xref: /linux/tools/perf/util/machine.c (revision 0408c58be5a475c99b271f08d85859f7b59ec767)
1 #include <dirent.h>
2 #include <errno.h>
3 #include <inttypes.h>
4 #include <regex.h>
5 #include "callchain.h"
6 #include "debug.h"
7 #include "event.h"
8 #include "evsel.h"
9 #include "hist.h"
10 #include "machine.h"
11 #include "map.h"
12 #include "sort.h"
13 #include "strlist.h"
14 #include "thread.h"
15 #include "vdso.h"
16 #include <stdbool.h>
17 #include <sys/types.h>
18 #include <sys/stat.h>
19 #include <unistd.h>
20 #include "unwind.h"
21 #include "linux/hash.h"
22 #include "asm/bug.h"
23 
24 #include "sane_ctype.h"
25 #include <symbol/kallsyms.h>
26 
27 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
28 
29 static void dsos__init(struct dsos *dsos)
30 {
31 	INIT_LIST_HEAD(&dsos->head);
32 	dsos->root = RB_ROOT;
33 	pthread_rwlock_init(&dsos->lock, NULL);
34 }
35 
36 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
37 {
38 	memset(machine, 0, sizeof(*machine));
39 	map_groups__init(&machine->kmaps, machine);
40 	RB_CLEAR_NODE(&machine->rb_node);
41 	dsos__init(&machine->dsos);
42 
43 	machine->threads = RB_ROOT;
44 	pthread_rwlock_init(&machine->threads_lock, NULL);
45 	machine->nr_threads = 0;
46 	INIT_LIST_HEAD(&machine->dead_threads);
47 	machine->last_match = NULL;
48 
49 	machine->vdso_info = NULL;
50 	machine->env = NULL;
51 
52 	machine->pid = pid;
53 
54 	machine->id_hdr_size = 0;
55 	machine->kptr_restrict_warned = false;
56 	machine->comm_exec = false;
57 	machine->kernel_start = 0;
58 
59 	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
60 
61 	machine->root_dir = strdup(root_dir);
62 	if (machine->root_dir == NULL)
63 		return -ENOMEM;
64 
65 	if (pid != HOST_KERNEL_ID) {
66 		struct thread *thread = machine__findnew_thread(machine, -1,
67 								pid);
68 		char comm[64];
69 
70 		if (thread == NULL)
71 			return -ENOMEM;
72 
73 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
74 		thread__set_comm(thread, comm, 0);
75 		thread__put(thread);
76 	}
77 
78 	machine->current_tid = NULL;
79 
80 	return 0;
81 }
82 
83 struct machine *machine__new_host(void)
84 {
85 	struct machine *machine = malloc(sizeof(*machine));
86 
87 	if (machine != NULL) {
88 		machine__init(machine, "", HOST_KERNEL_ID);
89 
90 		if (machine__create_kernel_maps(machine) < 0)
91 			goto out_delete;
92 	}
93 
94 	return machine;
95 out_delete:
96 	free(machine);
97 	return NULL;
98 }
99 
100 struct machine *machine__new_kallsyms(void)
101 {
102 	struct machine *machine = machine__new_host();
103 	/*
104 	 * FIXME:
105 	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
106 	 *    functions and data objects.
107 	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
108 	 *    ask for not using the kcore parsing code, once this one is fixed
109 	 *    to create a map per module.
110 	 */
111 	if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
112 		machine__delete(machine);
113 		machine = NULL;
114 	}
115 
116 	return machine;
117 }
118 
119 static void dsos__purge(struct dsos *dsos)
120 {
121 	struct dso *pos, *n;
122 
123 	pthread_rwlock_wrlock(&dsos->lock);
124 
125 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
126 		RB_CLEAR_NODE(&pos->rb_node);
127 		pos->root = NULL;
128 		list_del_init(&pos->node);
129 		dso__put(pos);
130 	}
131 
132 	pthread_rwlock_unlock(&dsos->lock);
133 }
134 
135 static void dsos__exit(struct dsos *dsos)
136 {
137 	dsos__purge(dsos);
138 	pthread_rwlock_destroy(&dsos->lock);
139 }
140 
141 void machine__delete_threads(struct machine *machine)
142 {
143 	struct rb_node *nd;
144 
145 	pthread_rwlock_wrlock(&machine->threads_lock);
146 	nd = rb_first(&machine->threads);
147 	while (nd) {
148 		struct thread *t = rb_entry(nd, struct thread, rb_node);
149 
150 		nd = rb_next(nd);
151 		__machine__remove_thread(machine, t, false);
152 	}
153 	pthread_rwlock_unlock(&machine->threads_lock);
154 }
155 
156 void machine__exit(struct machine *machine)
157 {
158 	machine__destroy_kernel_maps(machine);
159 	map_groups__exit(&machine->kmaps);
160 	dsos__exit(&machine->dsos);
161 	machine__exit_vdso(machine);
162 	zfree(&machine->root_dir);
163 	zfree(&machine->current_tid);
164 	pthread_rwlock_destroy(&machine->threads_lock);
165 }
166 
167 void machine__delete(struct machine *machine)
168 {
169 	if (machine) {
170 		machine__exit(machine);
171 		free(machine);
172 	}
173 }
174 
175 void machines__init(struct machines *machines)
176 {
177 	machine__init(&machines->host, "", HOST_KERNEL_ID);
178 	machines->guests = RB_ROOT;
179 }
180 
181 void machines__exit(struct machines *machines)
182 {
183 	machine__exit(&machines->host);
184 	/* XXX exit guest */
185 }
186 
187 struct machine *machines__add(struct machines *machines, pid_t pid,
188 			      const char *root_dir)
189 {
190 	struct rb_node **p = &machines->guests.rb_node;
191 	struct rb_node *parent = NULL;
192 	struct machine *pos, *machine = malloc(sizeof(*machine));
193 
194 	if (machine == NULL)
195 		return NULL;
196 
197 	if (machine__init(machine, root_dir, pid) != 0) {
198 		free(machine);
199 		return NULL;
200 	}
201 
202 	while (*p != NULL) {
203 		parent = *p;
204 		pos = rb_entry(parent, struct machine, rb_node);
205 		if (pid < pos->pid)
206 			p = &(*p)->rb_left;
207 		else
208 			p = &(*p)->rb_right;
209 	}
210 
211 	rb_link_node(&machine->rb_node, parent, p);
212 	rb_insert_color(&machine->rb_node, &machines->guests);
213 
214 	return machine;
215 }
216 
217 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
218 {
219 	struct rb_node *nd;
220 
221 	machines->host.comm_exec = comm_exec;
222 
223 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
224 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
225 
226 		machine->comm_exec = comm_exec;
227 	}
228 }
229 
230 struct machine *machines__find(struct machines *machines, pid_t pid)
231 {
232 	struct rb_node **p = &machines->guests.rb_node;
233 	struct rb_node *parent = NULL;
234 	struct machine *machine;
235 	struct machine *default_machine = NULL;
236 
237 	if (pid == HOST_KERNEL_ID)
238 		return &machines->host;
239 
240 	while (*p != NULL) {
241 		parent = *p;
242 		machine = rb_entry(parent, struct machine, rb_node);
243 		if (pid < machine->pid)
244 			p = &(*p)->rb_left;
245 		else if (pid > machine->pid)
246 			p = &(*p)->rb_right;
247 		else
248 			return machine;
249 		if (!machine->pid)
250 			default_machine = machine;
251 	}
252 
253 	return default_machine;
254 }
255 
256 struct machine *machines__findnew(struct machines *machines, pid_t pid)
257 {
258 	char path[PATH_MAX];
259 	const char *root_dir = "";
260 	struct machine *machine = machines__find(machines, pid);
261 
262 	if (machine && (machine->pid == pid))
263 		goto out;
264 
265 	if ((pid != HOST_KERNEL_ID) &&
266 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
267 	    (symbol_conf.guestmount)) {
268 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
269 		if (access(path, R_OK)) {
270 			static struct strlist *seen;
271 
272 			if (!seen)
273 				seen = strlist__new(NULL, NULL);
274 
275 			if (!strlist__has_entry(seen, path)) {
276 				pr_err("Can't access file %s\n", path);
277 				strlist__add(seen, path);
278 			}
279 			machine = NULL;
280 			goto out;
281 		}
282 		root_dir = path;
283 	}
284 
285 	machine = machines__add(machines, pid, root_dir);
286 out:
287 	return machine;
288 }
289 
290 void machines__process_guests(struct machines *machines,
291 			      machine__process_t process, void *data)
292 {
293 	struct rb_node *nd;
294 
295 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
296 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
297 		process(pos, data);
298 	}
299 }
300 
301 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
302 {
303 	if (machine__is_host(machine))
304 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
305 	else if (machine__is_default_guest(machine))
306 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
307 	else {
308 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
309 			 machine->pid);
310 	}
311 
312 	return bf;
313 }
314 
315 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
316 {
317 	struct rb_node *node;
318 	struct machine *machine;
319 
320 	machines->host.id_hdr_size = id_hdr_size;
321 
322 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
323 		machine = rb_entry(node, struct machine, rb_node);
324 		machine->id_hdr_size = id_hdr_size;
325 	}
326 
327 	return;
328 }
329 
330 static void machine__update_thread_pid(struct machine *machine,
331 				       struct thread *th, pid_t pid)
332 {
333 	struct thread *leader;
334 
335 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
336 		return;
337 
338 	th->pid_ = pid;
339 
340 	if (th->pid_ == th->tid)
341 		return;
342 
343 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
344 	if (!leader)
345 		goto out_err;
346 
347 	if (!leader->mg)
348 		leader->mg = map_groups__new(machine);
349 
350 	if (!leader->mg)
351 		goto out_err;
352 
353 	if (th->mg == leader->mg)
354 		return;
355 
356 	if (th->mg) {
357 		/*
358 		 * Maps are created from MMAP events which provide the pid and
359 		 * tid.  Consequently there never should be any maps on a thread
360 		 * with an unknown pid.  Just print an error if there are.
