1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pt.c: Intel Processor Trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <stdio.h> 9 #include <stdbool.h> 10 #include <errno.h> 11 #include <linux/kernel.h> 12 #include <linux/string.h> 13 #include <linux/types.h> 14 #include <linux/zalloc.h> 15 16 #include "session.h" 17 #include "machine.h" 18 #include "memswap.h" 19 #include "sort.h" 20 #include "tool.h" 21 #include "event.h" 22 #include "evlist.h" 23 #include "evsel.h" 24 #include "map.h" 25 #include "color.h" 26 #include "thread.h" 27 #include "thread-stack.h" 28 #include "symbol.h" 29 #include "callchain.h" 30 #include "dso.h" 31 #include "debug.h" 32 #include "auxtrace.h" 33 #include "tsc.h" 34 #include "intel-pt.h" 35 #include "config.h" 36 #include "util/perf_api_probe.h" 37 #include "util/synthetic-events.h" 38 #include "time-utils.h" 39 40 #include "../arch/x86/include/uapi/asm/perf_regs.h" 41 42 #include "intel-pt-decoder/intel-pt-log.h" 43 #include "intel-pt-decoder/intel-pt-decoder.h" 44 #include "intel-pt-decoder/intel-pt-insn-decoder.h" 45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h" 46 47 #define MAX_TIMESTAMP (~0ULL) 48 49 struct range { 50 u64 start; 51 u64 end; 52 }; 53 54 struct intel_pt { 55 struct auxtrace auxtrace; 56 struct auxtrace_queues queues; 57 struct auxtrace_heap heap; 58 u32 auxtrace_type; 59 struct perf_session *session; 60 struct machine *machine; 61 struct evsel *switch_evsel; 62 struct thread *unknown_thread; 63 bool timeless_decoding; 64 bool sampling_mode; 65 bool snapshot_mode; 66 bool per_cpu_mmaps; 67 bool have_tsc; 68 bool data_queued; 69 bool est_tsc; 70 bool sync_switch; 71 bool mispred_all; 72 bool use_thread_stack; 73 bool callstack; 74 unsigned int br_stack_sz; 75 unsigned int br_stack_sz_plus; 76 int have_sched_switch; 77 u32 pmu_type; 78 u64 kernel_start; 79 u64 switch_ip; 80 u64 ptss_ip; 81 82 struct perf_tsc_conversion tc; 83 bool cap_user_time_zero; 84 85 struct itrace_synth_opts synth_opts; 86 87 bool sample_instructions; 88 u64 instructions_sample_type; 89 u64 instructions_id; 90 91 bool sample_branches; 92 u32 branches_filter; 93 u64 branches_sample_type; 94 u64 branches_id; 95 96 bool sample_transactions; 97 u64 transactions_sample_type; 98 u64 transactions_id; 99 100 bool sample_ptwrites; 101 u64 ptwrites_sample_type; 102 u64 ptwrites_id; 103 104 bool sample_pwr_events; 105 u64 pwr_events_sample_type; 106 u64 mwait_id; 107 u64 pwre_id; 108 u64 exstop_id; 109 u64 pwrx_id; 110 u64 cbr_id; 111 112 bool sample_pebs; 113 struct evsel *pebs_evsel; 114 115 u64 tsc_bit; 116 u64 mtc_bit; 117 u64 mtc_freq_bits; 118 u32 tsc_ctc_ratio_n; 119 u32 tsc_ctc_ratio_d; 120 u64 cyc_bit; 121 u64 noretcomp_bit; 122 unsigned max_non_turbo_ratio; 123 unsigned cbr2khz; 124 125 unsigned long num_events; 126 127 char *filter; 128 struct addr_filters filts; 129 130 struct range *time_ranges; 131 unsigned int range_cnt; 132 133 struct ip_callchain *chain; 134 struct branch_stack *br_stack; 135 }; 136 137 enum switch_state { 138 INTEL_PT_SS_NOT_TRACING, 139 INTEL_PT_SS_UNKNOWN, 140 INTEL_PT_SS_TRACING, 141 INTEL_PT_SS_EXPECTING_SWITCH_EVENT, 142 INTEL_PT_SS_EXPECTING_SWITCH_IP, 143 }; 144 145 struct intel_pt_queue { 146 struct intel_pt *pt; 147 unsigned int queue_nr; 148 struct auxtrace_buffer *buffer; 149 struct auxtrace_buffer *old_buffer; 150 void *decoder; 151 const struct intel_pt_state *state; 152 struct ip_callchain *chain; 153 struct branch_stack *last_branch; 154 union perf_event *event_buf; 155 bool on_heap; 156 bool stop; 157 bool step_through_buffers; 158 bool use_buffer_pid_tid; 159 bool sync_switch; 160 pid_t pid, tid; 161 int cpu; 162 int switch_state; 163 pid_t next_tid; 164 struct thread *thread; 165 bool exclude_kernel; 166 bool have_sample; 167 u64 time; 168 u64 timestamp; 169 u64 sel_timestamp; 170 bool sel_start; 171 unsigned int sel_idx; 172 u32 flags; 173 u16 insn_len; 174 u64 last_insn_cnt; 175 u64 ipc_insn_cnt; 176 u64 ipc_cyc_cnt; 177 u64 last_in_insn_cnt; 178 u64 last_in_cyc_cnt; 179 u64 last_br_insn_cnt; 180 u64 last_br_cyc_cnt; 181 unsigned int cbr_seen; 182 char insn[INTEL_PT_INSN_BUF_SZ]; 183 }; 184 185 static void intel_pt_dump(struct intel_pt *pt __maybe_unused, 186 unsigned char *buf, size_t len) 187 { 188 struct intel_pt_pkt packet; 189 size_t pos = 0; 190 int ret, pkt_len, i; 191 char desc[INTEL_PT_PKT_DESC_MAX]; 192 const char *color = PERF_COLOR_BLUE; 193 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX; 194 195 color_fprintf(stdout, color, 196 ". ... Intel Processor Trace data: size %zu bytes\n", 197 len); 198 199 while (len) { 200 ret = intel_pt_get_packet(buf, len, &packet, &ctx); 201 if (ret > 0) 202 pkt_len = ret; 203 else 204 pkt_len = 1; 205 printf("."); 206 color_fprintf(stdout, color, " %08x: ", pos); 207 for (i = 0; i < pkt_len; i++) 208 color_fprintf(stdout, color, " %02x", buf[i]); 209 for (; i < 16; i++) 210 color_fprintf(stdout, color, " "); 211 if (ret > 0) { 212 ret = intel_pt_pkt_desc(&packet, desc, 213 INTEL_PT_PKT_DESC_MAX); 214 if (ret > 0) 215 color_fprintf(stdout, color, " %s\n", desc); 216 } else { 217 color_fprintf(stdout, color, " Bad packet!\n"); 218 } 219 pos += pkt_len; 220 buf += pkt_len; 221 len -= pkt_len; 222 } 223 } 224 225 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf, 226 size_t len) 227 { 228 printf(".\n"); 229 intel_pt_dump(pt, buf, len); 230 } 231 232 static void intel_pt_log_event(union perf_event *event) 233 { 234 FILE *f = intel_pt_log_fp(); 235 236 if (!intel_pt_enable_logging || !f) 237 return; 238 239 perf_event__fprintf(event, f); 240 } 241 242 static void intel_pt_dump_sample(struct perf_session *session, 243 struct perf_sample *sample) 244 { 245 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 246 auxtrace); 247 248 printf("\n"); 249 intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size); 250 } 251 252 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a, 253 struct auxtrace_buffer *b) 254 { 255 bool consecutive = false; 256 void *start; 257 258 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size, 259 pt->have_tsc, &consecutive); 260 if (!start) 261 return -EINVAL; 262 b->use_size = b->data + b->size - start; 263 b->use_data = start; 264 if (b->use_size && consecutive) 265 b->consecutive = true; 266 return 0; 267 } 268 269 static int intel_pt_get_buffer(struct intel_pt_queue *ptq, 270 struct auxtrace_buffer *buffer, 271 struct auxtrace_buffer *old_buffer, 272 struct intel_pt_buffer *b) 273 { 274 bool might_overlap; 275 276 if (!buffer->data) { 277 int fd = perf_data__fd(ptq->pt->session->data); 278 279 buffer->data = auxtrace_buffer__get_data(buffer, fd); 280 if (!buffer->data) 281 return -ENOMEM; 282 } 283 284 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode; 285 if (might_overlap && !buffer->consecutive && old_buffer && 286 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer)) 287 return -ENOMEM; 288 289 if (buffer->use_data) { 290 b->len = buffer->use_size; 291 b->buf = buffer->use_data; 292 } else { 293 b->len = buffer->size; 294 b->buf = buffer->data; 295 } 296 b->ref_timestamp = buffer->reference; 297 298 if (!old_buffer || (might_overlap && !buffer->consecutive)) { 299 b->consecutive = false; 300 b->trace_nr = buffer->buffer_nr + 1; 301 } else { 302 b->consecutive = true; 303 } 304 305 return 0; 306 } 307 308 /* Do not drop buffers with references - refer intel_pt_get_trace() */ 309 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq, 310 struct auxtrace_buffer *buffer) 311 { 312 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer) 313 return; 314 315 auxtrace_buffer__drop_data(buffer); 316 } 317 318 /* Must be serialized with respect to intel_pt_get_trace() */ 319 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb, 320 void *cb_data) 321 { 322 struct intel_pt_queue *ptq = data; 323 struct auxtrace_buffer *buffer = ptq->buffer; 324 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 325 struct auxtrace_queue *queue; 326 int err = 0; 327 328 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 329 330 while (1) { 331 struct intel_pt_buffer b = { .len = 0 }; 332 333 buffer = auxtrace_buffer__next(queue, buffer); 334 if (!buffer) 335 break; 336 337 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b); 338 if (err) 339 break; 340 341 if (b.len) { 342 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 343 old_buffer = buffer; 344 } else { 345 intel_pt_lookahead_drop_buffer(ptq, buffer); 346 continue; 347 } 348 349 err = cb(&b, cb_data); 350 if (err) 351 break; 352 } 353 354 if (buffer != old_buffer) 355 intel_pt_lookahead_drop_buffer(ptq, buffer); 356 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 357 358 return err; 359 } 360 361 /* 362 * This function assumes data is processed sequentially only. 363 * Must be serialized with respect to intel_pt_lookahead() 364 */ 365 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data) 366 { 367 struct intel_pt_queue *ptq = data; 368 struct auxtrace_buffer *buffer = ptq->buffer; 369 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 370 struct auxtrace_queue *queue; 371 int err; 372 373 if (ptq->stop) { 374 b->len = 0; 375 return 0; 376 } 377 378 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 379 380 buffer = auxtrace_buffer__next(queue, buffer); 381 if (!buffer) { 382 if (old_buffer) 383 auxtrace_buffer__drop_data(old_buffer); 384 b->len = 0; 385 return 0; 386 } 387 388 ptq->buffer = buffer; 389 390 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b); 391 if (err) 392 return err; 393 394 if (ptq->step_through_buffers) 395 ptq->stop = true; 396 397 if (b->len) { 398 if (old_buffer) 399 auxtrace_buffer__drop_data(old_buffer); 400 ptq->old_buffer = buffer; 401 } else { 402 auxtrace_buffer__drop_data(buffer); 403 return intel_pt_get_trace(b, data); 404 } 405 406 return 0; 407 } 408 409 struct intel_pt_cache_entry { 410 struct auxtrace_cache_entry entry; 411 u64 insn_cnt; 412 u64 byte_cnt; 413 enum intel_pt_insn_op op; 414 enum intel_pt_insn_branch branch; 415 int length; 416 int32_t rel; 417 char insn[INTEL_PT_INSN_BUF_SZ]; 418 }; 419 420 static int intel_pt_config_div(const char *var, const char *value, void *data) 421 { 422 int *d = data; 423 long val; 424 425 if (!strcmp(var, "intel-pt.cache-divisor")) { 426 val = strtol(value, NULL, 0); 427 if (val > 0 && val <= INT_MAX) 428 *d = val; 429 } 430 431 return 0; 432 } 433 434 static int intel_pt_cache_divisor(void) 435 { 436 static int d; 437 438 if (d) 439 return d; 440 441 perf_config(intel_pt_config_div, &d); 442 443 if (!d) 444 d = 64; 445 446 return d; 447 } 448 449 static unsigned int intel_pt_cache_size(struct dso *dso, 450 struct machine *machine) 451 { 452 off_t size; 453 454 size = dso__data_size(dso, machine); 455 size /= intel_pt_cache_divisor(); 456 if (size < 1000) 457 return 10; 458 if (size > (1 << 21)) 459 return 21; 460 return 32 - __builtin_clz(size); 461 } 462 463 static struct auxtrace_cache *intel_pt_cache(struct dso *dso, 464 struct machine *machine) 465 { 466 struct auxtrace_cache *c; 467 unsigned int bits; 468 469 if (dso->auxtrace_cache) 470 return dso->auxtrace_cache; 471 472 bits = intel_pt_cache_size(dso, machine); 473 474 /* Ignoring cache creation failure */ 475 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200); 476 477 dso->auxtrace_cache = c; 478 479 return c; 480 } 481 482 static int intel_pt_cache_add(struct dso *dso, struct machine *machine, 483 u64 offset, u64 insn_cnt, u64 byte_cnt, 484 struct intel_pt_insn *intel_pt_insn) 485 { 486 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 487 struct intel_pt_cache_entry *e; 488 int err; 489 490 if (!c) 491 return -ENOMEM; 492 493 e = auxtrace_cache__alloc_entry(c); 494 if (!e) 495 return -ENOMEM; 496 497 e->insn_cnt = insn_cnt; 498 e->byte_cnt = byte_cnt; 499 e->op = intel_pt_insn->op; 500 e->branch = intel_pt_insn->branch; 501 e->length = intel_pt_insn->length; 502 e->rel = intel_pt_insn->rel; 503 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ); 504 505 err = auxtrace_cache__add(c, offset, &e->entry); 506 if (err) 507 auxtrace_cache__free_entry(c, e); 508 509 return err; 510 } 511 512 static struct intel_pt_cache_entry * 513 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset) 514 { 515 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 516 517 if (!c) 518 return NULL; 519 520 return auxtrace_cache__lookup(dso->auxtrace_cache, offset); 521 } 522 523 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip) 524 { 525 return ip >= pt->kernel_start ? 