xref: /linux/tools/perf/util/intel-pt.c (revision b9ef12eaa0039f383099c7b3a4798c5090679714)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <linux/perf_event.h>
9 #include <stdio.h>
10 #include <stdbool.h>
11 #include <errno.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16 
17 #include "session.h"
18 #include "machine.h"
19 #include "memswap.h"
20 #include "sort.h"
21 #include "tool.h"
22 #include "event.h"
23 #include "evlist.h"
24 #include "evsel.h"
25 #include "map.h"
26 #include "color.h"
27 #include "thread.h"
28 #include "thread-stack.h"
29 #include "symbol.h"
30 #include "callchain.h"
31 #include "dso.h"
32 #include "debug.h"
33 #include "auxtrace.h"
34 #include "tsc.h"
35 #include "intel-pt.h"
36 #include "config.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "time-utils.h"
40 
41 #include "../arch/x86/include/uapi/asm/perf_regs.h"
42 
43 #include "intel-pt-decoder/intel-pt-log.h"
44 #include "intel-pt-decoder/intel-pt-decoder.h"
45 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
46 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
47 
48 #define MAX_TIMESTAMP (~0ULL)
49 
50 #define INTEL_PT_CFG_PASS_THRU	BIT_ULL(0)
51 #define INTEL_PT_CFG_PWR_EVT_EN	BIT_ULL(4)
52 #define INTEL_PT_CFG_BRANCH_EN	BIT_ULL(13)
53 #define INTEL_PT_CFG_EVT_EN	BIT_ULL(31)
54 #define INTEL_PT_CFG_TNT_DIS	BIT_ULL(55)
55 
56 struct range {
57 	u64 start;
58 	u64 end;
59 };
60 
61 struct intel_pt {
62 	struct auxtrace auxtrace;
63 	struct auxtrace_queues queues;
64 	struct auxtrace_heap heap;
65 	u32 auxtrace_type;
66 	struct perf_session *session;
67 	struct machine *machine;
68 	struct evsel *switch_evsel;
69 	struct thread *unknown_thread;
70 	bool timeless_decoding;
71 	bool sampling_mode;
72 	bool snapshot_mode;
73 	bool per_cpu_mmaps;
74 	bool have_tsc;
75 	bool data_queued;
76 	bool est_tsc;
77 	bool sync_switch;
78 	bool sync_switch_not_supported;
79 	bool mispred_all;
80 	bool use_thread_stack;
81 	bool callstack;
82 	bool cap_event_trace;
83 	bool have_guest_sideband;
84 	unsigned int br_stack_sz;
85 	unsigned int br_stack_sz_plus;
86 	int have_sched_switch;
87 	u32 pmu_type;
88 	u64 kernel_start;
89 	u64 switch_ip;
90 	u64 ptss_ip;
91 	u64 first_timestamp;
92 
93 	struct perf_tsc_conversion tc;
94 	bool cap_user_time_zero;
95 
96 	struct itrace_synth_opts synth_opts;
97 
98 	bool sample_instructions;
99 	u64 instructions_sample_type;
100 	u64 instructions_id;
101 
102 	bool sample_cycles;
103 	u64 cycles_sample_type;
104 	u64 cycles_id;
105 
106 	bool sample_branches;
107 	u32 branches_filter;
108 	u64 branches_sample_type;
109 	u64 branches_id;
110 
111 	bool sample_transactions;
112 	u64 transactions_sample_type;
113 	u64 transactions_id;
114 
115 	bool sample_ptwrites;
116 	u64 ptwrites_sample_type;
117 	u64 ptwrites_id;
118 
119 	bool sample_pwr_events;
120 	u64 pwr_events_sample_type;
121 	u64 mwait_id;
122 	u64 pwre_id;
123 	u64 exstop_id;
124 	u64 pwrx_id;
125 	u64 cbr_id;
126 	u64 psb_id;
127 
128 	bool single_pebs;
129 	bool sample_pebs;
130 	struct evsel *pebs_evsel;
131 
132 	u64 evt_sample_type;
133 	u64 evt_id;
134 
135 	u64 iflag_chg_sample_type;
136 	u64 iflag_chg_id;
137 
138 	u64 tsc_bit;
139 	u64 mtc_bit;
140 	u64 mtc_freq_bits;
141 	u32 tsc_ctc_ratio_n;
142 	u32 tsc_ctc_ratio_d;
143 	u64 cyc_bit;
144 	u64 noretcomp_bit;
145 	unsigned max_non_turbo_ratio;
146 	unsigned cbr2khz;
147 	int max_loops;
148 
149 	unsigned long num_events;
150 
151 	char *filter;
152 	struct addr_filters filts;
153 
154 	struct range *time_ranges;
155 	unsigned int range_cnt;
156 
157 	struct ip_callchain *chain;
158 	struct branch_stack *br_stack;
159 
160 	u64 dflt_tsc_offset;
161 	struct rb_root vmcs_info;
162 };
163 
164 enum switch_state {
165 	INTEL_PT_SS_NOT_TRACING,
166 	INTEL_PT_SS_UNKNOWN,
167 	INTEL_PT_SS_TRACING,
168 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
169 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
170 };
171 
172 /* applicable_counters is 64-bits */
173 #define INTEL_PT_MAX_PEBS 64
174 
175 struct intel_pt_pebs_event {
176 	struct evsel *evsel;
177 	u64 id;
178 };
179 
180 struct intel_pt_queue {
181 	struct intel_pt *pt;
182 	unsigned int queue_nr;
183 	struct auxtrace_buffer *buffer;
184 	struct auxtrace_buffer *old_buffer;
185 	void *decoder;
186 	const struct intel_pt_state *state;
187 	struct ip_callchain *chain;
188 	struct branch_stack *last_branch;
189 	union perf_event *event_buf;
190 	bool on_heap;
191 	bool stop;
192 	bool step_through_buffers;
193 	bool use_buffer_pid_tid;
194 	bool sync_switch;
195 	bool sample_ipc;
196 	pid_t pid, tid;
197 	int cpu;
198 	int switch_state;
199 	pid_t next_tid;
200 	struct thread *thread;
201 	struct machine *guest_machine;
202 	struct thread *guest_thread;
203 	struct thread *unknown_guest_thread;
204 	pid_t guest_machine_pid;
205 	pid_t guest_pid;
206 	pid_t guest_tid;
207 	int vcpu;
208 	bool exclude_kernel;
209 	bool have_sample;
210 	u64 time;
211 	u64 timestamp;
212 	u64 sel_timestamp;
213 	bool sel_start;
214 	unsigned int sel_idx;
215 	u32 flags;
216 	u16 insn_len;
217 	u64 last_insn_cnt;
218 	u64 ipc_insn_cnt;
219 	u64 ipc_cyc_cnt;
220 	u64 last_in_insn_cnt;
221 	u64 last_in_cyc_cnt;
222 	u64 last_cy_insn_cnt;
223 	u64 last_cy_cyc_cnt;
224 	u64 last_br_insn_cnt;
225 	u64 last_br_cyc_cnt;
226 	unsigned int cbr_seen;
227 	char insn[INTEL_PT_INSN_BUF_SZ];
228 	struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
229 };
230 
231 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
232 			  unsigned char *buf, size_t len)
233 {
234 	struct intel_pt_pkt packet;
235 	size_t pos = 0;
236 	int ret, pkt_len, i;
237 	char desc[INTEL_PT_PKT_DESC_MAX];
238 	const char *color = PERF_COLOR_BLUE;
239 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
240 
241 	color_fprintf(stdout, color,
242 		      ". ... Intel Processor Trace data: size %zu bytes\n",
243 		      len);
244 
245 	while (len) {
246 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
247 		if (ret > 0)
248 			pkt_len = ret;
249 		else
250 			pkt_len = 1;
251 		printf(".");
252 		color_fprintf(stdout, color, "  %08x: ", pos);
253 		for (i = 0; i < pkt_len; i++)
254 			color_fprintf(stdout, color, " %02x", buf[i]);
255 		for (; i < 16; i++)
256 			color_fprintf(stdout, color, "   ");
257 		if (ret > 0) {
258 			ret = intel_pt_pkt_desc(&packet, desc,
259 						INTEL_PT_PKT_DESC_MAX);
260 			if (ret > 0)
261 				color_fprintf(stdout, color, " %s\n", desc);
262 		} else {
263 			color_fprintf(stdout, color, " Bad packet!\n");
264 		}
265 		pos += pkt_len;
266 		buf += pkt_len;
267 		len -= pkt_len;
268 	}
269 }
270 
271 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
272 				size_t len)
273 {
274 	printf(".\n");
275 	intel_pt_dump(pt, buf, len);
276 }
277 
278 static void intel_pt_log_event(union perf_event *event)
279 {
280 	FILE *f = intel_pt_log_fp();
281 
282 	if (!intel_pt_enable_logging || !f)
283 		return;
284 
285 	perf_event__fprintf(event, NULL, f);
286 }
287 
288 static void intel_pt_dump_sample(struct perf_session *session,
289 				 struct perf_sample *sample)
290 {
291 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
292 					   auxtrace);
293 
294 	printf("\n");
295 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
296 }
297 
298 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
299 {
300 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
301 	int n = pt->synth_opts.range_num;
302 
303 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
304 		return true;
305 
306 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
307 		return false;
308 
309 	/* perf_time__ranges_skip_sample does not work if time is zero */
310 	if (!tm)
311 		tm = 1;
312 
313 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
314 }
315 
316 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
317 							u64 vmcs,
318 							u64 dflt_tsc_offset)
319 {
320 	struct rb_node **p = &rb_root->rb_node;
321 	struct rb_node *parent = NULL;
322 	struct intel_pt_vmcs_info *v;
323 
324 	while (*p) {
325 		parent = *p;
326 		v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
327 
328 		if (v->vmcs == vmcs)
329 			return v;
330 
331 		if (vmcs < v->vmcs)
332 			p = &(*p)->rb_left;
333 		else
334 			p = &(*p)->rb_right;
335 	}
336 
337 	v = zalloc(sizeof(*v));
338 	if (v) {
339 		v->vmcs = vmcs;
340 		v->tsc_offset = dflt_tsc_offset;
341 		v->reliable = dflt_tsc_offset;
342 
343 		rb_link_node(&v->rb_node, parent, p);
344 		rb_insert_color(&v->rb_node, rb_root);
345 	}
346 
347 	return v;
348 }
349 
350 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
351 {
352 	struct intel_pt_queue *ptq = data;
353 	struct intel_pt *pt = ptq->pt;
354 
355 	if (!vmcs && !pt->dflt_tsc_offset)
356 		return NULL;
357 
358 	return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
359 }
360 
361 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
362 {
363 	struct intel_pt_vmcs_info *v;
364 	struct rb_node *n;
365 
366 	n = rb_first(&pt->vmcs_info);
367 	while (n) {
368 		v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
369 		n = rb_next(n);
370 		rb_erase(&v->rb_node, &pt->vmcs_info);
371 		free(v);
372 	}
373 }
374 
375 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
376 				   struct auxtrace_buffer *b)
377 {
378 	bool consecutive = false;
379 	void *start;
380 
381 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
382 				      pt->have_tsc, &consecutive,
383 				      pt->synth_opts.vm_time_correlation);
384 	if (!start)
385 		return -EINVAL;
386 	/*
387 	 * In the case of vm_time_correlation, the overlap might contain TSC
388 	 * packets that will not be fixed, and that will then no longer work for
389 	 * overlap detection. Avoid that by zeroing out the overlap.
390 	 */
391 	if (pt->synth_opts.vm_time_correlation)
392 		memset(b->data, 0, start - b->data);
393 	b->use_size = b->data + b->size - start;
394 	b->use_data = start;
395 	if (b->use_size && consecutive)
396 		b->consecutive = true;
397 	return 0;
398 }
399 
400 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
401 			       struct auxtrace_buffer *buffer,
402 			       struct auxtrace_buffer *old_buffer,
403 			       struct intel_pt_buffer *b)
404 {
405 	bool might_overlap;
406 
407 	if (!buffer->data) {
408 		int fd = perf_data__fd(ptq->pt->session->data);
409 
410 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
411 		if (!buffer->data)
412 			return -ENOMEM;
413 	}
414 
415 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
416 	if (might_overlap && !buffer->consecutive && old_buffer &&
417 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
418 		return -ENOMEM;
419 
420 	if (buffer->use_data) {
421 		b->len = buffer->use_size;
422 		b->buf = buffer->use_data;
423 	} else {
424 		b->len = buffer->size;
425 		b->buf = buffer->data;
426 	}
427 	b->ref_timestamp = buffer->reference;
428 
429 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
430 		b->consecutive = false;
431 		b->trace_nr = buffer->buffer_nr + 1;
432 	} else {
433 		b->consecutive = true;
434 	}
435 
436 	return 0;
437 }
438 
439 /* Do not drop buffers with references - refer intel_pt_get_trace() */
440 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
441 					   struct auxtrace_buffer *buffer)
442 {
443 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
444 		return;
445 
446 	auxtrace_buffer__drop_data(buffer);
447 }
448 
449 /* Must be serialized with respect to intel_pt_get_trace() */
450 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
451 			      void *cb_data)
452 {
453 	struct intel_pt_queue *ptq = data;
454 	struct auxtrace_buffer *buffer = ptq->buffer;
455 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
456 	struct auxtrace_queue *queue;
457 	int err = 0;
458 
459 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
460 
461 	while (1) {
462 		struct intel_pt_buffer b = { .len = 0 };
463 
464 		buffer = auxtrace_buffer__next(queue, buffer);
465 		if (!buffer)
466 			break;
467 
468 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
469 		if (err)
470 			break;
471 
472 		if (b.len) {
473 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
474 			old_buffer = buffer;
475 		} else {
476 			intel_pt_lookahead_drop_buffer(ptq, buffer);
477 			continue;
478 		}
479 
480 		err = cb(&b, cb_data);
481 		if (err)
482 			break;
483 	}
484 
485 	if (buffer != old_buffer)
486 		intel_pt_lookahead_drop_buffer(ptq, buffer);
487 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
488 
489 	return err;
490 }
491 
492 /*
493  * This function assumes data is processed sequentially only.
494  * Must be serialized with respect to intel_pt_lookahead()
495  */
496 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
497 {
498 	struct intel_pt_queue *ptq = data;
499 	struct auxtrace_buffer *buffer = ptq->buffer;
500 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
501 	struct auxtrace_queue *queue;
502 	int err;
503 
504 	if (ptq->stop) {
505 		b->len = 0;
506 		return 0;
507 	}
508 
509 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
510 
511 	buffer = auxtrace_buffer__next(queue, buffer);
512 	if (!buffer) {
513 		if (old_buffer)
514 			auxtrace_buffer__drop_data(old_buffer);
515 		b->len = 0;
516 		return 0;
517 	}
518 
519 	ptq->buffer = buffer;
520 
521 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
522 	if (err)
523 		return err;
524 
525 	if (ptq->step_through_buffers)
526 		ptq->stop = true;
527 
528 	if (b->len) {
529 		if (old_buffer)
530 			auxtrace_buffer__drop_data(old_buffer);
531 		ptq->old_buffer = buffer;
532 	} else {
533 		auxtrace_buffer__drop_data(buffer);
534 		return intel_pt_get_trace(b, data);
535 	}
536 
537 	return 0;
538 }
539 
540 struct intel_pt_cache_entry {
541 	struct auxtrace_cache_entry	entry;
542 	u64				insn_cnt;
543 	u64				byte_cnt;
544 	enum intel_pt_insn_op		op;
545 	enum intel_pt_insn_branch	branch;
546 	bool				emulated_ptwrite;
547 	int				length;
548 	int32_t				rel;
549 	char				insn[INTEL_PT_INSN_BUF_SZ];
550 };
551 
552 static int intel_pt_config_div(const char *var, const char *value, void *data)
553 {
554 	int *d = data;
555 	long val;
556 
557 	if (!strcmp(var, "intel-pt.cache-divisor")) {
558 		val = strtol(value, NULL, 0);
559 		if (val > 0 && val <= INT_MAX)
560 			*d = val;
561 	}
562 
563 	return 0;
564 }
565 
566 static int intel_pt_cache_divisor(void)
567 {
568 	static int d;
569 
570 	if (d)
571 		return d;
572 
573 	perf_config(intel_pt_config_div, &d);
574 
575 	if (!d)
576 		d = 64;
577 
578 	return d;
579 }
580 
581 static unsigned int intel_pt_cache_size(struct dso *dso,
582 					struct machine *machine)
583 {
584 	off_t size;
585 
586 	size = dso__data_size(dso, machine);
587 	size /= intel_pt_cache_divisor();
588 	if (size < 1000)
589 		return 10;
590 	if (size > (1 << 21))
591 		return 21;
592 	return 32 - __builtin_clz(size);
593 }
594 
595 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
596 					     struct machine *machine)
597 {
598 	struct auxtrace_cache *c;
599 	unsigned int bits;
600 
601 	if (dso->auxtrace_cache)
602 		return dso->auxtrace_cache;
603 
604 	bits = intel_pt_cache_size(dso, machine);
605 
606 	/* Ignoring cache creation failure */
607 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
608 
609 	dso->auxtrace_cache = c;
610 
611 	return c;
612 }
613 
614 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
615 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
616 			      struct intel_pt_insn *intel_pt_insn)
617 {
618 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
619 	struct intel_pt_cache_entry *e;
620 	int err;
621 
622 	if (!c)
623 		return -ENOMEM;
624 
625 	e = auxtrace_cache__alloc_entry(c);
626 	if (!e)
627 		return -ENOMEM;
628 
629 	e->insn_cnt = insn_cnt;
630 	e->byte_cnt = byte_cnt;
631 	e->op = intel_pt_insn->op;
632 	e->branch = intel_pt_insn->branch;
633 	e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
634 	e->length = intel_pt_insn->length;
635 	e->rel = intel_pt_insn->rel;
636 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
637 
638 	err = auxtrace_cache__add(c, offset, &e->entry);
639 	if (err)
640 		auxtrace_cache__free_entry(c, e);
641 
642 	return err;
643 }
644 
645 static struct intel_pt_cache_entry *
646 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
647 {
648 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
649 
650 	if (!c)
651 		return NULL;
652 
653 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
654 }
655 
656 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
657 				      u64 offset)
658 {
659 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
660 
661 	if (!c)
662 		return;
663 
664 	auxtrace_cache__remove(dso->auxtrace_cache, offset);
665 }
666 
667 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
668 {
669 	/* Assumes 64-bit kernel */
670 	return ip & (1ULL << 63);
671 }
672 
673 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
674 {
675 	if (nr) {
676 		return intel_pt_guest_kernel_ip(ip) ?
