xref: /linux/tools/perf/util/intel-pt.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  * intel_pt.c: Intel Processor Trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 
16 #include <stdio.h>
17 #include <stdbool.h>
18 #include <errno.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 
22 #include "../perf.h"
23 #include "session.h"
24 #include "machine.h"
25 #include "tool.h"
26 #include "event.h"
27 #include "evlist.h"
28 #include "evsel.h"
29 #include "map.h"
30 #include "color.h"
31 #include "util.h"
32 #include "thread.h"
33 #include "thread-stack.h"
34 #include "symbol.h"
35 #include "callchain.h"
36 #include "dso.h"
37 #include "debug.h"
38 #include "auxtrace.h"
39 #include "tsc.h"
40 #include "intel-pt.h"
41 
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46 
47 #define MAX_TIMESTAMP (~0ULL)
48 
49 struct intel_pt {
50 	struct auxtrace auxtrace;
51 	struct auxtrace_queues queues;
52 	struct auxtrace_heap heap;
53 	u32 auxtrace_type;
54 	struct perf_session *session;
55 	struct machine *machine;
56 	struct perf_evsel *switch_evsel;
57 	struct thread *unknown_thread;
58 	bool timeless_decoding;
59 	bool sampling_mode;
60 	bool snapshot_mode;
61 	bool per_cpu_mmaps;
62 	bool have_tsc;
63 	bool data_queued;
64 	bool est_tsc;
65 	bool sync_switch;
66 	int have_sched_switch;
67 	u32 pmu_type;
68 	u64 kernel_start;
69 	u64 switch_ip;
70 	u64 ptss_ip;
71 
72 	struct perf_tsc_conversion tc;
73 	bool cap_user_time_zero;
74 
75 	struct itrace_synth_opts synth_opts;
76 
77 	bool sample_instructions;
78 	u64 instructions_sample_type;
79 	u64 instructions_sample_period;
80 	u64 instructions_id;
81 
82 	bool sample_branches;
83 	u32 branches_filter;
84 	u64 branches_sample_type;
85 	u64 branches_id;
86 
87 	bool sample_transactions;
88 	u64 transactions_sample_type;
89 	u64 transactions_id;
90 
91 	bool synth_needs_swap;
92 
93 	u64 tsc_bit;
94 	u64 mtc_bit;
95 	u64 mtc_freq_bits;
96 	u32 tsc_ctc_ratio_n;
97 	u32 tsc_ctc_ratio_d;
98 	u64 cyc_bit;
99 	u64 noretcomp_bit;
100 	unsigned max_non_turbo_ratio;
101 };
102 
103 enum switch_state {
104 	INTEL_PT_SS_NOT_TRACING,
105 	INTEL_PT_SS_UNKNOWN,
106 	INTEL_PT_SS_TRACING,
107 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
108 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
109 };
110 
111 struct intel_pt_queue {
112 	struct intel_pt *pt;
113 	unsigned int queue_nr;
114 	struct auxtrace_buffer *buffer;
115 	void *decoder;
116 	const struct intel_pt_state *state;
117 	struct ip_callchain *chain;
118 	union perf_event *event_buf;
119 	bool on_heap;
120 	bool stop;
121 	bool step_through_buffers;
122 	bool use_buffer_pid_tid;
123 	pid_t pid, tid;
124 	int cpu;
125 	int switch_state;
126 	pid_t next_tid;
127 	struct thread *thread;
128 	bool exclude_kernel;
129 	bool have_sample;
130 	u64 time;
131 	u64 timestamp;
132 	u32 flags;
133 	u16 insn_len;
134 	u64 last_insn_cnt;
135 };
136 
137 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
138 			  unsigned char *buf, size_t len)
139 {
140 	struct intel_pt_pkt packet;
141 	size_t pos = 0;
142 	int ret, pkt_len, i;
143 	char desc[INTEL_PT_PKT_DESC_MAX];
144 	const char *color = PERF_COLOR_BLUE;
145 
146 	color_fprintf(stdout, color,
147 		      ". ... Intel Processor Trace data: size %zu bytes\n",
148 		      len);
149 
150 	while (len) {
151 		ret = intel_pt_get_packet(buf, len, &packet);
152 		if (ret > 0)
153 			pkt_len = ret;
154 		else
155 			pkt_len = 1;
156 		printf(".");
157 		color_fprintf(stdout, color, "  %08x: ", pos);
158 		for (i = 0; i < pkt_len; i++)
159 			color_fprintf(stdout, color, " %02x", buf[i]);
160 		for (; i < 16; i++)
161 			color_fprintf(stdout, color, "   ");
162 		if (ret > 0) {
163 			ret = intel_pt_pkt_desc(&packet, desc,
164 						INTEL_PT_PKT_DESC_MAX);
165 			if (ret > 0)
166 				color_fprintf(stdout, color, " %s\n", desc);
167 		} else {
168 			color_fprintf(stdout, color, " Bad packet!\n");
169 		}
170 		pos += pkt_len;
171 		buf += pkt_len;
172 		len -= pkt_len;
173 	}
174 }
175 
176 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
177 				size_t len)
178 {
179 	printf(".\n");
180 	intel_pt_dump(pt, buf, len);
181 }
182 
183 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
184 				   struct auxtrace_buffer *b)
185 {
186 	void *start;
187 
188 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
189 				      pt->have_tsc);
190 	if (!start)
191 		return -EINVAL;
192 	b->use_size = b->data + b->size - start;
193 	b->use_data = start;
194 	return 0;
195 }
196 
197 static void intel_pt_use_buffer_pid_tid(struct intel_pt_queue *ptq,
198 					struct auxtrace_queue *queue,
199 					struct auxtrace_buffer *buffer)
200 {
201 	if (queue->cpu == -1 && buffer->cpu != -1)
202 		ptq->cpu = buffer->cpu;
203 
204 	ptq->pid = buffer->pid;
205 	ptq->tid = buffer->tid;
206 
207 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
208 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
209 
210 	thread__zput(ptq->thread);
211 
212 	if (ptq->tid != -1) {
213 		if (ptq->pid != -1)
214 			ptq->thread = machine__findnew_thread(ptq->pt->machine,
215 							      ptq->pid,
216 							      ptq->tid);
217 		else
218 			ptq->thread = machine__find_thread(ptq->pt->machine, -1,
219 							   ptq->tid);
220 	}
221 }
222 
223 /* This function assumes data is processed sequentially only */
224 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
225 {
226 	struct intel_pt_queue *ptq = data;
227 	struct auxtrace_buffer *buffer = ptq->buffer, *old_buffer = buffer;
228 	struct auxtrace_queue *queue;
229 
230 	if (ptq->stop) {
231 		b->len = 0;
232 		return 0;
233 	}
234 
235 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
236 
237 	buffer = auxtrace_buffer__next(queue, buffer);
238 	if (!buffer) {
239 		if (old_buffer)
240 			auxtrace_buffer__drop_data(old_buffer);
241 		b->len = 0;
242 		return 0;
243 	}
244 
245 	ptq->buffer = buffer;
246 
247 	if (!buffer->data) {
248 		int fd = perf_data_file__fd(ptq->pt->session->file);
249 
250 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
251 		if (!buffer->data)
252 			return -ENOMEM;
253 	}
254 
255 	if (ptq->pt->snapshot_mode && !buffer->consecutive && old_buffer &&
256 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
257 		return -ENOMEM;
258 
259 	if (old_buffer)
260 		auxtrace_buffer__drop_data(old_buffer);
261 
