xref: /linux/tools/perf/util/intel-pt.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * intel_pt.c: Intel Processor Trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 
16 #include <inttypes.h>
17 #include <stdio.h>
18 #include <stdbool.h>
19 #include <errno.h>
20 #include <linux/kernel.h>
21 #include <linux/types.h>
22 
23 #include "../perf.h"
24 #include "session.h"
25 #include "machine.h"
26 #include "memswap.h"
27 #include "sort.h"
28 #include "tool.h"
29 #include "event.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "map.h"
33 #include "color.h"
34 #include "util.h"
35 #include "thread.h"
36 #include "thread-stack.h"
37 #include "symbol.h"
38 #include "callchain.h"
39 #include "dso.h"
40 #include "debug.h"
41 #include "auxtrace.h"
42 #include "tsc.h"
43 #include "intel-pt.h"
44 #include "config.h"
45 
46 #include "intel-pt-decoder/intel-pt-log.h"
47 #include "intel-pt-decoder/intel-pt-decoder.h"
48 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
49 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
50 
51 #define MAX_TIMESTAMP (~0ULL)
52 
53 struct intel_pt {
54 	struct auxtrace auxtrace;
55 	struct auxtrace_queues queues;
56 	struct auxtrace_heap heap;
57 	u32 auxtrace_type;
58 	struct perf_session *session;
59 	struct machine *machine;
60 	struct perf_evsel *switch_evsel;
61 	struct thread *unknown_thread;
62 	bool timeless_decoding;
63 	bool sampling_mode;
64 	bool snapshot_mode;
65 	bool per_cpu_mmaps;
66 	bool have_tsc;
67 	bool data_queued;
68 	bool est_tsc;
69 	bool sync_switch;
70 	bool mispred_all;
71 	int have_sched_switch;
72 	u32 pmu_type;
73 	u64 kernel_start;
74 	u64 switch_ip;
75 	u64 ptss_ip;
76 
77 	struct perf_tsc_conversion tc;
78 	bool cap_user_time_zero;
79 
80 	struct itrace_synth_opts synth_opts;
81 
82 	bool sample_instructions;
83 	u64 instructions_sample_type;
84 	u64 instructions_id;
85 
86 	bool sample_branches;
87 	u32 branches_filter;
88 	u64 branches_sample_type;
89 	u64 branches_id;
90 
91 	bool sample_transactions;
92 	u64 transactions_sample_type;
93 	u64 transactions_id;
94 
95 	bool sample_ptwrites;
96 	u64 ptwrites_sample_type;
97 	u64 ptwrites_id;
98 
99 	bool sample_pwr_events;
100 	u64 pwr_events_sample_type;
101 	u64 mwait_id;
102 	u64 pwre_id;
103 	u64 exstop_id;
104 	u64 pwrx_id;
105 	u64 cbr_id;
106 
107 	u64 tsc_bit;
108 	u64 mtc_bit;
109 	u64 mtc_freq_bits;
110 	u32 tsc_ctc_ratio_n;
111 	u32 tsc_ctc_ratio_d;
112 	u64 cyc_bit;
113 	u64 noretcomp_bit;
114 	unsigned max_non_turbo_ratio;
115 	unsigned cbr2khz;
116 
117 	unsigned long num_events;
118 
119 	char *filter;
120 	struct addr_filters filts;
121 };
122 
123 enum switch_state {
124 	INTEL_PT_SS_NOT_TRACING,
125 	INTEL_PT_SS_UNKNOWN,
126 	INTEL_PT_SS_TRACING,
127 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
128 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
129 };
130 
131 struct intel_pt_queue {
132 	struct intel_pt *pt;
133 	unsigned int queue_nr;
134 	struct auxtrace_buffer *buffer;
135 	struct auxtrace_buffer *old_buffer;
136 	void *decoder;
137 	const struct intel_pt_state *state;
138 	struct ip_callchain *chain;
139 	struct branch_stack *last_branch;
140 	struct branch_stack *last_branch_rb;
141 	size_t last_branch_pos;
142 	union perf_event *event_buf;
143 	bool on_heap;
144 	bool stop;
145 	bool step_through_buffers;
146 	bool use_buffer_pid_tid;
147 	bool sync_switch;
148 	pid_t pid, tid;
149 	int cpu;
150 	int switch_state;
151 	pid_t next_tid;
152 	struct thread *thread;
153 	bool exclude_kernel;
154 	bool have_sample;
155 	u64 time;
156 	u64 timestamp;
157 	u32 flags;
158 	u16 insn_len;
159 	u64 last_insn_cnt;
160 	char insn[INTEL_PT_INSN_BUF_SZ];
161 };
162 
163 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
164 			  unsigned char *buf, size_t len)
165 {
166 	struct intel_pt_pkt packet;
167 	size_t pos = 0;
168 	int ret, pkt_len, i;
169 	char desc[INTEL_PT_PKT_DESC_MAX];
170 	const char *color = PERF_COLOR_BLUE;
171 
172 	color_fprintf(stdout, color,
173 		      ". ... Intel Processor Trace data: size %zu bytes\n",
174 		      len);
175 
176 	while (len) {
177 		ret = intel_pt_get_packet(buf, len, &packet);
178 		if (ret > 0)
179 			pkt_len = ret;
180 		else
181 			pkt_len = 1;
182 		printf(".");
183 		color_fprintf(stdout, color, "  %08x: ", pos);
184 		for (i = 0; i < pkt_len; i++)
185 			color_fprintf(stdout, color, " %02x", buf[i]);
186 		for (; i < 16; i++)
187 			color_fprintf(stdout, color, "   ");
188 		if (ret > 0) {
189 			ret = intel_pt_pkt_desc(&packet, desc,
190 						INTEL_PT_PKT_DESC_MAX);
191 			if (ret > 0)
192 				color_fprintf(stdout, color, " %s\n", desc);
193 		} else {
194 			color_fprintf(stdout, color, " Bad packet!\n");
195 		}
196 		pos += pkt_len;
197 		buf += pkt_len;
198 		len -= pkt_len;
199 	}
200 }
201 
202 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
203 				size_t len)
204 {
205 	printf(".\n");
206 	intel_pt_dump(pt, buf, len);
207 }
208 
209 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
210 				   struct auxtrace_buffer *b)
211 {
212 	bool consecutive = false;
213 	void *start;
214 
215 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
216 				      pt->have_tsc, &consecutive);
217 	if (!start)
218 		return -EINVAL;
219 	b->use_size = b->data + b->size - start;
220 	b->use_data = start;
221 	if (b->use_size && consecutive)
222 		b->consecutive = true;
223 	return 0;
224 }
225 
226 /* This function assumes data is processed sequentially only */
227 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
228 {
229 	struct intel_pt_queue *ptq = data;
230 	struct auxtrace_buffer *buffer = ptq->buffer;
231 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
232 	struct auxtrace_queue *queue;
233 	bool might_overlap;
234 
235 	if (ptq->stop) {
236 		b->len = 0;
237 		return 0;
238 	}
239 
240 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
241 
242 	buffer = auxtrace_buffer__next(queue, buffer);
243 	if (!buffer) {
244 		if (old_buffer)
245 			auxtrace_buffer__drop_data(old_buffer);
246 		b->len = 0;
247 		return 0;
248 	}
249 
250 	ptq->buffer = buffer;
251 
252 	if (!buffer->data) {
253 		int fd = perf_data__fd(ptq->pt->session->data);
254 
255 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
256 		if (!buffer->data)
257 			return -ENOMEM;
258 	}
259 
260 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
261 	if (might_overlap && !buffer->consecutive && old_buffer &&
262 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
263 		return -ENOMEM;
264 
265 	if (buffer->use_data) {
266 		b->len = buffer->use_size;
267 		b->buf = buffer->use_data;
268 	} else {
269 		b->len = buffer->size;
270 		b->buf = buffer->data;
271 	}
272 	b->ref_timestamp = buffer->reference;
273 
274 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
275 		b->consecutive = false;
276 		b->trace_nr = buffer->buffer_nr + 1;
277 	} else {
278 		b->consecutive = true;
279 	}
280 
281 	if (ptq->step_through_buffers)
282 		ptq->stop = true;
283 
284 	if (b->len) {
285 		if (old_buffer)
286 			auxtrace_buffer__drop_data(old_buffer);
287 		ptq->old_buffer = buffer;
288 	} else {
289 		auxtrace_buffer__drop_data(buffer);
290 		return intel_pt_get_trace(b, data);
291 	}
292 
293 	return 0;
294 }
295 
296 struct intel_pt_cache_entry {
297 	struct auxtrace_cache_entry	entry;
298 	u64				insn_cnt;
299 	u64				byte_cnt;
300 	enum intel_pt_insn_op		op;
301 	enum intel_pt_insn_branch	branch;
302 	int				length;
303 	int32_t				rel;
304 	char				insn[INTEL_PT_INSN_BUF_SZ];
305 };
306 
307 static int intel_pt_config_div(const char *var, const char *value, void *data)
308 {
309 	int *d = data;
310 	long val;
311 
312 	if (!strcmp(var, "intel-pt.cache-divisor")) {
313 		val = strtol(value, NULL, 0);
314 		if (val > 0 && val <= INT_MAX)
315 			*d = val;
316 	}
317 
318 	return 0;
319 }
320 
321 static int intel_pt_cache_divisor(void)
322 {
323 	static int d;
324 
325 	if (d)
326 		return d;
327 
328 	perf_config(intel_pt_config_div, &d);
329 
330 	if (!d)
331 		d = 64;
332 
333 	return d;
334 }
335 
336 static unsigned int intel_pt_cache_size(struct dso *dso,
337 					struct machine *machine)
338 {
339 	off_t size;
340 
341 	size = dso__data_size(dso, machine);
342 	size /= intel_pt_cache_divisor();
343 	if (size < 1000)
344 		return 10;
345 	if (size > (1 << 21))
346 		return 21;
347 	return 32 - __builtin_clz(size);
348 }
349 
350 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
351 					     struct machine *machine)
352 {
353 	struct auxtrace_cache *c;
354 	unsigned int bits;
355 
356 	if (dso->auxtrace_cache)
357 		return dso->auxtrace_cache;
358 
359 	bits = intel_pt_cache_size(dso, machine);
360 
361 	/* Ignoring cache creation failure */
362 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
363 
364 	dso->auxtrace_cache = c;
365 
366 	return c;
367 }
368 
369 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
370 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
371 			      struct intel_pt_insn *intel_pt_insn)
372 {
373 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
374 	struct intel_pt_cache_entry *e;
375 	int err;
376 
377 	if (!c)
378 		return -ENOMEM;
379 
380 	e = auxtrace_cache__alloc_entry(c);
381 	if (!e)
382 		return -ENOMEM;
383 
384 	e->insn_cnt = insn_cnt;
385 	e->byte_cnt = byte_cnt;
386 	e->op = intel_pt_insn->op;
387 	e->branch = intel_pt_insn->branch;
