xref: /linux/tools/perf/util/machine.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16 
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18 
19 static void dsos__init(struct dsos *dsos)
20 {
21 	INIT_LIST_HEAD(&dsos->head);
22 	dsos->root = RB_ROOT;
23 	pthread_rwlock_init(&dsos->lock, NULL);
24 }
25 
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 	memset(machine, 0, sizeof(*machine));
29 	map_groups__init(&machine->kmaps, machine);
30 	RB_CLEAR_NODE(&machine->rb_node);
31 	dsos__init(&machine->dsos);
32 
33 	machine->threads = RB_ROOT;
34 	pthread_rwlock_init(&machine->threads_lock, NULL);
35 	machine->nr_threads = 0;
36 	INIT_LIST_HEAD(&machine->dead_threads);
37 	machine->last_match = NULL;
38 
39 	machine->vdso_info = NULL;
40 	machine->env = NULL;
41 
42 	machine->pid = pid;
43 
44 	machine->symbol_filter = NULL;
45 	machine->id_hdr_size = 0;
46 	machine->kptr_restrict_warned = false;
47 	machine->comm_exec = false;
48 	machine->kernel_start = 0;
49 
50 	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
51 
52 	machine->root_dir = strdup(root_dir);
53 	if (machine->root_dir == NULL)
54 		return -ENOMEM;
55 
56 	if (pid != HOST_KERNEL_ID) {
57 		struct thread *thread = machine__findnew_thread(machine, -1,
58 								pid);
59 		char comm[64];
60 
61 		if (thread == NULL)
62 			return -ENOMEM;
63 
64 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
65 		thread__set_comm(thread, comm, 0);
66 		thread__put(thread);
67 	}
68 
69 	machine->current_tid = NULL;
70 
71 	return 0;
72 }
73 
74 struct machine *machine__new_host(void)
75 {
76 	struct machine *machine = malloc(sizeof(*machine));
77 
78 	if (machine != NULL) {
79 		machine__init(machine, "", HOST_KERNEL_ID);
80 
81 		if (machine__create_kernel_maps(machine) < 0)
82 			goto out_delete;
83 	}
84 
85 	return machine;
86 out_delete:
87 	free(machine);
88 	return NULL;
89 }
90 
91 static void dsos__purge(struct dsos *dsos)
92 {
93 	struct dso *pos, *n;
94 
95 	pthread_rwlock_wrlock(&dsos->lock);
96 
97 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
98 		RB_CLEAR_NODE(&pos->rb_node);
99 		pos->root = NULL;
100 		list_del_init(&pos->node);
101 		dso__put(pos);
102 	}
103 
104 	pthread_rwlock_unlock(&dsos->lock);
105 }
106 
107 static void dsos__exit(struct dsos *dsos)
108 {
109 	dsos__purge(dsos);
110 	pthread_rwlock_destroy(&dsos->lock);
111 }
112 
113 void machine__delete_threads(struct machine *machine)
114 {
115 	struct rb_node *nd;
116 
117 	pthread_rwlock_wrlock(&machine->threads_lock);
118 	nd = rb_first(&machine->threads);
119 	while (nd) {
120 		struct thread *t = rb_entry(nd, struct thread, rb_node);
121 
122 		nd = rb_next(nd);
123 		__machine__remove_thread(machine, t, false);
124 	}
125 	pthread_rwlock_unlock(&machine->threads_lock);
126 }
127 
128 void machine__exit(struct machine *machine)
129 {
130 	machine__destroy_kernel_maps(machine);
131 	map_groups__exit(&machine->kmaps);
132 	dsos__exit(&machine->dsos);
133 	machine__exit_vdso(machine);
134 	zfree(&machine->root_dir);
135 	zfree(&machine->current_tid);
136 	pthread_rwlock_destroy(&machine->threads_lock);
137 }
138 
139 void machine__delete(struct machine *machine)
140 {
141 	machine__exit(machine);
142 	free(machine);
143 }
144 
145 void machines__init(struct machines *machines)
146 {
147 	machine__init(&machines->host, "", HOST_KERNEL_ID);
148 	machines->guests = RB_ROOT;
149 	machines->symbol_filter = NULL;
150 }
151 
152 void machines__exit(struct machines *machines)
153 {
154 	machine__exit(&machines->host);
155 	/* XXX exit guest */
156 }
157 
158 struct machine *machines__add(struct machines *machines, pid_t pid,
159 			      const char *root_dir)
160 {
161 	struct rb_node **p = &machines->guests.rb_node;
162 	struct rb_node *parent = NULL;
163 	struct machine *pos, *machine = malloc(sizeof(*machine));
164 
165 	if (machine == NULL)
166 		return NULL;
167 
168 	if (machine__init(machine, root_dir, pid) != 0) {
169 		free(machine);
170 		return NULL;
171 	}
172 
173 	machine->symbol_filter = machines->symbol_filter;
174 
175 	while (*p != NULL) {
176 		parent = *p;
177 		pos = rb_entry(parent, struct machine, rb_node);
178 		if (pid < pos->pid)
179 			p = &(*p)->rb_left;
180 		else
181 			p = &(*p)->rb_right;
182 	}
183 
184 	rb_link_node(&machine->rb_node, parent, p);
185 	rb_insert_color(&machine->rb_node, &machines->guests);
186 
187 	return machine;
188 }
189 
190 void machines__set_symbol_filter(struct machines *machines,
191 				 symbol_filter_t symbol_filter)
192 {
193 	struct rb_node *nd;
194 
195 	machines->symbol_filter = symbol_filter;
196 	machines->host.symbol_filter = symbol_filter;
197 
198 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
199 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
200 
201 		machine->symbol_filter = symbol_filter;
202 	}
203 }
204 
205 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
206 {
207 	struct rb_node *nd;
208 
209 	machines->host.comm_exec = comm_exec;
210 
211 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
212 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
213 
214 		machine->comm_exec = comm_exec;
215 	}
216 }
217 
218 struct machine *machines__find(struct machines *machines, pid_t pid)
219 {
220 	struct rb_node **p = &machines->guests.rb_node;
221 	struct rb_node *parent = NULL;
222 	struct machine *machine;
223 	struct machine *default_machine = NULL;
224 
225 	if (pid == HOST_KERNEL_ID)
226 		return &machines->host;
227 
228 	while (*p != NULL) {
229 		parent = *p;
230 		machine = rb_entry(parent, struct machine, rb_node);
231 		if (pid < machine->pid)
232 			p = &(*p)->rb_left;
233 		else if (pid > machine->pid)
234 			p = &(*p)->rb_right;
235 		else
236 			return machine;
237 		if (!machine->pid)
238 			default_machine = machine;
239 	}
240 
241 	return default_machine;
242 }
243 
244 struct machine *machines__findnew(struct machines *machines, pid_t pid)
245 {
246 	char path[PATH_MAX];
247 	const char *root_dir = "";
248 	struct machine *machine = machines__find(machines, pid);
249 
250 	if (machine && (machine->pid == pid))
251 		goto out;
252 
253 	if ((pid != HOST_KERNEL_ID) &&
254 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
255 	    (symbol_conf.guestmount)) {
256 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
257 		if (access(path, R_OK)) {
258 			static struct strlist *seen;
259 
260 			if (!seen)
261 				seen = strlist__new(NULL, NULL);
262 
263 			if (!strlist__has_entry(seen, path)) {
264 				pr_err("Can't access file %s\n", path);
265 				strlist__add(seen, path);
266 			}
267 			machine = NULL;
268 			goto out;
269 		}
270 		root_dir = path;
271 	}
272 
273 	machine = machines__add(machines, pid, root_dir);
274 out:
275 	return machine;
276 }
277 
278 void machines__process_guests(struct machines *machines,
279 			      machine__process_t process, void *data)
280 {
281 	struct rb_node *nd;
282 
283 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
284 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
285 		process(pos, data);
286 	}
287 }
288 
289 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
290 {
291 	if (machine__is_host(machine))
292 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
293 	else if (machine__is_default_guest(machine))
294 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
295 	else {
296 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
297 			 machine->pid);
298 	}
299 
300 	return bf;
301 }
302 
303 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
304 {
305 	struct rb_node *node;
306 	struct machine *machine;
307 
308 	machines->host.id_hdr_size = id_hdr_size;
309 
310 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
311 		machine = rb_entry(node, struct machine, rb_node);
312 		machine->id_hdr_size = id_hdr_size;
313 	}
314 
315 	return;
316 }
317 
318 static void machine__update_thread_pid(struct machine *machine,
319 				       struct thread *th, pid_t pid)
320 {
321 	struct thread *leader;
322 
323 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
324 		return;
325 
326 	th->pid_ = pid;
327 
328 	if (th->pid_ == th->tid)
329 		return;
330 
331 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
332 	if (!leader)
333 		goto out_err;
334 
335 	if (!leader->mg)
336 		leader->mg = map_groups__new(machine);
337 
338 	if (!leader->mg)
339 		goto out_err;
340 
341 	if (th->mg == leader->mg)
342 		return;
343 
344 	if (th->mg) {
345 		/*
346 		 * Maps are created from MMAP events which provide the pid and
347 		 * tid.  Consequently there never should be any maps on a thread
348 		 * with an unknown pid.  Just print an error if there are.