262 	if (buffer->use_data) {
263 		b->len = buffer->use_size;
264 		b->buf = buffer->use_data;
265 	} else {
266 		b->len = buffer->size;
267 		b->buf = buffer->data;
268 	}
269 	b->ref_timestamp = buffer->reference;
270 
271 	if (!old_buffer || ptq->pt->sampling_mode || (ptq->pt->snapshot_mode &&
272 						      !buffer->consecutive)) {
273 		b->consecutive = false;
274 		b->trace_nr = buffer->buffer_nr + 1;
275 	} else {
276 		b->consecutive = true;
277 	}
278 
279 	if (ptq->use_buffer_pid_tid && (ptq->pid != buffer->pid ||
280 					ptq->tid != buffer->tid))
281 		intel_pt_use_buffer_pid_tid(ptq, queue, buffer);
282 
283 	if (ptq->step_through_buffers)
284 		ptq->stop = true;
285 
286 	if (!b->len)
287 		return intel_pt_get_trace(b, data);
288 
289 	return 0;
290 }
291 
292 struct intel_pt_cache_entry {
293 	struct auxtrace_cache_entry	entry;
294 	u64				insn_cnt;
295 	u64				byte_cnt;
296 	enum intel_pt_insn_op		op;
297 	enum intel_pt_insn_branch	branch;
298 	int				length;
299 	int32_t				rel;
300 };
301 
302 static int intel_pt_config_div(const char *var, const char *value, void *data)
303 {
304 	int *d = data;
305 	long val;
306 
307 	if (!strcmp(var, "intel-pt.cache-divisor")) {
308 		val = strtol(value, NULL, 0);
309 		if (val > 0 && val <= INT_MAX)
310 			*d = val;
311 	}
312 
313 	return 0;
314 }
315 
316 static int intel_pt_cache_divisor(void)
317 {
318 	static int d;
319 
320 	if (d)
321 		return d;
322 
323 	perf_config(intel_pt_config_div, &d);
324 
325 	if (!d)
326 		d = 64;
327 
328 	return d;
329 }
330 
331 static unsigned int intel_pt_cache_size(struct dso *dso,
332 					struct machine *machine)
333 {
334 	off_t size;
335 
336 	size = dso__data_size(dso, machine);
337 	size /= intel_pt_cache_divisor();
338 	if (size < 1000)
339 		return 10;
340 	if (size > (1 << 21))
341 		return 21;
342 	return 32 - __builtin_clz(size);
343 }
344 
345 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
346 					     struct machine *machine)
347 {
348 	struct auxtrace_cache *c;
349 	unsigned int bits;
350 
351 	if (dso->auxtrace_cache)
352 		return dso->auxtrace_cache;
353 
354 	bits = intel_pt_cache_size(dso, machine);
355 
356 	/* Ignoring cache creation failure */
357 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
358 
359 	dso->auxtrace_cache = c;
360 
361 	return c;
362 }
363 
364 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
365 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
366 			      struct intel_pt_insn *intel_pt_insn)
367 {
368 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
369 	struct intel_pt_cache_entry *e;
370 	int err;
371 
372 	if (!c)
373 		return -ENOMEM;
374 
375 	e = auxtrace_cache__alloc_entry(c);
376 	if (!e)
377 		return -ENOMEM;
378 
379 	e->insn_cnt = insn_cnt;
380 	e->byte_cnt = byte_cnt;
381 	e->op = intel_pt_insn->op;
382 	e->branch = intel_pt_insn->branch;
383 	e->length = intel_pt_insn->length;
384 	e->rel = intel_pt_insn->rel;
385 
386 	err = auxtrace_cache__add(c, offset, &e->entry);
387 	if (err)
388 		auxtrace_cache__free_entry(c, e);
389 
390 	return err;
391 }
392 
393 static struct intel_pt_cache_entry *
394 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
395 {
396 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
397 
398 	if (!c)
399 		return NULL;
400 
401 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
402 }
403 
404 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
405 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
406 				   uint64_t to_ip, uint64_t max_insn_cnt,
407 				   void *data)
408 {
409 	struct intel_pt_queue *ptq = data;
410 	struct machine *machine = ptq->pt->machine;
411 	struct thread *thread;
412 	struct addr_location al;
413 	unsigned char buf[1024];
414 	size_t bufsz;
415 	ssize_t len;
416 	int x86_64;
417 	u8 cpumode;
418 	u64 offset, start_offset, start_ip;
419 	u64 insn_cnt = 0;
420 	bool one_map = true;
421 
422 	if (to_ip && *ip == to_ip)
423 		goto out_no_cache;
424 
425 	bufsz = intel_pt_insn_max_size();
426 
427 	if (*ip >= ptq->pt->kernel_start)
428 		cpumode = PERF_RECORD_MISC_KERNEL;
429 	else
430 		cpumode = PERF_RECORD_MISC_USER;
431 
432 	thread = ptq->thread;
433 	if (!thread) {
434 		if (cpumode != PERF_RECORD_MISC_KERNEL)
435 			return -EINVAL;
436 		thread = ptq->pt->unknown_thread;
437 	}
438 
439 	while (1) {
440 		thread__find_addr_map(thread, cpumode, MAP__FUNCTION, *ip, &al);
441 		if (!al.map || !al.map->dso)
442 			return -EINVAL;
443 
444 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
445 		    dso__data_status_seen(al.map->dso,
446 					  DSO_DATA_STATUS_SEEN_ITRACE))
447 			return -ENOENT;
448 
449 		offset = al.map->map_ip(al.map, *ip);
450 
451 		if (!to_ip && one_map) {
452 			struct intel_pt_cache_entry *e;
453 
454 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
455 			if (e &&
456 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
457 				*insn_cnt_ptr = e->insn_cnt;
458 				*ip += e->byte_cnt;
459 				intel_pt_insn->op = e->op;
460 				intel_pt_insn->branch = e->branch;
461 				intel_pt_insn->length = e->length;
462 				intel_pt_insn->rel = e->rel;
463 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
464 				return 0;
465 			}
466 		}
467 
468 		start_offset = offset;
469 		start_ip = *ip;
470 
471 		/* Load maps to ensure dso->is_64_bit has been updated */
472 		map__load(al.map, machine->symbol_filter);
473 
474 		x86_64 = al.map->dso->is_64_bit;
475 
476 		while (1) {
477 			len = dso__data_read_offset(al.map->dso, machine,
478 						    offset, buf, bufsz);
479 			if (len <= 0)
480 				return -EINVAL;
481 
482 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
483 				return -EINVAL;
484 
485 			intel_pt_log_insn(intel_pt_insn, *ip);
486 
487 			insn_cnt += 1;
488 
489 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
490 				goto out;
491 
492 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
493 				goto out_no_cache;
494 
495 			*ip += intel_pt_insn->length;
496 
497 			if (to_ip && *ip == to_ip)
498 				goto out_no_cache;
499 
500 			if (*ip >= al.map->end)
501 				break;
502 
503 			offset += intel_pt_insn->length;
504 		}
505 		one_map = false;
506 	}
507 out:
508 	*insn_cnt_ptr = insn_cnt;
509 
510 	if (!one_map)
511 		goto out_no_cache;
512 
513 	/*
514 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
515 	 * entries.