388 	e->length = intel_pt_insn->length;
389 	e->rel = intel_pt_insn->rel;
390 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
391 
392 	err = auxtrace_cache__add(c, offset, &e->entry);
393 	if (err)
394 		auxtrace_cache__free_entry(c, e);
395 
396 	return err;
397 }
398 
399 static struct intel_pt_cache_entry *
400 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
401 {
402 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
403 
404 	if (!c)
405 		return NULL;
406 
407 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
408 }
409 
410 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
411 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
412 				   uint64_t to_ip, uint64_t max_insn_cnt,
413 				   void *data)
414 {
415 	struct intel_pt_queue *ptq = data;
416 	struct machine *machine = ptq->pt->machine;
417 	struct thread *thread;
418 	struct addr_location al;
419 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
420 	ssize_t len;
421 	int x86_64;
422 	u8 cpumode;
423 	u64 offset, start_offset, start_ip;
424 	u64 insn_cnt = 0;
425 	bool one_map = true;
426 
427 	intel_pt_insn->length = 0;
428 
429 	if (to_ip && *ip == to_ip)
430 		goto out_no_cache;
431 
432 	if (*ip >= ptq->pt->kernel_start)
433 		cpumode = PERF_RECORD_MISC_KERNEL;
434 	else
435 		cpumode = PERF_RECORD_MISC_USER;
436 
437 	thread = ptq->thread;
438 	if (!thread) {
439 		if (cpumode != PERF_RECORD_MISC_KERNEL)
440 			return -EINVAL;
441 		thread = ptq->pt->unknown_thread;
442 	}
443 
444 	while (1) {
445 		thread__find_addr_map(thread, cpumode, MAP__FUNCTION, *ip, &al);
446 		if (!al.map || !al.map->dso)
447 			return -EINVAL;
448 
449 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
450 		    dso__data_status_seen(al.map->dso,
451 					  DSO_DATA_STATUS_SEEN_ITRACE))
452 			return -ENOENT;
453 
454 		offset = al.map->map_ip(al.map, *ip);
455 
456 		if (!to_ip && one_map) {
457 			struct intel_pt_cache_entry *e;
458 
459 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
460 			if (e &&
461 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
462 				*insn_cnt_ptr = e->insn_cnt;
463 				*ip += e->byte_cnt;
464 				intel_pt_insn->op = e->op;
465 				intel_pt_insn->branch = e->branch;
466 				intel_pt_insn->length = e->length;
467 				intel_pt_insn->rel = e->rel;
468 				memcpy(intel_pt_insn->buf, e->insn,
469 				       INTEL_PT_INSN_BUF_SZ);
470 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
471 				return 0;
472 			}
473 		}
474 
475 		start_offset = offset;
476 		start_ip = *ip;
477 
478 		/* Load maps to ensure dso->is_64_bit has been updated */
479 		map__load(al.map);
480 
481 		x86_64 = al.map->dso->is_64_bit;
482 
483 		while (1) {
484 			len = dso__data_read_offset(al.map->dso, machine,
485 						    offset, buf,
486 						    INTEL_PT_INSN_BUF_SZ);
487 			if (len <= 0)
488 				return -EINVAL;
489 
490 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
491 				return -EINVAL;
492 
493 			intel_pt_log_insn(intel_pt_insn, *ip);
494 
495 			insn_cnt += 1;
496 
497 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
498 				goto out;
499 
500 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
501 				goto out_no_cache;
502 
503 			*ip += intel_pt_insn->length;
504 
505 			if (to_ip && *ip == to_ip)
506 				goto out_no_cache;
507 
508 			if (*ip >= al.map->end)
509 				break;
510 
511 			offset += intel_pt_insn->length;
512 		}
513 		one_map = false;
514 	}
515 out:
516 	*insn_cnt_ptr = insn_cnt;
517 
518 	if (!one_map)
519 		goto out_no_cache;
520 
521 	/*
522 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
523 	 * entries.
524 	 */
525 	if (to_ip) {
526 		struct intel_pt_cache_entry *e;
527 
528 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
529 		if (e)
530 			return 0;
531 	}
532 
533 	/* Ignore cache errors */
534 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
535 			   *ip - start_ip, intel_pt_insn);
536 
537 	return 0;
538 
539 out_no_cache:
540 	*insn_cnt_ptr = insn_cnt;
541 	return 0;
542 }
543 
544 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
545 				  uint64_t offset, const char *filename)
546 {
547 	struct addr_filter *filt;
548 	bool have_filter   = false;
549 	bool hit_tracestop = false;
550 	bool hit_filter    = false;
551 
552 	list_for_each_entry(filt, &pt->filts.head, list) {
553 		if (filt->start)
554 			have_filter = true;
555 
556 		if ((filename && !filt->filename) ||
557 		    (!filename && filt->filename) ||
558 		    (filename && strcmp(filename, filt->filename)))
559 			continue;
560 
561 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
562 			continue;
563 
564 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
565 			     ip, offset, filename ? filename : "[kernel]",
566 			     filt->start ? "filter" : "stop",
567 			     filt->addr, filt->size);
568 
569 		if (filt->start)
570 			hit_filter = true;
571 		else
572 			hit_tracestop = true;
573 	}
574 
575 	if (!hit_tracestop && !hit_filter)
576 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
577 			     ip, offset, filename ? filename : "[kernel]");
578 
579 	return hit_tracestop || (have_filter && !hit_filter);
580 }
581 
582 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
583 {
584 	struct intel_pt_queue *ptq = data;
585 	struct thread *thread;
586 	struct addr_location al;
587 	u8 cpumode;
588 	u64 offset;
589 
590 	if (ip >= ptq->pt->kernel_start)
591 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
592 
593 	cpumode = PERF_RECORD_MISC_USER;
594 
595 	thread = ptq->thread;
596 	if (!thread)
597 		return -EINVAL;
598 
599 	thread__find_addr_map(thread, cpumode, MAP__FUNCTION, ip, &al);
600 	if (!al.map || !al.map->dso)
601 		return -EINVAL;
602 
603 	offset = al.map->map_ip(al.map, ip);
604 
605 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
606 				     al.map->dso->long_name);
607 }
608 
609 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
610 {
611 	return __intel_pt_pgd_ip(ip, data) > 0;
612 }
613 
614 static bool intel_pt_get_config(struct intel_pt *pt,
615 				struct perf_event_attr *attr, u64 *config)
616 {
617 	if (attr->type == pt->pmu_type) {
618 		if (config)
619 			*config = attr->config;
620 		return true;
621 	}
622 
623 	return false;
624 }
625 
626 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
627 {
628 	struct perf_evsel *evsel;
629 
630 	evlist__for_each_entry(pt->session->evlist, evsel) {
631 		if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
632 		    !evsel->attr.exclude_kernel)
633 			return false;
634 	}
635 	return true;
636 }
637 
638 static bool intel_pt_return_compression(struct intel_pt *pt)
639 {
640 	struct perf_evsel *evsel;
641 	u64 config;
642 
643 	if (!pt->noretcomp_bit)
644 		return true;
645 
646 	evlist__for_each_entry(pt->session->evlist, evsel) {
647 		if (intel_pt_get_config(pt, &evsel->attr, &config) &&
648 		    (config & pt->noretcomp_bit))
649 			return false;
650 	}
651 	return true;
652 }
653 
654 static bool intel_pt_branch_enable(struct intel_pt *pt)
655 {
656 	struct perf_evsel *evsel;
657 	u64 config;
658 
659 	evlist__for_each_entry(pt->session->evlist, evsel) {
660 		if (intel_pt_get_config(pt, &evsel->attr, &config) &&
661 		    (config & 1) && !(config & 0x2000))
662 			return false;
663 	}
664 	return true;
665 }
666 
667 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
668 {
669 	struct perf_evsel *evsel;
670 	unsigned int shift;
671 	u64 config;
672 
673 	if (!pt->mtc_freq_bits)
674 		return 0;
675 
676 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
677 		config >>= 1;
678 
679 	evlist__for_each_entry(pt->session->evlist, evsel) {
680 		if (intel_pt_get_config(pt, &evsel->attr, &config))
681 			return (config & pt->mtc_freq_bits) >> shift;
682 	}
683 	return 0;
684 }
685 
686 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
687 {
688 	struct perf_evsel *evsel;
689 	bool timeless_decoding = true;
690 	u64 config;
691 
692 	if (!pt->tsc_bit || !pt->cap_user_time_zero)
693 		return true;
694 
695 	evlist__for_each_entry(pt->session->evlist, evsel) {
696 		if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME))
697 			return true;
698 		if (intel_pt_get_config(pt, &evsel->attr, &config)) {
699 			if (config & pt->tsc_bit)
700 				timeless_decoding = false;
701 			else
702 				return true;
703 		}
704 	}
705 	return timeless_decoding;
706 }
707 
708 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
709 {
710 	struct perf_evsel *evsel;
711 
712 	evlist__for_each_entry(pt->session->evlist, evsel) {
713 		if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
714 		    !evsel->attr.exclude_kernel)
715 			return true;
716 	}
717 	return false;
718 }
719 
720 static bool intel_pt_have_tsc(struct intel_pt *pt)
721 {
722 	struct perf_evsel *evsel;
723 	bool have_tsc = false;
724 	u64 config;
725 
726 	if (!pt->tsc_bit)
727 		return false;
728 
729 	evlist__for_each_entry(pt->session->evlist, evsel) {
730 		if (intel_pt_get_config(pt, &evsel->attr, &config)) {
731 			if (config & pt->tsc_bit)
732 				have_tsc = true;
733 			else
734 				return false;
735 		}
736 	}
737 	return have_tsc;
738 }
739 
740 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
741 {
742 	u64 quot, rem;
743 
744 	quot = ns / pt->tc.time_mult;
745 	rem  = ns % pt->tc.time_mult;
746 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
747 		pt->tc.time_mult;
748 }
749 