361 		 */
362 		if (!map_groups__empty(th->mg))
363 			pr_err("Discarding thread maps for %d:%d\n",
364 			       th->pid_, th->tid);
365 		map_groups__put(th->mg);
366 	}
367 
368 	th->mg = map_groups__get(leader->mg);
369 out_put:
370 	thread__put(leader);
371 	return;
372 out_err:
373 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
374 	goto out_put;
375 }
376 
377 /*
378  * Caller must eventually drop thread->refcnt returned with a successful
379  * lookup/new thread inserted.
380  */
381 static struct thread *____machine__findnew_thread(struct machine *machine,
382 						  pid_t pid, pid_t tid,
383 						  bool create)
384 {
385 	struct rb_node **p = &machine->threads.rb_node;
386 	struct rb_node *parent = NULL;
387 	struct thread *th;
388 
389 	/*
390 	 * Front-end cache - TID lookups come in blocks,
391 	 * so most of the time we dont have to look up
392 	 * the full rbtree:
393 	 */
394 	th = machine->last_match;
395 	if (th != NULL) {
396 		if (th->tid == tid) {
397 			machine__update_thread_pid(machine, th, pid);
398 			return thread__get(th);
399 		}
400 
401 		machine->last_match = NULL;
402 	}
403 
404 	while (*p != NULL) {
405 		parent = *p;
406 		th = rb_entry(parent, struct thread, rb_node);
407 
408 		if (th->tid == tid) {
409 			machine->last_match = th;
410 			machine__update_thread_pid(machine, th, pid);
411 			return thread__get(th);
412 		}
413 
414 		if (tid < th->tid)
415 			p = &(*p)->rb_left;
416 		else
417 			p = &(*p)->rb_right;
418 	}
419 
420 	if (!create)
421 		return NULL;
422 
423 	th = thread__new(pid, tid);
424 	if (th != NULL) {
425 		rb_link_node(&th->rb_node, parent, p);
426 		rb_insert_color(&th->rb_node, &machine->threads);
427 
428 		/*
429 		 * We have to initialize map_groups separately
430 		 * after rb tree is updated.
431 		 *
432 		 * The reason is that we call machine__findnew_thread
433 		 * within thread__init_map_groups to find the thread
434 		 * leader and that would screwed the rb tree.
435 		 */
436 		if (thread__init_map_groups(th, machine)) {
437 			rb_erase_init(&th->rb_node, &machine->threads);
438 			RB_CLEAR_NODE(&th->rb_node);
439 			thread__put(th);
440 			return NULL;
441 		}
442 		/*
443 		 * It is now in the rbtree, get a ref
444 		 */
445 		thread__get(th);
446 		machine->last_match = th;
447 		++machine->nr_threads;
448 	}
449 
450 	return th;
451 }
452 
453 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
454 {
455 	return ____machine__findnew_thread(machine, pid, tid, true);
456 }
457 
458 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
459 				       pid_t tid)
460 {
461 	struct thread *th;
462 
463 	pthread_rwlock_wrlock(&machine->threads_lock);
464 	th = __machine__findnew_thread(machine, pid, tid);
465 	pthread_rwlock_unlock(&machine->threads_lock);
466 	return th;
467 }
468 
469 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
470 				    pid_t tid)
471 {
472 	struct thread *th;
473 	pthread_rwlock_rdlock(&machine->threads_lock);
474 	th =  ____machine__findnew_thread(machine, pid, tid, false);
475 	pthread_rwlock_unlock(&machine->threads_lock);
476 	return th;
477 }
478 
479 struct comm *machine__thread_exec_comm(struct machine *machine,
480 				       struct thread *thread)
481 {
482 	if (machine->comm_exec)
483 		return thread__exec_comm(thread);
484 	else
485 		return thread__comm(thread);
486 }
487 
488 int machine__process_comm_event(struct machine *machine, union perf_event *event,
489 				struct perf_sample *sample)
490 {
491 	struct thread *thread = machine__findnew_thread(machine,
492 							event->comm.pid,
493 							event->comm.tid);
494 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
495 	int err = 0;
496 
497 	if (exec)
498 		machine->comm_exec = true;
499 
500 	if (dump_trace)
501 		perf_event__fprintf_comm(event, stdout);
502 
503 	if (thread == NULL ||
504 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
505 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
506 		err = -1;
507 	}
508 
509 	thread__put(thread);
510 
511 	return err;
512 }
513 
514 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
515 				      union perf_event *event,
516 				      struct perf_sample *sample __maybe_unused)
517 {
518 	struct thread *thread = machine__findnew_thread(machine,
519 							event->namespaces.pid,
520 							event->namespaces.tid);
521 	int err = 0;
522 
523 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
524 		  "\nWARNING: kernel seems to support more namespaces than perf"
525 		  " tool.\nTry updating the perf tool..\n\n");
526 
527 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
528 		  "\nWARNING: perf tool seems to support more namespaces than"
529 		  " the kernel.\nTry updating the kernel..\n\n");
530 
531 	if (dump_trace)
532 		perf_event__fprintf_namespaces(event, stdout);
533 
534 	if (thread == NULL ||
535 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
536 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
537 		err = -1;
538 	}
539 
540 	thread__put(thread);
541 
542 	return err;
543 }
544 
545 int machine__process_lost_event(struct machine *machine __maybe_unused,
546 				union perf_event *event, struct perf_sample *sample __maybe_unused)
547 {
548 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
549 		    event->lost.id, event->lost.lost);
550 	return 0;
551 }
552 
553 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
554 					union perf_event *event, struct perf_sample *sample)
555 {
556 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
557 		    sample->id, event->lost_samples.lost);
558 	return 0;
559 }
560 
561 static struct dso *machine__findnew_module_dso(struct machine *machine,
562 					       struct kmod_path *m,
563 					       const char *filename)
564 {
565 	struct dso *dso;
566 
567 	pthread_rwlock_wrlock(&machine->dsos.lock);
568 
569 	dso = __dsos__find(&machine->dsos, m->name, true);
570 	if (!dso) {
571 		dso = __dsos__addnew(&machine->dsos, m->name);
572 		if (dso == NULL)
573 			goto out_unlock;
574 
575 		dso__set_module_info(dso, m, machine);
576 		dso__set_long_name(dso, strdup(filename), true);
577 	}
578 
579 	dso__get(dso);
580 out_unlock:
581 	pthread_rwlock_unlock(&machine->dsos.lock);
582 	return dso;
583 }
584 
585 int machine__process_aux_event(struct machine *machine __maybe_unused,
586 			       union perf_event *event)
587 {
588 	if (dump_trace)
589 		perf_event__fprintf_aux(event, stdout);
590 	return 0;
591 }
592 
593 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
594 					union perf_event *event)
595 {
596 	if (dump_trace)
597 		perf_event__fprintf_itrace_start(event, stdout);
598 	return 0;
599 }
600 
601 int machine__process_switch_event(struct machine *machine __maybe_unused,
602 				  union perf_event *event)
603 {
604 	if (dump_trace)
605 		perf_event__fprintf_switch(event, stdout);
606 	return 0;
607 }
608 
609 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
610 {
611 	const char *dup_filename;
612 
613 	if (!filename || !dso || !dso->long_name)
614 		return;
615 	if (dso->long_name[0] != '[')
616 		return;
617 	if (!strchr(filename, '/'))
618 		return;
619 
620 	dup_filename = strdup(filename);
621 	if (!dup_filename)
622 		return;
623 
624 	dso__set_long_name(dso, dup_filename, true);
625 }
626 
627 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
628 					const char *filename)
629 {
630 	struct map *map = NULL;
631 	struct dso *dso = NULL;
632 	struct kmod_path m;
633 
634 	if (kmod_path__parse_name(&m, filename))
635 		return NULL;
636 
637 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
638 				       m.name);
639 	if (map) {
640 		/*
641 		 * If the map's dso is an offline module, give dso__load()
642 		 * a chance to find the file path of that module by fixing
643 		 * long_name.
