1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pt.c: Intel Processor Trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <stdio.h> 9 #include <stdbool.h> 10 #include <errno.h> 11 #include <linux/kernel.h> 12 #include <linux/string.h> 13 #include <linux/types.h> 14 #include <linux/zalloc.h> 15 16 #include "session.h" 17 #include "machine.h" 18 #include "memswap.h" 19 #include "sort.h" 20 #include "tool.h" 21 #include "event.h" 22 #include "evlist.h" 23 #include "evsel.h" 24 #include "map.h" 25 #include "color.h" 26 #include "thread.h" 27 #include "thread-stack.h" 28 #include "symbol.h" 29 #include "callchain.h" 30 #include "dso.h" 31 #include "debug.h" 32 #include "auxtrace.h" 33 #include "tsc.h" 34 #include "intel-pt.h" 35 #include "config.h" 36 #include "util/perf_api_probe.h" 37 #include "util/synthetic-events.h" 38 #include "time-utils.h" 39 40 #include "../arch/x86/include/uapi/asm/perf_regs.h" 41 42 #include "intel-pt-decoder/intel-pt-log.h" 43 #include "intel-pt-decoder/intel-pt-decoder.h" 44 #include "intel-pt-decoder/intel-pt-insn-decoder.h" 45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h" 46 47 #define MAX_TIMESTAMP (~0ULL) 48 49 struct range { 50 u64 start; 51 u64 end; 52 }; 53 54 struct intel_pt { 55 struct auxtrace auxtrace; 56 struct auxtrace_queues queues; 57 struct auxtrace_heap heap; 58 u32 auxtrace_type; 59 struct perf_session *session; 60 struct machine *machine; 61 struct evsel *switch_evsel; 62 struct thread *unknown_thread; 63 bool timeless_decoding; 64 bool sampling_mode; 65 bool snapshot_mode; 66 bool per_cpu_mmaps; 67 bool have_tsc; 68 bool data_queued; 69 bool est_tsc; 70 bool sync_switch; 71 bool mispred_all; 72 bool use_thread_stack; 73 bool callstack; 74 unsigned int br_stack_sz; 75 unsigned int br_stack_sz_plus; 76 int have_sched_switch; 77 u32 pmu_type; 78 u64 kernel_start; 79 u64 switch_ip; 80 u64 ptss_ip; 81 82 struct perf_tsc_conversion tc; 83 bool cap_user_time_zero; 84 85 struct itrace_synth_opts synth_opts; 86 87 bool sample_instructions; 88 u64 instructions_sample_type; 89 u64 instructions_id; 90 91 bool sample_branches; 92 u32 branches_filter; 93 u64 branches_sample_type; 94 u64 branches_id; 95 96 bool sample_transactions; 97 u64 transactions_sample_type; 98 u64 transactions_id; 99 100 bool sample_ptwrites; 101 u64 ptwrites_sample_type; 102 u64 ptwrites_id; 103 104 bool sample_pwr_events; 105 u64 pwr_events_sample_type; 106 u64 mwait_id; 107 u64 pwre_id; 108 u64 exstop_id; 109 u64 pwrx_id; 110 u64 cbr_id; 111 112 bool sample_pebs; 113 struct evsel *pebs_evsel; 114 115 u64 tsc_bit; 116 u64 mtc_bit; 117 u64 mtc_freq_bits; 118 u32 tsc_ctc_ratio_n; 119 u32 tsc_ctc_ratio_d; 120 u64 cyc_bit; 121 u64 noretcomp_bit; 122 unsigned max_non_turbo_ratio; 123 unsigned cbr2khz; 124 125 unsigned long num_events; 126 127 char *filter; 128 struct addr_filters filts; 129 130 struct range *time_ranges; 131 unsigned int range_cnt; 132 133 struct ip_callchain *chain; 134 struct branch_stack *br_stack; 135 }; 136 137 enum switch_state { 138 INTEL_PT_SS_NOT_TRACING, 139 INTEL_PT_SS_UNKNOWN, 140 INTEL_PT_SS_TRACING, 141 INTEL_PT_SS_EXPECTING_SWITCH_EVENT, 142 INTEL_PT_SS_EXPECTING_SWITCH_IP, 143 }; 144 145 struct intel_pt_queue { 146 struct intel_pt *pt; 147 unsigned int queue_nr; 148 struct auxtrace_buffer *buffer; 149 struct auxtrace_buffer *old_buffer; 150 void *decoder; 151 const struct intel_pt_state *state; 152 struct ip_callchain *chain; 153 struct branch_stack *last_branch; 154 union perf_event *event_buf; 155 bool on_heap; 156 bool stop; 157 bool step_through_buffers; 158 bool use_buffer_pid_tid; 159 bool sync_switch; 160 pid_t pid, tid; 161 int cpu; 162 int switch_state; 163 pid_t next_tid; 164 struct thread *thread; 165 bool exclude_kernel; 166 bool have_sample; 167 u64 time; 168 u64 timestamp; 169 u64 