750 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
751 						   unsigned int queue_nr)
752 {
753 	struct intel_pt_params params = { .get_trace = 0, };
754 	struct intel_pt_queue *ptq;
755 
756 	ptq = zalloc(sizeof(struct intel_pt_queue));
757 	if (!ptq)
758 		return NULL;
759 
760 	if (pt->synth_opts.callchain) {
761 		size_t sz = sizeof(struct ip_callchain);
762 
763 		sz += pt->synth_opts.callchain_sz * sizeof(u64);
764 		ptq->chain = zalloc(sz);
765 		if (!ptq->chain)
766 			goto out_free;
767 	}
768 
769 	if (pt->synth_opts.last_branch) {
770 		size_t sz = sizeof(struct branch_stack);
771 
772 		sz += pt->synth_opts.last_branch_sz *
773 		      sizeof(struct branch_entry);
774 		ptq->last_branch = zalloc(sz);
775 		if (!ptq->last_branch)
776 			goto out_free;
777 		ptq->last_branch_rb = zalloc(sz);
778 		if (!ptq->last_branch_rb)
779 			goto out_free;
780 	}
781 
782 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
783 	if (!ptq->event_buf)
784 		goto out_free;
785 
786 	ptq->pt = pt;
787 	ptq->queue_nr = queue_nr;
788 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
789 	ptq->pid = -1;
790 	ptq->tid = -1;
791 	ptq->cpu = -1;
792 	ptq->next_tid = -1;
793 
794 	params.get_trace = intel_pt_get_trace;
795 	params.walk_insn = intel_pt_walk_next_insn;
796 	params.data = ptq;
797 	params.return_compression = intel_pt_return_compression(pt);
798 	params.branch_enable = intel_pt_branch_enable(pt);
799 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
800 	params.mtc_period = intel_pt_mtc_period(pt);
801 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
802 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
803 
804 	if (pt->filts.cnt > 0)
805 		params.pgd_ip = intel_pt_pgd_ip;
806 
807 	if (pt->synth_opts.instructions) {
808 		if (pt->synth_opts.period) {
809 			switch (pt->synth_opts.period_type) {
810 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
811 				params.period_type =
812 						INTEL_PT_PERIOD_INSTRUCTIONS;
813 				params.period = pt->synth_opts.period;
814 				break;
815 			case PERF_ITRACE_PERIOD_TICKS:
816 				params.period_type = INTEL_PT_PERIOD_TICKS;
817 				params.period = pt->synth_opts.period;
818 				break;
819 			case PERF_ITRACE_PERIOD_NANOSECS:
820 				params.period_type = INTEL_PT_PERIOD_TICKS;
821 				params.period = intel_pt_ns_to_ticks(pt,
822 							pt->synth_opts.period);
823 				break;
824 			default:
825 				break;
826 			}
827 		}
828 
829 		if (!params.period) {
830 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
831 			params.period = 1;
832 		}
833 	}
834 
835 	ptq->decoder = intel_pt_decoder_new(&params);
836 	if (!ptq->decoder)
837 		goto out_free;
838 
839 	return ptq;
840 
841 out_free:
842 	zfree(&ptq->event_buf);
843 	zfree(&ptq->last_branch);
844 	zfree(&ptq->last_branch_rb);
845 	zfree(&ptq->chain);
846 	free(ptq);
847 	return NULL;
848 }
849 
850 static void intel_pt_free_queue(void *priv)
851 {
852 	struct intel_pt_queue *ptq = priv;
853 
854 	if (!ptq)
855 		return;
856 	thread__zput(ptq->thread);
857 	intel_pt_decoder_free(ptq->decoder);
858 	zfree(&ptq->event_buf);
859 	zfree(&ptq->last_branch);
860 	zfree(&ptq->last_branch_rb);
861 	zfree(&ptq->chain);
862 	free(ptq);
863 }
864 
865 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
866 				     struct auxtrace_queue *queue)
867 {
868 	struct intel_pt_queue *ptq = queue->priv;
869 
870 	if (queue->tid == -1 || pt->have_sched_switch) {
871 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
872 		thread__zput(ptq->thread);
873 	}
874 
875 	if (!ptq->thread && ptq->tid != -1)
876 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
877 
878 	if (ptq->thread) {
879 		ptq->pid = ptq->thread->pid_;
880 		if (queue->cpu == -1)
881 			ptq->cpu = ptq->thread->cpu;
882 	}
883 }
884 
885 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
886 {
887 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
888 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
889 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
890 		if (ptq->state->to_ip)
891 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
892 				     PERF_IP_FLAG_ASYNC |
893 				     PERF_IP_FLAG_INTERRUPT;
894 		else
895 			ptq->flags = PERF_IP_FLAG_BRANCH |
896 				     PERF_IP_FLAG_TRACE_END;
897 		ptq->insn_len = 0;
898 	} else {
899 		if (ptq->state->from_ip)
900 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
901 		else
902 			ptq->flags = PERF_IP_FLAG_BRANCH |
903 				     PERF_IP_FLAG_TRACE_BEGIN;
904 		if (ptq->state->flags & INTEL_PT_IN_TX)
905 			ptq->flags |= PERF_IP_FLAG_IN_TX;
906 		ptq->insn_len = ptq->state->insn_len;
907 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
908 	}
909 }
910 
911 static int intel_pt_setup_queue(struct intel_pt *pt,
912 				struct auxtrace_queue *queue,
913 				unsigned int queue_nr)
914 {
915 	struct intel_pt_queue *ptq = queue->priv;
916 
917 	if (list_empty(&queue->head))
918 		return 0;
919 
920 	if (!ptq) {
921 		ptq = intel_pt_alloc_queue(pt, queue_nr);
922 		if (!ptq)
923 			return -ENOMEM;
924 		queue->priv = ptq;
925 
926 		if (queue->cpu != -1)
927 			ptq->cpu = queue->cpu;
928 		ptq->tid = queue->tid;
929 
930 		if (pt->sampling_mode && !pt->snapshot_mode &&
931 		    pt->timeless_decoding)
932 			ptq->step_through_buffers = true;
933 
934 		ptq->sync_switch = pt->sync_switch;
935 	}
936 
937 	if (!ptq->on_heap &&
938 	    (!ptq->sync_switch ||
939 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
940 		const struct intel_pt_state *state;
941 		int ret;
942 
943 		if (pt->timeless_decoding)
944 			return 0;
945 
946 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
947 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
948 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
949 		while (1) {
950 			state = intel_pt_decode(ptq->decoder);
951 			if (state->err) {
952 				if (state->err == INTEL_PT_ERR_NODATA) {
953 					intel_pt_log("queue %u has no timestamp\n",
954 						     queue_nr);
955 					return 0;
956 				}
957 				continue;
958 			}
959 			if (state->timestamp)
960 				break;
961 		}
962 
963 		ptq->timestamp = state->timestamp;
964 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
965 			     queue_nr, ptq->timestamp);
966 		ptq->state = state;
967 		ptq->have_sample = true;
968 		intel_pt_sample_flags(ptq);
969 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
970 		if (ret)
971 			return ret;
972 		ptq->on_heap = true;
973 	}
974 
975 	return 0;
976 }
977 
978 static int intel_pt_setup_queues(struct intel_pt *pt)
979 {
980 	unsigned int i;
981 	int ret;
982 
983 	for (i = 0; i < pt->queues.nr_queues; i++) {
984 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
985 		if (ret)
986 			return ret;
987 	}
988 	return 0;
989 }
990 
991 static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
992 {
993 	struct branch_stack *bs_src = ptq->last_branch_rb;
994 	struct branch_stack *bs_dst = ptq->last_branch;
995 	size_t nr = 0;
996 
997 	bs_dst->nr = bs_src->nr;
998 
999 	if (!bs_src->nr)
1000 		return;
1001 
1002 	nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
1003 	memcpy(&bs_dst->entries[0],
1004 	       &bs_src->entries[ptq->last_branch_pos],
1005 	       sizeof(struct branch_entry) * nr);
1006 
1007 	if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1008 		memcpy(&bs_dst->entries[nr],
1009 		       &bs_src->entries[0],
1010 		       sizeof(struct branch_entry) * ptq->last_branch_pos);
1011 	}
1012 }
1013 
1014 static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1015 {
1016 	ptq->last_branch_pos = 0;
1017 	ptq->last_branch_rb->nr = 0;
1018 }
1019 
1020 static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1021 {
1022 	const struct intel_pt_state *state = ptq->state;
1023 	struct branch_stack *bs = ptq->last_branch_rb;
1024 	struct branch_entry *be;
1025 
1026 	if (!ptq->last_branch_pos)
1027 		ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1028 
1029 	ptq->last_branch_pos -= 1;
1030 
1031 	be              = &bs->entries[ptq->last_branch_pos];
1032 	be->from        = state->from_ip;
1033 	be->to          = state->to_ip;
1034 	be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1035 	be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1036 	/* No support for mispredict */
1037 	be->flags.mispred = ptq->pt->mispred_all;
1038 
1039 	if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1040 		bs->nr += 1;
1041 }
1042 
1043 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1044 {
1045 	return pt->synth_opts.initial_skip &&
1046 	       pt->num_events++ < pt->synth_opts.initial_skip;
1047 }
1048 
1049 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1050 				   struct intel_pt_queue *ptq,
1051 				   union perf_event *event,
1052 				   struct perf_sample *sample)
1053 {
1054 	event->sample.header.type = PERF_RECORD_SAMPLE;
1055 	event->sample.header.misc = PERF_RECORD_MISC_USER;
1056 	event->sample.header.size = sizeof(struct perf_event_header);
1057 
1058 	if (!pt->timeless_decoding)
1059 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1060 
1061 	sample->cpumode = PERF_RECORD_MISC_USER;
1062 	sample->ip = ptq->state->from_ip;
1063 	sample->pid = ptq->pid;
1064 	sample->tid = ptq->tid;
1065 	sample->addr = ptq->state->to_ip;
1066 	sample->period = 1;
1067 	sample->cpu = ptq->cpu;
1068 	sample->flags = ptq->flags;
1069 	sample->insn_len = ptq->insn_len;