349 		 */
350 		if (!map_groups__empty(th->mg))
351 			pr_err("Discarding thread maps for %d:%d\n",
352 			       th->pid_, th->tid);
353 		map_groups__put(th->mg);
354 	}
355 
356 	th->mg = map_groups__get(leader->mg);
357 out_put:
358 	thread__put(leader);
359 	return;
360 out_err:
361 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
362 	goto out_put;
363 }
364 
365 /*
366  * Caller must eventually drop thread->refcnt returned with a successful
367  * lookup/new thread inserted.
368  */
369 static struct thread *____machine__findnew_thread(struct machine *machine,
370 						  pid_t pid, pid_t tid,
371 						  bool create)
372 {
373 	struct rb_node **p = &machine->threads.rb_node;
374 	struct rb_node *parent = NULL;
375 	struct thread *th;
376 
377 	/*
378 	 * Front-end cache - TID lookups come in blocks,
379 	 * so most of the time we dont have to look up
380 	 * the full rbtree:
381 	 */
382 	th = machine->last_match;
383 	if (th != NULL) {
384 		if (th->tid == tid) {
385 			machine__update_thread_pid(machine, th, pid);
386 			return thread__get(th);
387 		}
388 
389 		machine->last_match = NULL;
390 	}
391 
392 	while (*p != NULL) {
393 		parent = *p;
394 		th = rb_entry(parent, struct thread, rb_node);
395 
396 		if (th->tid == tid) {
397 			machine->last_match = th;
398 			machine__update_thread_pid(machine, th, pid);
399 			return thread__get(th);
400 		}
401 
402 		if (tid < th->tid)
403 			p = &(*p)->rb_left;
404 		else
405 			p = &(*p)->rb_right;
406 	}
407 
408 	if (!create)
409 		return NULL;
410 
411 	th = thread__new(pid, tid);
412 	if (th != NULL) {
413 		rb_link_node(&th->rb_node, parent, p);
414 		rb_insert_color(&th->rb_node, &machine->threads);
415 
416 		/*
417 		 * We have to initialize map_groups separately
418 		 * after rb tree is updated.
419 		 *
420 		 * The reason is that we call machine__findnew_thread
421 		 * within thread__init_map_groups to find the thread
422 		 * leader and that would screwed the rb tree.
423 		 */
424 		if (thread__init_map_groups(th, machine)) {
425 			rb_erase_init(&th->rb_node, &machine->threads);
426 			RB_CLEAR_NODE(&th->rb_node);
427 			thread__put(th);
428 			return NULL;
429 		}
430 		/*
431 		 * It is now in the rbtree, get a ref
432 		 */
433 		thread__get(th);
434 		machine->last_match = th;
435 		++machine->nr_threads;
436 	}
437 
438 	return th;
439 }
440 
441 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
442 {
443 	return ____machine__findnew_thread(machine, pid, tid, true);
444 }
445 
446 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
447 				       pid_t tid)
448 {
449 	struct thread *th;
450 
451 	pthread_rwlock_wrlock(&machine->threads_lock);
452 	th = __machine__findnew_thread(machine, pid, tid);
453 	pthread_rwlock_unlock(&machine->threads_lock);
454 	return th;
455 }
456 
457 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
458 				    pid_t tid)
459 {
460 	struct thread *th;
461 	pthread_rwlock_rdlock(&machine->threads_lock);
462 	th =  ____machine__findnew_thread(machine, pid, tid, false);
463 	pthread_rwlock_unlock(&machine->threads_lock);
464 	return th;
465 }
466 
467 struct comm *machine__thread_exec_comm(struct machine *machine,
468 				       struct thread *thread)
469 {
470 	if (machine->comm_exec)
471 		return thread__exec_comm(thread);
472 	else
473 		return thread__comm(thread);
474 }
475 
476 int machine__process_comm_event(struct machine *machine, union perf_event *event,
477 				struct perf_sample *sample)
478 {
479 	struct thread *thread = machine__findnew_thread(machine,
480 							event->comm.pid,
481 							event->comm.tid);
482 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
483 	int err = 0;
484 
485 	if (exec)
486 		machine->comm_exec = true;
487 
488 	if (dump_trace)
489 		perf_event__fprintf_comm(event, stdout);
490 
491 	if (thread == NULL ||
492 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
493 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
494 		err = -1;
495 	}
496 
497 	thread__put(thread);
498 
499 	return err;
500 }
501 
502 int machine__process_lost_event(struct machine *machine __maybe_unused,
503 				union perf_event *event, struct perf_sample *sample __maybe_unused)
504 {
505 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
506 		    event->lost.id, event->lost.lost);
507 	return 0;
508 }
509 
510 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
511 					union perf_event *event, struct perf_sample *sample)
512 {
513 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
514 		    sample->id, event->lost_samples.lost);
515 	return 0;
516 }
517 
518 static struct dso *machine__findnew_module_dso(struct machine *machine,
519 					       struct kmod_path *m,
520 					       const char *filename)
521 {
522 	struct dso *dso;
523 
524 	pthread_rwlock_wrlock(&machine->dsos.lock);
525 
526 	dso = __dsos__find(&machine->dsos, m->name, true);
527 	if (!dso) {
528 		dso = __dsos__addnew(&machine->dsos, m->name);
529 		if (dso == NULL)
530 			goto out_unlock;
531 
532 		if (machine__is_host(machine))
533 			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
534 		else
535 			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
536 
537 		/* _KMODULE_COMP should be next to _KMODULE */
538 		if (m->kmod && m->comp)
539 			dso->symtab_type++;
540 
541 		dso__set_short_name(dso, strdup(m->name), true);
542 		dso__set_long_name(dso, strdup(filename), true);
543 	}
544 
545 	dso__get(dso);
546 out_unlock:
547 	pthread_rwlock_unlock(&machine->dsos.lock);
548 	return dso;
549 }
550 
551 int machine__process_aux_event(struct machine *machine __maybe_unused,
552 			       union perf_event *event)
553 {
554 	if (dump_trace)
555 		perf_event__fprintf_aux(event, stdout);
556 	return 0;
557 }
558 
559 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
560 					union perf_event *event)
561 {
562 	if (dump_trace)
563 		perf_event__fprintf_itrace_start(event, stdout);
564 	return 0;
565 }
566 
567 int machine__process_switch_event(struct machine *machine __maybe_unused,
568 				  union perf_event *event)
569 {
570 	if (dump_trace)
571 		perf_event__fprintf_switch(event, stdout);
572 	return 0;
573 }
574 
575 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
576 {
577 	const char *dup_filename;
578 
579 	if (!filename || !dso || !dso->long_name)
580 		return;
581 	if (dso->long_name[0] != '[')
582 		return;
583 	if (!strchr(filename, '/'))
584 		return;
585 
586 	dup_filename = strdup(filename);
587 	if (!dup_filename)
588 		return;
589 
590 	dso__set_long_name(dso, dup_filename, true);
591 }
592 
593 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
594 					const char *filename)
595 {
596 	struct map *map = NULL;
597 	struct dso *dso = NULL;
598 	struct kmod_path m;
599 
600 	if (kmod_path__parse_name(&m, filename))
601 		return NULL;
602 
603 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
604 				       m.name);
605 	if (map) {
606 		/*
607 		 * If the map's dso is an offline module, give dso__load()
608 		 * a chance to find the file path of that module by fixing
609 		 * long_name.
