xref: /linux/tools/perf/util/machine.c (revision 0d08df6c493898e679d9c517e77ea95c063d40ec)
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16 
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18 
19 static void dsos__init(struct dsos *dsos)
20 {
21 	INIT_LIST_HEAD(&dsos->head);
22 	dsos->root = RB_ROOT;
23 	pthread_rwlock_init(&dsos->lock, NULL);
24 }
25 
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 	memset(machine, 0, sizeof(*machine));
29 	map_groups__init(&machine->kmaps, machine);
30 	RB_CLEAR_NODE(&machine->rb_node);
31 	dsos__init(&machine->dsos);
32 
33 	machine->threads = RB_ROOT;
34 	pthread_rwlock_init(&machine->threads_lock, NULL);
35 	machine->nr_threads = 0;
36 	INIT_LIST_HEAD(&machine->dead_threads);
37 	machine->last_match = NULL;
38 
39 	machine->vdso_info = NULL;
40 	machine->env = NULL;
41 
42 	machine->pid = pid;
43 
44 	machine->symbol_filter = NULL;
45 	machine->id_hdr_size = 0;
46 	machine->comm_exec = false;
47 	machine->kernel_start = 0;
48 
49 	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
50 
51 	machine->root_dir = strdup(root_dir);
52 	if (machine->root_dir == NULL)
53 		return -ENOMEM;
54 
55 	if (pid != HOST_KERNEL_ID) {
56 		struct thread *thread = machine__findnew_thread(machine, -1,
57 								pid);
58 		char comm[64];
59 
60 		if (thread == NULL)
61 			return -ENOMEM;
62 
63 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
64 		thread__set_comm(thread, comm, 0);
65 		thread__put(thread);
66 	}
67 
68 	machine->current_tid = NULL;
69 
70 	return 0;
71 }
72 
73 struct machine *machine__new_host(void)
74 {
75 	struct machine *machine = malloc(sizeof(*machine));
76 
77 	if (machine != NULL) {
78 		machine__init(machine, "", HOST_KERNEL_ID);
79 
80 		if (machine__create_kernel_maps(machine) < 0)
81 			goto out_delete;
82 	}
83 
84 	return machine;
85 out_delete:
86 	free(machine);
87 	return NULL;
88 }
89 
90 static void dsos__purge(struct dsos *dsos)
91 {
92 	struct dso *pos, *n;
93 
94 	pthread_rwlock_wrlock(&dsos->lock);
95 
96 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
97 		RB_CLEAR_NODE(&pos->rb_node);
98 		pos->root = NULL;
99 		list_del_init(&pos->node);
100 		dso__put(pos);
101 	}
102 
103 	pthread_rwlock_unlock(&dsos->lock);
104 }
105 
106 static void dsos__exit(struct dsos *dsos)
107 {
108 	dsos__purge(dsos);
109 	pthread_rwlock_destroy(&dsos->lock);
110 }
111 
112 void machine__delete_threads(struct machine *machine)
113 {
114 	struct rb_node *nd;
115 
116 	pthread_rwlock_wrlock(&machine->threads_lock);
117 	nd = rb_first(&machine->threads);
118 	while (nd) {
119 		struct thread *t = rb_entry(nd, struct thread, rb_node);
120 
121 		nd = rb_next(nd);
122 		__machine__remove_thread(machine, t, false);
123 	}
124 	pthread_rwlock_unlock(&machine->threads_lock);
125 }
126 
127 void machine__exit(struct machine *machine)
128 {
129 	machine__destroy_kernel_maps(machine);
130 	map_groups__exit(&machine->kmaps);
131 	dsos__exit(&machine->dsos);
132 	machine__exit_vdso(machine);
133 	zfree(&machine->root_dir);
134 	zfree(&machine->current_tid);
135 	pthread_rwlock_destroy(&machine->threads_lock);
136 }
137 
138 void machine__delete(struct machine *machine)
139 {
140 	machine__exit(machine);
141 	free(machine);
142 }
143 
144 void machines__init(struct machines *machines)
145 {
146 	machine__init(&machines->host, "", HOST_KERNEL_ID);
147 	machines->guests = RB_ROOT;
148 	machines->symbol_filter = NULL;
149 }
150 
151 void machines__exit(struct machines *machines)
152 {
153 	machine__exit(&machines->host);
154 	/* XXX exit guest */
155 }
156 
157 struct machine *machines__add(struct machines *machines, pid_t pid,
158 			      const char *root_dir)
159 {
160 	struct rb_node **p = &machines->guests.rb_node;
161 	struct rb_node *parent = NULL;
162 	struct machine *pos, *machine = malloc(sizeof(*machine));
163 
164 	if (machine == NULL)
165 		return NULL;
166 
167 	if (machine__init(machine, root_dir, pid) != 0) {
168 		free(machine);
169 		return NULL;
170 	}
171 
172 	machine->symbol_filter = machines->symbol_filter;
173 
174 	while (*p != NULL) {
175 		parent = *p;
176 		pos = rb_entry(parent, struct machine, rb_node);
177 		if (pid < pos->pid)
178 			p = &(*p)->rb_left;
179 		else
180 			p = &(*p)->rb_right;
181 	}
182 
183 	rb_link_node(&machine->rb_node, parent, p);
184 	rb_insert_color(&machine->rb_node, &machines->guests);
185 
186 	return machine;
187 }
188 
189 void machines__set_symbol_filter(struct machines *machines,
190 				 symbol_filter_t symbol_filter)
191 {
192 	struct rb_node *nd;
193 
194 	machines->symbol_filter = symbol_filter;
195 	machines->host.symbol_filter = symbol_filter;
196 
197 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
198 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
199 
200 		machine->symbol_filter = symbol_filter;
201 	}
202 }
203 
204 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
205 {
206 	struct rb_node *nd;
207 
208 	machines->host.comm_exec = comm_exec;
209 
210 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
211 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
212 
213 		machine->comm_exec = comm_exec;
214 	}
215 }
216 
217 struct machine *machines__find(struct machines *machines, pid_t pid)
218 {
219 	struct rb_node **p = &machines->guests.rb_node;
220 	struct rb_node *parent = NULL;
221 	struct machine *machine;
222 	struct machine *default_machine = NULL;
223 
224 	if (pid == HOST_KERNEL_ID)
225 		return &machines->host;
226 
227 	while (*p != NULL) {
228 		parent = *p;
229 		machine = rb_entry(parent, struct machine, rb_node);
230 		if (pid < machine->pid)
231 			p = &(*p)->rb_left;
232 		else if (pid > machine->pid)
233 			p = &(*p)->rb_right;
234 		else
235 			return machine;
236 		if (!machine->pid)
237 			default_machine = machine;
238 	}
239 
240 	return default_machine;
241 }
242 
243 struct machine *machines__findnew(struct machines *machines, pid_t pid)
244 {
245 	char path[PATH_MAX];
246 	const char *root_dir = "";
247 	struct machine *machine = machines__find(machines, pid);
248 
249 	if (machine && (machine->pid == pid))
250 		goto out;
251 
252 	if ((pid != HOST_KERNEL_ID) &&
253 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
254 	    (symbol_conf.guestmount)) {
255 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
256 		if (access(path, R_OK)) {
257 			static struct strlist *seen;
258 
259 			if (!seen)
260 				seen = strlist__new(NULL, NULL);
261 
262 			if (!strlist__has_entry(seen, path)) {
263 				pr_err("Can't access file %s\n", path);
264 				strlist__add(seen, path);
265 			}
266 			machine = NULL;
267 			goto out;
268 		}
269 		root_dir = path;
270 	}
271 
272 	machine = machines__add(machines, pid, root_dir);
273 out:
274 	return machine;
275 }
276 
277 void machines__process_guests(struct machines *machines,
278 			      machine__process_t process, void *data)
279 {
280 	struct rb_node *nd;
281 
282 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
283 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
284 		process(pos, data);
285 	}
286 }
287 
288 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
289 {
290 	if (machine__is_host(machine))
291 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
292 	else if (machine__is_default_guest(machine))
293 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
294 	else {
295 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
296 			 machine->pid);
297 	}
298 
299 	return bf;
300 }
301 
302 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
303 {
304 	struct rb_node *node;
305 	struct machine *machine;
306 
307 	machines->host.id_hdr_size = id_hdr_size;
308 
309 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
310 		machine = rb_entry(node, struct machine, rb_node);
311 		machine->id_hdr_size = id_hdr_size;
312 	}
313 
314 	return;
315 }
316 
317 static void machine__update_thread_pid(struct machine *machine,
318 				       struct thread *th, pid_t pid)
319 {
320 	struct thread *leader;
321 
322 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
323 		return;
324 
325 	th->pid_ = pid;
326 
327 	if (th->pid_ == th->tid)
328 		return;
329 
330 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
331 	if (!leader)
332 		goto out_err;
333 
334 	if (!leader->mg)
335 		leader->mg = map_groups__new(machine);
336 
337 	if (!leader->mg)
338 		goto out_err;
339 
340 	if (th->mg == leader->mg)
341 		return;
342 
343 	if (th->mg) {
344 		/*
345 		 * Maps are created from MMAP events which provide the pid and
346 		 * tid.  Consequently there never should be any maps on a thread
347 		 * with an unknown pid.  Just print an error if there are.