677 		       PERF_RECORD_MISC_GUEST_KERNEL :
678 		       PERF_RECORD_MISC_GUEST_USER;
679 	}
680 
681 	return ip >= ptq->pt->kernel_start ?
682 	       PERF_RECORD_MISC_KERNEL :
683 	       PERF_RECORD_MISC_USER;
684 }
685 
686 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
687 {
688 	/* No support for non-zero CS base */
689 	if (from_ip)
690 		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
691 	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
692 }
693 
694 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
695 {
696 	struct machines *machines = &ptq->pt->session->machines;
697 	struct machine *machine;
698 	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
699 
700 	if (ptq->guest_machine && pid == ptq->guest_machine->pid)
701 		return 0;
702 
703 	ptq->guest_machine = NULL;
704 	thread__zput(ptq->unknown_guest_thread);
705 
706 	if (symbol_conf.guest_code) {
707 		thread__zput(ptq->guest_thread);
708 		ptq->guest_thread = machines__findnew_guest_code(machines, pid);
709 	}
710 
711 	machine = machines__find_guest(machines, pid);
712 	if (!machine)
713 		return -1;
714 
715 	ptq->unknown_guest_thread = machine__idle_thread(machine);
716 	if (!ptq->unknown_guest_thread)
717 		return -1;
718 
719 	ptq->guest_machine = machine;
720 
721 	return 0;
722 }
723 
724 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
725 {
726 	return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
727 }
728 
729 #define PTWRITE_MAGIC		"\x0f\x0bperf,ptwrite  "
730 #define PTWRITE_MAGIC_LEN	16
731 
732 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
733 {
734 	unsigned char buf[PTWRITE_MAGIC_LEN];
735 	ssize_t len;
736 
737 	len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
738 	if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
739 		intel_pt_log("Emulated ptwrite signature found\n");
740 		return true;
741 	}
742 	intel_pt_log("Emulated ptwrite signature not found\n");
743 	return false;
744 }
745 
746 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
747 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
748 				   uint64_t to_ip, uint64_t max_insn_cnt,
749 				   void *data)
750 {
751 	struct intel_pt_queue *ptq = data;
752 	struct machine *machine = ptq->pt->machine;
753 	struct thread *thread;
754 	struct addr_location al;
755 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
756 	ssize_t len;
757 	int x86_64;
758 	u8 cpumode;
759 	u64 offset, start_offset, start_ip;
760 	u64 insn_cnt = 0;
761 	bool one_map = true;
762 	bool nr;
763 
764 	intel_pt_insn->length = 0;
765 
766 	if (to_ip && *ip == to_ip)
767 		goto out_no_cache;
768 
769 	nr = ptq->state->to_nr;
770 	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
771 
772 	if (nr) {
773 		if (ptq->pt->have_guest_sideband) {
774 			if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
775 				intel_pt_log("ERROR: guest sideband but no guest machine\n");
776 				return -EINVAL;
777 			}
778 		} else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
779 			   intel_pt_get_guest(ptq)) {
780 			intel_pt_log("ERROR: no guest machine\n");
781 			return -EINVAL;
782 		}
783 		machine = ptq->guest_machine;
784 		thread = ptq->guest_thread;
785 		if (!thread) {
786 			if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
787 				intel_pt_log("ERROR: no guest thread\n");
788 				return -EINVAL;
789 			}
790 			thread = ptq->unknown_guest_thread;
791 		}
792 	} else {
793 		thread = ptq->thread;
794 		if (!thread) {
795 			if (cpumode != PERF_RECORD_MISC_KERNEL) {
796 				intel_pt_log("ERROR: no thread\n");
797 				return -EINVAL;
798 			}
799 			thread = ptq->pt->unknown_thread;
800 		}
801 	}
802 
803 	while (1) {
804 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso) {
805 			if (al.map)
806 				intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
807 			else
808 				intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
809 			return -EINVAL;
810 		}
811 
812 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
813 		    dso__data_status_seen(al.map->dso,
814 					  DSO_DATA_STATUS_SEEN_ITRACE))
815 			return -ENOENT;
816 
817 		offset = al.map->map_ip(al.map, *ip);
818 
819 		if (!to_ip && one_map) {
820 			struct intel_pt_cache_entry *e;
821 
822 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
823 			if (e &&
824 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
825 				*insn_cnt_ptr = e->insn_cnt;
826 				*ip += e->byte_cnt;
827 				intel_pt_insn->op = e->op;
828 				intel_pt_insn->branch = e->branch;
829 				intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
830 				intel_pt_insn->length = e->length;
831 				intel_pt_insn->rel = e->rel;
832 				memcpy(intel_pt_insn->buf, e->insn,
833 				       INTEL_PT_INSN_BUF_SZ);
834 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
835 				return 0;
836 			}
837 		}
838 
839 		start_offset = offset;
840 		start_ip = *ip;
841 
842 		/* Load maps to ensure dso->is_64_bit has been updated */
843 		map__load(al.map);
844 
845 		x86_64 = al.map->dso->is_64_bit;
846 
847 		while (1) {
848 			len = dso__data_read_offset(al.map->dso, machine,
849 						    offset, buf,
850 						    INTEL_PT_INSN_BUF_SZ);
851 			if (len <= 0) {
852 				intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
853 					     offset);
854 				if (intel_pt_enable_logging)
855 					dso__fprintf(al.map->dso, intel_pt_log_fp());
856 				return -EINVAL;
857 			}
858 
859 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
860 				return -EINVAL;
861 
862 			intel_pt_log_insn(intel_pt_insn, *ip);
863 
864 			insn_cnt += 1;
865 
866 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
867 				bool eptw;
868 				u64 offs;
869 
870 				if (!intel_pt_jmp_16(intel_pt_insn))
871 					goto out;
872 				/* Check for emulated ptwrite */
873 				offs = offset + intel_pt_insn->length;
874 				eptw = intel_pt_emulated_ptwrite(al.map->dso, machine, offs);
875 				intel_pt_insn->emulated_ptwrite = eptw;
876 				goto out;
877 			}
878 
879 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
880 				goto out_no_cache;
881 
882 			*ip += intel_pt_insn->length;
883 
884 			if (to_ip && *ip == to_ip) {
885 				intel_pt_insn->length = 0;
886 				goto out_no_cache;
887 			}
888 
889 			if (*ip >= al.map->end)
890 				break;
891 
892 			offset += intel_pt_insn->length;
893 		}
894 		one_map = false;
895 	}
896 out:
897 	*insn_cnt_ptr = insn_cnt;
898 
899 	if (!one_map)
900 		goto out_no_cache;
901 
902 	/*
903 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
904 	 * entries.
905 	 */
906 	if (to_ip) {
907 		struct intel_pt_cache_entry *e;
908 
909 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
910 		if (e)
911 			return 0;
912 	}
913 
914 	/* Ignore cache errors */
915 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
916 			   *ip - start_ip, intel_pt_insn);
917 
918 	return 0;
919 
920 out_no_cache:
921 	*insn_cnt_ptr = insn_cnt;
922 	return 0;
923 }
924 
925 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
926 				  uint64_t offset, const char *filename)
927 {
928 	struct addr_filter *filt;
929 	bool have_filter   = false;
930 	bool hit_tracestop = false;
931 	bool hit_filter    = false;
932 
933 	list_for_each_entry(filt, &pt->filts.head, list) {
934 		if (filt->start)
935 			have_filter = true;
936 
937 		if ((filename && !filt->filename) ||
938 		    (!filename && filt->filename) ||
939 		    (filename && strcmp(filename, filt->filename)))
940 			continue;
941 
942 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
943 			continue;
944 
945 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
946 			     ip, offset, filename ? filename : "[kernel]",
947 			     filt->start ? "filter" : "stop",
948 			     filt->addr, filt->size);
949 
950 		if (filt->start)
951 			hit_filter = true;
952 		else
953 			hit_tracestop = true;
954 	}
955 
956 	if (!hit_tracestop && !hit_filter)
957 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
958 			     ip, offset, filename ? filename : "[kernel]");
959 
960 	return hit_tracestop || (have_filter && !hit_filter);
961 }
962 
963 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
964 {
965 	struct intel_pt_queue *ptq = data;
966 	struct thread *thread;
967 	struct addr_location al;
968 	u8 cpumode;
969 	u64 offset;
970 
971 	if (ptq->state->to_nr) {
972 		if (intel_pt_guest_kernel_ip(ip))
973 			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
974 		/* No support for decoding guest user space */
975 		return -EINVAL;
976 	} else if (ip >= ptq->pt->kernel_start) {
977 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
978 	}
979 
980 	cpumode = PERF_RECORD_MISC_USER;
981 
982 	thread = ptq->thread;
983 	if (!thread)
984 		return -EINVAL;
985 
986 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
987 		return -EINVAL;
988 
989 	offset = al.map->map_ip(al.map, ip);
990 
991 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
992 				     al.map->dso->long_name);
993 }
994 
995 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
996 {
997 	return __intel_pt_pgd_ip(ip, data) > 0;
998 }
999 
1000 static bool intel_pt_get_config(struct intel_pt *pt,
1001 				struct perf_event_attr *attr, u64 *config)
1002 {
1003 	if (attr->type == pt->pmu_type) {
1004 		if (config)
1005 			*config = attr->config;
1006 		return true;
1007 	}
1008 
1009 	return false;
1010 }
1011 
1012 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1013 {
1014 	struct evsel *evsel;
1015 
1016 	evlist__for_each_entry(pt->session->evlist, evsel) {
1017 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1018 		    !evsel->core.attr.exclude_kernel)
1019 			return false;
1020 	}
1021 	return true;
1022 }
1023 
1024 static bool intel_pt_return_compression(struct intel_pt *pt)
1025 {
1026 	struct evsel *evsel;
1027 	u64 config;
1028 
1029 	if (!pt->noretcomp_bit)
1030 		return true;
1031 
1032 	evlist__for_each_entry(pt->session->evlist, evsel) {
1033 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1034 		    (config & pt->noretcomp_bit))
1035 			return false;
1036 	}
1037 	return true;
1038 }
1039 
1040 static bool intel_pt_branch_enable(struct intel_pt *pt)
1041 {
1042 	struct evsel *evsel;
1043 	u64 config;
1044 
1045 	evlist__for_each_entry(pt->session->evlist, evsel) {
1046 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1047 		    (config & INTEL_PT_CFG_PASS_THRU) &&
1048 		    !(config & INTEL_PT_CFG_BRANCH_EN))
1049 			return false;
1050 	}
1051 	return true;
1052 }
1053 
1054 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1055 {
1056 	struct evsel *evsel;
1057 	u64 config;
1058 
1059 	evlist__for_each_entry(pt->session->evlist, evsel) {
1060 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1061 		    config & INTEL_PT_CFG_TNT_DIS)
1062 			return true;
1063 	}
1064 	return false;
1065 }
1066 
1067 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1068 {
1069 	struct evsel *evsel;
1070 	unsigned int shift;
1071 	u64 config;
1072 
1073 	if (!pt->mtc_freq_bits)
1074 		return 0;
1075 
1076 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1077 		config >>= 1;
1078 
1079 	evlist__for_each_entry(pt->session->evlist, evsel) {
1080 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1081 			return (config & pt->mtc_freq_bits) >> shift;
1082 	}
1083 	return 0;
1084 }
1085 
1086 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1087 {
1088 	struct evsel *evsel;
1089 	bool timeless_decoding = true;
1090 	u64 config;
1091 
1092 	if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1093 		return true;
1094 
1095 	evlist__for_each_entry(pt->session->evlist, evsel) {
1096 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1097 			return true;
1098 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1099 			if (config & pt->tsc_bit)
1100 				timeless_decoding = false;
1101 			else
1102 				return true;
1103 		}
1104 	}
1105 	return timeless_decoding;
1106 }
1107 
1108 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1109 {
1110 	struct evsel *evsel;
1111 
1112 	evlist__for_each_entry(pt->session->evlist, evsel) {
1113 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1114 		    !evsel->core.attr.exclude_kernel)
1115 			return true;
1116 	}
1117 	return false;
1118 }
1119 
1120 static bool intel_pt_have_tsc(struct intel_pt *pt)
1121 {
1122 	struct evsel *evsel;
1123 	bool have_tsc = false;
1124 	u64 config;
1125 
1126 	if (!pt->tsc_bit)
1127 		return false;
1128 
1129 	evlist__for_each_entry(pt->session->evlist, evsel) {
1130 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1131 			if (config & pt->tsc_bit)
1132 				have_tsc = true;
1133 			else
1134 				return false;
1135 		}
1136 	}
1137 	return have_tsc;
1138 }
1139 
1140 static bool intel_pt_have_mtc(struct intel_pt *pt)
1141 {
1142 	struct evsel *evsel;
1143 	u64 config;
1144 
1145 	evlist__for_each_entry(pt->session->evlist, evsel) {
1146 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1147 		    (config & pt->mtc_bit))
1148 			return true;
1149 	}
1150 	return false;
1151 }
1152 
1153 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1154 {
1155 	struct evsel *evsel;
1156 
1157 	evlist__for_each_entry(pt->session->evlist, evsel) {
1158 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1159 		    evsel->core.attr.aux_sample_size)
1160 			return true;
1161 	}
1162 	return false;
1163 }
1164 
1165 static u64 intel_pt_ctl(struct intel_pt *pt)
1166 {
1167 	struct evsel *evsel;
1168 	u64 config;
1169 
1170 	evlist__for_each_entry(pt->session->evlist, evsel) {
1171 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1172 			return config;
1173 	}
1174 	return 0;
1175 }
1176 
1177 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1178 {
1179 	u64 quot, rem;
1180 
1181 	quot = ns / pt->tc.time_mult;
1182 	rem  = ns % pt->tc.time_mult;
1183 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1184 		pt->tc.time_mult;
1185 }
1186 
1187 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1188 {
1189 	size_t sz = sizeof(struct ip_callchain);
1190 
1191 	/* Add 1 to callchain_sz for callchain context */
1192 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1193 	return zalloc(sz);
1194 }
1195 
1196 static int intel_pt_callchain_init(struct intel_pt *pt)
1197 {
1198 	struct evsel *evsel;
1199 
1200 	evlist__for_each_entry(pt->session->evlist, evsel) {
1201 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1202 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1203 	}
1204 
1205 	pt->chain = intel_pt_alloc_chain(pt);
1206 	if (!pt->chain)
1207 		return -ENOMEM;
1208 
1209 	return 0;
1210 }
1211 
1212 static void intel_pt_add_callchain(struct intel_pt *pt,
1213 				   struct perf_sample *sample)
1214 {
1215 	struct thread *thread = machine__findnew_thread(pt->machine,
1216 							sample->pid,
1217 							sample->tid);
1218 
1219 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1220 				  pt->synth_opts.callchain_sz + 1, sample->ip,
1221 				  pt->kernel_start);
1222 
1223 	sample->callchain = pt->chain;
1224 }
1225 
1226 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1227 {
1228 	size_t sz = sizeof(struct branch_stack);
1229 
1230 	sz += entry_cnt * sizeof(struct branch_entry);
1231 	return zalloc(sz);
1232 }
1233 
1234 static int intel_pt_br_stack_init(struct intel_pt *pt)
1235 {
1236 	struct evsel *evsel;
1237 
1238 	evlist__for_each_entry(pt->session->evlist, evsel) {
1239 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1240 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1241 	}
1242 
1243 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1244 	if (!pt->br_stack)
1245 		return -ENOMEM;