610 		 */
611 		dso__adjust_kmod_long_name(map->dso, filename);
612 		goto out;
613 	}
614 
615 	dso = machine__findnew_module_dso(machine, &m, filename);
616 	if (dso == NULL)
617 		goto out;
618 
619 	map = map__new2(start, dso, MAP__FUNCTION);
620 	if (map == NULL)
621 		goto out;
622 
623 	map_groups__insert(&machine->kmaps, map);
624 
625 	/* Put the map here because map_groups__insert alread got it */
626 	map__put(map);
627 out:
628 	/* put the dso here, corresponding to  machine__findnew_module_dso */
629 	dso__put(dso);
630 	free(m.name);
631 	return map;
632 }
633 
634 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
635 {
636 	struct rb_node *nd;
637 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
638 
639 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
640 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
641 		ret += __dsos__fprintf(&pos->dsos.head, fp);
642 	}
643 
644 	return ret;
645 }
646 
647 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
648 				     bool (skip)(struct dso *dso, int parm), int parm)
649 {
650 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
651 }
652 
653 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
654 				     bool (skip)(struct dso *dso, int parm), int parm)
655 {
656 	struct rb_node *nd;
657 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
658 
659 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
660 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
661 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
662 	}
663 	return ret;
664 }
665 
666 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
667 {
668 	int i;
669 	size_t printed = 0;
670 	struct dso *kdso = machine__kernel_map(machine)->dso;
671 
672 	if (kdso->has_build_id) {
673 		char filename[PATH_MAX];
674 		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
675 			printed += fprintf(fp, "[0] %s\n", filename);
676 	}
677 
678 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
679 		printed += fprintf(fp, "[%d] %s\n",
680 				   i + kdso->has_build_id, vmlinux_path[i]);
681 
682 	return printed;
683 }
684 
685 size_t machine__fprintf(struct machine *machine, FILE *fp)
686 {
687 	size_t ret;
688 	struct rb_node *nd;
689 
690 	pthread_rwlock_rdlock(&machine->threads_lock);
691 
692 	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
693 
694 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
695 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
696 
697 		ret += thread__fprintf(pos, fp);
698 	}
699 
700 	pthread_rwlock_unlock(&machine->threads_lock);
701 
702 	return ret;
703 }
704 
705 static struct dso *machine__get_kernel(struct machine *machine)
706 {
707 	const char *vmlinux_name = NULL;
708 	struct dso *kernel;
709 
710 	if (machine__is_host(machine)) {
711 		vmlinux_name = symbol_conf.vmlinux_name;
712 		if (!vmlinux_name)
713 			vmlinux_name = DSO__NAME_KALLSYMS;
714 
715 		kernel = machine__findnew_kernel(machine, vmlinux_name,
716 						 "[kernel]", DSO_TYPE_KERNEL);
717 	} else {
718 		char bf[PATH_MAX];
719 
720 		if (machine__is_default_guest(machine))
721 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
722 		if (!vmlinux_name)
723 			vmlinux_name = machine__mmap_name(machine, bf,
724 							  sizeof(bf));
725 
726 		kernel = machine__findnew_kernel(machine, vmlinux_name,
727 						 "[guest.kernel]",
728 						 DSO_TYPE_GUEST_KERNEL);
729 	}
730 
731 	if (kernel != NULL && (!kernel->has_build_id))
732 		dso__read_running_kernel_build_id(kernel, machine);
733 
734 	return kernel;
735 }
736 
737 struct process_args {
738 	u64 start;
739 };
740 
741 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
742 					   size_t bufsz)
743 {
744 	if (machine__is_default_guest(machine))
745 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
746 	else
747 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
748 }
749 
750 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
751 
752 /* Figure out the start address of kernel map from /proc/kallsyms.
753  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
754  * symbol_name if it's not that important.
755  */
756 static u64 machine__get_running_kernel_start(struct machine *machine,
757 					     const char **symbol_name)
758 {
759 	char filename[PATH_MAX];
760 	int i;
761 	const char *name;
762 	u64 addr = 0;
763 
764 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
765 
766 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
767 		return 0;
768 
769 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
770 		addr = kallsyms__get_function_start(filename, name);
771 		if (addr)
772 			break;
773 	}
774 
775 	if (symbol_name)
776 		*symbol_name = name;
777 
778 	return addr;
779 }
780 
781 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
782 {
783 	enum map_type type;
784 	u64 start = machine__get_running_kernel_start(machine, NULL);
785 
786 	/* In case of renewal the kernel map, destroy previous one */
787 	machine__destroy_kernel_maps(machine);
788 
789 	for (type = 0; type < MAP__NR_TYPES; ++type) {
790 		struct kmap *kmap;
791 		struct map *map;
792 
793 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
794 		if (machine->vmlinux_maps[type] == NULL)
795 			return -1;
796 
797 		machine->vmlinux_maps[type]->map_ip =
798 			machine->vmlinux_maps[type]->unmap_ip =
799 				identity__map_ip;
800 		map = __machine__kernel_map(machine, type);
801 		kmap = map__kmap(map);
802 		if (!kmap)
803 			return -1;
804 
805 		kmap->kmaps = &machine->kmaps;
806 		map_groups__insert(&machine->kmaps, map);
807 	}
808 
809 	return 0;
810 }
811 
812 void machine__destroy_kernel_maps(struct machine *machine)
813 {
814 	enum map_type type;
815 
816 	for (type = 0; type < MAP__NR_TYPES; ++type) {
817 		struct kmap *kmap;
818 		struct map *map = __machine__kernel_map(machine, type);
819 
820 		if (map == NULL)
821 			continue;
822 
823 		kmap = map__kmap(map);
824 		map_groups__remove(&machine->kmaps, map);
825 		if (kmap && kmap->ref_reloc_sym) {
826 			/*
827 			 * ref_reloc_sym is shared among all maps, so free just
828 			 * on one of them.