348 		 */
349 		if (!map_groups__empty(th->mg))
350 			pr_err("Discarding thread maps for %d:%d\n",
351 			       th->pid_, th->tid);
352 		map_groups__put(th->mg);
353 	}
354 
355 	th->mg = map_groups__get(leader->mg);
356 out_put:
357 	thread__put(leader);
358 	return;
359 out_err:
360 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
361 	goto out_put;
362 }
363 
364 /*
365  * Caller must eventually drop thread->refcnt returned with a successful
366  * lookup/new thread inserted.
367  */
368 static struct thread *____machine__findnew_thread(struct machine *machine,
369 						  pid_t pid, pid_t tid,
370 						  bool create)
371 {
372 	struct rb_node **p = &machine->threads.rb_node;
373 	struct rb_node *parent = NULL;
374 	struct thread *th;
375 
376 	/*
377 	 * Front-end cache - TID lookups come in blocks,
378 	 * so most of the time we dont have to look up
379 	 * the full rbtree:
380 	 */
381 	th = machine->last_match;
382 	if (th != NULL) {
383 		if (th->tid == tid) {
384 			machine__update_thread_pid(machine, th, pid);
385 			return thread__get(th);
386 		}
387 
388 		machine->last_match = NULL;
389 	}
390 
391 	while (*p != NULL) {
392 		parent = *p;
393 		th = rb_entry(parent, struct thread, rb_node);
394 
395 		if (th->tid == tid) {
396 			machine->last_match = th;
397 			machine__update_thread_pid(machine, th, pid);
398 			return thread__get(th);
399 		}
400 
401 		if (tid < th->tid)
402 			p = &(*p)->rb_left;
403 		else
404 			p = &(*p)->rb_right;
405 	}
406 
407 	if (!create)
408 		return NULL;
409 
410 	th = thread__new(pid, tid);
411 	if (th != NULL) {
412 		rb_link_node(&th->rb_node, parent, p);
413 		rb_insert_color(&th->rb_node, &machine->threads);
414 
415 		/*
416 		 * We have to initialize map_groups separately
417 		 * after rb tree is updated.
418 		 *
419 		 * The reason is that we call machine__findnew_thread
420 		 * within thread__init_map_groups to find the thread
421 		 * leader and that would screwed the rb tree.
422 		 */
423 		if (thread__init_map_groups(th, machine)) {
424 			rb_erase_init(&th->rb_node, &machine->threads);
425 			RB_CLEAR_NODE(&th->rb_node);
426 			thread__put(th);
427 			return NULL;
428 		}
429 		/*
430 		 * It is now in the rbtree, get a ref
431 		 */
432 		thread__get(th);
433 		machine->last_match = th;
434 		++machine->nr_threads;
435 	}
436 
437 	return th;
438 }
439 
440 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
441 {
442 	return ____machine__findnew_thread(machine, pid, tid, true);
443 }
444 
445 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
446 				       pid_t tid)
447 {
448 	struct thread *th;
449 
450 	pthread_rwlock_wrlock(&machine->threads_lock);
451 	th = __machine__findnew_thread(machine, pid, tid);
452 	pthread_rwlock_unlock(&machine->threads_lock);
453 	return th;
454 }
455 
456 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
457 				    pid_t tid)
458 {
459 	struct thread *th;
460 	pthread_rwlock_rdlock(&machine->threads_lock);
461 	th =  ____machine__findnew_thread(machine, pid, tid, false);
462 	pthread_rwlock_unlock(&machine->threads_lock);
463 	return th;
464 }
465 
466 struct comm *machine__thread_exec_comm(struct machine *machine,
467 				       struct thread *thread)
468 {
469 	if (machine->comm_exec)
470 		return thread__exec_comm(thread);
471 	else
472 		return thread__comm(thread);
473 }
474 
475 int machine__process_comm_event(struct machine *machine, union perf_event *event,
476 				struct perf_sample *sample)
477 {
478 	struct thread *thread = machine__findnew_thread(machine,
479 							event->comm.pid,
480 							event->comm.tid);
481 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
482 	int err = 0;
483 
484 	if (exec)
485 		machine->comm_exec = true;
486 
487 	if (dump_trace)
488 		perf_event__fprintf_comm(event, stdout);
489 
490 	if (thread == NULL ||
491 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
492 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
493 		err = -1;
494 	}
495 
496 	thread__put(thread);
497 
498 	return err;
499 }
500 
501 int machine__process_lost_event(struct machine *machine __maybe_unused,
502 				union perf_event *event, struct perf_sample *sample __maybe_unused)
503 {
504 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
505 		    event->lost.id, event->lost.lost);
506 	return 0;
507 }
508 
509 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
510 					union perf_event *event, struct perf_sample *sample)
511 {
512 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
513 		    sample->id, event->lost_samples.lost);
514 	return 0;
515 }
516 
517 static struct dso *machine__findnew_module_dso(struct machine *machine,
518 					       struct kmod_path *m,
519 					       const char *filename)
520 {
521 	struct dso *dso;
522 
523 	pthread_rwlock_wrlock(&machine->dsos.lock);
524 
525 	dso = __dsos__find(&machine->dsos, m->name, true);
526 	if (!dso) {
527 		dso = __dsos__addnew(&machine->dsos, m->name);
528 		if (dso == NULL)
529 			goto out_unlock;
530 
531 		if (machine__is_host(machine))
532 			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
533 		else
534 			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
535 
536 		/* _KMODULE_COMP should be next to _KMODULE */
537 		if (m->kmod && m->comp)
538 			dso->symtab_type++;
539 
540 		dso__set_short_name(dso, strdup(m->name), true);
541 		dso__set_long_name(dso, strdup(filename), true);
542 	}
543 
544 	dso__get(dso);
545 out_unlock:
546 	pthread_rwlock_unlock(&machine->dsos.lock);
547 	return dso;
548 }
549 
550 int machine__process_aux_event(struct machine *machine __maybe_unused,
551 			       union perf_event *event)
552 {
553 	if (dump_trace)
554 		perf_event__fprintf_aux(event, stdout);
555 	return 0;
556 }
557 
558 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
559 					union perf_event *event)
560 {
561 	if (dump_trace)
562 		perf_event__fprintf_itrace_start(event, stdout);
563 	return 0;
564 }
565 
566 int machine__process_switch_event(struct machine *machine __maybe_unused,
567 				  union perf_event *event)
568 {
569 	if (dump_trace)
570 		perf_event__fprintf_switch(event, stdout);
571 	return 0;
572 }
573 
574 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
575 {
576 	const char *dup_filename;
577 
578 	if (!filename || !dso || !dso->long_name)
579 		return;
580 	if (dso->long_name[0] != '[')
581 		return;
582 	if (!strchr(filename, '/'))
583 		return;
584 
585 	dup_filename = strdup(filename);
586 	if (!dup_filename)
587 		return;
588 
589 	dso__set_long_name(dso, dup_filename, true);
590 }
591 
592 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
593 					const char *filename)
594 {
595 	struct map *map = NULL;
596 	struct dso *dso = NULL;
597 	struct kmod_path m;
598 
599 	if (kmod_path__parse_name(&m, filename))
600 		return NULL;
601 
602 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
603 				       m.name);
604 	if (map) {
605 		/*
606 		 * If the map's dso is an offline module, give dso__load()
607 		 * a chance to find the file path of that module by fixing
608 		 * long_name.
