xref: /linux/tools/perf/util/intel-pt.c (revision 8ab2e96d8ff188006f1e3346a56443cd07fe1858)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39 
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41 
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46 
47 #define MAX_TIMESTAMP (~0ULL)
48 
49 struct range {
50 	u64 start;
51 	u64 end;
52 };
53 
54 struct intel_pt {
55 	struct auxtrace auxtrace;
56 	struct auxtrace_queues queues;
57 	struct auxtrace_heap heap;
58 	u32 auxtrace_type;
59 	struct perf_session *session;
60 	struct machine *machine;
61 	struct evsel *switch_evsel;
62 	struct thread *unknown_thread;
63 	bool timeless_decoding;
64 	bool sampling_mode;
65 	bool snapshot_mode;
66 	bool per_cpu_mmaps;
67 	bool have_tsc;
68 	bool data_queued;
69 	bool est_tsc;
70 	bool sync_switch;
71 	bool mispred_all;
72 	bool use_thread_stack;
73 	bool callstack;
74 	unsigned int br_stack_sz;
75 	unsigned int br_stack_sz_plus;
76 	int have_sched_switch;
77 	u32 pmu_type;
78 	u64 kernel_start;
79 	u64 switch_ip;
80 	u64 ptss_ip;
81 
82 	struct perf_tsc_conversion tc;
83 	bool cap_user_time_zero;
84 
85 	struct itrace_synth_opts synth_opts;
86 
87 	bool sample_instructions;
88 	u64 instructions_sample_type;
89 	u64 instructions_id;
90 
91 	bool sample_branches;
92 	u32 branches_filter;
93 	u64 branches_sample_type;
94 	u64 branches_id;
95 
96 	bool sample_transactions;
97 	u64 transactions_sample_type;
98 	u64 transactions_id;
99 
100 	bool sample_ptwrites;
101 	u64 ptwrites_sample_type;
102 	u64 ptwrites_id;
103 
104 	bool sample_pwr_events;
105 	u64 pwr_events_sample_type;
106 	u64 mwait_id;
107 	u64 pwre_id;
108 	u64 exstop_id;
109 	u64 pwrx_id;
110 	u64 cbr_id;
111 
112 	bool sample_pebs;
113 	struct evsel *pebs_evsel;
114 
115 	u64 tsc_bit;
116 	u64 mtc_bit;
117 	u64 mtc_freq_bits;
118 	u32 tsc_ctc_ratio_n;
119 	u32 tsc_ctc_ratio_d;
120 	u64 cyc_bit;
121 	u64 noretcomp_bit;
122 	unsigned max_non_turbo_ratio;
123 	unsigned cbr2khz;
124 
125 	unsigned long num_events;
126 
127 	char *filter;
128 	struct addr_filters filts;
129 
130 	struct range *time_ranges;
131 	unsigned int range_cnt;
132 
133 	struct ip_callchain *chain;
134 	struct branch_stack *br_stack;
135 };
136 
137 enum switch_state {
138 	INTEL_PT_SS_NOT_TRACING,
139 	INTEL_PT_SS_UNKNOWN,
140 	INTEL_PT_SS_TRACING,
141 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
142 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
143 };
144 
145 struct intel_pt_queue {
146 	struct intel_pt *pt;
147 	unsigned int queue_nr;
148 	struct auxtrace_buffer *buffer;
149 	struct auxtrace_buffer *old_buffer;
150 	void *decoder;
151 	const struct intel_pt_state *state;
152 	struct ip_callchain *chain;
153 	struct branch_stack *last_branch;
154 	union perf_event *event_buf;
155 	bool on_heap;
156 	bool stop;
157 	bool step_through_buffers;
158 	bool use_buffer_pid_tid;
159 	bool sync_switch;
160 	pid_t pid, tid;
161 	int cpu;
162 	int switch_state;
163 	pid_t next_tid;
164 	struct thread *thread;
165 	bool exclude_kernel;
166 	bool have_sample;
167 	u64 time;
168 	u64 timestamp;
169 	u64 sel_timestamp;
170 	bool sel_start;
171 	unsigned int sel_idx;
172 	u32 flags;
173 	u16 insn_len;
174 	u64 last_insn_cnt;
175 	u64 ipc_insn_cnt;
176 	u64 ipc_cyc_cnt;
177 	u64 last_in_insn_cnt;
178 	u64 last_in_cyc_cnt;
179 	u64 last_br_insn_cnt;
180 	u64 last_br_cyc_cnt;
181 	unsigned int cbr_seen;
182 	char insn[INTEL_PT_INSN_BUF_SZ];
183 };
184 
185 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
186 			  unsigned char *buf, size_t len)
187 {
188 	struct intel_pt_pkt packet;
189 	size_t pos = 0;
190 	int ret, pkt_len, i;
191 	char desc[INTEL_PT_PKT_DESC_MAX];
192 	const char *color = PERF_COLOR_BLUE;
193 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
194 
195 	color_fprintf(stdout, color,
196 		      ". ... Intel Processor Trace data: size %zu bytes\n",
197 		      len);
198 
199 	while (len) {
200 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
201 		if (ret > 0)
202 			pkt_len = ret;
203 		else
204 			pkt_len = 1;
205 		printf(".");
206 		color_fprintf(stdout, color, "  %08x: ", pos);
207 		for (i = 0; i < pkt_len; i++)
208 			color_fprintf(stdout, color, " %02x", buf[i]);
209 		for (; i < 16; i++)
210 			color_fprintf(stdout, color, "   ");
211 		if (ret > 0) {
212 			ret = intel_pt_pkt_desc(&packet, desc,
213 						INTEL_PT_PKT_DESC_MAX);
214 			if (ret > 0)
215 				color_fprintf(stdout, color, " %s\n", desc);
216 		} else {
217 			color_fprintf(stdout, color, " Bad packet!\n");
218 		}
219 		pos += pkt_len;
220 		buf += pkt_len;
221 		len -= pkt_len;
222 	}
223 }
224 
225 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
226 				size_t len)
227 {
228 	printf(".\n");
229 	intel_pt_dump(pt, buf, len);
230 }
231 
232 static void intel_pt_log_event(union perf_event *event)
233 {
234 	FILE *f = intel_pt_log_fp();
235 
236 	if (!intel_pt_enable_logging || !f)
237 		return;
238 
239 	perf_event__fprintf(event, f);
240 }
241 
242 static void intel_pt_dump_sample(struct perf_session *session,
243 				 struct perf_sample *sample)
244 {
245 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
246 					   auxtrace);
247 
248 	printf("\n");
249 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
250 }
251 
252 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
253 				   struct auxtrace_buffer *b)
254 {
255 	bool consecutive = false;
256 	void *start;
257 
258 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
259 				      pt->have_tsc, &consecutive);
260 	if (!start)
261 		return -EINVAL;
262 	b->use_size = b->data + b->size - start;
263 	b->use_data = start;
264 	if (b->use_size && consecutive)
265 		b->consecutive = true;
266 	return 0;
267 }
268 
269 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
270 			       struct auxtrace_buffer *buffer,
271 			       struct auxtrace_buffer *old_buffer,
272 			       struct intel_pt_buffer *b)
273 {
274 	bool might_overlap;
275 
276 	if (!buffer->data) {
277 		int fd = perf_data__fd(ptq->pt->session->data);
278 
279 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
280 		if (!buffer->data)
281 			return -ENOMEM;
282 	}
283 
284 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
285 	if (might_overlap && !buffer->consecutive && old_buffer &&
286 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
287 		return -ENOMEM;
288 
289 	if (buffer->use_data) {
290 		b->len = buffer->use_size;
291 		b->buf = buffer->use_data;
292 	} else {
293 		b->len = buffer->size;
294 		b->buf = buffer->data;
295 	}
296 	b->ref_timestamp = buffer->reference;
297 
298 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
299 		b->consecutive = false;
300 		b->trace_nr = buffer->buffer_nr + 1;
301 	} else {
302 		b->consecutive = true;
303 	}
304 
305 	return 0;
306 }
307 
308 /* Do not drop buffers with references - refer intel_pt_get_trace() */
309 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
310 					   struct auxtrace_buffer *buffer)
311 {
312 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
313 		return;
314 
315 	auxtrace_buffer__drop_data(buffer);
316 }
317 
318 /* Must be serialized with respect to intel_pt_get_trace() */
319 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
320 			      void *cb_data)
321 {
322 	struct intel_pt_queue *ptq = data;
323 	struct auxtrace_buffer *buffer = ptq->buffer;
324 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
325 	struct auxtrace_queue *queue;
326 	int err = 0;
327 
328 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
329 
330 	while (1) {
331 		struct intel_pt_buffer b = { .len = 0 };
332 
333 		buffer = auxtrace_buffer__next(queue, buffer);
334 		if (!buffer)
335 			break;
336 
337 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
338 		if (err)
339 			break;
340 
341 		if (b.len) {
342 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
343 			old_buffer = buffer;
344 		} else {
345 			intel_pt_lookahead_drop_buffer(ptq, buffer);
346 			continue;
347 		}
348 
349 		err = cb(&b, cb_data);
350 		if (err)
351 			break;
352 	}
353 
354 	if (buffer != old_buffer)
355 		intel_pt_lookahead_drop_buffer(ptq, buffer);
356 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
357 
358 	return err;
359 }
360 
361 /*
362  * This function assumes data is processed sequentially only.
363  * Must be serialized with respect to intel_pt_lookahead()
364  */
365 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
366 {
367 	struct intel_pt_queue *ptq = data;
368 	struct auxtrace_buffer *buffer = ptq->buffer;
369 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
370 	struct auxtrace_queue *queue;
371 	int err;
372 
373 	if (ptq->stop) {
374 		b->len = 0;
375 		return 0;
376 	}
377 
378 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
379 
380 	buffer = auxtrace_buffer__next(queue, buffer);
381 	if (!buffer) {
382 		if (old_buffer)
383 			auxtrace_buffer__drop_data(old_buffer);
384 		b->len = 0;
385 		return 0;
386 	}
387 
388 	ptq->buffer = buffer;
389 
390 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
391 	if (err)
392 		return err;
393 
394 	if (ptq->step_through_buffers)
395 		ptq->stop = true;
396 
397 	if (b->len) {
398 		if (old_buffer)
399 			auxtrace_buffer__drop_data(old_buffer);
400 		ptq->old_buffer = buffer;
401 	} else {
402 		auxtrace_buffer__drop_data(buffer);
403 		return intel_pt_get_trace(b, data);
404 	}
405 
406 	return 0;
407 }
408 
409 struct intel_pt_cache_entry {
410 	struct auxtrace_cache_entry	entry;
411 	u64				insn_cnt;
412 	u64				byte_cnt;
413 	enum intel_pt_insn_op		op;
414 	enum intel_pt_insn_branch	branch;
415 	int				length;
416 	int32_t				rel;
417 	char				insn[INTEL_PT_INSN_BUF_SZ];
418 };
419 
420 static int intel_pt_config_div(const char *var, const char *value, void *data)
421 {
422 	int *d = data;
423 	long val;
424 
425 	if (!strcmp(var, "intel-pt.cache-divisor")) {
426 		val = strtol(value, NULL, 0);
427 		if (val > 0 && val <= INT_MAX)
428 			*d = val;
429 	}
430 
431 	return 0;
432 }
433 
434 static int intel_pt_cache_divisor(void)
435 {
436 	static int d;
437 
438 	if (d)
439 		return d;
440 
441 	perf_config(intel_pt_config_div, &d);
442 
443 	if (!d)
444 		d = 64;
445 
446 	return d;
447 }
448 
449 static unsigned int intel_pt_cache_size(struct dso *dso,
450 					struct machine *machine)
451 {
452 	off_t size;
453 
454 	size = dso__data_size(dso, machine);
455 	size /= intel_pt_cache_divisor();
456 	if (size < 1000)
457 		return 10;
458 	if (size > (1 << 21))
459 		return 21;
460 	return 32 - __builtin_clz(size);
461 }
462 
463 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
464 					     struct machine *machine)
465 {
466 	struct auxtrace_cache *c;
467 	unsigned int bits;
468 
469 	if (dso->auxtrace_cache)
470 		return dso->auxtrace_cache;
471 
472 	bits = intel_pt_cache_size(dso, machine);
473 
474 	/* Ignoring cache creation failure */
475 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
476 
477 	dso->auxtrace_cache = c;
478 
479 	return c;
480 }
481 
482 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
483 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
484 			      struct intel_pt_insn *intel_pt_insn)
485 {
486 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
487 	struct intel_pt_cache_entry *e;
488 	int err;
489 
490 	if (!c)
491 		return -ENOMEM;
492 
493 	e = auxtrace_cache__alloc_entry(c);
494 	if (!e)
495 		return -ENOMEM;
496 
497 	e->insn_cnt = insn_cnt;
498 	e->byte_cnt = byte_cnt;
499 	e->op = intel_pt_insn->op;
500 	e->branch = intel_pt_insn->branch;
501 	e->length = intel_pt_insn->length;
502 	e->rel = intel_pt_insn->rel;
503 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
504 
505 	err = auxtrace_cache__add(c, offset, &e->entry);
506 	if (err)
507 		auxtrace_cache__free_entry(c, e);
508 
509 	return err;
510 }
511 
512 static struct intel_pt_cache_entry *
513 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
514 {
515 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
516 
517 	if (!c)
518 		return NULL;
519 
520 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
521 }
522 
523 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
524 {
525 	return ip >= pt->kernel_start ?