1246 
1247 	return 0;
1248 }
1249 
1250 static void intel_pt_add_br_stack(struct intel_pt *pt,
1251 				  struct perf_sample *sample)
1252 {
1253 	struct thread *thread = machine__findnew_thread(pt->machine,
1254 							sample->pid,
1255 							sample->tid);
1256 
1257 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1258 				     pt->br_stack_sz, sample->ip,
1259 				     pt->kernel_start);
1260 
1261 	sample->branch_stack = pt->br_stack;
1262 }
1263 
1264 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1265 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1266 
1267 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1268 						   unsigned int queue_nr)
1269 {
1270 	struct intel_pt_params params = { .get_trace = 0, };
1271 	struct perf_env *env = pt->machine->env;
1272 	struct intel_pt_queue *ptq;
1273 
1274 	ptq = zalloc(sizeof(struct intel_pt_queue));
1275 	if (!ptq)
1276 		return NULL;
1277 
1278 	if (pt->synth_opts.callchain) {
1279 		ptq->chain = intel_pt_alloc_chain(pt);
1280 		if (!ptq->chain)
1281 			goto out_free;
1282 	}
1283 
1284 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1285 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1286 
1287 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1288 		if (!ptq->last_branch)
1289 			goto out_free;
1290 	}
1291 
1292 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1293 	if (!ptq->event_buf)
1294 		goto out_free;
1295 
1296 	ptq->pt = pt;
1297 	ptq->queue_nr = queue_nr;
1298 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1299 	ptq->pid = -1;
1300 	ptq->tid = -1;
1301 	ptq->cpu = -1;
1302 	ptq->next_tid = -1;
1303 
1304 	params.get_trace = intel_pt_get_trace;
1305 	params.walk_insn = intel_pt_walk_next_insn;
1306 	params.lookahead = intel_pt_lookahead;
1307 	params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1308 	params.data = ptq;
1309 	params.return_compression = intel_pt_return_compression(pt);
1310 	params.branch_enable = intel_pt_branch_enable(pt);
1311 	params.ctl = intel_pt_ctl(pt);
1312 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1313 	params.mtc_period = intel_pt_mtc_period(pt);
1314 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1315 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1316 	params.quick = pt->synth_opts.quick;
1317 	params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1318 	params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1319 	params.first_timestamp = pt->first_timestamp;
1320 	params.max_loops = pt->max_loops;
1321 
1322 	/* Cannot walk code without TNT, so force 'quick' mode */
1323 	if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1324 		params.quick = 1;
1325 
1326 	if (pt->filts.cnt > 0)
1327 		params.pgd_ip = intel_pt_pgd_ip;
1328 
1329 	if (pt->synth_opts.instructions || pt->synth_opts.cycles) {
1330 		if (pt->synth_opts.period) {
1331 			switch (pt->synth_opts.period_type) {
1332 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1333 				params.period_type =
1334 						INTEL_PT_PERIOD_INSTRUCTIONS;
1335 				params.period = pt->synth_opts.period;
1336 				break;
1337 			case PERF_ITRACE_PERIOD_TICKS:
1338 				params.period_type = INTEL_PT_PERIOD_TICKS;
1339 				params.period = pt->synth_opts.period;
1340 				break;
1341 			case PERF_ITRACE_PERIOD_NANOSECS:
1342 				params.period_type = INTEL_PT_PERIOD_TICKS;
1343 				params.period = intel_pt_ns_to_ticks(pt,
1344 							pt->synth_opts.period);
1345 				break;
1346 			default:
1347 				break;
1348 			}
1349 		}
1350 
1351 		if (!params.period) {
1352 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1353 			params.period = 1;
1354 		}
1355 	}
1356 
1357 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1358 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1359 
1360 	ptq->decoder = intel_pt_decoder_new(&params);
1361 	if (!ptq->decoder)
1362 		goto out_free;
1363 
1364 	return ptq;
1365 
1366 out_free:
1367 	zfree(&ptq->event_buf);
1368 	zfree(&ptq->last_branch);
1369 	zfree(&ptq->chain);
1370 	free(ptq);
1371 	return NULL;
1372 }
1373 
1374 static void intel_pt_free_queue(void *priv)
1375 {
1376 	struct intel_pt_queue *ptq = priv;
1377 
1378 	if (!ptq)
1379 		return;
1380 	thread__zput(ptq->thread);
1381 	thread__zput(ptq->guest_thread);
1382 	thread__zput(ptq->unknown_guest_thread);
1383 	intel_pt_decoder_free(ptq->decoder);
1384 	zfree(&ptq->event_buf);
1385 	zfree(&ptq->last_branch);
1386 	zfree(&ptq->chain);
1387 	free(ptq);
1388 }
1389 
1390 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1391 {
1392 	unsigned int i;
1393 
1394 	pt->first_timestamp = timestamp;
1395 
1396 	for (i = 0; i < pt->queues.nr_queues; i++) {
1397 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1398 		struct intel_pt_queue *ptq = queue->priv;
1399 
1400 		if (ptq && ptq->decoder)
1401 			intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1402 	}
1403 }
1404 
1405 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1406 {
1407 	struct machines *machines = &ptq->pt->session->machines;
1408 	struct machine *machine;
1409 	pid_t machine_pid = ptq->pid;
1410 	pid_t tid;
1411 	int vcpu;
1412 
1413 	if (machine_pid <= 0)
1414 		return 0; /* Not a guest machine */
1415 
1416 	machine = machines__find(machines, machine_pid);
1417 	if (!machine)
1418 		return 0; /* Not a guest machine */
1419 
1420 	if (ptq->guest_machine != machine) {
1421 		ptq->guest_machine = NULL;
1422 		thread__zput(ptq->guest_thread);
1423 		thread__zput(ptq->unknown_guest_thread);
1424 
1425 		ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1426 		if (!ptq->unknown_guest_thread)
1427 			return -1;
1428 		ptq->guest_machine = machine;
1429 	}
1430 
1431 	vcpu = ptq->thread ? ptq->thread->guest_cpu : -1;
1432 	if (vcpu < 0)
1433 		return -1;
1434 
1435 	tid = machine__get_current_tid(machine, vcpu);
1436 
1437 	if (ptq->guest_thread && ptq->guest_thread->tid != tid)
1438 		thread__zput(ptq->guest_thread);
1439 
1440 	if (!ptq->guest_thread) {
1441 		ptq->guest_thread = machine__find_thread(machine, -1, tid);
1442 		if (!ptq->guest_thread)
1443 			return -1;
1444 	}
1445 
1446 	ptq->guest_machine_pid = machine_pid;
1447 	ptq->guest_pid = ptq->guest_thread->pid_;
1448 	ptq->guest_tid = tid;
1449 	ptq->vcpu = vcpu;
1450 
1451 	return 0;
1452 }
1453 
1454 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1455 				     struct auxtrace_queue *queue)
1456 {
1457 	struct intel_pt_queue *ptq = queue->priv;
1458 
1459 	if (queue->tid == -1 || pt->have_sched_switch) {
1460 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1461 		if (ptq->tid == -1)
1462 			ptq->pid = -1;
1463 		thread__zput(ptq->thread);
1464 	}
1465 
1466 	if (!ptq->thread && ptq->tid != -1)
1467 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1468 
1469 	if (ptq->thread) {
1470 		ptq->pid = ptq->thread->pid_;
1471 		if (queue->cpu == -1)
1472 			ptq->cpu = ptq->thread->cpu;
1473 	}
1474 
1475 	if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1476 		ptq->guest_machine_pid = 0;
1477 		ptq->guest_pid = -1;
1478 		ptq->guest_tid = -1;
1479 		ptq->vcpu = -1;
1480 	}
1481 }
1482 
1483 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1484 {
1485 	struct intel_pt *pt = ptq->pt;
1486 
1487 	ptq->insn_len = 0;
1488 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1489 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1490 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1491 		if (!ptq->state->to_ip)
1492 			ptq->flags = PERF_IP_FLAG_BRANCH |
1493 				     PERF_IP_FLAG_TRACE_END;
1494 		else if (ptq->state->from_nr && !ptq->state->to_nr)
1495 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1496 				     PERF_IP_FLAG_VMEXIT;
1497 		else
1498 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1499 				     PERF_IP_FLAG_ASYNC |
1500 				     PERF_IP_FLAG_INTERRUPT;
1501 	} else {
1502 		if (ptq->state->from_ip)
1503 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1504 		else
1505 			ptq->flags = PERF_IP_FLAG_BRANCH |
1506 				     PERF_IP_FLAG_TRACE_BEGIN;
1507 		if (ptq->state->flags & INTEL_PT_IN_TX)
1508 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1509 		ptq->insn_len = ptq->state->insn_len;
1510 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1511 	}
1512 
1513 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1514 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1515 	if (ptq->state->type & INTEL_PT_TRACE_END)
1516 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1517 
1518 	if (pt->cap_event_trace) {
1519 		if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1520 			if (!ptq->state->from_iflag)
1521 				ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1522 			if (ptq->state->from_iflag != ptq->state->to_iflag)
1523 				ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1524 		} else if (!ptq->state->to_iflag) {
1525 			ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1526 		}
1527 	}
1528 }
1529 
1530 static void intel_pt_setup_time_range(struct intel_pt *pt,
1531 				      struct intel_pt_queue *ptq)
1532 {
1533 	if (!pt->range_cnt)
1534 		return;
1535 
1536 	ptq->sel_timestamp = pt->time_ranges[0].start;
1537 	ptq->sel_idx = 0;
1538 
1539 	if (ptq->sel_timestamp) {
1540 		ptq->sel_start = true;
1541 	} else {
1542 		ptq->sel_timestamp = pt->time_ranges[0].end;
1543 		ptq->sel_start = false;
1544 	}
1545 }
1546 
1547 static int intel_pt_setup_queue(struct intel_pt *pt,
1548 				struct auxtrace_queue *queue,
1549 				unsigned int queue_nr)
1550 {
1551 	struct intel_pt_queue *ptq = queue->priv;
1552 
1553 	if (list_empty(&queue->head))
1554 		return 0;
1555 
1556 	if (!ptq) {
1557 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1558 		if (!ptq)
1559 			return -ENOMEM;
1560 		queue->priv = ptq;
1561 
1562 		if (queue->cpu != -1)
1563 			ptq->cpu = queue->cpu;
1564 		ptq->tid = queue->tid;
1565 
1566 		ptq->cbr_seen = UINT_MAX;
1567 
1568 		if (pt->sampling_mode && !pt->snapshot_mode &&
1569 		    pt->timeless_decoding)
1570 			ptq->step_through_buffers = true;
1571 
1572 		ptq->sync_switch = pt->sync_switch;
1573 
1574 		intel_pt_setup_time_range(pt, ptq);
1575 	}
1576 
1577 	if (!ptq->on_heap &&
1578 	    (!ptq->sync_switch ||
1579 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1580 		const struct intel_pt_state *state;
1581 		int ret;
1582 
1583 		if (pt->timeless_decoding)
1584 			return 0;
1585 
1586 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1587 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1588 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1589 
1590 		if (ptq->sel_start && ptq->sel_timestamp) {
1591 			ret = intel_pt_fast_forward(ptq->decoder,
1592 						    ptq->sel_timestamp);
1593 			if (ret)
1594 				return ret;
1595 		}
1596 
1597 		while (1) {
1598 			state = intel_pt_decode(ptq->decoder);
1599 			if (state->err) {
1600 				if (state->err == INTEL_PT_ERR_NODATA) {
1601 					intel_pt_log("queue %u has no timestamp\n",
1602 						     queue_nr);
1603 					return 0;
1604 				}
1605 				continue;
1606 			}
1607 			if (state->timestamp)
1608 				break;
1609 		}
1610 
1611 		ptq->timestamp = state->timestamp;
1612 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1613 			     queue_nr, ptq->timestamp);
1614 		ptq->state = state;
1615 		ptq->have_sample = true;
1616 		if (ptq->sel_start && ptq->sel_timestamp &&
1617 		    ptq->timestamp < ptq->sel_timestamp)
1618 			ptq->have_sample = false;
1619 		intel_pt_sample_flags(ptq);
1620 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1621 		if (ret)
1622 			return ret;
1623 		ptq->on_heap = true;
1624 	}
1625 
1626 	return 0;
1627 }
1628 
1629 static int intel_pt_setup_queues(struct intel_pt *pt)
1630 {
1631 	unsigned int i;
1632 	int ret;
1633 
1634 	for (i = 0; i < pt->queues.nr_queues; i++) {
1635 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1636 		if (ret)
1637 			return ret;
1638 	}
1639 	return 0;
1640 }
1641 
1642 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1643 {
1644 	return pt->synth_opts.initial_skip &&
1645 	       pt->num_events++ < pt->synth_opts.initial_skip;
1646 }
1647 
1648 /*
1649  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1650  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1651  * from this decoder state.
1652  */
1653 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1654 {
1655 	return pt->synth_opts.initial_skip &&
1656 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1657 }
1658 
1659 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1660 				   union perf_event *event,
1661 				   struct perf_sample *sample)
1662 {
1663 	event->sample.header.type = PERF_RECORD_SAMPLE;
1664 	event->sample.header.size = sizeof(struct perf_event_header);
1665 
1666 	sample->pid = ptq->pid;
1667 	sample->tid = ptq->tid;
1668 
1669 	if (ptq->pt->have_guest_sideband) {
1670 		if ((ptq->state->from_ip && ptq->state->from_nr) ||
1671 		    (ptq->state->to_ip && ptq->state->to_nr)) {
1672 			sample->pid = ptq->guest_pid;
1673 			sample->tid = ptq->guest_tid;
1674 			sample->machine_pid = ptq->guest_machine_pid;
1675 			sample->vcpu = ptq->vcpu;
1676 		}
1677 	}
1678 
1679 	sample->cpu = ptq->cpu;
1680 	sample->insn_len = ptq->insn_len;
1681 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1682 }
1683 
1684 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1685 				   struct intel_pt_queue *ptq,
1686 				   union perf_event *event,
1687 				   struct perf_sample *sample)
1688 {
1689 	intel_pt_prep_a_sample(ptq, event, sample);
1690 
1691 	if (!pt->timeless_decoding)
1692 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1693 
1694 	sample->ip = ptq->state->from_ip;
1695 	sample->addr = ptq->state->to_ip;
1696 	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1697 	sample->period = 1;
1698 	sample->flags = ptq->flags;
1699 
1700 	event->sample.header.misc = sample->cpumode;
1701 }
1702 
1703 static int intel_pt_inject_event(union perf_event *event,
1704 				 struct perf_sample *sample, u64 type)
1705 {
1706 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1707 	return perf_event__synthesize_sample(event, type, 0, sample);
1708 }
1709 
1710 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1711 				      union perf_event *event,
1712 				      struct perf_sample *sample, u64 type)
1713 {
1714 	if (!pt->synth_opts.inject)
1715 		return 0;
1716 
1717 	return intel_pt_inject_event(event, sample, type);
1718 }
1719 
1720 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1721 					union perf_event *event,
1722 					struct perf_sample *sample, u64 type)
1723 {
1724 	int ret;
1725 
1726 	ret = intel_pt_opt_inject(pt, event, sample, type);
1727 	if (ret)
1728 		return ret;
1729 
1730 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1731 	if (ret)
1732 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1733 
1734 	return ret;
1735 }
1736 
1737 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1738 {
1739 	struct intel_pt *pt = ptq->pt;
1740 	union perf_event *event = ptq->event_buf;
1741 	struct perf_sample sample = { .ip = 0, };
1742 	struct dummy_branch_stack {
1743 		u64			nr;
1744 		u64			hw_idx;
1745 		struct branch_entry	entries;
1746 	} dummy_bs;
1747 
1748 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1749 		return 0;
1750 
1751 	if (intel_pt_skip_event(pt))
1752 		return 0;
1753 
1754 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1755 
1756 	sample.id = ptq->pt->branches_id;
1757 	sample.stream_id = ptq->pt->branches_id;
1758 
1759 	/*
1760 	 * perf report cannot handle events without a branch stack when using
1761 	 * SORT_MODE__BRANCH so make a dummy one.