644 		 */
645 		dso__adjust_kmod_long_name(map->dso, filename);
646 		goto out;
647 	}
648 
649 	dso = machine__findnew_module_dso(machine, &m, filename);
650 	if (dso == NULL)
651 		goto out;
652 
653 	map = map__new2(start, dso, MAP__FUNCTION);
654 	if (map == NULL)
655 		goto out;
656 
657 	map_groups__insert(&machine->kmaps, map);
658 
659 	/* Put the map here because map_groups__insert alread got it */
660 	map__put(map);
661 out:
662 	/* put the dso here, corresponding to  machine__findnew_module_dso */
663 	dso__put(dso);
664 	free(m.name);
665 	return map;
666 }
667 
668 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
669 {
670 	struct rb_node *nd;
671 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
672 
673 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
674 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
675 		ret += __dsos__fprintf(&pos->dsos.head, fp);
676 	}
677 
678 	return ret;
679 }
680 
681 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
682 				     bool (skip)(struct dso *dso, int parm), int parm)
683 {
684 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
685 }
686 
687 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
688 				     bool (skip)(struct dso *dso, int parm), int parm)
689 {
690 	struct rb_node *nd;
691 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
692 
693 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
694 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
695 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
696 	}
697 	return ret;
698 }
699 
700 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
701 {
702 	int i;
703 	size_t printed = 0;
704 	struct dso *kdso = machine__kernel_map(machine)->dso;
705 
706 	if (kdso->has_build_id) {
707 		char filename[PATH_MAX];
708 		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
709 			printed += fprintf(fp, "[0] %s\n", filename);
710 	}
711 
712 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
713 		printed += fprintf(fp, "[%d] %s\n",
714 				   i + kdso->has_build_id, vmlinux_path[i]);
715 
716 	return printed;
717 }
718 
719 size_t machine__fprintf(struct machine *machine, FILE *fp)
720 {
721 	size_t ret;
722 	struct rb_node *nd;
723 
724 	pthread_rwlock_rdlock(&machine->threads_lock);
725 
726 	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
727 
728 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
729 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
730 
731 		ret += thread__fprintf(pos, fp);
732 	}
733 
734 	pthread_rwlock_unlock(&machine->threads_lock);
735 
736 	return ret;
737 }
738 
739 static struct dso *machine__get_kernel(struct machine *machine)
740 {
741 	const char *vmlinux_name = NULL;
742 	struct dso *kernel;
743 
744 	if (machine__is_host(machine)) {
745 		vmlinux_name = symbol_conf.vmlinux_name;
746 		if (!vmlinux_name)
747 			vmlinux_name = DSO__NAME_KALLSYMS;
748 
749 		kernel = machine__findnew_kernel(machine, vmlinux_name,
750 						 "[kernel]", DSO_TYPE_KERNEL);
751 	} else {
752 		char bf[PATH_MAX];
753 
754 		if (machine__is_default_guest(machine))
755 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
756 		if (!vmlinux_name)
757 			vmlinux_name = machine__mmap_name(machine, bf,
758 							  sizeof(bf));
759 
760 		kernel = machine__findnew_kernel(machine, vmlinux_name,
761 						 "[guest.kernel]",
762 						 DSO_TYPE_GUEST_KERNEL);
763 	}
764 
765 	if (kernel != NULL && (!kernel->has_build_id))
766 		dso__read_running_kernel_build_id(kernel, machine);
767 
768 	return kernel;
769 }
770 
771 struct process_args {
772 	u64 start;
773 };
774 
775 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
776 					   size_t bufsz)
777 {
778 	if (machine__is_default_guest(machine))
779 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
780 	else
781 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
782 }
783 
784 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
785 
786 /* Figure out the start address of kernel map from /proc/kallsyms.
787  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
788  * symbol_name if it's not that important.
789  */
790 static int machine__get_running_kernel_start(struct machine *machine,
791 					     const char **symbol_name, u64 *start)
792 {
793 	char filename[PATH_MAX];
794 	int i, err = -1;
795 	const char *name;
796 	u64 addr = 0;
797 
798 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
799 
800 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
801 		return 0;
802 
803 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
804 		err = kallsyms__get_function_start(filename, name, &addr);
805 		if (!err)
806 			break;
807 	}
808 
809 	if (err)
810 		return -1;
811 
812 	if (symbol_name)
813 		*symbol_name = name;
814 
815 	*start = addr;
816 	return 0;
817 }
818 
819 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
820 {
821 	int type;
822 	u64 start = 0;
823 
824 	if (machine__get_running_kernel_start(machine, NULL, &start))
825 		return -1;
826 
827 	/* In case of renewal the kernel map, destroy previous one */
828 	machine__destroy_kernel_maps(machine);
829 
830 	for (type = 0; type < MAP__NR_TYPES; ++type) {
831 		struct kmap *kmap;
832 		struct map *map;
833 
834 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
835 		if (machine->vmlinux_maps[type] == NULL)
836 			return -1;
837 
838 		machine->vmlinux_maps[type]->map_ip =
839 			machine->vmlinux_maps[type]->unmap_ip =
840 				identity__map_ip;
841 		map = __machine__kernel_map(machine, type);
842 		kmap = map__kmap(map);
843 		if (!kmap)
844 			return -1;
845 
846 		kmap->kmaps = &machine->kmaps;
847 		map_groups__insert(&machine->kmaps, map);
848 	}
849 
850 	return 0;
851 }
852 
853 void machine__destroy_kernel_maps(struct machine *machine)
854 {
855 	int type;
856 
857 	for (type = 0; type < MAP__NR_TYPES; ++type) {
858 		struct kmap *kmap;
859 		struct map *map = __machine__kernel_map(machine, type);
860 
861 		if (map == NULL)
862 			continue;
863 
864 		kmap = map__kmap(map);
865 		map_groups__remove(&machine->kmaps, map);
866 		if (kmap && kmap->ref_reloc_sym) {
867 			/*
868 			 * ref_reloc_sym is shared among all maps, so free just
869 			 * on one of them.