sel_timestamp; 170 bool sel_start; 171 unsigned int sel_idx; 172 u32 flags; 173 u16 insn_len; 174 u64 last_insn_cnt; 175 u64 ipc_insn_cnt; 176 u64 ipc_cyc_cnt; 177 u64 last_in_insn_cnt; 178 u64 last_in_cyc_cnt; 179 u64 last_br_insn_cnt; 180 u64 last_br_cyc_cnt; 181 unsigned int cbr_seen; 182 char insn[INTEL_PT_INSN_BUF_SZ]; 183 }; 184 185 static void intel_pt_dump(struct intel_pt *pt __maybe_unused, 186 unsigned char *buf, size_t len) 187 { 188 struct intel_pt_pkt packet; 189 size_t pos = 0; 190 int ret, pkt_len, i; 191 char desc[INTEL_PT_PKT_DESC_MAX]; 192 const char *color = PERF_COLOR_BLUE; 193 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX; 194 195 color_fprintf(stdout, color, 196 ". ... Intel Processor Trace data: size %zu bytes\n", 197 len); 198 199 while (len) { 200 ret = intel_pt_get_packet(buf, len, &packet, &ctx); 201 if (ret > 0) 202 pkt_len = ret; 203 else 204 pkt_len = 1; 205 printf("."); 206 color_fprintf(stdout, color, " %08x: ", pos); 207 for (i = 0; i < pkt_len; i++) 208 color_fprintf(stdout, color, " %02x", buf[i]); 209 for (; i < 16; i++) 210 color_fprintf(stdout, color, " "); 211 if (ret > 0) { 212 ret = intel_pt_pkt_desc(&packet, desc, 213 INTEL_PT_PKT_DESC_MAX); 214 if (ret > 0) 215 color_fprintf(stdout, color, " %s\n", desc); 216 } else { 217 color_fprintf(stdout, color, " Bad packet!\n"); 218 } 219 pos += pkt_len; 220 buf += pkt_len; 221 len -= pkt_len; 222 } 223 } 224 225 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf, 226 size_t len) 227 { 228 printf(".\n"); 229 intel_pt_dump(pt, buf, len); 230 } 231 232 static void intel_pt_log_event(union perf_event *event) 233 { 234 FILE *f = intel_pt_log_fp(); 235 236 if (!intel_pt_enable_logging || !f) 237 return; 238 239 perf_event__fprintf(event, f); 240 } 241 242 static void intel_pt_dump_sample(struct perf_session *session, 243 struct perf_sample *sample) 244 { 245 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 246 auxtrace); 247 248 printf("\n"); 249 intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size); 250 } 251 252 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a, 253 struct auxtrace_buffer *b) 254 { 255 bool consecutive = false; 256 void *start; 257 258 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size, 259 pt->have_tsc, &consecutive); 260 if (!start) 261 return -EINVAL; 262 b->use_size = b->data + b->size - start; 263 b->use_data = start; 264 if (b->use_size && consecutive) 265 b->consecutive = true; 266 return 0; 267 } 268 269 static int intel_pt_get_buffer(struct intel_pt_queue *ptq, 270 struct auxtrace_buffer *buffer, 271 struct auxtrace_buffer *old_buffer, 272 struct intel_pt_buffer *b) 273 { 274 bool might_overlap; 275 276 if (!buffer->data) { 277 int fd = perf_data__fd(ptq->pt->session->data); 278 279 buffer->data = auxtrace_buffer__get_data(buffer, fd); 280 if (!buffer->data) 281 return -ENOMEM; 282 } 283 284 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode; 285 if (might_overlap && !buffer->consecutive && old_buffer && 286 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer)) 287 return -ENOMEM; 288 289 if (buffer->use_data) { 290 b->len = buffer->use_size; 291 b->buf = buffer->use_data; 292 } else { 293 b->len = buffer->size; 294 b->buf = buffer->data; 295 } 296 b->ref_timestamp = buffer->reference; 297 298 if (!old_buffer || (might_overlap && !buffer->consecutive)) { 299 b->consecutive = false; 300 b->trace_nr = buffer->buffer_nr + 1; 301 } else { 302 b->consecutive = true; 303 } 304 305 return 0; 306 } 307 308 /* Do not drop buffers with references - refer intel_pt_get_trace() */ 309 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq, 310 struct auxtrace_buffer *buffer) 311 { 312 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer) 313 return; 314 315 auxtrace_buffer__drop_data(buffer); 316 } 317 318 /* Must