829 			 */
830 			if (type == MAP__FUNCTION) {
831 				zfree((char **)&kmap->ref_reloc_sym->name);
832 				zfree(&kmap->ref_reloc_sym);
833 			} else
834 				kmap->ref_reloc_sym = NULL;
835 		}
836 
837 		map__put(machine->vmlinux_maps[type]);
838 		machine->vmlinux_maps[type] = NULL;
839 	}
840 }
841 
842 int machines__create_guest_kernel_maps(struct machines *machines)
843 {
844 	int ret = 0;
845 	struct dirent **namelist = NULL;
846 	int i, items = 0;
847 	char path[PATH_MAX];
848 	pid_t pid;
849 	char *endp;
850 
851 	if (symbol_conf.default_guest_vmlinux_name ||
852 	    symbol_conf.default_guest_modules ||
853 	    symbol_conf.default_guest_kallsyms) {
854 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
855 	}
856 
857 	if (symbol_conf.guestmount) {
858 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
859 		if (items <= 0)
860 			return -ENOENT;
861 		for (i = 0; i < items; i++) {
862 			if (!isdigit(namelist[i]->d_name[0])) {
863 				/* Filter out . and .. */
864 				continue;
865 			}
866 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
867 			if ((*endp != '\0') ||
868 			    (endp == namelist[i]->d_name) ||
869 			    (errno == ERANGE)) {
870 				pr_debug("invalid directory (%s). Skipping.\n",
871 					 namelist[i]->d_name);
872 				continue;
873 			}
874 			sprintf(path, "%s/%s/proc/kallsyms",
875 				symbol_conf.guestmount,
876 				namelist[i]->d_name);
877 			ret = access(path, R_OK);
878 			if (ret) {
879 				pr_debug("Can't access file %s\n", path);
880 				goto failure;
881 			}
882 			machines__create_kernel_maps(machines, pid);
883 		}
884 failure:
885 		free(namelist);
886 	}
887 
888 	return ret;
889 }
890 
891 void machines__destroy_kernel_maps(struct machines *machines)
892 {
893 	struct rb_node *next = rb_first(&machines->guests);
894 
895 	machine__destroy_kernel_maps(&machines->host);
896 
897 	while (next) {
898 		struct machine *pos = rb_entry(next, struct machine, rb_node);
899 
900 		next = rb_next(&pos->rb_node);
901 		rb_erase(&pos->rb_node, &machines->guests);
902 		machine__delete(pos);
903 	}
904 }
905 
906 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
907 {
908 	struct machine *machine = machines__findnew(machines, pid);
909 
910 	if (machine == NULL)
911 		return -1;
912 
913 	return machine__create_kernel_maps(machine);
914 }
915 
916 int __machine__load_kallsyms(struct machine *machine, const char *filename,
917 			     enum map_type type, bool no_kcore, symbol_filter_t filter)
918 {
919 	struct map *map = machine__kernel_map(machine);
920 	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore, filter);
921 
922 	if (ret > 0) {
923 		dso__set_loaded(map->dso, type);
924 		/*
925 		 * Since /proc/kallsyms will have multiple sessions for the
926 		 * kernel, with modules between them, fixup the end of all
927 		 * sections.
928 		 */
929 		__map_groups__fixup_end(&machine->kmaps, type);
930 	}
931 
932 	return ret;
933 }
934 
935 int machine__load_kallsyms(struct machine *machine, const char *filename,
936 			   enum map_type type, symbol_filter_t filter)
937 {
938 	return __machine__load_kallsyms(machine, filename, type, false, filter);
939 }
940 
941 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
942 			       symbol_filter_t filter)
943 {
944 	struct map *map = machine__kernel_map(machine);
945 	int ret = dso__load_vmlinux_path(map->dso, map, filter);
946 
947 	if (ret > 0)
948 		dso__set_loaded(map->dso, type);
949 
950 	return ret;
951 }
952 
953 static void map_groups__fixup_end(struct map_groups *mg)
954 {
955 	int i;
956 	for (i = 0; i < MAP__NR_TYPES; ++i)
957 		__map_groups__fixup_end(mg, i);
958 }
959 
960 static char *get_kernel_version(const char *root_dir)
961 {
962 	char version[PATH_MAX];
963 	FILE *file;
964 	char *name, *tmp;
965 	const char *prefix = "Linux version ";
966 
967 	sprintf(version, "%s/proc/version", root_dir);
968 	file = fopen(version, "r");
969 	if (!file)
970 		return NULL;
971 
972 	version[0] = '\0';
973 	tmp = fgets(version, sizeof(version), file);
974 	fclose(file);
975 
976 	name = strstr(version, prefix);
977 	if (!name)
978 		return NULL;
979 	name += strlen(prefix);
980 	tmp = strchr(name, ' ');
981 	if (tmp)
982 		*tmp = '\0';
983 
984 	return strdup(name);
985 }
986 
987 static bool is_kmod_dso(struct dso *dso)
988 {
989 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
990 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
991 }
992 
993 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
994 				       struct kmod_path *m)
995 {
996 	struct map *map;
997 	char *long_name;
998 
999 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1000 	if (map == NULL)
1001 		return 0;
1002 
1003 	long_name = strdup(path);
1004 	if (long_name == NULL)
1005 		return -ENOMEM;
1006 
1007 	dso__set_long_name(map->dso, long_name, true);
1008 	dso__kernel_module_get_build_id(map->dso, "");
1009 
1010 	/*
1011 	 * Full name could reveal us kmod compression, so
1012 	 * we need to update the symtab_type if needed.
1013 	 */
1014 	if (m->comp && is_kmod_dso(map->dso))
1015 		map->dso->symtab_type++;
1016 
1017 	return 0;
1018 }
1019 
1020 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1021 				const char *dir_name, int depth)
1022 {
1023 	struct dirent *dent;
1024 	DIR *dir = opendir(dir_name);
1025 	int ret = 0;
1026 
1027 	if (!dir) {
1028 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1029 		return -1;
1030 	}
1031 
1032 	while ((dent = readdir(dir)) != NULL) {
1033 		char path[PATH_MAX];
1034 		struct stat st;
1035 
1036 		/*sshfs might return bad dent->d_type, so we have to stat*/
1037 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1038 		if (stat(path, &st))
1039 			continue;
1040 
1041 		if (S_ISDIR(st.st_mode)) {
1042 			if (!strcmp(dent->d_name, ".") ||
1043 			    !strcmp(dent->d_name, ".."))
1044 				continue;
1045 
1046 			/* Do not follow top-level source and build symlinks */
1047 			if (depth == 0) {
1048 				if (!strcmp(dent->d_name, "source") ||
1049 				    !strcmp(dent->d_name, "build"))
1050 					continue;
1051 			}
1052 
1053 			ret = map_groups__set_modules_path_dir(mg, path,
1054 							       depth + 1);
1055 			if (ret < 0)
1056 				goto out;
1057 		} else {
1058 			struct kmod_path m;
1059 
1060 			ret = kmod_path__parse_name(&m, dent->d_name);
1061 			if (ret)
1062 				goto out;
1063 
1064 			if (m.kmod)
1065 				ret = map_groups__set_module_path(mg, path, &m);
1066 
1067 			free(m.name);
1068 
1069 			if (ret)
1070 				goto out;
1071 		}
1072 	}
1073 
1074 out:
1075 	closedir(dir);
1076 	return ret;
1077 }
1078 
1079 static int machine__set_modules_path(struct machine *machine)
1080 {
1081 	char *version;
1082 	char modules_path[PATH_MAX];
1083 
1084 	version = get_kernel_version(machine->root_dir);
1085 	if (!version)
1086 		return -1;
1087 
1088 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1089 		 machine->root_dir, version);
1090 	free(version);
1091 
1092 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1093 }
1094 
1095 static int machine__create_module(void *arg, const char *name, u64 start)
1096 {
1097 	struct machine *machine = arg;
1098 	struct map *map;
1099 
1100 	map = machine__findnew_module_map(machine, start, name);
1101 	if (map == NULL)
1102 		return -1;
1103 
1104 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1105 
1106 	return 0;
1107 }
1108 
1109 static int machine__create_modules(struct machine *machine)
1110 {
1111 	const char *modules;
1112 	char path[PATH_MAX];
1113 
1114 	if (machine__is_default_guest(machine)) {
1115 		modules = symbol_conf.default_guest_modules;
1116 	} else {
1117 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1118 		modules = path;
1119 	}
1120 
1121 	if (symbol__restricted_filename(modules, "/proc/modules"))
1122 		return -1;
1123 
1124 	if (modules__parse(modules, machine, machine__create_module))
1125 		return -1;
1126 
1127 	if (!machine__set_modules_path(machine))
1128 		return 0;
1129 
1130 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1131 
1132 	return 0;
1133 }
1134 
1135 int machine__create_kernel_maps(struct machine *machine)
1136 {
1137 	struct dso *kernel = machine__get_kernel(machine);
1138 	const char *name;
1139 	u64 addr;
1140 	int ret;
1141 
1142 	if (kernel == NULL)
1143 		return -1;
1144 
1145 	ret = __machine__create_kernel_maps(machine, kernel);
1146 	dso__put(kernel);
1147 	if (ret < 0)
1148 		return -1;
1149 
1150 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1151 		if (machine__is_host(machine))
1152 			pr_debug("Problems creating module maps, "
1153 				 "continuing anyway...\n");
1154 		else
1155 			pr_debug("Problems creating module maps for guest %d, "
1156 				 "continuing anyway...\n", machine->pid);
1157 	}
1158 
1159 	/*
1160 	 * Now that we have all the maps created, just set the ->end of them:
1161 	 */
1162 	map_groups__fixup_end(&machine->kmaps);
1163 
1164 	addr = machine__get_running_kernel_start(machine, &name);
1165 	if (!addr) {
1166 	} else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1167 		machine__destroy_kernel_maps(machine);
1168 		return -1;
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 static void machine__set_kernel_mmap_len(struct machine *machine,
1175 					 union perf_event *event)
1176 {
1177 	int i;
1178 
1179 	for (i = 0; i < MAP__NR_TYPES; i++) {
1180 		machine->vmlinux_maps[i]->start = event->mmap.start;
1181 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1182 						   event->mmap.len);
1183 		/*
1184 		 * Be a bit paranoid here, some perf.data file came with
1185 		 * a zero sized synthesized MMAP event for the kernel.