870 			 */
871 			if (type == MAP__FUNCTION) {
872 				zfree((char **)&kmap->ref_reloc_sym->name);
873 				zfree(&kmap->ref_reloc_sym);
874 			} else
875 				kmap->ref_reloc_sym = NULL;
876 		}
877 
878 		map__put(machine->vmlinux_maps[type]);
879 		machine->vmlinux_maps[type] = NULL;
880 	}
881 }
882 
883 int machines__create_guest_kernel_maps(struct machines *machines)
884 {
885 	int ret = 0;
886 	struct dirent **namelist = NULL;
887 	int i, items = 0;
888 	char path[PATH_MAX];
889 	pid_t pid;
890 	char *endp;
891 
892 	if (symbol_conf.default_guest_vmlinux_name ||
893 	    symbol_conf.default_guest_modules ||
894 	    symbol_conf.default_guest_kallsyms) {
895 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
896 	}
897 
898 	if (symbol_conf.guestmount) {
899 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
900 		if (items <= 0)
901 			return -ENOENT;
902 		for (i = 0; i < items; i++) {
903 			if (!isdigit(namelist[i]->d_name[0])) {
904 				/* Filter out . and .. */
905 				continue;
906 			}
907 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
908 			if ((*endp != '\0') ||
909 			    (endp == namelist[i]->d_name) ||
910 			    (errno == ERANGE)) {
911 				pr_debug("invalid directory (%s). Skipping.\n",
912 					 namelist[i]->d_name);
913 				continue;
914 			}
915 			sprintf(path, "%s/%s/proc/kallsyms",
916 				symbol_conf.guestmount,
917 				namelist[i]->d_name);
918 			ret = access(path, R_OK);
919 			if (ret) {
920 				pr_debug("Can't access file %s\n", path);
921 				goto failure;
922 			}
923 			machines__create_kernel_maps(machines, pid);
924 		}
925 failure:
926 		free(namelist);
927 	}
928 
929 	return ret;
930 }
931 
932 void machines__destroy_kernel_maps(struct machines *machines)
933 {
934 	struct rb_node *next = rb_first(&machines->guests);
935 
936 	machine__destroy_kernel_maps(&machines->host);
937 
938 	while (next) {
939 		struct machine *pos = rb_entry(next, struct machine, rb_node);
940 
941 		next = rb_next(&pos->rb_node);
942 		rb_erase(&pos->rb_node, &machines->guests);
943 		machine__delete(pos);
944 	}
945 }
946 
947 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
948 {
949 	struct machine *machine = machines__findnew(machines, pid);
950 
951 	if (machine == NULL)
952 		return -1;
953 
954 	return machine__create_kernel_maps(machine);
955 }
956 
957 int __machine__load_kallsyms(struct machine *machine, const char *filename,
958 			     enum map_type type, bool no_kcore)
959 {
960 	struct map *map = machine__kernel_map(machine);
961 	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
962 
963 	if (ret > 0) {
964 		dso__set_loaded(map->dso, type);
965 		/*
966 		 * Since /proc/kallsyms will have multiple sessions for the
967 		 * kernel, with modules between them, fixup the end of all
968 		 * sections.
969 		 */
970 		__map_groups__fixup_end(&machine->kmaps, type);
971 	}
972 
973 	return ret;
974 }
975 
976 int machine__load_kallsyms(struct machine *machine, const char *filename,
977 			   enum map_type type)
978 {
979 	return __machine__load_kallsyms(machine, filename, type, false);
980 }
981 
982 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
983 {
984 	struct map *map = machine__kernel_map(machine);
985 	int ret = dso__load_vmlinux_path(map->dso, map);
986 
987 	if (ret > 0)
988 		dso__set_loaded(map->dso, type);
989 
990 	return ret;
991 }
992 
993 static void map_groups__fixup_end(struct map_groups *mg)
994 {
995 	int i;
996 	for (i = 0; i < MAP__NR_TYPES; ++i)
997 		__map_groups__fixup_end(mg, i);
998 }
999 
1000 static char *get_kernel_version(const char *root_dir)
1001 {
1002 	char version[PATH_MAX];
1003 	FILE *file;
1004 	char *name, *tmp;
1005 	const char *prefix = "Linux version ";
1006 
1007 	sprintf(version, "%s/proc/version", root_dir);
1008 	file = fopen(version, "r");
1009 	if (!file)
1010 		return NULL;
1011 
1012 	version[0] = '\0';
1013 	tmp = fgets(version, sizeof(version), file);
1014 	fclose(file);
1015 
1016 	name = strstr(version, prefix);
1017 	if (!name)
1018 		return NULL;
1019 	name += strlen(prefix);
1020 	tmp = strchr(name, ' ');
1021 	if (tmp)
1022 		*tmp = '\0';
1023 
1024 	return strdup(name);
1025 }
1026 
1027 static bool is_kmod_dso(struct dso *dso)
1028 {
1029 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1030 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1031 }
1032 
1033 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1034 				       struct kmod_path *m)
1035 {
1036 	struct map *map;
1037 	char *long_name;
1038 
1039 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1040 	if (map == NULL)
1041 		return 0;
1042 
1043 	long_name = strdup(path);
1044 	if (long_name == NULL)
1045 		return -ENOMEM;
1046 
1047 	dso__set_long_name(map->dso, long_name, true);
1048 	dso__kernel_module_get_build_id(map->dso, "");
1049 
1050 	/*
1051 	 * Full name could reveal us kmod compression, so
1052 	 * we need to update the symtab_type if needed.
1053 	 */
1054 	if (m->comp && is_kmod_dso(map->dso))
1055 		map->dso->symtab_type++;
1056 
1057 	return 0;
1058 }
1059 
1060 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1061 				const char *dir_name, int depth)
1062 {
1063 	struct dirent *dent;
1064 	DIR *dir = opendir(dir_name);
1065 	int ret = 0;
1066 
1067 	if (!dir) {
1068 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1069 		return -1;
1070 	}
1071 
1072 	while ((dent = readdir(dir)) != NULL) {
1073 		char path[PATH_MAX];
1074 		struct stat st;
1075 
1076 		/*sshfs might return bad dent->d_type, so we have to stat*/
1077 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1078 		if (stat(path, &st))
1079 			continue;
1080 
1081 		if (S_ISDIR(st.st_mode)) {
1082 			if (!strcmp(dent->d_name, ".") ||
1083 			    !strcmp(dent->d_name, ".."))
1084 				continue;
1085 
1086 			/* Do not follow top-level source and build symlinks */
1087 			if (depth == 0) {
1088 				if (!strcmp(dent->d_name, "source") ||
1089 				    !strcmp(dent->d_name, "build"))
1090 					continue;
1091 			}
1092 
1093 			ret = map_groups__set_modules_path_dir(mg, path,
1094 							       depth + 1);
1095 			if (ret < 0)
1096 				goto out;
1097 		} else {
1098 			struct kmod_path m;
1099 
1100 			ret = kmod_path__parse_name(&m, dent->d_name);
1101 			if (ret)
1102 				goto out;
1103 
1104 			if (m.kmod)
1105 				ret = map_groups__set_module_path(mg, path, &m);
1106 
1107 			free(m.name);
1108 
1109 			if (ret)
1110 				goto out;
1111 		}
1112 	}
1113 
1114 out:
1115 	closedir(dir);
1116 	return ret;
1117 }
1118 
1119 static int machine__set_modules_path(struct machine *machine)
1120 {
1121 	char *version;
1122 	char modules_path[PATH_MAX];
1123 
1124 	version = get_kernel_version(machine->root_dir);
1125 	if (!version)
1126 		return -1;
1127 
1128 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1129 		 machine->root_dir, version);
1130 	free(version);
1131 
1132 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1133 }
1134 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1135 				const char *name __maybe_unused)
1136 {
1137 	return 0;
1138 }
1139 
1140 static int machine__create_module(void *arg, const char *name, u64 start)
1141 {
1142 	struct machine *machine = arg;
1143 	struct map *map;
1144 
1145 	if (arch__fix_module_text_start(&start, name) < 0)
1146 		return -1;
1147 
1148 	map = machine__findnew_module_map(machine, start, name);
1149 	if (map == NULL)
1150 		return -1;
1151 
1152 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1153 
1154 	return 0;
1155 }
1156 
1157 static int machine__create_modules(struct machine *machine)
1158 {
1159 	const char *modules;
1160 	char path[PATH_MAX];
1161 
1162 	if (machine__is_default_guest(machine)) {
1163 		modules = symbol_conf.default_guest_modules;
1164 	} else {
1165 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1166 		modules = path;
1167 	}
1168 
1169 	if (symbol__restricted_filename(modules, "/proc/modules"))
1170 		return -1;
1171 
1172 	if (modules__parse(modules, machine, machine__create_module))
1173 		return -1;
1174 
1175 	if (!machine__set_modules_path(machine))
1176 		return 0;
1177 
1178 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1179 
1180 	return 0;
1181 }
1182 
1183 int machine__create_kernel_maps(struct machine *machine)
1184 {
1185 	struct dso *kernel = machine__get_kernel(machine);
1186 	const char *name = NULL;
1187 	u64 addr = 0;
1188 	int ret;
1189 
1190 	if (kernel == NULL)
1191 		return -1;
1192 
1193 	ret = __machine__create_kernel_maps(machine, kernel);
1194 	dso__put(kernel);
1195 	if (ret < 0)
1196 		return -1;
1197 
1198 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1199 		if (machine__is_host(machine))
1200 			pr_debug("Problems creating module maps, "
1201 				 "continuing anyway...\n");
1202 		else
1203 			pr_debug("Problems creating module maps for guest %d, "
1204 				 "continuing anyway...\n", machine->pid);
1205 	}
1206 
1207 	/*
1208 	 * Now that we have all the maps created, just set the ->end of them:
1209 	 */
1210 	map_groups__fixup_end(&machine->kmaps);
1211 
1212 	if (machine__get_running_kernel_start(machine, &name, &addr)) {
1213 	} else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1214 		machine__destroy_kernel_maps(machine);
1215 		return -1;
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 static void machine__set_kernel_mmap_len(struct machine *machine,
1222 					 union perf_event *event)
1223 {
1224 	int i;
1225 
1226 	for (i = 0; i < MAP__NR_TYPES; i++) {
1227 		machine->vmlinux_maps[i]->start = event->mmap.start;
1228 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1229 						   event->mmap.len);
1230 		/*
1231 		 * Be a bit paranoid here, some perf.data file came with
1232 		 * a zero sized synthesized MMAP event for the kernel.