526 PERF_RECORD_MISC_KERNEL : 527 PERF_RECORD_MISC_USER; 528 } 529 530 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn, 531 uint64_t *insn_cnt_ptr, uint64_t *ip, 532 uint64_t to_ip, uint64_t max_insn_cnt, 533 void *data) 534 { 535 struct intel_pt_queue *ptq = data; 536 struct machine *machine = ptq->pt->machine; 537 struct thread *thread; 538 struct addr_location al; 539 unsigned char buf[INTEL_PT_INSN_BUF_SZ]; 540 ssize_t len; 541 int x86_64; 542 u8 cpumode; 543 u64 offset, start_offset, start_ip; 544 u64 insn_cnt = 0; 545 bool one_map = true; 546 547 intel_pt_insn->length = 0; 548 549 if (to_ip && *ip == to_ip) 550 goto out_no_cache; 551 552 cpumode = intel_pt_cpumode(ptq->pt, *ip); 553 554 thread = ptq->thread; 555 if (!thread) { 556 if (cpumode != PERF_RECORD_MISC_KERNEL) 557 return -EINVAL; 558 thread = ptq->pt->unknown_thread; 559 } 560 561 while (1) { 562 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso) 563 return -EINVAL; 564 565 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 566 dso__data_status_seen(al.map->dso, 567 DSO_DATA_STATUS_SEEN_ITRACE)) 568 return -ENOENT; 569 570 offset = al.map->map_ip(al.map, *ip); 571 572 if (!to_ip && one_map) { 573 struct intel_pt_cache_entry *e; 574 575 e = intel_pt_cache_lookup(al.map->dso, machine, offset); 576 if (e && 577 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) { 578 *insn_cnt_ptr = e->insn_cnt; 579 *ip += e->byte_cnt; 580 intel_pt_insn->op = e->op; 581 intel_pt_insn->branch = e->branch; 582 intel_pt_insn->length = e->length; 583 intel_pt_insn->rel = e->rel; 584 memcpy(intel_pt_insn->buf, e->insn, 585 INTEL_PT_INSN_BUF_SZ); 586 intel_pt_log_insn_no_data(intel_pt_insn, *ip); 587 return 0; 588 } 589 } 590 591 start_offset = offset; 592 start_ip = *ip; 593 594 /* Load maps to ensure dso->is_64_bit has been updated */ 595 map__load(al.map); 596 597 x86_64 = al.map->dso->is_64_bit; 598 599 while (1) { 600 len = dso__data_read_offset(al.map->dso, machine, 601 offset, buf, 602 INTEL_PT_INSN_BUF_SZ); 603 if (len <= 0) 604 return -EINVAL; 605 606 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) 607 return -EINVAL; 608 609 intel_pt_log_insn(intel_pt_insn, *ip); 610 611 insn_cnt += 1; 612 613 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) 614 goto out; 615 616 if (max_insn_cnt && insn_cnt >= max_insn_cnt) 617 goto out_no_cache; 618 619 *ip += intel_pt_insn->length; 620 621 if (to_ip && *ip == to_ip) 622 goto out_no_cache; 623 624 if (*ip >= al.map->end) 625 break; 626 627 offset += intel_pt_insn->length; 628 } 629 one_map = false; 630 } 631 out: 632 *insn_cnt_ptr = insn_cnt; 633 634 if (!one_map) 635 goto out_no_cache; 636 637 /* 638 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate 639 * entries. 640 */ 641 if (to_ip) { 642 struct intel_pt_cache_entry *e; 643 644 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset); 645 if (e) 646 return 0; 647 } 648 649 /* Ignore cache errors */ 650 intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt, 651 *ip - start_ip, intel_pt_insn); 652 653 return 0; 654 655 out_no_cache: 656 *insn_cnt_ptr = insn_cnt; 657 return 0; 658 } 659 660 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip, 661 uint64_t offset, const char *filename) 662 { 663 struct addr_filter *filt; 664 bool have_filter = false; 665 bool hit_tracestop = false; 666 bool hit_filter = false; 667 668 list_for_each_entry(filt, &pt->filts.head, list) { 669 if (filt->start) 670 have_filter = true; 671 672 if ((filename && !filt->filename) || 673 (!filename && filt->filename) || 674 (filename && strcmp(filename, filt->filename))) 675 continue; 676 677 if (!(offset >= filt->addr && offset < filt->addr + filt->size)) 678 continue; 679 680 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n", 681 ip, offset, filename ? filename : "[kernel]", 682 filt->start ? "filter" : "stop", 683 filt->addr, filt->size); 684 685 if (filt->start) 686 hit_filter = true; 687 else 688 hit_tracestop = true; 689 } 690 691 if (!hit_tracestop && !hit_filter) 692 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n", 693 ip, offset, filename ? filename : "[kernel]"); 694 695 return hit_tracestop || (have_filter && !hit_filter); 696 } 697 698 static int __intel_pt_pgd_ip(uint64_t ip, void *data) 699 { 700 struct intel_pt_queue *ptq = data; 701 struct thread *thread; 702 struct addr_location al; 703 u8 cpumode; 704 u64 offset; 705 706 if (ip >= ptq->pt->kernel_start) 707 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); 708 709 cpumode = PERF_RECORD_MISC_USER; 710 711 thread = ptq->thread; 712 if (!thread) 713 return -EINVAL; 714 715 if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso) 716 return -EINVAL; 717 718 offset = al.map->map_ip(al.map, ip); 719 720 return intel_pt_match_pgd_ip(ptq->pt, ip, offset, 721 al.map->dso->long_name); 722 } 723 724 static bool intel_pt_pgd_ip(uint64_t ip, void *data) 725 { 726 return __intel_pt_pgd_ip(ip, data) > 0; 727 } 728 729 static bool intel_pt_get_config(struct intel_pt *pt, 730 struct perf_event_attr *attr, u64 *config) 731 { 732 if (attr->type == pt->pmu_type) { 733 if (config) 734 *config = attr->config; 735 return true; 736 } 737 738 return false; 739 } 740 741 static bool intel_pt_exclude_kernel(struct intel_pt *pt) 742 { 743 struct evsel *evsel; 744 745 evlist__for_each_entry(pt->session->evlist, evsel) { 746 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 747 !evsel->core.attr.exclude_kernel) 748 return false; 749 } 750 return true; 751 } 752 753 static bool intel_pt_return_compression(struct intel_pt *pt) 754 { 755 struct evsel *evsel; 756 u64 config; 757 758 if (!pt->noretcomp_bit) 759 return true; 760 761 evlist__for_each_entry(pt->session->evlist, evsel) { 762 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 763 (config & pt->noretcomp_bit)) 764 return false; 765 } 766 return true; 767 } 768 769 static bool intel_pt_branch_enable(struct intel_pt *pt) 770 { 771 struct evsel *evsel; 772 u64 config; 773 774 evlist__for_each_entry(pt->session->evlist, evsel) { 775 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 776 (config & 1) && !(config & 0x2000)) 777 return false; 778 } 779 return true; 780 } 781 782 static unsigned int intel_pt_mtc_period(struct intel_pt *pt) 783 { 784 struct evsel *evsel; 785 unsigned int shift; 786 u64 config; 787 788 if (!pt->mtc_freq_bits) 789 return 0; 790 791 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++) 792 config >>= 1; 793 794 evlist__for_each_entry(pt->session->evlist, evsel) { 795 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) 796 return (config & pt->mtc_freq_bits) >> shift; 797 } 798 return 0; 799 } 800 801 static bool intel_pt_timeless_decoding(struct intel_pt *pt) 802 { 803 struct evsel *evsel; 804 bool timeless_decoding = true; 805 u64 config; 806 807 if (!pt->tsc_bit || !pt->cap_user_time_zero) 808 return true; 809 810 evlist__for_each_entry(pt->session->evlist, evsel) { 811 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 812 return true; 813 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 814 if (config & pt->tsc_bit) 815 timeless_decoding = false; 816 else 817 return true; 818 } 819 } 820 return timeless_decoding; 821 } 822 823 static bool intel_pt_tracing_kernel(struct intel_pt *pt) 824 { 825 struct evsel *evsel; 826 827 evlist__for_each_entry(pt->session->evlist, evsel) { 828 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 829 !evsel->core.attr.exclude_kernel) 830 return true; 831 } 832 return false; 833 } 834 835 static bool intel_pt_have_tsc(struct intel_pt *pt) 836 { 837 struct evsel *evsel; 838 bool have_tsc = false; 839 u64 config; 840 841 if (!pt->tsc_bit) 842 return false; 843 844 evlist__for_each_entry(pt->session->evlist, evsel) { 845 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 846 if (config & pt->tsc_bit) 847 have_tsc = true; 848 else 849 return false; 850 } 851 } 852 return have_tsc; 853 } 854 855 static bool intel_pt_sampling_mode(struct intel_pt *pt) 856 { 857 struct evsel *evsel; 858 859 evlist__for_each_entry(pt->session->evlist, evsel) { 860 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) && 861 evsel->core.attr.aux_sample_size) 862 return true; 863 } 864 return false; 865 } 866 867 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns) 868 { 869 u64 quot, rem; 870 871 quot = ns / pt->tc.time_mult; 872 rem = ns % pt->tc.time_mult; 873 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) / 874 pt->tc.time_mult; 875 } 876 877 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt) 878 { 879 size_t sz = sizeof(struct ip_callchain); 880 881 /* Add 1 to callchain_sz for callchain context */ 882 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64); 883 return zalloc(sz); 884 } 885 886 static int intel_pt_callchain_init(struct intel_pt *pt) 887 { 888 struct evsel *evsel; 889 890 evlist__for_each_entry(pt->session->evlist, evsel) { 891 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN)) 892 evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN; 893 } 894 895 pt->chain = intel_pt_alloc_chain(pt); 896 if (!pt->chain) 897 return -ENOMEM; 898 899 return 0; 900 } 901 902 static void intel_pt_add_callchain(struct intel_pt *pt, 903 struct perf_sample *sample) 904 { 905 struct thread *thread = machine__findnew_thread(pt->machine, 906 sample->pid, 907 sample->tid); 908 909 thread_stack__sample_late(thread, sample->cpu, pt->chain, 910 pt->synth_opts.callchain_sz + 1, sample->ip, 911 pt->kernel_start); 912 913 sample->callchain = pt->chain; 914 } 915 916 static struct branch_stack *intel_pt_alloc_br_stack(struct intel_pt *pt) 917 { 918 size_t sz = sizeof(struct branch_stack); 919 920 sz += pt->br_stack_sz * sizeof(struct branch_entry); 921 return zalloc(sz); 922 } 923 924 static int intel_pt_br_stack_init(struct intel_pt *pt) 925 { 926 struct evsel *evsel; 927 928 evlist__for_each_entry(pt->session->evlist, evsel) { 929 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK)) 930 evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK; 931 } 932 933 pt->br_stack = intel_pt_alloc_br_stack(pt); 934 if (!pt->br_stack) 935 return -ENOMEM; 936 937 return 0; 938 } 939 940 static void intel_pt_add_br_stack(struct intel_pt *pt, 941 struct perf_sample *sample) 942 { 943 struct thread *thread = machine__findnew_thread(pt->machine, 944 sample->pid, 945 sample->tid); 946 947 thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack, 948 pt->br_stack_sz, sample->ip, 949 pt->kernel_start); 950 951 sample->branch_stack = pt->br_stack; 952 } 953 954 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt, 955 unsigned int queue_nr) 956 { 957 struct intel_pt_params params = { .get_trace = 0, }; 958 struct perf_env *env = pt->machine->env; 959 struct intel_pt_queue *ptq; 960 961 ptq = zalloc(sizeof(struct intel_pt_queue)); 962 if (!ptq) 963 return NULL; 964 965 if (pt->synth_opts.callchain) { 966 ptq->chain = intel_pt_alloc_chain(pt); 967 if (!ptq->chain) 968 goto out_free; 969 } 970 971 if (pt->synth_opts.last_branch) { 972 ptq->last_branch = intel_pt_alloc_br_stack(pt); 973 if (!ptq->last_branch) 974 goto out_free; 975 } 976 977 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 978 if (!ptq->event_buf) 979 goto out_free; 980 981 ptq->pt = pt; 982 ptq->queue_nr = queue_nr; 983 ptq->exclude_kernel = intel_pt_exclude_kernel(pt); 984 ptq->pid = -1; 985 ptq->tid = -1; 986 