526 	       PERF_RECORD_MISC_KERNEL :
527 	       PERF_RECORD_MISC_USER;
528 }
529 
530 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
531 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
532 				   uint64_t to_ip, uint64_t max_insn_cnt,
533 				   void *data)
534 {
535 	struct intel_pt_queue *ptq = data;
536 	struct machine *machine = ptq->pt->machine;
537 	struct thread *thread;
538 	struct addr_location al;
539 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
540 	ssize_t len;
541 	int x86_64;
542 	u8 cpumode;
543 	u64 offset, start_offset, start_ip;
544 	u64 insn_cnt = 0;
545 	bool one_map = true;
546 
547 	intel_pt_insn->length = 0;
548 
549 	if (to_ip && *ip == to_ip)
550 		goto out_no_cache;
551 
552 	cpumode = intel_pt_cpumode(ptq->pt, *ip);
553 
554 	thread = ptq->thread;
555 	if (!thread) {
556 		if (cpumode != PERF_RECORD_MISC_KERNEL)
557 			return -EINVAL;
558 		thread = ptq->pt->unknown_thread;
559 	}
560 
561 	while (1) {
562 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
563 			return -EINVAL;
564 
565 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
566 		    dso__data_status_seen(al.map->dso,
567 					  DSO_DATA_STATUS_SEEN_ITRACE))
568 			return -ENOENT;
569 
570 		offset = al.map->map_ip(al.map, *ip);
571 
572 		if (!to_ip && one_map) {
573 			struct intel_pt_cache_entry *e;
574 
575 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
576 			if (e &&
577 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
578 				*insn_cnt_ptr = e->insn_cnt;
579 				*ip += e->byte_cnt;
580 				intel_pt_insn->op = e->op;
581 				intel_pt_insn->branch = e->branch;
582 				intel_pt_insn->length = e->length;
583 				intel_pt_insn->rel = e->rel;
584 				memcpy(intel_pt_insn->buf, e->insn,
585 				       INTEL_PT_INSN_BUF_SZ);
586 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
587 				return 0;
588 			}
589 		}
590 
591 		start_offset = offset;
592 		start_ip = *ip;
593 
594 		/* Load maps to ensure dso->is_64_bit has been updated */
595 		map__load(al.map);
596 
597 		x86_64 = al.map->dso->is_64_bit;
598 
599 		while (1) {
600 			len = dso__data_read_offset(al.map->dso, machine,
601 						    offset, buf,
602 						    INTEL_PT_INSN_BUF_SZ);
603 			if (len <= 0)
604 				return -EINVAL;
605 
606 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
607 				return -EINVAL;
608 
609 			intel_pt_log_insn(intel_pt_insn, *ip);
610 
611 			insn_cnt += 1;
612 
613 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
614 				goto out;
615 
616 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
617 				goto out_no_cache;
618 
619 			*ip += intel_pt_insn->length;
620 
621 			if (to_ip && *ip == to_ip)
622 				goto out_no_cache;
623 
624 			if (*ip >= al.map->end)
625 				break;
626 
627 			offset += intel_pt_insn->length;
628 		}
629 		one_map = false;
630 	}
631 out:
632 	*insn_cnt_ptr = insn_cnt;
633 
634 	if (!one_map)
635 		goto out_no_cache;
636 
637 	/*
638 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
639 	 * entries.
640 	 */
641 	if (to_ip) {
642 		struct intel_pt_cache_entry *e;
643 
644 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
645 		if (e)
646 			return 0;
647 	}
648 
649 	/* Ignore cache errors */
650 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
651 			   *ip - start_ip, intel_pt_insn);
652 
653 	return 0;
654 
655 out_no_cache:
656 	*insn_cnt_ptr = insn_cnt;
657 	return 0;
658 }
659 
660 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
661 				  uint64_t offset, const char *filename)
662 {
663 	struct addr_filter *filt;
664 	bool have_filter   = false;
665 	bool hit_tracestop = false;
666 	bool hit_filter    = false;
667 
668 	list_for_each_entry(filt, &pt->filts.head, list) {
669 		if (filt->start)
670 			have_filter = true;
671 
672 		if ((filename && !filt->filename) ||
673 		    (!filename && filt->filename) ||
674 		    (filename && strcmp(filename, filt->filename)))
675 			continue;
676 
677 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
678 			continue;
679 
680 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
681 			     ip, offset, filename ? filename : "[kernel]",
682 			     filt->start ? "filter" : "stop",
683 			     filt->addr, filt->size);
684 
685 		if (filt->start)
686 			hit_filter = true;
687 		else
688 			hit_tracestop = true;
689 	}
690 
691 	if (!hit_tracestop && !hit_filter)
692 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
693 			     ip, offset, filename ? filename : "[kernel]");
694 
695 	return hit_tracestop || (have_filter && !hit_filter);
696 }
697 
698 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
699 {
700 	struct intel_pt_queue *ptq = data;
701 	struct thread *thread;
702 	struct addr_location al;
703 	u8 cpumode;
704 	u64 offset;
705 
706 	if (ip >= ptq->pt->kernel_start)
707 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
708 
709 	cpumode = PERF_RECORD_MISC_USER;
710 
711 	thread = ptq->thread;
712 	if (!thread)
713 		return -EINVAL;
714 
715 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
716 		return -EINVAL;
717 
718 	offset = al.map->map_ip(al.map, ip);
719 
720 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
721 				     al.map->dso->long_name);
722 }
723 
724 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
725 {
726 	return __intel_pt_pgd_ip(ip, data) > 0;
727 }
728 
729 static bool intel_pt_get_config(struct intel_pt *pt,
730 				struct perf_event_attr *attr, u64 *config)
731 {
732 	if (attr->type == pt->pmu_type) {
733 		if (config)
734 			*config = attr->config;
735 		return true;
736 	}
737 
738 	return false;
739 }
740 
741 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
742 {
743 	struct evsel *evsel;
744 
745 	evlist__for_each_entry(pt->session->evlist, evsel) {
746 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
747 		    !evsel->core.attr.exclude_kernel)
748 			return false;
749 	}
750 	return true;
751 }
752 
753 static bool intel_pt_return_compression(struct intel_pt *pt)
754 {
755 	struct evsel *evsel;
756 	u64 config;
757 
758 	if (!pt->noretcomp_bit)
759 		return true;
760 
761 	evlist__for_each_entry(pt->session->evlist, evsel) {
762 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
763 		    (config & pt->noretcomp_bit))
764 			return false;
765 	}
766 	return true;
767 }
768 
769 static bool intel_pt_branch_enable(struct intel_pt *pt)
770 {
771 	struct evsel *evsel;
772 	u64 config;
773 
774 	evlist__for_each_entry(pt->session->evlist, evsel) {
775 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
776 		    (config & 1) && !(config & 0x2000))
777 			return false;
778 	}
779 	return true;
780 }
781 
782 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
783 {
784 	struct evsel *evsel;
785 	unsigned int shift;
786 	u64 config;
787 
788 	if (!pt->mtc_freq_bits)
789 		return 0;
790 
791 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
792 		config >>= 1;
793 
794 	evlist__for_each_entry(pt->session->evlist, evsel) {
795 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
796 			return (config & pt->mtc_freq_bits) >> shift;
797 	}
798 	return 0;
799 }
800 
801 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
802 {
803 	struct evsel *evsel;
804 	bool timeless_decoding = true;
805 	u64 config;
806 
807 	if (!pt->tsc_bit || !pt->cap_user_time_zero)
808 		return true;
809 
810 	evlist__for_each_entry(pt->session->evlist, evsel) {
811 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
812 			return true;
813 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
814 			if (config & pt->tsc_bit)
815 				timeless_decoding = false;
816 			else
817 				return true;
818 		}
819 	}
820 	return timeless_decoding;
821 }
822 
823 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
824 {
825 	struct evsel *evsel;
826 
827 	evlist__for_each_entry(pt->session->evlist, evsel) {
828 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
829 		    !evsel->core.attr.exclude_kernel)
830 			return true;
831 	}
832 	return false;
833 }
834 
835 static bool intel_pt_have_tsc(struct intel_pt *pt)
836 {
837 	struct evsel *evsel;
838 	bool have_tsc = false;
839 	u64 config;
840 
841 	if (!pt->tsc_bit)
842 		return false;
843 
844 	evlist__for_each_entry(pt->session->evlist, evsel) {
845 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
846 			if (config & pt->tsc_bit)
847 				have_tsc = true;
848 			else
849 				return false;
850 		}
851 	}
852 	return have_tsc;
853 }
854 
855 static bool intel_pt_sampling_mode(struct intel_pt *pt)
856 {
857 	struct evsel *evsel;
858 
859 	evlist__for_each_entry(pt->session->evlist, evsel) {
860 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
861 		    evsel->core.attr.aux_sample_size)
862 			return true;
863 	}
864 	return false;
865 }
866 
867 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
868 {
869 	u64 quot, rem;
870 
871 	quot = ns / pt->tc.time_mult;
872 	rem  = ns % pt->tc.time_mult;
873 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
874 		pt->tc.time_mult;
875 }
876 
877 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
878 {
879 	size_t sz = sizeof(struct ip_callchain);
880 
881 	/* Add 1 to callchain_sz for callchain context */
882 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
883 	return zalloc(sz);
884 }
885 
886 static int intel_pt_callchain_init(struct intel_pt *pt)
887 {
888 	struct evsel *evsel;
889 
890 	evlist__for_each_entry(pt->session->evlist, evsel) {
891 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
892 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
893 	}
894 
895 	pt->chain = intel_pt_alloc_chain(pt);
896 	if (!pt->chain)
897 		return -ENOMEM;
898 
899 	return 0;
900 }
901 
902 static void intel_pt_add_callchain(struct intel_pt *pt,
903 				   struct perf_sample *sample)
904 {
905 	struct thread *thread = machine__findnew_thread(pt->machine,
906 							sample->pid,
907 							sample->tid);
908 
909 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
910 				  pt->synth_opts.callchain_sz + 1, sample->ip,
911 				  pt->kernel_start);
912 
913 	sample->callchain = pt->chain;
914 }
915 
916 static struct branch_stack *intel_pt_alloc_br_stack(struct intel_pt *pt)
917 {
918 	size_t sz = sizeof(struct branch_stack);
919 
920 	sz += pt->br_stack_sz * sizeof(struct branch_entry);
921 	return zalloc(sz);
922 }
923 
924 static int intel_pt_br_stack_init(struct intel_pt *pt)
925 {
926 	struct evsel *evsel;
927 
928 	evlist__for_each_entry(pt->session->evlist, evsel) {
929 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
930 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
931 	}
932 
933 	pt->br_stack = intel_pt_alloc_br_stack(pt);
934 	if (!pt->br_stack)
935 		return -ENOMEM;
936 
937 	return 0;
938 }
939 
940 static void intel_pt_add_br_stack(struct intel_pt *pt,
941 				  struct perf_sample *sample)
942 {
943 	struct thread *thread = machine__findnew_thread(pt->machine,
944 							sample->pid,
945 							sample->tid);
946 
947 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
948 				     pt->br_stack_sz, sample->ip,
949 				     pt->kernel_start);
950 
951 	sample->branch_stack = pt->br_stack;
952 }
953 
954 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
955 						   unsigned int queue_nr)
956 {
957 	struct intel_pt_params params = { .get_trace = 0, };
958 	struct perf_env *env = pt->machine->env;
959 	struct intel_pt_queue *ptq;
960 
961 	ptq = zalloc(sizeof(struct intel_pt_queue));
962 	if (!ptq)
963 		return NULL;
964 
965 	if (pt->synth_opts.callchain) {
966 		ptq->chain = intel_pt_alloc_chain(pt);
967 		if (!ptq->chain)
968 			goto out_free;
969 	}
970 
971 	if (pt->synth_opts.last_branch) {
972 		ptq->last_branch = intel_pt_alloc_br_stack(pt);
973 		if (!ptq->last_branch)
974 			goto out_free;
975 	}
976 
977 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
978 	if (!ptq->event_buf)
979 		goto out_free;
980 
981 	ptq->pt = pt;
982 	ptq->queue_nr = queue_nr;
983 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
984 	ptq->pid = -1;
985 	ptq->tid = -1;
986 	ptq->cpu = -1;
987 	ptq->next_tid = -1;
988 
989 	params.get_trace = intel_pt_get_trace;
990 	params.walk_insn = intel_pt_walk_next_insn;
991 	params.lookahead = intel_pt_lookahead;
992 	params.data = ptq;
993 	params.return_compression = intel_pt_return_compression(pt);
994 	params.branch_enable = intel_pt_branch_enable(pt);
995 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
996 	params.mtc_period = intel_pt_mtc_period(pt);
997 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
998 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
999 
1000 	if (pt->filts.cnt > 0)
1001 		params.pgd_ip = intel_pt_pgd_ip;
1002 
1003 	if (pt->synth_opts.instructions) {
1004 		if (pt->synth_opts.period) {
1005 			switch (pt->synth_opts.period_type) {