609 		 */
610 		dso__adjust_kmod_long_name(map->dso, filename);
611 		goto out;
612 	}
613 
614 	dso = machine__findnew_module_dso(machine, &m, filename);
615 	if (dso == NULL)
616 		goto out;
617 
618 	map = map__new2(start, dso, MAP__FUNCTION);
619 	if (map == NULL)
620 		goto out;
621 
622 	map_groups__insert(&machine->kmaps, map);
623 
624 	/* Put the map here because map_groups__insert alread got it */
625 	map__put(map);
626 out:
627 	/* put the dso here, corresponding to  machine__findnew_module_dso */
628 	dso__put(dso);
629 	free(m.name);
630 	return map;
631 }
632 
633 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
634 {
635 	struct rb_node *nd;
636 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
637 
638 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
639 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
640 		ret += __dsos__fprintf(&pos->dsos.head, fp);
641 	}
642 
643 	return ret;
644 }
645 
646 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
647 				     bool (skip)(struct dso *dso, int parm), int parm)
648 {
649 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
650 }
651 
652 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
653 				     bool (skip)(struct dso *dso, int parm), int parm)
654 {
655 	struct rb_node *nd;
656 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
657 
658 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
659 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
660 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
661 	}
662 	return ret;
663 }
664 
665 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
666 {
667 	int i;
668 	size_t printed = 0;
669 	struct dso *kdso = machine__kernel_map(machine)->dso;
670 
671 	if (kdso->has_build_id) {
672 		char filename[PATH_MAX];
673 		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
674 			printed += fprintf(fp, "[0] %s\n", filename);
675 	}
676 
677 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
678 		printed += fprintf(fp, "[%d] %s\n",
679 				   i + kdso->has_build_id, vmlinux_path[i]);
680 
681 	return printed;
682 }
683 
684 size_t machine__fprintf(struct machine *machine, FILE *fp)
685 {
686 	size_t ret;
687 	struct rb_node *nd;
688 
689 	pthread_rwlock_rdlock(&machine->threads_lock);
690 
691 	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
692 
693 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
694 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
695 
696 		ret += thread__fprintf(pos, fp);
697 	}
698 
699 	pthread_rwlock_unlock(&machine->threads_lock);
700 
701 	return ret;
702 }
703 
704 static struct dso *machine__get_kernel(struct machine *machine)
705 {
706 	const char *vmlinux_name = NULL;
707 	struct dso *kernel;
708 
709 	if (machine__is_host(machine)) {
710 		vmlinux_name = symbol_conf.vmlinux_name;
711 		if (!vmlinux_name)
712 			vmlinux_name = "[kernel.kallsyms]";
713 
714 		kernel = machine__findnew_kernel(machine, vmlinux_name,
715 						 "[kernel]", DSO_TYPE_KERNEL);
716 	} else {
717 		char bf[PATH_MAX];
718 
719 		if (machine__is_default_guest(machine))
720 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
721 		if (!vmlinux_name)
722 			vmlinux_name = machine__mmap_name(machine, bf,
723 							  sizeof(bf));
724 
725 		kernel = machine__findnew_kernel(machine, vmlinux_name,
726 						 "[guest.kernel]",
727 						 DSO_TYPE_GUEST_KERNEL);
728 	}
729 
730 	if (kernel != NULL && (!kernel->has_build_id))
731 		dso__read_running_kernel_build_id(kernel, machine);
732 
733 	return kernel;
734 }
735 
736 struct process_args {
737 	u64 start;
738 };
739 
740 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
741 					   size_t bufsz)
742 {
743 	if (machine__is_default_guest(machine))
744 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
745 	else
746 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
747 }
748 
749 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
750 
751 /* Figure out the start address of kernel map from /proc/kallsyms.
752  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
753  * symbol_name if it's not that important.
754  */
755 static u64 machine__get_running_kernel_start(struct machine *machine,
756 					     const char **symbol_name)
757 {
758 	char filename[PATH_MAX];
759 	int i;
760 	const char *name;
761 	u64 addr = 0;
762 
763 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
764 
765 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
766 		return 0;
767 
768 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
769 		addr = kallsyms__get_function_start(filename, name);
770 		if (addr)
771 			break;
772 	}
773 
774 	if (symbol_name)
775 		*symbol_name = name;
776 
777 	return addr;
778 }
779 
780 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
781 {
782 	enum map_type type;
783 	u64 start = machine__get_running_kernel_start(machine, NULL);
784 
785 	/* In case of renewal the kernel map, destroy previous one */
786 	machine__destroy_kernel_maps(machine);
787 
788 	for (type = 0; type < MAP__NR_TYPES; ++type) {
789 		struct kmap *kmap;
790 		struct map *map;
791 
792 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
793 		if (machine->vmlinux_maps[type] == NULL)
794 			return -1;
795 
796 		machine->vmlinux_maps[type]->map_ip =
797 			machine->vmlinux_maps[type]->unmap_ip =
798 				identity__map_ip;
799 		map = __machine__kernel_map(machine, type);
800 		kmap = map__kmap(map);
801 		if (!kmap)
802 			return -1;
803 
804 		kmap->kmaps = &machine->kmaps;
805 		map_groups__insert(&machine->kmaps, map);
806 	}
807 
808 	return 0;
809 }
810 
811 void machine__destroy_kernel_maps(struct machine *machine)
812 {
813 	enum map_type type;
814 
815 	for (type = 0; type < MAP__NR_TYPES; ++type) {
816 		struct kmap *kmap;
817 		struct map *map = __machine__kernel_map(machine, type);
818 
819 		if (map == NULL)
820 			continue;
821 
822 		kmap = map__kmap(map);
823 		map_groups__remove(&machine->kmaps, map);
824 		if (kmap && kmap->ref_reloc_sym) {
825 			/*
826 			 * ref_reloc_sym is shared among all maps, so free just
827 			 * on one of them.
