i && i + off < nr; j++, off++) 1717 if (l[j].from != l[i + off].from) { 1718 is_loop = false; 1719 break; 1720 } 1721 if (is_loop) { 1722 memmove(l + i, l + i + off, 1723 (nr - (i + off)) * sizeof(*l)); 1724 nr -= off; 1725 } 1726 } 1727 } 1728 return nr; 1729 } 1730 1731 /* 1732 * Recolve LBR callstack chain sample 1733 * Return: 1734 * 1 on success get LBR callchain information 1735 * 0 no available LBR callchain information, should try fp 1736 * negative error code on other errors. 1737 */ 1738 static int resolve_lbr_callchain_sample(struct thread *thread, 1739 struct callchain_cursor *cursor, 1740 struct perf_sample *sample, 1741 struct symbol **parent, 1742 struct addr_location *root_al, 1743 int max_stack) 1744 { 1745 struct ip_callchain *chain = sample->callchain; 1746 int chain_nr = min(max_stack, (int)chain->nr); 1747 u8 cpumode = PERF_RECORD_MISC_USER; 1748 int i, j, err; 1749 u64 ip; 1750 1751 for (i = 0; i < chain_nr; i++) { 1752 if (chain->ips[i] == PERF_CONTEXT_USER) 1753 break; 1754 } 1755 1756 /* LBR only affects the user callchain */ 1757 if (i != chain_nr) { 1758 struct branch_stack *lbr_stack = sample->branch_stack; 1759 int lbr_nr = lbr_stack->nr; 1760 /* 1761 * LBR callstack can only get user call chain. 1762 * The mix_chain_nr is kernel call chain 1763 * number plus LBR user call chain number. 1764 * i is kernel call chain number, 1765 * 1 is PERF_CONTEXT_USER, 1766 * lbr_nr + 1 is the user call chain number. 1767 * For details, please refer to the comments 1768 * in callchain__printf 1769 */ 1770 int mix_chain_nr = i + 1 + lbr_nr + 1; 1771 1772 if (mix_chain_nr > (int)sysctl_perf_event_max_stack + PERF_MAX_BRANCH_DEPTH) { 1773 pr_warning("corrupted callchain. skipping...\n"); 1774 return 0; 1775 } 1776 1777 for (j = 0; j < mix_chain_nr; j++) { 1778 if (callchain_param.order == ORDER_CALLEE) { 1779 if (j < i + 1) 1780 ip = chain->ips[j]; 1781 else if (j > i + 1) 1782 ip = lbr_stack->entries[j - i - 2].from; 1783 else 1784 ip = lbr_stack->entries[0].to; 1785 } else { 1786 if (j < lbr_nr) 1787 ip = lbr_stack->entries[lbr_nr - j - 1].from; 1788 else if (j > lbr_nr) 1789 ip = chain->ips[i + 1 - (j - lbr_nr)]; 1790 else 1791 ip = lbr_stack->entries[0].to; 1792 } 1793 1794 err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip); 1795 if (err) 1796 return (err < 0) ? err : 0; 1797 } 1798 return 1; 1799 } 1800 1801 return 0; 1802 } 1803 1804 static int thread__resolve_callchain_sample(struct thread *thread, 1805 struct callchain_cursor *cursor, 1806 struct perf_evsel *evsel, 1807 struct perf_sample *sample, 1808 struct symbol **parent, 1809 struct addr_location *root_al, 1810 int max_stack) 1811 { 1812 struct branch_stack *branch = sample->branch_stack; 1813 struct ip_callchain *chain = sample->callchain; 1814 int chain_nr = min(max_stack, (int)chain->nr); 1815 u8 cpumode = PERF_RECORD_MISC_USER; 1816 int i, j, err; 1817 int skip_idx = -1; 1818 int first_call = 0; 1819 1820 if (perf_evsel__has_branch_callstack(evsel)) { 1821 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 1822 root_al, max_stack); 1823 if (err) 1824 return (err < 0) ? err : 0; 1825 } 1826 1827 /* 1828 * Based on DWARF debug information, some architectures skip 1829 * a callchain entry saved by the kernel. 1830 */ 1831 if (chain->nr < sysctl_perf_event_max_stack) 1832 skip_idx = arch_skip_callchain_idx(thread, chain); 1833 1834 /* 1835 * Add branches to call stack for easier browsing. This gives 1836 * more context for a sample than just the callers. 1837 * 1838 * This uses individual histograms of paths compared to the 1839 * aggregated histograms the normal LBR mode uses. 1840 * 1841 * Limitations for now: 1842 * - No extra filters 1843 * - No annotations (should annotate somehow) 1844 */ 1845 1846 if (branch && callchain_param.branch_callstack) { 1847 int nr = min(max_stack, (int)branch->nr); 1848 struct branch_entry be[nr]; 1849 1850 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 1851 pr_warning("corrupted branch chain. skipping...