516 	 */
517 	if (to_ip) {
518 		struct intel_pt_cache_entry *e;
519 
520 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
521 		if (e)
522 			return 0;
523 	}
524 
525 	/* Ignore cache errors */
526 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
527 			   *ip - start_ip, intel_pt_insn);
528 
529 	return 0;
530 
531 out_no_cache:
532 	*insn_cnt_ptr = insn_cnt;
533 	return 0;
534 }
535 
536 static bool intel_pt_get_config(struct intel_pt *pt,
537 				struct perf_event_attr *attr, u64 *config)
538 {
539 	if (attr->type == pt->pmu_type) {
540 		if (config)
541 			*config = attr->config;
542 		return true;
543 	}
544 
545 	return false;
546 }
547 
548 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
549 {
550 	struct perf_evsel *evsel;
551 
552 	evlist__for_each(pt->session->evlist, evsel) {
553 		if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
554 		    !evsel->attr.exclude_kernel)
555 			return false;
556 	}
557 	return true;
558 }
559 
560 static bool intel_pt_return_compression(struct intel_pt *pt)
561 {
562 	struct perf_evsel *evsel;
563 	u64 config;
564 
565 	if (!pt->noretcomp_bit)
566 		return true;
567 
568 	evlist__for_each(pt->session->evlist, evsel) {
569 		if (intel_pt_get_config(pt, &evsel->attr, &config) &&
570 		    (config & pt->noretcomp_bit))
571 			return false;
572 	}
573 	return true;
574 }
575 
576 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
577 {
578 	struct perf_evsel *evsel;
579 	unsigned int shift;
580 	u64 config;
581 
582 	if (!pt->mtc_freq_bits)
583 		return 0;
584 
585 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
586 		config >>= 1;
587 
588 	evlist__for_each(pt->session->evlist, evsel) {
589 		if (intel_pt_get_config(pt, &evsel->attr, &config))
590 			return (config & pt->mtc_freq_bits) >> shift;
591 	}
592 	return 0;
593 }
594 
595 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
596 {
597 	struct perf_evsel *evsel;
598 	bool timeless_decoding = true;
599 	u64 config;
600 
601 	if (!pt->tsc_bit || !pt->cap_user_time_zero)
602 		return true;
603 
604 	evlist__for_each(pt->session->evlist, evsel) {
605 		if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME))
606 			return true;
607 		if (intel_pt_get_config(pt, &evsel->attr, &config)) {
608 			if (config & pt->tsc_bit)
609 				timeless_decoding = false;
610 			else
611 				return true;
612 		}
613 	}
614 	return timeless_decoding;
615 }
616 
617 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
618 {
619 	struct perf_evsel *evsel;
620 
621 	evlist__for_each(pt->session->evlist, evsel) {
622 		if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
623 		    !evsel->attr.exclude_kernel)
624 			return true;
625 	}
626 	return false;
627 }
628 
629 static bool intel_pt_have_tsc(struct intel_pt *pt)
630 {
631 	struct perf_evsel *evsel;
632 	bool have_tsc = false;
633 	u64 config;
634 
635 	if (!pt->tsc_bit)
636 		return false;
637 
638 	evlist__for_each(pt->session->evlist, evsel) {
639 		if (intel_pt_get_config(pt, &evsel->attr, &config)) {
640 			if (config & pt->tsc_bit)
641 				have_tsc = true;
642 			else
643 				return false;
644 		}
645 	}
646 	return have_tsc;
647 }
648 
649 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
650 {
651 	u64 quot, rem;
652 
653 	quot = ns / pt->tc.time_mult;
654 	rem  = ns % pt->tc.time_mult;
655 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
656 		pt->tc.time_mult;
657 }
658 
659 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
660 						   unsigned int queue_nr)
661 {
662 	struct intel_pt_params params = { .get_trace = 0, };
663 	struct intel_pt_queue *ptq;
664 
665 	ptq = zalloc(sizeof(struct intel_pt_queue));
666 	if (!ptq)
667 		return NULL;
668 
669 	if (pt->synth_opts.callchain) {
670 		size_t sz = sizeof(struct ip_callchain);
671 
672 		sz += pt->synth_opts.callchain_sz * sizeof(u64);
673 		ptq->chain = zalloc(sz);
674 		if (!ptq->chain)
675 			goto out_free;
676 	}
677 
678 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
679 	if (!ptq->event_buf)
680 		goto out_free;
681 
682 	ptq->pt = pt;
683 	ptq->queue_nr = queue_nr;
684 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
685 	ptq->pid = -1;
686 	ptq->tid = -1;
687 	ptq->cpu = -1;
688 	ptq->next_tid = -1;
689 
690 	params.get_trace = intel_pt_get_trace;
691 	params.walk_insn = intel_pt_walk_next_insn;
692 	params.data = ptq;
693 	params.return_compression = intel_pt_return_compression(pt);
694 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
695 	params.mtc_period = intel_pt_mtc_period(pt);
696 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
697 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
698 
699 	if (pt->synth_opts.instructions) {
700 		if (pt->synth_opts.period) {
701 			switch (pt->synth_opts.period_type) {
702 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
703 				params.period_type =
704 						INTEL_PT_PERIOD_INSTRUCTIONS;
705 				params.period = pt->synth_opts.period;
706 				break;
707 			case PERF_ITRACE_PERIOD_TICKS:
708 				params.period_type = INTEL_PT_PERIOD_TICKS;
709 				params.period = pt->synth_opts.period;
710 				break;
711 			case PERF_ITRACE_PERIOD_NANOSECS:
712 				params.period_type = INTEL_PT_PERIOD_TICKS;
713 				params.period = intel_pt_ns_to_ticks(pt,
714 							pt->synth_opts.period);
715 				break;
716 			default:
717 				break;
718 			}
719 		}
720 
721 		if (!params.period) {
722 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
723 			params.period = 1000;
724 		}
725 	}
726 
727 	ptq->decoder = intel_pt_decoder_new(&params);
728 	if (!ptq->decoder)
729 		goto out_free;
730 
731 	return ptq;
732 
733 out_free:
734 	zfree(&ptq->event_buf);
735 	zfree(&ptq->chain);
736 	free(ptq);
737 	return NULL;
738 }
739 
740 static void intel_pt_free_queue(void *priv)
741 {
742 	struct intel_pt_queue *ptq = priv;
743 
744 	if (!ptq)
745 		return;
746 	thread__zput(ptq->thread);
747 	intel_pt_decoder_free(ptq->decoder);
748 	zfree(&ptq->event_buf);
749 	zfree(&ptq->chain);
750 	free(ptq);
751 }
752 
753 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
754 				     struct auxtrace_queue *queue)
755 {
756 	struct intel_pt_queue *ptq = queue->priv;
757 
758 	if (queue->tid == -1 || pt->have_sched_switch) {
759 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
760 		thread__zput(ptq->thread);
761 	}
762 
763 	if (!ptq->thread && ptq->tid != -1)
764 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
765 
766 	if (ptq->thread) {
767 		ptq->pid = ptq->thread->pid_;
768 		if (queue->cpu == -1)
769 			ptq->cpu = ptq->thread->cpu;
770 	}
771 }
772 
773 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
774 {
775 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
776 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
777 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
778 		if (ptq->state->to_ip)
779 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
780 				     PERF_IP_FLAG_ASYNC |
781 				     PERF_IP_FLAG_INTERRUPT;
782 		else
783 			ptq->flags = PERF_IP_FLAG_BRANCH |
784 				     PERF_IP_FLAG_TRACE_END;
785 		ptq->insn_len = 0;
786 	} else {
787 		if (ptq->state->from_ip)
788 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
789 		else
790 			ptq->flags = PERF_IP_FLAG_BRANCH |
791 				     PERF_IP_FLAG_TRACE_BEGIN;
792 		if (ptq->state->flags & INTEL_PT_IN_TX)
793 			ptq->flags |= PERF_IP_FLAG_IN_TX;
794 		ptq->insn_len = ptq->state->insn_len;
795 	}
796 }
797 
798 static int intel_pt_setup_queue(struct intel_pt *pt,