1070 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1071 }
1072 
1073 static int intel_pt_inject_event(union perf_event *event,
1074 				 struct perf_sample *sample, u64 type)
1075 {
1076 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1077 	return perf_event__synthesize_sample(event, type, 0, sample);
1078 }
1079 
1080 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1081 				      union perf_event *event,
1082 				      struct perf_sample *sample, u64 type)
1083 {
1084 	if (!pt->synth_opts.inject)
1085 		return 0;
1086 
1087 	return intel_pt_inject_event(event, sample, type);
1088 }
1089 
1090 static int intel_pt_deliver_synth_b_event(struct intel_pt *pt,
1091 					  union perf_event *event,
1092 					  struct perf_sample *sample, u64 type)
1093 {
1094 	int ret;
1095 
1096 	ret = intel_pt_opt_inject(pt, event, sample, type);
1097 	if (ret)
1098 		return ret;
1099 
1100 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1101 	if (ret)
1102 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1103 
1104 	return ret;
1105 }
1106 
1107 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1108 {
1109 	struct intel_pt *pt = ptq->pt;
1110 	union perf_event *event = ptq->event_buf;
1111 	struct perf_sample sample = { .ip = 0, };
1112 	struct dummy_branch_stack {
1113 		u64			nr;
1114 		struct branch_entry	entries;
1115 	} dummy_bs;
1116 
1117 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1118 		return 0;
1119 
1120 	if (intel_pt_skip_event(pt))
1121 		return 0;
1122 
1123 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1124 
1125 	sample.id = ptq->pt->branches_id;
1126 	sample.stream_id = ptq->pt->branches_id;
1127 
1128 	/*
1129 	 * perf report cannot handle events without a branch stack when using
1130 	 * SORT_MODE__BRANCH so make a dummy one.
1131 	 */
1132 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1133 		dummy_bs = (struct dummy_branch_stack){
1134 			.nr = 1,
1135 			.entries = {
1136 				.from = sample.ip,
1137 				.to = sample.addr,
1138 			},
1139 		};
1140 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1141 	}
1142 
1143 	return intel_pt_deliver_synth_b_event(pt, event, &sample,
1144 					      pt->branches_sample_type);
1145 }
1146 
1147 static void intel_pt_prep_sample(struct intel_pt *pt,
1148 				 struct intel_pt_queue *ptq,
1149 				 union perf_event *event,
1150 				 struct perf_sample *sample)
1151 {
1152 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1153 
1154 	if (pt->synth_opts.callchain) {
1155 		thread_stack__sample(ptq->thread, ptq->chain,
1156 				     pt->synth_opts.callchain_sz, sample->ip);
1157 		sample->callchain = ptq->chain;
1158 	}
1159 
1160 	if (pt->synth_opts.last_branch) {
1161 		intel_pt_copy_last_branch_rb(ptq);
1162 		sample->branch_stack = ptq->last_branch;
1163 	}
1164 }
1165 
1166 static inline int intel_pt_deliver_synth_event(struct intel_pt *pt,
1167 					       struct intel_pt_queue *ptq,
1168 					       union perf_event *event,
1169 					       struct perf_sample *sample,
1170 					       u64 type)
1171 {
1172 	int ret;
1173 
1174 	ret = intel_pt_deliver_synth_b_event(pt, event, sample, type);
1175 
1176 	if (pt->synth_opts.last_branch)
1177 		intel_pt_reset_last_branch_rb(ptq);
1178 
1179 	return ret;
1180 }
1181 
1182 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1183 {
1184 	struct intel_pt *pt = ptq->pt;
1185 	union perf_event *event = ptq->event_buf;
1186 	struct perf_sample sample = { .ip = 0, };
1187 
1188 	if (intel_pt_skip_event(pt))
1189 		return 0;
1190 
1191 	intel_pt_prep_sample(pt, ptq, event, &sample);
1192 
1193 	sample.id = ptq->pt->instructions_id;
1194 	sample.stream_id = ptq->pt->instructions_id;
1195 	sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1196 
1197 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1198 
1199 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1200 					    pt->instructions_sample_type);
1201 }
1202 
1203 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1204 {
1205 	struct intel_pt *pt = ptq->pt;
1206 	union perf_event *event = ptq->event_buf;
1207 	struct perf_sample sample = { .ip = 0, };
1208 
1209 	if (intel_pt_skip_event(pt))
1210 		return 0;
1211 
1212 	intel_pt_prep_sample(pt, ptq, event, &sample);
1213 
1214 	sample.id = ptq->pt->transactions_id;
1215 	sample.stream_id = ptq->pt->transactions_id;
1216 
1217 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1218 					    pt->transactions_sample_type);
1219 }
1220 
1221 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1222 				   struct intel_pt_queue *ptq,
1223 				   union perf_event *event,
1224 				   struct perf_sample *sample)
1225 {
1226 	intel_pt_prep_sample(pt, ptq, event, sample);
1227 
1228 	/*
1229 	 * Zero IP is used to mean "trace start" but that is not the case for
1230 	 * power or PTWRITE events with no IP, so clear the flags.
1231 	 */
1232 	if (!sample->ip)
1233 		sample->flags = 0;
1234 }
1235 
1236 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1237 {
1238 	struct intel_pt *pt = ptq->pt;
1239 	union perf_event *event = ptq->event_buf;
1240 	struct perf_sample sample = { .ip = 0, };
1241 	struct perf_synth_intel_ptwrite raw;
1242 
1243 	if (intel_pt_skip_event(pt))
1244 		return 0;
1245 
1246 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1247 
1248 	sample.id = ptq->pt->ptwrites_id;
1249 	sample.stream_id = ptq->pt->ptwrites_id;
1250 
1251 	raw.flags = 0;
1252 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1253 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1254 
1255 	sample.raw_size = perf_synth__raw_size(raw);
1256 	sample.raw_data = perf_synth__raw_data(&raw);
1257 
1258 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1259 					    pt->ptwrites_sample_type);
1260 }
1261 
1262 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1263 {
1264 	struct intel_pt *pt = ptq->pt;
1265 	union perf_event *event = ptq->event_buf;
1266 	struct perf_sample sample = { .ip = 0, };
1267 	struct perf_synth_intel_cbr raw;
1268 	u32 flags;
1269 
1270 	if (intel_pt_skip_event(pt))
1271 		return 0;
1272 
1273 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1274 
1275 	sample.id = ptq->pt->cbr_id;
1276 	sample.stream_id = ptq->pt->cbr_id;
1277 
1278 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1279 	raw.flags = cpu_to_le32(flags);
1280 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1281 	raw.reserved3 = 0;
1282 
1283 	sample.raw_size = perf_synth__raw_size(raw);
1284 	sample.raw_data = perf_synth__raw_data(&raw);
1285 
1286 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1287 					    pt->pwr_events_sample_type);
1288 }
1289 
1290 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1291 {
1292 	struct intel_pt *pt = ptq->pt;
1293 	union perf_event *event = ptq->event_buf;
1294 	struct perf_sample sample = { .ip = 0, };
1295 	struct perf_synth_intel_mwait raw;
1296 
1297 	if (intel_pt_skip_event(pt))
1298 		return 0;
1299 
1300 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1301 
1302 	sample.id = ptq->pt->mwait_id;
1303 	sample.stream_id = ptq->pt->mwait_id;
1304 
1305 	raw.reserved = 0;
1306 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1307 
1308 	sample.raw_size = perf_synth__raw_size(raw);
1309 	sample.raw_data = perf_synth__raw_data(&raw);
1310 
1311 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1312 					    pt->pwr_events_sample_type);
1313 }
1314 
1315 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1316 {
1317 	struct intel_pt *pt = ptq->pt;
1318 	union perf_event *event = ptq->event_buf;
1319 	struct perf_sample sample = { .ip = 0, };
1320 	struct perf_synth_intel_pwre raw;
1321 
1322 	if (intel_pt_skip_event(pt))
1323 		return 0;
1324 
1325 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1326 
1327 	sample.id = ptq->pt->pwre_id;
1328 	sample.stream_id = ptq->pt->pwre_id;
1329 
1330 	raw.reserved = 0;
1331 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1332 
1333 	sample.raw_size = perf_synth__raw_size(raw);
1334 	sample.raw_data = perf_synth__raw_data(&raw);
1335 
1336 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1337 					    pt->pwr_events_sample_type);
1338 }
1339 
1340 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1341 {
1342 	struct intel_pt *pt = ptq->pt;
1343 	union perf_event *event = ptq->event_buf;
1344 	struct perf_sample sample = { .ip = 0, };
1345 	struct perf_synth_intel_exstop raw;
1346 
1347 	if (intel_pt_skip_event(pt))
1348 		return 0;
1349 
1350 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1351 
1352 	sample.id = ptq->pt->exstop_id;
1353 	sample.stream_id = ptq->pt->exstop_id;
1354 
1355 	raw.flags = 0;
1356 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1357 
1358 	sample.raw_size = perf_synth__raw_size(raw);
1359 	sample.raw_data = perf_synth__raw_data(&raw);
1360 
1361 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1362 					    pt->pwr_events_sample_type);
1363 }
1364 
1365 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1366 {
1367 	struct intel_pt *pt = ptq->pt;
1368 	union perf_event *event = ptq->event_buf;
1369 	struct perf_sample sample = { .ip = 0, };
1370 	struct perf_synth_intel_pwrx raw;
1371 
1372 	if (intel_pt_skip_event(pt))
1373 		return 0;
1374 
1375 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1376 
1377 	sample.id = ptq->pt->pwrx_id;
1378 	sample.stream_id = ptq->pt->pwrx_id;
1379 
1380 	raw.reserved = 0;