be serialized with respect to intel_pt_get_trace() */ 319 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb, 320 void *cb_data) 321 { 322 struct intel_pt_queue *ptq = data; 323 struct auxtrace_buffer *buffer = ptq->buffer; 324 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 325 struct auxtrace_queue *queue; 326 int err = 0; 327 328 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 329 330 while (1) { 331 struct intel_pt_buffer b = { .len = 0 }; 332 333 buffer = auxtrace_buffer__next(queue, buffer); 334 if (!buffer) 335 break; 336 337 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b); 338 if (err) 339 break; 340 341 if (b.len) { 342 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 343 old_buffer = buffer; 344 } else { 345 intel_pt_lookahead_drop_buffer(ptq, buffer); 346 continue; 347 } 348 349 err = cb(&b, cb_data); 350 if (err) 351 break; 352 } 353 354 if (buffer != old_buffer) 355 intel_pt_lookahead_drop_buffer(ptq, buffer); 356 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 357 358 return err; 359 } 360 361 /* 362 * This function assumes data is processed sequentially only. 363 * Must be serialized with respect to intel_pt_lookahead() 364 */ 365 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data) 366 { 367 struct intel_pt_queue *ptq = data; 368 struct auxtrace_buffer *buffer = ptq->buffer; 369 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 370 struct auxtrace_queue *queue; 371 int err; 372 373 if (ptq->stop) { 374 b->len = 0; 375 return 0; 376 } 377 378 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 379 380 buffer = auxtrace_buffer__next(queue, buffer); 381 if (!buffer) { 382 if (old_buffer) 383 auxtrace_buffer__drop_data(old_buffer); 384 b->len = 0; 385 return 0; 386 } 387 388 ptq->buffer = buffer; 389 390 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b); 391 if (err) 392 return err; 393 394 if (ptq->step_through_buffers) 395 ptq->stop = true; 396 397 if (b->len) { 398 if (old_buffer) 399 auxtrace_buffer__drop_data(old_buffer); 400 ptq->old_buffer = buffer; 401 } else { 402 auxtrace_buffer__drop_data(buffer); 403 return intel_pt_get_trace(b, data); 404 } 405 406 return 0; 407 } 408 409 struct intel_pt_cache_entry { 410 struct auxtrace_cache_entry entry; 411 u64 insn_cnt; 412 u64 byte_cnt; 413 enum intel_pt_insn_op op; 414 enum intel_pt_insn_branch branch; 415 int length; 416 int32_t rel; 417 char insn[INTEL_PT_INSN_BUF_SZ]; 418 }; 419 420 static int intel_pt_config_div(const char *var, const char *value, void *data) 421 { 422 int *d = data; 423 long val; 424 425 if (!strcmp(var, "intel-pt.cache-divisor")) { 426 val = strtol(value, NULL, 0); 427 if (val > 0 && val <= INT_MAX) 428 *d = val; 429 } 430 431 return 0; 432 } 433 434 static int intel_pt_cache_divisor(void) 435 { 436 static int d; 437 438 if (d) 439 return d; 440 441 perf_config(intel_pt_config_div, &d); 442 443 if (!d) 444 d = 64; 445 446 return d; 447 } 448 449 static unsigned int intel_pt_cache_size(struct dso *dso, 450 struct machine *machine) 451 { 452 off_t size; 453 454 size = dso__data_size(dso, machine); 455 size /= intel_pt_cache_divisor(); 456 if (size < 1000) 457 return 10; 458 if (size > (1 << 21)) 459 return 21; 460 return 32 - __builtin_clz(size); 461 } 462 463 static struct auxtrace_cache *intel_pt_cache(struct dso *dso, 464 struct machine *machine) 465 { 466 struct auxtrace_cache *c; 467 unsigned int bits; 468 469 if (dso->auxtrace_cache) 470 return dso->auxtrace_cache; 471 472 bits = intel_pt_cache_size(dso, machine); 473 474 /* Ignoring cache creation failure */ 475 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200); 476 477 dso->auxtrace_cache = c; 478 479 return c; 480 } 481 482 static int intel_pt_cache_add(struct dso *dso, struct machine *machine, 483 u64 offset, u64 insn_cnt, u64 byte_cnt, 484 struct