1762 	 */
1763 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1764 		dummy_bs = (struct dummy_branch_stack){
1765 			.nr = 1,
1766 			.hw_idx = -1ULL,
1767 			.entries = {
1768 				.from = sample.ip,
1769 				.to = sample.addr,
1770 			},
1771 		};
1772 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1773 	}
1774 
1775 	if (ptq->sample_ipc)
1776 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1777 	if (sample.cyc_cnt) {
1778 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1779 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1780 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1781 	}
1782 
1783 	return intel_pt_deliver_synth_event(pt, event, &sample,
1784 					    pt->branches_sample_type);
1785 }
1786 
1787 static void intel_pt_prep_sample(struct intel_pt *pt,
1788 				 struct intel_pt_queue *ptq,
1789 				 union perf_event *event,
1790 				 struct perf_sample *sample)
1791 {
1792 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1793 
1794 	if (pt->synth_opts.callchain) {
1795 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1796 				     pt->synth_opts.callchain_sz + 1,
1797 				     sample->ip, pt->kernel_start);
1798 		sample->callchain = ptq->chain;
1799 	}
1800 
1801 	if (pt->synth_opts.last_branch) {
1802 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1803 					pt->br_stack_sz);
1804 		sample->branch_stack = ptq->last_branch;
1805 	}
1806 }
1807 
1808 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1809 {
1810 	struct intel_pt *pt = ptq->pt;
1811 	union perf_event *event = ptq->event_buf;
1812 	struct perf_sample sample = { .ip = 0, };
1813 
1814 	if (intel_pt_skip_event(pt))
1815 		return 0;
1816 
1817 	intel_pt_prep_sample(pt, ptq, event, &sample);
1818 
1819 	sample.id = ptq->pt->instructions_id;
1820 	sample.stream_id = ptq->pt->instructions_id;
1821 	if (pt->synth_opts.quick)
1822 		sample.period = 1;
1823 	else
1824 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1825 
1826 	if (ptq->sample_ipc)
1827 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1828 	if (sample.cyc_cnt) {
1829 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1830 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1831 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1832 	}
1833 
1834 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1835 
1836 	return intel_pt_deliver_synth_event(pt, event, &sample,
1837 					    pt->instructions_sample_type);
1838 }
1839 
1840 static int intel_pt_synth_cycle_sample(struct intel_pt_queue *ptq)
1841 {
1842 	struct intel_pt *pt = ptq->pt;
1843 	union perf_event *event = ptq->event_buf;
1844 	struct perf_sample sample = { .ip = 0, };
1845 	u64 period = 0;
1846 
1847 	if (ptq->sample_ipc)
1848 		period = ptq->ipc_cyc_cnt - ptq->last_cy_cyc_cnt;
1849 
1850 	if (!period || intel_pt_skip_event(pt))
1851 		return 0;
1852 
1853 	intel_pt_prep_sample(pt, ptq, event, &sample);
1854 
1855 	sample.id = ptq->pt->cycles_id;
1856 	sample.stream_id = ptq->pt->cycles_id;
1857 	sample.period = period;
1858 
1859 	sample.cyc_cnt = period;
1860 	sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_cy_insn_cnt;
1861 	ptq->last_cy_insn_cnt = ptq->ipc_insn_cnt;
1862 	ptq->last_cy_cyc_cnt = ptq->ipc_cyc_cnt;
1863 
1864 	return intel_pt_deliver_synth_event(pt, event, &sample, pt->cycles_sample_type);
1865 }
1866 
1867 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1868 {
1869 	struct intel_pt *pt = ptq->pt;
1870 	union perf_event *event = ptq->event_buf;
1871 	struct perf_sample sample = { .ip = 0, };
1872 
1873 	if (intel_pt_skip_event(pt))
1874 		return 0;
1875 
1876 	intel_pt_prep_sample(pt, ptq, event, &sample);
1877 
1878 	sample.id = ptq->pt->transactions_id;
1879 	sample.stream_id = ptq->pt->transactions_id;
1880 
1881 	return intel_pt_deliver_synth_event(pt, event, &sample,
1882 					    pt->transactions_sample_type);
1883 }
1884 
1885 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1886 				   struct intel_pt_queue *ptq,
1887 				   union perf_event *event,
1888 				   struct perf_sample *sample)
1889 {
1890 	intel_pt_prep_sample(pt, ptq, event, sample);
1891 
1892 	/*
1893 	 * Zero IP is used to mean "trace start" but that is not the case for
1894 	 * power or PTWRITE events with no IP, so clear the flags.
1895 	 */
1896 	if (!sample->ip)
1897 		sample->flags = 0;
1898 }
1899 
1900 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1901 {
1902 	struct intel_pt *pt = ptq->pt;
1903 	union perf_event *event = ptq->event_buf;
1904 	struct perf_sample sample = { .ip = 0, };
1905 	struct perf_synth_intel_ptwrite raw;
1906 
1907 	if (intel_pt_skip_event(pt))
1908 		return 0;
1909 
1910 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1911 
1912 	sample.id = ptq->pt->ptwrites_id;
1913 	sample.stream_id = ptq->pt->ptwrites_id;
1914 
1915 	raw.flags = 0;
1916 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1917 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1918 
1919 	sample.raw_size = perf_synth__raw_size(raw);
1920 	sample.raw_data = perf_synth__raw_data(&raw);
1921 
1922 	return intel_pt_deliver_synth_event(pt, event, &sample,
1923 					    pt->ptwrites_sample_type);
1924 }
1925 
1926 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1927 {
1928 	struct intel_pt *pt = ptq->pt;
1929 	union perf_event *event = ptq->event_buf;
1930 	struct perf_sample sample = { .ip = 0, };
1931 	struct perf_synth_intel_cbr raw;
1932 	u32 flags;
1933 
1934 	if (intel_pt_skip_cbr_event(pt))
1935 		return 0;
1936 
1937 	ptq->cbr_seen = ptq->state->cbr;
1938 
1939 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1940 
1941 	sample.id = ptq->pt->cbr_id;
1942 	sample.stream_id = ptq->pt->cbr_id;
1943 
1944 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1945 	raw.flags = cpu_to_le32(flags);
1946 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1947 	raw.reserved3 = 0;
1948 
1949 	sample.raw_size = perf_synth__raw_size(raw);
1950 	sample.raw_data = perf_synth__raw_data(&raw);
1951 
1952 	return intel_pt_deliver_synth_event(pt, event, &sample,
1953 					    pt->pwr_events_sample_type);
1954 }
1955 
1956 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1957 {
1958 	struct intel_pt *pt = ptq->pt;
1959 	union perf_event *event = ptq->event_buf;
1960 	struct perf_sample sample = { .ip = 0, };
1961 	struct perf_synth_intel_psb raw;
1962 
1963 	if (intel_pt_skip_event(pt))
1964 		return 0;
1965 
1966 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1967 
1968 	sample.id = ptq->pt->psb_id;
1969 	sample.stream_id = ptq->pt->psb_id;
1970 	sample.flags = 0;
1971 
1972 	raw.reserved = 0;
1973 	raw.offset = ptq->state->psb_offset;
1974 
1975 	sample.raw_size = perf_synth__raw_size(raw);
1976 	sample.raw_data = perf_synth__raw_data(&raw);
1977 
1978 	return intel_pt_deliver_synth_event(pt, event, &sample,
1979 					    pt->pwr_events_sample_type);
1980 }
1981 
1982 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1983 {
1984 	struct intel_pt *pt = ptq->pt;
1985 	union perf_event *event = ptq->event_buf;
1986 	struct perf_sample sample = { .ip = 0, };
1987 	struct perf_synth_intel_mwait raw;
1988 
1989 	if (intel_pt_skip_event(pt))
1990 		return 0;
1991 
1992 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1993 
1994 	sample.id = ptq->pt->mwait_id;
1995 	sample.stream_id = ptq->pt->mwait_id;
1996 
1997 	raw.reserved = 0;
1998 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1999 
2000 	sample.raw_size = perf_synth__raw_size(raw);
2001 	sample.raw_data = perf_synth__raw_data(&raw);
2002 
2003 	return intel_pt_deliver_synth_event(pt, event, &sample,
2004 					    pt->pwr_events_sample_type);
2005 }
2006 
2007 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
2008 {
2009 	struct intel_pt *pt = ptq->pt;
2010 	union perf_event *event = ptq->event_buf;
2011 	struct perf_sample sample = { .ip = 0, };
2012 	struct perf_synth_intel_pwre raw;
2013 
2014 	if (intel_pt_skip_event(pt))
2015 		return 0;
2016 
2017 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2018 
2019 	sample.id = ptq->pt->pwre_id;
2020 	sample.stream_id = ptq->pt->pwre_id;
2021 
2022 	raw.reserved = 0;
2023 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
2024 
2025 	sample.raw_size = perf_synth__raw_size(raw);
2026 	sample.raw_data = perf_synth__raw_data(&raw);
2027 
2028 	return intel_pt_deliver_synth_event(pt, event, &sample,
2029 					    pt->pwr_events_sample_type);
2030 }
2031 
2032 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
2033 {
2034 	struct intel_pt *pt = ptq->pt;
2035 	union perf_event *event = ptq->event_buf;
2036 	struct perf_sample sample = { .ip = 0, };
2037 	struct perf_synth_intel_exstop raw;
2038 
2039 	if (intel_pt_skip_event(pt))
2040 		return 0;
2041 
2042 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2043 
2044 	sample.id = ptq->pt->exstop_id;
2045 	sample.stream_id = ptq->pt->exstop_id;
2046 
2047 	raw.flags = 0;
2048 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2049 
2050 	sample.raw_size = perf_synth__raw_size(raw);
2051 	sample.raw_data = perf_synth__raw_data(&raw);
2052 
2053 	return intel_pt_deliver_synth_event(pt, event, &sample,
2054 					    pt->pwr_events_sample_type);
2055 }
2056 
2057 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2058 {
2059 	struct intel_pt *pt = ptq->pt;
2060 	union perf_event *event = ptq->event_buf;
2061 	struct perf_sample sample = { .ip = 0, };
2062 	struct perf_synth_intel_pwrx raw;
2063 
2064 	if (intel_pt_skip_event(pt))
2065 		return 0;
2066 
2067 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2068 
2069 	sample.id = ptq->pt->pwrx_id;
2070 	sample.stream_id = ptq->pt->pwrx_id;
2071 
2072 	raw.reserved = 0;
2073 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2074 
2075 	sample.raw_size = perf_synth__raw_size(raw);
2076 	sample.raw_data = perf_synth__raw_data(&raw);
2077 
2078 	return intel_pt_deliver_synth_event(pt, event, &sample,
2079 					    pt->pwr_events_sample_type);
2080 }
2081 
2082 /*
2083  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2084  * intel_pt_add_gp_regs().
2085  */
2086 static const int pebs_gp_regs[] = {
2087 	[PERF_REG_X86_FLAGS]	= 1,
2088 	[PERF_REG_X86_IP]	= 2,
2089 	[PERF_REG_X86_AX]	= 3,
2090 	[PERF_REG_X86_CX]	= 4,
2091 	[PERF_REG_X86_DX]	= 5,
2092 	[PERF_REG_X86_BX]	= 6,
2093 	[PERF_REG_X86_SP]	= 7,
2094 	[PERF_REG_X86_BP]	= 8,
2095 	[PERF_REG_X86_SI]	= 9,
2096 	[PERF_REG_X86_DI]	= 10,
2097 	[PERF_REG_X86_R8]	= 11,
2098 	[PERF_REG_X86_R9]	= 12,
2099 	[PERF_REG_X86_R10]	= 13,
2100 	[PERF_REG_X86_R11]	= 14,
2101 	[PERF_REG_X86_R12]	= 15,
2102 	[PERF_REG_X86_R13]	= 16,
2103 	[PERF_REG_X86_R14]	= 17,
2104 	[PERF_REG_X86_R15]	= 18,
2105 };
2106 
2107 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2108 				 const struct intel_pt_blk_items *items,
2109 				 u64 regs_mask)
2110 {
2111 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2112 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2113 	u32 bit;
2114 	int i;
2115 
2116 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2117 		/* Get the PEBS gp_regs array index */
2118 		int n = pebs_gp_regs[i] - 1;
2119 
2120 		if (n < 0)
2121 			continue;
2122 		/*
2123 		 * Add only registers that were requested (i.e. 'regs_mask') and
2124 		 * that were provided (i.e. 'mask'), and update the resulting
2125 		 * mask (i.e. 'intr_regs->mask') accordingly.
2126 		 */
2127 		if (mask & 1 << n && regs_mask & bit) {
2128 			intr_regs->mask |= bit;
2129 			*pos++ = gp_regs[n];
2130 		}
2131 	}
2132 
2133 	return pos;
2134 }
2135 
2136 #ifndef PERF_REG_X86_XMM0
2137 #define PERF_REG_X86_XMM0 32
2138 #endif
2139 
2140 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2141 			     const struct intel_pt_blk_items *items,
2142 			     u64 regs_mask)
2143 {
2144 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2145 	const u64 *xmm = items->xmm;
2146 
2147 	/*
2148 	 * If there are any XMM registers, then there should be all of them.
2149 	 * Nevertheless, follow the logic to add only registers that were
2150 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2151 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2152 	 */
2153 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2154 
2155 	for (; mask; mask >>= 1, xmm++) {
2156 		if (mask & 1)
2157 			*pos++ = *xmm;
2158 	}
2159 }
2160 
2161 #define LBR_INFO_MISPRED	(1ULL << 63)
2162 #define LBR_INFO_IN_TX		(1ULL << 62)
2163 #define LBR_INFO_ABORT		(1ULL << 61)
2164 #define LBR_INFO_CYCLES		0xffff
2165 
2166 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
2167 static u64 intel_pt_lbr_flags(u64 info)
2168 {
2169 	union {
2170 		struct branch_flags flags;
2171 		u64 result;
2172 	} u;
2173 
2174 	u.result	  = 0;
2175 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
2176 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
2177 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
2178 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
2179 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
2180 
2181 	return u.result;
2182 }
2183 
2184 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2185 			      const struct intel_pt_blk_items *items)
2186 {
2187 	u64 *to;
2188 	int i;
2189 
2190 	br_stack->nr = 0;
2191 
2192 	to = &br_stack->entries[0].from;
2193 
2194 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2195 		u32 mask = items->mask[i];
2196 		const u64 *from = items->val[i];
2197 
2198 		for (; mask; mask >>= 3, from += 3) {
2199 			if ((mask & 7) == 7) {
2200 				*to++ = from[0];
2201 				*to++ = from[1];
2202 				*to++ = intel_pt_lbr_flags(from[2]);
2203 				br_stack->nr += 1;
2204 			}
2205 		}
2206 	}
2207 }
2208 
2209 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2210 {
2211 	const struct intel_pt_blk_items *items = &ptq->state->items;
2212 	struct perf_sample sample = { .ip = 0, };
2213 	union perf_event *event = ptq->event_buf;
2214 	struct intel_pt *pt = ptq->pt;
2215 	u64 sample_type = evsel->core.attr.sample_type;
2216 	u8 cpumode;
2217 	u64 regs[8 * sizeof(sample.intr_regs.mask)];
2218 
2219 	if (intel_pt_skip_event(pt))
2220 		return 0;
2221 
2222 	intel_pt_prep_a_sample(ptq, event, &sample);
2223 
2224 	sample.id = id;
2225 	sample.stream_id = id;
2226 
2227 	if (!evsel->core.attr.freq)
2228 		sample.period = evsel->core.attr.sample_period;
2229 
2230 	/* No support for non-zero CS base */
2231 	if (items->has_ip)
2232 		sample.ip = items->ip;
2233 	else if (items->has_rip)
2234 		sample.ip = items->rip;
2235 	else
2236 		sample.ip = ptq->state->from_ip;
2237 
2238 	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2239 
2240 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2241 
2242 	sample.cpumode = cpumode;
2243 
2244 	if (sample_type & PERF_SAMPLE_TIME) {
2245 		u64 timestamp = 0;
2246 
2247 		if (items->has_timestamp)
2248 			timestamp = items->timestamp;
2249 		else if (!pt->timeless_decoding)
2250 			timestamp = ptq->timestamp;
2251 		if (timestamp)
2252 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2253 	}
2254 
2255 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2256 	    pt->synth_opts.callchain) {
2257 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2258 				     pt->synth_opts.callchain_sz, sample.ip,
2259 				     pt->kernel_start);
2260 		sample.callchain = ptq->chain;
2261 	}
2262 
2263 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
2264 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
2265 	     items->mask[INTEL_PT_XMM_POS])) {
2266 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
2267 		u64 *pos;
2268 
2269 		sample.intr_regs.abi = items->is_32_bit ?