1233 		 */
1234 		if (machine->vmlinux_maps[i]->end == 0)
1235 			machine->vmlinux_maps[i]->end = ~0ULL;
1236 	}
1237 }
1238 
1239 static bool machine__uses_kcore(struct machine *machine)
1240 {
1241 	struct dso *dso;
1242 
1243 	list_for_each_entry(dso, &machine->dsos.head, node) {
1244 		if (dso__is_kcore(dso))
1245 			return true;
1246 	}
1247 
1248 	return false;
1249 }
1250 
1251 static int machine__process_kernel_mmap_event(struct machine *machine,
1252 					      union perf_event *event)
1253 {
1254 	struct map *map;
1255 	char kmmap_prefix[PATH_MAX];
1256 	enum dso_kernel_type kernel_type;
1257 	bool is_kernel_mmap;
1258 
1259 	/* If we have maps from kcore then we do not need or want any others */
1260 	if (machine__uses_kcore(machine))
1261 		return 0;
1262 
1263 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1264 	if (machine__is_host(machine))
1265 		kernel_type = DSO_TYPE_KERNEL;
1266 	else
1267 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1268 
1269 	is_kernel_mmap = memcmp(event->mmap.filename,
1270 				kmmap_prefix,
1271 				strlen(kmmap_prefix) - 1) == 0;
1272 	if (event->mmap.filename[0] == '/' ||
1273 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1274 		map = machine__findnew_module_map(machine, event->mmap.start,
1275 						  event->mmap.filename);
1276 		if (map == NULL)
1277 			goto out_problem;
1278 
1279 		map->end = map->start + event->mmap.len;
1280 	} else if (is_kernel_mmap) {
1281 		const char *symbol_name = (event->mmap.filename +
1282 				strlen(kmmap_prefix));
1283 		/*
1284 		 * Should be there already, from the build-id table in
1285 		 * the header.
1286 		 */
1287 		struct dso *kernel = NULL;
1288 		struct dso *dso;
1289 
1290 		pthread_rwlock_rdlock(&machine->dsos.lock);
1291 
1292 		list_for_each_entry(dso, &machine->dsos.head, node) {
1293 
1294 			/*
1295 			 * The cpumode passed to is_kernel_module is not the
1296 			 * cpumode of *this* event. If we insist on passing
1297 			 * correct cpumode to is_kernel_module, we should
1298 			 * record the cpumode when we adding this dso to the
1299 			 * linked list.
1300 			 *
1301 			 * However we don't really need passing correct
1302 			 * cpumode.  We know the correct cpumode must be kernel
1303 			 * mode (if not, we should not link it onto kernel_dsos
1304 			 * list).
1305 			 *
1306 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1307 			 * is_kernel_module() treats it as a kernel cpumode.
1308 			 */
1309 
1310 			if (!dso->kernel ||
1311 			    is_kernel_module(dso->long_name,
1312 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1313 				continue;
1314 
1315 
1316 			kernel = dso;
1317 			break;
1318 		}
1319 
1320 		pthread_rwlock_unlock(&machine->dsos.lock);
1321 
1322 		if (kernel == NULL)
1323 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1324 		if (kernel == NULL)
1325 			goto out_problem;
1326 
1327 		kernel->kernel = kernel_type;
1328 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1329 			dso__put(kernel);
1330 			goto out_problem;
1331 		}
1332 
1333 		if (strstr(kernel->long_name, "vmlinux"))
1334 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1335 
1336 		machine__set_kernel_mmap_len(machine, event);
1337 
1338 		/*
1339 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1340 		 * symbol. Effectively having zero here means that at record
1341 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1342 		 */
1343 		if (event->mmap.pgoff != 0) {
1344 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1345 							 symbol_name,
1346 							 event->mmap.pgoff);
1347 		}
1348 
1349 		if (machine__is_default_guest(machine)) {
1350 			/*
1351 			 * preload dso of guest kernel and modules
1352 			 */
1353 			dso__load(kernel, machine__kernel_map(machine));
1354 		}
1355 	}
1356 	return 0;
1357 out_problem:
1358 	return -1;
1359 }
1360 
1361 int machine__process_mmap2_event(struct machine *machine,
1362 				 union perf_event *event,
1363 				 struct perf_sample *sample)
1364 {
1365 	struct thread *thread;
1366 	struct map *map;
1367 	enum map_type type;
1368 	int ret = 0;
1369 
1370 	if (dump_trace)
1371 		perf_event__fprintf_mmap2(event, stdout);
1372 
1373 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1374 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1375 		ret = machine__process_kernel_mmap_event(machine, event);
1376 		if (ret < 0)
1377 			goto out_problem;
1378 		return 0;
1379 	}
1380 
1381 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1382 					event->mmap2.tid);
1383 	if (thread == NULL)
1384 		goto out_problem;
1385 
1386 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1387 		type = MAP__VARIABLE;
1388 	else
1389 		type = MAP__FUNCTION;
1390 
1391 	map = map__new(machine, event->mmap2.start,
1392 			event->mmap2.len, event->mmap2.pgoff,
1393 			event->mmap2.pid, event->mmap2.maj,
1394 			event->mmap2.min, event->mmap2.ino,
1395 			event->mmap2.ino_generation,
1396 			event->mmap2.prot,
1397 			event->mmap2.flags,
1398 			event->mmap2.filename, type, thread);
1399 
1400 	if (map == NULL)
1401 		goto out_problem_map;
1402 
1403 	ret = thread__insert_map(thread, map);
1404 	if (ret)
1405 		goto out_problem_insert;
1406 
1407 	thread__put(thread);
1408 	map__put(map);
1409 	return 0;
1410 
1411 out_problem_insert:
1412 	map__put(map);
1413 out_problem_map:
1414 	thread__put(thread);
1415 out_problem:
1416 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1417 	return 0;
1418 }
1419 
1420 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1421 				struct perf_sample *sample)
1422 {
1423 	struct thread *thread;
1424 	struct map *map;
1425 	enum map_type type;
1426 	int ret = 0;
1427 
1428 	if (dump_trace)
1429 		perf_event__fprintf_mmap(event, stdout);
1430 
1431 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1432 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1433 		ret = machine__process_kernel_mmap_event(machine, event);
1434 		if (ret < 0)
1435 			goto out_problem;
1436 		return 0;
1437 	}
1438 
1439 	thread = machine__findnew_thread(machine, event->mmap.pid,
1440 					 event->mmap.tid);
1441 	if (thread == NULL)
1442 		goto out_problem;
1443 
1444 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1445 		type = MAP__VARIABLE;
1446 	else
1447 		type = MAP__FUNCTION;
1448 
1449 	map = map__new(machine, event->mmap.start,
1450 			event->mmap.len, event->mmap.pgoff,
1451 			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1452 			event->mmap.filename,
1453 			type, thread);
1454 
1455 	if (map == NULL)
1456 		goto out_problem_map;
1457 
1458 	ret = thread__insert_map(thread, map);
1459 	if (ret)
1460 		goto out_problem_insert;
1461 
1462 	thread__put(thread);
1463 	map__put(map);
1464 	return 0;
1465 
1466 out_problem_insert:
1467 	map__put(map);
1468 out_problem_map:
1469 	thread__put(thread);
1470 out_problem:
1471 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1472 	return 0;
1473 }
1474 
1475 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1476 {
1477 	if (machine->last_match == th)
1478 		machine->last_match = NULL;
1479 
1480 	BUG_ON(refcount_read(&th->refcnt) == 0);
1481 	if (lock)
1482 		pthread_rwlock_wrlock(&machine->threads_lock);
1483 	rb_erase_init(&th->rb_node, &machine->threads);
1484 	RB_CLEAR_NODE(&th->rb_node);
1485 	--machine->nr_threads;
1486 	/*
1487 	 * Move it first to the dead_threads list, then drop the reference,
1488 	 * if this is the last reference, then the thread__delete destructor
1489 	 * will be called and we will remove it from the dead_threads list.