intel_pt_insn *intel_pt_insn) 485 { 486 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 487 struct intel_pt_cache_entry *e; 488 int err; 489 490 if (!c) 491 return -ENOMEM; 492 493 e = auxtrace_cache__alloc_entry(c); 494 if (!e) 495 return -ENOMEM; 496 497 e->insn_cnt = insn_cnt; 498 e->byte_cnt = byte_cnt; 499 e->op = intel_pt_insn->op; 500 e->branch = intel_pt_insn->branch; 501 e->length = intel_pt_insn->length; 502 e->rel = intel_pt_insn->rel; 503 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ); 504 505 err = auxtrace_cache__add(c, offset, &e->entry); 506 if (err) 507 auxtrace_cache__free_entry(c, e); 508 509 return err; 510 } 511 512 static struct intel_pt_cache_entry * 513 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset) 514 { 515 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 516 517 if (!c) 518 return NULL; 519 520 return auxtrace_cache__lookup(dso->auxtrace_cache, offset); 521 } 522 523 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip) 524 { 525 return ip >= pt->kernel_start ? 526 PERF_RECORD_MISC_KERNEL : 527 PERF_RECORD_MISC_USER; 528 } 529 530 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn, 531 uint64_t *insn_cnt_ptr, uint64_t *ip, 532 uint64_t to_ip, uint64_t max_insn_cnt, 533 void *data) 534 { 535 struct intel_pt_queue *ptq = data; 536 struct machine *machine = ptq->pt->machine; 537 struct thread *thread; 538 struct addr_location al; 539 unsigned char buf[INTEL_PT_INSN_BUF_SZ]; 540 ssize_t len; 541 int x86_64; 542 u8 cpumode; 543 u64 offset, start_offset, start_ip; 544 u64 insn_cnt = 0; 545 bool one_map = true; 546 547 intel_pt_insn->length = 0; 548 549 if (to_ip && *ip == to_ip) 550 goto out_no_cache; 551 552 cpumode = intel_pt_cpumode(ptq->pt, *ip); 553 554 thread = ptq->thread; 555 if (!thread) { 556 if (cpumode != PERF_RECORD_MISC_KERNEL) 557 return -EINVAL; 558 thread = ptq->pt->unknown_thread; 559 } 560 561 while (1) { 562 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso) 563 return -EINVAL; 564 565 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 566 dso__data_status_seen(al.map->dso, 567 DSO_DATA_STATUS_SEEN_ITRACE)) 568 return -ENOENT; 569 570 offset = al.map->map_ip(al.map, *ip); 571 572 if (!to_ip && one_map) { 573 struct intel_pt_cache_entry *e; 574 575 e = intel_pt_cache_lookup(al.map->dso, machine, offset); 576 if (e && 577 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) { 578 *insn_cnt_ptr = e->insn_cnt; 579 *ip += e->byte_cnt; 580 intel_pt_insn->op = e->op; 581 intel_pt_insn->branch = e->branch; 582 intel_pt_insn->length = e->length; 583 intel_pt_insn->rel = e->rel; 584 memcpy(intel_pt_insn->buf, e->insn, 585 INTEL_PT_INSN_BUF_SZ); 586 intel_pt_log_insn_no_data(intel_pt_insn, *ip); 587 return 0; 588 } 589 } 590 591 start_offset = offset; 592 start_ip = *ip; 593 594 /* Load maps to ensure dso->is_64_bit has been updated */ 595 map__load(al.map); 596 597 x86_64 = al.map->dso->is_64_bit; 598 599 while (1) { 600 len = dso__data_read_offset(al.map->dso, machine, 601 offset, buf, 602 INTEL_PT_INSN_BUF_SZ); 603 if (len <= 0) 604 return -EINVAL; 605 606 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) 607 return -EINVAL; 608 609 intel_pt_log_insn(intel_pt_insn, *ip); 610 611 insn_cnt += 1; 612 613 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) 614 goto out; 615 616 if (max_insn_cnt && insn_cnt >= max_insn_cnt) 617 goto out_no_cache; 618 619 *ip += intel_pt_insn->length; 620 621 if (to_ip && *ip == to_ip) 622 goto out_no_cache; 623 624 if (*ip >= al.map->end) 625 break; 626 627 offset += intel_pt_insn->length; 628 } 629 one_map = false; 630 } 631 out: 632 *insn_cnt_ptr = insn_cnt; 633 634 if (!one_map) 635 goto out_no_cache; 636 637 /* 638 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate 639 * entries. 