2270 				       PERF_SAMPLE_REGS_ABI_32 :
2271 				       PERF_SAMPLE_REGS_ABI_64;
2272 		sample.intr_regs.regs = regs;
2273 
2274 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2275 
2276 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2277 	}
2278 
2279 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2280 		if (items->mask[INTEL_PT_LBR_0_POS] ||
2281 		    items->mask[INTEL_PT_LBR_1_POS] ||
2282 		    items->mask[INTEL_PT_LBR_2_POS]) {
2283 			intel_pt_add_lbrs(ptq->last_branch, items);
2284 		} else if (pt->synth_opts.last_branch) {
2285 			thread_stack__br_sample(ptq->thread, ptq->cpu,
2286 						ptq->last_branch,
2287 						pt->br_stack_sz);
2288 		} else {
2289 			ptq->last_branch->nr = 0;
2290 		}
2291 		sample.branch_stack = ptq->last_branch;
2292 	}
2293 
2294 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2295 		sample.addr = items->mem_access_address;
2296 
2297 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2298 		/*
2299 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
2300 		 * intel_hsw_weight().
2301 		 */
2302 		if (items->has_mem_access_latency) {
2303 			u64 weight = items->mem_access_latency >> 32;
2304 
2305 			/*
2306 			 * Starts from SPR, the mem access latency field
2307 			 * contains both cache latency [47:32] and instruction
2308 			 * latency [15:0]. The cache latency is the same as the
2309 			 * mem access latency on previous platforms.
2310 			 *
2311 			 * In practice, no memory access could last than 4G
2312 			 * cycles. Use latency >> 32 to distinguish the
2313 			 * different format of the mem access latency field.
2314 			 */
2315 			if (weight > 0) {
2316 				sample.weight = weight & 0xffff;
2317 				sample.ins_lat = items->mem_access_latency & 0xffff;
2318 			} else
2319 				sample.weight = items->mem_access_latency;
2320 		}
2321 		if (!sample.weight && items->has_tsx_aux_info) {
2322 			/* Cycles last block */
2323 			sample.weight = (u32)items->tsx_aux_info;
2324 		}
2325 	}
2326 
2327 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2328 		u64 ax = items->has_rax ? items->rax : 0;
2329 		/* Refer kernel's intel_hsw_transaction() */
2330 		u64 txn = (u8)(items->tsx_aux_info >> 32);
2331 
2332 		/* For RTM XABORTs also log the abort code from AX */
2333 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2334 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2335 		sample.transaction = txn;
2336 	}
2337 
2338 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2339 }
2340 
2341 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2342 {
2343 	struct intel_pt *pt = ptq->pt;
2344 	struct evsel *evsel = pt->pebs_evsel;
2345 	u64 id = evsel->core.id[0];
2346 
2347 	return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2348 }
2349 
2350 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2351 {
2352 	const struct intel_pt_blk_items *items = &ptq->state->items;
2353 	struct intel_pt_pebs_event *pe;
2354 	struct intel_pt *pt = ptq->pt;
2355 	int err = -EINVAL;
2356 	int hw_id;
2357 
2358 	if (!items->has_applicable_counters || !items->applicable_counters) {
2359 		if (!pt->single_pebs)
2360 			pr_err("PEBS-via-PT record with no applicable_counters\n");
2361 		return intel_pt_synth_single_pebs_sample(ptq);
2362 	}
2363 
2364 	for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2365 		pe = &ptq->pebs[hw_id];
2366 		if (!pe->evsel) {
2367 			if (!pt->single_pebs)
2368 				pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2369 				       hw_id);
2370 			return intel_pt_synth_single_pebs_sample(ptq);
2371 		}
2372 		err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2373 		if (err)
2374 			return err;
2375 	}
2376 
2377 	return err;
2378 }
2379 
2380 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2381 {
2382 	struct intel_pt *pt = ptq->pt;
2383 	union perf_event *event = ptq->event_buf;
2384 	struct perf_sample sample = { .ip = 0, };
2385 	struct {
2386 		struct perf_synth_intel_evt cfe;
2387 		struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2388 	} raw;
2389 	int i;
2390 
2391 	if (intel_pt_skip_event(pt))
2392 		return 0;
2393 
2394 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2395 
2396 	sample.id        = ptq->pt->evt_id;
2397 	sample.stream_id = ptq->pt->evt_id;
2398 
2399 	raw.cfe.type     = ptq->state->cfe_type;
2400 	raw.cfe.reserved = 0;
2401 	raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2402 	raw.cfe.vector   = ptq->state->cfe_vector;
2403 	raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2404 
2405 	for (i = 0; i < ptq->state->evd_cnt; i++) {
2406 		raw.evd[i].et       = 0;
2407 		raw.evd[i].evd_type = ptq->state->evd[i].type;
2408 		raw.evd[i].payload  = ptq->state->evd[i].payload;
2409 	}
2410 
2411 	sample.raw_size = perf_synth__raw_size(raw) +
2412 			  ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2413 	sample.raw_data = perf_synth__raw_data(&raw);
2414 
2415 	return intel_pt_deliver_synth_event(pt, event, &sample,
2416 					    pt->evt_sample_type);
2417 }
2418 
2419 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2420 {
2421 	struct intel_pt *pt = ptq->pt;
2422 	union perf_event *event = ptq->event_buf;
2423 	struct perf_sample sample = { .ip = 0, };
2424 	struct perf_synth_intel_iflag_chg raw;
2425 
2426 	if (intel_pt_skip_event(pt))
2427 		return 0;
2428 
2429 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2430 
2431 	sample.id = ptq->pt->iflag_chg_id;
2432 	sample.stream_id = ptq->pt->iflag_chg_id;
2433 
2434 	raw.flags = 0;
2435 	raw.iflag = ptq->state->to_iflag;
2436 
2437 	if (ptq->state->type & INTEL_PT_BRANCH) {
2438 		raw.via_branch = 1;
2439 		raw.branch_ip = ptq->state->to_ip;
2440 	} else {
2441 		sample.addr = 0;
2442 	}
2443 	sample.flags = ptq->flags;
2444 
2445 	sample.raw_size = perf_synth__raw_size(raw);
2446 	sample.raw_data = perf_synth__raw_data(&raw);
2447 
2448 	return intel_pt_deliver_synth_event(pt, event, &sample,
2449 					    pt->iflag_chg_sample_type);
2450 }
2451 
2452 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2453 				pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2454 				pid_t machine_pid, int vcpu)
2455 {
2456 	bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2457 	bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2458 	union perf_event event;
2459 	char msg[MAX_AUXTRACE_ERROR_MSG];
2460 	int err;
2461 
2462 	if (pt->synth_opts.error_minus_flags) {
2463 		if (code == INTEL_PT_ERR_OVR &&
2464 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2465 			return 0;
2466 		if (code == INTEL_PT_ERR_LOST &&
2467 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2468 			return 0;
2469 	}
2470 
2471 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2472 
2473 	auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2474 				   code, cpu, pid, tid, ip, msg, timestamp,
2475 				   machine_pid, vcpu);
2476 
2477 	if (intel_pt_enable_logging && !log_on_stdout) {
2478 		FILE *fp = intel_pt_log_fp();
2479 
2480 		if (fp)
2481 			perf_event__fprintf_auxtrace_error(&event, fp);
2482 	}
2483 
2484 	if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2485 		intel_pt_log_dump_buf();
2486 
2487 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2488 	if (err)
2489 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2490 		       err);
2491 
2492 	return err;
2493 }
2494 
2495 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2496 				 const struct intel_pt_state *state)
2497 {
2498 	struct intel_pt *pt = ptq->pt;
2499 	u64 tm = ptq->timestamp;
2500 	pid_t machine_pid = 0;
2501 	pid_t pid = ptq->pid;
2502 	pid_t tid = ptq->tid;
2503 	int vcpu = -1;
2504 
2505 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2506 
2507 	if (pt->have_guest_sideband && state->from_nr) {
2508 		machine_pid = ptq->guest_machine_pid;
2509 		vcpu = ptq->vcpu;
2510 		pid = ptq->guest_pid;
2511 		tid = ptq->guest_tid;
2512 	}
2513 
2514 	return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2515 				    state->from_ip, tm, machine_pid, vcpu);
2516 }
2517 
2518 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2519 {
2520 	struct auxtrace_queue *queue;
2521 	pid_t tid = ptq->next_tid;
2522 	int err;
2523 
2524 	if (tid == -1)
2525 		return 0;
2526 
2527 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2528 
2529 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2530 
2531 	queue = &pt->queues.queue_array[ptq->queue_nr];
2532 	intel_pt_set_pid_tid_cpu(pt, queue);
2533 
2534 	ptq->next_tid = -1;
2535 
2536 	return err;
2537 }
2538 
2539 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2540 {
2541 	struct intel_pt *pt = ptq->pt;
2542 
2543 	return ip == pt->switch_ip &&
2544 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2545 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2546 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2547 }
2548 
2549 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2550 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2551 
2552 static int intel_pt_sample(struct intel_pt_queue *ptq)
2553 {
2554 	const struct intel_pt_state *state = ptq->state;
2555 	struct intel_pt *pt = ptq->pt;
2556 	int err;
2557 
2558 	if (!ptq->have_sample)
2559 		return 0;
2560 
2561 	ptq->have_sample = false;
2562 
2563 	if (pt->synth_opts.approx_ipc) {
2564 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2565 		ptq->ipc_cyc_cnt = ptq->state->cycles;
2566 		ptq->sample_ipc = true;
2567 	} else {
2568 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2569 		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2570 		ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2571 	}
2572 
2573 	/* Ensure guest code maps are set up */
2574 	if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2575 		intel_pt_get_guest(ptq);
2576 
2577 	/*
2578 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2579 	 * precedes the current timestamp.
2580 	 */
2581 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2582 		err = intel_pt_synth_pebs_sample(ptq);
2583 		if (err)
2584 			return err;
2585 	}
2586 
2587 	if (pt->synth_opts.intr_events) {
2588 		if (state->type & INTEL_PT_EVT) {
2589 			err = intel_pt_synth_events_sample(ptq);
2590 			if (err)
2591 				return err;
2592 		}
2593 		if (state->type & INTEL_PT_IFLAG_CHG) {
2594 			err = intel_pt_synth_iflag_chg_sample(ptq);
2595 			if (err)
2596 				return err;
2597 		}
2598 	}
2599 
2600 	if (pt->sample_pwr_events) {
2601 		if (state->type & INTEL_PT_PSB_EVT) {
2602 			err = intel_pt_synth_psb_sample(ptq);
2603 			if (err)
2604 				return err;
2605 		}
2606 		if (ptq->state->cbr != ptq->cbr_seen) {
2607 			err = intel_pt_synth_cbr_sample(ptq);
2608 			if (err)
2609 				return err;
2610 		}
2611 		if (state->type & INTEL_PT_PWR_EVT) {
2612 			if (state->type & INTEL_PT_MWAIT_OP) {
2613 				err = intel_pt_synth_mwait_sample(ptq);
2614 				if (err)
2615 					return err;
2616 			}
2617 			if (state->type & INTEL_PT_PWR_ENTRY) {
2618 				err = intel_pt_synth_pwre_sample(ptq);
2619 				if (err)
2620 					return err;
2621 			}
2622 			if (state->type & INTEL_PT_EX_STOP) {
2623 				err = intel_pt_synth_exstop_sample(ptq);
2624 				if (err)
2625 					return err;
2626 			}
2627 			if (state->type & INTEL_PT_PWR_EXIT) {
2628 				err = intel_pt_synth_pwrx_sample(ptq);
2629 				if (err)
2630 					return err;
2631 			}
2632 		}
2633 	}
2634 
2635 	if (state->type & INTEL_PT_INSTRUCTION) {
2636 		if (pt->sample_instructions) {
2637 			err = intel_pt_synth_instruction_sample(ptq);
2638 			if (err)
2639 				return err;
2640 		}
2641 		if (pt->sample_cycles) {
2642 			err = intel_pt_synth_cycle_sample(ptq);
2643 			if (err)
2644 				return err;
2645 		}
2646 	}
2647 
2648 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2649 		err = intel_pt_synth_transaction_sample(ptq);
2650 		if (err)
2651 			return err;
2652 	}
2653 
2654 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2655 		err = intel_pt_synth_ptwrite_sample(ptq);
2656 		if (err)
2657 			return err;
2658 	}
2659 
2660 	if (!(state->type & INTEL_PT_BRANCH))
2661 		return 0;
2662 
2663 	if (pt->use_thread_stack) {
2664 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2665 				    state->from_ip, state->to_ip, ptq->insn_len,
2666 				    state->trace_nr, pt->callstack,
2667 				    pt->br_stack_sz_plus,
2668 				    pt->mispred_all);
2669 	} else {
2670 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2671 	}
2672 
2673 	if (pt->sample_branches) {
2674 		if (state->from_nr != state->to_nr &&
2675 		    state->from_ip && state->to_ip) {
2676 			struct intel_pt_state *st = (struct intel_pt_state *)state;
2677 			u64 to_ip = st->to_ip;
2678 			u64 from_ip = st->from_ip;
2679 
2680 			/*
2681 			 * perf cannot handle having different machines for ip
2682 			 * and addr, so create 2 branches.
2683 			 */
2684 			st->to_ip = 0;
2685 			err = intel_pt_synth_branch_sample(ptq);
2686 			if (err)
2687 				return err;
2688 			st->from_ip = 0;
2689 			st->to_ip = to_ip;
2690 			err = intel_pt_synth_branch_sample(ptq);
2691 			st->from_ip = from_ip;
2692 		} else {
2693 			err = intel_pt_synth_branch_sample(ptq);
2694 		}
2695 		if (err)
2696 			return err;
2697 	}
2698 
2699 	if (!ptq->sync_switch)
2700 		return 0;
2701 
2702 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2703 		switch (ptq->switch_state) {
2704 		case INTEL_PT_SS_NOT_TRACING:
2705 		case INTEL_PT_SS_UNKNOWN:
2706 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2707 			err = intel_pt_next_tid(pt, ptq);
2708 			if (err)
2709 				return err;
2710 			ptq->switch_state = INTEL_PT_SS_TRACING;
2711 			break;
2712 		default:
2713 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2714 			return 1;
2715 		}
2716 	} else if (!state->to_ip) {
2717 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2718 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2719 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2720 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2721 		   state->to_ip == pt->ptss_ip &&
2722 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2723 		ptq->switch_state = INTEL_PT_SS_TRACING;
2724 	}
2725 
2726 	return 0;
2727 }
2728 
2729 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2730 {
2731 	struct machine *machine = pt->machine;
2732 	struct map *map;
2733 	struct symbol *sym, *start;
2734 	u64 ip, switch_ip = 0;
2735 	const char *ptss;
2736 
2737 	if (ptss_ip)
2738 		*ptss_ip = 0;
2739 
2740 	map = machine__kernel_map(machine);
2741 	if (!map)
2742 		return 0;
2743 
2744 	if (map__load(map))
2745 		return 0;
2746 
2747 	start = dso__first_symbol(map->dso);
2748 
2749 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2750 		if (sym->binding == STB_GLOBAL &&
2751 		    !strcmp(sym->name, "__switch_to")) {
2752 			ip = map->unmap_ip(map, sym->start);
2753 			if (ip >= map->start && ip < map->end) {
2754 				switch_ip = ip;
2755 				break;
2756 			}
2757 		}
2758 	}
2759 
2760 	if (!switch_ip || !ptss_ip)
2761 		return 0;
2762 
2763 	if (pt->have_sched_switch == 1)
2764 		ptss = "perf_trace_sched_switch";
2765 	else
2766 		ptss = "__perf_event_task_sched_out";
2767 
2768 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2769 		if (!strcmp(sym->name, ptss)) {
2770 			ip = map->unmap_ip(map, sym->start);
2771 			if (ip >= map->start && ip < map->end) {
2772 				*ptss_ip = ip;
2773 				break;
2774 			}
2775 		}
2776 	}
2777 
2778 	return switch_ip;
2779 }
2780 
2781 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2782 {
2783 	unsigned int i;
2784 
2785 	if (pt->sync_switch_not_supported)
2786 		return;
2787 
2788 	pt->sync_switch = true;
2789 
2790 	for (i = 0; i < pt->queues.nr_queues; i++) {
2791 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2792 		struct intel_pt_queue *ptq = queue->priv;
2793 
2794 		if (ptq)
2795 			ptq->sync_switch = true;
2796 	}
2797 }
2798 
2799 static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2800 {
2801 	unsigned int i;
2802 
2803 	pt->sync_switch = false;
2804 
2805 	for (i = 0; i < pt->queues.nr_queues; i++) {
2806 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2807 		struct intel_pt_queue *ptq = queue->priv;
2808 
2809 		if (ptq) {
2810 			ptq->sync_switch = false;
2811 			intel_pt_next_tid(pt, ptq);
2812 		}
2813 	}
2814 }
2815 
2816 /*
2817  * To filter against time ranges, it is only necessary to look at the next start
2818  * or end time.