1381 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1382 
1383 	sample.raw_size = perf_synth__raw_size(raw);
1384 	sample.raw_data = perf_synth__raw_data(&raw);
1385 
1386 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1387 					    pt->pwr_events_sample_type);
1388 }
1389 
1390 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1391 				pid_t pid, pid_t tid, u64 ip)
1392 {
1393 	union perf_event event;
1394 	char msg[MAX_AUXTRACE_ERROR_MSG];
1395 	int err;
1396 
1397 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1398 
1399 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1400 			     code, cpu, pid, tid, ip, msg);
1401 
1402 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1403 	if (err)
1404 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1405 		       err);
1406 
1407 	return err;
1408 }
1409 
1410 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1411 {
1412 	struct auxtrace_queue *queue;
1413 	pid_t tid = ptq->next_tid;
1414 	int err;
1415 
1416 	if (tid == -1)
1417 		return 0;
1418 
1419 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1420 
1421 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1422 
1423 	queue = &pt->queues.queue_array[ptq->queue_nr];
1424 	intel_pt_set_pid_tid_cpu(pt, queue);
1425 
1426 	ptq->next_tid = -1;
1427 
1428 	return err;
1429 }
1430 
1431 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1432 {
1433 	struct intel_pt *pt = ptq->pt;
1434 
1435 	return ip == pt->switch_ip &&
1436 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1437 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1438 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1439 }
1440 
1441 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1442 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT | \
1443 			  INTEL_PT_CBR_CHG)
1444 
1445 static int intel_pt_sample(struct intel_pt_queue *ptq)
1446 {
1447 	const struct intel_pt_state *state = ptq->state;
1448 	struct intel_pt *pt = ptq->pt;
1449 	int err;
1450 
1451 	if (!ptq->have_sample)
1452 		return 0;
1453 
1454 	ptq->have_sample = false;
1455 
1456 	if (pt->sample_pwr_events && (state->type & INTEL_PT_PWR_EVT)) {
1457 		if (state->type & INTEL_PT_CBR_CHG) {
1458 			err = intel_pt_synth_cbr_sample(ptq);
1459 			if (err)
1460 				return err;
1461 		}
1462 		if (state->type & INTEL_PT_MWAIT_OP) {
1463 			err = intel_pt_synth_mwait_sample(ptq);
1464 			if (err)
1465 				return err;
1466 		}
1467 		if (state->type & INTEL_PT_PWR_ENTRY) {
1468 			err = intel_pt_synth_pwre_sample(ptq);
1469 			if (err)
1470 				return err;
1471 		}
1472 		if (state->type & INTEL_PT_EX_STOP) {
1473 			err = intel_pt_synth_exstop_sample(ptq);
1474 			if (err)
1475 				return err;
1476 		}
1477 		if (state->type & INTEL_PT_PWR_EXIT) {
1478 			err = intel_pt_synth_pwrx_sample(ptq);
1479 			if (err)
1480 				return err;
1481 		}
1482 	}
1483 
1484 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1485 		err = intel_pt_synth_instruction_sample(ptq);
1486 		if (err)
1487 			return err;
1488 	}
1489 
1490 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
1491 		err = intel_pt_synth_transaction_sample(ptq);
1492 		if (err)
1493 			return err;
1494 	}
1495 
1496 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1497 		err = intel_pt_synth_ptwrite_sample(ptq);
1498 		if (err)
1499 			return err;
1500 	}
1501 
1502 	if (!(state->type & INTEL_PT_BRANCH))
1503 		return 0;
1504 
1505 	if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1506 		thread_stack__event(ptq->thread, ptq->flags, state->from_ip,
1507 				    state->to_ip, ptq->insn_len,
1508 				    state->trace_nr);
1509 	else
1510 		thread_stack__set_trace_nr(ptq->thread, state->trace_nr);
1511 
1512 	if (pt->sample_branches) {
1513 		err = intel_pt_synth_branch_sample(ptq);
1514 		if (err)
1515 			return err;
1516 	}
1517 
1518 	if (pt->synth_opts.last_branch)
1519 		intel_pt_update_last_branch_rb(ptq);
1520 
1521 	if (!ptq->sync_switch)
1522 		return 0;
1523 
1524 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1525 		switch (ptq->switch_state) {
1526 		case INTEL_PT_SS_UNKNOWN:
1527 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1528 			err = intel_pt_next_tid(pt, ptq);
1529 			if (err)
1530 				return err;
1531 			ptq->switch_state = INTEL_PT_SS_TRACING;
1532 			break;
1533 		default:
1534 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
1535 			return 1;
1536 		}
1537 	} else if (!state->to_ip) {
1538 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
1539 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
1540 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
1541 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1542 		   state->to_ip == pt->ptss_ip &&
1543 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
1544 		ptq->switch_state = INTEL_PT_SS_TRACING;
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
1551 {
1552 	struct machine *machine = pt->machine;
1553 	struct map *map;
1554 	struct symbol *sym, *start;
1555 	u64 ip, switch_ip = 0;
1556 	const char *ptss;
1557 
1558 	if (ptss_ip)
1559 		*ptss_ip = 0;
1560 
1561 	map = machine__kernel_map(machine);
1562 	if (!map)
1563 		return 0;
1564 
1565 	if (map__load(map))
1566 		return 0;
1567 
1568 	start = dso__first_symbol(map->dso, MAP__FUNCTION);
1569 
1570 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
1571 		if (sym->binding == STB_GLOBAL &&
1572 		    !strcmp(sym->name, "__switch_to")) {
1573 			ip = map->unmap_ip(map, sym->start);
1574 			if (ip >= map->start && ip < map->end) {
1575 				switch_ip = ip;
1576 				break;
1577 			}
1578 		}
1579 	}
1580 
1581 	if (!switch_ip || !ptss_ip)
1582 		return 0;
1583 
1584 	if (pt->have_sched_switch == 1)
1585 		ptss = "perf_trace_sched_switch";
1586 	else
1587 		ptss = "__perf_event_task_sched_out";
1588 
1589 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
1590 		if (!strcmp(sym->name, ptss)) {
1591 			ip = map->unmap_ip(map, sym->start);
1592 			if (ip >= map->start && ip < map->end) {
1593 				*ptss_ip = ip;
1594 				break;
1595 			}
1596 		}
1597 	}
1598 
1599 	return switch_ip;
1600 }
1601 
1602 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
1603 {
1604 	unsigned int i;
1605 
1606 	pt->sync_switch = true;
1607 
1608 	for (i = 0; i < pt->queues.nr_queues; i++) {
1609 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1610 		struct intel_pt_queue *ptq = queue->priv;
1611 
1612 		if (ptq)
1613 			ptq->sync_switch = true;
1614 	}
1615 }
1616 
1617 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
1618 {
1619 	const struct intel_pt_state *state = ptq->state;
1620 	struct intel_pt *pt = ptq->pt;
1621 	int err;
1622 
1623 	if (!pt->kernel_start) {
1624 		pt->kernel_start = machine__kernel_start(pt->machine);
1625 		if (pt->per_cpu_mmaps &&
1626 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
1627 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
1628 		    !pt->sampling_mode) {
1629 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
1630 			if (pt->switch_ip) {
1631 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
1632 					     pt->switch_ip, pt->ptss_ip);
1633 				intel_pt_enable_sync_switch(pt);
1634 			}
1635 		}
1636 	}
1637 
1638 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1639 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1640 	while (1) {
1641 		err = intel_pt_sample(ptq);
1642 		if (err)
1643 			return err;
1644 
1645 		state = intel_pt_decode(ptq->decoder);
1646 		if (state->err) {
1647 			if (state->err == INTEL_PT_ERR_NODATA)
1648 				return 1;
1649 			if (ptq->sync_switch &&
1650 			    state->from_ip >= pt->kernel_start) {
1651 				ptq->sync_switch = false;
1652 				intel_pt_next_tid(pt, ptq);
1653 			}
1654 			if (pt->synth_opts.errors) {
1655 				err = intel_pt_synth_error(pt, state->err,
1656 							   ptq->cpu, ptq->pid,
1657 							   ptq->tid,
1658 							   state->from_ip);
1659 				if (err)
1660 					return err;
1661 			}
1662 			continue;
1663 		}
1664 
1665 		ptq->state = state;
1666 		ptq->have_sample = true;
1667 		intel_pt_sample_flags(ptq);
1668 
1669 		/* Use estimated TSC upon return to user space */
1670 		if (pt->est_tsc &&
1671 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
1672 		    state->to_ip && state->to_ip < pt->kernel_start) {
1673 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1674 				     state->timestamp, state->est_timestamp);
1675 			ptq->timestamp = state->est_timestamp;
1676 		/* Use estimated TSC in unknown switch state */
1677 		} else if (ptq->sync_switch &&
1678 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1679 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
1680 			   ptq->next_tid == -1) {
1681 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1682 				     state->timestamp, state->est_timestamp);
1683 			ptq->timestamp = state->est_timestamp;
1684 		} else if (state->timestamp > ptq->timestamp) {
1685 			ptq->timestamp = state->timestamp;
1686 		}
1687 
1688 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
1689 			*timestamp = ptq->timestamp;
1690 			return 0;
1691 		}
1692 	}
1693 	return 0;
1694 }
1695 
1696 static inline int intel_pt_update_queues(struct intel_pt *pt)
1697 {
1698 	if (pt->queues.new_data) {
1699 		pt->queues.new_data = false;
1700 		return intel_pt_setup_queues(pt);
1701 	}
1702 	return 0;
1703 }
1704 
1705 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