1490 	 */
1491 	list_add_tail(&th->node, &machine->dead_threads);
1492 	if (lock)
1493 		pthread_rwlock_unlock(&machine->threads_lock);
1494 	thread__put(th);
1495 }
1496 
1497 void machine__remove_thread(struct machine *machine, struct thread *th)
1498 {
1499 	return __machine__remove_thread(machine, th, true);
1500 }
1501 
1502 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1503 				struct perf_sample *sample)
1504 {
1505 	struct thread *thread = machine__find_thread(machine,
1506 						     event->fork.pid,
1507 						     event->fork.tid);
1508 	struct thread *parent = machine__findnew_thread(machine,
1509 							event->fork.ppid,
1510 							event->fork.ptid);
1511 	int err = 0;
1512 
1513 	if (dump_trace)
1514 		perf_event__fprintf_task(event, stdout);
1515 
1516 	/*
1517 	 * There may be an existing thread that is not actually the parent,
1518 	 * either because we are processing events out of order, or because the
1519 	 * (fork) event that would have removed the thread was lost. Assume the
1520 	 * latter case and continue on as best we can.
1521 	 */
1522 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1523 		dump_printf("removing erroneous parent thread %d/%d\n",
1524 			    parent->pid_, parent->tid);
1525 		machine__remove_thread(machine, parent);
1526 		thread__put(parent);
1527 		parent = machine__findnew_thread(machine, event->fork.ppid,
1528 						 event->fork.ptid);
1529 	}
1530 
1531 	/* if a thread currently exists for the thread id remove it */
1532 	if (thread != NULL) {
1533 		machine__remove_thread(machine, thread);
1534 		thread__put(thread);
1535 	}
1536 
1537 	thread = machine__findnew_thread(machine, event->fork.pid,
1538 					 event->fork.tid);
1539 
1540 	if (thread == NULL || parent == NULL ||
1541 	    thread__fork(thread, parent, sample->time) < 0) {
1542 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1543 		err = -1;
1544 	}
1545 	thread__put(thread);
1546 	thread__put(parent);
1547 
1548 	return err;
1549 }
1550 
1551 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1552 				struct perf_sample *sample __maybe_unused)
1553 {
1554 	struct thread *thread = machine__find_thread(machine,
1555 						     event->fork.pid,
1556 						     event->fork.tid);
1557 
1558 	if (dump_trace)
1559 		perf_event__fprintf_task(event, stdout);
1560 
1561 	if (thread != NULL) {
1562 		thread__exited(thread);
1563 		thread__put(thread);
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 int machine__process_event(struct machine *machine, union perf_event *event,
1570 			   struct perf_sample *sample)
1571 {
1572 	int ret;
1573 
1574 	switch (event->header.type) {
1575 	case PERF_RECORD_COMM:
1576 		ret = machine__process_comm_event(machine, event, sample); break;
1577 	case PERF_RECORD_MMAP:
1578 		ret = machine__process_mmap_event(machine, event, sample); break;
1579 	case PERF_RECORD_NAMESPACES:
1580 		ret = machine__process_namespaces_event(machine, event, sample); break;
1581 	case PERF_RECORD_MMAP2:
1582 		ret = machine__process_mmap2_event(machine, event, sample); break;
1583 	case PERF_RECORD_FORK:
1584 		ret = machine__process_fork_event(machine, event, sample); break;
1585 	case PERF_RECORD_EXIT:
1586 		ret = machine__process_exit_event(machine, event, sample); break;
1587 	case PERF_RECORD_LOST:
1588 		ret = machine__process_lost_event(machine, event, sample); break;
1589 	case PERF_RECORD_AUX:
1590 		ret = machine__process_aux_event(machine, event); break;
1591 	case PERF_RECORD_ITRACE_START:
1592 		ret = machine__process_itrace_start_event(machine, event); break;
1593 	case PERF_RECORD_LOST_SAMPLES:
1594 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1595 	case PERF_RECORD_SWITCH:
1596 	case PERF_RECORD_SWITCH_CPU_WIDE:
1597 		ret = machine__process_switch_event(machine, event); break;
1598 	default:
1599 		ret = -1;
1600 		break;
1601 	}
1602 
1603 	return ret;
1604 }
1605 
1606 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1607 {
1608 	if (!regexec(regex, sym->name, 0, NULL, 0))
1609 		return 1;
1610 	return 0;
1611 }
1612 
1613 static void ip__resolve_ams(struct thread *thread,
1614 			    struct addr_map_symbol *ams,
1615 			    u64 ip)
1616 {
1617 	struct addr_location al;
1618 
1619 	memset(&al, 0, sizeof(al));
1620 	/*
1621 	 * We cannot use the header.misc hint to determine whether a
1622 	 * branch stack address is user, kernel, guest, hypervisor.
1623 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1624 	 * Thus, we have to try consecutively until we find a match
1625 	 * or else, the symbol is unknown
1626 	 */
1627 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1628 
1629 	ams->addr = ip;
1630 	ams->al_addr = al.addr;
1631 	ams->sym = al.sym;
1632 	ams->map = al.map;
1633 }
1634 
1635 static void ip__resolve_data(struct thread *thread,
1636 			     u8 m, struct addr_map_symbol *ams, u64 addr)
1637 {
1638 	struct addr_location al;
1639 
1640 	memset(&al, 0, sizeof(al));
1641 
1642 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1643 	if (al.map == NULL) {
1644 		/*
1645 		 * some shared data regions have execute bit set which puts
1646 		 * their mapping in the MAP__FUNCTION type array.
1647 		 * Check there as a fallback option before dropping the sample.
1648 		 */
1649 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1650 	}
1651 
1652 	ams->addr = addr;
1653 	ams->al_addr = al.addr;
1654 	ams->sym = al.sym;
1655 	ams->map = al.map;
1656 }
1657 
1658 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1659 				     struct addr_location *al)
1660 {
1661 	struct mem_info *mi = zalloc(sizeof(*mi));
1662 
1663 	if (!mi)
1664 		return NULL;
1665 
1666 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1667 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1668 	mi->data_src.val = sample->data_src;
1669 
1670 	return mi;
1671 }
1672 
1673 static int add_callchain_ip(struct thread *thread,
1674 			    struct callchain_cursor *cursor,
1675 			    struct symbol **parent,
1676 			    struct addr_location *root_al,
1677 			    u8 *cpumode,
1678 			    u64 ip,
1679 			    bool branch,
1680 			    struct branch_flags *flags,
1681 			    int nr_loop_iter,
1682 			    int samples)
1683 {
1684 	struct addr_location al;
1685 
1686 	al.filtered = 0;
1687 	al.sym = NULL;
1688 	if (!cpumode) {
1689 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1690 						   ip, &al);
1691 	} else {
1692 		if (ip >= PERF_CONTEXT_MAX) {
1693 			switch (ip) {
1694 			case PERF_CONTEXT_HV:
1695 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1696 				break;
1697 			case PERF_CONTEXT_KERNEL:
1698 				*cpumode = PERF_RECORD_MISC_KERNEL;
1699 				break;
1700 			case PERF_CONTEXT_USER:
1701 				*cpumode = PERF_RECORD_MISC_USER;
1702 				break;
1703 			default:
1704 				pr_debug("invalid callchain context: "
1705 					 "%"PRId64"\n", (s64) ip);
1706 				/*
1707 				 * It seems the callchain is corrupted.
1708 				 * Discard all.