1006 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1007 				params.period_type =
1008 						INTEL_PT_PERIOD_INSTRUCTIONS;
1009 				params.period = pt->synth_opts.period;
1010 				break;
1011 			case PERF_ITRACE_PERIOD_TICKS:
1012 				params.period_type = INTEL_PT_PERIOD_TICKS;
1013 				params.period = pt->synth_opts.period;
1014 				break;
1015 			case PERF_ITRACE_PERIOD_NANOSECS:
1016 				params.period_type = INTEL_PT_PERIOD_TICKS;
1017 				params.period = intel_pt_ns_to_ticks(pt,
1018 							pt->synth_opts.period);
1019 				break;
1020 			default:
1021 				break;
1022 			}
1023 		}
1024 
1025 		if (!params.period) {
1026 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1027 			params.period = 1;
1028 		}
1029 	}
1030 
1031 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1032 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1033 
1034 	ptq->decoder = intel_pt_decoder_new(&params);
1035 	if (!ptq->decoder)
1036 		goto out_free;
1037 
1038 	return ptq;
1039 
1040 out_free:
1041 	zfree(&ptq->event_buf);
1042 	zfree(&ptq->last_branch);
1043 	zfree(&ptq->chain);
1044 	free(ptq);
1045 	return NULL;
1046 }
1047 
1048 static void intel_pt_free_queue(void *priv)
1049 {
1050 	struct intel_pt_queue *ptq = priv;
1051 
1052 	if (!ptq)
1053 		return;
1054 	thread__zput(ptq->thread);
1055 	intel_pt_decoder_free(ptq->decoder);
1056 	zfree(&ptq->event_buf);
1057 	zfree(&ptq->last_branch);
1058 	zfree(&ptq->chain);
1059 	free(ptq);
1060 }
1061 
1062 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1063 				     struct auxtrace_queue *queue)
1064 {
1065 	struct intel_pt_queue *ptq = queue->priv;
1066 
1067 	if (queue->tid == -1 || pt->have_sched_switch) {
1068 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1069 		thread__zput(ptq->thread);
1070 	}
1071 
1072 	if (!ptq->thread && ptq->tid != -1)
1073 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1074 
1075 	if (ptq->thread) {
1076 		ptq->pid = ptq->thread->pid_;
1077 		if (queue->cpu == -1)
1078 			ptq->cpu = ptq->thread->cpu;
1079 	}
1080 }
1081 
1082 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1083 {
1084 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1085 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1086 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1087 		if (ptq->state->to_ip)
1088 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1089 				     PERF_IP_FLAG_ASYNC |
1090 				     PERF_IP_FLAG_INTERRUPT;
1091 		else
1092 			ptq->flags = PERF_IP_FLAG_BRANCH |
1093 				     PERF_IP_FLAG_TRACE_END;
1094 		ptq->insn_len = 0;
1095 	} else {
1096 		if (ptq->state->from_ip)
1097 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1098 		else
1099 			ptq->flags = PERF_IP_FLAG_BRANCH |
1100 				     PERF_IP_FLAG_TRACE_BEGIN;
1101 		if (ptq->state->flags & INTEL_PT_IN_TX)
1102 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1103 		ptq->insn_len = ptq->state->insn_len;
1104 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1105 	}
1106 
1107 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1108 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1109 	if (ptq->state->type & INTEL_PT_TRACE_END)
1110 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1111 }
1112 
1113 static void intel_pt_setup_time_range(struct intel_pt *pt,
1114 				      struct intel_pt_queue *ptq)
1115 {
1116 	if (!pt->range_cnt)
1117 		return;
1118 
1119 	ptq->sel_timestamp = pt->time_ranges[0].start;
1120 	ptq->sel_idx = 0;
1121 
1122 	if (ptq->sel_timestamp) {
1123 		ptq->sel_start = true;
1124 	} else {
1125 		ptq->sel_timestamp = pt->time_ranges[0].end;
1126 		ptq->sel_start = false;
1127 	}
1128 }
1129 
1130 static int intel_pt_setup_queue(struct intel_pt *pt,
1131 				struct auxtrace_queue *queue,
1132 				unsigned int queue_nr)
1133 {
1134 	struct intel_pt_queue *ptq = queue->priv;
1135 
1136 	if (list_empty(&queue->head))
1137 		return 0;
1138 
1139 	if (!ptq) {
1140 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1141 		if (!ptq)
1142 			return -ENOMEM;
1143 		queue->priv = ptq;
1144 
1145 		if (queue->cpu != -1)
1146 			ptq->cpu = queue->cpu;
1147 		ptq->tid = queue->tid;
1148 
1149 		ptq->cbr_seen = UINT_MAX;
1150 
1151 		if (pt->sampling_mode && !pt->snapshot_mode &&
1152 		    pt->timeless_decoding)
1153 			ptq->step_through_buffers = true;
1154 
1155 		ptq->sync_switch = pt->sync_switch;
1156 
1157 		intel_pt_setup_time_range(pt, ptq);
1158 	}
1159 
1160 	if (!ptq->on_heap &&
1161 	    (!ptq->sync_switch ||
1162 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1163 		const struct intel_pt_state *state;
1164 		int ret;
1165 
1166 		if (pt->timeless_decoding)
1167 			return 0;
1168 
1169 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1170 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1171 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1172 
1173 		if (ptq->sel_start && ptq->sel_timestamp) {
1174 			ret = intel_pt_fast_forward(ptq->decoder,
1175 						    ptq->sel_timestamp);
1176 			if (ret)
1177 				return ret;
1178 		}
1179 
1180 		while (1) {
1181 			state = intel_pt_decode(ptq->decoder);
1182 			if (state->err) {
1183 				if (state->err == INTEL_PT_ERR_NODATA) {
1184 					intel_pt_log("queue %u has no timestamp\n",
1185 						     queue_nr);
1186 					return 0;
1187 				}
1188 				continue;
1189 			}
1190 			if (state->timestamp)
1191 				break;
1192 		}
1193 
1194 		ptq->timestamp = state->timestamp;
1195 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1196 			     queue_nr, ptq->timestamp);
1197 		ptq->state = state;
1198 		ptq->have_sample = true;
1199 		if (ptq->sel_start && ptq->sel_timestamp &&
1200 		    ptq->timestamp < ptq->sel_timestamp)
1201 			ptq->have_sample = false;
1202 		intel_pt_sample_flags(ptq);
1203 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1204 		if (ret)
1205 			return ret;
1206 		ptq->on_heap = true;
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 static int intel_pt_setup_queues(struct intel_pt *pt)
1213 {
1214 	unsigned int i;
1215 	int ret;
1216 
1217 	for (i = 0; i < pt->queues.nr_queues; i++) {
1218 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1219 		if (ret)
1220 			return ret;
1221 	}
1222 	return 0;
1223 }
1224 
1225 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1226 {
1227 	return pt->synth_opts.initial_skip &&
1228 	       pt->num_events++ < pt->synth_opts.initial_skip;
1229 }
1230 
1231 /*
1232  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1233  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1234  * from this decoder state.
1235  */
1236 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1237 {
1238 	return pt->synth_opts.initial_skip &&
1239 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1240 }
1241 
1242 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1243 				   union perf_event *event,
1244 				   struct perf_sample *sample)
1245 {
1246 	event->sample.header.type = PERF_RECORD_SAMPLE;
1247 	event->sample.header.size = sizeof(struct perf_event_header);
1248 
1249 	sample->pid = ptq->pid;
1250 	sample->tid = ptq->tid;
1251 	sample->cpu = ptq->cpu;
1252 	sample->insn_len = ptq->insn_len;
1253 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1254 }
1255 
1256 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1257 				   struct intel_pt_queue *ptq,
1258 				   union perf_event *event,
1259 				   struct perf_sample *sample)
1260 {
1261 	intel_pt_prep_a_sample(ptq, event, sample);
1262 
1263 	if (!pt->timeless_decoding)
1264 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1265 
1266 	sample->ip = ptq->state->from_ip;
1267 	sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1268 	sample->addr = ptq->state->to_ip;
1269 	sample->period = 1;
1270 	sample->flags = ptq->flags;
1271 
1272 	event->sample.header.misc = sample->cpumode;
1273 }
1274 
1275 static int intel_pt_inject_event(union perf_event *event,
1276 				 struct perf_sample *sample, u64 type)
1277 {
1278 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1279 	return perf_event__synthesize_sample(event, type, 0, sample);
1280 }
1281 
1282 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1283 				      union perf_event *event,
1284 				      struct perf_sample *sample, u64 type)
1285 {
1286 	if (!pt->synth_opts.inject)
1287 		return 0;
1288 
1289 	return intel_pt_inject_event(event, sample, type);
1290 }
1291 
1292 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1293 					union perf_event *event,
1294 					struct perf_sample *sample, u64 type)
1295 {
1296 	int ret;
1297 
1298 	ret = intel_pt_opt_inject(pt, event, sample, type);
1299 	if (ret)
1300 		return ret;
1301 
1302 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1303 	if (ret)
1304 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1305 
1306 	return ret;
1307 }
1308 
1309 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1310 {
1311 	struct intel_pt *pt = ptq->pt;
1312 	union perf_event *event = ptq->event_buf;
1313 	struct perf_sample sample = { .ip = 0, };
1314 	struct dummy_branch_stack {
1315 		u64			nr;
1316 		u64			hw_idx;
1317 		struct branch_entry	entries;
1318 	} dummy_bs;
1319 
1320 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1321 		return 0;
1322 
1323 	if (intel_pt_skip_event(pt))
1324 		return 0;
1325 
1326 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1327 
1328 	sample.id = ptq->pt->branches_id;
1329 	sample.stream_id = ptq->pt->branches_id;
1330 
1331 	/*
1332 	 * perf report cannot handle events without a branch stack when using
1333 	 * SORT_MODE__BRANCH so make a dummy one.
1334 	 */
1335 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1336 		dummy_bs = (struct dummy_branch_stack){
1337 			.nr = 1,
1338 			.hw_idx = -1ULL,
1339 			.entries = {
1340 				.from = sample.ip,
1341 				.to = sample.addr,
1342 			},
1343 		};
1344 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1345 	}
1346 
1347 	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1348 	if (sample.cyc_cnt) {
1349 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1350 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1351 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1352 	}
1353 
1354 	return intel_pt_deliver_synth_event(pt, event, &sample,
1355 					    pt->branches_sample_type);
1356 }
1357 
1358 static void intel_pt_prep_sample(struct intel_pt *pt,
1359 				 struct intel_pt_queue *ptq,
1360 				 union perf_event *event,
1361 				 struct perf_sample *sample)
1362 {
1363 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1364 
1365 	if (pt->synth_opts.callchain) {
1366 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1367 				     pt->synth_opts.callchain_sz + 1,
1368 				     sample->ip, pt->kernel_start);
1369 		sample->callchain = ptq->chain;
1370 	}
1371 
1372 	if (pt->synth_opts.last_branch) {
1373 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1374 					pt->br_stack_sz);
1375 		sample->branch_stack = ptq->last_branch;
1376 	}
1377 }
1378 
1379 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1380 {
1381 	struct intel_pt *pt = ptq->pt;
1382 	union perf_event *event = ptq->event_buf;
1383 	struct perf_sample sample = { .ip = 0, };
1384 
1385 	if (intel_pt_skip_event(pt))
1386 		return 0;
1387 
1388 	intel_pt_prep_sample(pt, ptq, event, &sample);
1389 
1390 	sample.id = ptq->pt->instructions_id;
1391 	sample.stream_id = ptq->pt->instructions_id;
1392 	sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1393 
1394 	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1395 	if (sample.cyc_cnt) {
1396 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1397 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1398 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1399 	}
1400 
1401 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1402 
1403 	return intel_pt_deliver_synth_event(pt, event, &sample,
1404 					    pt->instructions_sample_type);
1405 }
1406 
1407 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1408 {
1409 	struct intel_pt *pt = ptq->pt;
1410 	union perf_event *event = ptq->event_buf;
1411 	struct perf_sample sample = { .ip = 0, };
1412 
1413 	if (intel_pt_skip_event(pt))
1414 		return 0;
1415 
1416 	intel_pt_prep_sample(pt, ptq, event, &sample);
1417 
1418 	sample.id = ptq->pt->transactions_id;
1419 	sample.stream_id = ptq->pt->transactions_id;
1420 
1421 	return intel_pt_deliver_synth_event(pt, event, &sample,
1422 					    pt->transactions_sample_type);
1423 }
1424 
1425 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1426 				   struct intel_pt_queue *ptq,
1427 				   union perf_event *event,
1428 				   struct perf_sample *sample)
1429 {
1430 	intel_pt_prep_sample(pt, ptq, event, sample);
1431 
1432 	/*
1433 	 * Zero IP is used to mean "trace start" but that is not the case for
1434 	 * power or PTWRITE events with no IP, so clear the flags.