1186 		 */
1187 		if (machine->vmlinux_maps[i]->end == 0)
1188 			machine->vmlinux_maps[i]->end = ~0ULL;
1189 	}
1190 }
1191 
1192 static bool machine__uses_kcore(struct machine *machine)
1193 {
1194 	struct dso *dso;
1195 
1196 	list_for_each_entry(dso, &machine->dsos.head, node) {
1197 		if (dso__is_kcore(dso))
1198 			return true;
1199 	}
1200 
1201 	return false;
1202 }
1203 
1204 static int machine__process_kernel_mmap_event(struct machine *machine,
1205 					      union perf_event *event)
1206 {
1207 	struct map *map;
1208 	char kmmap_prefix[PATH_MAX];
1209 	enum dso_kernel_type kernel_type;
1210 	bool is_kernel_mmap;
1211 
1212 	/* If we have maps from kcore then we do not need or want any others */
1213 	if (machine__uses_kcore(machine))
1214 		return 0;
1215 
1216 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1217 	if (machine__is_host(machine))
1218 		kernel_type = DSO_TYPE_KERNEL;
1219 	else
1220 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1221 
1222 	is_kernel_mmap = memcmp(event->mmap.filename,
1223 				kmmap_prefix,
1224 				strlen(kmmap_prefix) - 1) == 0;
1225 	if (event->mmap.filename[0] == '/' ||
1226 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1227 		map = machine__findnew_module_map(machine, event->mmap.start,
1228 						  event->mmap.filename);
1229 		if (map == NULL)
1230 			goto out_problem;
1231 
1232 		map->end = map->start + event->mmap.len;
1233 	} else if (is_kernel_mmap) {
1234 		const char *symbol_name = (event->mmap.filename +
1235 				strlen(kmmap_prefix));
1236 		/*
1237 		 * Should be there already, from the build-id table in
1238 		 * the header.
1239 		 */
1240 		struct dso *kernel = NULL;
1241 		struct dso *dso;
1242 
1243 		pthread_rwlock_rdlock(&machine->dsos.lock);
1244 
1245 		list_for_each_entry(dso, &machine->dsos.head, node) {
1246 
1247 			/*
1248 			 * The cpumode passed to is_kernel_module is not the
1249 			 * cpumode of *this* event. If we insist on passing
1250 			 * correct cpumode to is_kernel_module, we should
1251 			 * record the cpumode when we adding this dso to the
1252 			 * linked list.
1253 			 *
1254 			 * However we don't really need passing correct
1255 			 * cpumode.  We know the correct cpumode must be kernel
1256 			 * mode (if not, we should not link it onto kernel_dsos
1257 			 * list).
1258 			 *
1259 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1260 			 * is_kernel_module() treats it as a kernel cpumode.
1261 			 */
1262 
1263 			if (!dso->kernel ||
1264 			    is_kernel_module(dso->long_name,
1265 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1266 				continue;
1267 
1268 
1269 			kernel = dso;
1270 			break;
1271 		}
1272 
1273 		pthread_rwlock_unlock(&machine->dsos.lock);
1274 
1275 		if (kernel == NULL)
1276 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1277 		if (kernel == NULL)
1278 			goto out_problem;
1279 
1280 		kernel->kernel = kernel_type;
1281 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1282 			dso__put(kernel);
1283 			goto out_problem;
1284 		}
1285 
1286 		if (strstr(kernel->long_name, "vmlinux"))
1287 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1288 
1289 		machine__set_kernel_mmap_len(machine, event);
1290 
1291 		/*
1292 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1293 		 * symbol. Effectively having zero here means that at record
1294 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1295 		 */
1296 		if (event->mmap.pgoff != 0) {
1297 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1298 							 symbol_name,
1299 							 event->mmap.pgoff);
1300 		}
1301 
1302 		if (machine__is_default_guest(machine)) {
1303 			/*
1304 			 * preload dso of guest kernel and modules
1305 			 */
1306 			dso__load(kernel, machine__kernel_map(machine), NULL);
1307 		}
1308 	}
1309 	return 0;
1310 out_problem:
1311 	return -1;
1312 }
1313 
1314 int machine__process_mmap2_event(struct machine *machine,
1315 				 union perf_event *event,
1316 				 struct perf_sample *sample)
1317 {
1318 	struct thread *thread;
1319 	struct map *map;
1320 	enum map_type type;
1321 	int ret = 0;
1322 
1323 	if (dump_trace)
1324 		perf_event__fprintf_mmap2(event, stdout);
1325 
1326 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1327 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1328 		ret = machine__process_kernel_mmap_event(machine, event);
1329 		if (ret < 0)
1330 			goto out_problem;
1331 		return 0;
1332 	}
1333 
1334 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1335 					event->mmap2.tid);
1336 	if (thread == NULL)
1337 		goto out_problem;
1338 
1339 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1340 		type = MAP__VARIABLE;
1341 	else
1342 		type = MAP__FUNCTION;
1343 
1344 	map = map__new(machine, event->mmap2.start,
1345 			event->mmap2.len, event->mmap2.pgoff,
1346 			event->mmap2.pid, event->mmap2.maj,
1347 			event->mmap2.min, event->mmap2.ino,
1348 			event->mmap2.ino_generation,
1349 			event->mmap2.prot,
1350 			event->mmap2.flags,
1351 			event->mmap2.filename, type, thread);
1352 
1353 	if (map == NULL)
1354 		goto out_problem_map;
1355 
1356 	thread__insert_map(thread, map);
1357 	thread__put(thread);
1358 	map__put(map);
1359 	return 0;
1360 
1361 out_problem_map:
1362 	thread__put(thread);
1363 out_problem:
1364 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1365 	return 0;
1366 }
1367 
1368 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1369 				struct perf_sample *sample)
1370 {
1371 	struct thread *thread;
1372 	struct map *map;
1373 	enum map_type type;
1374 	int ret = 0;
1375 
1376 	if (dump_trace)
1377 		perf_event__fprintf_mmap(event, stdout);
1378 
1379 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1380 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1381 		ret = machine__process_kernel_mmap_event(machine, event);
1382 		if (ret < 0)
1383 			goto out_problem;
1384 		return 0;
1385 	}
1386 
1387 	thread = machine__findnew_thread(machine, event->mmap.pid,
1388 					 event->mmap.tid);
1389 	if (thread == NULL)
1390 		goto out_problem;
1391 
1392 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1393 		type = MAP__VARIABLE;
1394 	else
1395 		type = MAP__FUNCTION;
1396 
1397 	map = map__new(machine, event->mmap.start,
1398 			event->mmap.len, event->mmap.pgoff,
1399 			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1400 			event->mmap.filename,
1401 			type, thread);
1402 
1403 	if (map == NULL)
1404 		goto out_problem_map;
1405 
1406 	thread__insert_map(thread, map);
1407 	thread__put(thread);
1408 	map__put(map);
1409 	return 0;
1410 
1411 out_problem_map:
1412 	thread__put(thread);
1413 out_problem:
1414 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1415 	return 0;
1416 }
1417 
1418 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1419 {
1420 	if (machine->last_match == th)
1421 		machine->last_match = NULL;
1422 
1423 	BUG_ON(atomic_read(&th->refcnt) == 0);
1424 	if (lock)
1425 		pthread_rwlock_wrlock(&machine->threads_lock);
1426 	rb_erase_init(&th->rb_node, &machine->threads);
1427 	RB_CLEAR_NODE(&th->rb_node);
1428 	--machine->nr_threads;
1429 	/*
1430 	 * Move it first to the dead_threads list, then drop the reference,
1431 	 * if this is the last reference, then the thread__delete destructor
1432 	 * will be called and we will remove it from the dead_threads list.