1709 				 */
1710 				callchain_cursor_reset(cursor);
1711 				return 1;
1712 			}
1713 			return 0;
1714 		}
1715 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1716 					   ip, &al);
1717 	}
1718 
1719 	if (al.sym != NULL) {
1720 		if (perf_hpp_list.parent && !*parent &&
1721 		    symbol__match_regex(al.sym, &parent_regex))
1722 			*parent = al.sym;
1723 		else if (have_ignore_callees && root_al &&
1724 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1725 			/* Treat this symbol as the root,
1726 			   forgetting its callees. */
1727 			*root_al = al;
1728 			callchain_cursor_reset(cursor);
1729 		}
1730 	}
1731 
1732 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1733 		return 0;
1734 	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1735 				       branch, flags, nr_loop_iter, samples);
1736 }
1737 
1738 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1739 					   struct addr_location *al)
1740 {
1741 	unsigned int i;
1742 	const struct branch_stack *bs = sample->branch_stack;
1743 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1744 
1745 	if (!bi)
1746 		return NULL;
1747 
1748 	for (i = 0; i < bs->nr; i++) {
1749 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1750 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1751 		bi[i].flags = bs->entries[i].flags;
1752 	}
1753 	return bi;
1754 }
1755 
1756 #define CHASHSZ 127
1757 #define CHASHBITS 7
1758 #define NO_ENTRY 0xff
1759 
1760 #define PERF_MAX_BRANCH_DEPTH 127
1761 
1762 /* Remove loops. */
1763 static int remove_loops(struct branch_entry *l, int nr)
1764 {
1765 	int i, j, off;
1766 	unsigned char chash[CHASHSZ];
1767 
1768 	memset(chash, NO_ENTRY, sizeof(chash));
1769 
1770 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1771 
1772 	for (i = 0; i < nr; i++) {
1773 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1774 
1775 		/* no collision handling for now */
1776 		if (chash[h] == NO_ENTRY) {
1777 			chash[h] = i;
1778 		} else if (l[chash[h]].from == l[i].from) {
1779 			bool is_loop = true;
1780 			/* check if it is a real loop */
1781 			off = 0;
1782 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1783 				if (l[j].from != l[i + off].from) {
1784 					is_loop = false;
1785 					break;
1786 				}
1787 			if (is_loop) {
1788 				memmove(l + i, l + i + off,
1789 					(nr - (i + off)) * sizeof(*l));
1790 				nr -= off;
1791 			}
1792 		}
1793 	}
1794 	return nr;
1795 }
1796 
1797 /*
1798  * Recolve LBR callstack chain sample
1799  * Return:
1800  * 1 on success get LBR callchain information
1801  * 0 no available LBR callchain information, should try fp
1802  * negative error code on other errors.
1803  */
1804 static int resolve_lbr_callchain_sample(struct thread *thread,
1805 					struct callchain_cursor *cursor,
1806 					struct perf_sample *sample,
1807 					struct symbol **parent,
1808 					struct addr_location *root_al,
1809 					int max_stack)
1810 {
1811 	struct ip_callchain *chain = sample->callchain;
1812 	int chain_nr = min(max_stack, (int)chain->nr), i;
1813 	u8 cpumode = PERF_RECORD_MISC_USER;
1814 	u64 ip;
1815 
1816 	for (i = 0; i < chain_nr; i++) {
1817 		if (chain->ips[i] == PERF_CONTEXT_USER)
1818 			break;
1819 	}
1820 
1821 	/* LBR only affects the user callchain */
1822 	if (i != chain_nr) {
1823 		struct branch_stack *lbr_stack = sample->branch_stack;
1824 		int lbr_nr = lbr_stack->nr, j, k;
1825 		bool branch;
1826 		struct branch_flags *flags;
1827 		/*
1828 		 * LBR callstack can only get user call chain.
1829 		 * The mix_chain_nr is kernel call chain
1830 		 * number plus LBR user call chain number.
1831 		 * i is kernel call chain number,
1832 		 * 1 is PERF_CONTEXT_USER,
1833 		 * lbr_nr + 1 is the user call chain number.
1834 		 * For details, please refer to the comments
1835 		 * in callchain__printf
1836 		 */
1837 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1838 
1839 		for (j = 0; j < mix_chain_nr; j++) {
1840 			int err;
1841 			branch = false;
1842 			flags = NULL;
1843 
1844 			if (callchain_param.order == ORDER_CALLEE) {
1845 				if (j < i + 1)
1846 					ip = chain->ips[j];
1847 				else if (j > i + 1) {
1848 					k = j - i - 2;
1849 					ip = lbr_stack->entries[k].from;
1850 					branch = true;
1851 					flags = &lbr_stack->entries[k].flags;
1852 				} else {
1853 					ip = lbr_stack->entries[0].to;
1854 					branch = true;
1855 					flags = &lbr_stack->entries[0].flags;
1856 				}
1857 			} else {
1858 				if (j < lbr_nr) {
1859 					k = lbr_nr - j - 1;
1860 					ip = lbr_stack->entries[k].from;
1861 					branch = true;
1862 					flags = &lbr_stack->entries[k].flags;
1863 				}
1864 				else if (j > lbr_nr)
1865 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1866 				else {
1867 					ip = lbr_stack->entries[0].to;
1868 					branch = true;
1869 					flags = &lbr_stack->entries[0].flags;
1870 				}
1871 			}
1872 
1873 			err = add_callchain_ip(thread, cursor, parent,
1874 					       root_al, &cpumode, ip,
1875 					       branch, flags, 0, 0);
1876 			if (err)
1877 				return (err < 0) ? err : 0;
1878 		}
1879 		return 1;
1880 	}
1881 
1882 	return 0;
1883 }
1884 
1885 static int thread__resolve_callchain_sample(struct thread *thread,
1886 					    struct callchain_cursor *cursor,
1887 					    struct perf_evsel *evsel,
1888 					    struct perf_sample *sample,
1889 					    struct symbol **parent,
1890 					    struct addr_location *root_al,
1891 					    int max_stack)
1892 {
1893 	struct branch_stack *branch = sample->branch_stack;
1894 	struct ip_callchain *chain = sample->callchain;
1895 	int chain_nr = chain->nr;
1896 	u8 cpumode = PERF_RECORD_MISC_USER;
1897 	int i, j, err, nr_entries;
1898 	int skip_idx = -1;
1899 	int first_call = 0;
1900 	int nr_loop_iter;
1901 
1902 	if (perf_evsel__has_branch_callstack(evsel)) {
1903 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1904 						   root_al, max_stack);
1905 		if (err)
1906 			return (err < 0) ? err : 0;
1907 	}
1908 
1909 	/*
1910 	 * Based on DWARF debug information, some architectures skip
1911 	 * a callchain entry saved by the kernel.
1912 	 */
1913 	skip_idx = arch_skip_callchain_idx(thread, chain);
1914 
1915 	/*
1916 	 * Add branches to call stack for easier browsing. This gives
1917 	 * more context for a sample than just the callers.
1918 	 *
1919 	 * This uses individual histograms of paths compared to the
1920 	 * aggregated histograms the normal LBR mode uses.
1921 	 *
1922 	 * Limitations for now:
1923 	 * - No extra filters
1924 	 * - No annotations (should annotate somehow)
1925 	 */
1926 
1927 	if (branch && callchain_param.branch_callstack) {
1928 		int nr = min(max_stack, (int)branch->nr);
1929 		struct branch_entry be[nr];
1930 
1931 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1932 			pr_warning("corrupted branch chain. skipping...\n");
1933 			goto check_calls;
1934 		}
1935 
1936 		for (i = 0; i < nr; i++) {
1937 			if (callchain_param.order == ORDER_CALLEE) {
1938 				be[i] = branch->entries[i];
1939 				/*
1940 				 * Check for overlap into the callchain.
1941 				 * The return address is one off compared to
1942 				 * the branch entry. To adjust for this
1943 				 * assume the calling instruction is not longer
1944 				 * than 8 bytes.
1945 				 */
1946 				if (i == skip_idx ||
1947 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1948 					first_call++;
1949 				else if (be[i].from < chain->ips[first_call] &&
1950 				    be[i].from >= chain->ips[first_call] - 8)
1951 					first_call++;
1952 			} else
1953 				be[i] = branch->entries[branch->nr - i - 1];
1954 		}
1955 
1956 		nr_loop_iter = nr;
1957 		nr = remove_loops(be, nr);
1958 
1959 		/*
1960 		 * Get the number of iterations.