1706 {
1707 	unsigned int queue_nr;
1708 	u64 ts;
1709 	int ret;
1710 
1711 	while (1) {
1712 		struct auxtrace_queue *queue;
1713 		struct intel_pt_queue *ptq;
1714 
1715 		if (!pt->heap.heap_cnt)
1716 			return 0;
1717 
1718 		if (pt->heap.heap_array[0].ordinal >= timestamp)
1719 			return 0;
1720 
1721 		queue_nr = pt->heap.heap_array[0].queue_nr;
1722 		queue = &pt->queues.queue_array[queue_nr];
1723 		ptq = queue->priv;
1724 
1725 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
1726 			     queue_nr, pt->heap.heap_array[0].ordinal,
1727 			     timestamp);
1728 
1729 		auxtrace_heap__pop(&pt->heap);
1730 
1731 		if (pt->heap.heap_cnt) {
1732 			ts = pt->heap.heap_array[0].ordinal + 1;
1733 			if (ts > timestamp)
1734 				ts = timestamp;
1735 		} else {
1736 			ts = timestamp;
1737 		}
1738 
1739 		intel_pt_set_pid_tid_cpu(pt, queue);
1740 
1741 		ret = intel_pt_run_decoder(ptq, &ts);
1742 
1743 		if (ret < 0) {
1744 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
1745 			return ret;
1746 		}
1747 
1748 		if (!ret) {
1749 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
1750 			if (ret < 0)
1751 				return ret;
1752 		} else {
1753 			ptq->on_heap = false;
1754 		}
1755 	}
1756 
1757 	return 0;
1758 }
1759 
1760 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
1761 					    u64 time_)
1762 {
1763 	struct auxtrace_queues *queues = &pt->queues;
1764 	unsigned int i;
1765 	u64 ts = 0;
1766 
1767 	for (i = 0; i < queues->nr_queues; i++) {
1768 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1769 		struct intel_pt_queue *ptq = queue->priv;
1770 
1771 		if (ptq && (tid == -1 || ptq->tid == tid)) {
1772 			ptq->time = time_;
1773 			intel_pt_set_pid_tid_cpu(pt, queue);
1774 			intel_pt_run_decoder(ptq, &ts);
1775 		}
1776 	}
1777 	return 0;
1778 }
1779 
1780 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
1781 {
1782 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
1783 				    sample->pid, sample->tid, 0);
1784 }
1785 
1786 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
1787 {
1788 	unsigned i, j;
1789 
1790 	if (cpu < 0 || !pt->queues.nr_queues)
1791 		return NULL;
1792 
1793 	if ((unsigned)cpu >= pt->queues.nr_queues)
1794 		i = pt->queues.nr_queues - 1;
1795 	else
1796 		i = cpu;
1797 
1798 	if (pt->queues.queue_array[i].cpu == cpu)
1799 		return pt->queues.queue_array[i].priv;
1800 
1801 	for (j = 0; i > 0; j++) {
1802 		if (pt->queues.queue_array[--i].cpu == cpu)
1803 			return pt->queues.queue_array[i].priv;
1804 	}
1805 
1806 	for (; j < pt->queues.nr_queues; j++) {
1807 		if (pt->queues.queue_array[j].cpu == cpu)
1808 			return pt->queues.queue_array[j].priv;
1809 	}
1810 
1811 	return NULL;
1812 }
1813 
1814 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
1815 				u64 timestamp)
1816 {
1817 	struct intel_pt_queue *ptq;
1818 	int err;
1819 
1820 	if (!pt->sync_switch)
1821 		return 1;
1822 
1823 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
1824 	if (!ptq || !ptq->sync_switch)
1825 		return 1;
1826 
1827 	switch (ptq->switch_state) {
1828 	case INTEL_PT_SS_NOT_TRACING:
1829 		ptq->next_tid = -1;
1830 		break;
1831 	case INTEL_PT_SS_UNKNOWN:
1832 	case INTEL_PT_SS_TRACING:
1833 		ptq->next_tid = tid;
1834 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
1835 		return 0;
1836 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
1837 		if (!ptq->on_heap) {
1838 			ptq->timestamp = perf_time_to_tsc(timestamp,
1839 							  &pt->tc);
1840 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
1841 						 ptq->timestamp);
1842 			if (err)
1843 				return err;
1844 			ptq->on_heap = true;
1845 		}
1846 		ptq->switch_state = INTEL_PT_SS_TRACING;
1847 		break;
1848 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1849 		ptq->next_tid = tid;
1850 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
1851 		break;
1852 	default:
1853 		break;
1854 	}
1855 
1856 	return 1;
1857 }
1858 
1859 static int intel_pt_process_switch(struct intel_pt *pt,
1860 				   struct perf_sample *sample)
1861 {
1862 	struct perf_evsel *evsel;
1863 	pid_t tid;
1864 	int cpu, ret;
1865 
1866 	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
1867 	if (evsel != pt->switch_evsel)
1868 		return 0;
1869 
1870 	tid = perf_evsel__intval(evsel, sample, "next_pid");
1871 	cpu = sample->cpu;
1872 
1873 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1874 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
1875 		     &pt->tc));
1876 
1877 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1878 	if (ret <= 0)
1879 		return ret;
1880 
1881 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
1882 }
1883 
1884 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
1885 				   struct perf_sample *sample)
1886 {
1887 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
1888 	pid_t pid, tid;
1889 	int cpu, ret;
1890 
1891 	cpu = sample->cpu;
1892 
1893 	if (pt->have_sched_switch == 3) {
1894 		if (!out)
1895 			return 0;
1896 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
1897 			pr_err("Expecting CPU-wide context switch event\n");
1898 			return -EINVAL;
1899 		}
1900 		pid = event->context_switch.next_prev_pid;
1901 		tid = event->context_switch.next_prev_tid;
1902 	} else {
1903 		if (out)
1904 			return 0;
1905 		pid = sample->pid;
1906 		tid = sample->tid;
1907 	}
1908 
1909 	if (tid == -1) {
1910 		pr_err("context_switch event has no tid\n");
1911 		return -EINVAL;
1912 	}
1913 
1914 	intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1915 		     cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
1916 		     &pt->tc));
1917 
1918 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1919 	if (ret <= 0)
1920 		return ret;
1921 
1922 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
1923 }
1924 
1925 static int intel_pt_process_itrace_start(struct intel_pt *pt,
1926 					 union perf_event *event,
1927 					 struct perf_sample *sample)
1928 {
1929 	if (!pt->per_cpu_mmaps)
1930 		return 0;
1931 
1932 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1933 		     sample->cpu, event->itrace_start.pid,
1934 		     event->itrace_start.tid, sample->time,
1935 		     perf_time_to_tsc(sample->time, &pt->tc));
1936 
1937 	return machine__set_current_tid(pt->machine, sample->cpu,
1938 					event->itrace_start.pid,
1939 					event->itrace_start.tid);
1940 }
1941 
1942 static int intel_pt_process_event(struct perf_session *session,
1943 				  union perf_event *event,
1944 				  struct perf_sample *sample,
1945 				  struct perf_tool *tool)
1946 {
1947 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1948 					   auxtrace);
1949 	u64 timestamp;
1950 	int err = 0;
1951 
1952 	if (dump_trace)
1953 		return 0;
1954 
1955 	if (!tool->ordered_events) {
1956 		pr_err("Intel Processor Trace requires ordered events\n");
1957 		return -EINVAL;
1958 	}
1959 
1960 	if (sample->time && sample->time != (u64)-1)
1961 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
1962 	else
1963 		timestamp = 0;
1964 
1965 	if (timestamp || pt->timeless_decoding) {
1966 		err = intel_pt_update_queues(pt);
1967 		if (err)
1968 			return err;
1969 	}
1970 
1971 	if (pt->timeless_decoding) {
1972 		if (event->header.type == PERF_RECORD_EXIT) {
1973 			err = intel_pt_process_timeless_queues(pt,
1974 							       event->fork.tid,
1975 							       sample->time);
1976 		}
1977 	} else if (timestamp) {
1978 		err = intel_pt_process_queues(pt, timestamp);
1979 	}
1980 	if (err)
1981 		return err;
1982 
1983 	if (event->header.type == PERF_RECORD_AUX &&
1984 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
1985 	    pt->synth_opts.errors) {
1986 		err = intel_pt_lost(pt, sample);
1987 		if (err)
1988 			return err;
1989 	}
1990 
1991 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
1992 		err = intel_pt_process_switch(pt, sample);
1993 	else if (event->header.type == PERF_RECORD_ITRACE_START)
1994 		err = intel_pt_process_itrace_start(pt, event, sample);
1995 	else if (event->header.type == PERF_RECORD_SWITCH ||
1996 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
1997 		err = intel_pt_context_switch(pt, event, sample);
1998 
1999 	intel_pt_log("event %s (%u): cpu %d time %"PRIu64" tsc %#"PRIx64"\n",
2000 		     perf_event__name(event->header.type), event->header.type,
2001 		     sample->cpu, sample->time, timestamp);
2002 
2003 	return err;
2004 }
2005 
2006 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2007 {
2008 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2009 					   auxtrace);
2010 	int ret;
2011 
2012 	if (dump_trace)
2013 		return 0;
2014 
2015 	if (!tool->ordered_events)
2016 		return -EINVAL;
2017 
2018 	ret = intel_pt_update_queues(pt);
2019 	if (ret < 0)
2020 		return ret;
2021 
2022 	if (pt->timeless_decoding)
2023 		return intel_pt_process_timeless_queues(pt, -1,
2024 							MAX_TIMESTAMP - 1);
2025 
2026 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2027 }
2028 
2029 static void intel_pt_free_events(struct perf_session *session)
2030 {
2031 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2032 					   auxtrace);
2033 	struct auxtrace_queues *queues = &pt->queues;
2034 	unsigned int i;
2035 
2036 	for (i = 0; i < queues->nr_queues; i++) {
2037 		intel_pt_free_queue(queues->queue_array[i].priv);
2038 		queues->queue_array[i].priv = NULL;
2039 	}
2040 	intel_pt_log_disable();
2041 	auxtrace_queues__free(queues);
2042 }