828 			 */
829 			if (type == MAP__FUNCTION) {
830 				zfree((char **)&kmap->ref_reloc_sym->name);
831 				zfree(&kmap->ref_reloc_sym);
832 			} else
833 				kmap->ref_reloc_sym = NULL;
834 		}
835 
836 		map__put(machine->vmlinux_maps[type]);
837 		machine->vmlinux_maps[type] = NULL;
838 	}
839 }
840 
841 int machines__create_guest_kernel_maps(struct machines *machines)
842 {
843 	int ret = 0;
844 	struct dirent **namelist = NULL;
845 	int i, items = 0;
846 	char path[PATH_MAX];
847 	pid_t pid;
848 	char *endp;
849 
850 	if (symbol_conf.default_guest_vmlinux_name ||
851 	    symbol_conf.default_guest_modules ||
852 	    symbol_conf.default_guest_kallsyms) {
853 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
854 	}
855 
856 	if (symbol_conf.guestmount) {
857 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
858 		if (items <= 0)
859 			return -ENOENT;
860 		for (i = 0; i < items; i++) {
861 			if (!isdigit(namelist[i]->d_name[0])) {
862 				/* Filter out . and .. */
863 				continue;
864 			}
865 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
866 			if ((*endp != '\0') ||
867 			    (endp == namelist[i]->d_name) ||
868 			    (errno == ERANGE)) {
869 				pr_debug("invalid directory (%s). Skipping.\n",
870 					 namelist[i]->d_name);
871 				continue;
872 			}
873 			sprintf(path, "%s/%s/proc/kallsyms",
874 				symbol_conf.guestmount,
875 				namelist[i]->d_name);
876 			ret = access(path, R_OK);
877 			if (ret) {
878 				pr_debug("Can't access file %s\n", path);
879 				goto failure;
880 			}
881 			machines__create_kernel_maps(machines, pid);
882 		}
883 failure:
884 		free(namelist);
885 	}
886 
887 	return ret;
888 }
889 
890 void machines__destroy_kernel_maps(struct machines *machines)
891 {
892 	struct rb_node *next = rb_first(&machines->guests);
893 
894 	machine__destroy_kernel_maps(&machines->host);
895 
896 	while (next) {
897 		struct machine *pos = rb_entry(next, struct machine, rb_node);
898 
899 		next = rb_next(&pos->rb_node);
900 		rb_erase(&pos->rb_node, &machines->guests);
901 		machine__delete(pos);
902 	}
903 }
904 
905 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
906 {
907 	struct machine *machine = machines__findnew(machines, pid);
908 
909 	if (machine == NULL)
910 		return -1;
911 
912 	return machine__create_kernel_maps(machine);
913 }
914 
915 int __machine__load_kallsyms(struct machine *machine, const char *filename,
916 			     enum map_type type, bool no_kcore, symbol_filter_t filter)
917 {
918 	struct map *map = machine__kernel_map(machine);
919 	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore, filter);
920 
921 	if (ret > 0) {
922 		dso__set_loaded(map->dso, type);
923 		/*
924 		 * Since /proc/kallsyms will have multiple sessions for the
925 		 * kernel, with modules between them, fixup the end of all
926 		 * sections.
927 		 */
928 		__map_groups__fixup_end(&machine->kmaps, type);
929 	}
930 
931 	return ret;
932 }
933 
934 int machine__load_kallsyms(struct machine *machine, const char *filename,
935 			   enum map_type type, symbol_filter_t filter)
936 {
937 	return __machine__load_kallsyms(machine, filename, type, false, filter);
938 }
939 
940 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
941 			       symbol_filter_t filter)
942 {
943 	struct map *map = machine__kernel_map(machine);
944 	int ret = dso__load_vmlinux_path(map->dso, map, filter);
945 
946 	if (ret > 0)
947 		dso__set_loaded(map->dso, type);
948 
949 	return ret;
950 }
951 
952 static void map_groups__fixup_end(struct map_groups *mg)
953 {
954 	int i;
955 	for (i = 0; i < MAP__NR_TYPES; ++i)
956 		__map_groups__fixup_end(mg, i);
957 }
958 
959 static char *get_kernel_version(const char *root_dir)
960 {
961 	char version[PATH_MAX];
962 	FILE *file;
963 	char *name, *tmp;
964 	const char *prefix = "Linux version ";
965 
966 	sprintf(version, "%s/proc/version", root_dir);
967 	file = fopen(version, "r");
968 	if (!file)
969 		return NULL;
970 
971 	version[0] = '\0';
972 	tmp = fgets(version, sizeof(version), file);
973 	fclose(file);
974 
975 	name = strstr(version, prefix);
976 	if (!name)
977 		return NULL;
978 	name += strlen(prefix);
979 	tmp = strchr(name, ' ');
980 	if (tmp)
981 		*tmp = '\0';
982 
983 	return strdup(name);
984 }
985 
986 static bool is_kmod_dso(struct dso *dso)
987 {
988 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
989 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
990 }
991 
992 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
993 				       struct kmod_path *m)
994 {
995 	struct map *map;
996 	char *long_name;
997 
998 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
999 	if (map == NULL)
1000 		return 0;
1001 
1002 	long_name = strdup(path);
1003 	if (long_name == NULL)
1004 		return -ENOMEM;
1005 
1006 	dso__set_long_name(map->dso, long_name, true);
1007 	dso__kernel_module_get_build_id(map->dso, "");
1008 
1009 	/*
1010 	 * Full name could reveal us kmod compression, so
1011 	 * we need to update the symtab_type if needed.
1012 	 */
1013 	if (m->comp && is_kmod_dso(map->dso))
1014 		map->dso->symtab_type++;
1015 
1016 	return 0;
1017 }
1018 
1019 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1020 				const char *dir_name, int depth)
1021 {
1022 	struct dirent *dent;
1023 	DIR *dir = opendir(dir_name);
1024 	int ret = 0;
1025 
1026 	if (!dir) {
1027 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1028 		return -1;
1029 	}
1030 
1031 	while ((dent = readdir(dir)) != NULL) {
1032 		char path[PATH_MAX];
1033 		struct stat st;
1034 
1035 		/*sshfs might return bad dent->d_type, so we have to stat*/
1036 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1037 		if (stat(path, &st))
1038 			continue;
1039 
1040 		if (S_ISDIR(st.st_mode)) {
1041 			if (!strcmp(dent->d_name, ".") ||
1042 			    !strcmp(dent->d_name, ".."))
1043 				continue;
1044 
1045 			/* Do not follow top-level source and build symlinks */
1046 			if (depth == 0) {
1047 				if (!strcmp(dent->d_name, "source") ||
1048 				    !strcmp(dent->d_name, "build"))
1049 					continue;
1050 			}
1051 
1052 			ret = map_groups__set_modules_path_dir(mg, path,
1053 							       depth + 1);
1054 			if (ret < 0)
1055 				goto out;
1056 		} else {
1057 			struct kmod_path m;
1058 
1059 			ret = kmod_path__parse_name(&m, dent->d_name);
1060 			if (ret)
1061 				goto out;
1062 
1063 			if (m.kmod)
1064 				ret = map_groups__set_module_path(mg, path, &m);
1065 
1066 			free(m.name);
1067 
1068 			if (ret)
1069 				goto out;
1070 		}
1071 	}
1072 
1073 out:
1074 	closedir(dir);
1075 	return ret;
1076 }
1077 
1078 static int machine__set_modules_path(struct machine *machine)
1079 {
1080 	char *version;
1081 	char modules_path[PATH_MAX];
1082 
1083 	version = get_kernel_version(machine->root_dir);
1084 	if (!version)
1085 		return -1;
1086 
1087 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1088 		 machine->root_dir, version);
1089 	free(version);
1090 
1091 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1092 }
1093 
1094 static int machine__create_module(void *arg, const char *name, u64 start)
1095 {
1096 	struct machine *machine = arg;
1097 	struct map *map;
1098 
1099 	map = machine__findnew_module_map(machine, start, name);
1100 	if (map == NULL)
1101 		return -1;
1102 
1103 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1104 
1105 	return 0;
1106 }
1107 
1108 static int machine__create_modules(struct machine *machine)
1109 {
1110 	const char *modules;
1111 	char path[PATH_MAX];
1112 
1113 	if (machine__is_default_guest(machine)) {
1114 		modules = symbol_conf.default_guest_modules;
1115 	} else {
1116 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1117 		modules = path;
1118 	}
1119 
1120 	if (symbol__restricted_filename(modules, "/proc/modules"))
1121 		return -1;
1122 
1123 	if (modules__parse(modules, machine, machine__create_module))
1124 		return -1;
1125 
1126 	if (!machine__set_modules_path(machine))
1127 		return 0;
1128 
1129 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1130 
1131 	return 0;
1132 }
1133 
1134 int machine__create_kernel_maps(struct machine *machine)
1135 {
1136 	struct dso *kernel = machine__get_kernel(machine);
1137 	const char *name;
1138 	u64 addr = machine__get_running_kernel_start(machine, &name);
1139 	int ret;
1140 
1141 	if (!addr || kernel == NULL)
1142 		return -1;
1143 
1144 	ret = __machine__create_kernel_maps(machine, kernel);
1145 	dso__put(kernel);
1146 	if (ret < 0)
1147 		return -1;
1148 
1149 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1150 		if (machine__is_host(machine))
1151 			pr_debug("Problems creating module maps, "
1152 				 "continuing anyway...\n");
1153 		else
1154 			pr_debug("Problems creating module maps for guest %d, "
1155 				 "continuing anyway...\n", machine->pid);
1156 	}
1157 
1158 	/*
1159 	 * Now that we have all the maps created, just set the ->end of them:
1160 	 */
1161 	map_groups__fixup_end(&machine->kmaps);
1162 
1163 	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1164 					     addr)) {
1165 		machine__destroy_kernel_maps(machine);
1166 		return -1;
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 static void machine__set_kernel_mmap_len(struct machine *machine,
1173 					 union perf_event *event)
1174 {
1175 	int i;
1176 
1177 	for (i = 0; i < MAP__NR_TYPES; i++) {
1178 		machine->vmlinux_maps[i]->start = event->mmap.start;
1179 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1180 						   event->mmap.len);
1181 		/*
1182 		 * Be a bit paranoid here, some perf.data file came with
1183 		 * a zero sized synthesized MMAP event for the kernel.