1961 		 * It's only approximation, but good enough in practice.
1962 		 */
1963 		if (nr_loop_iter > nr)
1964 			nr_loop_iter = nr_loop_iter - nr + 1;
1965 		else
1966 			nr_loop_iter = 0;
1967 
1968 		for (i = 0; i < nr; i++) {
1969 			if (i == nr - 1)
1970 				err = add_callchain_ip(thread, cursor, parent,
1971 						       root_al,
1972 						       NULL, be[i].to,
1973 						       true, &be[i].flags,
1974 						       nr_loop_iter, 1);
1975 			else
1976 				err = add_callchain_ip(thread, cursor, parent,
1977 						       root_al,
1978 						       NULL, be[i].to,
1979 						       true, &be[i].flags,
1980 						       0, 0);
1981 
1982 			if (!err)
1983 				err = add_callchain_ip(thread, cursor, parent, root_al,
1984 						       NULL, be[i].from,
1985 						       true, &be[i].flags,
1986 						       0, 0);
1987 			if (err == -EINVAL)
1988 				break;
1989 			if (err)
1990 				return err;
1991 		}
1992 		chain_nr -= nr;
1993 	}
1994 
1995 check_calls:
1996 	for (i = first_call, nr_entries = 0;
1997 	     i < chain_nr && nr_entries < max_stack; i++) {
1998 		u64 ip;
1999 
2000 		if (callchain_param.order == ORDER_CALLEE)
2001 			j = i;
2002 		else
2003 			j = chain->nr - i - 1;
2004 
2005 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2006 		if (j == skip_idx)
2007 			continue;
2008 #endif
2009 		ip = chain->ips[j];
2010 
2011 		if (ip < PERF_CONTEXT_MAX)
2012                        ++nr_entries;
2013 
2014 		err = add_callchain_ip(thread, cursor, parent,
2015 				       root_al, &cpumode, ip,
2016 				       false, NULL, 0, 0);
2017 
2018 		if (err)
2019 			return (err < 0) ? err : 0;
2020 	}
2021 
2022 	return 0;
2023 }
2024 
2025 static int unwind_entry(struct unwind_entry *entry, void *arg)
2026 {
2027 	struct callchain_cursor *cursor = arg;
2028 
2029 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2030 		return 0;
2031 	return callchain_cursor_append(cursor, entry->ip,
2032 				       entry->map, entry->sym,
2033 				       false, NULL, 0, 0);
2034 }
2035 
2036 static int thread__resolve_callchain_unwind(struct thread *thread,
2037 					    struct callchain_cursor *cursor,
2038 					    struct perf_evsel *evsel,
2039 					    struct perf_sample *sample,
2040 					    int max_stack)
2041 {
2042 	/* Can we do dwarf post unwind? */
2043 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2044 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2045 		return 0;
2046 
2047 	/* Bail out if nothing was captured. */
2048 	if ((!sample->user_regs.regs) ||
2049 	    (!sample->user_stack.size))
2050 		return 0;
2051 
2052 	return unwind__get_entries(unwind_entry, cursor,
2053 				   thread, sample, max_stack);
2054 }
2055 
2056 int thread__resolve_callchain(struct thread *thread,
2057 			      struct callchain_cursor *cursor,
2058 			      struct perf_evsel *evsel,
2059 			      struct perf_sample *sample,
2060 			      struct symbol **parent,
2061 			      struct addr_location *root_al,
2062 			      int max_stack)
2063 {
2064 	int ret = 0;
2065 
2066 	callchain_cursor_reset(&callchain_cursor);
2067 
2068 	if (callchain_param.order == ORDER_CALLEE) {
2069 		ret = thread__resolve_callchain_sample(thread, cursor,
2070 						       evsel, sample,
2071 						       parent, root_al,
2072 						       max_stack);
2073 		if (ret)
2074 			return ret;
2075 		ret = thread__resolve_callchain_unwind(thread, cursor,
2076 						       evsel, sample,
2077 						       max_stack);
2078 	} else {
2079 		ret = thread__resolve_callchain_unwind(thread, cursor,
2080 						       evsel, sample,
2081 						       max_stack);
2082 		if (ret)
2083 			return ret;
2084 		ret = thread__resolve_callchain_sample(thread, cursor,
2085 						       evsel, sample,
2086 						       parent, root_al,
2087 						       max_stack);
2088 	}
2089 
2090 	return ret;
2091 }
2092 
2093 int machine__for_each_thread(struct machine *machine,
2094 			     int (*fn)(struct thread *thread, void *p),
2095 			     void *priv)
2096 {
2097 	struct rb_node *nd;
2098 	struct thread *thread;
2099 	int rc = 0;
2100 
2101 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2102 		thread = rb_entry(nd, struct thread, rb_node);
2103 		rc = fn(thread, priv);
2104 		if (rc != 0)
2105 			return rc;
2106 	}
2107 
2108 	list_for_each_entry(thread, &machine->dead_threads, node) {
2109 		rc = fn(thread, priv);
2110 		if (rc != 0)
2111 			return rc;
2112 	}
2113 	return rc;
2114 }
2115 
2116 int machines__for_each_thread(struct machines *machines,
2117 			      int (*fn)(struct thread *thread, void *p),
2118 			      void *priv)
2119 {
2120 	struct rb_node *nd;
2121 	int rc = 0;
2122 
2123 	rc = machine__for_each_thread(&machines->host, fn, priv);
2124 	if (rc != 0)
2125 		return rc;
2126 
2127 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2128 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2129 
2130 		rc = machine__for_each_thread(machine, fn, priv);
2131 		if (rc != 0)
2132 			return rc;
2133 	}
2134 	return rc;
2135 }
2136 
2137 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2138 				  struct target *target, struct thread_map *threads,
2139 				  perf_event__handler_t process, bool data_mmap,
2140 				  unsigned int proc_map_timeout)
2141 {
2142 	if (target__has_task(target))
2143 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2144 	else if (target__has_cpu(target))
2145 		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2146 	/* command specified */
2147 	return 0;
2148 }
2149 
2150 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2151 {
2152 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2153 		return -1;
2154 
2155 	return machine->current_tid[cpu];
2156 }
2157 
2158 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2159 			     pid_t tid)
2160 {
2161 	struct thread *thread;
2162 
2163 	if (cpu < 0)
2164 		return -EINVAL;
2165 
2166 	if (!machine->current_tid) {
2167 		int i;
2168 
2169 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2170 		if (!machine->current_tid)
2171 			return -ENOMEM;
2172 		for (i = 0; i < MAX_NR_CPUS; i++)
2173 			machine->current_tid[i] = -1;
2174 	}
2175 
2176 	if (cpu >= MAX_NR_CPUS) {
2177 		pr_err("Requested CPU %d too large. ", cpu);
2178 		pr_err("Consider raising MAX_NR_CPUS\n");
2179 		return -EINVAL;
2180 	}
2181 
2182 	machine->current_tid[cpu] = tid;
2183 
2184 	thread = machine__findnew_thread(machine, pid, tid);
2185 	if (!thread)
2186 		return -ENOMEM;
2187 
2188 	thread->cpu = cpu;
2189 	thread__put(thread);
2190 
2191 	return 0;
2192 }
2193 
2194 int machine__get_kernel_start(struct machine *machine)
2195 {
2196 	struct map *map = machine__kernel_map(machine);
2197 	int err = 0;
2198 
2199 	/*
2200 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2201 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2202 	 * all addresses including kernel addresses are less than 2^32.  In
2203 	 * that case (32-bit system), if the kernel mapping is unknown, all
2204 	 * addresses will be assumed to be in user space - see
2205 	 * machine__kernel_ip().
2206 	 */
2207 	machine->kernel_start = 1ULL << 63;
2208 	if (map) {
2209 		err = map__load(map);
2210 		if (map->start)
2211 			machine->kernel_start = map->start;
2212 	}
2213 	return err;
2214 }
2215 
2216 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2217 {
2218 	return dsos__findnew(&machine->dsos, filename);
2219 }
2220 
2221 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2222 {
2223 	struct machine *machine = vmachine;
2224 	struct map *map;
2225 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2226 
2227 	if (sym == NULL)
2228 		return NULL;
2229 
2230 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2231 	*addrp = map->unmap_ip(map, sym->start);
2232 	return sym->name;
2233 }
2234