1435 	 */
1436 	if (!sample->ip)
1437 		sample->flags = 0;
1438 }
1439 
1440 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1441 {
1442 	struct intel_pt *pt = ptq->pt;
1443 	union perf_event *event = ptq->event_buf;
1444 	struct perf_sample sample = { .ip = 0, };
1445 	struct perf_synth_intel_ptwrite raw;
1446 
1447 	if (intel_pt_skip_event(pt))
1448 		return 0;
1449 
1450 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1451 
1452 	sample.id = ptq->pt->ptwrites_id;
1453 	sample.stream_id = ptq->pt->ptwrites_id;
1454 
1455 	raw.flags = 0;
1456 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1457 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1458 
1459 	sample.raw_size = perf_synth__raw_size(raw);
1460 	sample.raw_data = perf_synth__raw_data(&raw);
1461 
1462 	return intel_pt_deliver_synth_event(pt, event, &sample,
1463 					    pt->ptwrites_sample_type);
1464 }
1465 
1466 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1467 {
1468 	struct intel_pt *pt = ptq->pt;
1469 	union perf_event *event = ptq->event_buf;
1470 	struct perf_sample sample = { .ip = 0, };
1471 	struct perf_synth_intel_cbr raw;
1472 	u32 flags;
1473 
1474 	if (intel_pt_skip_cbr_event(pt))
1475 		return 0;
1476 
1477 	ptq->cbr_seen = ptq->state->cbr;
1478 
1479 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1480 
1481 	sample.id = ptq->pt->cbr_id;
1482 	sample.stream_id = ptq->pt->cbr_id;
1483 
1484 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1485 	raw.flags = cpu_to_le32(flags);
1486 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1487 	raw.reserved3 = 0;
1488 
1489 	sample.raw_size = perf_synth__raw_size(raw);
1490 	sample.raw_data = perf_synth__raw_data(&raw);
1491 
1492 	return intel_pt_deliver_synth_event(pt, event, &sample,
1493 					    pt->pwr_events_sample_type);
1494 }
1495 
1496 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1497 {
1498 	struct intel_pt *pt = ptq->pt;
1499 	union perf_event *event = ptq->event_buf;
1500 	struct perf_sample sample = { .ip = 0, };
1501 	struct perf_synth_intel_mwait raw;
1502 
1503 	if (intel_pt_skip_event(pt))
1504 		return 0;
1505 
1506 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1507 
1508 	sample.id = ptq->pt->mwait_id;
1509 	sample.stream_id = ptq->pt->mwait_id;
1510 
1511 	raw.reserved = 0;
1512 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1513 
1514 	sample.raw_size = perf_synth__raw_size(raw);
1515 	sample.raw_data = perf_synth__raw_data(&raw);
1516 
1517 	return intel_pt_deliver_synth_event(pt, event, &sample,
1518 					    pt->pwr_events_sample_type);
1519 }
1520 
1521 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1522 {
1523 	struct intel_pt *pt = ptq->pt;
1524 	union perf_event *event = ptq->event_buf;
1525 	struct perf_sample sample = { .ip = 0, };
1526 	struct perf_synth_intel_pwre raw;
1527 
1528 	if (intel_pt_skip_event(pt))
1529 		return 0;
1530 
1531 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1532 
1533 	sample.id = ptq->pt->pwre_id;
1534 	sample.stream_id = ptq->pt->pwre_id;
1535 
1536 	raw.reserved = 0;
1537 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1538 
1539 	sample.raw_size = perf_synth__raw_size(raw);
1540 	sample.raw_data = perf_synth__raw_data(&raw);
1541 
1542 	return intel_pt_deliver_synth_event(pt, event, &sample,
1543 					    pt->pwr_events_sample_type);
1544 }
1545 
1546 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1547 {
1548 	struct intel_pt *pt = ptq->pt;
1549 	union perf_event *event = ptq->event_buf;
1550 	struct perf_sample sample = { .ip = 0, };
1551 	struct perf_synth_intel_exstop raw;
1552 
1553 	if (intel_pt_skip_event(pt))
1554 		return 0;
1555 
1556 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1557 
1558 	sample.id = ptq->pt->exstop_id;
1559 	sample.stream_id = ptq->pt->exstop_id;
1560 
1561 	raw.flags = 0;
1562 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1563 
1564 	sample.raw_size = perf_synth__raw_size(raw);
1565 	sample.raw_data = perf_synth__raw_data(&raw);
1566 
1567 	return intel_pt_deliver_synth_event(pt, event, &sample,
1568 					    pt->pwr_events_sample_type);
1569 }
1570 
1571 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1572 {
1573 	struct intel_pt *pt = ptq->pt;
1574 	union perf_event *event = ptq->event_buf;
1575 	struct perf_sample sample = { .ip = 0, };
1576 	struct perf_synth_intel_pwrx raw;
1577 
1578 	if (intel_pt_skip_event(pt))
1579 		return 0;
1580 
1581 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1582 
1583 	sample.id = ptq->pt->pwrx_id;
1584 	sample.stream_id = ptq->pt->pwrx_id;
1585 
1586 	raw.reserved = 0;
1587 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1588 
1589 	sample.raw_size = perf_synth__raw_size(raw);
1590 	sample.raw_data = perf_synth__raw_data(&raw);
1591 
1592 	return intel_pt_deliver_synth_event(pt, event, &sample,
1593 					    pt->pwr_events_sample_type);
1594 }
1595 
1596 /*
1597  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1598  * intel_pt_add_gp_regs().
1599  */
1600 static const int pebs_gp_regs[] = {
1601 	[PERF_REG_X86_FLAGS]	= 1,
1602 	[PERF_REG_X86_IP]	= 2,
1603 	[PERF_REG_X86_AX]	= 3,
1604 	[PERF_REG_X86_CX]	= 4,
1605 	[PERF_REG_X86_DX]	= 5,
1606 	[PERF_REG_X86_BX]	= 6,
1607 	[PERF_REG_X86_SP]	= 7,
1608 	[PERF_REG_X86_BP]	= 8,
1609 	[PERF_REG_X86_SI]	= 9,
1610 	[PERF_REG_X86_DI]	= 10,
1611 	[PERF_REG_X86_R8]	= 11,
1612 	[PERF_REG_X86_R9]	= 12,
1613 	[PERF_REG_X86_R10]	= 13,
1614 	[PERF_REG_X86_R11]	= 14,
1615 	[PERF_REG_X86_R12]	= 15,
1616 	[PERF_REG_X86_R13]	= 16,
1617 	[PERF_REG_X86_R14]	= 17,
1618 	[PERF_REG_X86_R15]	= 18,
1619 };
1620 
1621 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1622 				 const struct intel_pt_blk_items *items,
1623 				 u64 regs_mask)
1624 {
1625 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1626 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1627 	u32 bit;
1628 	int i;
1629 
1630 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1631 		/* Get the PEBS gp_regs array index */
1632 		int n = pebs_gp_regs[i] - 1;
1633 
1634 		if (n < 0)
1635 			continue;
1636 		/*
1637 		 * Add only registers that were requested (i.e. 'regs_mask') and
1638 		 * that were provided (i.e. 'mask'), and update the resulting
1639 		 * mask (i.e. 'intr_regs->mask') accordingly.
1640 		 */
1641 		if (mask & 1 << n && regs_mask & bit) {
1642 			intr_regs->mask |= bit;
1643 			*pos++ = gp_regs[n];
1644 		}
1645 	}
1646 
1647 	return pos;
1648 }
1649 
1650 #ifndef PERF_REG_X86_XMM0
1651 #define PERF_REG_X86_XMM0 32
1652 #endif
1653 
1654 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1655 			     const struct intel_pt_blk_items *items,
1656 			     u64 regs_mask)
1657 {
1658 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1659 	const u64 *xmm = items->xmm;
1660 
1661 	/*
1662 	 * If there are any XMM registers, then there should be all of them.
1663 	 * Nevertheless, follow the logic to add only registers that were
1664 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1665 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1666 	 */
1667 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1668 
1669 	for (; mask; mask >>= 1, xmm++) {
1670 		if (mask & 1)
1671 			*pos++ = *xmm;
1672 	}
1673 }
1674 
1675 #define LBR_INFO_MISPRED	(1ULL << 63)
1676 #define LBR_INFO_IN_TX		(1ULL << 62)
1677 #define LBR_INFO_ABORT		(1ULL << 61)
1678 #define LBR_INFO_CYCLES		0xffff
1679 
1680 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1681 static u64 intel_pt_lbr_flags(u64 info)
1682 {
1683 	union {
1684 		struct branch_flags flags;
1685 		u64 result;
1686 	} u;
1687 
1688 	u.result	  = 0;
1689 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
1690 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
1691 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
1692 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
1693 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
1694 
1695 	return u.result;
1696 }
1697 
1698 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1699 			      const struct intel_pt_blk_items *items)
1700 {
1701 	u64 *to;
1702 	int i;
1703 
1704 	br_stack->nr = 0;
1705 
1706 	to = &br_stack->entries[0].from;
1707 
1708 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1709 		u32 mask = items->mask[i];
1710 		const u64 *from = items->val[i];
1711 
1712 		for (; mask; mask >>= 3, from += 3) {
1713 			if ((mask & 7) == 7) {
1714 				*to++ = from[0];
1715 				*to++ = from[1];
1716 				*to++ = intel_pt_lbr_flags(from[2]);
1717 				br_stack->nr += 1;
1718 			}
1719 		}
1720 	}
1721 }
1722 
1723 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1724 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3)
1725 
1726 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1727 {
1728 	const struct intel_pt_blk_items *items = &ptq->state->items;
1729 	struct perf_sample sample = { .ip = 0, };
1730 	union perf_event *event = ptq->event_buf;
1731 	struct intel_pt *pt = ptq->pt;
1732 	struct evsel *evsel = pt->pebs_evsel;
1733 	u64 sample_type = evsel->core.attr.sample_type;
1734 	u64 id = evsel->core.id[0];
1735 	u8 cpumode;
1736 
1737 	if (intel_pt_skip_event(pt))
1738 		return 0;
1739 
1740 	intel_pt_prep_a_sample(ptq, event, &sample);
1741 
1742 	sample.id = id;
1743 	sample.stream_id = id;
1744 
1745 	if (!evsel->core.attr.freq)
1746 		sample.period = evsel->core.attr.sample_period;
1747 
1748 	/* No support for non-zero CS base */
1749 	if (items->has_ip)
1750 		sample.ip = items->ip;
1751 	else if (items->has_rip)
1752 		sample.ip = items->rip;
1753 	else
1754 		sample.ip = ptq->state->from_ip;
1755 
1756 	/* No support for guest mode at this time */
1757 	cpumode = sample.ip < ptq->pt->kernel_start ?
1758 		  PERF_RECORD_MISC_USER :
1759 		  PERF_RECORD_MISC_KERNEL;
1760 
1761 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1762 
1763 	sample.cpumode = cpumode;
1764 
1765 	if (sample_type & PERF_SAMPLE_TIME) {
1766 		u64 timestamp = 0;
1767 
1768 		if (items->has_timestamp)
1769 			timestamp = items->timestamp;
1770 		else if (!pt->timeless_decoding)
1771 			timestamp = ptq->timestamp;
1772 		if (timestamp)
1773 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1774 	}
1775 
1776 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1777 	    pt->synth_opts.callchain) {
1778 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1779 				     pt->synth_opts.callchain_sz, sample.ip,
1780 				     pt->kernel_start);
1781 		sample.callchain = ptq->chain;
1782 	}
1783 
1784 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
1785 	    items->mask[INTEL_PT_GP_REGS_POS]) {
1786 		u64 regs[sizeof(sample.intr_regs.mask)];
1787 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
1788 		u64 *pos;
1789 
1790 		sample.intr_regs.abi = items->is_32_bit ?