640 */ 641 if (to_ip) { 642 struct intel_pt_cache_entry *e; 643 644 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset); 645 if (e) 646 return 0; 647 } 648 649 /* Ignore cache errors */ 650 intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt, 651 *ip - start_ip, intel_pt_insn); 652 653 return 0; 654 655 out_no_cache: 656 *insn_cnt_ptr = insn_cnt; 657 return 0; 658 } 659 660 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip, 661 uint64_t offset, const char *filename) 662 { 663 struct addr_filter *filt; 664 bool have_filter = false; 665 bool hit_tracestop = false; 666 bool hit_filter = false; 667 668 list_for_each_entry(filt, &pt->filts.head, list) { 669 if (filt->start) 670 have_filter = true; 671 672 if ((filename && !filt->filename) || 673 (!filename && filt->filename) || 674 (filename && strcmp(filename, filt->filename))) 675 continue; 676 677 if (!(offset >= filt->addr && offset < filt->addr + filt->size)) 678 continue; 679 680 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n", 681 ip, offset, filename ? filename : "[kernel]", 682 filt->start ? "filter" : "stop", 683 filt->addr, filt->size); 684 685 if (filt->start) 686 hit_filter = true; 687 else 688 hit_tracestop = true; 689 } 690 691 if (!hit_tracestop && !hit_filter) 692 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n", 693 ip, offset, filename ? filename : "[kernel]"); 694 695 return hit_tracestop || (have_filter && !hit_filter); 696 } 697 698 static int __intel_pt_pgd_ip(uint64_t ip, void *data) 699 { 700 struct intel_pt_queue *ptq = data; 701 struct thread *thread; 702 struct addr_location al; 703 u8 cpumode; 704 u64 offset; 705 706 if (ip >= ptq->pt->kernel_start) 707 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); 708 709 cpumode = PERF_RECORD_MISC_USER; 710 711 thread = ptq->thread; 712 if (!thread) 713 return -EINVAL; 714 715 if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso) 716 return -EINVAL; 717 718 offset = al.map->map_ip(al.map, ip); 719 720 return intel_pt_match_pgd_ip(ptq->pt, ip, offset, 721 al.map->dso->long_name); 722 } 723 724 static bool intel_pt_pgd_ip(uint64_t ip, void *data) 725 { 726 return __intel_pt_pgd_ip(ip, data) > 0; 727 } 728 729 static bool intel_pt_get_config(struct intel_pt *pt, 730 struct perf_event_attr *attr, u64 *config) 731 { 732 if (attr->type == pt->pmu_type) { 733 if (config) 734 *config = attr->config; 735 return true; 736 } 737 738 return false; 739 } 740 741 static bool intel_pt_exclude_kernel(struct intel_pt *pt) 742 { 743 struct evsel *evsel; 744 745 evlist__for_each_entry(pt->session->evlist, evsel) { 746 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 747 !evsel->core.attr.exclude_kernel) 748 return false; 749 } 750 return true; 751 } 752 753 static bool intel_pt_return_compression(struct intel_pt *pt) 754 { 755 struct evsel *evsel; 756 u64 config; 757 758 if (!pt->noretcomp_bit) 759 return true; 760 761 evlist__for_each_entry(pt->session->evlist, evsel) { 762 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 763 (config & pt->noretcomp_bit)) 764 return false; 765 } 766 return true; 767 } 768 769 static bool intel_pt_branch_enable(struct intel_pt *pt) 770 { 771 struct evsel *evsel; 772 u64 config; 773 774 evlist__for_each_entry(pt->session->evlist, evsel) { 775 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 776 (config & 1) && !