ptq->cpu = -1; 987 ptq->next_tid = -1; 988 989 params.get_trace = intel_pt_get_trace; 990 params.walk_insn = intel_pt_walk_next_insn; 991 params.lookahead = intel_pt_lookahead; 992 params.data = ptq; 993 params.return_compression = intel_pt_return_compression(pt); 994 params.branch_enable = intel_pt_branch_enable(pt); 995 params.max_non_turbo_ratio = pt->max_non_turbo_ratio; 996 params.mtc_period = intel_pt_mtc_period(pt); 997 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n; 998 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d; 999 1000 if (pt->filts.cnt > 0) 1001 params.pgd_ip = intel_pt_pgd_ip; 1002 1003 if (pt->synth_opts.instructions) { 1004 if (pt->synth_opts.period) { 1005 switch (pt->synth_opts.period_type) { 1006 case PERF_ITRACE_PERIOD_INSTRUCTIONS: 1007 params.period_type = 1008 INTEL_PT_PERIOD_INSTRUCTIONS; 1009 params.period = pt->synth_opts.period; 1010 break; 1011 case PERF_ITRACE_PERIOD_TICKS: 1012 params.period_type = INTEL_PT_PERIOD_TICKS; 1013 params.period = pt->synth_opts.period; 1014 break; 1015 case PERF_ITRACE_PERIOD_NANOSECS: 1016 params.period_type = INTEL_PT_PERIOD_TICKS; 1017 params.period = intel_pt_ns_to_ticks(pt, 1018 pt->synth_opts.period); 1019 break; 1020 default: 1021 break; 1022 } 1023 } 1024 1025 if (!params.period) { 1026 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS; 1027 params.period = 1; 1028 } 1029 } 1030 1031 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18)) 1032 params.flags |= INTEL_PT_FUP_WITH_NLIP; 1033 1034 ptq->decoder = intel_pt_decoder_new(¶ms); 1035 if (!ptq->decoder) 1036 goto out_free; 1037 1038 return ptq; 1039 1040 out_free: 1041 zfree(&ptq->event_buf); 1042 zfree(&ptq->last_branch); 1043 zfree(&ptq->chain); 1044 free(ptq); 1045 return NULL; 1046 } 1047 1048 static void intel_pt_free_queue(void *priv) 1049 { 1050 struct intel_pt_queue *ptq = priv; 1051 1052 if (!ptq) 1053 return; 1054 thread__zput(ptq->thread); 1055 intel_pt_decoder_free(ptq->decoder); 1056 zfree(&ptq->event_buf); 1057 zfree(&ptq->last_branch); 1058 zfree(&ptq->chain); 1059 free(ptq); 1060 } 1061 1062 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt, 1063 struct auxtrace_queue *queue) 1064 { 1065 struct intel_pt_queue *ptq = queue->priv; 1066 1067 if (queue->tid == -1 || pt->have_sched_switch) { 1068 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu); 1069 thread__zput(ptq->thread); 1070 } 1071 1072 if (!ptq->thread && ptq->tid != -1) 1073 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid); 1074 1075 if (ptq->thread) { 1076 ptq->pid = ptq->thread->pid_; 1077 if (queue->cpu == -1) 1078 ptq->cpu = ptq->thread->cpu; 1079 } 1080 } 1081 1082 static void intel_pt_sample_flags(struct intel_pt_queue *ptq) 1083 { 1084 if (ptq->state->flags & INTEL_PT_ABORT_TX) { 1085 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT; 1086 } else if (ptq->state->flags & INTEL_PT_ASYNC) { 1087 if (ptq->state->to_ip) 1088 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | 1089 PERF_IP_FLAG_ASYNC | 1090 PERF_IP_FLAG_INTERRUPT; 1091 else 1092 ptq->flags = PERF_IP_FLAG_BRANCH | 1093 PERF_IP_FLAG_TRACE_END; 1094 ptq->insn_len = 0; 1095 } else { 1096 if (ptq->state->from_ip) 1097 ptq->flags = intel_pt_insn_type(ptq->state->insn_op); 1098 else 1099 ptq->flags = PERF_IP_FLAG_BRANCH | 1100 PERF_IP_FLAG_TRACE_BEGIN; 1101 if (ptq->state->flags & INTEL_PT_IN_TX) 1102 ptq->flags |= PERF_IP_FLAG_IN_TX; 1103 ptq->insn_len = ptq->state->insn_len; 1104 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ); 1105 } 1106 1107 if (ptq->state->type & INTEL_PT_TRACE_BEGIN) 1108 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN; 1109 if (ptq->state->type & INTEL_PT_TRACE_END) 1110 ptq->flags |= PERF_IP_FLAG_TRACE_END; 1111 } 1112 1113 static void intel_pt_setup_time_range(struct intel_pt *pt, 1114 struct intel_pt_queue *ptq) 1115 { 1116 if (!pt->range_cnt) 1117 return; 1118 1119 ptq->sel_timestamp = pt->time_ranges[0].start; 1120 ptq->sel_idx = 0; 1121 1122 if (ptq->sel_timestamp) { 1123 ptq->sel_start = true; 1124 } else { 1125 ptq->sel_timestamp = pt->time_ranges[0].end; 1126 ptq->sel_start = false; 1127 } 1128 } 1129 1130 static int intel_pt_setup_queue(struct intel_pt *pt, 1131 struct auxtrace_queue *queue, 1132 unsigned int queue_nr) 1133 { 1134 struct intel_pt_queue *ptq = queue->priv; 1135 1136 if (list_empty(&queue->head)) 1137 return 0; 1138 1139 if (!ptq) { 1140 ptq = intel_pt_alloc_queue(pt, queue_nr); 1141 if (!ptq) 1142 return -ENOMEM; 1143 queue->priv = ptq; 1144 1145 if (queue->cpu != -1) 1146 ptq->cpu = queue->cpu; 1147 ptq->tid = queue->tid; 1148 1149 ptq->cbr_seen = UINT_MAX; 1150 1151 if (pt->sampling_mode && !pt->snapshot_mode && 1152 pt->timeless_decoding) 1153 ptq->step_through_buffers = true; 1154 1155 ptq->sync_switch = pt->sync_switch; 1156 1157 intel_pt_setup_time_range(pt, ptq); 1158 } 1159 1160 if (!ptq->on_heap && 1161 (!ptq->sync_switch || 1162 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) { 1163 const struct intel_pt_state *state; 1164 int ret; 1165 1166 if (pt->timeless_decoding) 1167 return 0; 1168 1169 intel_pt_log("queue %u getting timestamp\n", queue_nr); 1170 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 1171 queue_nr, ptq->cpu, ptq->pid, ptq->tid); 1172 1173 if (ptq->sel_start && ptq->sel_timestamp) { 1174 ret = intel_pt_fast_forward(ptq->decoder, 1175 ptq->sel_timestamp); 1176 if (ret) 1177 return ret; 1178 } 1179 1180 while (1) { 1181 state = intel_pt_decode(ptq->decoder); 1182 if (state->err) { 1183 if (state->err == INTEL_PT_ERR_NODATA) { 1184 intel_pt_log("queue %u has no timestamp\n", 1185 queue_nr); 1186 return 0; 1187 } 1188 continue; 1189 } 1190 if (state->timestamp) 1191 break; 1192 } 1193 1194 ptq->timestamp = state->timestamp; 1195 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n", 1196 queue_nr, ptq->timestamp); 1197 ptq->state = state; 1198 ptq->have_sample = true; 1199 if (ptq->sel_start && ptq->sel_timestamp && 1200 ptq->timestamp < ptq->sel_timestamp) 1201 ptq->have_sample = false; 1202 intel_pt_sample_flags(ptq); 1203 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp); 1204 if (ret) 1205 return ret; 1206 ptq->on_heap = true; 1207 } 1208 1209 return 0; 1210 } 1211 1212 static int intel_pt_setup_queues(struct intel_pt *pt) 1213 { 1214 unsigned int i; 1215 int ret; 1216 1217 for (i = 0; i < pt->queues.nr_queues; i++) { 1218 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i); 1219 if (ret) 1220 return ret; 1221 } 1222 return 0; 1223 } 1224 1225 static inline bool intel_pt_skip_event(struct intel_pt *pt) 1226 { 1227 return pt->synth_opts.initial_skip && 1228 pt->num_events++ < pt->synth_opts.initial_skip; 1229 } 1230 1231 /* 1232 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen. 1233 * Also ensure CBR is first non-skipped event by allowing for 4 more samples 1234 * from this decoder state. 1235 */ 1236 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt) 1237 { 1238 return pt->synth_opts.initial_skip && 1239 pt->num_events + 4 < pt->synth_opts.initial_skip; 1240 } 1241 1242 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq, 1243 union perf_event *event, 1244 struct perf_sample *sample) 1245 { 1246 event->sample.header.type = PERF_RECORD_SAMPLE; 1247 event->sample.header.size = sizeof(struct perf_event_header); 1248 1249 sample->pid = ptq->pid; 1250 sample->tid = ptq->tid; 1251 sample->cpu = ptq->cpu; 1252 sample->insn_len = ptq->insn_len; 1253 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ); 1254 } 1255 1256 static void intel_pt_prep_b_sample(struct intel_pt *pt, 1257 struct intel_pt_queue *ptq, 1258 union perf_event *event, 1259 struct perf_sample *sample) 1260 { 1261 intel_pt_prep_a_sample(ptq, event, sample); 1262 1263 if (!pt->timeless_decoding) 1264 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc); 1265 1266 sample->ip = ptq->state->from_ip; 1267 sample->cpumode = intel_pt_cpumode(pt, sample->ip); 1268 sample->addr = ptq->state->to_ip; 1269 sample->period = 1; 1270 sample->flags = ptq->flags; 1271 1272 event->sample.header.misc = sample->cpumode; 1273 } 1274 1275 static int intel_pt_inject_event(union perf_event *event, 1276 struct perf_sample *sample, u64 type) 1277 { 1278 event->header.size = perf_event__sample_event_size(sample, type, 0); 1279 return perf_event__synthesize_sample(event, type, 0, sample); 1280 } 1281 1282 static inline int intel_pt_opt_inject(struct intel_pt *pt, 1283 union perf_event *event, 1284 struct perf_sample *sample, u64 type) 1285 { 1286 if (!pt->synth_opts.inject) 1287 return 0; 1288 1289 return intel_pt_inject_event(event, sample, type); 1290 } 1291 1292 static int intel_pt_deliver_synth_event(struct intel_pt *pt, 1293 union perf_event *event, 1294 struct perf_sample *sample, u64 type) 1295 { 1296 int ret; 1297 1298 ret = intel_pt_opt_inject(pt, event, sample, type); 1299 if (ret) 1300 return ret; 1301 1302 ret = perf_session__deliver_synth_event(pt->session, event, sample); 1303 if (ret) 1304 pr_err("Intel PT: failed to deliver event, error %d\n", ret); 1305 1306 return ret; 1307 } 1308 1309 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq) 1310 { 1311 struct intel_pt *pt = ptq->pt; 1312 union perf_event *event = ptq->event_buf; 1313 struct perf_sample sample = { .ip = 0, }; 1314 struct dummy_branch_stack { 1315 u64 nr; 1316 u64 hw_idx; 1317 struct branch_entry entries; 1318 } dummy_bs; 1319 1320 if (pt->branches_filter && !(pt->branches_filter & ptq->flags)) 1321 return 0; 1322 1323 if (intel_pt_skip_event(pt)) 1324 return 0; 1325 1326 intel_pt_prep_b_sample(pt, ptq, event, &sample); 1327 1328 sample.id = ptq->pt->branches_id; 1329 sample.stream_id = ptq->pt->branches_id; 1330 1331 /* 1332 * perf report cannot handle events without a branch stack when using 1333 * SORT_MODE__BRANCH so make a dummy one. 1334 */ 1335 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) { 1336 dummy_bs = (struct dummy_branch_stack){ 1337 .nr = 1, 1338 .hw_idx = -1ULL, 1339 .entries = { 1340 .from = sample.ip, 1341 .to = sample.addr, 1342 }, 1343 }; 1344 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1345 } 1346 1347 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt; 1348 if (sample.cyc_cnt) { 1349 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt; 1350 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt; 1351 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt; 1352 } 1353 1354 return intel_pt_deliver_synth_event(pt, event, &sample, 1355 pt->branches_sample_type); 1356 } 1357 1358 static void intel_pt_prep_sample(struct intel_pt *pt, 1359 struct intel_pt_queue *ptq, 1360 union perf_event *event, 1361 struct perf_sample *sample) 1362 { 1363 intel_pt_prep_b_sample(pt, ptq, event, sample); 1364 1365 if (pt->synth_opts.callchain) { 1366 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 1367 pt->synth_opts.callchain_sz + 1, 1368 sample->ip, pt->kernel_start); 1369 sample->callchain = ptq->chain; 1370 } 1371 1372 if (pt->synth_opts.last_branch) { 1373 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch, 1374 pt->br_stack_sz); 1375 sample->branch_stack = ptq->last_branch; 1376 } 1377 } 1378 1379 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq) 1380 { 1381 struct intel_pt *pt = ptq->pt; 1382 union perf_event *event = ptq->event_buf; 1383 struct perf_sample sample = { .ip = 0, }; 1384 1385 if (intel_pt_skip_event(pt)) 1386 return 0; 1387 1388 intel_pt_prep_sample(pt, ptq, event, &sample); 1389 1390 sample.id = ptq->pt->instructions_id; 1391 sample.stream_id = ptq->pt->instructions_id; 1392 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt; 1393 1394 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt; 1395 if (sample.cyc_cnt) { 1396 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt; 1397 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt; 1398 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt; 1399 } 1400 1401 ptq->last_insn_cnt = ptq->state->tot_insn_cnt; 1402 1403 return intel_pt_deliver_synth_event(pt, event, &sample, 1404 pt->instructions_sample_type); 1405 } 1406 1407 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq) 1408 { 1409 struct intel_pt *pt = ptq->pt; 1410 union perf_event *event = ptq->event_buf; 1411 struct perf_sample sample = { .ip = 0, }; 1412 1413 if (intel_pt_skip_event(pt)) 1414 return 0; 1415 1416 intel_pt_prep_sample(pt, ptq, event, &sample); 1417 1418 sample.id = ptq->pt->transactions_id; 1419 sample.stream_id = ptq->pt->transactions_id; 1420 1421 return intel_pt_deliver_synth_event(pt, event, &sample, 1422 pt->transactions_sample_type); 1423 } 1424 1425 static void intel_pt_prep_p_sample(struct intel_pt *pt, 1426 struct intel_pt_queue *ptq, 1427 union perf_event *event, 1428 struct perf_sample *sample) 1429 { 1430 intel_pt_prep_sample(pt, ptq, event, sample); 1431 1432 /* 1433 * Zero IP is used to mean "trace start" but that is not the case for 1434 * power or PTWRITE events with no IP, so clear the flags. 