1433 	 */
1434 	list_add_tail(&th->node, &machine->dead_threads);
1435 	if (lock)
1436 		pthread_rwlock_unlock(&machine->threads_lock);
1437 	thread__put(th);
1438 }
1439 
1440 void machine__remove_thread(struct machine *machine, struct thread *th)
1441 {
1442 	return __machine__remove_thread(machine, th, true);
1443 }
1444 
1445 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1446 				struct perf_sample *sample)
1447 {
1448 	struct thread *thread = machine__find_thread(machine,
1449 						     event->fork.pid,
1450 						     event->fork.tid);
1451 	struct thread *parent = machine__findnew_thread(machine,
1452 							event->fork.ppid,
1453 							event->fork.ptid);
1454 	int err = 0;
1455 
1456 	if (dump_trace)
1457 		perf_event__fprintf_task(event, stdout);
1458 
1459 	/*
1460 	 * There may be an existing thread that is not actually the parent,
1461 	 * either because we are processing events out of order, or because the
1462 	 * (fork) event that would have removed the thread was lost. Assume the
1463 	 * latter case and continue on as best we can.
1464 	 */
1465 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1466 		dump_printf("removing erroneous parent thread %d/%d\n",
1467 			    parent->pid_, parent->tid);
1468 		machine__remove_thread(machine, parent);
1469 		thread__put(parent);
1470 		parent = machine__findnew_thread(machine, event->fork.ppid,
1471 						 event->fork.ptid);
1472 	}
1473 
1474 	/* if a thread currently exists for the thread id remove it */
1475 	if (thread != NULL) {
1476 		machine__remove_thread(machine, thread);
1477 		thread__put(thread);
1478 	}
1479 
1480 	thread = machine__findnew_thread(machine, event->fork.pid,
1481 					 event->fork.tid);
1482 
1483 	if (thread == NULL || parent == NULL ||
1484 	    thread__fork(thread, parent, sample->time) < 0) {
1485 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1486 		err = -1;
1487 	}
1488 	thread__put(thread);
1489 	thread__put(parent);
1490 
1491 	return err;
1492 }
1493 
1494 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1495 				struct perf_sample *sample __maybe_unused)
1496 {
1497 	struct thread *thread = machine__find_thread(machine,
1498 						     event->fork.pid,
1499 						     event->fork.tid);
1500 
1501 	if (dump_trace)
1502 		perf_event__fprintf_task(event, stdout);
1503 
1504 	if (thread != NULL) {
1505 		thread__exited(thread);
1506 		thread__put(thread);
1507 	}
1508 
1509 	return 0;
1510 }
1511 
1512 int machine__process_event(struct machine *machine, union perf_event *event,
1513 			   struct perf_sample *sample)
1514 {
1515 	int ret;
1516 
1517 	switch (event->header.type) {
1518 	case PERF_RECORD_COMM:
1519 		ret = machine__process_comm_event(machine, event, sample); break;
1520 	case PERF_RECORD_MMAP:
1521 		ret = machine__process_mmap_event(machine, event, sample); break;
1522 	case PERF_RECORD_MMAP2:
1523 		ret = machine__process_mmap2_event(machine, event, sample); break;
1524 	case PERF_RECORD_FORK:
1525 		ret = machine__process_fork_event(machine, event, sample); break;
1526 	case PERF_RECORD_EXIT:
1527 		ret = machine__process_exit_event(machine, event, sample); break;
1528 	case PERF_RECORD_LOST:
1529 		ret = machine__process_lost_event(machine, event, sample); break;
1530 	case PERF_RECORD_AUX:
1531 		ret = machine__process_aux_event(machine, event); break;
1532 	case PERF_RECORD_ITRACE_START:
1533 		ret = machine__process_itrace_start_event(machine, event); break;
1534 	case PERF_RECORD_LOST_SAMPLES:
1535 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1536 	case PERF_RECORD_SWITCH:
1537 	case PERF_RECORD_SWITCH_CPU_WIDE:
1538 		ret = machine__process_switch_event(machine, event); break;
1539 	default:
1540 		ret = -1;
1541 		break;
1542 	}
1543 
1544 	return ret;
1545 }
1546 
1547 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1548 {
1549 	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1550 		return 1;
1551 	return 0;
1552 }
1553 
1554 static void ip__resolve_ams(struct thread *thread,
1555 			    struct addr_map_symbol *ams,
1556 			    u64 ip)
1557 {
1558 	struct addr_location al;
1559 
1560 	memset(&al, 0, sizeof(al));
1561 	/*
1562 	 * We cannot use the header.misc hint to determine whether a
1563 	 * branch stack address is user, kernel, guest, hypervisor.
1564 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1565 	 * Thus, we have to try consecutively until we find a match
1566 	 * or else, the symbol is unknown
1567 	 */
1568 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1569 
1570 	ams->addr = ip;
1571 	ams->al_addr = al.addr;
1572 	ams->sym = al.sym;
1573 	ams->map = al.map;
1574 }
1575 
1576 static void ip__resolve_data(struct thread *thread,
1577 			     u8 m, struct addr_map_symbol *ams, u64 addr)
1578 {
1579 	struct addr_location al;
1580 
1581 	memset(&al, 0, sizeof(al));
1582 
1583 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1584 	if (al.map == NULL) {
1585 		/*
1586 		 * some shared data regions have execute bit set which puts
1587 		 * their mapping in the MAP__FUNCTION type array.
1588 		 * Check there as a fallback option before dropping the sample.
1589 		 */
1590 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1591 	}
1592 
1593 	ams->addr = addr;
1594 	ams->al_addr = al.addr;
1595 	ams->sym = al.sym;
1596 	ams->map = al.map;
1597 }
1598 
1599 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1600 				     struct addr_location *al)
1601 {
1602 	struct mem_info *mi = zalloc(sizeof(*mi));
1603 
1604 	if (!mi)
1605 		return NULL;
1606 
1607 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1608 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1609 	mi->data_src.val = sample->data_src;
1610 
1611 	return mi;
1612 }
1613 
1614 static int add_callchain_ip(struct thread *thread,
1615 			    struct callchain_cursor *cursor,
1616 			    struct symbol **parent,
1617 			    struct addr_location *root_al,
1618 			    u8 *cpumode,
1619 			    u64 ip)
1620 {
1621 	struct addr_location al;
1622 
1623 	al.filtered = 0;
1624 	al.sym = NULL;
1625 	if (!cpumode) {
1626 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1627 						   ip, &al);
1628 	} else {
1629 		if (ip >= PERF_CONTEXT_MAX) {
1630 			switch (ip) {
1631 			case PERF_CONTEXT_HV:
1632 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1633 				break;
1634 			case PERF_CONTEXT_KERNEL:
1635 				*cpumode = PERF_RECORD_MISC_KERNEL;
1636 				break;
1637 			case PERF_CONTEXT_USER:
1638 				*cpumode = PERF_RECORD_MISC_USER;
1639 				break;
1640 			default:
1641 				pr_debug("invalid callchain context: "
1642 					 "%"PRId64"\n", (s64) ip);
1643 				/*
1644 				 * It seems the callchain is corrupted.