(config & 0x2000)) 777 return false; 778 } 779 return true; 780 } 781 782 static unsigned int intel_pt_mtc_period(struct intel_pt *pt) 783 { 784 struct evsel *evsel; 785 unsigned int shift; 786 u64 config; 787 788 if (!pt->mtc_freq_bits) 789 return 0; 790 791 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++) 792 config >>= 1; 793 794 evlist__for_each_entry(pt->session->evlist, evsel) { 795 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) 796 return (config & pt->mtc_freq_bits) >> shift; 797 } 798 return 0; 799 } 800 801 static bool intel_pt_timeless_decoding(struct intel_pt *pt) 802 { 803 struct evsel *evsel; 804 bool timeless_decoding = true; 805 u64 config; 806 807 if (!pt->tsc_bit || !pt->cap_user_time_zero) 808 return true; 809 810 evlist__for_each_entry(pt->session->evlist, evsel) { 811 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 812 return true; 813 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 814 if (config & pt->tsc_bit) 815 timeless_decoding = false; 816 else 817 return true; 818 } 819 } 820 return timeless_decoding; 821 } 822 823 static bool intel_pt_tracing_kernel(struct intel_pt *pt) 824 { 825 struct evsel *evsel; 826 827 evlist__for_each_entry(pt->session->evlist, evsel) { 828 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 829 !evsel->core.attr.exclude_kernel) 830 return true; 831 } 832 return false; 833 } 834 835 static bool intel_pt_have_tsc(struct intel_pt *pt) 836 { 837 struct evsel *evsel; 838 bool have_tsc = false; 839 u64 config; 840 841 if (!pt->tsc_bit) 842 return false; 843 844 evlist__for_each_entry(pt->session->evlist, evsel) { 845 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 846 if (config & pt->tsc_bit) 847 have_tsc = true; 848 else 849 return false; 850 } 851 } 852 return have_tsc; 853 } 854 855 static bool intel_pt_sampling_mode(struct intel_pt *pt) 856 { 857 struct evsel *evsel; 858 859 evlist__for_each_entry(pt->session->evlist, evsel) { 860 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) && 861 evsel->core.attr.aux_sample_size) 862 return true; 863 } 864 return false; 865 } 866 867 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns) 868 { 869 u64 quot, rem; 870 871 quot = ns / pt->tc.time_mult; 872 rem = ns % pt->tc.time_mult; 873 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) / 874 pt->tc.time_mult; 875 } 876 877 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt) 878 { 879 size_t sz = sizeof(struct ip_callchain); 880 881 /* Add 1 to callchain_sz for callchain context */ 882 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64); 883 return zalloc(sz); 884 } 885 886 static int intel_pt_callchain_init(struct intel_pt *pt) 887 { 888 struct evsel *evsel; 889 890 evlist__for_each_entry(pt->session->evlist, evsel) { 891 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN)) 892 evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN; 893 } 894 895 pt->chain = intel_pt_alloc_chain(pt); 896 if (!pt->chain) 897 return -ENOMEM; 898 899 return 0; 900 } 901 902 static void intel_pt_add_callchain(struct intel_pt *pt, 903 struct perf_sample *sample) 904 { 905 struct thread *thread = machine__findnew_thread(pt->machine, 906 sample->pid, 907 sample->tid); 908 909 thread_stack__sample_late(thread, sample->cpu, pt->chain, 910 pt->synth_opts.callchain_sz + 1, sample->ip, 911 pt->kernel_start); 912 913 sample->callchain = pt->chain; 914 } 915 916 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt) 917 { 918 size_t sz = sizeof(struct branch_stack); 919 920 sz += entry_cnt * sizeof(struct branch_entry); 921 return zalloc(sz); 922 } 923 924 static int intel_pt_br_stack_init(struct intel_pt *pt) 925 { 926 struct evsel *evsel; 927 928 evlist__for_each_entry(pt->session->evlist, evsel) { 929 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK)) 930 evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK; 931 } 932 933 pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz); 934 if (!pt->br_stack) 935 return -ENOMEM; 936 937 return 0; 938 } 939 940 static void intel_pt_add_br_stack(struct intel_pt *pt, 941 struct perf_sample *sample) 942 { 943 struct thread *thread = machine__findnew_thread(pt->machine, 944 sample->pid, 945 sample->tid); 946 947 thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack, 948 pt->br_stack_sz, sample->ip, 949 pt->kernel_start); 