1791 				       PERF_SAMPLE_REGS_ABI_32 :
1792 				       PERF_SAMPLE_REGS_ABI_64;
1793 		sample.intr_regs.regs = regs;
1794 
1795 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1796 
1797 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1798 	}
1799 
1800 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1801 		struct {
1802 			struct branch_stack br_stack;
1803 			struct branch_entry entries[LBRS_MAX];
1804 		} br;
1805 
1806 		if (items->mask[INTEL_PT_LBR_0_POS] ||
1807 		    items->mask[INTEL_PT_LBR_1_POS] ||
1808 		    items->mask[INTEL_PT_LBR_2_POS]) {
1809 			intel_pt_add_lbrs(&br.br_stack, items);
1810 			sample.branch_stack = &br.br_stack;
1811 		} else if (pt->synth_opts.last_branch) {
1812 			thread_stack__br_sample(ptq->thread, ptq->cpu,
1813 						ptq->last_branch,
1814 						pt->br_stack_sz);
1815 			sample.branch_stack = ptq->last_branch;
1816 		} else {
1817 			br.br_stack.nr = 0;
1818 			sample.branch_stack = &br.br_stack;
1819 		}
1820 	}
1821 
1822 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1823 		sample.addr = items->mem_access_address;
1824 
1825 	if (sample_type & PERF_SAMPLE_WEIGHT) {
1826 		/*
1827 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
1828 		 * intel_hsw_weight().
1829 		 */
1830 		if (items->has_mem_access_latency)
1831 			sample.weight = items->mem_access_latency;
1832 		if (!sample.weight && items->has_tsx_aux_info) {
1833 			/* Cycles last block */
1834 			sample.weight = (u32)items->tsx_aux_info;
1835 		}
1836 	}
1837 
1838 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1839 		u64 ax = items->has_rax ? items->rax : 0;
1840 		/* Refer kernel's intel_hsw_transaction() */
1841 		u64 txn = (u8)(items->tsx_aux_info >> 32);
1842 
1843 		/* For RTM XABORTs also log the abort code from AX */
1844 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
1845 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1846 		sample.transaction = txn;
1847 	}
1848 
1849 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
1850 }
1851 
1852 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1853 				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1854 {
1855 	union perf_event event;
1856 	char msg[MAX_AUXTRACE_ERROR_MSG];
1857 	int err;
1858 
1859 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1860 
1861 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1862 			     code, cpu, pid, tid, ip, msg, timestamp);
1863 
1864 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1865 	if (err)
1866 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1867 		       err);
1868 
1869 	return err;
1870 }
1871 
1872 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1873 				 const struct intel_pt_state *state)
1874 {
1875 	struct intel_pt *pt = ptq->pt;
1876 	u64 tm = ptq->timestamp;
1877 
1878 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1879 
1880 	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1881 				    ptq->tid, state->from_ip, tm);
1882 }
1883 
1884 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1885 {
1886 	struct auxtrace_queue *queue;
1887 	pid_t tid = ptq->next_tid;
1888 	int err;
1889 
1890 	if (tid == -1)
1891 		return 0;
1892 
1893 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1894 
1895 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1896 
1897 	queue = &pt->queues.queue_array[ptq->queue_nr];
1898 	intel_pt_set_pid_tid_cpu(pt, queue);
1899 
1900 	ptq->next_tid = -1;
1901 
1902 	return err;
1903 }
1904 
1905 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1906 {
1907 	struct intel_pt *pt = ptq->pt;
1908 
1909 	return ip == pt->switch_ip &&
1910 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1911 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1912 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1913 }
1914 
1915 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1916 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1917 
1918 static int intel_pt_sample(struct intel_pt_queue *ptq)
1919 {
1920 	const struct intel_pt_state *state = ptq->state;
1921 	struct intel_pt *pt = ptq->pt;
1922 	int err;
1923 
1924 	if (!ptq->have_sample)
1925 		return 0;
1926 
1927 	ptq->have_sample = false;
1928 
1929 	if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1930 		/*
1931 		 * Cycle count and instruction count only go together to create
1932 		 * a valid IPC ratio when the cycle count changes.
1933 		 */
1934 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1935 		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1936 	}
1937 
1938 	/*
1939 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
1940 	 * precedes the current timestamp.
1941 	 */
1942 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1943 		err = intel_pt_synth_pebs_sample(ptq);
1944 		if (err)
1945 			return err;
1946 	}
1947 
1948 	if (pt->sample_pwr_events) {
1949 		if (ptq->state->cbr != ptq->cbr_seen) {
1950 			err = intel_pt_synth_cbr_sample(ptq);
1951 			if (err)
1952 				return err;
1953 		}
1954 		if (state->type & INTEL_PT_PWR_EVT) {
1955 			if (state->type & INTEL_PT_MWAIT_OP) {
1956 				err = intel_pt_synth_mwait_sample(ptq);
1957 				if (err)
1958 					return err;
1959 			}
1960 			if (state->type & INTEL_PT_PWR_ENTRY) {
1961 				err = intel_pt_synth_pwre_sample(ptq);
1962 				if (err)
1963 					return err;
1964 			}
1965 			if (state->type & INTEL_PT_EX_STOP) {
1966 				err = intel_pt_synth_exstop_sample(ptq);
1967 				if (err)
1968 					return err;
1969 			}
1970 			if (state->type & INTEL_PT_PWR_EXIT) {
1971 				err = intel_pt_synth_pwrx_sample(ptq);
1972 				if (err)
1973 					return err;
1974 			}
1975 		}
1976 	}
1977 
1978 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1979 		err = intel_pt_synth_instruction_sample(ptq);
1980 		if (err)
1981 			return err;
1982 	}
1983 
1984 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
1985 		err = intel_pt_synth_transaction_sample(ptq);
1986 		if (err)
1987 			return err;
1988 	}
1989 
1990 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1991 		err = intel_pt_synth_ptwrite_sample(ptq);
1992 		if (err)
1993 			return err;
1994 	}
1995 
1996 	if (!(state->type & INTEL_PT_BRANCH))
1997 		return 0;
1998 
1999 	if (pt->use_thread_stack) {
2000 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2001 				    state->from_ip, state->to_ip, ptq->insn_len,
2002 				    state->trace_nr, pt->callstack,
2003 				    pt->br_stack_sz_plus,
2004 				    pt->mispred_all);
2005 	} else {
2006 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2007 	}
2008 
2009 	if (pt->sample_branches) {
2010 		err = intel_pt_synth_branch_sample(ptq);
2011 		if (err)
2012 			return err;
2013 	}
2014 
2015 	if (!ptq->sync_switch)
2016 		return 0;
2017 
2018 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2019 		switch (ptq->switch_state) {
2020 		case INTEL_PT_SS_NOT_TRACING:
2021 		case INTEL_PT_SS_UNKNOWN:
2022 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2023 			err = intel_pt_next_tid(pt, ptq);
2024 			if (err)
2025 				return err;
2026 			ptq->switch_state = INTEL_PT_SS_TRACING;
2027 			break;
2028 		default:
2029 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2030 			return 1;
2031 		}
2032 	} else if (!state->to_ip) {
2033 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2034 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2035 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2036 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2037 		   state->to_ip == pt->ptss_ip &&
2038 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2039 		ptq->switch_state = INTEL_PT_SS_TRACING;
2040 	}
2041 
2042 	return 0;
2043 }
2044 
2045 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2046 {
2047 	struct machine *machine = pt->machine;
2048 	struct map *map;
2049 	struct symbol *sym, *start;
2050 	u64 ip, switch_ip = 0;
2051 	const char *ptss;
2052 
2053 	if (ptss_ip)
2054 		*ptss_ip = 0;
2055 
2056 	map = machine__kernel_map(machine);
2057 	if (!map)
2058 		return 0;
2059 
2060 	if (map__load(map))
2061 		return 0;
2062 
2063 	start = dso__first_symbol(map->dso);
2064 
2065 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2066 		if (sym->binding == STB_GLOBAL &&
2067 		    !strcmp(sym->name, "__switch_to")) {
2068 			ip = map->unmap_ip(map, sym->start);
2069 			if (ip >= map->start && ip < map->end) {
2070 				switch_ip = ip;
2071 				break;
2072 			}
2073 		}
2074 	}
2075 
2076 	if (!switch_ip || !ptss_ip)
2077 		return 0;
2078 
2079 	if (pt->have_sched_switch == 1)
2080 		ptss = "perf_trace_sched_switch";
2081 	else
2082 		ptss = "__perf_event_task_sched_out";
2083 
2084 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2085 		if (!strcmp(sym->name, ptss)) {
2086 			ip = map->unmap_ip(map, sym->start);
2087 			if (ip >= map->start && ip < map->end) {
2088 				*ptss_ip = ip;
2089 				break;
2090 			}
2091 		}
2092 	}
2093 
2094 	return switch_ip;
2095 }
2096 
2097 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2098 {
2099 	unsigned int i;
2100 
2101 	pt->sync_switch = true;
2102 
2103 	for (i = 0; i < pt->queues.nr_queues; i++) {
2104 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2105 		struct intel_pt_queue *ptq = queue->priv;
2106 
2107 		if (ptq)
2108 			ptq->sync_switch = true;
2109 	}
2110 }
2111 
2112 /*
2113  * To filter against time ranges, it is only necessary to look at the next start
2114  * or end time.