1184 		 */
1185 		if (machine->vmlinux_maps[i]->end == 0)
1186 			machine->vmlinux_maps[i]->end = ~0ULL;
1187 	}
1188 }
1189 
1190 static bool machine__uses_kcore(struct machine *machine)
1191 {
1192 	struct dso *dso;
1193 
1194 	list_for_each_entry(dso, &machine->dsos.head, node) {
1195 		if (dso__is_kcore(dso))
1196 			return true;
1197 	}
1198 
1199 	return false;
1200 }
1201 
1202 static int machine__process_kernel_mmap_event(struct machine *machine,
1203 					      union perf_event *event)
1204 {
1205 	struct map *map;
1206 	char kmmap_prefix[PATH_MAX];
1207 	enum dso_kernel_type kernel_type;
1208 	bool is_kernel_mmap;
1209 
1210 	/* If we have maps from kcore then we do not need or want any others */
1211 	if (machine__uses_kcore(machine))
1212 		return 0;
1213 
1214 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1215 	if (machine__is_host(machine))
1216 		kernel_type = DSO_TYPE_KERNEL;
1217 	else
1218 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1219 
1220 	is_kernel_mmap = memcmp(event->mmap.filename,
1221 				kmmap_prefix,
1222 				strlen(kmmap_prefix) - 1) == 0;
1223 	if (event->mmap.filename[0] == '/' ||
1224 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1225 		map = machine__findnew_module_map(machine, event->mmap.start,
1226 						  event->mmap.filename);
1227 		if (map == NULL)
1228 			goto out_problem;
1229 
1230 		map->end = map->start + event->mmap.len;
1231 	} else if (is_kernel_mmap) {
1232 		const char *symbol_name = (event->mmap.filename +
1233 				strlen(kmmap_prefix));
1234 		/*
1235 		 * Should be there already, from the build-id table in
1236 		 * the header.
1237 		 */
1238 		struct dso *kernel = NULL;
1239 		struct dso *dso;
1240 
1241 		pthread_rwlock_rdlock(&machine->dsos.lock);
1242 
1243 		list_for_each_entry(dso, &machine->dsos.head, node) {
1244 
1245 			/*
1246 			 * The cpumode passed to is_kernel_module is not the
1247 			 * cpumode of *this* event. If we insist on passing
1248 			 * correct cpumode to is_kernel_module, we should
1249 			 * record the cpumode when we adding this dso to the
1250 			 * linked list.
1251 			 *
1252 			 * However we don't really need passing correct
1253 			 * cpumode.  We know the correct cpumode must be kernel
1254 			 * mode (if not, we should not link it onto kernel_dsos
1255 			 * list).
1256 			 *
1257 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1258 			 * is_kernel_module() treats it as a kernel cpumode.
1259 			 */
1260 
1261 			if (!dso->kernel ||
1262 			    is_kernel_module(dso->long_name,
1263 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1264 				continue;
1265 
1266 
1267 			kernel = dso;
1268 			break;
1269 		}
1270 
1271 		pthread_rwlock_unlock(&machine->dsos.lock);
1272 
1273 		if (kernel == NULL)
1274 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1275 		if (kernel == NULL)
1276 			goto out_problem;
1277 
1278 		kernel->kernel = kernel_type;
1279 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1280 			dso__put(kernel);
1281 			goto out_problem;
1282 		}
1283 
1284 		if (strstr(kernel->long_name, "vmlinux"))
1285 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1286 
1287 		machine__set_kernel_mmap_len(machine, event);
1288 
1289 		/*
1290 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1291 		 * symbol. Effectively having zero here means that at record
1292 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1293 		 */
1294 		if (event->mmap.pgoff != 0) {
1295 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1296 							 symbol_name,
1297 							 event->mmap.pgoff);
1298 		}
1299 
1300 		if (machine__is_default_guest(machine)) {
1301 			/*
1302 			 * preload dso of guest kernel and modules
1303 			 */
1304 			dso__load(kernel, machine__kernel_map(machine), NULL);
1305 		}
1306 	}
1307 	return 0;
1308 out_problem:
1309 	return -1;
1310 }
1311 
1312 int machine__process_mmap2_event(struct machine *machine,
1313 				 union perf_event *event,
1314 				 struct perf_sample *sample)
1315 {
1316 	struct thread *thread;
1317 	struct map *map;
1318 	enum map_type type;
1319 	int ret = 0;
1320 
1321 	if (dump_trace)
1322 		perf_event__fprintf_mmap2(event, stdout);
1323 
1324 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1325 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1326 		ret = machine__process_kernel_mmap_event(machine, event);
1327 		if (ret < 0)
1328 			goto out_problem;
1329 		return 0;
1330 	}
1331 
1332 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1333 					event->mmap2.tid);
1334 	if (thread == NULL)
1335 		goto out_problem;
1336 
1337 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1338 		type = MAP__VARIABLE;
1339 	else
1340 		type = MAP__FUNCTION;
1341 
1342 	map = map__new(machine, event->mmap2.start,
1343 			event->mmap2.len, event->mmap2.pgoff,
1344 			event->mmap2.pid, event->mmap2.maj,
1345 			event->mmap2.min, event->mmap2.ino,
1346 			event->mmap2.ino_generation,
1347 			event->mmap2.prot,
1348 			event->mmap2.flags,
1349 			event->mmap2.filename, type, thread);
1350 
1351 	if (map == NULL)
1352 		goto out_problem_map;
1353 
1354 	thread__insert_map(thread, map);
1355 	thread__put(thread);
1356 	map__put(map);
1357 	return 0;
1358 
1359 out_problem_map:
1360 	thread__put(thread);
1361 out_problem:
1362 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1363 	return 0;
1364 }
1365 
1366 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1367 				struct perf_sample *sample)
1368 {
1369 	struct thread *thread;
1370 	struct map *map;
1371 	enum map_type type;
1372 	int ret = 0;
1373 
1374 	if (dump_trace)
1375 		perf_event__fprintf_mmap(event, stdout);
1376 
1377 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1378 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1379 		ret = machine__process_kernel_mmap_event(machine, event);
1380 		if (ret < 0)
1381 			goto out_problem;
1382 		return 0;
1383 	}
1384 
1385 	thread = machine__findnew_thread(machine, event->mmap.pid,
1386 					 event->mmap.tid);
1387 	if (thread == NULL)
1388 		goto out_problem;
1389 
1390 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1391 		type = MAP__VARIABLE;
1392 	else
1393 		type = MAP__FUNCTION;
1394 
1395 	map = map__new(machine, event->mmap.start,
1396 			event->mmap.len, event->mmap.pgoff,
1397 			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1398 			event->mmap.filename,
1399 			type, thread);
1400 
1401 	if (map == NULL)
1402 		goto out_problem_map;
1403 
1404 	thread__insert_map(thread, map);
1405 	thread__put(thread);
1406 	map__put(map);
1407 	return 0;
1408 
1409 out_problem_map:
1410 	thread__put(thread);
1411 out_problem:
1412 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1413 	return 0;
1414 }
1415 
1416 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1417 {
1418 	if (machine->last_match == th)
1419 		machine->last_match = NULL;
1420 
1421 	BUG_ON(atomic_read(&th->refcnt) == 0);
1422 	if (lock)
1423 		pthread_rwlock_wrlock(&machine->threads_lock);
1424 	rb_erase_init(&th->rb_node, &machine->threads);
1425 	RB_CLEAR_NODE(&th->rb_node);
1426 	--machine->nr_threads;
1427 	/*
1428 	 * Move it first to the dead_threads list, then drop the reference,
1429 	 * if this is the last reference, then the thread__delete destructor
1430 	 * will be called and we will remove it from the dead_threads list.