2043 
2044 static void intel_pt_free(struct perf_session *session)
2045 {
2046 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2047 					   auxtrace);
2048 
2049 	auxtrace_heap__free(&pt->heap);
2050 	intel_pt_free_events(session);
2051 	session->auxtrace = NULL;
2052 	thread__put(pt->unknown_thread);
2053 	addr_filters__exit(&pt->filts);
2054 	zfree(&pt->filter);
2055 	free(pt);
2056 }
2057 
2058 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2059 					   union perf_event *event,
2060 					   struct perf_tool *tool __maybe_unused)
2061 {
2062 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2063 					   auxtrace);
2064 
2065 	if (!pt->data_queued) {
2066 		struct auxtrace_buffer *buffer;
2067 		off_t data_offset;
2068 		int fd = perf_data__fd(session->data);
2069 		int err;
2070 
2071 		if (perf_data__is_pipe(session->data)) {
2072 			data_offset = 0;
2073 		} else {
2074 			data_offset = lseek(fd, 0, SEEK_CUR);
2075 			if (data_offset == -1)
2076 				return -errno;
2077 		}
2078 
2079 		err = auxtrace_queues__add_event(&pt->queues, session, event,
2080 						 data_offset, &buffer);
2081 		if (err)
2082 			return err;
2083 
2084 		/* Dump here now we have copied a piped trace out of the pipe */
2085 		if (dump_trace) {
2086 			if (auxtrace_buffer__get_data(buffer, fd)) {
2087 				intel_pt_dump_event(pt, buffer->data,
2088 						    buffer->size);
2089 				auxtrace_buffer__put_data(buffer);
2090 			}
2091 		}
2092 	}
2093 
2094 	return 0;
2095 }
2096 
2097 struct intel_pt_synth {
2098 	struct perf_tool dummy_tool;
2099 	struct perf_session *session;
2100 };
2101 
2102 static int intel_pt_event_synth(struct perf_tool *tool,
2103 				union perf_event *event,
2104 				struct perf_sample *sample __maybe_unused,
2105 				struct machine *machine __maybe_unused)
2106 {
2107 	struct intel_pt_synth *intel_pt_synth =
2108 			container_of(tool, struct intel_pt_synth, dummy_tool);
2109 
2110 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2111 						 NULL);
2112 }
2113 
2114 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2115 				struct perf_event_attr *attr, u64 id)
2116 {
2117 	struct intel_pt_synth intel_pt_synth;
2118 	int err;
2119 
2120 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2121 		 name, id, (u64)attr->sample_type);
2122 
2123 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2124 	intel_pt_synth.session = session;
2125 
2126 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2127 					  &id, intel_pt_event_synth);
2128 	if (err)
2129 		pr_err("%s: failed to synthesize '%s' event type\n",
2130 		       __func__, name);
2131 
2132 	return err;
2133 }
2134 
2135 static void intel_pt_set_event_name(struct perf_evlist *evlist, u64 id,
2136 				    const char *name)
2137 {
2138 	struct perf_evsel *evsel;
2139 
2140 	evlist__for_each_entry(evlist, evsel) {
2141 		if (evsel->id && evsel->id[0] == id) {
2142 			if (evsel->name)
2143 				zfree(&evsel->name);
2144 			evsel->name = strdup(name);
2145 			break;
2146 		}
2147 	}
2148 }
2149 
2150 static struct perf_evsel *intel_pt_evsel(struct intel_pt *pt,
2151 					 struct perf_evlist *evlist)
2152 {
2153 	struct perf_evsel *evsel;
2154 
2155 	evlist__for_each_entry(evlist, evsel) {
2156 		if (evsel->attr.type == pt->pmu_type && evsel->ids)
2157 			return evsel;
2158 	}
2159 
2160 	return NULL;
2161 }
2162 
2163 static int intel_pt_synth_events(struct intel_pt *pt,
2164 				 struct perf_session *session)
2165 {
2166 	struct perf_evlist *evlist = session->evlist;
2167 	struct perf_evsel *evsel = intel_pt_evsel(pt, evlist);
2168 	struct perf_event_attr attr;
2169 	u64 id;
2170 	int err;
2171 
2172 	if (!evsel) {
2173 		pr_debug("There are no selected events with Intel Processor Trace data\n");
2174 		return 0;
2175 	}
2176 
2177 	memset(&attr, 0, sizeof(struct perf_event_attr));
2178 	attr.size = sizeof(struct perf_event_attr);
2179 	attr.type = PERF_TYPE_HARDWARE;
2180 	attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
2181 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2182 			    PERF_SAMPLE_PERIOD;
2183 	if (pt->timeless_decoding)
2184 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2185 	else
2186 		attr.sample_type |= PERF_SAMPLE_TIME;
2187 	if (!pt->per_cpu_mmaps)
2188 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2189 	attr.exclude_user = evsel->attr.exclude_user;
2190 	attr.exclude_kernel = evsel->attr.exclude_kernel;
2191 	attr.exclude_hv = evsel->attr.exclude_hv;
2192 	attr.exclude_host = evsel->attr.exclude_host;
2193 	attr.exclude_guest = evsel->attr.exclude_guest;
2194 	attr.sample_id_all = evsel->attr.sample_id_all;
2195 	attr.read_format = evsel->attr.read_format;
2196 
2197 	id = evsel->id[0] + 1000000000;
2198 	if (!id)
2199 		id = 1;
2200 
2201 	if (pt->synth_opts.branches) {
2202 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2203 		attr.sample_period = 1;
2204 		attr.sample_type |= PERF_SAMPLE_ADDR;
2205 		err = intel_pt_synth_event(session, "branches", &attr, id);
2206 		if (err)
2207 			return err;
2208 		pt->sample_branches = true;
2209 		pt->branches_sample_type = attr.sample_type;
2210 		pt->branches_id = id;
2211 		id += 1;
2212 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2213 	}
2214 
2215 	if (pt->synth_opts.callchain)
2216 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2217 	if (pt->synth_opts.last_branch)
2218 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2219 
2220 	if (pt->synth_opts.instructions) {
2221 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2222 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2223 			attr.sample_period =
2224 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2225 		else
2226 			attr.sample_period = pt->synth_opts.period;
2227 		err = intel_pt_synth_event(session, "instructions", &attr, id);
2228 		if (err)
2229 			return err;
2230 		pt->sample_instructions = true;
2231 		pt->instructions_sample_type = attr.sample_type;
2232 		pt->instructions_id = id;
2233 		id += 1;
2234 	}
2235 
2236 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2237 	attr.sample_period = 1;
2238 
2239 	if (pt->synth_opts.transactions) {
2240 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2241 		err = intel_pt_synth_event(session, "transactions", &attr, id);
2242 		if (err)
2243 			return err;
2244 		pt->sample_transactions = true;
2245 		pt->transactions_sample_type = attr.sample_type;
2246 		pt->transactions_id = id;
2247 		intel_pt_set_event_name(evlist, id, "transactions");
2248 		id += 1;
2249 	}
2250 
2251 	attr.type = PERF_TYPE_SYNTH;
2252 	attr.sample_type |= PERF_SAMPLE_RAW;
2253 
2254 	if (pt->synth_opts.ptwrites) {
2255 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
2256 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2257 		if (err)
2258 			return err;
2259 		pt->sample_ptwrites = true;
2260 		pt->ptwrites_sample_type = attr.sample_type;
2261 		pt->ptwrites_id = id;
2262 		intel_pt_set_event_name(evlist, id, "ptwrite");
2263 		id += 1;
2264 	}
2265 
2266 	if (pt->synth_opts.pwr_events) {
2267 		pt->sample_pwr_events = true;
2268 		pt->pwr_events_sample_type = attr.sample_type;
2269 
2270 		attr.config = PERF_SYNTH_INTEL_CBR;
2271 		err = intel_pt_synth_event(session, "cbr", &attr, id);
2272 		if (err)
2273 			return err;
2274 		pt->cbr_id = id;
2275 		intel_pt_set_event_name(evlist, id, "cbr");
2276 		id += 1;
2277 	}
2278 
2279 	if (pt->synth_opts.pwr_events && (evsel->attr.config & 0x10)) {
2280 		attr.config = PERF_SYNTH_INTEL_MWAIT;
2281 		err = intel_pt_synth_event(session, "mwait", &attr, id);
2282 		if (err)
2283 			return err;
2284 		pt->mwait_id = id;
2285 		intel_pt_set_event_name(evlist, id, "mwait");
2286 		id += 1;
2287 
2288 		attr.config = PERF_SYNTH_INTEL_PWRE;
2289 		err = intel_pt_synth_event(session, "pwre", &attr, id);
2290 		if (err)
2291 			return err;
2292 		pt->pwre_id = id;
2293 		intel_pt_set_event_name(evlist, id, "pwre");
2294 		id += 1;
2295 
2296 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
2297 		err = intel_pt_synth_event(session, "exstop", &attr, id);
2298 		if (err)
2299 			return err;
2300 		pt->exstop_id = id;
2301 		intel_pt_set_event_name(evlist, id, "exstop");
2302 		id += 1;
2303 
2304 		attr.config = PERF_SYNTH_INTEL_PWRX;
2305 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
2306 		if (err)
2307 			return err;
2308 		pt->pwrx_id = id;
2309 		intel_pt_set_event_name(evlist, id, "pwrx");
2310 		id += 1;
2311 	}
2312 
2313 	return 0;
2314 }
2315 
2316 static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist)
2317 {
2318 	struct perf_evsel *evsel;
2319 
2320 	evlist__for_each_entry_reverse(evlist, evsel) {
2321 		const char *name = perf_evsel__name(evsel);
2322 
2323 		if (!strcmp(name, "sched:sched_switch"))
2324 			return evsel;
2325 	}
2326 
2327 	return NULL;
2328 }
2329 
2330 static bool intel_pt_find_switch(struct perf_evlist *evlist)
2331 {
2332 	struct perf_evsel *evsel;
2333 
2334 	evlist__for_each_entry(evlist, evsel) {
2335 		if (evsel->attr.context_switch)
2336 			return true;
2337 	}
2338 
2339 	return false;
2340 }
2341 
2342 static int intel_pt_perf_config(const char *var, const char *value, void *data)
2343 {
2344 	struct intel_pt *pt = data;
2345 
2346 	if (!strcmp(var, "intel-pt.mispred-all"))
2347 		pt->mispred_all = perf_config_bool(var, value);
2348 
2349 	return 0;
2350 }
2351 
2352 static const char * const intel_pt_info_fmts[] = {