1645 				 * Discard all.
1646 				 */
1647 				callchain_cursor_reset(cursor);
1648 				return 1;
1649 			}
1650 			return 0;
1651 		}
1652 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1653 					   ip, &al);
1654 	}
1655 
1656 	if (al.sym != NULL) {
1657 		if (perf_hpp_list.parent && !*parent &&
1658 		    symbol__match_regex(al.sym, &parent_regex))
1659 			*parent = al.sym;
1660 		else if (have_ignore_callees && root_al &&
1661 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1662 			/* Treat this symbol as the root,
1663 			   forgetting its callees. */
1664 			*root_al = al;
1665 			callchain_cursor_reset(cursor);
1666 		}
1667 	}
1668 
1669 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1670 		return 0;
1671 	return callchain_cursor_append(cursor, al.addr, al.map, al.sym);
1672 }
1673 
1674 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1675 					   struct addr_location *al)
1676 {
1677 	unsigned int i;
1678 	const struct branch_stack *bs = sample->branch_stack;
1679 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1680 
1681 	if (!bi)
1682 		return NULL;
1683 
1684 	for (i = 0; i < bs->nr; i++) {
1685 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1686 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1687 		bi[i].flags = bs->entries[i].flags;
1688 	}
1689 	return bi;
1690 }
1691 
1692 #define CHASHSZ 127
1693 #define CHASHBITS 7
1694 #define NO_ENTRY 0xff
1695 
1696 #define PERF_MAX_BRANCH_DEPTH 127
1697 
1698 /* Remove loops. */
1699 static int remove_loops(struct branch_entry *l, int nr)
1700 {
1701 	int i, j, off;
1702 	unsigned char chash[CHASHSZ];
1703 
1704 	memset(chash, NO_ENTRY, sizeof(chash));
1705 
1706 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1707 
1708 	for (i = 0; i < nr; i++) {
1709 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1710 
1711 		/* no collision handling for now */
1712 		if (chash[h] == NO_ENTRY) {
1713 			chash[h] = i;
1714 		} else if (l[chash[h]].from == l[i].from) {
1715 			bool is_loop = true;
1716 			/* check if it is a real loop */
1717 			off = 0;
1718 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1719 				if (l[j].from != l[i + off].from) {
1720 					is_loop = false;
1721 					break;
1722 				}
1723 			if (is_loop) {
1724 				memmove(l + i, l + i + off,
1725 					(nr - (i + off)) * sizeof(*l));
1726 				nr -= off;
1727 			}
1728 		}
1729 	}
1730 	return nr;
1731 }
1732 
1733 /*
1734  * Recolve LBR callstack chain sample
1735  * Return:
1736  * 1 on success get LBR callchain information
1737  * 0 no available LBR callchain information, should try fp
1738  * negative error code on other errors.
1739  */
1740 static int resolve_lbr_callchain_sample(struct thread *thread,
1741 					struct callchain_cursor *cursor,
1742 					struct perf_sample *sample,
1743 					struct symbol **parent,
1744 					struct addr_location *root_al,
1745 					int max_stack)
1746 {
1747 	struct ip_callchain *chain = sample->callchain;
1748 	int chain_nr = min(max_stack, (int)chain->nr);
1749 	u8 cpumode = PERF_RECORD_MISC_USER;
1750 	int i, j, err;
1751 	u64 ip;
1752 
1753 	for (i = 0; i < chain_nr; i++) {
1754 		if (chain->ips[i] == PERF_CONTEXT_USER)
1755 			break;
1756 	}
1757 
1758 	/* LBR only affects the user callchain */
1759 	if (i != chain_nr) {
1760 		struct branch_stack *lbr_stack = sample->branch_stack;
1761 		int lbr_nr = lbr_stack->nr;
1762 		/*
1763 		 * LBR callstack can only get user call chain.
1764 		 * The mix_chain_nr is kernel call chain
1765 		 * number plus LBR user call chain number.
1766 		 * i is kernel call chain number,
1767 		 * 1 is PERF_CONTEXT_USER,
1768 		 * lbr_nr + 1 is the user call chain number.
1769 		 * For details, please refer to the comments
1770 		 * in callchain__printf
1771 		 */
1772 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1773 
1774 		for (j = 0; j < mix_chain_nr; j++) {
1775 			if (callchain_param.order == ORDER_CALLEE) {
1776 				if (j < i + 1)
1777 					ip = chain->ips[j];
1778 				else if (j > i + 1)
1779 					ip = lbr_stack->entries[j - i - 2].from;
1780 				else
1781 					ip = lbr_stack->entries[0].to;
1782 			} else {
1783 				if (j < lbr_nr)
1784 					ip = lbr_stack->entries[lbr_nr - j - 1].from;
1785 				else if (j > lbr_nr)
1786 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1787 				else
1788 					ip = lbr_stack->entries[0].to;
1789 			}
1790 
1791 			err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1792 			if (err)
1793 				return (err < 0) ? err : 0;
1794 		}
1795 		return 1;
1796 	}
1797 
1798 	return 0;
1799 }
1800 
1801 static int thread__resolve_callchain_sample(struct thread *thread,
1802 					    struct callchain_cursor *cursor,
1803 					    struct perf_evsel *evsel,
1804 					    struct perf_sample *sample,
1805 					    struct symbol **parent,
1806 					    struct addr_location *root_al,
1807 					    int max_stack)
1808 {
1809 	struct branch_stack *branch = sample->branch_stack;
1810 	struct ip_callchain *chain = sample->callchain;
1811 	int chain_nr = chain->nr;
1812 	u8 cpumode = PERF_RECORD_MISC_USER;
1813 	int i, j, err, nr_entries;
1814 	int skip_idx = -1;
1815 	int first_call = 0;
1816 
1817 	if (perf_evsel__has_branch_callstack(evsel)) {
1818 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1819 						   root_al, max_stack);
1820 		if (err)
1821 			return (err < 0) ? err : 0;
1822 	}
1823 
1824 	/*
1825 	 * Based on DWARF debug information, some architectures skip
1826 	 * a callchain entry saved by the kernel.
1827 	 */
1828 	skip_idx = arch_skip_callchain_idx(thread, chain);
1829 
1830 	/*
1831 	 * Add branches to call stack for easier browsing. This gives
1832 	 * more context for a sample than just the callers.
1833 	 *
1834 	 * This uses individual histograms of paths compared to the
1835 	 * aggregated histograms the normal LBR mode uses.
1836 	 *
1837 	 * Limitations for now:
1838 	 * - No extra filters
1839 	 * - No annotations (should annotate somehow)
1840 	 */
1841 
1842 	if (branch && callchain_param.branch_callstack) {
1843 		int nr = min(max_stack, (int)branch->nr);
1844 		struct branch_entry be[nr];
1845 
1846 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1847 			pr_warning("corrupted branch chain. skipping...\n");
1848 			goto check_calls;
1849 		}
1850 
1851 		for (i = 0; i < nr; i++) {
1852 			if (callchain_param.order == ORDER_CALLEE) {
1853 				be[i] = branch->entries[i];
1854 				/*
1855 				 * Check for overlap into the callchain.
1856 				 * The return address is one off compared to
1857 				 * the branch entry. To adjust for this
1858 				 * assume the calling instruction is not longer
1859 				 * than 8 bytes.