1431 	 */
1432 	list_add_tail(&th->node, &machine->dead_threads);
1433 	if (lock)
1434 		pthread_rwlock_unlock(&machine->threads_lock);
1435 	thread__put(th);
1436 }
1437 
1438 void machine__remove_thread(struct machine *machine, struct thread *th)
1439 {
1440 	return __machine__remove_thread(machine, th, true);
1441 }
1442 
1443 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1444 				struct perf_sample *sample)
1445 {
1446 	struct thread *thread = machine__find_thread(machine,
1447 						     event->fork.pid,
1448 						     event->fork.tid);
1449 	struct thread *parent = machine__findnew_thread(machine,
1450 							event->fork.ppid,
1451 							event->fork.ptid);
1452 	int err = 0;
1453 
1454 	if (dump_trace)
1455 		perf_event__fprintf_task(event, stdout);
1456 
1457 	/*
1458 	 * There may be an existing thread that is not actually the parent,
1459 	 * either because we are processing events out of order, or because the
1460 	 * (fork) event that would have removed the thread was lost. Assume the
1461 	 * latter case and continue on as best we can.
1462 	 */
1463 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1464 		dump_printf("removing erroneous parent thread %d/%d\n",
1465 			    parent->pid_, parent->tid);
1466 		machine__remove_thread(machine, parent);
1467 		thread__put(parent);
1468 		parent = machine__findnew_thread(machine, event->fork.ppid,
1469 						 event->fork.ptid);
1470 	}
1471 
1472 	/* if a thread currently exists for the thread id remove it */
1473 	if (thread != NULL) {
1474 		machine__remove_thread(machine, thread);
1475 		thread__put(thread);
1476 	}
1477 
1478 	thread = machine__findnew_thread(machine, event->fork.pid,
1479 					 event->fork.tid);
1480 
1481 	if (thread == NULL || parent == NULL ||
1482 	    thread__fork(thread, parent, sample->time) < 0) {
1483 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1484 		err = -1;
1485 	}
1486 	thread__put(thread);
1487 	thread__put(parent);
1488 
1489 	return err;
1490 }
1491 
1492 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1493 				struct perf_sample *sample __maybe_unused)
1494 {
1495 	struct thread *thread = machine__find_thread(machine,
1496 						     event->fork.pid,
1497 						     event->fork.tid);
1498 
1499 	if (dump_trace)
1500 		perf_event__fprintf_task(event, stdout);
1501 
1502 	if (thread != NULL) {
1503 		thread__exited(thread);
1504 		thread__put(thread);
1505 	}
1506 
1507 	return 0;
1508 }
1509 
1510 int machine__process_event(struct machine *machine, union perf_event *event,
1511 			   struct perf_sample *sample)
1512 {
1513 	int ret;
1514 
1515 	switch (event->header.type) {
1516 	case PERF_RECORD_COMM:
1517 		ret = machine__process_comm_event(machine, event, sample); break;
1518 	case PERF_RECORD_MMAP:
1519 		ret = machine__process_mmap_event(machine, event, sample); break;
1520 	case PERF_RECORD_MMAP2:
1521 		ret = machine__process_mmap2_event(machine, event, sample); break;
1522 	case PERF_RECORD_FORK:
1523 		ret = machine__process_fork_event(machine, event, sample); break;
1524 	case PERF_RECORD_EXIT:
1525 		ret = machine__process_exit_event(machine, event, sample); break;
1526 	case PERF_RECORD_LOST:
1527 		ret = machine__process_lost_event(machine, event, sample); break;
1528 	case PERF_RECORD_AUX:
1529 		ret = machine__process_aux_event(machine, event); break;
1530 	case PERF_RECORD_ITRACE_START:
1531 		ret = machine__process_itrace_start_event(machine, event); break;
1532 	case PERF_RECORD_LOST_SAMPLES:
1533 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1534 	case PERF_RECORD_SWITCH:
1535 	case PERF_RECORD_SWITCH_CPU_WIDE:
1536 		ret = machine__process_switch_event(machine, event); break;
1537 	default:
1538 		ret = -1;
1539 		break;
1540 	}
1541 
1542 	return ret;
1543 }
1544 
1545 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1546 {
1547 	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1548 		return 1;
1549 	return 0;
1550 }
1551 
1552 static void ip__resolve_ams(struct thread *thread,
1553 			    struct addr_map_symbol *ams,
1554 			    u64 ip)
1555 {
1556 	struct addr_location al;
1557 
1558 	memset(&al, 0, sizeof(al));
1559 	/*
1560 	 * We cannot use the header.misc hint to determine whether a
1561 	 * branch stack address is user, kernel, guest, hypervisor.
1562 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1563 	 * Thus, we have to try consecutively until we find a match
1564 	 * or else, the symbol is unknown
1565 	 */
1566 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1567 
1568 	ams->addr = ip;
1569 	ams->al_addr = al.addr;
1570 	ams->sym = al.sym;
1571 	ams->map = al.map;
1572 }
1573 
1574 static void ip__resolve_data(struct thread *thread,
1575 			     u8 m, struct addr_map_symbol *ams, u64 addr)
1576 {
1577 	struct addr_location al;
1578 
1579 	memset(&al, 0, sizeof(al));
1580 
1581 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1582 	if (al.map == NULL) {
1583 		/*
1584 		 * some shared data regions have execute bit set which puts
1585 		 * their mapping in the MAP__FUNCTION type array.
1586 		 * Check there as a fallback option before dropping the sample.
1587 		 */
1588 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1589 	}
1590 
1591 	ams->addr = addr;
1592 	ams->al_addr = al.addr;
1593 	ams->sym = al.sym;
1594 	ams->map = al.map;
1595 }
1596 
1597 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1598 				     struct addr_location *al)
1599 {
1600 	struct mem_info *mi = zalloc(sizeof(*mi));
1601 
1602 	if (!mi)
1603 		return NULL;
1604 
1605 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1606 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1607 	mi->data_src.val = sample->data_src;
1608 
1609 	return mi;
1610 }
1611 
1612 static int add_callchain_ip(struct thread *thread,
1613 			    struct callchain_cursor *cursor,
1614 			    struct symbol **parent,
1615 			    struct addr_location *root_al,
1616 			    u8 *cpumode,
1617 			    u64 ip)
1618 {
1619 	struct addr_location al;
1620 
1621 	al.filtered = 0;
1622 	al.sym = NULL;
1623 	if (!cpumode) {
1624 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1625 						   ip, &al);
1626 	} else {
1627 		if (ip >= PERF_CONTEXT_MAX) {
1628 			switch (ip) {
1629 			case PERF_CONTEXT_HV:
1630 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1631 				break;
1632 			case PERF_CONTEXT_KERNEL:
1633 				*cpumode = PERF_RECORD_MISC_KERNEL;
1634 				break;
1635 			case PERF_CONTEXT_USER:
1636 				*cpumode = PERF_RECORD_MISC_USER;
1637 				break;
1638 			default:
1639 				pr_debug("invalid callchain context: "
1640 					 "%"PRId64"\n", (s64) ip);
1641 				/*
1642 				 * It seems the callchain is corrupted.