1435 */ 1436 if (!sample->ip) 1437 sample->flags = 0; 1438 } 1439 1440 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq) 1441 { 1442 struct intel_pt *pt = ptq->pt; 1443 union perf_event *event = ptq->event_buf; 1444 struct perf_sample sample = { .ip = 0, }; 1445 struct perf_synth_intel_ptwrite raw; 1446 1447 if (intel_pt_skip_event(pt)) 1448 return 0; 1449 1450 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1451 1452 sample.id = ptq->pt->ptwrites_id; 1453 sample.stream_id = ptq->pt->ptwrites_id; 1454 1455 raw.flags = 0; 1456 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1457 raw.payload = cpu_to_le64(ptq->state->ptw_payload); 1458 1459 sample.raw_size = perf_synth__raw_size(raw); 1460 sample.raw_data = perf_synth__raw_data(&raw); 1461 1462 return intel_pt_deliver_synth_event(pt, event, &sample, 1463 pt->ptwrites_sample_type); 1464 } 1465 1466 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq) 1467 { 1468 struct intel_pt *pt = ptq->pt; 1469 union perf_event *event = ptq->event_buf; 1470 struct perf_sample sample = { .ip = 0, }; 1471 struct perf_synth_intel_cbr raw; 1472 u32 flags; 1473 1474 if (intel_pt_skip_cbr_event(pt)) 1475 return 0; 1476 1477 ptq->cbr_seen = ptq->state->cbr; 1478 1479 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1480 1481 sample.id = ptq->pt->cbr_id; 1482 sample.stream_id = ptq->pt->cbr_id; 1483 1484 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16); 1485 raw.flags = cpu_to_le32(flags); 1486 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz); 1487 raw.reserved3 = 0; 1488 1489 sample.raw_size = perf_synth__raw_size(raw); 1490 sample.raw_data = perf_synth__raw_data(&raw); 1491 1492 return intel_pt_deliver_synth_event(pt, event, &sample, 1493 pt->pwr_events_sample_type); 1494 } 1495 1496 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq) 1497 { 1498 struct intel_pt *pt = ptq->pt; 1499 union perf_event *event = ptq->event_buf; 1500 struct perf_sample sample = { .ip = 0, }; 1501 struct perf_synth_intel_mwait raw; 1502 1503 if (intel_pt_skip_event(pt)) 1504 return 0; 1505 1506 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1507 1508 sample.id = ptq->pt->mwait_id; 1509 sample.stream_id = ptq->pt->mwait_id; 1510 1511 raw.reserved = 0; 1512 raw.payload = cpu_to_le64(ptq->state->mwait_payload); 1513 1514 sample.raw_size = perf_synth__raw_size(raw); 1515 sample.raw_data = perf_synth__raw_data(&raw); 1516 1517 return intel_pt_deliver_synth_event(pt, event, &sample, 1518 pt->pwr_events_sample_type); 1519 } 1520 1521 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq) 1522 { 1523 struct intel_pt *pt = ptq->pt; 1524 union perf_event *event = ptq->event_buf; 1525 struct perf_sample sample = { .ip = 0, }; 1526 struct perf_synth_intel_pwre raw; 1527 1528 if (intel_pt_skip_event(pt)) 1529 return 0; 1530 1531 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1532 1533 sample.id = ptq->pt->pwre_id; 1534 sample.stream_id = ptq->pt->pwre_id; 1535 1536 raw.reserved = 0; 1537 raw.payload = cpu_to_le64(ptq->state->pwre_payload); 1538 1539 sample.raw_size = perf_synth__raw_size(raw); 1540 sample.raw_data = perf_synth__raw_data(&raw); 1541 1542 return intel_pt_deliver_synth_event(pt, event, &sample, 1543 pt->pwr_events_sample_type); 1544 } 1545 1546 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq) 1547 { 1548 struct intel_pt *pt = ptq->pt; 1549 union perf_event *event = ptq->event_buf; 1550 struct perf_sample sample = { .ip = 0, }; 1551 struct perf_synth_intel_exstop raw; 1552 1553 if (intel_pt_skip_event(pt)) 1554 return 0; 1555 1556 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1557 1558 sample.id = ptq->pt->exstop_id; 1559 sample.stream_id = ptq->pt->exstop_id; 1560 1561 raw.flags = 0; 1562 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1563 1564 sample.raw_size = perf_synth__raw_size(raw); 1565 sample.raw_data = perf_synth__raw_data(&raw); 1566 1567 return intel_pt_deliver_synth_event(pt, event, &sample, 1568 pt->pwr_events_sample_type); 1569 } 1570 1571 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq) 1572 { 1573 struct intel_pt *pt = ptq->pt; 1574 union perf_event *event = ptq->event_buf; 1575 struct perf_sample sample = { .ip = 0, }; 1576 struct perf_synth_intel_pwrx raw; 1577 1578 if (intel_pt_skip_event(pt)) 1579 return 0; 1580 1581 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1582 1583 sample.id = ptq->pt->pwrx_id; 1584 sample.stream_id = ptq->pt->pwrx_id; 1585 1586 raw.reserved = 0; 1587 raw.payload = cpu_to_le64(ptq->state->pwrx_payload); 1588 1589 sample.raw_size = perf_synth__raw_size(raw); 1590 sample.raw_data = perf_synth__raw_data(&raw); 1591 1592 return intel_pt_deliver_synth_event(pt, event, &sample, 1593 pt->pwr_events_sample_type); 1594 } 1595 1596 /* 1597 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer 1598 * intel_pt_add_gp_regs(). 1599 */ 1600 static const int pebs_gp_regs[] = { 1601 [PERF_REG_X86_FLAGS] = 1, 1602 [PERF_REG_X86_IP] = 2, 1603 [PERF_REG_X86_AX] = 3, 1604 [PERF_REG_X86_CX] = 4, 1605 [PERF_REG_X86_DX] = 5, 1606 [PERF_REG_X86_BX] = 6, 1607 [PERF_REG_X86_SP] = 7, 1608 [PERF_REG_X86_BP] = 8, 1609 [PERF_REG_X86_SI] = 9, 1610 [PERF_REG_X86_DI] = 10, 1611 [PERF_REG_X86_R8] = 11, 1612 [PERF_REG_X86_R9] = 12, 1613 [PERF_REG_X86_R10] = 13, 1614 [PERF_REG_X86_R11] = 14, 1615 [PERF_REG_X86_R12] = 15, 1616 [PERF_REG_X86_R13] = 16, 1617 [PERF_REG_X86_R14] = 17, 1618 [PERF_REG_X86_R15] = 18, 1619 }; 1620 1621 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos, 1622 const struct intel_pt_blk_items *items, 1623 u64 regs_mask) 1624 { 1625 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS]; 1626 u32 mask = items->mask[INTEL_PT_GP_REGS_POS]; 1627 u32 bit; 1628 int i; 1629 1630 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) { 1631 /* Get the PEBS gp_regs array index */ 1632 int n = pebs_gp_regs[i] - 1; 1633 1634 if (n < 0) 1635 continue; 1636 /* 1637 * Add only registers that were requested (i.e. 'regs_mask') and 1638 * that were provided (i.e. 'mask'), and update the resulting 1639 * mask (i.e. 'intr_regs->mask') accordingly. 1640 */ 1641 if (mask & 1 << n && regs_mask & bit) { 1642 intr_regs->mask |= bit; 1643 *pos++ = gp_regs[n]; 1644 } 1645 } 1646 1647 return pos; 1648 } 1649 1650 #ifndef PERF_REG_X86_XMM0 1651 #define PERF_REG_X86_XMM0 32 1652 #endif 1653 1654 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos, 1655 const struct intel_pt_blk_items *items, 1656 u64 regs_mask) 1657 { 1658 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0); 1659 const u64 *xmm = items->xmm; 1660 1661 /* 1662 * If there are any XMM registers, then there should be all of them. 1663 * Nevertheless, follow the logic to add only registers that were 1664 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'), 1665 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly. 1666 */ 1667 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0; 1668 1669 for (; mask; mask >>= 1, xmm++) { 1670 if (mask & 1) 1671 *pos++ = *xmm; 1672 } 1673 } 1674 1675 #define LBR_INFO_MISPRED (1ULL << 63) 1676 #define LBR_INFO_IN_TX (1ULL << 62) 1677 #define LBR_INFO_ABORT (1ULL << 61) 1678 #define LBR_INFO_CYCLES 0xffff 1679 1680 /* Refer kernel's intel_pmu_store_pebs_lbrs() */ 1681 static u64 intel_pt_lbr_flags(u64 info) 1682 { 1683 union { 1684 struct branch_flags flags; 1685 u64 result; 1686 } u; 1687 1688 u.result = 0; 1689 u.flags.mispred = !!(info & LBR_INFO_MISPRED); 1690 u.flags.predicted = !(info & LBR_INFO_MISPRED); 1691 u.flags.in_tx = !!(info & LBR_INFO_IN_TX); 1692 u.flags.abort = !!(info & LBR_INFO_ABORT); 1693 u.flags.cycles = info & LBR_INFO_CYCLES; 1694 1695 return u.result; 1696 } 1697 1698 static void intel_pt_add_lbrs(struct branch_stack *br_stack, 1699 const struct intel_pt_blk_items *items) 1700 { 1701 u64 *to; 1702 int i; 1703 1704 br_stack->nr = 0; 1705 1706 to = &br_stack->entries[0].from; 1707 1708 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) { 1709 u32 mask = items->mask[i]; 1710 const u64 *from = items->val[i]; 1711 1712 for (; mask; mask >>= 3, from += 3) { 1713 if ((mask & 7) == 7) { 1714 *to++ = from[0]; 1715 *to++ = from[1]; 1716 *to++ = intel_pt_lbr_flags(from[2]); 1717 br_stack->nr += 1; 1718 } 1719 } 1720 } 1721 } 1722 1723 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */ 1724 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3) 1725 1726 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq) 1727 { 1728 const struct intel_pt_blk_items *items = &ptq->state->items; 1729 struct perf_sample sample = { .ip = 0, }; 1730 union perf_event *event = ptq->event_buf; 1731 struct intel_pt *pt = ptq->pt; 1732 struct evsel *evsel = pt->pebs_evsel; 1733 u64 sample_type = evsel->core.attr.sample_type; 1734 u64 id = evsel->core.id[0]; 1735 u8 cpumode; 1736 1737 if (intel_pt_skip_event(pt)) 1738 return 0; 1739 1740 intel_pt_prep_a_sample(ptq, event, &sample); 1741 1742 sample.id = id; 1743 sample.stream_id = id; 1744 1745 if (!evsel->core.attr.freq) 1746 sample.period = evsel->core.attr.sample_period; 1747 1748 /* No support for non-zero CS base */ 1749 if (items->has_ip) 1750 sample.ip = items->ip; 1751 else if (items->has_rip) 1752 sample.ip = items->rip; 1753 else 1754 sample.ip = ptq->state->from_ip; 1755 1756 /* No support for guest mode at this time */ 1757 cpumode = sample.ip < ptq->pt->kernel_start ? 1758 PERF_RECORD_MISC_USER : 1759 PERF_RECORD_MISC_KERNEL; 1760 1761 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP; 1762 1763 sample.cpumode = cpumode; 1764 1765 if (sample_type & PERF_SAMPLE_TIME) { 1766 u64 timestamp = 0; 1767 1768 if (items->has_timestamp) 1769 timestamp = items->timestamp; 1770 else if (!pt->timeless_decoding) 1771 timestamp = ptq->timestamp; 1772 if (timestamp) 1773 sample.time = tsc_to_perf_time(timestamp, &pt->tc); 1774 } 1775 1776 if (sample_type & PERF_SAMPLE_CALLCHAIN && 1777 pt->synth_opts.callchain) { 1778 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 1779 pt->synth_opts.callchain_sz, sample.ip, 1780 pt->kernel_start); 1781 sample.callchain = ptq->chain; 1782 } 1783 1784 if (sample_type & PERF_SAMPLE_REGS_INTR && 1785 items->mask[INTEL_PT_GP_REGS_POS]) { 1786 u64 regs[sizeof(sample.intr_regs.mask)]; 1787 u64 regs_mask = evsel->core.attr.sample_regs_intr; 1788 u64 *pos; 1789 1790 sample.intr_regs.abi = items->is_32_bit ? 1791 PERF_SAMPLE_REGS_ABI_32 : 1792 PERF_SAMPLE_REGS_ABI_64; 1793 sample.intr_regs.regs = regs; 1794 1795 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask); 1796 1797 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask); 1798 } 1799 1800 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 1801 struct { 1802 struct branch_stack br_stack; 1803 struct branch_entry entries[LBRS_MAX]; 1804 } br; 1805 1806 if (items->mask[INTEL_PT_LBR_0_POS] || 1807 items->mask[INTEL_PT_LBR_1_POS] || 1808 items->mask[INTEL_PT_LBR_2_POS]) { 1809 intel_pt_add_lbrs(&br.br_stack, items); 1810 sample.branch_stack = &br.br_stack; 1811 } else if (pt->synth_opts.last_branch) { 1812 thread_stack__br_sample(ptq->thread, ptq->cpu, 1813 ptq->last_branch, 1814 pt->br_stack_sz); 1815 sample.branch_stack = ptq->last_branch; 1816 } else { 1817 br.br_stack.nr = 0; 1818 sample.branch_stack = &br.br_stack; 1819 } 1820 } 1821 1822 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address) 1823 sample.addr = items->mem_access_address; 1824 1825 if (sample_type & PERF_SAMPLE_WEIGHT) { 1826 /* 1827 * Refer kernel's setup_pebs_adaptive_sample_data() and 1828 * intel_hsw_weight(). 