2353 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
2354 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
2355 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
2356 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
2357 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
2358 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
2359 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
2360 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
2361 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
2362 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
2363 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
2364 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
2365 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
2366 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
2367 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
2368 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
2369 };
2370 
2371 static void intel_pt_print_info(u64 *arr, int start, int finish)
2372 {
2373 	int i;
2374 
2375 	if (!dump_trace)
2376 		return;
2377 
2378 	for (i = start; i <= finish; i++)
2379 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
2380 }
2381 
2382 static void intel_pt_print_info_str(const char *name, const char *str)
2383 {
2384 	if (!dump_trace)
2385 		return;
2386 
2387 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
2388 }
2389 
2390 static bool intel_pt_has(struct auxtrace_info_event *auxtrace_info, int pos)
2391 {
2392 	return auxtrace_info->header.size >=
2393 		sizeof(struct auxtrace_info_event) + (sizeof(u64) * (pos + 1));
2394 }
2395 
2396 int intel_pt_process_auxtrace_info(union perf_event *event,
2397 				   struct perf_session *session)
2398 {
2399 	struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
2400 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
2401 	struct intel_pt *pt;
2402 	void *info_end;
2403 	u64 *info;
2404 	int err;
2405 
2406 	if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) +
2407 					min_sz)
2408 		return -EINVAL;
2409 
2410 	pt = zalloc(sizeof(struct intel_pt));
2411 	if (!pt)
2412 		return -ENOMEM;
2413 
2414 	addr_filters__init(&pt->filts);
2415 
2416 	err = perf_config(intel_pt_perf_config, pt);
2417 	if (err)
2418 		goto err_free;
2419 
2420 	err = auxtrace_queues__init(&pt->queues);
2421 	if (err)
2422 		goto err_free;
2423 
2424 	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
2425 
2426 	pt->session = session;
2427 	pt->machine = &session->machines.host; /* No kvm support */
2428 	pt->auxtrace_type = auxtrace_info->type;
2429 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
2430 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
2431 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
2432 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
2433 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
2434 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
2435 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
2436 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
2437 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
2438 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
2439 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
2440 			    INTEL_PT_PER_CPU_MMAPS);
2441 
2442 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
2443 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
2444 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
2445 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
2446 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
2447 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
2448 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
2449 				    INTEL_PT_CYC_BIT);
2450 	}
2451 
2452 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
2453 		pt->max_non_turbo_ratio =
2454 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
2455 		intel_pt_print_info(&auxtrace_info->priv[0],
2456 				    INTEL_PT_MAX_NONTURBO_RATIO,
2457 				    INTEL_PT_MAX_NONTURBO_RATIO);
2458 	}
2459 
2460 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
2461 	info_end = (void *)info + auxtrace_info->header.size;
2462 
2463 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
2464 		size_t len;
2465 
2466 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
2467 		intel_pt_print_info(&auxtrace_info->priv[0],
2468 				    INTEL_PT_FILTER_STR_LEN,
2469 				    INTEL_PT_FILTER_STR_LEN);
2470 		if (len) {
2471 			const char *filter = (const char *)info;
2472 
2473 			len = roundup(len + 1, 8);
2474 			info += len >> 3;
2475 			if ((void *)info > info_end) {
2476 				pr_err("%s: bad filter string length\n", __func__);
2477 				err = -EINVAL;
2478 				goto err_free_queues;
2479 			}
2480 			pt->filter = memdup(filter, len);
2481 			if (!pt->filter) {
2482 				err = -ENOMEM;
2483 				goto err_free_queues;
2484 			}
2485 			if (session->header.needs_swap)
2486 				mem_bswap_64(pt->filter, len);
2487 			if (pt->filter[len - 1]) {
2488 				pr_err("%s: filter string not null terminated\n", __func__);
2489 				err = -EINVAL;
2490 				goto err_free_queues;
2491 			}
2492 			err = addr_filters__parse_bare_filter(&pt->filts,
2493 							      filter);
2494 			if (err)
2495 				goto err_free_queues;
2496 		}
2497 		intel_pt_print_info_str("Filter string", pt->filter);
2498 	}
2499 
2500 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
2501 	pt->have_tsc = intel_pt_have_tsc(pt);
2502 	pt->sampling_mode = false;
2503 	pt->est_tsc = !pt->timeless_decoding;
2504 
2505 	pt->unknown_thread = thread__new(999999999, 999999999);
2506 	if (!pt->unknown_thread) {
2507 		err = -ENOMEM;
2508 		goto err_free_queues;
2509 	}
2510 
2511 	/*
2512 	 * Since this thread will not be kept in any rbtree not in a
2513 	 * list, initialize its list node so that at thread__put() the
2514 	 * current thread lifetime assuption is kept and we don't segfault
2515 	 * at list_del_init().
2516 	 */
2517 	INIT_LIST_HEAD(&pt->unknown_thread->node);
2518 
2519 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
2520 	if (err)
2521 		goto err_delete_thread;
2522 	if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
2523 		err = -ENOMEM;
2524 		goto err_delete_thread;
2525 	}
2526 
2527 	pt->auxtrace.process_event = intel_pt_process_event;
2528 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
2529 	pt->auxtrace.flush_events = intel_pt_flush;
2530 	pt->auxtrace.free_events = intel_pt_free_events;
2531 	pt->auxtrace.free = intel_pt_free;
2532 	session->auxtrace = &pt->auxtrace;
2533 
2534 	if (dump_trace)
2535 		return 0;
2536 
2537 	if (pt->have_sched_switch == 1) {
2538 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
2539 		if (!pt->switch_evsel) {
2540 			pr_err("%s: missing sched_switch event\n", __func__);
2541 			err = -EINVAL;
2542 			goto err_delete_thread;
2543 		}
2544 	} else if (pt->have_sched_switch == 2 &&
2545 		   !intel_pt_find_switch(session->evlist)) {
2546 		pr_err("%s: missing context_switch attribute flag\n", __func__);
2547 		err = -EINVAL;
2548 		goto err_delete_thread;
2549 	}
2550 
2551 	if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
2552 		pt->synth_opts = *session->itrace_synth_opts;
2553 	} else {
2554 		itrace_synth_opts__set_default(&pt->synth_opts);
2555 		if (use_browser != -1) {
2556 			pt->synth_opts.branches = false;
2557 			pt->synth_opts.callchain = true;
2558 		}
2559 		if (session->itrace_synth_opts)
2560 			pt->synth_opts.thread_stack =
2561 				session->itrace_synth_opts->thread_stack;
2562 	}
2563 
2564 	if (pt->synth_opts.log)
2565 		intel_pt_log_enable();
2566 
2567 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
2568 	if (pt->tc.time_mult) {
2569 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
2570 
2571 		if (!pt->max_non_turbo_ratio)
2572 			pt->max_non_turbo_ratio =
2573 					(tsc_freq + 50000000) / 100000000;
2574 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
2575 		intel_pt_log("Maximum non-turbo ratio %u\n",
2576 			     pt->max_non_turbo_ratio);
2577 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
2578 	}
2579 
2580 	if (pt->synth_opts.calls)
2581 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
2582 				       PERF_IP_FLAG_TRACE_END;
2583 	if (pt->synth_opts.returns)
2584 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
2585 				       PERF_IP_FLAG_TRACE_BEGIN;
2586 
2587 	if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
2588 		symbol_conf.use_callchain = true;
2589 		if (callchain_register_param(&callchain_param) < 0) {
2590 			symbol_conf.use_callchain = false;
2591 			pt->synth_opts.callchain = false;
2592 		}
2593 	}
2594 
2595 	err = intel_pt_synth_events(pt, session);
2596 	if (err)
2597 		goto err_delete_thread;
2598 
2599 	err = auxtrace_queues__process_index(&pt->queues, session);
2600 	if (err)
2601 		goto err_delete_thread;
2602 
2603 	if (pt->queues.populated)
2604 		pt->data_queued = true;
2605 
2606 	if (pt->timeless_decoding)
2607 		pr_debug2("Intel PT decoding without timestamps\n");
2608 
2609 	return 0;
2610 
2611 err_delete_thread:
2612 	thread__zput(pt->unknown_thread);
2613 err_free_queues:
2614 	intel_pt_log_disable();
2615 	auxtrace_queues__free(&pt->queues);
2616 	session->auxtrace = NULL;
2617 err_free:
2618 	addr_filters__exit(&pt->filts);
2619 	zfree(&pt->filter);
2620 	free(pt);
2621 	return err;
2622 }
2623