\n"); 1852 goto check_calls; 1853 } 1854 1855 for (i = 0; i < nr; i++) { 1856 if (callchain_param.order == ORDER_CALLEE) { 1857 be[i] = branch->entries[i]; 1858 /* 1859 * Check for overlap into the callchain. 1860 * The return address is one off compared to 1861 * the branch entry. To adjust for this 1862 * assume the calling instruction is not longer 1863 * than 8 bytes. 1864 */ 1865 if (i == skip_idx || 1866 chain->ips[first_call] >= PERF_CONTEXT_MAX) 1867 first_call++; 1868 else if (be[i].from < chain->ips[first_call] && 1869 be[i].from >= chain->ips[first_call] - 8) 1870 first_call++; 1871 } else 1872 be[i] = branch->entries[branch->nr - i - 1]; 1873 } 1874 1875 nr = remove_loops(be, nr); 1876 1877 for (i = 0; i < nr; i++) { 1878 err = add_callchain_ip(thread, cursor, parent, root_al, 1879 NULL, be[i].to); 1880 if (!err) 1881 err = add_callchain_ip(thread, cursor, parent, root_al, 1882 NULL, be[i].from); 1883 if (err == -EINVAL) 1884 break; 1885 if (err) 1886 return err; 1887 } 1888 chain_nr -= nr; 1889 } 1890 1891 check_calls: 1892 if (chain->nr > sysctl_perf_event_max_stack && (int)chain->nr > max_stack) { 1893 pr_warning("corrupted callchain. skipping...\n"); 1894 return 0; 1895 } 1896 1897 for (i = first_call; i < chain_nr; i++) { 1898 u64 ip; 1899 1900 if (callchain_param.order == ORDER_CALLEE) 1901 j = i; 1902 else 1903 j = chain->nr - i - 1; 1904 1905 #ifdef HAVE_SKIP_CALLCHAIN_IDX 1906 if (j == skip_idx) 1907 continue; 1908 #endif 1909 ip = chain->ips[j]; 1910 1911 err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip); 1912 1913 if (err) 1914 return (err < 0) ? err : 0; 1915 } 1916 1917 return 0; 1918 } 1919 1920 static int unwind_entry(struct unwind_entry *entry, void *arg) 1921 { 1922 struct callchain_cursor *cursor = arg; 1923 1924 if (symbol_conf.hide_unresolved && entry->sym == NULL) 1925 return 0; 1926 return callchain_cursor_append(cursor, entry->ip, 1927 entry->map, entry->sym); 1928 } 1929 1930 static int thread__resolve_callchain_unwind(struct thread *thread, 1931 struct callchain_cursor *cursor, 1932 struct perf_evsel *evsel, 1933 struct perf_sample *sample, 1934 int max_stack) 1935 { 1936 /* Can we do dwarf post unwind? */ 1937 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 1938 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 1939 return 0; 1940 1941 /* Bail out if nothing was captured. */ 1942 if ((!sample->user_regs.regs) || 1943 (!sample->user_stack.size)) 1944 return 0; 1945 1946 return unwind__get_entries(unwind_entry, cursor, 1947 thread, sample, max_stack); 1948 } 1949 1950 int thread__resolve_callchain(struct thread *thread, 1951 struct callchain_cursor *cursor, 1952 struct perf_evsel *evsel, 1953 struct perf_sample *sample, 1954 struct symbol **parent, 1955 struct addr_location *root_al, 1956 int max_stack) 1957 { 1958 int ret = 0; 1959 1960 callchain_cursor_reset(&callchain_cursor); 1961 1962 if (callchain_param.order == ORDER_CALLEE) { 1963 ret = thread__resolve_callchain_sample(thread, cursor, 1964 evsel, sample, 1965 parent, root_al, 1966 max_stack); 1967 if (ret) 1968 return ret; 1969 ret = thread__resolve_callchain_unwind(thread, cursor, 1970 evsel, sample, 1971 max_stack); 1972 } else { 1973 ret = thread__resolve_callchain_unwind(thread, cursor, 1974 evsel, sample, 1975 max_stack); 1976 if (ret) 1977 return ret; 1978 ret = thread__resolve_callchain_sample(thread, cursor, 1979 evsel, sample, 1980 parent, root_al, 1981 max_stack); 1982 } 1983 1984 return ret; 1985 } 1986 1987 int machine__for_each_thread(struct