1829 */ 1830 if (items->has_mem_access_latency) 1831 sample.weight = items->mem_access_latency; 1832 if (!sample.weight && items->has_tsx_aux_info) { 1833 /* Cycles last block */ 1834 sample.weight = (u32)items->tsx_aux_info; 1835 } 1836 } 1837 1838 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) { 1839 u64 ax = items->has_rax ? items->rax : 0; 1840 /* Refer kernel's intel_hsw_transaction() */ 1841 u64 txn = (u8)(items->tsx_aux_info >> 32); 1842 1843 /* For RTM XABORTs also log the abort code from AX */ 1844 if (txn & PERF_TXN_TRANSACTION && ax & 1) 1845 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 1846 sample.transaction = txn; 1847 } 1848 1849 return intel_pt_deliver_synth_event(pt, event, &sample, sample_type); 1850 } 1851 1852 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu, 1853 pid_t pid, pid_t tid, u64 ip, u64 timestamp) 1854 { 1855 union perf_event event; 1856 char msg[MAX_AUXTRACE_ERROR_MSG]; 1857 int err; 1858 1859 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG); 1860 1861 auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE, 1862 code, cpu, pid, tid, ip, msg, timestamp); 1863 1864 err = perf_session__deliver_synth_event(pt->session, &event, NULL); 1865 if (err) 1866 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n", 1867 err); 1868 1869 return err; 1870 } 1871 1872 static int intel_ptq_synth_error(struct intel_pt_queue *ptq, 1873 const struct intel_pt_state *state) 1874 { 1875 struct intel_pt *pt = ptq->pt; 1876 u64 tm = ptq->timestamp; 1877 1878 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc); 1879 1880 return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid, 1881 ptq->tid, state->from_ip, tm); 1882 } 1883 1884 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq) 1885 { 1886 struct auxtrace_queue *queue; 1887 pid_t tid = ptq->next_tid; 1888 int err; 1889 1890 if (tid == -1) 1891 return 0; 1892 1893 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid); 1894 1895 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid); 1896 1897 queue = &pt->queues.queue_array[ptq->queue_nr]; 1898 intel_pt_set_pid_tid_cpu(pt, queue); 1899 1900 ptq->next_tid = -1; 1901 1902 return err; 1903 } 1904 1905 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip) 1906 { 1907 struct intel_pt *pt = ptq->pt; 1908 1909 return ip == pt->switch_ip && 1910 (ptq->flags & PERF_IP_FLAG_BRANCH) && 1911 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC | 1912 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT)); 1913 } 1914 1915 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \ 1916 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT) 1917 1918 static int intel_pt_sample(struct intel_pt_queue *ptq) 1919 { 1920 const struct intel_pt_state *state = ptq->state; 1921 struct intel_pt *pt = ptq->pt; 1922 int err; 1923 1924 if (!ptq->have_sample) 1925 return 0; 1926 1927 ptq->have_sample = false; 1928 1929 if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) { 1930 /* 1931 * Cycle count and instruction count only go together to create 1932 * a valid IPC ratio when the cycle count changes. 1933 */ 1934 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt; 1935 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt; 1936 } 1937 1938 /* 1939 * Do PEBS first to allow for the possibility that the PEBS timestamp 1940 * precedes the current timestamp. 1941 */ 1942 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) { 1943 err = intel_pt_synth_pebs_sample(ptq); 1944 if (err) 1945 return err; 1946 } 1947 1948 if (pt->sample_pwr_events) { 1949 if (ptq->state->cbr != ptq->cbr_seen) { 1950 err = intel_pt_synth_cbr_sample(ptq); 1951 if (err) 1952 return err; 1953 } 1954 if (state->type & INTEL_PT_PWR_EVT) { 1955 if (state->type & INTEL_PT_MWAIT_OP) { 1956 err = intel_pt_synth_mwait_sample(ptq); 1957 if (err) 1958 return err; 1959 } 1960 if (state->type & INTEL_PT_PWR_ENTRY) { 1961 err = intel_pt_synth_pwre_sample(ptq); 1962 if (err) 1963 return err; 1964 } 1965 if (state->type & INTEL_PT_EX_STOP) { 1966 err = intel_pt_synth_exstop_sample(ptq); 1967 if (err) 1968 return err; 1969 } 1970 if (state->type & INTEL_PT_PWR_EXIT) { 1971 err = intel_pt_synth_pwrx_sample(ptq); 1972 if (err) 1973 return err; 1974 } 1975 } 1976 } 1977 1978 if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) { 1979 err = intel_pt_synth_instruction_sample(ptq); 1980 if (err) 1981 return err; 1982 } 1983 1984 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) { 1985 err = intel_pt_synth_transaction_sample(ptq); 1986 if (err) 1987 return err; 1988 } 1989 1990 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) { 1991 err = intel_pt_synth_ptwrite_sample(ptq); 1992 if (err) 1993 return err; 1994 } 1995 1996 if (!(state->type & INTEL_PT_BRANCH)) 1997 return 0; 1998 1999 if (pt->use_thread_stack) { 2000 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, 2001 state->from_ip, state->to_ip, ptq->insn_len, 2002 state->trace_nr, pt->callstack, 2003 pt->br_stack_sz_plus, 2004 pt->mispred_all); 2005 } else { 2006 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr); 2007 } 2008 2009 if (pt->sample_branches) { 2010 err = intel_pt_synth_branch_sample(ptq); 2011 if (err) 2012 return err; 2013 } 2014 2015 if (!ptq->sync_switch) 2016 return 0; 2017 2018 if (intel_pt_is_switch_ip(ptq, state->to_ip)) { 2019 switch (ptq->switch_state) { 2020 case INTEL_PT_SS_NOT_TRACING: 2021 case INTEL_PT_SS_UNKNOWN: 2022 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2023 err = intel_pt_next_tid(pt, ptq); 2024 if (err) 2025 return err; 2026 ptq->switch_state = INTEL_PT_SS_TRACING; 2027 break; 2028 default: 2029 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT; 2030 return 1; 2031 } 2032 } else if (!state->to_ip) { 2033 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2034 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) { 2035 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2036 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2037 state->to_ip == pt->ptss_ip && 2038 (ptq->flags & PERF_IP_FLAG_CALL)) { 2039 ptq->switch_state = INTEL_PT_SS_TRACING; 2040 } 2041 2042 return 0; 2043 } 2044 2045 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip) 2046 { 2047 struct machine *machine = pt->machine; 2048 struct map *map; 2049 struct symbol *sym, *start; 2050 u64 ip, switch_ip = 0; 2051 const char *ptss; 2052 2053 if (ptss_ip) 2054 *ptss_ip = 0; 2055 2056 map = machine__kernel_map(machine); 2057 if (!map) 2058 return 0; 2059 2060 if (map__load(map)) 2061 return 0; 2062 2063 start = dso__first_symbol(map->dso); 2064 2065 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2066 if (sym->binding == STB_GLOBAL && 2067 !strcmp(sym->name, "__switch_to")) { 2068 ip = map->unmap_ip(map, sym->start); 2069 if (ip >= map->start && ip < map->end) { 2070 switch_ip = ip; 2071 break; 2072 } 2073 } 2074 } 2075 2076 if (!switch_ip || !ptss_ip) 2077 return 0; 2078 2079 if (pt->have_sched_switch == 1) 2080 ptss = "perf_trace_sched_switch"; 2081 else 2082 ptss = "__perf_event_task_sched_out"; 2083 2084 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2085 if (!strcmp(sym->name, ptss)) { 2086 ip = map->unmap_ip(map, sym->start); 2087 if (ip >= map->start && ip < map->end) { 2088 *ptss_ip = ip; 2089 break; 2090 } 2091 } 2092 } 2093 2094 return switch_ip; 2095 } 2096 2097 static void intel_pt_enable_sync_switch(struct intel_pt *pt) 2098 { 2099 unsigned int i; 2100 2101 pt->sync_switch = true; 2102 2103 for (i = 0; i < pt->queues.nr_queues; i++) { 2104 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2105 struct intel_pt_queue *ptq = queue->priv; 2106 2107 if (ptq) 2108 ptq->sync_switch = true; 2109 } 2110 } 2111 2112 /* 2113 * To filter against time ranges, it is only necessary to look at the next start 2114 * or end time. 2115 */ 2116 static bool intel_pt_next_time(struct intel_pt_queue *ptq) 2117 { 2118 struct intel_pt *pt = ptq->pt; 2119 2120 if (ptq->sel_start) { 2121 /* Next time is an end time */ 2122 ptq->sel_start = false; 2123 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end; 2124 return true; 2125 } else if (ptq->sel_idx + 1 < pt->range_cnt) { 2126 /* Next time is a start time */ 2127 ptq->sel_start = true; 2128 ptq->sel_idx += 1; 2129 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start; 2130 return true; 2131 } 2132 2133 /* No next time */ 2134 return false; 2135 } 2136 2137 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp) 2138 { 2139 int err; 2140 2141 while (1) { 2142 if (ptq->sel_start) { 2143 if (ptq->timestamp >= ptq->sel_timestamp) { 2144 /* After start time, so consider next time */ 2145 intel_pt_next_time(ptq); 2146 if (!ptq->sel_timestamp) { 2147 /* No end time */ 2148 return 0; 2149 } 2150 /* Check against end time */ 2151 continue; 2152 } 2153 /* Before start time, so fast forward */ 2154 ptq->have_sample = false; 2155 if (ptq->sel_timestamp > *ff_timestamp) { 2156 if (ptq->sync_switch) { 2157 intel_pt_next_tid(ptq->pt, ptq); 2158 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2159 } 2160 *ff_timestamp = ptq->sel_timestamp; 2161 err = intel_pt_fast_forward(ptq->decoder, 2162 ptq->sel_timestamp); 2163 if (err) 2164 return err; 2165 } 2166 return 0; 2167 } else if (ptq->timestamp > ptq->sel_timestamp) { 2168 /* After end time, so consider next time */ 2169 if (!intel_pt_next_time(ptq)) { 2170 /* No next time range, so stop decoding */ 2171 ptq->have_sample = false; 2172 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2173 return 1; 2174 } 2175 /* Check against next start time */ 2176 continue; 2177 } else { 2178 /* Before end time */ 2179 return 0; 2180 } 2181 } 2182 } 2183 2184 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp) 2185 { 2186 const struct intel_pt_state *state = ptq->state; 2187 struct intel_pt *pt = ptq->pt; 2188 u64 ff_timestamp = 0; 2189 int err; 2190 2191 if (!pt->kernel_start) { 2192 pt->kernel_start = machine__kernel_start(pt->machine); 2193 if (pt->per_cpu_mmaps && 2194 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) && 2195 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) && 2196 !pt->sampling_mode) { 2197 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip); 2198 if (pt->switch_ip) { 2199 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n", 2200 pt->switch_ip, pt->ptss_ip); 2201 intel_pt_enable_sync_switch(pt); 2202 } 2203 } 2204 } 2205 2206 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 2207 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2208 while (1) { 2209 err = intel_pt_sample(ptq); 2210 if (err) 2211 return err; 2212 2213 state = intel_pt_decode(ptq->decoder); 2214 if (state->err) { 2215 if (state->err == INTEL_PT_ERR_NODATA) 2216 return 1; 2217 if (ptq->sync_switch && 2218 state->from_ip >= pt->kernel_start) { 2219 ptq->sync_switch = false; 2220 intel_pt_next_tid(pt, ptq); 2221 } 2222 if (pt->synth_opts.errors) { 2223 err = intel_ptq_synth_error(ptq, state); 2224 if (err) 2225 return err; 2226 } 2227 continue; 2228 } 2229 2230 ptq->state = state; 2231 ptq->have_sample = true; 2232 intel_pt_sample_flags(ptq); 2233 2234 /* Use estimated TSC upon return to user space */ 2235 if (pt->est_tsc && 2236 (state->from_ip >= pt->kernel_start || !state->from_ip) && 2237 state->to_ip && state->to_ip < pt->kernel_start) { 2238 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2239 state->timestamp, state->est_timestamp); 2240 ptq->timestamp = state->est_timestamp; 2241 /* Use estimated TSC in unknown switch state */ 2242 } else if (ptq->sync_switch && 2243 ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2244 intel_pt_is_switch_ip(ptq, state->to_ip) && 2245 ptq->next_tid == -1) { 2246 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2247 state->timestamp, state->est_timestamp); 2248 ptq->timestamp = state->est_timestamp; 2249 } else if (state->timestamp > ptq->timestamp) { 2250 ptq->timestamp = state->timestamp; 2251 } 2252 2253 if (ptq->sel_timestamp) { 2254 err = intel_pt_time_filter(ptq, &ff_timestamp); 2255 if (err) 2256 return err; 2257 } 2258 2259 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) { 2260 *timestamp = ptq->timestamp; 2261 return 0; 2262 } 2263 } 2264 return 0; 2265 } 2266 2267 static inline int intel_pt_update_queues(struct intel_pt *pt) 2268 { 2269 if (pt->queues.new_data) { 2270 pt->queues.new_data = false; 2271 return intel_pt_setup_queues(pt); 2272 } 2273 return 0; 2274 } 2275 2276 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp) 2277 { 2278 unsigned int queue_nr; 2279 u64 ts; 2280 int ret; 2281 2282 while (1) { 2283 struct auxtrace_queue *queue; 2284 struct intel_pt_queue *ptq; 2285 2286 if (!pt->heap.heap_cnt) 2287 return 0; 2288 2289 if (pt->heap.heap_array[0].ordinal >= timestamp) 2290 return 0; 2291 2292 queue_nr = pt->heap.heap_array[0].queue_nr; 2293 queue = &pt->queues.queue_array[queue_nr]; 2294 ptq = queue->priv; 2295 2296 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n", 2297 queue_nr, pt->heap.heap_array[0].ordinal, 2298 timestamp); 2299 2300 auxtrace_heap__pop(&pt->heap); 2301 2302 if (pt->heap.heap_cnt) { 2303 ts = pt->heap.heap_array[0].ordinal + 1; 2304 if (ts > timestamp) 2305 ts = timestamp; 2306 } else { 2307 ts = timestamp; 2308 } 2309 2310 intel_pt_set_pid_tid_cpu(pt, queue); 2311 2312 ret = intel_pt_run_decoder(ptq, &ts); 2313 2314 if (ret < 0) { 2315 auxtrace_heap__add(&pt->heap, queue_nr, ts); 2316 return ret; 2317 } 2318 2319 if (!ret) { 2320 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts); 2321 if (ret < 0) 2322 return ret; 2323 } else { 2324 ptq->on_heap = false; 2325 } 2326 } 2327 2328 return 0; 2329 } 2330 2331 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid, 2332 u64 time_) 2333 { 2334 struct auxtrace_queues *queues = &pt->queues; 2335 unsigned int i; 2336 u64 ts = 0; 2337 2338 for (i = 0; i < queues->nr_queues; i++) { 2339 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2340 struct intel_pt_queue *ptq = queue->priv; 2341 2342 if (ptq && (tid == -1 || ptq->tid == tid)) { 2343 ptq->time = time_; 2344 intel_pt_set_pid_tid_cpu(pt, queue); 2345 intel_pt_run_decoder(ptq, &ts); 2346 } 2347 } 2348 return 0; 2349 } 2350 2351 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq, 2352 struct auxtrace_queue *queue, 2353 struct perf_sample *sample) 2354 { 2355 struct machine *m = ptq->pt->machine; 2356 2357 ptq->pid = sample->pid; 2358 ptq->tid = sample->tid; 2359 ptq->cpu = queue->cpu; 2360 2361 intel_pt_log("queue %u cpu %d pid %d tid %d\n", 2362 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2363 2364 thread__zput(ptq->thread); 2365 2366 if (ptq->tid == -1) 2367 return; 2368 2369 if (ptq->pid == -1) { 2370 ptq->thread = machine__find_thread(m, -1, ptq->tid); 2371 if (ptq->thread) 2372 ptq->pid = ptq->thread->pid_; 2373 return; 2374 } 2375 2376 ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid); 2377 } 2378 2379 static int intel_pt_process_timeless_sample(struct intel_pt *pt, 2380 struct perf_sample *sample) 2381 { 2382 struct auxtrace_queue *queue; 2383 struct intel_pt_queue *ptq; 2384 u64 ts = 0; 2385 2386 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session); 2387 if (!queue) 2388 return -EINVAL; 2389 2390 ptq = queue->priv; 2391 if (!ptq) 2392 return 0; 2393 2394 ptq->stop = false; 2395 ptq->time = sample->time; 2396 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample); 2397 intel_pt_run_decoder(ptq, &ts); 2398 return 0; 2399 } 2400 2401 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample) 2402 { 2403 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu, 2404 sample->pid, sample->tid, 0, sample->time); 2405 } 2406 2407 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu) 2408 { 2409 unsigned i, j; 2410 2411 if (cpu < 0 || !pt->queues.nr_queues) 2412 return NULL; 2413 2414 if ((unsigned)cpu >= pt->queues.nr_queues) 2415 i = pt->queues.nr_queues - 1; 2416 else 2417 i = cpu; 2418 2419 if (pt->queues.queue_array[i].cpu == cpu) 2420 return pt->queues.queue_array[i].priv; 2421 2422 for (j = 0; i > 0; j++) { 2423 if (pt->queues.queue_array[--i].cpu == cpu) 2424 return pt->queues.queue_array[i].priv; 2425 } 2426 2427 for (; j < pt->queues.nr_queues; j++) { 2428 if (pt->queues.queue_array[j].cpu == cpu) 2429 return pt->queues.queue_array[j].priv; 2430 } 2431 2432 return NULL; 2433 } 2434 2435 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid, 2436 u64 timestamp) 2437 { 2438 struct intel_pt_queue *ptq; 2439 int err; 2440 2441 if (!pt->sync_switch) 2442 return 1; 2443 2444 ptq = intel_pt_cpu_to_ptq(pt, cpu); 2445 if (!ptq || !ptq->sync_switch) 2446 return 1; 2447 2448 switch (ptq->switch_state) { 2449 case INTEL_PT_SS_NOT_TRACING: 2450 break; 2451 case INTEL_PT_SS_UNKNOWN: 2452 case INTEL_PT_SS_TRACING: 2453 ptq->next_tid = tid; 2454 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP; 2455 return 0; 2456 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 2457 if (!ptq->on_heap) { 2458 ptq->timestamp = perf_time_to_tsc(timestamp, 2459 &pt->tc); 2460 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr, 2461 ptq->timestamp); 2462 if (err) 2463 return err; 2464 ptq->on_heap = true; 2465 } 2466 ptq->switch_state = INTEL_PT_SS_TRACING; 2467 break; 2468 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2469 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu); 2470 break; 2471 default: 2472 break; 2473 } 2474 2475 ptq->next_tid = -1; 2476 2477 return 1; 2478 } 2479 2480 static int intel_pt_process_switch(struct intel_pt *pt, 2481 struct perf_sample *sample) 2482 { 2483 struct evsel *evsel; 2484 pid_t tid; 2485 int cpu, ret; 2486 2487 evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id); 2488 if (evsel != pt->switch_evsel) 2489 return 0; 2490 2491 tid = perf_evsel__intval(evsel, sample, "next_pid"); 2492 cpu = sample->cpu; 2493 2494 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 2495 cpu, tid, sample->time, perf_time_to_tsc(sample->time, 2496 &pt->tc)); 2497 2498 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 2499 if (ret <= 0) 2500 return ret; 2501 2502 return machine__set_current_tid(pt->machine, cpu, -1, tid); 2503 } 2504 2505 static int intel_pt_context_switch_in(struct intel_pt *pt, 2506 struct perf_sample *sample) 2507 { 2508 pid_t pid = sample->pid; 2509 pid_t tid = sample->tid; 2510 int cpu = sample->cpu; 2511 2512 if (pt->sync_switch) { 2513 struct intel_pt_queue *ptq; 2514 2515 ptq = intel_pt_cpu_to_ptq(pt, cpu); 2516 if (ptq && ptq->sync_switch) { 2517 ptq->next_tid = -1; 2518 switch (ptq->switch_state) { 2519 case INTEL_PT_SS_NOT_TRACING: 2520 case INTEL_PT_SS_UNKNOWN: 2521 case INTEL_PT_SS_TRACING: 2522 break; 2523 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 2524 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2525 ptq->switch_state = INTEL_PT_SS_TRACING; 2526 break; 2527 default: 2528 break; 2529 } 2530 } 2531 } 2532 2533 /* 2534 * If the current tid has not been updated yet, ensure it is now that 2535 * a "switch in" event has occurred. 2536 */ 2537 if (machine__get_current_tid(pt->machine, cpu) == tid) 2538 return 0; 2539 2540 return machine__set_current_tid(pt->machine, cpu, pid, tid); 2541 } 2542 2543 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event, 2544 struct perf_sample *sample) 2545 { 2546 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 2547 pid_t pid, tid; 2548 int cpu, ret; 2549 2550 cpu = sample->cpu; 2551 2552 if (pt->have_sched_switch == 3) { 2553 if (!out) 2554 return intel_pt_context_switch_in(pt, sample); 2555 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) { 2556 pr_err("Expecting CPU-wide context switch event\n"); 2557 return -EINVAL; 2558 } 2559 pid = event->context_switch.next_prev_pid; 2560 tid = event->context_switch.next_prev_tid; 2561 } else { 2562 if (out) 2563 return 0; 2564 pid = sample->pid; 2565 tid = sample->tid; 2566 } 2567 2568 if (tid == -1) { 2569 pr_err("context_switch event has no tid\n"); 2570 return -EINVAL; 2571 } 2572 2573 intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 2574 cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time, 2575 &pt->tc)); 2576 2577 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 2578 if (ret <= 0) 2579 return ret; 2580 2581 return machine__set_current_tid(pt->machine, cpu, pid, tid); 2582 } 2583 2584 static int intel_pt_process_itrace_start(struct intel_pt *pt, 2585 union perf_event *event, 2586 struct perf_sample *sample) 2587 { 2588 if (!pt->per_cpu_mmaps) 2589 return 0; 2590 2591 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 2592 sample->cpu, event->itrace_start.pid, 2593 event->itrace_start.tid, sample->time, 2594 perf_time_to_tsc(sample->time, &pt->tc)); 2595 2596 return machine__set_current_tid(pt->machine, sample->cpu, 2597 event->itrace_start.pid, 2598 event->itrace_start.tid); 2599 } 2600 2601 static int intel_pt_process_event(struct perf_session *session, 2602 union perf_event *event, 2603 struct perf_sample *sample, 2604 struct perf_tool *tool) 2605 { 2606 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2607 auxtrace); 2608 u64 timestamp; 2609 int err = 0; 2610 2611 if (dump_trace) 2612 return 0; 2613 2614 if (!tool->ordered_events) { 2615 pr_err("Intel Processor Trace requires ordered events\n"); 2616 return -EINVAL; 2617 } 2618 2619 if (sample->time && sample->time != (u64)-1) 2620 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 2621 else 2622 timestamp = 0; 2623 2624 if (timestamp || pt->timeless_decoding) { 2625 err = intel_pt_update_queues(pt); 2626 if (err) 2627 return err; 2628 } 2629 2630 if (pt->timeless_decoding) { 2631 if (pt->sampling_mode) { 2632 if (sample->aux_sample.size) 2633 err = intel_pt_process_timeless_sample(pt, 2634 sample); 2635 } else if (event->header.type == PERF_RECORD_EXIT) { 2636 err = intel_pt_process_timeless_queues(pt, 2637 event->fork.tid, 2638 sample->time); 2639 } 2640 } else if (timestamp) { 2641 err = intel_pt_process_queues(pt, timestamp); 2642 } 2643 if (err) 2644 return err; 2645 2646 if (event->header.type == PERF_RECORD_SAMPLE) { 2647 if (pt->synth_opts.add_callchain && !sample->callchain) 2648 intel_pt_add_callchain(pt, sample); 2649 if (pt->synth_opts.add_last_branch && !sample->branch_stack) 2650 intel_pt_add_br_stack(pt, sample); 2651 } 2652 2653 if (event->header.type == PERF_RECORD_AUX && 2654 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) && 2655 pt->synth_opts.errors) { 2656 err = intel_pt_lost(pt, sample); 2657 if (err) 2658 return err; 2659 } 2660 2661 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE) 2662 err = intel_pt_process_switch(pt, sample); 2663 else if (event->header.type == PERF_RECORD_ITRACE_START) 2664 err = intel_pt_process_itrace_start(pt, event, sample); 2665 else if (event->header.type == PERF_RECORD_SWITCH || 2666 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 2667 err = intel_pt_context_switch(pt, event, sample); 2668 2669 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ", 2670 event->header.type, sample->cpu, sample->time, timestamp); 2671 intel_pt_log_event(event); 2672 2673 return err; 2674 } 2675 2676 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool) 2677 { 2678 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2679 auxtrace); 2680 int ret; 2681 2682 if (dump_trace) 2683 return 0; 2684 2685 if (!tool->ordered_events) 2686 return -EINVAL; 2687 2688 ret = intel_pt_update_queues(pt); 2689 