2115  */
2116 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2117 {
2118 	struct intel_pt *pt = ptq->pt;
2119 
2120 	if (ptq->sel_start) {
2121 		/* Next time is an end time */
2122 		ptq->sel_start = false;
2123 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2124 		return true;
2125 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2126 		/* Next time is a start time */
2127 		ptq->sel_start = true;
2128 		ptq->sel_idx += 1;
2129 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2130 		return true;
2131 	}
2132 
2133 	/* No next time */
2134 	return false;
2135 }
2136 
2137 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2138 {
2139 	int err;
2140 
2141 	while (1) {
2142 		if (ptq->sel_start) {
2143 			if (ptq->timestamp >= ptq->sel_timestamp) {
2144 				/* After start time, so consider next time */
2145 				intel_pt_next_time(ptq);
2146 				if (!ptq->sel_timestamp) {
2147 					/* No end time */
2148 					return 0;
2149 				}
2150 				/* Check against end time */
2151 				continue;
2152 			}
2153 			/* Before start time, so fast forward */
2154 			ptq->have_sample = false;
2155 			if (ptq->sel_timestamp > *ff_timestamp) {
2156 				if (ptq->sync_switch) {
2157 					intel_pt_next_tid(ptq->pt, ptq);
2158 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2159 				}
2160 				*ff_timestamp = ptq->sel_timestamp;
2161 				err = intel_pt_fast_forward(ptq->decoder,
2162 							    ptq->sel_timestamp);
2163 				if (err)
2164 					return err;
2165 			}
2166 			return 0;
2167 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2168 			/* After end time, so consider next time */
2169 			if (!intel_pt_next_time(ptq)) {
2170 				/* No next time range, so stop decoding */
2171 				ptq->have_sample = false;
2172 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2173 				return 1;
2174 			}
2175 			/* Check against next start time */
2176 			continue;
2177 		} else {
2178 			/* Before end time */
2179 			return 0;
2180 		}
2181 	}
2182 }
2183 
2184 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2185 {
2186 	const struct intel_pt_state *state = ptq->state;
2187 	struct intel_pt *pt = ptq->pt;
2188 	u64 ff_timestamp = 0;
2189 	int err;
2190 
2191 	if (!pt->kernel_start) {
2192 		pt->kernel_start = machine__kernel_start(pt->machine);
2193 		if (pt->per_cpu_mmaps &&
2194 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2195 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2196 		    !pt->sampling_mode) {
2197 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2198 			if (pt->switch_ip) {
2199 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2200 					     pt->switch_ip, pt->ptss_ip);
2201 				intel_pt_enable_sync_switch(pt);
2202 			}
2203 		}
2204 	}
2205 
2206 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2207 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2208 	while (1) {
2209 		err = intel_pt_sample(ptq);
2210 		if (err)
2211 			return err;
2212 
2213 		state = intel_pt_decode(ptq->decoder);
2214 		if (state->err) {
2215 			if (state->err == INTEL_PT_ERR_NODATA)
2216 				return 1;
2217 			if (ptq->sync_switch &&
2218 			    state->from_ip >= pt->kernel_start) {
2219 				ptq->sync_switch = false;
2220 				intel_pt_next_tid(pt, ptq);
2221 			}
2222 			if (pt->synth_opts.errors) {
2223 				err = intel_ptq_synth_error(ptq, state);
2224 				if (err)
2225 					return err;
2226 			}
2227 			continue;
2228 		}
2229 
2230 		ptq->state = state;
2231 		ptq->have_sample = true;
2232 		intel_pt_sample_flags(ptq);
2233 
2234 		/* Use estimated TSC upon return to user space */
2235 		if (pt->est_tsc &&
2236 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2237 		    state->to_ip && state->to_ip < pt->kernel_start) {
2238 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2239 				     state->timestamp, state->est_timestamp);
2240 			ptq->timestamp = state->est_timestamp;
2241 		/* Use estimated TSC in unknown switch state */
2242 		} else if (ptq->sync_switch &&
2243 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2244 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2245 			   ptq->next_tid == -1) {
2246 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2247 				     state->timestamp, state->est_timestamp);
2248 			ptq->timestamp = state->est_timestamp;
2249 		} else if (state->timestamp > ptq->timestamp) {
2250 			ptq->timestamp = state->timestamp;
2251 		}
2252 
2253 		if (ptq->sel_timestamp) {
2254 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2255 			if (err)
2256 				return err;
2257 		}
2258 
2259 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2260 			*timestamp = ptq->timestamp;
2261 			return 0;
2262 		}
2263 	}
2264 	return 0;
2265 }
2266 
2267 static inline int intel_pt_update_queues(struct intel_pt *pt)
2268 {
2269 	if (pt->queues.new_data) {
2270 		pt->queues.new_data = false;
2271 		return intel_pt_setup_queues(pt);
2272 	}
2273 	return 0;
2274 }
2275 
2276 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2277 {
2278 	unsigned int queue_nr;
2279 	u64 ts;
2280 	int ret;
2281 
2282 	while (1) {
2283 		struct auxtrace_queue *queue;
2284 		struct intel_pt_queue *ptq;
2285 
2286 		if (!pt->heap.heap_cnt)
2287 			return 0;
2288 
2289 		if (pt->heap.heap_array[0].ordinal >= timestamp)
2290 			return 0;
2291 
2292 		queue_nr = pt->heap.heap_array[0].queue_nr;
2293 		queue = &pt->queues.queue_array[queue_nr];
2294 		ptq = queue->priv;
2295 
2296 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2297 			     queue_nr, pt->heap.heap_array[0].ordinal,
2298 			     timestamp);
2299 
2300 		auxtrace_heap__pop(&pt->heap);
2301 
2302 		if (pt->heap.heap_cnt) {
2303 			ts = pt->heap.heap_array[0].ordinal + 1;
2304 			if (ts > timestamp)
2305 				ts = timestamp;
2306 		} else {
2307 			ts = timestamp;
2308 		}
2309 
2310 		intel_pt_set_pid_tid_cpu(pt, queue);
2311 
2312 		ret = intel_pt_run_decoder(ptq, &ts);
2313 
2314 		if (ret < 0) {
2315 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2316 			return ret;
2317 		}
2318 
2319 		if (!ret) {
2320 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2321 			if (ret < 0)
2322 				return ret;
2323 		} else {
2324 			ptq->on_heap = false;
2325 		}
2326 	}
2327 
2328 	return 0;
2329 }
2330 
2331 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2332 					    u64 time_)
2333 {
2334 	struct auxtrace_queues *queues = &pt->queues;
2335 	unsigned int i;
2336 	u64 ts = 0;
2337 
2338 	for (i = 0; i < queues->nr_queues; i++) {
2339 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2340 		struct intel_pt_queue *ptq = queue->priv;
2341 
2342 		if (ptq && (tid == -1 || ptq->tid == tid)) {
2343 			ptq->time = time_;
2344 			intel_pt_set_pid_tid_cpu(pt, queue);
2345 			intel_pt_run_decoder(ptq, &ts);
2346 		}
2347 	}
2348 	return 0;
2349 }
2350 
2351 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2352 					    struct auxtrace_queue *queue,
2353 					    struct perf_sample *sample)
2354 {
2355 	struct machine *m = ptq->pt->machine;
2356 
2357 	ptq->pid = sample->pid;
2358 	ptq->tid = sample->tid;
2359 	ptq->cpu = queue->cpu;
2360 
2361 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2362 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2363 
2364 	thread__zput(ptq->thread);
2365 
2366 	if (ptq->tid == -1)
2367 		return;
2368 
2369 	if (ptq->pid == -1) {
2370 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
2371 		if (ptq->thread)
2372 			ptq->pid = ptq->thread->pid_;
2373 		return;
2374 	}
2375 
2376 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2377 }
2378 
2379 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2380 					    struct perf_sample *sample)
2381 {
2382 	struct auxtrace_queue *queue;
2383 	struct intel_pt_queue *ptq;
2384 	u64 ts = 0;
2385 
2386 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2387 	if (!queue)
2388 		return -EINVAL;
2389 
2390 	ptq = queue->priv;
2391 	if (!ptq)
2392 		return 0;
2393 
2394 	ptq->stop = false;
2395 	ptq->time = sample->time;
2396 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2397 	intel_pt_run_decoder(ptq, &ts);
2398 	return 0;
2399 }
2400 
2401 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2402 {
2403 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2404 				    sample->pid, sample->tid, 0, sample->time);
2405 }
2406 
2407 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2408 {
2409 	unsigned i, j;
2410 
2411 	if (cpu < 0 || !pt->queues.nr_queues)
2412 		return NULL;
2413 
2414 	if ((unsigned)cpu >= pt->queues.nr_queues)
2415 		i = pt->queues.nr_queues - 1;
2416 	else
2417 		i = cpu;
2418 
2419 	if (pt->queues.queue_array[i].cpu == cpu)
2420 		return pt->queues.queue_array[i].priv;
2421 
2422 	for (j = 0; i > 0; j++) {
2423 		if (pt->queues.queue_array[--i].cpu == cpu)
2424 			return pt->queues.queue_array[i].priv;
2425 	}
2426 
2427 	for (; j < pt->queues.nr_queues; j++) {
2428 		if (pt->queues.queue_array[j].cpu == cpu)
2429 			return pt->queues.queue_array[j].priv;
2430 	}
2431 
2432 	return NULL;
2433 }
2434 
2435 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2436 				u64 timestamp)
2437 {
2438 	struct intel_pt_queue *ptq;
2439 	int err;
2440 
2441 	if (!pt->sync_switch)
2442 		return 1;
2443 
2444 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2445 	if (!ptq || !ptq->sync_switch)
2446 		return 1;
2447 
2448 	switch (ptq->switch_state) {
2449 	case INTEL_PT_SS_NOT_TRACING:
2450 		break;
2451 	case INTEL_PT_SS_UNKNOWN:
2452 	case INTEL_PT_SS_TRACING:
2453 		ptq->next_tid = tid;
2454 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2455 		return 0;
2456 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2457 		if (!ptq->on_heap) {
2458 			ptq->timestamp = perf_time_to_tsc(timestamp,
2459 							  &pt->tc);
2460 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2461 						 ptq->timestamp);
2462 			if (err)
2463 				return err;
2464 			ptq->on_heap = true;
2465 		}
2466 		ptq->switch_state = INTEL_PT_SS_TRACING;
2467 		break;
2468 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2469 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2470 		break;
2471 	default:
2472 		break;
2473 	}
2474 
2475 	ptq->next_tid = -1;
2476 
2477 	return 1;
2478 }
2479 
2480 static int intel_pt_process_switch(struct intel_pt *pt,
2481 				   struct perf_sample *sample)
2482 {
2483 	struct evsel *evsel;
2484 	pid_t tid;
2485 	int cpu, ret;
2486 
2487 	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2488 	if (evsel != pt->switch_evsel)
2489 		return 0;
2490 
2491 	tid = perf_evsel__intval(evsel, sample, "next_pid");
2492 	cpu = sample->cpu;
2493 
2494 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2495 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2496 		     &pt->tc));
2497 
2498 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2499 	if (ret <= 0)
2500 		return ret;
2501 
2502 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
2503 }
2504 
2505 static int intel_pt_context_switch_in(struct intel_pt *pt,
2506 				      struct perf_sample *sample)
2507 {
2508 	pid_t pid = sample->pid;
2509 	pid_t tid = sample->tid;
2510 	int cpu = sample->cpu;
2511 
2512 	if (pt->sync_switch) {
2513 		struct intel_pt_queue *ptq;
2514 
2515 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
2516 		if (ptq && ptq->sync_switch) {
2517 			ptq->next_tid = -1;
2518 			switch (ptq->switch_state) {
2519 			case INTEL_PT_SS_NOT_TRACING:
2520 			case INTEL_PT_SS_UNKNOWN:
2521 			case INTEL_PT_SS_TRACING:
2522 				break;
2523 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2524 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2525 				ptq->switch_state = INTEL_PT_SS_TRACING;
2526 				break;
2527 			default:
2528 				break;
2529 			}
2530 		}
2531 	}
2532 
2533 	/*
2534 	 * If the current tid has not been updated yet, ensure it is now that
2535 	 * a "switch in" event has occurred.