1643 				 * Discard all.
1644 				 */
1645 				callchain_cursor_reset(cursor);
1646 				return 1;
1647 			}
1648 			return 0;
1649 		}
1650 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1651 					   ip, &al);
1652 	}
1653 
1654 	if (al.sym != NULL) {
1655 		if (perf_hpp_list.parent && !*parent &&
1656 		    symbol__match_regex(al.sym, &parent_regex))
1657 			*parent = al.sym;
1658 		else if (have_ignore_callees && root_al &&
1659 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1660 			/* Treat this symbol as the root,
1661 			   forgetting its callees. */
1662 			*root_al = al;
1663 			callchain_cursor_reset(cursor);
1664 		}
1665 	}
1666 
1667 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1668 		return 0;
1669 	return callchain_cursor_append(cursor, al.addr, al.map, al.sym);
1670 }
1671 
1672 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1673 					   struct addr_location *al)
1674 {
1675 	unsigned int i;
1676 	const struct branch_stack *bs = sample->branch_stack;
1677 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1678 
1679 	if (!bi)
1680 		return NULL;
1681 
1682 	for (i = 0; i < bs->nr; i++) {
1683 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1684 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1685 		bi[i].flags = bs->entries[i].flags;
1686 	}
1687 	return bi;
1688 }
1689 
1690 #define CHASHSZ 127
1691 #define CHASHBITS 7
1692 #define NO_ENTRY 0xff
1693 
1694 #define PERF_MAX_BRANCH_DEPTH 127
1695 
1696 /* Remove loops. */
1697 static int remove_loops(struct branch_entry *l, int nr)
1698 {
1699 	int i, j, off;
1700 	unsigned char chash[CHASHSZ];
1701 
1702 	memset(chash, NO_ENTRY, sizeof(chash));
1703 
1704 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1705 
1706 	for (i = 0; i < nr; i++) {
1707 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1708 
1709 		/* no collision handling for now */
1710 		if (chash[h] == NO_ENTRY) {
1711 			chash[h] = i;
1712 		} else if (l[chash[h]].from == l[i].from) {
1713 			bool is_loop = true;
1714 			/* check if it is a real loop */
1715 			off = 0;
1716 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1717 				if (l[j].from != l[i + off].from) {
1718 					is_loop = false;
1719 					break;
1720 				}
1721 			if (is_loop) {
1722 				memmove(l + i, l + i + off,
1723 					(nr - (i + off)) * sizeof(*l));
1724 				nr -= off;
1725 			}
1726 		}
1727 	}
1728 	return nr;
1729 }
1730 
1731 /*
1732  * Recolve LBR callstack chain sample
1733  * Return:
1734  * 1 on success get LBR callchain information
1735  * 0 no available LBR callchain information, should try fp
1736  * negative error code on other errors.
1737  */
1738 static int resolve_lbr_callchain_sample(struct thread *thread,
1739 					struct callchain_cursor *cursor,
1740 					struct perf_sample *sample,
1741 					struct symbol **parent,
1742 					struct addr_location *root_al,
1743 					int max_stack)
1744 {
1745 	struct ip_callchain *chain = sample->callchain;
1746 	int chain_nr = min(max_stack, (int)chain->nr);
1747 	u8 cpumode = PERF_RECORD_MISC_USER;
1748 	int i, j, err;
1749 	u64 ip;
1750 
1751 	for (i = 0; i < chain_nr; i++) {
1752 		if (chain->ips[i] == PERF_CONTEXT_USER)
1753 			break;
1754 	}
1755 
1756 	/* LBR only affects the user callchain */
1757 	if (i != chain_nr) {
1758 		struct branch_stack *lbr_stack = sample->branch_stack;
1759 		int lbr_nr = lbr_stack->nr;
1760 		/*
1761 		 * LBR callstack can only get user call chain.
1762 		 * The mix_chain_nr is kernel call chain
1763 		 * number plus LBR user call chain number.
1764 		 * i is kernel call chain number,
1765 		 * 1 is PERF_CONTEXT_USER,
1766 		 * lbr_nr + 1 is the user call chain number.
1767 		 * For details, please refer to the comments
1768 		 * in callchain__printf
1769 		 */
1770 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1771 
1772 		if (mix_chain_nr > (int)sysctl_perf_event_max_stack + PERF_MAX_BRANCH_DEPTH) {
1773 			pr_warning("corrupted callchain. skipping...\n");
1774 			return 0;
1775 		}
1776 
1777 		for (j = 0; j < mix_chain_nr; j++) {
1778 			if (callchain_param.order == ORDER_CALLEE) {
1779 				if (j < i + 1)
1780 					ip = chain->ips[j];
1781 				else if (j > i + 1)
1782 					ip = lbr_stack->entries[j - i - 2].from;
1783 				else
1784 					ip = lbr_stack->entries[0].to;
1785 			} else {
1786 				if (j < lbr_nr)
1787 					ip = lbr_stack->entries[lbr_nr - j - 1].from;
1788 				else if (j > lbr_nr)
1789 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1790 				else
1791 					ip = lbr_stack->entries[0].to;
1792 			}
1793 
1794 			err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1795 			if (err)
1796 				return (err < 0) ? err : 0;
1797 		}
1798 		return 1;
1799 	}
1800 
1801 	return 0;
1802 }
1803 
1804 static int thread__resolve_callchain_sample(struct thread *thread,
1805 					    struct callchain_cursor *cursor,
1806 					    struct perf_evsel *evsel,
1807 					    struct perf_sample *sample,
1808 					    struct symbol **parent,
1809 					    struct addr_location *root_al,
1810 					    int max_stack)
1811 {
1812 	struct branch_stack *branch = sample->branch_stack;
1813 	struct ip_callchain *chain = sample->callchain;
1814 	int chain_nr = min(max_stack, (int)chain->nr);
1815 	u8 cpumode = PERF_RECORD_MISC_USER;
1816 	int i, j, err;
1817 	int skip_idx = -1;
1818 	int first_call = 0;
1819 
1820 	if (perf_evsel__has_branch_callstack(evsel)) {
1821 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1822 						   root_al, max_stack);
1823 		if (err)
1824 			return (err < 0) ? err : 0;
1825 	}
1826 
1827 	/*
1828 	 * Based on DWARF debug information, some architectures skip
1829 	 * a callchain entry saved by the kernel.
1830 	 */
1831 	if (chain->nr < sysctl_perf_event_max_stack)
1832 		skip_idx = arch_skip_callchain_idx(thread, chain);
1833 
1834 	/*
1835 	 * Add branches to call stack for easier browsing. This gives
1836 	 * more context for a sample than just the callers.
1837 	 *
1838 	 * This uses individual histograms of paths compared to the
1839 	 * aggregated histograms the normal LBR mode uses.
1840 	 *
1841 	 * Limitations for now:
1842 	 * - No extra filters
1843 	 * - No annotations (should annotate somehow)
1844 	 */
1845 
1846 	if (branch && callchain_param.branch_callstack) {
1847 		int nr = min(max_stack, (int)branch->nr);
1848 		struct branch_entry be[nr];
1849 
1850 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1851 			pr_warning("corrupted branch chain. skipping...\n");
1852 			goto check_calls;
1853 		}
1854 
1855 		for (i = 0; i < nr; i++) {
1856 			if (callchain_param.order == ORDER_CALLEE) {
1857 				be[i] = branch->entries[i];
1858 				/*
1859 				 * Check for overlap into the callchain.
1860 				 * The return address is one off compared to
1861 				 * the branch entry. To adjust for this
1862 				 * assume the calling instruction is not longer
1863 				 * than 8 bytes.