2819  */
2820 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2821 {
2822 	struct intel_pt *pt = ptq->pt;
2823 
2824 	if (ptq->sel_start) {
2825 		/* Next time is an end time */
2826 		ptq->sel_start = false;
2827 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2828 		return true;
2829 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2830 		/* Next time is a start time */
2831 		ptq->sel_start = true;
2832 		ptq->sel_idx += 1;
2833 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2834 		return true;
2835 	}
2836 
2837 	/* No next time */
2838 	return false;
2839 }
2840 
2841 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2842 {
2843 	int err;
2844 
2845 	while (1) {
2846 		if (ptq->sel_start) {
2847 			if (ptq->timestamp >= ptq->sel_timestamp) {
2848 				/* After start time, so consider next time */
2849 				intel_pt_next_time(ptq);
2850 				if (!ptq->sel_timestamp) {
2851 					/* No end time */
2852 					return 0;
2853 				}
2854 				/* Check against end time */
2855 				continue;
2856 			}
2857 			/* Before start time, so fast forward */
2858 			ptq->have_sample = false;
2859 			if (ptq->sel_timestamp > *ff_timestamp) {
2860 				if (ptq->sync_switch) {
2861 					intel_pt_next_tid(ptq->pt, ptq);
2862 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2863 				}
2864 				*ff_timestamp = ptq->sel_timestamp;
2865 				err = intel_pt_fast_forward(ptq->decoder,
2866 							    ptq->sel_timestamp);
2867 				if (err)
2868 					return err;
2869 			}
2870 			return 0;
2871 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2872 			/* After end time, so consider next time */
2873 			if (!intel_pt_next_time(ptq)) {
2874 				/* No next time range, so stop decoding */
2875 				ptq->have_sample = false;
2876 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2877 				return 1;
2878 			}
2879 			/* Check against next start time */
2880 			continue;
2881 		} else {
2882 			/* Before end time */
2883 			return 0;
2884 		}
2885 	}
2886 }
2887 
2888 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2889 {
2890 	const struct intel_pt_state *state = ptq->state;
2891 	struct intel_pt *pt = ptq->pt;
2892 	u64 ff_timestamp = 0;
2893 	int err;
2894 
2895 	if (!pt->kernel_start) {
2896 		pt->kernel_start = machine__kernel_start(pt->machine);
2897 		if (pt->per_cpu_mmaps &&
2898 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2899 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2900 		    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2901 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2902 			if (pt->switch_ip) {
2903 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2904 					     pt->switch_ip, pt->ptss_ip);
2905 				intel_pt_enable_sync_switch(pt);
2906 			}
2907 		}
2908 	}
2909 
2910 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2911 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2912 	while (1) {
2913 		err = intel_pt_sample(ptq);
2914 		if (err)
2915 			return err;
2916 
2917 		state = intel_pt_decode(ptq->decoder);
2918 		if (state->err) {
2919 			if (state->err == INTEL_PT_ERR_NODATA)
2920 				return 1;
2921 			if (ptq->sync_switch &&
2922 			    state->from_ip >= pt->kernel_start) {
2923 				ptq->sync_switch = false;
2924 				intel_pt_next_tid(pt, ptq);
2925 			}
2926 			ptq->timestamp = state->est_timestamp;
2927 			if (pt->synth_opts.errors) {
2928 				err = intel_ptq_synth_error(ptq, state);
2929 				if (err)
2930 					return err;
2931 			}
2932 			continue;
2933 		}
2934 
2935 		ptq->state = state;
2936 		ptq->have_sample = true;
2937 		intel_pt_sample_flags(ptq);
2938 
2939 		/* Use estimated TSC upon return to user space */
2940 		if (pt->est_tsc &&
2941 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2942 		    state->to_ip && state->to_ip < pt->kernel_start) {
2943 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2944 				     state->timestamp, state->est_timestamp);
2945 			ptq->timestamp = state->est_timestamp;
2946 		/* Use estimated TSC in unknown switch state */
2947 		} else if (ptq->sync_switch &&
2948 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2949 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2950 			   ptq->next_tid == -1) {
2951 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2952 				     state->timestamp, state->est_timestamp);
2953 			ptq->timestamp = state->est_timestamp;
2954 		} else if (state->timestamp > ptq->timestamp) {
2955 			ptq->timestamp = state->timestamp;
2956 		}
2957 
2958 		if (ptq->sel_timestamp) {
2959 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2960 			if (err)
2961 				return err;
2962 		}
2963 
2964 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2965 			*timestamp = ptq->timestamp;
2966 			return 0;
2967 		}
2968 	}
2969 	return 0;
2970 }
2971 
2972 static inline int intel_pt_update_queues(struct intel_pt *pt)
2973 {
2974 	if (pt->queues.new_data) {
2975 		pt->queues.new_data = false;
2976 		return intel_pt_setup_queues(pt);
2977 	}
2978 	return 0;
2979 }
2980 
2981 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2982 {
2983 	unsigned int queue_nr;
2984 	u64 ts;
2985 	int ret;
2986 
2987 	while (1) {
2988 		struct auxtrace_queue *queue;
2989 		struct intel_pt_queue *ptq;
2990 
2991 		if (!pt->heap.heap_cnt)
2992 			return 0;
2993 
2994 		if (pt->heap.heap_array[0].ordinal >= timestamp)
2995 			return 0;
2996 
2997 		queue_nr = pt->heap.heap_array[0].queue_nr;
2998 		queue = &pt->queues.queue_array[queue_nr];
2999 		ptq = queue->priv;
3000 
3001 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
3002 			     queue_nr, pt->heap.heap_array[0].ordinal,
3003 			     timestamp);
3004 
3005 		auxtrace_heap__pop(&pt->heap);
3006 
3007 		if (pt->heap.heap_cnt) {
3008 			ts = pt->heap.heap_array[0].ordinal + 1;
3009 			if (ts > timestamp)
3010 				ts = timestamp;
3011 		} else {
3012 			ts = timestamp;
3013 		}
3014 
3015 		intel_pt_set_pid_tid_cpu(pt, queue);
3016 
3017 		ret = intel_pt_run_decoder(ptq, &ts);
3018 
3019 		if (ret < 0) {
3020 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
3021 			return ret;
3022 		}
3023 
3024 		if (!ret) {
3025 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
3026 			if (ret < 0)
3027 				return ret;
3028 		} else {
3029 			ptq->on_heap = false;
3030 		}
3031 	}
3032 
3033 	return 0;
3034 }
3035 
3036 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
3037 					    u64 time_)
3038 {
3039 	struct auxtrace_queues *queues = &pt->queues;
3040 	unsigned int i;
3041 	u64 ts = 0;
3042 
3043 	for (i = 0; i < queues->nr_queues; i++) {
3044 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3045 		struct intel_pt_queue *ptq = queue->priv;
3046 
3047 		if (ptq && (tid == -1 || ptq->tid == tid)) {
3048 			ptq->time = time_;
3049 			intel_pt_set_pid_tid_cpu(pt, queue);
3050 			intel_pt_run_decoder(ptq, &ts);
3051 		}
3052 	}
3053 	return 0;
3054 }
3055 
3056 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3057 					    struct auxtrace_queue *queue,
3058 					    struct perf_sample *sample)
3059 {
3060 	struct machine *m = ptq->pt->machine;
3061 
3062 	ptq->pid = sample->pid;
3063 	ptq->tid = sample->tid;
3064 	ptq->cpu = queue->cpu;
3065 
3066 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3067 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3068 
3069 	thread__zput(ptq->thread);
3070 
3071 	if (ptq->tid == -1)
3072 		return;
3073 
3074 	if (ptq->pid == -1) {
3075 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
3076 		if (ptq->thread)
3077 			ptq->pid = ptq->thread->pid_;
3078 		return;
3079 	}
3080 
3081 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3082 }
3083 
3084 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3085 					    struct perf_sample *sample)
3086 {
3087 	struct auxtrace_queue *queue;
3088 	struct intel_pt_queue *ptq;
3089 	u64 ts = 0;
3090 
3091 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3092 	if (!queue)
3093 		return -EINVAL;
3094 
3095 	ptq = queue->priv;
3096 	if (!ptq)
3097 		return 0;
3098 
3099 	ptq->stop = false;
3100 	ptq->time = sample->time;
3101 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3102 	intel_pt_run_decoder(ptq, &ts);
3103 	return 0;
3104 }
3105 
3106 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3107 {
3108 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3109 				    sample->pid, sample->tid, 0, sample->time,
3110 				    sample->machine_pid, sample->vcpu);
3111 }
3112 
3113 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3114 {
3115 	unsigned i, j;
3116 
3117 	if (cpu < 0 || !pt->queues.nr_queues)
3118 		return NULL;
3119 
3120 	if ((unsigned)cpu >= pt->queues.nr_queues)
3121 		i = pt->queues.nr_queues - 1;
3122 	else
3123 		i = cpu;
3124 
3125 	if (pt->queues.queue_array[i].cpu == cpu)
3126 		return pt->queues.queue_array[i].priv;
3127 
3128 	for (j = 0; i > 0; j++) {
3129 		if (pt->queues.queue_array[--i].cpu == cpu)
3130 			return pt->queues.queue_array[i].priv;
3131 	}
3132 
3133 	for (; j < pt->queues.nr_queues; j++) {
3134 		if (pt->queues.queue_array[j].cpu == cpu)
3135 			return pt->queues.queue_array[j].priv;
3136 	}
3137 
3138 	return NULL;
3139 }
3140 
3141 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3142 				u64 timestamp)
3143 {
3144 	struct intel_pt_queue *ptq;
3145 	int err;
3146 
3147 	if (!pt->sync_switch)
3148 		return 1;
3149 
3150 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
3151 	if (!ptq || !ptq->sync_switch)
3152 		return 1;
3153 
3154 	switch (ptq->switch_state) {
3155 	case INTEL_PT_SS_NOT_TRACING:
3156 		break;
3157 	case INTEL_PT_SS_UNKNOWN:
3158 	case INTEL_PT_SS_TRACING:
3159 		ptq->next_tid = tid;
3160 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3161 		return 0;
3162 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3163 		if (!ptq->on_heap) {
3164 			ptq->timestamp = perf_time_to_tsc(timestamp,
3165 							  &pt->tc);
3166 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3167 						 ptq->timestamp);
3168 			if (err)
3169 				return err;
3170 			ptq->on_heap = true;
3171 		}
3172 		ptq->switch_state = INTEL_PT_SS_TRACING;
3173 		break;
3174 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3175 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3176 		break;
3177 	default:
3178 		break;
3179 	}
3180 
3181 	ptq->next_tid = -1;
3182 
3183 	return 1;
3184 }
3185 
3186 #ifdef HAVE_LIBTRACEEVENT
3187 static int intel_pt_process_switch(struct intel_pt *pt,
3188 				   struct perf_sample *sample)
3189 {
3190 	pid_t tid;
3191 	int cpu, ret;
3192 	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3193 
3194 	if (evsel != pt->switch_evsel)
3195 		return 0;
3196 
3197 	tid = evsel__intval(evsel, sample, "next_pid");
3198 	cpu = sample->cpu;
3199 
3200 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3201 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3202 		     &pt->tc));
3203 
3204 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3205 	if (ret <= 0)
3206 		return ret;
3207 
3208 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
3209 }
3210 #endif /* HAVE_LIBTRACEEVENT */
3211 
3212 static int intel_pt_context_switch_in(struct intel_pt *pt,
3213 				      struct perf_sample *sample)
3214 {
3215 	pid_t pid = sample->pid;
3216 	pid_t tid = sample->tid;
3217 	int cpu = sample->cpu;
3218 
3219 	if (pt->sync_switch) {
3220 		struct intel_pt_queue *ptq;
3221 
3222 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
3223 		if (ptq && ptq->sync_switch) {
3224 			ptq->next_tid = -1;
3225 			switch (ptq->switch_state) {
3226 			case INTEL_PT_SS_NOT_TRACING:
3227 			case INTEL_PT_SS_UNKNOWN:
3228 			case INTEL_PT_SS_TRACING:
3229 				break;
3230 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3231 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3232 				ptq->switch_state = INTEL_PT_SS_TRACING;
3233 				break;
3234 			default:
3235 				break;
3236 			}
3237 		}
3238 	}
3239 
3240 	/*
3241 	 * If the current tid has not been updated yet, ensure it is now that
3242 	 * a "switch in" event has occurred.
3243 	 */
3244 	if (machine__get_current_tid(pt->machine, cpu) == tid)
3245 		return 0;
3246 
3247 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3248 }
3249 
3250 static int intel_pt_guest_context_switch(struct intel_pt *pt,
3251 					 union perf_event *event,
3252 					 struct perf_sample *sample)
3253 {
3254 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3255 	struct machines *machines = &pt->session->machines;
3256 	struct machine *machine = machines__find(machines, sample->machine_pid);
3257 
3258 	pt->have_guest_sideband = true;
3259 
3260 	/*
3261 	 * sync_switch cannot handle guest machines at present, so just disable
3262 	 * it.
3263 	 */
3264 	pt->sync_switch_not_supported = true;
3265 	if (pt->sync_switch)
3266 		intel_pt_disable_sync_switch(pt);
3267 
3268 	if (out)
3269 		return 0;
3270 
3271 	if (!machine)
3272 		return -EINVAL;
3273 
3274 	return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3275 }
3276 
3277 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3278 				   struct perf_sample *sample)
3279 {
3280 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3281 	pid_t pid, tid;
3282 	int cpu, ret;
3283 
3284 	if (perf_event__is_guest(event))
3285 		return intel_pt_guest_context_switch(pt, event, sample);
3286 
3287 	cpu = sample->cpu;
3288 
3289 	if (pt->have_sched_switch == 3) {
3290 		if (!out)
3291 			return intel_pt_context_switch_in(pt, sample);
3292 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3293 			pr_err("Expecting CPU-wide context switch event\n");
3294 			return -EINVAL;
3295 		}
3296 		pid = event->context_switch.next_prev_pid;
3297 		tid = event->context_switch.next_prev_tid;
3298 	} else {
3299 		if (out)
3300 			return 0;
3301 		pid = sample->pid;
3302 		tid = sample->tid;
3303 	}
3304 
3305 	if (tid == -1)
3306 		intel_pt_log("context_switch event has no tid\n");
3307 
3308 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3309 	if (ret <= 0)
3310 		return ret;
3311 
3312 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3313 }
3314 
3315 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3316 					 union perf_event *event,
3317 					 struct perf_sample *sample)
3318 {
3319 	if (!pt->per_cpu_mmaps)
3320 		return 0;
3321 
3322 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3323 		     sample->cpu, event->itrace_start.pid,
3324 		     event->itrace_start.tid, sample->time,
3325 		     perf_time_to_tsc(sample->time, &pt->tc));
3326 
3327 	return machine__set_current_tid(pt->machine, sample->cpu,
3328 					event->itrace_start.pid,
3329 					event->itrace_start.tid);
3330 }
3331 
3332 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3333 					     union perf_event *event,
3334 					     struct perf_sample *sample)
3335 {
3336 	u64 hw_id = event->aux_output_hw_id.hw_id;
3337 	struct auxtrace_queue *queue;
3338 	struct intel_pt_queue *ptq;
3339 	struct evsel *evsel;
3340 
3341 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3342 	evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3343 	if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3344 		pr_err("Bad AUX output hardware ID\n");
3345 		return -EINVAL;
3346 	}
3347 
3348 	ptq = queue->priv;
3349 
3350 	ptq->pebs[hw_id].evsel = evsel;
3351 	ptq->pebs[hw_id].id = sample->id;
3352 
3353 	return 0;
3354 }
3355 
3356 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3357 			     struct addr_location *al)
3358 {
3359 	if (!al->map || addr < al->map->start || addr >= al->map->end) {
3360 		if (!thread__find_map(thread, cpumode, addr, al))
3361 			return -1;
3362 	}
3363 
3364 	return 0;
3365 }
3366 
3367 /* Invalidate all instruction cache entries that overlap the text poke */
3368 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3369 {
3370 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3371 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3372 	/* Assume text poke begins in a basic block no more than 4096 bytes */
3373 	int cnt = 4096 + event->text_poke.new_len;
3374 	struct thread *thread = pt->unknown_thread;
3375 	struct addr_location al = { .map = NULL };
3376 	struct machine *machine = pt->machine;
3377 	struct intel_pt_cache_entry *e;
3378 	u64 offset;
3379 
3380 	if (!event->text_poke.new_len)
3381 		return 0;
3382 
3383 	for (; cnt; cnt--, addr--) {
3384 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3385 			if (addr < event->text_poke.addr)
3386 				return 0;
3387 			continue;
3388 		}
3389 
3390 		if (!al.map->dso || !al.map->dso->auxtrace_cache)
3391 			continue;
3392 
3393 		offset = al.map->map_ip(al.map, addr);
3394 
3395 		e = intel_pt_cache_lookup(al.map->dso, machine, offset);
3396 		if (!e)
3397 			continue;
3398 
3399 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3400 			/*
3401 			 * No overlap. Working backwards there cannot be another
3402 			 * basic block that overlaps the text poke if there is a
3403 			 * branch instruction before the text poke address.