2536 	 */
2537 	if (machine__get_current_tid(pt->machine, cpu) == tid)
2538 		return 0;
2539 
2540 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2541 }
2542 
2543 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2544 				   struct perf_sample *sample)
2545 {
2546 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2547 	pid_t pid, tid;
2548 	int cpu, ret;
2549 
2550 	cpu = sample->cpu;
2551 
2552 	if (pt->have_sched_switch == 3) {
2553 		if (!out)
2554 			return intel_pt_context_switch_in(pt, sample);
2555 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2556 			pr_err("Expecting CPU-wide context switch event\n");
2557 			return -EINVAL;
2558 		}
2559 		pid = event->context_switch.next_prev_pid;
2560 		tid = event->context_switch.next_prev_tid;
2561 	} else {
2562 		if (out)
2563 			return 0;
2564 		pid = sample->pid;
2565 		tid = sample->tid;
2566 	}
2567 
2568 	if (tid == -1) {
2569 		pr_err("context_switch event has no tid\n");
2570 		return -EINVAL;
2571 	}
2572 
2573 	intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2574 		     cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
2575 		     &pt->tc));
2576 
2577 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2578 	if (ret <= 0)
2579 		return ret;
2580 
2581 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2582 }
2583 
2584 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2585 					 union perf_event *event,
2586 					 struct perf_sample *sample)
2587 {
2588 	if (!pt->per_cpu_mmaps)
2589 		return 0;
2590 
2591 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2592 		     sample->cpu, event->itrace_start.pid,
2593 		     event->itrace_start.tid, sample->time,
2594 		     perf_time_to_tsc(sample->time, &pt->tc));
2595 
2596 	return machine__set_current_tid(pt->machine, sample->cpu,
2597 					event->itrace_start.pid,
2598 					event->itrace_start.tid);
2599 }
2600 
2601 static int intel_pt_process_event(struct perf_session *session,
2602 				  union perf_event *event,
2603 				  struct perf_sample *sample,
2604 				  struct perf_tool *tool)
2605 {
2606 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2607 					   auxtrace);
2608 	u64 timestamp;
2609 	int err = 0;
2610 
2611 	if (dump_trace)
2612 		return 0;
2613 
2614 	if (!tool->ordered_events) {
2615 		pr_err("Intel Processor Trace requires ordered events\n");
2616 		return -EINVAL;
2617 	}
2618 
2619 	if (sample->time && sample->time != (u64)-1)
2620 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2621 	else
2622 		timestamp = 0;
2623 
2624 	if (timestamp || pt->timeless_decoding) {
2625 		err = intel_pt_update_queues(pt);
2626 		if (err)
2627 			return err;
2628 	}
2629 
2630 	if (pt->timeless_decoding) {
2631 		if (pt->sampling_mode) {
2632 			if (sample->aux_sample.size)
2633 				err = intel_pt_process_timeless_sample(pt,
2634 								       sample);
2635 		} else if (event->header.type == PERF_RECORD_EXIT) {
2636 			err = intel_pt_process_timeless_queues(pt,
2637 							       event->fork.tid,
2638 							       sample->time);
2639 		}
2640 	} else if (timestamp) {
2641 		err = intel_pt_process_queues(pt, timestamp);
2642 	}
2643 	if (err)
2644 		return err;
2645 
2646 	if (event->header.type == PERF_RECORD_SAMPLE) {
2647 		if (pt->synth_opts.add_callchain && !sample->callchain)
2648 			intel_pt_add_callchain(pt, sample);
2649 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2650 			intel_pt_add_br_stack(pt, sample);
2651 	}
2652 
2653 	if (event->header.type == PERF_RECORD_AUX &&
2654 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2655 	    pt->synth_opts.errors) {
2656 		err = intel_pt_lost(pt, sample);
2657 		if (err)
2658 			return err;
2659 	}
2660 
2661 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2662 		err = intel_pt_process_switch(pt, sample);
2663 	else if (event->header.type == PERF_RECORD_ITRACE_START)
2664 		err = intel_pt_process_itrace_start(pt, event, sample);
2665 	else if (event->header.type == PERF_RECORD_SWITCH ||
2666 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2667 		err = intel_pt_context_switch(pt, event, sample);
2668 
2669 	intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2670 		     event->header.type, sample->cpu, sample->time, timestamp);
2671 	intel_pt_log_event(event);
2672 
2673 	return err;
2674 }
2675 
2676 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2677 {
2678 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2679 					   auxtrace);
2680 	int ret;
2681 
2682 	if (dump_trace)
2683 		return 0;
2684 
2685 	if (!tool->ordered_events)
2686 		return -EINVAL;
2687 
2688 	ret = intel_pt_update_queues(pt);
2689 	if (ret < 0)
2690 		return ret;
2691 
2692 	if (pt->timeless_decoding)
2693 		return intel_pt_process_timeless_queues(pt, -1,
2694 							MAX_TIMESTAMP - 1);
2695 
2696 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2697 }
2698 
2699 static void intel_pt_free_events(struct perf_session *session)
2700 {
2701 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2702 					   auxtrace);
2703 	struct auxtrace_queues *queues = &pt->queues;
2704 	unsigned int i;
2705 
2706 	for (i = 0; i < queues->nr_queues; i++) {
2707 		intel_pt_free_queue(queues->queue_array[i].priv);
2708 		queues->queue_array[i].priv = NULL;
2709 	}
2710 	intel_pt_log_disable();
2711 	auxtrace_queues__free(queues);
2712 }
2713 
2714 static void intel_pt_free(struct perf_session *session)
2715 {
2716 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2717 					   auxtrace);
2718 
2719 	auxtrace_heap__free(&pt->heap);
2720 	intel_pt_free_events(session);
2721 	session->auxtrace = NULL;
2722 	thread__put(pt->unknown_thread);
2723 	addr_filters__exit(&pt->filts);
2724 	zfree(&pt->chain);
2725 	zfree(&pt->filter);
2726 	zfree(&pt->time_ranges);
2727 	free(pt);
2728 }
2729 
2730 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
2731 				       struct evsel *evsel)
2732 {
2733 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2734 					   auxtrace);
2735 
2736 	return evsel->core.attr.type == pt->pmu_type;
2737 }
2738 
2739 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2740 					   union perf_event *event,
2741 					   struct perf_tool *tool __maybe_unused)
2742 {
2743 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2744 					   auxtrace);
2745 
2746 	if (!pt->data_queued) {
2747 		struct auxtrace_buffer *buffer;
2748 		off_t data_offset;
2749 		int fd = perf_data__fd(session->data);
2750 		int err;
2751 
2752 		if (perf_data__is_pipe(session->data)) {
2753 			data_offset = 0;
2754 		} else {
2755 			data_offset = lseek(fd, 0, SEEK_CUR);
2756 			if (data_offset == -1)
2757 				return -errno;
2758 		}
2759 
2760 		err = auxtrace_queues__add_event(&pt->queues, session, event,
2761 						 data_offset, &buffer);
2762 		if (err)
2763 			return err;
2764 
2765 		/* Dump here now we have copied a piped trace out of the pipe */
2766 		if (dump_trace) {
2767 			if (auxtrace_buffer__get_data(buffer, fd)) {
2768 				intel_pt_dump_event(pt, buffer->data,
2769 						    buffer->size);
2770 				auxtrace_buffer__put_data(buffer);
2771 			}
2772 		}
2773 	}
2774 
2775 	return 0;
2776 }
2777 
2778 static int intel_pt_queue_data(struct perf_session *session,
2779 			       struct perf_sample *sample,
2780 			       union perf_event *event, u64 data_offset)
2781 {
2782 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2783 					   auxtrace);
2784 	u64 timestamp;
2785 
2786 	if (event) {
2787 		return auxtrace_queues__add_event(&pt->queues, session, event,
2788 						  data_offset, NULL);
2789 	}
2790 
2791 	if (sample->time && sample->time != (u64)-1)
2792 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2793 	else
2794 		timestamp = 0;
2795 
2796 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
2797 					   data_offset, timestamp);
2798 }
2799 
2800 struct intel_pt_synth {
2801 	struct perf_tool dummy_tool;
2802 	struct perf_session *session;
2803 };
2804 
2805 static int intel_pt_event_synth(struct perf_tool *tool,
2806 				union perf_event *event,
2807 				struct perf_sample *sample __maybe_unused,
2808 				struct machine *machine __maybe_unused)
2809 {
2810 	struct intel_pt_synth *intel_pt_synth =
2811 			container_of(tool, struct intel_pt_synth, dummy_tool);
2812 
2813 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2814 						 NULL);
2815 }
2816 
2817 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2818 				struct perf_event_attr *attr, u64 id)
2819 {
2820 	struct intel_pt_synth intel_pt_synth;
2821 	int err;
2822 
2823 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2824 		 name, id, (u64)attr->sample_type);
2825 
2826 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2827 	intel_pt_synth.session = session;
2828 
2829 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2830 					  &id, intel_pt_event_synth);
2831 	if (err)
2832 		pr_err("%s: failed to synthesize '%s' event type\n",
2833 		       __func__, name);
2834 
2835 	return err;
2836 }
2837 
2838 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2839 				    const char *name)
2840 {
2841 	struct evsel *evsel;
2842 
2843 	evlist__for_each_entry(evlist, evsel) {
2844 		if (evsel->core.id && evsel->core.id[0] == id) {
2845 			if (evsel->name)
2846 				zfree(&evsel->name);
2847 			evsel->name = strdup(name);
2848 			break;
2849 		}
2850 	}
2851 }
2852 
2853 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2854 					 struct evlist *evlist)
2855 {
2856 	struct evsel *evsel;
2857 
2858 	evlist__for_each_entry(evlist, evsel) {
2859 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2860 			return evsel;
2861 	}
2862 
2863 	return NULL;
2864 }
2865 
2866 static int intel_pt_synth_events(struct intel_pt *pt,
2867 				 struct perf_session *session)
2868 {
2869 	struct evlist *evlist = session->evlist;
2870 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
2871 	struct perf_event_attr attr;
2872 	u64 id;
2873 	int err;
2874 
2875 	if (!evsel) {
2876 		pr_debug("There are no selected events with Intel Processor Trace data\n");
2877 		return 0;
2878 	}
2879 
2880 	memset(&attr, 0, sizeof(struct perf_event_attr));
2881 	attr.size = sizeof(struct perf_event_attr);
2882 	attr.type = PERF_TYPE_HARDWARE;
2883 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2884 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2885 			    PERF_SAMPLE_PERIOD;
2886 	if (pt->timeless_decoding)
2887 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2888 	else
2889 		attr.sample_type |= PERF_SAMPLE_TIME;
2890 	if (!pt->per_cpu_mmaps)
2891 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2892 	attr.exclude_user = evsel->core.attr.exclude_user;
2893 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
2894 	attr.exclude_hv = evsel->core.attr.exclude_hv;
2895 	attr.exclude_host = evsel->core.attr.exclude_host;
2896 	attr.exclude_guest = evsel->core.attr.exclude_guest;
2897 	attr.sample_id_all = evsel->core.attr.sample_id_all;
2898 	attr.read_format = evsel->core.attr.read_format;
2899 
2900 	id = evsel->core.id[0] + 1000000000;
2901 	if (!id)
2902 		id = 1;
2903 
2904 	if (pt->synth_opts.branches) {
2905 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2906 		attr.sample_period = 1;
2907 		attr.sample_type |= PERF_SAMPLE_ADDR;
2908 		err = intel_pt_synth_event(session, "branches", &attr, id);
2909 		if (err)
2910 			return err;
2911 		pt->sample_branches = true;
2912 		pt->branches_sample_type = attr.sample_type;
2913 		pt->branches_id = id;
2914 		id += 1;
2915 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2916 	}
2917 
2918 	if (pt->synth_opts.callchain)
2919 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2920 	if (pt->synth_opts.last_branch)
2921 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2922 
2923 	if (pt->synth_opts.instructions) {
2924 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2925 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2926 			attr.sample_period =
2927 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2928 		else
2929 			attr.sample_period = pt->synth_opts.period;
2930 		err = intel_pt_synth_event(session, "instructions", &attr, id);
2931 		if (err)
2932 			return err;
2933 		pt->sample_instructions = true;
2934 		pt->instructions_sample_type = attr.sample_type;
2935 		pt->instructions_id = id;
2936 		id += 1;
2937 	}
2938 
2939 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2940 	attr.sample_period = 1;
2941 
2942 	if (pt->synth_opts.transactions) {
2943 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2944 		err = intel_pt_synth_event(session, "transactions", &attr, id);
2945 		if (err)
2946 			return err;
2947 		pt->sample_transactions = true;
2948 		pt->transactions_sample_type = attr.sample_type;
2949 		pt->transactions_id = id;
2950 		intel_pt_set_event_name(evlist, id, "transactions");
2951 		id += 1;
2952 	}
2953 
2954 	attr.type = PERF_TYPE_SYNTH;
2955 	attr.sample_type |= PERF_SAMPLE_RAW;
2956 
2957 	if (pt->synth_opts.ptwrites) {
2958 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
2959 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2960 		if (err)
2961 			return err;
2962 		pt->sample_ptwrites = true;
2963 		pt->ptwrites_sample_type = attr.sample_type;
2964 		pt->ptwrites_id = id;
2965 		intel_pt_set_event_name(evlist, id, "ptwrite");
2966 		id += 1;
2967 	}
2968 
2969 	if (pt->synth_opts.pwr_events) {
2970 		pt->sample_pwr_events = true;
2971 		pt->pwr_events_sample_type = attr.sample_type;
2972 
2973 		attr.config = PERF_SYNTH_INTEL_CBR;
2974 		err = intel_pt_synth_event(session, "cbr", &attr, id);
2975 		if (err)
2976 			return err;
2977 		pt->cbr_id = id;
2978 		intel_pt_set_event_name(evlist, id, "cbr");
2979 		id += 1;
2980 	}
2981 
2982 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
2983 		attr.config = PERF_SYNTH_INTEL_MWAIT;
2984 		err = intel_pt_synth_event(session, "mwait", &attr, id);
2985 		if (err)
2986 			return err;
2987 		pt->mwait_id = id;
2988 		intel_pt_set_event_name(evlist, id, "mwait");
2989 		id += 1;
2990 
2991 		attr.config = PERF_SYNTH_INTEL_PWRE;
2992 		err = intel_pt_synth_event(session, "pwre", &attr, id);
2993 		if (err)
2994 			return err;
2995 		pt->pwre_id = id;
2996 		intel_pt_set_event_name(evlist, id, "pwre");
2997 		id += 1;
2998 
2999 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3000 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3001 		if (err)
3002 			return err;
3003 		pt->exstop_id = id;
3004 		intel_pt_set_event_name(evlist, id, "exstop");
3005 		id += 1;
3006 
3007 		attr.config = PERF_SYNTH_INTEL_PWRX;
3008 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3009 		if (err)
3010 			return err;
3011 		pt->pwrx_id = id;
3012 		intel_pt_set_event_name(evlist, id, "pwrx");
3013 		id += 1;
3014 	}
3015 
3016 	return 0;
3017 }
3018 
3019 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3020 {
3021 	struct evsel *evsel;
3022 
3023 	if (!pt->synth_opts.other_events)
3024 		return;
3025 
3026 	evlist__for_each_entry(pt->session->evlist, evsel) {
3027 		if (evsel->core.attr.aux_output && evsel->core.id) {
3028 			pt->sample_pebs = true;
3029 			pt->pebs_evsel = evsel;
3030 			return;
3031 		}
3032 	}
3033 }
3034 
3035 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3036 {
3037 	struct evsel *evsel;
3038 
3039 	evlist__for_each_entry_reverse(evlist, evsel) {
3040 		const char *name = evsel__name(evsel);
3041 
3042 		if (!strcmp(name, "sched:sched_switch"))
3043 			return evsel;
3044 	}
3045 
3046 	return NULL;
3047 }
3048 
3049 static bool intel_pt_find_switch(struct evlist *evlist)
3050 {
3051 	struct evsel *evsel;
3052 
3053 	evlist__for_each_entry(evlist, evsel) {
3054 		if (evsel->core.attr.context_switch)
3055 			return true;
3056 	}
3057 
3058 	return false;
3059 }
3060 
3061 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3062 {
3063 	struct intel_pt *pt = data;
3064 
3065 	if (!strcmp(var, "intel-pt.mispred-all"))
3066 		pt->mispred_all = perf_config_bool(var, value);
3067 
3068 	return 0;
3069 }
3070 
3071 /* Find least TSC which converts to ns or later */
3072 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3073 {
3074 	u64 tsc, tm;
3075 
3076 	tsc = perf_time_to_tsc(ns, &pt->tc);
3077 
3078 	while (1) {
3079 		tm = tsc_to_perf_time(tsc, &pt->tc);
3080 		if (tm < ns)
3081 			break;
3082 		tsc -= 1;
3083 	}
3084 
3085 	while (tm < ns)
3086 		tm = tsc_to_perf_time(++tsc, &pt->tc);
3087 
3088 	return tsc;
3089 }
3090 
3091 /* Find greatest TSC which converts to ns or earlier */
3092 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3093 {
3094 	u64 tsc, tm;
3095 
3096 	tsc = perf_time_to_tsc(ns, &pt->tc);
3097 
3098 	while (1) {
3099 		tm = tsc_to_perf_time(tsc, &pt->tc);
3100 		if (tm > ns)
3101 			break;
3102 		tsc += 1;
3103 	}
3104 
3105 	while (tm > ns)
3106 		tm = tsc_to_perf_time(--tsc, &pt->tc);
3107 
3108 	return tsc;
3109 }
3110 
3111 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3112 				      struct itrace_synth_opts *opts)
3113 {
3114 	struct perf_time_interval *p = opts->ptime_range;
3115 	int n = opts->range_num;
3116 	int i;
3117 
3118 	if (!n || !p || pt->timeless_decoding)
3119 		return 0;
3120 
3121 	pt->time_ranges = calloc(n, sizeof(struct range));
3122 	if (!pt->time_ranges)
3123 		return -ENOMEM;
3124 
3125 	pt->range_cnt = n;
3126 
3127 	intel_pt_log("%s: %u range(s)\n", __func__, n);
3128 
3129 	for (i = 0; i < n; i++) {
3130 		struct range *r = &pt->time_ranges[i];
3131 		u64 ts = p[i].start;
3132 		u64 te = p[i].end;
3133 
3134 		/*
3135 		 * Take care to ensure the TSC range matches the perf-time range
3136 		 * when converted back to perf-time.