machine *machine, 1988 int (*fn)(struct thread *thread, void *p), 1989 void *priv) 1990 { 1991 struct rb_node *nd; 1992 struct thread *thread; 1993 int rc = 0; 1994 1995 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 1996 thread = rb_entry(nd, struct thread, rb_node); 1997 rc = fn(thread, priv); 1998 if (rc != 0) 1999 return rc; 2000 } 2001 2002 list_for_each_entry(thread, &machine->dead_threads, node) { 2003 rc = fn(thread, priv); 2004 if (rc != 0) 2005 return rc; 2006 } 2007 return rc; 2008 } 2009 2010 int machines__for_each_thread(struct machines *machines, 2011 int (*fn)(struct thread *thread, void *p), 2012 void *priv) 2013 { 2014 struct rb_node *nd; 2015 int rc = 0; 2016 2017 rc = machine__for_each_thread(&machines->host, fn, priv); 2018 if (rc != 0) 2019 return rc; 2020 2021 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 2022 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2023 2024 rc = machine__for_each_thread(machine, fn, priv); 2025 if (rc != 0) 2026 return rc; 2027 } 2028 return rc; 2029 } 2030 2031 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2032 struct target *target, struct thread_map *threads, 2033 perf_event__handler_t process, bool data_mmap, 2034 unsigned int proc_map_timeout) 2035 { 2036 if (target__has_task(target)) 2037 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout); 2038 else if (target__has_cpu(target)) 2039 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout); 2040 /* command specified */ 2041 return 0; 2042 } 2043 2044 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2045 { 2046 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 2047 return -1; 2048 2049 return machine->current_tid[cpu]; 2050 } 2051 2052 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2053 pid_t tid) 2054 { 2055 struct thread *thread; 2056 2057 if (cpu < 0) 2058 return -EINVAL; 2059 2060 if (!machine->current_tid) { 2061 int i; 2062 2063 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 2064 if (!machine->current_tid) 2065 return -ENOMEM; 2066 for (i = 0; i < MAX_NR_CPUS; i++) 2067 machine->current_tid[i] = -1; 2068 } 2069 2070 if (cpu >= MAX_NR_CPUS) { 2071 pr_err("Requested CPU %d too large. ", cpu); 2072 pr_err("Consider raising MAX_NR_CPUS\n"); 2073 return -EINVAL; 2074 } 2075 2076 machine->current_tid[cpu] = tid; 2077 2078 thread = machine__findnew_thread(machine, pid, tid); 2079 if (!thread) 2080 return -ENOMEM; 2081 2082 thread->cpu = cpu; 2083 thread__put(thread); 2084 2085 return 0; 2086 } 2087 2088 int machine__get_kernel_start(struct machine *machine) 2089 { 2090 struct map *map = machine__kernel_map(machine); 2091 int err = 0; 2092 2093 /* 2094 * The only addresses above 2^63 are kernel addresses of a 64-bit 2095 * kernel. Note that addresses are unsigned so that on a 32-bit system 2096 * all addresses including kernel addresses are less than 2^32. In 2097 * that case (32-bit system), if the kernel mapping is unknown, all 2098 * addresses will be assumed to be in user space - see 2099 * machine__kernel_ip(). 2100 */ 2101 machine->kernel_start = 1ULL << 63; 2102 if (map) { 2103 err = map__load(map, machine->symbol_filter); 2104 if (map->start) 2105 machine->kernel_start = map->start; 2106 } 2107 return err; 2108 } 2109 2110 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2111 { 2112 return dsos__findnew(&machine->dsos, filename); 2113 } 2114 2115 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2116 { 2117 struct machine *machine = vmachine; 2118 struct map *map; 2119 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map, NULL); 2120 2121 if (sym == NULL) 2122 return NULL; 2123 2124 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2125 *addrp = map->unmap_ip(map, sym->start); 2126 return sym->name; 2127 } 2128