799 				struct auxtrace_queue *queue,
800 				unsigned int queue_nr)
801 {
802 	struct intel_pt_queue *ptq = queue->priv;
803 
804 	if (list_empty(&queue->head))
805 		return 0;
806 
807 	if (!ptq) {
808 		ptq = intel_pt_alloc_queue(pt, queue_nr);
809 		if (!ptq)
810 			return -ENOMEM;
811 		queue->priv = ptq;
812 
813 		if (queue->cpu != -1)
814 			ptq->cpu = queue->cpu;
815 		ptq->tid = queue->tid;
816 
817 		if (pt->sampling_mode) {
818 			if (pt->timeless_decoding)
819 				ptq->step_through_buffers = true;
820 			if (pt->timeless_decoding || !pt->have_sched_switch)
821 				ptq->use_buffer_pid_tid = true;
822 		}
823 	}
824 
825 	if (!ptq->on_heap &&
826 	    (!pt->sync_switch ||
827 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
828 		const struct intel_pt_state *state;
829 		int ret;
830 
831 		if (pt->timeless_decoding)
832 			return 0;
833 
834 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
835 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
836 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
837 		while (1) {
838 			state = intel_pt_decode(ptq->decoder);
839 			if (state->err) {
840 				if (state->err == INTEL_PT_ERR_NODATA) {
841 					intel_pt_log("queue %u has no timestamp\n",
842 						     queue_nr);
843 					return 0;
844 				}
845 				continue;
846 			}
847 			if (state->timestamp)
848 				break;
849 		}
850 
851 		ptq->timestamp = state->timestamp;
852 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
853 			     queue_nr, ptq->timestamp);
854 		ptq->state = state;
855 		ptq->have_sample = true;
856 		intel_pt_sample_flags(ptq);
857 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
858 		if (ret)
859 			return ret;
860 		ptq->on_heap = true;
861 	}
862 
863 	return 0;
864 }
865 
866 static int intel_pt_setup_queues(struct intel_pt *pt)
867 {
868 	unsigned int i;
869 	int ret;
870 
871 	for (i = 0; i < pt->queues.nr_queues; i++) {
872 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
873 		if (ret)
874 			return ret;
875 	}
876 	return 0;
877 }
878 
879 static int intel_pt_inject_event(union perf_event *event,
880 				 struct perf_sample *sample, u64 type,
881 				 bool swapped)
882 {
883 	event->header.size = perf_event__sample_event_size(sample, type, 0);
884 	return perf_event__synthesize_sample(event, type, 0, sample, swapped);
885 }
886 
887 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
888 {
889 	int ret;
890 	struct intel_pt *pt = ptq->pt;
891 	union perf_event *event = ptq->event_buf;
892 	struct perf_sample sample = { .ip = 0, };
893 
894 	event->sample.header.type = PERF_RECORD_SAMPLE;
895 	event->sample.header.misc = PERF_RECORD_MISC_USER;
896 	event->sample.header.size = sizeof(struct perf_event_header);
897 
898 	if (!pt->timeless_decoding)
899 		sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
900 
901 	sample.ip = ptq->state->from_ip;
902 	sample.pid = ptq->pid;
903 	sample.tid = ptq->tid;
904 	sample.addr = ptq->state->to_ip;
905 	sample.id = ptq->pt->branches_id;
906 	sample.stream_id = ptq->pt->branches_id;
907 	sample.period = 1;
908 	sample.cpu = ptq->cpu;
909 	sample.flags = ptq->flags;
910 	sample.insn_len = ptq->insn_len;
911 
912 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
913 		return 0;
914 
915 	if (pt->synth_opts.inject) {
916 		ret = intel_pt_inject_event(event, &sample,
917 					    pt->branches_sample_type,
918 					    pt->synth_needs_swap);
919 		if (ret)
920 			return ret;
921 	}
922 
923 	ret = perf_session__deliver_synth_event(pt->session, event, &sample);
924 	if (ret)
925 		pr_err("Intel Processor Trace: failed to deliver branch event, error %d\n",
926 		       ret);
927 
928 	return ret;
929 }
930 
931 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
932 {
933 	int ret;
934 	struct intel_pt *pt = ptq->pt;
935 	union perf_event *event = ptq->event_buf;
936 	struct perf_sample sample = { .ip = 0, };
937 
938 	event->sample.header.type = PERF_RECORD_SAMPLE;
939 	event->sample.header.misc = PERF_RECORD_MISC_USER;
940 	event->sample.header.size = sizeof(struct perf_event_header);
941 
942 	if (!pt->timeless_decoding)
943 		sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
944 
945 	sample.ip = ptq->state->from_ip;
946 	sample.pid = ptq->pid;
947 	sample.tid = ptq->tid;
948 	sample.addr = ptq->state->to_ip;
949 	sample.id = ptq->pt->instructions_id;
950 	sample.stream_id = ptq->pt->instructions_id;
951 	sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
952 	sample.cpu = ptq->cpu;
953 	sample.flags = ptq->flags;
954 	sample.insn_len = ptq->insn_len;
955 
956 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
957 
958 	if (pt->synth_opts.callchain) {
959 		thread_stack__sample(ptq->thread, ptq->chain,
960 				     pt->synth_opts.callchain_sz, sample.ip);
961 		sample.callchain = ptq->chain;
962 	}
963 
964 	if (pt->synth_opts.inject) {
965 		ret = intel_pt_inject_event(event, &sample,
966 					    pt->instructions_sample_type,
967 					    pt->synth_needs_swap);
968 		if (ret)
969 			return ret;
970 	}
971 
972 	ret = perf_session__deliver_synth_event(pt->session, event, &sample);
973 	if (ret)
974 		pr_err("Intel Processor Trace: failed to deliver instruction event, error %d\n",
975 		       ret);
976 
977 	return ret;
978 }
979 
980 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
981 {
982 	int ret;
983 	struct intel_pt *pt = ptq->pt;
984 	union perf_event *event = ptq->event_buf;
985 	struct perf_sample sample = { .ip = 0, };
986 
987 	event->sample.header.type = PERF_RECORD_SAMPLE;
988 	event->sample.header.misc = PERF_RECORD_MISC_USER;
989 	event->sample.header.size = sizeof(struct perf_event_header);
990 
991 	if (!pt->timeless_decoding)
992 		sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
993 
994 	sample.ip = ptq->state->from_ip;
995 	sample.pid = ptq->pid;
996 	sample.tid = ptq->tid;
997 	sample.addr = ptq->state->to_ip;
998 	sample.id = ptq->pt->transactions_id;
999 	sample.stream_id = ptq->pt->transactions_id;
1000 	sample.period = 1;
1001 	sample.cpu = ptq->cpu;
1002 	sample.flags = ptq->flags;
1003 	sample.insn_len = ptq->insn_len;
1004 
1005 	if (pt->synth_opts.callchain) {
1006 		thread_stack__sample(ptq->thread, ptq->chain,
1007 				     pt->synth_opts.callchain_sz, sample.ip);
1008 		sample.callchain = ptq->chain;
1009 	}
1010 
1011 	if (pt->synth_opts.inject) {
1012 		ret = intel_pt_inject_event(event, &sample,
1013 					    pt->transactions_sample_type,
1014 					    pt->synth_needs_swap);
1015 		if (ret)
1016 			return ret;
1017 	}
1018 
1019 	ret = perf_session__deliver_synth_event(pt->session, event, &sample);
1020 	if (ret)
1021 		pr_err("Intel Processor Trace: failed to deliver transaction event, error %d\n",
1022 		       ret);
1023 
1024 	return ret;
1025 }
1026 
1027 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1028 				pid_t pid, pid_t tid, u64 ip)
1029 {
1030 	union perf_event event;
1031 	char msg[MAX_AUXTRACE_ERROR_MSG];
1032 	int err;
1033 
1034 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1035 
1036 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1037 			     code, cpu, pid, tid, ip, msg);
1038 
1039 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1040 	if (err)
1041 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1042 		       err);
1043 
1044 	return err;
1045 }
1046 
1047 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1048 {
1049 	struct auxtrace_queue *queue;
1050 	pid_t tid = ptq->next_tid;
1051 	int err;
1052 
1053 	if (tid == -1)