950 951 sample->branch_stack = pt->br_stack; 952 } 953 954 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */ 955 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U) 956 957 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt, 958 unsigned int queue_nr) 959 { 960 struct intel_pt_params params = { .get_trace = 0, }; 961 struct perf_env *env = pt->machine->env; 962 struct intel_pt_queue *ptq; 963 964 ptq = zalloc(sizeof(struct intel_pt_queue)); 965 if (!ptq) 966 return NULL; 967 968 if (pt->synth_opts.callchain) { 969 ptq->chain = intel_pt_alloc_chain(pt); 970 if (!ptq->chain) 971 goto out_free; 972 } 973 974 if (pt->synth_opts.last_branch || pt->synth_opts.other_events) { 975 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz); 976 977 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt); 978 if (!ptq->last_branch) 979 goto out_free; 980 } 981 982 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 983 if (!ptq->event_buf) 984 goto out_free; 985 986 ptq->pt = pt; 987 ptq->queue_nr = queue_nr; 988 ptq->exclude_kernel = intel_pt_exclude_kernel(pt); 989 ptq->pid = -1; 990 ptq->tid = -1; 991 ptq->cpu = -1; 992 ptq->next_tid = -1; 993 994 params.get_trace = intel_pt_get_trace; 995 params.walk_insn = intel_pt_walk_next_insn; 996 params.lookahead = intel_pt_lookahead; 997 params.data = ptq; 998 params.return_compression = intel_pt_return_compression(pt); 999 params.branch_enable = intel_pt_branch_enable(pt); 1000 params.max_non_turbo_ratio = pt->max_non_turbo_ratio; 1001 params.mtc_period = intel_pt_mtc_period(pt); 1002 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n; 1003 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d; 1004 1005 if (pt->filts.cnt > 0) 1006 params.pgd_ip = intel_pt_pgd_ip; 1007 1008 if (pt->synth_opts.instructions) { 1009 if (pt->synth_opts.period) { 1010 switch (pt->synth_opts.period_type) { 1011 case PERF_ITRACE_PERIOD_INSTRUCTIONS: 1012 params.period_type = 1013 INTEL_PT_PERIOD_INSTRUCTIONS; 1014 params.period = pt->synth_opts.period; 1015 break; 1016 case PERF_ITRACE_PERIOD_TICKS: 1017 params.period_type = INTEL_PT_PERIOD_TICKS; 1018 params.period = pt->synth_opts.period; 1019 break; 1020 case PERF_ITRACE_PERIOD_NANOSECS: 1021 params.period_type = INTEL_PT_PERIOD_TICKS; 1022 params.period = intel_pt_ns_to_ticks(pt, 1023 pt->synth_opts.period); 1024 break; 1025 default: 1026 break; 1027 } 1028 } 1029 1030 if (!params.period) { 1031 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS; 1032 params.period = 1; 1033 } 1034 } 1035 1036 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18)) 1037 params.flags |= INTEL_PT_FUP_WITH_NLIP; 1038 1039 ptq->decoder = intel_pt_decoder_new(¶ms); 1040 if (!ptq->decoder) 1041 goto out_free; 1042 1043 return ptq; 1044 1045 out_free: 1046 zfree(&ptq->event_buf); 1047 zfree(&ptq->last_branch); 1048 zfree(&ptq->chain); 1049 free(ptq); 1050 return NULL; 1051 } 1052 1053 static void intel_pt_free_queue(void *priv) 1054 { 1055 struct intel_pt_queue *ptq = priv; 1056 1057 if (!ptq) 1058 return; 1059 thread__zput(ptq->thread); 1060 intel_pt_decoder_free(ptq->decoder); 1061 zfree(&ptq->event_buf); 1062 zfree(&ptq->last_branch); 1063 zfree(&ptq->chain); 1064 free(ptq); 1065 } 1066 1067 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt, 1068 struct auxtrace_queue *queue) 1069 { 1070 struct intel_pt_queue *ptq = queue->priv; 1071 1072 if (queue->tid == -1 || pt->have_sched_switch) { 1073 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu); 1074 thread__zput(ptq->thread); 1075 } 1076 1077 if (!ptq->thread && ptq->tid != -1) 1078 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid); 1079 1080 if (ptq->thread) { 1081 ptq->pid = ptq->thread->pid_; 1082 if (queue->cpu == -1) 1083 ptq->cpu = ptq->thread->cpu; 1084 } 1085 } 1086 1087 static void intel_pt_sample_flags(struct