1860 				 */
1861 				if (i == skip_idx ||
1862 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1863 					first_call++;
1864 				else if (be[i].from < chain->ips[first_call] &&
1865 				    be[i].from >= chain->ips[first_call] - 8)
1866 					first_call++;
1867 			} else
1868 				be[i] = branch->entries[branch->nr - i - 1];
1869 		}
1870 
1871 		nr = remove_loops(be, nr);
1872 
1873 		for (i = 0; i < nr; i++) {
1874 			err = add_callchain_ip(thread, cursor, parent, root_al,
1875 					       NULL, be[i].to);
1876 			if (!err)
1877 				err = add_callchain_ip(thread, cursor, parent, root_al,
1878 						       NULL, be[i].from);
1879 			if (err == -EINVAL)
1880 				break;
1881 			if (err)
1882 				return err;
1883 		}
1884 		chain_nr -= nr;
1885 	}
1886 
1887 check_calls:
1888 	for (i = first_call, nr_entries = 0;
1889 	     i < chain_nr && nr_entries < max_stack; i++) {
1890 		u64 ip;
1891 
1892 		if (callchain_param.order == ORDER_CALLEE)
1893 			j = i;
1894 		else
1895 			j = chain->nr - i - 1;
1896 
1897 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1898 		if (j == skip_idx)
1899 			continue;
1900 #endif
1901 		ip = chain->ips[j];
1902 
1903 		if (ip < PERF_CONTEXT_MAX)
1904                        ++nr_entries;
1905 
1906 		err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1907 
1908 		if (err)
1909 			return (err < 0) ? err : 0;
1910 	}
1911 
1912 	return 0;
1913 }
1914 
1915 static int unwind_entry(struct unwind_entry *entry, void *arg)
1916 {
1917 	struct callchain_cursor *cursor = arg;
1918 
1919 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
1920 		return 0;
1921 	return callchain_cursor_append(cursor, entry->ip,
1922 				       entry->map, entry->sym);
1923 }
1924 
1925 static int thread__resolve_callchain_unwind(struct thread *thread,
1926 					    struct callchain_cursor *cursor,
1927 					    struct perf_evsel *evsel,
1928 					    struct perf_sample *sample,
1929 					    int max_stack)
1930 {
1931 	/* Can we do dwarf post unwind? */
1932 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1933 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1934 		return 0;
1935 
1936 	/* Bail out if nothing was captured. */
1937 	if ((!sample->user_regs.regs) ||
1938 	    (!sample->user_stack.size))
1939 		return 0;
1940 
1941 	return unwind__get_entries(unwind_entry, cursor,
1942 				   thread, sample, max_stack);
1943 }
1944 
1945 int thread__resolve_callchain(struct thread *thread,
1946 			      struct callchain_cursor *cursor,
1947 			      struct perf_evsel *evsel,
1948 			      struct perf_sample *sample,
1949 			      struct symbol **parent,
1950 			      struct addr_location *root_al,
1951 			      int max_stack)
1952 {
1953 	int ret = 0;
1954 
1955 	callchain_cursor_reset(&callchain_cursor);
1956 
1957 	if (callchain_param.order == ORDER_CALLEE) {
1958 		ret = thread__resolve_callchain_sample(thread, cursor,
1959 						       evsel, sample,
1960 						       parent, root_al,
1961 						       max_stack);
1962 		if (ret)
1963 			return ret;
1964 		ret = thread__resolve_callchain_unwind(thread, cursor,
1965 						       evsel, sample,
1966 						       max_stack);
1967 	} else {
1968 		ret = thread__resolve_callchain_unwind(thread, cursor,
1969 						       evsel, sample,
1970 						       max_stack);
1971 		if (ret)
1972 			return ret;
1973 		ret = thread__resolve_callchain_sample(thread, cursor,
1974 						       evsel, sample,
1975 						       parent, root_al,
1976 						       max_stack);
1977 	}
1978 
1979 	return ret;
1980 }
1981 
1982 int machine__for_each_thread(struct machine *machine,
1983 			     int (*fn)(struct thread *thread, void *p),
1984 			     void *priv)
1985 {
1986 	struct rb_node *nd;
1987 	struct thread *thread;
1988 	int rc = 0;
1989 
1990 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1991 		thread = rb_entry(nd, struct thread, rb_node);
1992 		rc = fn(thread, priv);
1993 		if (rc != 0)
1994 			return rc;
1995 	}
1996 
1997 	list_for_each_entry(thread, &machine->dead_threads, node) {
1998 		rc = fn(thread, priv);
1999 		if (rc != 0)
2000 			return rc;
2001 	}
2002 	return rc;
2003 }
2004 
2005 int machines__for_each_thread(struct machines *machines,
2006 			      int (*fn)(struct thread *thread, void *p),
2007 			      void *priv)
2008 {
2009 	struct rb_node *nd;
2010 	int rc = 0;
2011 
2012 	rc = machine__for_each_thread(&machines->host, fn, priv);
2013 	if (rc != 0)
2014 		return rc;
2015 
2016 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2017 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2018 
2019 		rc = machine__for_each_thread(machine, fn, priv);
2020 		if (rc != 0)
2021 			return rc;
2022 	}
2023 	return rc;
2024 }
2025 
2026 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2027 				  struct target *target, struct thread_map *threads,
2028 				  perf_event__handler_t process, bool data_mmap,
2029 				  unsigned int proc_map_timeout)
2030 {
2031 	if (target__has_task(target))
2032 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2033 	else if (target__has_cpu(target))
2034 		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2035 	/* command specified */
2036 	return 0;
2037 }
2038 
2039 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2040 {
2041 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2042 		return -1;
2043 
2044 	return machine->current_tid[cpu];
2045 }
2046 
2047 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2048 			     pid_t tid)
2049 {
2050 	struct thread *thread;
2051 
2052 	if (cpu < 0)
2053 		return -EINVAL;
2054 
2055 	if (!machine->current_tid) {
2056 		int i;
2057 
2058 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2059 		if (!machine->current_tid)
2060 			return -ENOMEM;
2061 		for (i = 0; i < MAX_NR_CPUS; i++)
2062 			machine->current_tid[i] = -1;
2063 	}
2064 
2065 	if (cpu >= MAX_NR_CPUS) {
2066 		pr_err("Requested CPU %d too large. ", cpu);
2067 		pr_err("Consider raising MAX_NR_CPUS\n");
2068 		return -EINVAL;
2069 	}
2070 
2071 	machine->current_tid[cpu] = tid;
2072 
2073 	thread = machine__findnew_thread(machine, pid, tid);
2074 	if (!thread)
2075 		return -ENOMEM;
2076 
2077 	thread->cpu = cpu;
2078 	thread__put(thread);
2079 
2080 	return 0;
2081 }
2082 
2083 int machine__get_kernel_start(struct machine *machine)
2084 {
2085 	struct map *map = machine__kernel_map(machine);
2086 	int err = 0;
2087 
2088 	/*
2089 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2090 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2091 	 * all addresses including kernel addresses are less than 2^32.  In
2092 	 * that case (32-bit system), if the kernel mapping is unknown, all
2093 	 * addresses will be assumed to be in user space - see
2094 	 * machine__kernel_ip().
2095 	 */
2096 	machine->kernel_start = 1ULL << 63;
2097 	if (map) {
2098 		err = map__load(map, machine->symbol_filter);
2099 		if (map->start)
2100 			machine->kernel_start = map->start;
2101 	}
2102 	return err;
2103 }
2104 
2105 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2106 {
2107 	return dsos__findnew(&machine->dsos, filename);
2108 }
2109 
2110 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2111 {
2112 	struct machine *machine = vmachine;
2113 	struct map *map;
2114 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);
2115 
2116 	if (sym == NULL)
2117 		return NULL;
2118 
2119 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2120 	*addrp = map->unmap_ip(map, sym->start);
2121 	return sym->name;
2122 }
2123