1054 		return 0;
1055 
1056 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1057 
1058 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1059 
1060 	queue = &pt->queues.queue_array[ptq->queue_nr];
1061 	intel_pt_set_pid_tid_cpu(pt, queue);
1062 
1063 	ptq->next_tid = -1;
1064 
1065 	return err;
1066 }
1067 
1068 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1069 {
1070 	struct intel_pt *pt = ptq->pt;
1071 
1072 	return ip == pt->switch_ip &&
1073 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1074 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1075 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1076 }
1077 
1078 static int intel_pt_sample(struct intel_pt_queue *ptq)
1079 {
1080 	const struct intel_pt_state *state = ptq->state;
1081 	struct intel_pt *pt = ptq->pt;
1082 	int err;
1083 
1084 	if (!ptq->have_sample)
1085 		return 0;
1086 
1087 	ptq->have_sample = false;
1088 
1089 	if (pt->sample_instructions &&
1090 	    (state->type & INTEL_PT_INSTRUCTION)) {
1091 		err = intel_pt_synth_instruction_sample(ptq);
1092 		if (err)
1093 			return err;
1094 	}
1095 
1096 	if (pt->sample_transactions &&
1097 	    (state->type & INTEL_PT_TRANSACTION)) {
1098 		err = intel_pt_synth_transaction_sample(ptq);
1099 		if (err)
1100 			return err;
1101 	}
1102 
1103 	if (!(state->type & INTEL_PT_BRANCH))
1104 		return 0;
1105 
1106 	if (pt->synth_opts.callchain)
1107 		thread_stack__event(ptq->thread, ptq->flags, state->from_ip,
1108 				    state->to_ip, ptq->insn_len,
1109 				    state->trace_nr);
1110 	else
1111 		thread_stack__set_trace_nr(ptq->thread, state->trace_nr);
1112 
1113 	if (pt->sample_branches) {
1114 		err = intel_pt_synth_branch_sample(ptq);
1115 		if (err)
1116 			return err;
1117 	}
1118 
1119 	if (!pt->sync_switch)
1120 		return 0;
1121 
1122 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1123 		switch (ptq->switch_state) {
1124 		case INTEL_PT_SS_UNKNOWN:
1125 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1126 			err = intel_pt_next_tid(pt, ptq);
1127 			if (err)
1128 				return err;
1129 			ptq->switch_state = INTEL_PT_SS_TRACING;
1130 			break;
1131 		default:
1132 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
1133 			return 1;
1134 		}
1135 	} else if (!state->to_ip) {
1136 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
1137 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
1138 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
1139 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1140 		   state->to_ip == pt->ptss_ip &&
1141 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
1142 		ptq->switch_state = INTEL_PT_SS_TRACING;
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
1149 {
1150 	struct machine *machine = pt->machine;
1151 	struct map *map;
1152 	struct symbol *sym, *start;
1153 	u64 ip, switch_ip = 0;
1154 	const char *ptss;
1155 
1156 	if (ptss_ip)
1157 		*ptss_ip = 0;
1158 
1159 	map = machine__kernel_map(machine, MAP__FUNCTION);
1160 	if (!map)
1161 		return 0;
1162 
1163 	if (map__load(map, machine->symbol_filter))
1164 		return 0;
1165 
1166 	start = dso__first_symbol(map->dso, MAP__FUNCTION);
1167 
1168 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
1169 		if (sym->binding == STB_GLOBAL &&
1170 		    !strcmp(sym->name, "__switch_to")) {
1171 			ip = map->unmap_ip(map, sym->start);
1172 			if (ip >= map->start && ip < map->end) {
1173 				switch_ip = ip;
1174 				break;
1175 			}
1176 		}
1177 	}
1178 
1179 	if (!switch_ip || !ptss_ip)
1180 		return 0;
1181 
1182 	if (pt->have_sched_switch == 1)
1183 		ptss = "perf_trace_sched_switch";
1184 	else
1185 		ptss = "__perf_event_task_sched_out";
1186 
1187 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
1188 		if (!strcmp(sym->name, ptss)) {
1189 			ip = map->unmap_ip(map, sym->start);
1190 			if (ip >= map->start && ip < map->end) {
1191 				*ptss_ip = ip;
1192 				break;
1193 			}
1194 		}
1195 	}
1196 
1197 	return switch_ip;
1198 }
1199 
1200 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
1201 {
1202 	const struct intel_pt_state *state = ptq->state;
1203 	struct intel_pt *pt = ptq->pt;
1204 	int err;
1205 
1206 	if (!pt->kernel_start) {
1207 		pt->kernel_start = machine__kernel_start(pt->machine);
1208 		if (pt->per_cpu_mmaps &&
1209 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
1210 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
1211 		    !pt->sampling_mode) {
1212 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
1213 			if (pt->switch_ip) {
1214 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
1215 					     pt->switch_ip, pt->ptss_ip);
1216 				pt->sync_switch = true;
1217 			}
1218 		}
1219 	}
1220 
1221 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1222 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1223 	while (1) {
1224 		err = intel_pt_sample(ptq);
1225 		if (err)
1226 			return err;
1227 
1228 		state = intel_pt_decode(ptq->decoder);
1229 		if (state->err) {
1230 			if (state->err == INTEL_PT_ERR_NODATA)
1231 				return 1;
1232 			if (pt->sync_switch &&
1233 			    state->from_ip >= pt->kernel_start) {
1234 				pt->sync_switch = false;
1235 				intel_pt_next_tid(pt, ptq);
1236 			}
1237 			if (pt->synth_opts.errors) {
1238 				err = intel_pt_synth_error(pt, state->err,
1239 							   ptq->cpu, ptq->pid,
1240 							   ptq->tid,
1241 							   state->from_ip);
1242 				if (err)
1243 					return err;
1244 			}
1245 			continue;
1246 		}
1247 
1248 		ptq->state = state;
1249 		ptq->have_sample = true;
1250 		intel_pt_sample_flags(ptq);
1251 
1252 		/* Use estimated TSC upon return to user space */
1253 		if (pt->est_tsc &&
1254 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
1255 		    state->to_ip && state->to_ip < pt->kernel_start) {
1256 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1257 				     state->timestamp, state->est_timestamp);
1258 			ptq->timestamp = state->est_timestamp;
1259 		/* Use estimated TSC in unknown switch state */
1260 		} else if (pt->sync_switch &&
1261 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1262 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
1263 			   ptq->next_tid == -1) {
1264 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1265 				     state->timestamp, state->est_timestamp);
1266 			ptq->timestamp = state->est_timestamp;
1267 		} else if (state->timestamp > ptq->timestamp) {
1268 			ptq->timestamp = state->timestamp;
1269 		}
1270 
1271 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
1272 			*timestamp = ptq->timestamp;
1273 			return 0;
1274 		}
1275 	}
1276 	return 0;
1277 }
1278 
1279 static inline int intel_pt_update_queues(struct intel_pt *pt)
1280 {
1281 	if (pt->queues.new_data) {
1282 		pt->queues.new_data = false;
1283 		return intel_pt_setup_queues(pt);
1284 	}
1285 	return 0;
1286 }
1287 
1288 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
1289 {
1290 	unsigned int queue_nr;
1291 	u64 ts;
1292 	int ret;
1293 
1294 	while (1) {
1295 		struct auxtrace_queue *queue;
1296 		struct intel_pt_queue *ptq;
1297 
1298 		if (!pt->heap.heap_cnt)
1299 			return 0;
1300 
1301 		if (pt->heap.heap_array[0].ordinal >= timestamp)
1302 			return 0;
1303 
1304 		queue_nr = pt->heap.heap_array[0].queue_nr;
1305 		queue = &pt->queues.queue_array[queue_nr];
1306 		ptq = queue->priv;
1307 
1308 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
1309 			     queue_nr, pt->heap.heap_array[0].ordinal,
1310 			     timestamp);
1311 
1312 		auxtrace_heap__pop(&pt->heap);
1313 