1864 				 */
1865 				if (i == skip_idx ||
1866 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1867 					first_call++;
1868 				else if (be[i].from < chain->ips[first_call] &&
1869 				    be[i].from >= chain->ips[first_call] - 8)
1870 					first_call++;
1871 			} else
1872 				be[i] = branch->entries[branch->nr - i - 1];
1873 		}
1874 
1875 		nr = remove_loops(be, nr);
1876 
1877 		for (i = 0; i < nr; i++) {
1878 			err = add_callchain_ip(thread, cursor, parent, root_al,
1879 					       NULL, be[i].to);
1880 			if (!err)
1881 				err = add_callchain_ip(thread, cursor, parent, root_al,
1882 						       NULL, be[i].from);
1883 			if (err == -EINVAL)
1884 				break;
1885 			if (err)
1886 				return err;
1887 		}
1888 		chain_nr -= nr;
1889 	}
1890 
1891 check_calls:
1892 	if (chain->nr > sysctl_perf_event_max_stack && (int)chain->nr > max_stack) {
1893 		pr_warning("corrupted callchain. skipping...\n");
1894 		return 0;
1895 	}
1896 
1897 	for (i = first_call; i < chain_nr; i++) {
1898 		u64 ip;
1899 
1900 		if (callchain_param.order == ORDER_CALLEE)
1901 			j = i;
1902 		else
1903 			j = chain->nr - i - 1;
1904 
1905 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1906 		if (j == skip_idx)
1907 			continue;
1908 #endif
1909 		ip = chain->ips[j];
1910 
1911 		err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1912 
1913 		if (err)
1914 			return (err < 0) ? err : 0;
1915 	}
1916 
1917 	return 0;
1918 }
1919 
1920 static int unwind_entry(struct unwind_entry *entry, void *arg)
1921 {
1922 	struct callchain_cursor *cursor = arg;
1923 
1924 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
1925 		return 0;
1926 	return callchain_cursor_append(cursor, entry->ip,
1927 				       entry->map, entry->sym);
1928 }
1929 
1930 static int thread__resolve_callchain_unwind(struct thread *thread,
1931 					    struct callchain_cursor *cursor,
1932 					    struct perf_evsel *evsel,
1933 					    struct perf_sample *sample,
1934 					    int max_stack)
1935 {
1936 	/* Can we do dwarf post unwind? */
1937 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1938 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1939 		return 0;
1940 
1941 	/* Bail out if nothing was captured. */
1942 	if ((!sample->user_regs.regs) ||
1943 	    (!sample->user_stack.size))
1944 		return 0;
1945 
1946 	return unwind__get_entries(unwind_entry, cursor,
1947 				   thread, sample, max_stack);
1948 }
1949 
1950 int thread__resolve_callchain(struct thread *thread,
1951 			      struct callchain_cursor *cursor,
1952 			      struct perf_evsel *evsel,
1953 			      struct perf_sample *sample,
1954 			      struct symbol **parent,
1955 			      struct addr_location *root_al,
1956 			      int max_stack)
1957 {
1958 	int ret = 0;
1959 
1960 	callchain_cursor_reset(&callchain_cursor);
1961 
1962 	if (callchain_param.order == ORDER_CALLEE) {
1963 		ret = thread__resolve_callchain_sample(thread, cursor,
1964 						       evsel, sample,
1965 						       parent, root_al,
1966 						       max_stack);
1967 		if (ret)
1968 			return ret;
1969 		ret = thread__resolve_callchain_unwind(thread, cursor,
1970 						       evsel, sample,
1971 						       max_stack);
1972 	} else {
1973 		ret = thread__resolve_callchain_unwind(thread, cursor,
1974 						       evsel, sample,
1975 						       max_stack);
1976 		if (ret)
1977 			return ret;
1978 		ret = thread__resolve_callchain_sample(thread, cursor,
1979 						       evsel, sample,
1980 						       parent, root_al,
1981 						       max_stack);
1982 	}
1983 
1984 	return ret;
1985 }
1986 
1987 int machine__for_each_thread(struct machine *machine,
1988 			     int (*fn)(struct thread *thread, void *p),
1989 			     void *priv)
1990 {
1991 	struct rb_node *nd;
1992 	struct thread *thread;
1993 	int rc = 0;
1994 
1995 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1996 		thread = rb_entry(nd, struct thread, rb_node);
1997 		rc = fn(thread, priv);
1998 		if (rc != 0)
1999 			return rc;
2000 	}
2001 
2002 	list_for_each_entry(thread, &machine->dead_threads, node) {
2003 		rc = fn(thread, priv);
2004 		if (rc != 0)
2005 			return rc;
2006 	}
2007 	return rc;
2008 }
2009 
2010 int machines__for_each_thread(struct machines *machines,
2011 			      int (*fn)(struct thread *thread, void *p),
2012 			      void *priv)
2013 {
2014 	struct rb_node *nd;
2015 	int rc = 0;
2016 
2017 	rc = machine__for_each_thread(&machines->host, fn, priv);
2018 	if (rc != 0)
2019 		return rc;
2020 
2021 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2022 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2023 
2024 		rc = machine__for_each_thread(machine, fn, priv);
2025 		if (rc != 0)
2026 			return rc;
2027 	}
2028 	return rc;
2029 }
2030 
2031 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2032 				  struct target *target, struct thread_map *threads,
2033 				  perf_event__handler_t process, bool data_mmap,
2034 				  unsigned int proc_map_timeout)
2035 {
2036 	if (target__has_task(target))
2037 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2038 	else if (target__has_cpu(target))
2039 		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2040 	/* command specified */
2041 	return 0;
2042 }
2043 
2044 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2045 {
2046 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2047 		return -1;
2048 
2049 	return machine->current_tid[cpu];
2050 }
2051 
2052 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2053 			     pid_t tid)
2054 {
2055 	struct thread *thread;
2056 
2057 	if (cpu < 0)
2058 		return -EINVAL;
2059 
2060 	if (!machine->current_tid) {
2061 		int i;
2062 
2063 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2064 		if (!machine->current_tid)
2065 			return -ENOMEM;
2066 		for (i = 0; i < MAX_NR_CPUS; i++)
2067 			machine->current_tid[i] = -1;
2068 	}
2069 
2070 	if (cpu >= MAX_NR_CPUS) {
2071 		pr_err("Requested CPU %d too large. ", cpu);
2072 		pr_err("Consider raising MAX_NR_CPUS\n");
2073 		return -EINVAL;
2074 	}
2075 
2076 	machine->current_tid[cpu] = tid;
2077 
2078 	thread = machine__findnew_thread(machine, pid, tid);
2079 	if (!thread)
2080 		return -ENOMEM;
2081 
2082 	thread->cpu = cpu;
2083 	thread__put(thread);
2084 
2085 	return 0;
2086 }
2087 
2088 int machine__get_kernel_start(struct machine *machine)
2089 {
2090 	struct map *map = machine__kernel_map(machine);
2091 	int err = 0;
2092 
2093 	/*
2094 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2095 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2096 	 * all addresses including kernel addresses are less than 2^32.  In
2097 	 * that case (32-bit system), if the kernel mapping is unknown, all
2098 	 * addresses will be assumed to be in user space - see
2099 	 * machine__kernel_ip().
2100 	 */
2101 	machine->kernel_start = 1ULL << 63;
2102 	if (map) {
2103 		err = map__load(map, machine->symbol_filter);
2104 		if (map->start)
2105 			machine->kernel_start = map->start;
2106 	}
2107 	return err;
2108 }
2109 
2110 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2111 {
2112 	return dsos__findnew(&machine->dsos, filename);
2113 }
2114 
2115 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2116 {
2117 	struct machine *machine = vmachine;
2118 	struct map *map;
2119 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);
2120 
2121 	if (sym == NULL)
2122 		return NULL;
2123 
2124 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2125 	*addrp = map->unmap_ip(map, sym->start);
2126 	return sym->name;
2127 }
2128