3137 		 */
3138 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3139 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3140 
3141 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3142 			     i, ts, te);
3143 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3144 			     i, r->start, r->end);
3145 	}
3146 
3147 	return 0;
3148 }
3149 
3150 static const char * const intel_pt_info_fmts[] = {
3151 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3152 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3153 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3154 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3155 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3156 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3157 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3158 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3159 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3160 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3161 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
3162 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3163 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3164 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3165 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3166 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3167 };
3168 
3169 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3170 {
3171 	int i;
3172 
3173 	if (!dump_trace)
3174 		return;
3175 
3176 	for (i = start; i <= finish; i++)
3177 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3178 }
3179 
3180 static void intel_pt_print_info_str(const char *name, const char *str)
3181 {
3182 	if (!dump_trace)
3183 		return;
3184 
3185 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3186 }
3187 
3188 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3189 {
3190 	return auxtrace_info->header.size >=
3191 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3192 }
3193 
3194 int intel_pt_process_auxtrace_info(union perf_event *event,
3195 				   struct perf_session *session)
3196 {
3197 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3198 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3199 	struct intel_pt *pt;
3200 	void *info_end;
3201 	__u64 *info;
3202 	int err;
3203 
3204 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3205 					min_sz)
3206 		return -EINVAL;
3207 
3208 	pt = zalloc(sizeof(struct intel_pt));
3209 	if (!pt)
3210 		return -ENOMEM;
3211 
3212 	addr_filters__init(&pt->filts);
3213 
3214 	err = perf_config(intel_pt_perf_config, pt);
3215 	if (err)
3216 		goto err_free;
3217 
3218 	err = auxtrace_queues__init(&pt->queues);
3219 	if (err)
3220 		goto err_free;
3221 
3222 	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3223 
3224 	pt->session = session;
3225 	pt->machine = &session->machines.host; /* No kvm support */
3226 	pt->auxtrace_type = auxtrace_info->type;
3227 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3228 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3229 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3230 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3231 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3232 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3233 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3234 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3235 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3236 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3237 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3238 			    INTEL_PT_PER_CPU_MMAPS);
3239 
3240 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3241 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3242 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3243 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3244 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3245 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3246 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3247 				    INTEL_PT_CYC_BIT);
3248 	}
3249 
3250 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3251 		pt->max_non_turbo_ratio =
3252 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3253 		intel_pt_print_info(&auxtrace_info->priv[0],
3254 				    INTEL_PT_MAX_NONTURBO_RATIO,
3255 				    INTEL_PT_MAX_NONTURBO_RATIO);
3256 	}
3257 
3258 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3259 	info_end = (void *)info + auxtrace_info->header.size;
3260 
3261 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3262 		size_t len;
3263 
3264 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3265 		intel_pt_print_info(&auxtrace_info->priv[0],
3266 				    INTEL_PT_FILTER_STR_LEN,
3267 				    INTEL_PT_FILTER_STR_LEN);
3268 		if (len) {
3269 			const char *filter = (const char *)info;
3270 
3271 			len = roundup(len + 1, 8);
3272 			info += len >> 3;
3273 			if ((void *)info > info_end) {
3274 				pr_err("%s: bad filter string length\n", __func__);
3275 				err = -EINVAL;
3276 				goto err_free_queues;
3277 			}
3278 			pt->filter = memdup(filter, len);
3279 			if (!pt->filter) {
3280 				err = -ENOMEM;
3281 				goto err_free_queues;
3282 			}
3283 			if (session->header.needs_swap)
3284 				mem_bswap_64(pt->filter, len);
3285 			if (pt->filter[len - 1]) {
3286 				pr_err("%s: filter string not null terminated\n", __func__);
3287 				err = -EINVAL;
3288 				goto err_free_queues;
3289 			}
3290 			err = addr_filters__parse_bare_filter(&pt->filts,
3291 							      filter);
3292 			if (err)
3293 				goto err_free_queues;
3294 		}
3295 		intel_pt_print_info_str("Filter string", pt->filter);
3296 	}
3297 
3298 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3299 	if (pt->timeless_decoding && !pt->tc.time_mult)
3300 		pt->tc.time_mult = 1;
3301 	pt->have_tsc = intel_pt_have_tsc(pt);
3302 	pt->sampling_mode = intel_pt_sampling_mode(pt);
3303 	pt->est_tsc = !pt->timeless_decoding;
3304 
3305 	pt->unknown_thread = thread__new(999999999, 999999999);
3306 	if (!pt->unknown_thread) {
3307 		err = -ENOMEM;
3308 		goto err_free_queues;
3309 	}
3310 
3311 	/*
3312 	 * Since this thread will not be kept in any rbtree not in a
3313 	 * list, initialize its list node so that at thread__put() the
3314 	 * current thread lifetime assuption is kept and we don't segfault
3315 	 * at list_del_init().
3316 	 */
3317 	INIT_LIST_HEAD(&pt->unknown_thread->node);
3318 
3319 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3320 	if (err)
3321 		goto err_delete_thread;
3322 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3323 		err = -ENOMEM;
3324 		goto err_delete_thread;
3325 	}
3326 
3327 	pt->auxtrace.process_event = intel_pt_process_event;
3328 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3329 	pt->auxtrace.queue_data = intel_pt_queue_data;
3330 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3331 	pt->auxtrace.flush_events = intel_pt_flush;
3332 	pt->auxtrace.free_events = intel_pt_free_events;
3333 	pt->auxtrace.free = intel_pt_free;
3334 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3335 	session->auxtrace = &pt->auxtrace;
3336 
3337 	if (dump_trace)
3338 		return 0;
3339 
3340 	if (pt->have_sched_switch == 1) {
3341 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3342 		if (!pt->switch_evsel) {
3343 			pr_err("%s: missing sched_switch event\n", __func__);
3344 			err = -EINVAL;
3345 			goto err_delete_thread;
3346 		}
3347 	} else if (pt->have_sched_switch == 2 &&
3348 		   !intel_pt_find_switch(session->evlist)) {
3349 		pr_err("%s: missing context_switch attribute flag\n", __func__);
3350 		err = -EINVAL;
3351 		goto err_delete_thread;
3352 	}
3353 
3354 	if (session->itrace_synth_opts->set) {
3355 		pt->synth_opts = *session->itrace_synth_opts;
3356 	} else {
3357 		itrace_synth_opts__set_default(&pt->synth_opts,
3358 				session->itrace_synth_opts->default_no_sample);
3359 		if (!session->itrace_synth_opts->default_no_sample &&
3360 		    !session->itrace_synth_opts->inject) {
3361 			pt->synth_opts.branches = false;
3362 			pt->synth_opts.callchain = true;
3363 			pt->synth_opts.add_callchain = true;
3364 		}
3365 		pt->synth_opts.thread_stack =
3366 				session->itrace_synth_opts->thread_stack;
3367 	}
3368 
3369 	if (pt->synth_opts.log)
3370 		intel_pt_log_enable();
3371 
3372 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
3373 	if (pt->tc.time_mult) {
3374 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3375 
3376 		if (!pt->max_non_turbo_ratio)
3377 			pt->max_non_turbo_ratio =
3378 					(tsc_freq + 50000000) / 100000000;
3379 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3380 		intel_pt_log("Maximum non-turbo ratio %u\n",
3381 			     pt->max_non_turbo_ratio);
3382 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3383 	}
3384 
3385 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3386 	if (err)
3387 		goto err_delete_thread;
3388 
3389 	if (pt->synth_opts.calls)
3390 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3391 				       PERF_IP_FLAG_TRACE_END;
3392 	if (pt->synth_opts.returns)
3393 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
3394 				       PERF_IP_FLAG_TRACE_BEGIN;
3395 
3396 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3397 	    !symbol_conf.use_callchain) {
3398 		symbol_conf.use_callchain = true;
3399 		if (callchain_register_param(&callchain_param) < 0) {
3400 			symbol_conf.use_callchain = false;
3401 			pt->synth_opts.callchain = false;
3402 			pt->synth_opts.add_callchain = false;
3403 		}
3404 	}
3405 
3406 	if (pt->synth_opts.add_callchain) {
3407 		err = intel_pt_callchain_init(pt);
3408 		if (err)
3409 			goto err_delete_thread;
3410 	}
3411 
3412 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3413 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3414 		pt->br_stack_sz_plus = pt->br_stack_sz;
3415 	}
3416 
3417 	if (pt->synth_opts.add_last_branch) {
3418 		err = intel_pt_br_stack_init(pt);
3419 		if (err)
3420 			goto err_delete_thread;
3421 		/*
3422 		 * Additional branch stack size to cater for tracing from the
3423 		 * actual sample ip to where the sample time is recorded.
3424 		 * Measured at about 200 branches, but generously set to 1024.
3425 		 * If kernel space is not being traced, then add just 1 for the
3426 		 * branch to kernel space.
3427 		 */
3428 		if (intel_pt_tracing_kernel(pt))
3429 			pt->br_stack_sz_plus += 1024;
3430 		else
3431 			pt->br_stack_sz_plus += 1;
3432 	}
3433 
3434 	pt->use_thread_stack = pt->synth_opts.callchain ||
3435 			       pt->synth_opts.add_callchain ||
3436 			       pt->synth_opts.thread_stack ||
3437 			       pt->synth_opts.last_branch ||
3438 			       pt->synth_opts.add_last_branch;
3439 
3440 	pt->callstack = pt->synth_opts.callchain ||
3441 			pt->synth_opts.add_callchain ||
3442 			pt->synth_opts.thread_stack;
3443 
3444 	err = intel_pt_synth_events(pt, session);
3445 	if (err)
3446 		goto err_delete_thread;
3447 
3448 	intel_pt_setup_pebs_events(pt);
3449 
3450 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3451 		err = auxtrace_queue_data(session, true, true);
3452 	else
3453 		err = auxtrace_queues__process_index(&pt->queues, session);
3454 	if (err)
3455 		goto err_delete_thread;
3456 
3457 	if (pt->queues.populated)
3458 		pt->data_queued = true;
3459 
3460 	if (pt->timeless_decoding)
3461 		pr_debug2("Intel PT decoding without timestamps\n");
3462 
3463 	return 0;
3464 
3465 err_delete_thread:
3466 	zfree(&pt->chain);
3467 	thread__zput(pt->unknown_thread);
3468 err_free_queues:
3469 	intel_pt_log_disable();
3470 	auxtrace_queues__free(&pt->queues);
3471 	session->auxtrace = NULL;
3472 err_free:
3473 	addr_filters__exit(&pt->filts);
3474 	zfree(&pt->filter);
3475 	zfree(&pt->time_ranges);
3476 	free(pt);
3477 	return err;
3478 }
3479