1314 		if (pt->heap.heap_cnt) {
1315 			ts = pt->heap.heap_array[0].ordinal + 1;
1316 			if (ts > timestamp)
1317 				ts = timestamp;
1318 		} else {
1319 			ts = timestamp;
1320 		}
1321 
1322 		intel_pt_set_pid_tid_cpu(pt, queue);
1323 
1324 		ret = intel_pt_run_decoder(ptq, &ts);
1325 
1326 		if (ret < 0) {
1327 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
1328 			return ret;
1329 		}
1330 
1331 		if (!ret) {
1332 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
1333 			if (ret < 0)
1334 				return ret;
1335 		} else {
1336 			ptq->on_heap = false;
1337 		}
1338 	}
1339 
1340 	return 0;
1341 }
1342 
1343 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
1344 					    u64 time_)
1345 {
1346 	struct auxtrace_queues *queues = &pt->queues;
1347 	unsigned int i;
1348 	u64 ts = 0;
1349 
1350 	for (i = 0; i < queues->nr_queues; i++) {
1351 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1352 		struct intel_pt_queue *ptq = queue->priv;
1353 
1354 		if (ptq && (tid == -1 || ptq->tid == tid)) {
1355 			ptq->time = time_;
1356 			intel_pt_set_pid_tid_cpu(pt, queue);
1357 			intel_pt_run_decoder(ptq, &ts);
1358 		}
1359 	}
1360 	return 0;
1361 }
1362 
1363 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
1364 {
1365 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
1366 				    sample->pid, sample->tid, 0);
1367 }
1368 
1369 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
1370 {
1371 	unsigned i, j;
1372 
1373 	if (cpu < 0 || !pt->queues.nr_queues)
1374 		return NULL;
1375 
1376 	if ((unsigned)cpu >= pt->queues.nr_queues)
1377 		i = pt->queues.nr_queues - 1;
1378 	else
1379 		i = cpu;
1380 
1381 	if (pt->queues.queue_array[i].cpu == cpu)
1382 		return pt->queues.queue_array[i].priv;
1383 
1384 	for (j = 0; i > 0; j++) {
1385 		if (pt->queues.queue_array[--i].cpu == cpu)
1386 			return pt->queues.queue_array[i].priv;
1387 	}
1388 
1389 	for (; j < pt->queues.nr_queues; j++) {
1390 		if (pt->queues.queue_array[j].cpu == cpu)
1391 			return pt->queues.queue_array[j].priv;
1392 	}
1393 
1394 	return NULL;
1395 }
1396 
1397 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
1398 				u64 timestamp)
1399 {
1400 	struct intel_pt_queue *ptq;
1401 	int err;
1402 
1403 	if (!pt->sync_switch)
1404 		return 1;
1405 
1406 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
1407 	if (!ptq)
1408 		return 1;
1409 
1410 	switch (ptq->switch_state) {
1411 	case INTEL_PT_SS_NOT_TRACING:
1412 		ptq->next_tid = -1;
1413 		break;
1414 	case INTEL_PT_SS_UNKNOWN:
1415 	case INTEL_PT_SS_TRACING:
1416 		ptq->next_tid = tid;
1417 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
1418 		return 0;
1419 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
1420 		if (!ptq->on_heap) {
1421 			ptq->timestamp = perf_time_to_tsc(timestamp,
1422 							  &pt->tc);
1423 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
1424 						 ptq->timestamp);
1425 			if (err)
1426 				return err;
1427 			ptq->on_heap = true;
1428 		}
1429 		ptq->switch_state = INTEL_PT_SS_TRACING;
1430 		break;
1431 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1432 		ptq->next_tid = tid;
1433 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
1434 		break;
1435 	default:
1436 		break;
1437 	}
1438 
1439 	return 1;
1440 }
1441 
1442 static int intel_pt_process_switch(struct intel_pt *pt,
1443 				   struct perf_sample *sample)
1444 {
1445 	struct perf_evsel *evsel;
1446 	pid_t tid;
1447 	int cpu, ret;
1448 
1449 	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
1450 	if (evsel != pt->switch_evsel)
1451 		return 0;
1452 
1453 	tid = perf_evsel__intval(evsel, sample, "next_pid");
1454 	cpu = sample->cpu;
1455 
1456 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1457 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
1458 		     &pt->tc));
1459 
1460 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1461 	if (ret <= 0)
1462 		return ret;
1463 
1464 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
1465 }
1466 
1467 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
1468 				   struct perf_sample *sample)
1469 {
1470 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
1471 	pid_t pid, tid;
1472 	int cpu, ret;
1473 
1474 	cpu = sample->cpu;
1475 
1476 	if (pt->have_sched_switch == 3) {
1477 		if (!out)
1478 			return 0;
1479 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
1480 			pr_err("Expecting CPU-wide context switch event\n");
1481 			return -EINVAL;
1482 		}
1483 		pid = event->context_switch.next_prev_pid;
1484 		tid = event->context_switch.next_prev_tid;
1485 	} else {
1486 		if (out)
1487 			return 0;
1488 		pid = sample->pid;
1489 		tid = sample->tid;
1490 	}
1491 
1492 	if (tid == -1) {
1493 		pr_err("context_switch event has no tid\n");
1494 		return -EINVAL;
1495 	}
1496 
1497 	intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1498 		     cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
1499 		     &pt->tc));
1500 
1501 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1502 	if (ret <= 0)
1503 		return ret;
1504 
1505 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
1506 }
1507 
1508 static int intel_pt_process_itrace_start(struct intel_pt *pt,
1509 					 union perf_event *event,
1510 					 struct perf_sample *sample)
1511 {
1512 	if (!pt->per_cpu_mmaps)
1513 		return 0;
1514 
1515 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1516 		     sample->cpu, event->itrace_start.pid,
1517 		     event->itrace_start.tid, sample->time,
1518 		     perf_time_to_tsc(sample->time, &pt->tc));
1519 
1520 	return machine__set_current_tid(pt->machine, sample->cpu,
1521 					event->itrace_start.pid,
1522 					event->itrace_start.tid);
1523 }
1524 
1525 static int intel_pt_process_event(struct perf_session *session,
1526 				  union perf_event *event,
1527 				  struct perf_sample *sample,
1528 				  struct perf_tool *tool)
1529 {
1530 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1531 					   auxtrace);
1532 	u64 timestamp;
1533 	int err = 0;
1534 
1535 	if (dump_trace)
1536 		return 0;
1537 
1538 	if (!tool->ordered_events) {
1539 		pr_err("Intel Processor Trace requires ordered events\n");
1540 		return -EINVAL;
1541 	}
1542 
1543 	if (sample->time && sample->time != (u64)-1)
1544 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
1545 	else
1546 		timestamp = 0;
1547 
1548 	if (timestamp || pt->timeless_decoding) {
1549 		err = intel_pt_update_queues(pt);
1550 		if (err)
1551 			return err;
1552 	}
1553 
1554 	if (pt->timeless_decoding) {
1555 		if (event->header.type == PERF_RECORD_EXIT) {
1556 			err = intel_pt_process_timeless_queues(pt,
1557 							       event->comm.tid,
1558 							       sample->time);
1559 		}
1560 	} else if (timestamp) {
1561 		err = intel_pt_process_queues(pt, timestamp);
1562 	}
1563 	if (err)
1564 		return err;
1565 
1566 	if (event->header.type == PERF_RECORD_AUX &&
1567 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
1568 	    pt->synth_opts.errors) {
1569 		err = intel_pt_lost(pt, sample);
1570 		if (err)
1571 			return err;
1572 	}
1573 
1574 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
1575 		err = intel_pt_process_switch(pt, sample);
1576 	else if (event->header.type == PERF_RECORD_ITRACE_START)
1577 		err = intel_pt_process_itrace_start(pt, event, sample);
1578 	else if (event->header.type == PERF_RECORD_SWITCH ||
1579 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
1580 		err = intel_pt_context_switch(pt, event, sample);
1581 