if (ret < 0) 2690 return ret; 2691 2692 if (pt->timeless_decoding) 2693 return intel_pt_process_timeless_queues(pt, -1, 2694 MAX_TIMESTAMP - 1); 2695 2696 return intel_pt_process_queues(pt, MAX_TIMESTAMP); 2697 } 2698 2699 static void intel_pt_free_events(struct perf_session *session) 2700 { 2701 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2702 auxtrace); 2703 struct auxtrace_queues *queues = &pt->queues; 2704 unsigned int i; 2705 2706 for (i = 0; i < queues->nr_queues; i++) { 2707 intel_pt_free_queue(queues->queue_array[i].priv); 2708 queues->queue_array[i].priv = NULL; 2709 } 2710 intel_pt_log_disable(); 2711 auxtrace_queues__free(queues); 2712 } 2713 2714 static void intel_pt_free(struct perf_session *session) 2715 { 2716 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2717 auxtrace); 2718 2719 auxtrace_heap__free(&pt->heap); 2720 intel_pt_free_events(session); 2721 session->auxtrace = NULL; 2722 thread__put(pt->unknown_thread); 2723 addr_filters__exit(&pt->filts); 2724 zfree(&pt->chain); 2725 zfree(&pt->filter); 2726 zfree(&pt->time_ranges); 2727 free(pt); 2728 } 2729 2730 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session, 2731 struct evsel *evsel) 2732 { 2733 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2734 auxtrace); 2735 2736 return evsel->core.attr.type == pt->pmu_type; 2737 } 2738 2739 static int intel_pt_process_auxtrace_event(struct perf_session *session, 2740 union perf_event *event, 2741 struct perf_tool *tool __maybe_unused) 2742 { 2743 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2744 auxtrace); 2745 2746 if (!pt->data_queued) { 2747 struct auxtrace_buffer *buffer; 2748 off_t data_offset; 2749 int fd = perf_data__fd(session->data); 2750 int err; 2751 2752 if (perf_data__is_pipe(session->data)) { 2753 data_offset = 0; 2754 } else { 2755 data_offset = lseek(fd, 0, SEEK_CUR); 2756 if (data_offset == -1) 2757 return -errno; 2758 } 2759 2760 err = auxtrace_queues__add_event(&pt->queues, session, event, 2761 data_offset, &buffer); 2762 if (err) 2763 return err; 2764 2765 /* Dump here now we have copied a piped trace out of the pipe */ 2766 if (dump_trace) { 2767 if (auxtrace_buffer__get_data(buffer, fd)) { 2768 intel_pt_dump_event(pt, buffer->data, 2769 buffer->size); 2770 auxtrace_buffer__put_data(buffer); 2771 } 2772 } 2773 } 2774 2775 return 0; 2776 } 2777 2778 static int intel_pt_queue_data(struct perf_session *session, 2779 struct perf_sample *sample, 2780 union perf_event *event, u64 data_offset) 2781 { 2782 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2783 auxtrace); 2784 u64 timestamp; 2785 2786 if (event) { 2787 return auxtrace_queues__add_event(&pt->queues, session, event, 2788 data_offset, NULL); 2789 } 2790 2791 if (sample->time && sample->time != (u64)-1) 2792 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 2793 else 2794 timestamp = 0; 2795 2796 return auxtrace_queues__add_sample(&pt->queues, session, sample, 2797 data_offset, timestamp); 2798 } 2799 2800 struct intel_pt_synth { 2801 struct perf_tool dummy_tool; 2802 struct perf_session *session; 2803 }; 2804 2805 static int intel_pt_event_synth(struct perf_tool *tool, 2806 union perf_event *event, 2807 struct perf_sample *sample __maybe_unused, 2808 struct machine *machine __maybe_unused) 2809 { 2810 struct intel_pt_synth *intel_pt_synth = 2811 container_of(tool, struct intel_pt_synth, dummy_tool); 2812 2813 return perf_session__deliver_synth_event(intel_pt_synth->session, event, 2814 NULL); 2815 } 2816 2817 static int intel_pt_synth_event(struct perf_session *session, const char *name, 2818 struct perf_event_attr *attr, u64 id) 2819 { 2820 struct intel_pt_synth intel_pt_synth; 2821 int err; 2822 2823 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n", 2824 name, id, (u64)attr->sample_type); 2825 2826 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth)); 2827 intel_pt_synth.session = session; 2828 2829 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1, 2830 &id, intel_pt_event_synth); 2831 if (err) 2832 pr_err("%s: failed to synthesize '%s' event type\n", 2833 __func__, name); 2834 2835 return err; 2836 } 2837 2838 static void intel_pt_set_event_name(struct evlist *evlist, u64 id, 2839 const char *name) 2840 { 2841 struct evsel *evsel; 2842 2843 evlist__for_each_entry(evlist, evsel) { 2844 if (evsel->core.id && evsel->core.id[0] == id) { 2845 if (evsel->name) 2846 zfree(&evsel->name); 2847 evsel->name = strdup(name); 2848 break; 2849 } 2850 } 2851 } 2852 2853 static struct evsel *intel_pt_evsel(struct intel_pt *pt, 2854 struct evlist *evlist) 2855 { 2856 struct evsel *evsel; 2857 2858 evlist__for_each_entry(evlist, evsel) { 2859 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids) 2860 return evsel; 2861 } 2862 2863 return NULL; 2864 } 2865 2866 static int intel_pt_synth_events(struct intel_pt *pt, 2867 struct perf_session *session) 2868 { 2869 struct evlist *evlist = session->evlist; 2870 struct evsel *evsel = intel_pt_evsel(pt, evlist); 2871 struct perf_event_attr attr; 2872 u64 id; 2873 int err; 2874 2875 if (!evsel) { 2876 pr_debug("There are no selected events with Intel Processor Trace data\n"); 2877 return 0; 2878 } 2879 2880 memset(&attr, 0, sizeof(struct perf_event_attr)); 2881 attr.size = sizeof(struct perf_event_attr); 2882 attr.type = PERF_TYPE_HARDWARE; 2883 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 2884 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 2885 PERF_SAMPLE_PERIOD; 2886 if (pt->timeless_decoding) 2887 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 2888 else 2889 attr.sample_type |= PERF_SAMPLE_TIME; 2890 if (!pt->per_cpu_mmaps) 2891 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU; 2892 attr.exclude_user = evsel->core.attr.exclude_user; 2893 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 2894 attr.exclude_hv = evsel->core.attr.exclude_hv; 2895 attr.exclude_host = evsel->core.attr.exclude_host; 2896 attr.exclude_guest = evsel->core.attr.exclude_guest; 2897 attr.sample_id_all = evsel->core.attr.sample_id_all; 2898 attr.read_format = evsel->core.attr.read_format; 2899 2900 id = evsel->core.id[0] + 1000000000; 2901 if (!id) 2902 id = 1; 2903 2904 if (pt->synth_opts.branches) { 2905 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 2906 attr.sample_period = 1; 2907 attr.sample_type |= PERF_SAMPLE_ADDR; 2908 err = intel_pt_synth_event(session, "branches", &attr, id); 2909 if (err) 2910 return err; 2911 pt->sample_branches = true; 2912 pt->branches_sample_type = attr.sample_type; 2913 pt->branches_id = id; 2914 id += 1; 2915 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 2916 } 2917 2918 if (pt->synth_opts.callchain) 2919 attr.sample_type |= PERF_SAMPLE_CALLCHAIN; 2920 if (pt->synth_opts.last_branch) 2921 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 2922 2923 if (pt->synth_opts.instructions) { 2924 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 2925 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS) 2926 attr.sample_period = 2927 intel_pt_ns_to_ticks(pt, pt->synth_opts.period); 2928 else 2929 attr.sample_period = pt->synth_opts.period; 2930 err = intel_pt_synth_event(session, "instructions", &attr, id); 2931 if (err) 2932 return err; 2933 pt->sample_instructions = true; 2934 pt->instructions_sample_type = attr.sample_type; 2935 pt->instructions_id = id; 2936 id += 1; 2937 } 2938 2939 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD; 2940 attr.sample_period = 1; 2941 2942 if (pt->synth_opts.transactions) { 2943 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 2944 err = intel_pt_synth_event(session, "transactions", &attr, id); 2945 if (err) 2946 return err; 2947 pt->sample_transactions = true; 2948 pt->transactions_sample_type = attr.sample_type; 2949 pt->transactions_id = id; 2950 intel_pt_set_event_name(evlist, id, "transactions"); 2951 id += 1; 2952 } 2953 2954 attr.type = PERF_TYPE_SYNTH; 2955 attr.sample_type |= PERF_SAMPLE_RAW; 2956 2957 if (pt->synth_opts.ptwrites) { 2958 attr.config = PERF_SYNTH_INTEL_PTWRITE; 2959 err = intel_pt_synth_event(session, "ptwrite", &attr, id); 2960 if (err) 2961 return err; 2962 pt->sample_ptwrites = true; 2963 pt->ptwrites_sample_type = attr.sample_type; 2964 pt->ptwrites_id = id; 2965 intel_pt_set_event_name(evlist, id, "ptwrite"); 2966 id += 1; 2967 } 2968 2969 if (pt->synth_opts.pwr_events) { 2970 pt->sample_pwr_events = true; 2971 pt->pwr_events_sample_type = attr.sample_type; 2972 2973 attr.config = PERF_SYNTH_INTEL_CBR; 2974 err = intel_pt_synth_event(session, "cbr", &attr, id); 2975 if (err) 2976 return err; 2977 pt->cbr_id = id; 2978 intel_pt_set_event_name(evlist, id, "cbr"); 2979 id += 1; 2980 } 2981 2982 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) { 2983 attr.config = PERF_SYNTH_INTEL_MWAIT; 2984 err = intel_pt_synth_event(session, "mwait", &attr, id); 2985 if (err) 2986 return err; 2987 pt->mwait_id = id; 2988 intel_pt_set_event_name(evlist, id, "mwait"); 2989 id += 1; 2990 2991 attr.config = PERF_SYNTH_INTEL_PWRE; 2992 err = intel_pt_synth_event(session, "pwre", &attr, id); 2993 if (err) 2994 return err; 2995 pt->pwre_id = id; 2996 intel_pt_set_event_name(evlist, id, "pwre"); 2997 id += 1; 2998 2999 attr.config = PERF_SYNTH_INTEL_EXSTOP; 3000 err = intel_pt_synth_event(session, "exstop", &attr, id); 3001 if (err) 3002 return err; 3003 pt->exstop_id = id; 3004 intel_pt_set_event_name(evlist, id, "exstop"); 3005 id += 1; 3006 3007 attr.config = PERF_SYNTH_INTEL_PWRX; 3008 err = intel_pt_synth_event(session, "pwrx", &attr, id); 3009 if (err) 3010 return err; 3011 pt->pwrx_id = id; 3012 intel_pt_set_event_name(evlist, id, "pwrx"); 3013 id += 1; 3014 } 3015 3016 return 0; 3017 } 3018 3019 static void intel_pt_setup_pebs_events(struct intel_pt *pt) 3020 { 3021 struct evsel *evsel; 3022 3023 if (!pt->synth_opts.other_events) 3024 return; 3025 3026 evlist__for_each_entry(pt->session->evlist, evsel) { 3027 if (evsel->core.attr.aux_output && evsel->core.id) { 3028 pt->sample_pebs = true; 3029 pt->pebs_evsel = evsel; 3030 return; 3031 } 3032 } 3033 } 3034 3035 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist) 3036 { 3037 struct evsel *evsel; 3038 3039 evlist__for_each_entry_reverse(evlist, evsel) { 3040 const char *name = evsel__name(evsel); 3041 3042 if (!strcmp(name, "sched:sched_switch")) 3043 return evsel; 3044 } 3045 3046 return NULL; 3047 } 3048 3049 static bool intel_pt_find_switch(struct evlist *evlist) 3050 { 3051 struct evsel *evsel; 3052 3053 evlist__for_each_entry(evlist, evsel) { 3054 if (evsel->core.attr.context_switch) 3055 return true; 3056 } 3057 3058 return false; 3059 } 3060 3061 static int intel_pt_perf_config(const char *var, const char *value, void *data) 3062 { 3063 struct intel_pt *pt = data; 3064 3065 if (!strcmp(var, "intel-pt.mispred-all")) 3066 pt->mispred_all = perf_config_bool(var, value); 3067 3068 return 0; 3069 } 3070 3071 /* Find least TSC which converts to ns or later */ 3072 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt) 3073 { 3074 u64 tsc, tm; 3075 3076 tsc = perf_time_to_tsc(ns, &pt->tc); 3077 3078 while (1) { 3079 tm = tsc_to_perf_time(tsc, &pt->tc); 3080 if (tm < ns) 3081 break; 3082 tsc -= 1; 3083 } 3084 3085 while (tm < ns) 3086 tm = tsc_to_perf_time(++tsc, &pt->tc); 3087 3088 return tsc; 3089 } 3090 3091 /* Find greatest TSC which converts to ns or earlier */ 3092 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt) 3093 { 3094 u64 tsc, tm; 3095 3096 tsc = perf_time_to_tsc(ns, &pt->tc); 3097 3098 while (1) { 3099 tm = tsc_to_perf_time(tsc, &pt->tc); 3100 if (tm > ns) 3101 break; 3102 tsc += 1; 3103 } 3104 3105 while (tm > ns) 3106 tm = tsc_to_perf_time(--tsc, &pt->tc); 3107 3108 return tsc; 3109 } 3110 3111 static int intel_pt_setup_time_ranges(struct intel_pt *pt, 3112 struct itrace_synth_opts *opts) 3113 { 3114 struct perf_time_interval *p = opts->ptime_range; 3115 int n = opts->range_num; 3116 int i; 3117 3118 if (!n || !p || pt->timeless_decoding) 3119 return 0; 3120 3121 pt->time_ranges = calloc(n, sizeof(struct range)); 3122 if (!pt->time_ranges) 3123 return -ENOMEM; 3124 3125 pt->range_cnt = n; 3126 3127 intel_pt_log("%s: %u range(s)\n", __func__, n); 3128 3129 for (i = 0; i < n; i++) { 3130 struct range *r = &pt->time_ranges[i]; 3131 u64 ts = p[i].start; 3132 u64 te = p[i].end; 3133 3134 /* 3135 * Take care to ensure the TSC range matches the perf-time range 3136 * when converted back to perf-time. 3137 */ 3138 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0; 3139 r->end = te ? intel_pt_tsc_end(te, pt) : 0; 3140 3141 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n", 3142 i, ts, te); 3143 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n", 3144 i, r->start, r->end); 3145 } 3146 3147 return 0; 3148 } 3149 3150 static const char * const intel_pt_info_fmts[] = { 3151 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n", 3152 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n", 3153 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n", 3154 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n", 3155 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n", 3156 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n", 3157 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n", 3158 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n", 3159 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n", 3160 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n", 3161 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n", 3162 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n", 3163 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n", 3164 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n", 3165 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n", 3166 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n", 3167 }; 3168 3169 static void intel_pt_print_info(__u64 *arr, int start, int finish) 3170 { 3171 int i; 3172 3173 if (!dump_trace) 3174 return; 3175 3176 for (i = start; i <= finish; i++) 3177 fprintf(stdout, intel_pt_info_fmts[i], arr[i]); 3178 } 3179 3180 static void intel_pt_print_info_str(const char *name, const char *str) 3181 { 3182 if (!dump_trace) 3183 return; 3184 3185 fprintf(stdout, " %-20s%s\n", name, str ? str : ""); 3186 } 3187 3188 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos) 3189 { 3190 return auxtrace_info->header.size >= 3191 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1)); 3192 } 3193 3194 int intel_pt_process_auxtrace_info(union perf_event *event, 3195 struct perf_session *session) 3196 { 3197 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 3198 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS; 3199 struct intel_pt *pt; 3200 void *info_end; 3201 __u64 *info; 3202 int err; 3203 3204 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) + 3205 min_sz) 3206 return -EINVAL; 3207 3208 pt = zalloc(sizeof(struct intel_pt)); 3209 if (!pt) 3210 return -ENOMEM; 3211 3212 addr_filters__init(&pt->filts); 3213 3214 err = perf_config(intel_pt_perf_config, pt); 3215 if (err) 3216 goto err_free; 3217 3218 err = auxtrace_queues__init(&pt->queues); 3219 if (err) 3220 goto err_free; 3221 3222 intel_pt_log_set_name(INTEL_PT_PMU_NAME); 3223 3224 pt->session = session; 3225 pt->machine = &session->machines.host; /* No kvm support */ 3226 pt->auxtrace_type = auxtrace_info->type; 3227 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE]; 3228 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT]; 3229 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT]; 3230 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO]; 3231 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO]; 3232 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT]; 3233 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT]; 3234 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH]; 3235 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE]; 3236 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS]; 3237 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE, 3238 INTEL_PT_PER_CPU_MMAPS); 3239 3240 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) { 3241 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT]; 3242 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS]; 3243 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N]; 3244 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D]; 3245 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT]; 3246 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT, 3247 INTEL_PT_CYC_BIT); 3248 } 3249 3250 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) { 3251 pt->max_non_turbo_ratio = 3252 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO]; 3253 intel_pt_print_info(&auxtrace_info->priv[0], 3254 INTEL_PT_MAX_NONTURBO_RATIO, 3255 INTEL_PT_MAX_NONTURBO_RATIO); 3256 } 3257 3258 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1; 3259 info_end = (void *)info + auxtrace_info->header.size; 3260 3261 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) { 3262 size_t len; 3263 3264 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN]; 3265 intel_pt_print_info(&auxtrace_info->priv[0], 3266 INTEL_PT_FILTER_STR_LEN, 3267 INTEL_PT_FILTER_STR_LEN); 3268 if (len) { 3269 const char *filter = (const char *)info; 3270 3271 len = roundup(len + 1, 8); 3272 info += len >> 3; 3273 if ((void *)info > info_end) { 3274 pr_err("%s: bad filter string length\n", __func__); 3275 err = -EINVAL; 3276 goto err_free_queues; 3277 } 3278 pt->filter = memdup(filter, len); 3279 if (!pt->filter) { 3280 err = -ENOMEM; 3281 goto err_free_queues; 3282 } 3283 if (session->header.needs_swap) 3284 mem_bswap_64(pt->filter, len); 3285 if (pt->filter[len - 1]) { 3286 pr_err("%s: filter string not null terminated\n", __func__); 3287 err = -EINVAL; 3288 goto err_free_queues; 3289 } 3290 err = addr_filters__parse_bare_filter(&pt->filts, 3291 filter); 3292 if (err) 3293 goto err_free_queues; 3294 } 3295 intel_pt_print_info_str("Filter string", pt->filter); 3296 } 3297 3298 pt->timeless_decoding = intel_pt_timeless_decoding(pt); 3299 if (pt->timeless_decoding && !pt->tc.time_mult) 3300 pt->tc.time_mult = 1; 3301 pt->have_tsc = intel_pt_have_tsc(pt); 3302 pt->sampling_mode = intel_pt_sampling_mode(pt); 3303 pt->est_tsc = !pt->timeless_decoding; 3304 3305 pt->unknown_thread = thread__new(999999999, 999999999); 3306 if (!pt->unknown_thread) { 3307 err = -ENOMEM; 3308 goto err_free_queues; 3309 } 3310 3311 /* 3312 * Since this thread will not be kept in any rbtree not in a 3313 * list, initialize its list node so that at thread__put() the 3314 * current thread lifetime assuption is kept and we don't segfault 3315 * at list_del_init(). 3316 */ 3317 INIT_LIST_HEAD(&pt->unknown_thread->node); 3318 3319 err = thread__set_comm(pt->unknown_thread, "unknown", 0); 3320 if (err) 3321 goto err_delete_thread; 3322 if (thread__init_maps(pt->unknown_thread, pt->machine)) { 3323 err = -ENOMEM; 3324 goto err_delete_thread; 3325 } 3326 3327 pt->auxtrace.process_event = intel_pt_process_event; 3328 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event; 3329 pt->auxtrace.queue_data = intel_pt_queue_data; 3330 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample; 3331 pt->auxtrace.flush_events = intel_pt_flush; 3332 pt->auxtrace.free_events = intel_pt_free_events; 3333 pt->auxtrace.free = intel_pt_free; 3334 pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace; 3335 session->auxtrace = &pt->auxtrace; 3336 3337 if (dump_trace) 3338 return 0; 3339 3340 if (pt->have_sched_switch == 1) { 3341 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist); 3342 if (!pt->switch_evsel) { 3343 pr_err("%s: missing sched_switch event\n", __func__); 3344 err = -EINVAL; 3345 goto err_delete_thread; 3346 } 3347 } else if (pt->have_sched_switch == 2 && 3348 !intel_pt_find_switch(session->evlist)) { 3349 pr_err("%s: missing context_switch attribute flag\n", __func__); 3350 err = -EINVAL; 3351 goto err_delete_thread; 3352 } 3353 3354 if (session->itrace_synth_opts->set) { 3355 pt->synth_opts = *session->itrace_synth_opts; 3356 } else { 3357 itrace_synth_opts__set_default(&pt->synth_opts, 3358 session->itrace_synth_opts->default_no_sample); 3359 if (!session->itrace_synth_opts->default_no_sample && 3360 !session->itrace_synth_opts->inject) { 3361 pt->synth_opts.branches = false; 3362 pt->synth_opts.callchain = true; 3363 pt->synth_opts.add_callchain = true; 3364 } 3365 pt->synth_opts.thread_stack = 3366 session->itrace_synth_opts->thread_stack; 3367 } 3368 3369 if (pt->synth_opts.log) 3370 intel_pt_log_enable(); 3371 3372 /* Maximum non-turbo ratio is TSC freq / 100 MHz */ 3373 if (pt->tc.time_mult) { 3374 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000); 3375 3376 if (!pt->max_non_turbo_ratio) 3377 pt->max_non_turbo_ratio = 3378 (tsc_freq + 50000000) / 100000000; 3379 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq); 3380 intel_pt_log("Maximum non-turbo ratio %u\n", 3381 pt->max_non_turbo_ratio); 3382 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000; 3383 } 3384 3385 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts); 3386 if (err) 3387 goto err_delete_thread; 3388 3389 if (pt->synth_opts.calls) 3390 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC | 3391 PERF_IP_FLAG_TRACE_END; 3392 if (pt->synth_opts.returns) 3393 pt->branches_filter |= PERF_IP_FLAG_RETURN | 3394 PERF_IP_FLAG_TRACE_BEGIN; 3395 3396 if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) && 3397 !symbol_conf.use_callchain) { 3398 symbol_conf.use_callchain = true; 3399 if (callchain_register_param(&callchain_param) < 0) { 3400 symbol_conf.use_callchain = false; 3401 pt->synth_opts.callchain = false; 3402 pt->synth_opts.add_callchain = false; 3403 } 3404 } 3405 3406 if (pt->synth_opts.add_callchain) { 3407 err = intel_pt_callchain_init(pt); 3408 if (err) 3409 goto err_delete_thread; 3410 } 3411 3412 if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) { 3413 pt->br_stack_sz = pt->synth_opts.last_branch_sz; 3414 pt->br_stack_sz_plus = pt->br_stack_sz; 3415 } 3416 3417 if (pt->synth_opts.add_last_branch) { 3418 err = intel_pt_br_stack_init(pt); 3419 if (err) 3420 goto err_delete_thread; 3421 /* 3422 * Additional branch stack size to cater for tracing from the 3423 * actual sample ip to where the sample time is recorded. 3424 * Measured at about 200 branches, but generously set to 1024. 3425 * If kernel space is not being traced, then add just 1 for the 3426 * branch to kernel space. 3427 */ 3428 if (intel_pt_tracing_kernel(pt)) 3429 pt->br_stack_sz_plus += 1024; 3430 else 3431 pt->br_stack_sz_plus += 1; 3432 } 3433 3434 pt->use_thread_stack = pt->synth_opts.callchain || 3435 pt->synth_opts.add_callchain || 3436 pt->synth_opts.thread_stack || 3437 pt->synth_opts.last_branch || 3438 pt->synth_opts.add_last_branch; 3439 3440 pt->callstack = pt->synth_opts.callchain || 3441 pt->synth_opts.add_callchain || 3442 pt->synth_opts.thread_stack; 3443 3444 err = intel_pt_synth_events(pt, session); 3445 if (err) 3446 goto err_delete_thread; 3447 3448 intel_pt_setup_pebs_events(pt); 3449 3450 if (pt->sampling_mode || list_empty(&session->auxtrace_index)) 3451 err = auxtrace_queue_data(session, true, true); 3452 else 3453 err = auxtrace_queues__process_index(&pt->queues, session); 3454 if (err) 3455 goto err_delete_thread; 3456 3457 if (pt->queues.populated) 3458 pt->data_queued = true; 3459 3460 if (pt->timeless_decoding) 3461 pr_debug2("Intel PT decoding without timestamps\n"); 3462 3463 return 0; 3464 3465 err_delete_thread: 3466 zfree(&pt->chain); 3467 thread__zput(pt->unknown_thread); 3468 err_free_queues: 3469 intel_pt_log_disable(); 3470 auxtrace_queues__free(&pt->queues); 3471 session->auxtrace = NULL; 3472 err_free: 3473 addr_filters__exit(&pt->filts); 3474 zfree(&pt->filter); 3475 zfree(&pt->time_ranges); 3476 free(pt); 3477 return err; 3478 } 3479