3404 			 */
3405 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
3406 				return 0;
3407 		} else {
3408 			intel_pt_cache_invalidate(al.map->dso, machine, offset);
3409 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3410 				     al.map->dso->long_name, addr);
3411 		}
3412 	}
3413 
3414 	return 0;
3415 }
3416 
3417 static int intel_pt_process_event(struct perf_session *session,
3418 				  union perf_event *event,
3419 				  struct perf_sample *sample,
3420 				  struct perf_tool *tool)
3421 {
3422 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3423 					   auxtrace);
3424 	u64 timestamp;
3425 	int err = 0;
3426 
3427 	if (dump_trace)
3428 		return 0;
3429 
3430 	if (!tool->ordered_events) {
3431 		pr_err("Intel Processor Trace requires ordered events\n");
3432 		return -EINVAL;
3433 	}
3434 
3435 	if (sample->time && sample->time != (u64)-1)
3436 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3437 	else
3438 		timestamp = 0;
3439 
3440 	if (timestamp || pt->timeless_decoding) {
3441 		err = intel_pt_update_queues(pt);
3442 		if (err)
3443 			return err;
3444 	}
3445 
3446 	if (pt->timeless_decoding) {
3447 		if (pt->sampling_mode) {
3448 			if (sample->aux_sample.size)
3449 				err = intel_pt_process_timeless_sample(pt,
3450 								       sample);
3451 		} else if (event->header.type == PERF_RECORD_EXIT) {
3452 			err = intel_pt_process_timeless_queues(pt,
3453 							       event->fork.tid,
3454 							       sample->time);
3455 		}
3456 	} else if (timestamp) {
3457 		if (!pt->first_timestamp)
3458 			intel_pt_first_timestamp(pt, timestamp);
3459 		err = intel_pt_process_queues(pt, timestamp);
3460 	}
3461 	if (err)
3462 		return err;
3463 
3464 	if (event->header.type == PERF_RECORD_SAMPLE) {
3465 		if (pt->synth_opts.add_callchain && !sample->callchain)
3466 			intel_pt_add_callchain(pt, sample);
3467 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3468 			intel_pt_add_br_stack(pt, sample);
3469 	}
3470 
3471 	if (event->header.type == PERF_RECORD_AUX &&
3472 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3473 	    pt->synth_opts.errors) {
3474 		err = intel_pt_lost(pt, sample);
3475 		if (err)
3476 			return err;
3477 	}
3478 
3479 #ifdef HAVE_LIBTRACEEVENT
3480 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3481 		err = intel_pt_process_switch(pt, sample);
3482 	else
3483 #endif
3484 	if (event->header.type == PERF_RECORD_ITRACE_START)
3485 		err = intel_pt_process_itrace_start(pt, event, sample);
3486 	else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3487 		err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3488 	else if (event->header.type == PERF_RECORD_SWITCH ||
3489 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3490 		err = intel_pt_context_switch(pt, event, sample);
3491 
3492 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3493 		err = intel_pt_text_poke(pt, event);
3494 
3495 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3496 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3497 			     event->header.type, sample->cpu, sample->time, timestamp);
3498 		intel_pt_log_event(event);
3499 	}
3500 
3501 	return err;
3502 }
3503 
3504 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3505 {
3506 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3507 					   auxtrace);
3508 	int ret;
3509 
3510 	if (dump_trace)
3511 		return 0;
3512 
3513 	if (!tool->ordered_events)
3514 		return -EINVAL;
3515 
3516 	ret = intel_pt_update_queues(pt);
3517 	if (ret < 0)
3518 		return ret;
3519 
3520 	if (pt->timeless_decoding)
3521 		return intel_pt_process_timeless_queues(pt, -1,
3522 							MAX_TIMESTAMP - 1);
3523 
3524 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3525 }
3526 
3527 static void intel_pt_free_events(struct perf_session *session)
3528 {
3529 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3530 					   auxtrace);
3531 	struct auxtrace_queues *queues = &pt->queues;
3532 	unsigned int i;
3533 
3534 	for (i = 0; i < queues->nr_queues; i++) {
3535 		intel_pt_free_queue(queues->queue_array[i].priv);
3536 		queues->queue_array[i].priv = NULL;
3537 	}
3538 	intel_pt_log_disable();
3539 	auxtrace_queues__free(queues);
3540 }
3541 
3542 static void intel_pt_free(struct perf_session *session)
3543 {
3544 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3545 					   auxtrace);
3546 
3547 	auxtrace_heap__free(&pt->heap);
3548 	intel_pt_free_events(session);
3549 	session->auxtrace = NULL;
3550 	intel_pt_free_vmcs_info(pt);
3551 	thread__put(pt->unknown_thread);
3552 	addr_filters__exit(&pt->filts);
3553 	zfree(&pt->chain);
3554 	zfree(&pt->filter);
3555 	zfree(&pt->time_ranges);
3556 	free(pt);
3557 }
3558 
3559 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3560 				       struct evsel *evsel)
3561 {
3562 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3563 					   auxtrace);
3564 
3565 	return evsel->core.attr.type == pt->pmu_type;
3566 }
3567 
3568 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3569 					   union perf_event *event,
3570 					   struct perf_tool *tool __maybe_unused)
3571 {
3572 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3573 					   auxtrace);
3574 
3575 	if (!pt->data_queued) {
3576 		struct auxtrace_buffer *buffer;
3577 		off_t data_offset;
3578 		int fd = perf_data__fd(session->data);
3579 		int err;
3580 
3581 		if (perf_data__is_pipe(session->data)) {
3582 			data_offset = 0;
3583 		} else {
3584 			data_offset = lseek(fd, 0, SEEK_CUR);
3585 			if (data_offset == -1)
3586 				return -errno;
3587 		}
3588 
3589 		err = auxtrace_queues__add_event(&pt->queues, session, event,
3590 						 data_offset, &buffer);
3591 		if (err)
3592 			return err;
3593 
3594 		/* Dump here now we have copied a piped trace out of the pipe */
3595 		if (dump_trace) {
3596 			if (auxtrace_buffer__get_data(buffer, fd)) {
3597 				intel_pt_dump_event(pt, buffer->data,
3598 						    buffer->size);
3599 				auxtrace_buffer__put_data(buffer);
3600 			}
3601 		}
3602 	}
3603 
3604 	return 0;
3605 }
3606 
3607 static int intel_pt_queue_data(struct perf_session *session,
3608 			       struct perf_sample *sample,
3609 			       union perf_event *event, u64 data_offset)
3610 {
3611 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3612 					   auxtrace);
3613 	u64 timestamp;
3614 
3615 	if (event) {
3616 		return auxtrace_queues__add_event(&pt->queues, session, event,
3617 						  data_offset, NULL);
3618 	}
3619 
3620 	if (sample->time && sample->time != (u64)-1)
3621 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3622 	else
3623 		timestamp = 0;
3624 
3625 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3626 					   data_offset, timestamp);
3627 }
3628 
3629 struct intel_pt_synth {
3630 	struct perf_tool dummy_tool;
3631 	struct perf_session *session;
3632 };
3633 
3634 static int intel_pt_event_synth(struct perf_tool *tool,
3635 				union perf_event *event,
3636 				struct perf_sample *sample __maybe_unused,
3637 				struct machine *machine __maybe_unused)
3638 {
3639 	struct intel_pt_synth *intel_pt_synth =
3640 			container_of(tool, struct intel_pt_synth, dummy_tool);
3641 
3642 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3643 						 NULL);
3644 }
3645 
3646 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3647 				struct perf_event_attr *attr, u64 id)
3648 {
3649 	struct intel_pt_synth intel_pt_synth;
3650 	int err;
3651 
3652 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3653 		 name, id, (u64)attr->sample_type);
3654 
3655 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3656 	intel_pt_synth.session = session;
3657 
3658 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3659 					  &id, intel_pt_event_synth);
3660 	if (err)
3661 		pr_err("%s: failed to synthesize '%s' event type\n",
3662 		       __func__, name);
3663 
3664 	return err;
3665 }
3666 
3667 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3668 				    const char *name)
3669 {
3670 	struct evsel *evsel;
3671 
3672 	evlist__for_each_entry(evlist, evsel) {
3673 		if (evsel->core.id && evsel->core.id[0] == id) {
3674 			if (evsel->name)
3675 				zfree(&evsel->name);
3676 			evsel->name = strdup(name);
3677 			break;
3678 		}
3679 	}
3680 }
3681 
3682 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3683 					 struct evlist *evlist)
3684 {
3685 	struct evsel *evsel;
3686 
3687 	evlist__for_each_entry(evlist, evsel) {
3688 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3689 			return evsel;
3690 	}
3691 
3692 	return NULL;
3693 }
3694 
3695 static int intel_pt_synth_events(struct intel_pt *pt,
3696 				 struct perf_session *session)
3697 {
3698 	struct evlist *evlist = session->evlist;
3699 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3700 	struct perf_event_attr attr;
3701 	u64 id;
3702 	int err;
3703 
3704 	if (!evsel) {
3705 		pr_debug("There are no selected events with Intel Processor Trace data\n");
3706 		return 0;
3707 	}
3708 
3709 	memset(&attr, 0, sizeof(struct perf_event_attr));
3710 	attr.size = sizeof(struct perf_event_attr);
3711 	attr.type = PERF_TYPE_HARDWARE;
3712 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3713 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3714 			    PERF_SAMPLE_PERIOD;
3715 	if (pt->timeless_decoding)
3716 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3717 	else
3718 		attr.sample_type |= PERF_SAMPLE_TIME;
3719 	if (!pt->per_cpu_mmaps)
3720 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3721 	attr.exclude_user = evsel->core.attr.exclude_user;
3722 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3723 	attr.exclude_hv = evsel->core.attr.exclude_hv;
3724 	attr.exclude_host = evsel->core.attr.exclude_host;
3725 	attr.exclude_guest = evsel->core.attr.exclude_guest;
3726 	attr.sample_id_all = evsel->core.attr.sample_id_all;
3727 	attr.read_format = evsel->core.attr.read_format;
3728 
3729 	id = evsel->core.id[0] + 1000000000;
3730 	if (!id)
3731 		id = 1;
3732 
3733 	if (pt->synth_opts.branches) {
3734 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3735 		attr.sample_period = 1;
3736 		attr.sample_type |= PERF_SAMPLE_ADDR;
3737 		err = intel_pt_synth_event(session, "branches", &attr, id);
3738 		if (err)
3739 			return err;
3740 		pt->sample_branches = true;
3741 		pt->branches_sample_type = attr.sample_type;
3742 		pt->branches_id = id;
3743 		id += 1;
3744 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3745 	}
3746 
3747 	if (pt->synth_opts.callchain)
3748 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3749 	if (pt->synth_opts.last_branch) {
3750 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3751 		/*
3752 		 * We don't use the hardware index, but the sample generation
3753 		 * code uses the new format branch_stack with this field,
3754 		 * so the event attributes must indicate that it's present.
3755 		 */
3756 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3757 	}
3758 
3759 	if (pt->synth_opts.instructions) {
3760 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3761 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3762 			attr.sample_period =
3763 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3764 		else
3765 			attr.sample_period = pt->synth_opts.period;
3766 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3767 		if (err)
3768 			return err;
3769 		pt->sample_instructions = true;
3770 		pt->instructions_sample_type = attr.sample_type;
3771 		pt->instructions_id = id;
3772 		id += 1;
3773 	}
3774 
3775 	if (pt->synth_opts.cycles) {
3776 		attr.config = PERF_COUNT_HW_CPU_CYCLES;
3777 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3778 			attr.sample_period =
3779 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3780 		else
3781 			attr.sample_period = pt->synth_opts.period;
3782 		err = intel_pt_synth_event(session, "cycles", &attr, id);
3783 		if (err)
3784 			return err;
3785 		pt->sample_cycles = true;
3786 		pt->cycles_sample_type = attr.sample_type;
3787 		pt->cycles_id = id;
3788 		id += 1;
3789 	}
3790 
3791 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3792 	attr.sample_period = 1;
3793 
3794 	if (pt->synth_opts.transactions) {
3795 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3796 		err = intel_pt_synth_event(session, "transactions", &attr, id);
3797 		if (err)
3798 			return err;
3799 		pt->sample_transactions = true;
3800 		pt->transactions_sample_type = attr.sample_type;
3801 		pt->transactions_id = id;
3802 		intel_pt_set_event_name(evlist, id, "transactions");
3803 		id += 1;
3804 	}
3805 
3806 	attr.type = PERF_TYPE_SYNTH;
3807 	attr.sample_type |= PERF_SAMPLE_RAW;
3808 
3809 	if (pt->synth_opts.ptwrites) {
3810 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3811 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3812 		if (err)
3813 			return err;
3814 		pt->sample_ptwrites = true;
3815 		pt->ptwrites_sample_type = attr.sample_type;
3816 		pt->ptwrites_id = id;
3817 		intel_pt_set_event_name(evlist, id, "ptwrite");
3818 		id += 1;
3819 	}
3820 
3821 	if (pt->synth_opts.pwr_events) {
3822 		pt->sample_pwr_events = true;
3823 		pt->pwr_events_sample_type = attr.sample_type;
3824 
3825 		attr.config = PERF_SYNTH_INTEL_CBR;
3826 		err = intel_pt_synth_event(session, "cbr", &attr, id);
3827 		if (err)
3828 			return err;
3829 		pt->cbr_id = id;
3830 		intel_pt_set_event_name(evlist, id, "cbr");
3831 		id += 1;
3832 
3833 		attr.config = PERF_SYNTH_INTEL_PSB;
3834 		err = intel_pt_synth_event(session, "psb", &attr, id);
3835 		if (err)
3836 			return err;
3837 		pt->psb_id = id;
3838 		intel_pt_set_event_name(evlist, id, "psb");
3839 		id += 1;
3840 	}
3841 
3842 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3843 		attr.config = PERF_SYNTH_INTEL_MWAIT;
3844 		err = intel_pt_synth_event(session, "mwait", &attr, id);
3845 		if (err)
3846 			return err;
3847 		pt->mwait_id = id;
3848 		intel_pt_set_event_name(evlist, id, "mwait");
3849 		id += 1;
3850 
3851 		attr.config = PERF_SYNTH_INTEL_PWRE;
3852 		err = intel_pt_synth_event(session, "pwre", &attr, id);
3853 		if (err)
3854 			return err;
3855 		pt->pwre_id = id;
3856 		intel_pt_set_event_name(evlist, id, "pwre");
3857 		id += 1;
3858 
3859 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3860 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3861 		if (err)
3862 			return err;
3863 		pt->exstop_id = id;
3864 		intel_pt_set_event_name(evlist, id, "exstop");
3865 		id += 1;
3866 
3867 		attr.config = PERF_SYNTH_INTEL_PWRX;
3868 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3869 		if (err)
3870 			return err;
3871 		pt->pwrx_id = id;
3872 		intel_pt_set_event_name(evlist, id, "pwrx");
3873 		id += 1;
3874 	}
3875 
3876 	if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3877 		attr.config = PERF_SYNTH_INTEL_EVT;
3878 		err = intel_pt_synth_event(session, "evt", &attr, id);
3879 		if (err)
3880 			return err;
3881 		pt->evt_sample_type = attr.sample_type;
3882 		pt->evt_id = id;
3883 		intel_pt_set_event_name(evlist, id, "evt");
3884 		id += 1;
3885 	}
3886 
3887 	if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3888 		attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3889 		err = intel_pt_synth_event(session, "iflag", &attr, id);
3890 		if (err)
3891 			return err;
3892 		pt->iflag_chg_sample_type = attr.sample_type;
3893 		pt->iflag_chg_id = id;
3894 		intel_pt_set_event_name(evlist, id, "iflag");
3895 		id += 1;
3896 	}
3897 
3898 	return 0;
3899 }
3900 
3901 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3902 {
3903 	struct evsel *evsel;
3904 
3905 	if (!pt->synth_opts.other_events)
3906 		return;
3907 
3908 	evlist__for_each_entry(pt->session->evlist, evsel) {
3909 		if (evsel->core.attr.aux_output && evsel->core.id) {
3910 			if (pt->single_pebs) {
3911 				pt->single_pebs = false;
3912 				return;
3913 			}
3914 			pt->single_pebs = true;
3915 			pt->sample_pebs = true;
3916 			pt->pebs_evsel = evsel;
3917 		}
3918 	}
3919 }
3920 
3921 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3922 {
3923 	struct evsel *evsel;
3924 
3925 	evlist__for_each_entry_reverse(evlist, evsel) {
3926 		const char *name = evsel__name(evsel);
3927 
3928 		if (!strcmp(name, "sched:sched_switch"))
3929 			return evsel;
3930 	}
3931 
3932 	return NULL;
3933 }
3934 
3935 static bool intel_pt_find_switch(struct evlist *evlist)
3936 {
3937 	struct evsel *evsel;
3938 
3939 	evlist__for_each_entry(evlist, evsel) {
3940 		if (evsel->core.attr.context_switch)
3941 			return true;
3942 	}
3943 
3944 	return false;
3945 }
3946 
3947 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3948 {
3949 	struct intel_pt *pt = data;
3950 
3951 	if (!strcmp(var, "intel-pt.mispred-all"))
3952 		pt->mispred_all = perf_config_bool(var, value);
3953 
3954 	if (!strcmp(var, "intel-pt.max-loops"))
3955 		perf_config_int(&pt->max_loops, var, value);
3956 
3957 	return 0;
3958 }
3959 
3960 /* Find least TSC which converts to ns or later */
3961 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3962 {
3963 	u64 tsc, tm;
3964 
3965 	tsc = perf_time_to_tsc(ns, &pt->tc);
3966 
3967 	while (1) {
3968 		tm = tsc_to_perf_time(tsc, &pt->tc);
3969 		if (tm < ns)
3970 			break;
3971 		tsc -= 1;
3972 	}
3973 
3974 	while (tm < ns)
3975 		tm = tsc_to_perf_time(++tsc, &pt->tc);
3976 
3977 	return tsc;
3978 }
3979 
3980 /* Find greatest TSC which converts to ns or earlier */
3981 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3982 {
3983 	u64 tsc, tm;
3984 
3985 	tsc = perf_time_to_tsc(ns, &pt->tc);
3986 
3987 	while (1) {
3988 		tm = tsc_to_perf_time(tsc, &pt->tc);
3989 		if (tm > ns)
3990 			break;
3991 		tsc += 1;
3992 	}
3993 
3994 	while (tm > ns)
3995 		tm = tsc_to_perf_time(--tsc, &pt->tc);
3996 
3997 	return tsc;
3998 }
3999 
4000 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
4001 				      struct itrace_synth_opts *opts)
4002 {
4003 	struct perf_time_interval *p = opts->ptime_range;
4004 	int n = opts->range_num;
4005 	int i;
4006 
4007 	if (!n || !p || pt->timeless_decoding)
4008 		return 0;
4009 
4010 	pt->time_ranges = calloc(n, sizeof(struct range));
4011 	if (!pt->time_ranges)
4012 		return -ENOMEM;
4013 
4014 	pt->range_cnt = n;
4015 
4016 	intel_pt_log("%s: %u range(s)\n", __func__, n);
4017 
4018 	for (i = 0; i < n; i++) {
4019 		struct range *r = &pt->time_ranges[i];
4020 		u64 ts = p[i].start;
4021 		u64 te = p[i].end;
4022 
4023 		/*
4024 		 * Take care to ensure the TSC range matches the perf-time range
4025 		 * when converted back to perf-time.