1582 	intel_pt_log("event %s (%u): cpu %d time %"PRIu64" tsc %#"PRIx64"\n",
1583 		     perf_event__name(event->header.type), event->header.type,
1584 		     sample->cpu, sample->time, timestamp);
1585 
1586 	return err;
1587 }
1588 
1589 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
1590 {
1591 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1592 					   auxtrace);
1593 	int ret;
1594 
1595 	if (dump_trace)
1596 		return 0;
1597 
1598 	if (!tool->ordered_events)
1599 		return -EINVAL;
1600 
1601 	ret = intel_pt_update_queues(pt);
1602 	if (ret < 0)
1603 		return ret;
1604 
1605 	if (pt->timeless_decoding)
1606 		return intel_pt_process_timeless_queues(pt, -1,
1607 							MAX_TIMESTAMP - 1);
1608 
1609 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
1610 }
1611 
1612 static void intel_pt_free_events(struct perf_session *session)
1613 {
1614 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1615 					   auxtrace);
1616 	struct auxtrace_queues *queues = &pt->queues;
1617 	unsigned int i;
1618 
1619 	for (i = 0; i < queues->nr_queues; i++) {
1620 		intel_pt_free_queue(queues->queue_array[i].priv);
1621 		queues->queue_array[i].priv = NULL;
1622 	}
1623 	intel_pt_log_disable();
1624 	auxtrace_queues__free(queues);
1625 }
1626 
1627 static void intel_pt_free(struct perf_session *session)
1628 {
1629 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1630 					   auxtrace);
1631 
1632 	auxtrace_heap__free(&pt->heap);
1633 	intel_pt_free_events(session);
1634 	session->auxtrace = NULL;
1635 	thread__delete(pt->unknown_thread);
1636 	free(pt);
1637 }
1638 
1639 static int intel_pt_process_auxtrace_event(struct perf_session *session,
1640 					   union perf_event *event,
1641 					   struct perf_tool *tool __maybe_unused)
1642 {
1643 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1644 					   auxtrace);
1645 
1646 	if (pt->sampling_mode)
1647 		return 0;
1648 
1649 	if (!pt->data_queued) {
1650 		struct auxtrace_buffer *buffer;
1651 		off_t data_offset;
1652 		int fd = perf_data_file__fd(session->file);
1653 		int err;
1654 
1655 		if (perf_data_file__is_pipe(session->file)) {
1656 			data_offset = 0;
1657 		} else {
1658 			data_offset = lseek(fd, 0, SEEK_CUR);
1659 			if (data_offset == -1)
1660 				return -errno;
1661 		}
1662 
1663 		err = auxtrace_queues__add_event(&pt->queues, session, event,
1664 						 data_offset, &buffer);
1665 		if (err)
1666 			return err;
1667 
1668 		/* Dump here now we have copied a piped trace out of the pipe */
1669 		if (dump_trace) {
1670 			if (auxtrace_buffer__get_data(buffer, fd)) {
1671 				intel_pt_dump_event(pt, buffer->data,
1672 						    buffer->size);
1673 				auxtrace_buffer__put_data(buffer);
1674 			}
1675 		}
1676 	}
1677 
1678 	return 0;
1679 }
1680 
1681 struct intel_pt_synth {
1682 	struct perf_tool dummy_tool;
1683 	struct perf_session *session;
1684 };
1685 
1686 static int intel_pt_event_synth(struct perf_tool *tool,
1687 				union perf_event *event,
1688 				struct perf_sample *sample __maybe_unused,
1689 				struct machine *machine __maybe_unused)
1690 {
1691 	struct intel_pt_synth *intel_pt_synth =
1692 			container_of(tool, struct intel_pt_synth, dummy_tool);
1693 
1694 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
1695 						 NULL);
1696 }
1697 
1698 static int intel_pt_synth_event(struct perf_session *session,
1699 				struct perf_event_attr *attr, u64 id)
1700 {
1701 	struct intel_pt_synth intel_pt_synth;
1702 
1703 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
1704 	intel_pt_synth.session = session;
1705 
1706 	return perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
1707 					   &id, intel_pt_event_synth);
1708 }
1709 
1710 static int intel_pt_synth_events(struct intel_pt *pt,
1711 				 struct perf_session *session)
1712 {
1713 	struct perf_evlist *evlist = session->evlist;
1714 	struct perf_evsel *evsel;
1715 	struct perf_event_attr attr;
1716 	bool found = false;
1717 	u64 id;
1718 	int err;
1719 
1720 	evlist__for_each(evlist, evsel) {
1721 		if (evsel->attr.type == pt->pmu_type && evsel->ids) {
1722 			found = true;
1723 			break;
1724 		}
1725 	}
1726 
1727 	if (!found) {
1728 		pr_debug("There are no selected events with Intel Processor Trace data\n");
1729 		return 0;
1730 	}
1731 
1732 	memset(&attr, 0, sizeof(struct perf_event_attr));
1733 	attr.size = sizeof(struct perf_event_attr);
1734 	attr.type = PERF_TYPE_HARDWARE;
1735 	attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
1736 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1737 			    PERF_SAMPLE_PERIOD;
1738 	if (pt->timeless_decoding)
1739 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1740 	else
1741 		attr.sample_type |= PERF_SAMPLE_TIME;
1742 	if (!pt->per_cpu_mmaps)
1743 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
1744 	attr.exclude_user = evsel->attr.exclude_user;
1745 	attr.exclude_kernel = evsel->attr.exclude_kernel;
1746 	attr.exclude_hv = evsel->attr.exclude_hv;
1747 	attr.exclude_host = evsel->attr.exclude_host;
1748 	attr.exclude_guest = evsel->attr.exclude_guest;
1749 	attr.sample_id_all = evsel->attr.sample_id_all;
1750 	attr.read_format = evsel->attr.read_format;
1751 
1752 	id = evsel->id[0] + 1000000000;
1753 	if (!id)
1754 		id = 1;
1755 
1756 	if (pt->synth_opts.instructions) {
1757 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1758 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
1759 			attr.sample_period =
1760 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
1761 		else
1762 			attr.sample_period = pt->synth_opts.period;
1763 		pt->instructions_sample_period = attr.sample_period;
1764 		if (pt->synth_opts.callchain)
1765 			attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
1766 		pr_debug("Synthesizing 'instructions' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
1767 			 id, (u64)attr.sample_type);
1768 		err = intel_pt_synth_event(session, &attr, id);
1769 		if (err) {
1770 			pr_err("%s: failed to synthesize 'instructions' event type\n",
1771 			       __func__);
1772 			return err;
1773 		}
1774 		pt->sample_instructions = true;
1775 		pt->instructions_sample_type = attr.sample_type;
1776 		pt->instructions_id = id;
1777 		id += 1;
1778 	}
1779 
1780 	if (pt->synth_opts.transactions) {
1781 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1782 		attr.sample_period = 1;
1783 		if (pt->synth_opts.callchain)
1784 			attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
1785 		pr_debug("Synthesizing 'transactions' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
1786 			 id, (u64)attr.sample_type);
1787 		err = intel_pt_synth_event(session, &attr, id);
1788 		if (err) {
1789 			pr_err("%s: failed to synthesize 'transactions' event type\n",
1790 			       __func__);
1791 			return err;
1792 		}
1793 		pt->sample_transactions = true;
1794 		pt->transactions_id = id;
1795 		id += 1;
1796 		evlist__for_each(evlist, evsel) {
1797 			if (evsel->id && evsel->id[0] == pt->transactions_id) {
1798 				if (evsel->name)
1799 					zfree(&evsel->name);
1800 				evsel->name = strdup("transactions");
1801 				break;
1802 			}
1803 		}
1804 	}
1805 
1806 	if (pt->synth_opts.branches) {
1807 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1808 		attr.sample_period = 1;
1809 		attr.sample_type |= PERF_SAMPLE_ADDR;
1810 		attr.sample_type &= ~(u64)PERF_SAMPLE_CALLCHAIN;
1811 		pr_debug("Synthesizing 'branches' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
1812 			 id, (u64)attr.sample_type);