4026 		 */
4027 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
4028 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
4029 
4030 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
4031 			     i, ts, te);
4032 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
4033 			     i, r->start, r->end);
4034 	}
4035 
4036 	return 0;
4037 }
4038 
4039 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
4040 {
4041 	struct intel_pt_vmcs_info *vmcs_info;
4042 	u64 tsc_offset, vmcs;
4043 	char *p = *args;
4044 
4045 	errno = 0;
4046 
4047 	p = skip_spaces(p);
4048 	if (!*p)
4049 		return 1;
4050 
4051 	tsc_offset = strtoull(p, &p, 0);
4052 	if (errno)
4053 		return -errno;
4054 	p = skip_spaces(p);
4055 	if (*p != ':') {
4056 		pt->dflt_tsc_offset = tsc_offset;
4057 		*args = p;
4058 		return 0;
4059 	}
4060 	p += 1;
4061 	while (1) {
4062 		vmcs = strtoull(p, &p, 0);
4063 		if (errno)
4064 			return -errno;
4065 		if (!vmcs)
4066 			return -EINVAL;
4067 		vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
4068 		if (!vmcs_info)
4069 			return -ENOMEM;
4070 		p = skip_spaces(p);
4071 		if (*p != ',')
4072 			break;
4073 		p += 1;
4074 	}
4075 	*args = p;
4076 	return 0;
4077 }
4078 
4079 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4080 {
4081 	char *args = pt->synth_opts.vm_tm_corr_args;
4082 	int ret;
4083 
4084 	if (!args)
4085 		return 0;
4086 
4087 	do {
4088 		ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4089 	} while (!ret);
4090 
4091 	if (ret < 0) {
4092 		pr_err("Failed to parse VM Time Correlation options\n");
4093 		return ret;
4094 	}
4095 
4096 	return 0;
4097 }
4098 
4099 static const char * const intel_pt_info_fmts[] = {
4100 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
4101 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
4102 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
4103 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
4104 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
4105 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
4106 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
4107 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
4108 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
4109 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
4110 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
4111 	[INTEL_PT_MTC_FREQ_BITS]	= "  MTC freq bits       %#"PRIx64"\n",
4112 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
4113 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
4114 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
4115 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
4116 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
4117 };
4118 
4119 static void intel_pt_print_info(__u64 *arr, int start, int finish)
4120 {
4121 	int i;
4122 
4123 	if (!dump_trace)
4124 		return;
4125 
4126 	for (i = start; i <= finish; i++) {
4127 		const char *fmt = intel_pt_info_fmts[i];
4128 
4129 		if (fmt)
4130 			fprintf(stdout, fmt, arr[i]);
4131 	}
4132 }
4133 
4134 static void intel_pt_print_info_str(const char *name, const char *str)
4135 {
4136 	if (!dump_trace)
4137 		return;
4138 
4139 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
4140 }
4141 
4142 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4143 {
4144 	return auxtrace_info->header.size >=
4145 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4146 }
4147 
4148 int intel_pt_process_auxtrace_info(union perf_event *event,
4149 				   struct perf_session *session)
4150 {
4151 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4152 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4153 	struct intel_pt *pt;
4154 	void *info_end;
4155 	__u64 *info;
4156 	int err;
4157 
4158 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4159 					min_sz)
4160 		return -EINVAL;
4161 
4162 	pt = zalloc(sizeof(struct intel_pt));
4163 	if (!pt)
4164 		return -ENOMEM;
4165 
4166 	pt->vmcs_info = RB_ROOT;
4167 
4168 	addr_filters__init(&pt->filts);
4169 
4170 	err = perf_config(intel_pt_perf_config, pt);
4171 	if (err)
4172 		goto err_free;
4173 
4174 	err = auxtrace_queues__init(&pt->queues);
4175 	if (err)
4176 		goto err_free;
4177 
4178 	if (session->itrace_synth_opts->set) {
4179 		pt->synth_opts = *session->itrace_synth_opts;
4180 	} else {
4181 		struct itrace_synth_opts *opts = session->itrace_synth_opts;
4182 
4183 		itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4184 		if (!opts->default_no_sample && !opts->inject) {
4185 			pt->synth_opts.branches = false;
4186 			pt->synth_opts.callchain = true;
4187 			pt->synth_opts.add_callchain = true;
4188 		}
4189 		pt->synth_opts.thread_stack = opts->thread_stack;
4190 	}
4191 
4192 	if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4193 		intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4194 
4195 	pt->session = session;
4196 	pt->machine = &session->machines.host; /* No kvm support */
4197 	pt->auxtrace_type = auxtrace_info->type;
4198 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4199 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4200 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4201 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4202 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4203 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4204 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4205 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4206 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4207 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4208 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4209 			    INTEL_PT_PER_CPU_MMAPS);
4210 
4211 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4212 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4213 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4214 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4215 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4216 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4217 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4218 				    INTEL_PT_CYC_BIT);
4219 	}
4220 
4221 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4222 		pt->max_non_turbo_ratio =
4223 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4224 		intel_pt_print_info(&auxtrace_info->priv[0],
4225 				    INTEL_PT_MAX_NONTURBO_RATIO,
4226 				    INTEL_PT_MAX_NONTURBO_RATIO);
4227 	}
4228 
4229 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4230 	info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4231 
4232 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4233 		size_t len;
4234 
4235 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4236 		intel_pt_print_info(&auxtrace_info->priv[0],
4237 				    INTEL_PT_FILTER_STR_LEN,
4238 				    INTEL_PT_FILTER_STR_LEN);
4239 		if (len) {
4240 			const char *filter = (const char *)info;
4241 
4242 			len = roundup(len + 1, 8);
4243 			info += len >> 3;
4244 			if ((void *)info > info_end) {
4245 				pr_err("%s: bad filter string length\n", __func__);
4246 				err = -EINVAL;
4247 				goto err_free_queues;
4248 			}
4249 			pt->filter = memdup(filter, len);
4250 			if (!pt->filter) {
4251 				err = -ENOMEM;
4252 				goto err_free_queues;
4253 			}
4254 			if (session->header.needs_swap)
4255 				mem_bswap_64(pt->filter, len);
4256 			if (pt->filter[len - 1]) {
4257 				pr_err("%s: filter string not null terminated\n", __func__);
4258 				err = -EINVAL;
4259 				goto err_free_queues;
4260 			}
4261 			err = addr_filters__parse_bare_filter(&pt->filts,
4262 							      filter);
4263 			if (err)
4264 				goto err_free_queues;
4265 		}
4266 		intel_pt_print_info_str("Filter string", pt->filter);
4267 	}
4268 
4269 	if ((void *)info < info_end) {
4270 		pt->cap_event_trace = *info++;
4271 		if (dump_trace)
4272 			fprintf(stdout, "  Cap Event Trace     %d\n",
4273 				pt->cap_event_trace);
4274 	}
4275 
4276 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4277 	if (pt->timeless_decoding && !pt->tc.time_mult)
4278 		pt->tc.time_mult = 1;
4279 	pt->have_tsc = intel_pt_have_tsc(pt);
4280 	pt->sampling_mode = intel_pt_sampling_mode(pt);
4281 	pt->est_tsc = !pt->timeless_decoding;
4282 
4283 	if (pt->synth_opts.vm_time_correlation) {
4284 		if (pt->timeless_decoding) {
4285 			pr_err("Intel PT has no time information for VM Time Correlation\n");
4286 			err = -EINVAL;
4287 			goto err_free_queues;
4288 		}
4289 		if (session->itrace_synth_opts->ptime_range) {
4290 			pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4291 			err = -EINVAL;
4292 			goto err_free_queues;
4293 		}
4294 		/* Currently TSC Offset is calculated using MTC packets */
4295 		if (!intel_pt_have_mtc(pt)) {
4296 			pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4297 			err = -EINVAL;
4298 			goto err_free_queues;
4299 		}
4300 		err = intel_pt_parse_vm_tm_corr_args(pt);
4301 		if (err)
4302 			goto err_free_queues;
4303 	}
4304 
4305 	pt->unknown_thread = thread__new(999999999, 999999999);
4306 	if (!pt->unknown_thread) {
4307 		err = -ENOMEM;
4308 		goto err_free_queues;
4309 	}
4310 
4311 	/*
4312 	 * Since this thread will not be kept in any rbtree not in a
4313 	 * list, initialize its list node so that at thread__put() the
4314 	 * current thread lifetime assumption is kept and we don't segfault
4315 	 * at list_del_init().
4316 	 */
4317 	INIT_LIST_HEAD(&pt->unknown_thread->node);
4318 
4319 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4320 	if (err)
4321 		goto err_delete_thread;
4322 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4323 		err = -ENOMEM;
4324 		goto err_delete_thread;
4325 	}
4326 
4327 	pt->auxtrace.process_event = intel_pt_process_event;
4328 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4329 	pt->auxtrace.queue_data = intel_pt_queue_data;
4330 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4331 	pt->auxtrace.flush_events = intel_pt_flush;
4332 	pt->auxtrace.free_events = intel_pt_free_events;
4333 	pt->auxtrace.free = intel_pt_free;
4334 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4335 	session->auxtrace = &pt->auxtrace;
4336 
4337 	if (dump_trace)
4338 		return 0;
4339 
4340 	if (pt->have_sched_switch == 1) {
4341 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4342 		if (!pt->switch_evsel) {
4343 			pr_err("%s: missing sched_switch event\n", __func__);
4344 			err = -EINVAL;
4345 			goto err_delete_thread;
4346 		}
4347 	} else if (pt->have_sched_switch == 2 &&
4348 		   !intel_pt_find_switch(session->evlist)) {
4349 		pr_err("%s: missing context_switch attribute flag\n", __func__);
4350 		err = -EINVAL;
4351 		goto err_delete_thread;
4352 	}
4353 
4354 	if (pt->synth_opts.log) {
4355 		bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4356 		unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
4357 
4358 		intel_pt_log_enable(log_on_error, log_on_error_size);
4359 	}
4360 
4361 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
4362 	if (pt->tc.time_mult) {
4363 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4364 
4365 		if (!pt->max_non_turbo_ratio)
4366 			pt->max_non_turbo_ratio =
4367 					(tsc_freq + 50000000) / 100000000;
4368 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4369 		intel_pt_log("Maximum non-turbo ratio %u\n",
4370 			     pt->max_non_turbo_ratio);
4371 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4372 	}
4373 
4374 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4375 	if (err)
4376 		goto err_delete_thread;
4377 
4378 	if (pt->synth_opts.calls)
4379 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4380 				       PERF_IP_FLAG_TRACE_END;
4381 	if (pt->synth_opts.returns)
4382 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
4383 				       PERF_IP_FLAG_TRACE_BEGIN;
4384 
4385 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4386 	    !symbol_conf.use_callchain) {
4387 		symbol_conf.use_callchain = true;
4388 		if (callchain_register_param(&callchain_param) < 0) {
4389 			symbol_conf.use_callchain = false;
4390 			pt->synth_opts.callchain = false;
4391 			pt->synth_opts.add_callchain = false;
4392 		}
4393 	}
4394 
4395 	if (pt->synth_opts.add_callchain) {
4396 		err = intel_pt_callchain_init(pt);
4397 		if (err)
4398 			goto err_delete_thread;
4399 	}
4400 
4401 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4402 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4403 		pt->br_stack_sz_plus = pt->br_stack_sz;
4404 	}
4405 
4406 	if (pt->synth_opts.add_last_branch) {
4407 		err = intel_pt_br_stack_init(pt);
4408 		if (err)
4409 			goto err_delete_thread;
4410 		/*
4411 		 * Additional branch stack size to cater for tracing from the
4412 		 * actual sample ip to where the sample time is recorded.
4413 		 * Measured at about 200 branches, but generously set to 1024.
4414 		 * If kernel space is not being traced, then add just 1 for the
4415 		 * branch to kernel space.
4416 		 */
4417 		if (intel_pt_tracing_kernel(pt))
4418 			pt->br_stack_sz_plus += 1024;
4419 		else
4420 			pt->br_stack_sz_plus += 1;
4421 	}
4422 
4423 	pt->use_thread_stack = pt->synth_opts.callchain ||
4424 			       pt->synth_opts.add_callchain ||
4425 			       pt->synth_opts.thread_stack ||
4426 			       pt->synth_opts.last_branch ||
4427 			       pt->synth_opts.add_last_branch;
4428 
4429 	pt->callstack = pt->synth_opts.callchain ||
4430 			pt->synth_opts.add_callchain ||
4431 			pt->synth_opts.thread_stack;
4432 
4433 	err = intel_pt_synth_events(pt, session);
4434 	if (err)
4435 		goto err_delete_thread;
4436 
4437 	intel_pt_setup_pebs_events(pt);
4438 
4439 	if (perf_data__is_pipe(session->data)) {
4440 		pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n"
4441 			   "         The output cannot relied upon.  In particular,\n"
4442 			   "         timestamps and the order of events may be incorrect.\n");
4443 	}
4444 
4445 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4446 		err = auxtrace_queue_data(session, true, true);
4447 	else
4448 		err = auxtrace_queues__process_index(&pt->queues, session);
4449 	if (err)
4450 		goto err_delete_thread;
4451 
4452 	if (pt->queues.populated)
4453 		pt->data_queued = true;
4454 
4455 	if (pt->timeless_decoding)
4456 		pr_debug2("Intel PT decoding without timestamps\n");
4457 
4458 	return 0;
4459 
4460 err_delete_thread:
4461 	zfree(&pt->chain);
4462 	thread__zput(pt->unknown_thread);
4463 err_free_queues:
4464 	intel_pt_log_disable();
4465 	auxtrace_queues__free(&pt->queues);
4466 	session->auxtrace = NULL;
4467 err_free:
4468 	addr_filters__exit(&pt->filts);
4469 	zfree(&pt->filter);
4470 	zfree(&pt->time_ranges);
4471 	free(pt);
4472 	return err;
4473 }
4474