1813 		err = intel_pt_synth_event(session, &attr, id);
1814 		if (err) {
1815 			pr_err("%s: failed to synthesize 'branches' event type\n",
1816 			       __func__);
1817 			return err;
1818 		}
1819 		pt->sample_branches = true;
1820 		pt->branches_sample_type = attr.sample_type;
1821 		pt->branches_id = id;
1822 	}
1823 
1824 	pt->synth_needs_swap = evsel->needs_swap;
1825 
1826 	return 0;
1827 }
1828 
1829 static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist)
1830 {
1831 	struct perf_evsel *evsel;
1832 
1833 	evlist__for_each_reverse(evlist, evsel) {
1834 		const char *name = perf_evsel__name(evsel);
1835 
1836 		if (!strcmp(name, "sched:sched_switch"))
1837 			return evsel;
1838 	}
1839 
1840 	return NULL;
1841 }
1842 
1843 static bool intel_pt_find_switch(struct perf_evlist *evlist)
1844 {
1845 	struct perf_evsel *evsel;
1846 
1847 	evlist__for_each(evlist, evsel) {
1848 		if (evsel->attr.context_switch)
1849 			return true;
1850 	}
1851 
1852 	return false;
1853 }
1854 
1855 static const char * const intel_pt_info_fmts[] = {
1856 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
1857 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
1858 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
1859 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
1860 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
1861 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
1862 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
1863 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
1864 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
1865 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
1866 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
1867 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
1868 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
1869 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
1870 };
1871 
1872 static void intel_pt_print_info(u64 *arr, int start, int finish)
1873 {
1874 	int i;
1875 
1876 	if (!dump_trace)
1877 		return;
1878 
1879 	for (i = start; i <= finish; i++)
1880 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
1881 }
1882 
1883 int intel_pt_process_auxtrace_info(union perf_event *event,
1884 				   struct perf_session *session)
1885 {
1886 	struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
1887 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
1888 	struct intel_pt *pt;
1889 	int err;
1890 
1891 	if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) +
1892 					min_sz)
1893 		return -EINVAL;
1894 
1895 	pt = zalloc(sizeof(struct intel_pt));
1896 	if (!pt)
1897 		return -ENOMEM;
1898 
1899 	err = auxtrace_queues__init(&pt->queues);
1900 	if (err)
1901 		goto err_free;
1902 
1903 	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
1904 
1905 	pt->session = session;
1906 	pt->machine = &session->machines.host; /* No kvm support */
1907 	pt->auxtrace_type = auxtrace_info->type;
1908 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
1909 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
1910 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
1911 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
1912 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
1913 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
1914 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
1915 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
1916 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
1917 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
1918 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
1919 			    INTEL_PT_PER_CPU_MMAPS);
1920 
1921 	if (auxtrace_info->header.size >= sizeof(struct auxtrace_info_event) +
1922 					(sizeof(u64) * INTEL_PT_CYC_BIT)) {
1923 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
1924 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
1925 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
1926 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
1927 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
1928 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
1929 				    INTEL_PT_CYC_BIT);
1930 	}
1931 
1932 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
1933 	pt->have_tsc = intel_pt_have_tsc(pt);
1934 	pt->sampling_mode = false;
1935 	pt->est_tsc = !pt->timeless_decoding;
1936 
1937 	pt->unknown_thread = thread__new(999999999, 999999999);
1938 	if (!pt->unknown_thread) {
1939 		err = -ENOMEM;
1940 		goto err_free_queues;
1941 	}
1942 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
1943 	if (err)
1944 		goto err_delete_thread;
1945 	if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
1946 		err = -ENOMEM;
1947 		goto err_delete_thread;
1948 	}
1949 
1950 	pt->auxtrace.process_event = intel_pt_process_event;
1951 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
1952 	pt->auxtrace.flush_events = intel_pt_flush;
1953 	pt->auxtrace.free_events = intel_pt_free_events;
1954 	pt->auxtrace.free = intel_pt_free;
1955 	session->auxtrace = &pt->auxtrace;
1956 
1957 	if (dump_trace)
1958 		return 0;
1959 
1960 	if (pt->have_sched_switch == 1) {
1961 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
1962 		if (!pt->switch_evsel) {
1963 			pr_err("%s: missing sched_switch event\n", __func__);
1964 			goto err_delete_thread;
1965 		}
1966 	} else if (pt->have_sched_switch == 2 &&
1967 		   !intel_pt_find_switch(session->evlist)) {
1968 		pr_err("%s: missing context_switch attribute flag\n", __func__);
1969 		goto err_delete_thread;
1970 	}
1971 
1972 	if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
1973 		pt->synth_opts = *session->itrace_synth_opts;
1974 	} else {
1975 		itrace_synth_opts__set_default(&pt->synth_opts);
1976 		if (use_browser != -1) {
1977 			pt->synth_opts.branches = false;
1978 			pt->synth_opts.callchain = true;
1979 		}
1980 	}
1981 
1982 	if (pt->synth_opts.log)
1983 		intel_pt_log_enable();
1984 
1985 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
1986 	if (pt->tc.time_mult) {
1987 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
1988 
1989 		pt->max_non_turbo_ratio = (tsc_freq + 50000000) / 100000000;
1990 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
1991 		intel_pt_log("Maximum non-turbo ratio %u\n",
1992 			     pt->max_non_turbo_ratio);
1993 	}
1994 
1995 	if (pt->synth_opts.calls)
1996 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
1997 				       PERF_IP_FLAG_TRACE_END;
1998 	if (pt->synth_opts.returns)
1999 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
2000 				       PERF_IP_FLAG_TRACE_BEGIN;
2001 
2002 	if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
2003 		symbol_conf.use_callchain = true;
2004 		if (callchain_register_param(&callchain_param) < 0) {
2005 			symbol_conf.use_callchain = false;
2006 			pt->synth_opts.callchain = false;
2007 		}
2008 	}
2009 
2010 	err = intel_pt_synth_events(pt, session);
2011 	if (err)
2012 		goto err_delete_thread;
2013 
2014 	err = auxtrace_queues__process_index(&pt->queues, session);
2015 	if (err)
2016 		goto err_delete_thread;
2017 
2018 	if (pt->queues.populated)
2019 		pt->data_queued = true;
2020 
2021 	if (pt->timeless_decoding)
2022 		pr_debug2("Intel PT decoding without timestamps\n");
2023 
2024 	return 0;
2025 
2026 err_delete_thread:
2027 	thread__delete(pt->unknown_thread);
2028 err_free_queues:
2029 	intel_pt_log_disable();
2030 	auxtrace_queues__free(&pt->queues);
2031 	session->auxtrace = NULL;
2032 err_free:
2033 	free(pt);
2034 	return err;
2035 }
2036