intel_pt_queue *ptq) 1088 { 1089 if (ptq->state->flags & INTEL_PT_ABORT_TX) { 1090 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT; 1091 } else if (ptq->state->flags & INTEL_PT_ASYNC) { 1092 if (ptq->state->to_ip) 1093 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | 1094 PERF_IP_FLAG_ASYNC | 1095 PERF_IP_FLAG_INTERRUPT; 1096 else 1097 ptq->flags = PERF_IP_FLAG_BRANCH | 1098 PERF_IP_FLAG_TRACE_END; 1099 ptq->insn_len = 0; 1100 } else { 1101 if (ptq->state->from_ip) 1102 ptq->flags = intel_pt_insn_type(ptq->state->insn_op); 1103 else 1104 ptq->flags = PERF_IP_FLAG_BRANCH | 1105 PERF_IP_FLAG_TRACE_BEGIN; 1106 if (ptq->state->flags & INTEL_PT_IN_TX) 1107 ptq->flags |= PERF_IP_FLAG_IN_TX; 1108 ptq->insn_len = ptq->state->insn_len; 1109 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ); 1110 } 1111 1112 if (ptq->state->type & INTEL_PT_TRACE_BEGIN) 1113 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN; 1114 if (ptq->state->type & INTEL_PT_TRACE_END) 1115 ptq->flags |= PERF_IP_FLAG_TRACE_END; 1116 } 1117 1118 static void intel_pt_setup_time_range(struct intel_pt *pt, 1119 struct intel_pt_queue *ptq) 1120 { 1121 if (!pt->range_cnt) 1122 return; 1123 1124 ptq->sel_timestamp = pt->time_ranges[0].start; 1125 ptq->sel_idx = 0; 1126 1127 if (ptq->sel_timestamp) { 1128 ptq->sel_start = true; 1129 } else { 1130 ptq->sel_timestamp = pt->time_ranges[0].end; 1131 ptq->sel_start = false; 1132 } 1133 } 1134 1135 static int intel_pt_setup_queue(struct intel_pt *pt, 1136 struct auxtrace_queue *queue, 1137 unsigned int queue_nr) 1138 { 1139 struct intel_pt_queue *ptq = queue->priv; 1140 1141 if (list_empty(&queue->head)) 1142 return 0; 1143 1144 if (!ptq) { 1145 ptq = intel_pt_alloc_queue(pt, queue_nr); 1146 if (!ptq) 1147 return -ENOMEM; 1148 queue->priv = ptq; 1149 1150 if (queue->cpu != -1) 1151 ptq->cpu = queue->cpu; 1152 ptq->tid = queue->tid; 1153 1154 ptq->cbr_seen = UINT_MAX; 1155 1156 if (pt->sampling_mode && !pt->snapshot_mode && 1157 pt->timeless_decoding) 1158 ptq->step_through_buffers = true; 1159 1160 ptq->sync_switch = pt->sync_switch; 1161 1162 intel_pt_setup_time_range(pt, ptq); 1163 } 1164 1165 if (!ptq->on_heap && 1166 (!ptq->sync_switch || 1167 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) { 1168 const struct intel_pt_state *state; 1169 int ret; 1170 1171 if (pt->timeless_decoding) 1172 return 0; 1173 1174 intel_pt_log("queue %u getting timestamp\n", queue_nr); 1175 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 1176 queue_nr, ptq->cpu, ptq->pid, ptq->tid); 1177 1178 if (ptq->sel_start && ptq->sel_timestamp) { 1179 ret = intel_pt_fast_forward(ptq->decoder, 1180 ptq->sel_timestamp); 1181 if (ret) 1182 return ret; 1183 } 1184 1185 while (1) { 1186 state = intel_pt_decode(ptq->decoder); 1187 if (state->err) { 1188 if (state->err == INTEL_PT_ERR_NODATA) { 1189 intel_pt_log("queue %u has no timestamp\n", 1190 queue_nr); 1191 return 0; 1192 } 1193 continue; 1194 } 1195 if (state->timestamp) 1196 break; 1197 } 1198 1199 ptq->timestamp = state->timestamp; 1200 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n", 1201 queue_nr, ptq->timestamp); 1202 ptq->state = state; 1203 ptq->have_sample = true; 1204 if (ptq->sel_start && ptq->sel_timestamp && 1205 ptq->timestamp < ptq->sel_timestamp) 1206 ptq->have_sample = false; 1207 intel_pt_sample_flags(ptq); 1208 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp); 1209 if (ret) 1210 return ret; 1211 ptq->on_heap = true; 1212 } 1213 1214 return 0; 1215 } 1216 1217 static int intel_pt_setup_queues(struct intel_pt *pt) 1218 { 1219 unsigned int i; 1220 int ret; 1221 1222 for (i = 0; i < pt->queues.nr_queues; i++) { 1223 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i); 1224 if (ret) 1225 return ret; 1226 } 1227 return 0; 1228 } 1229 1230 static inline bool intel_pt_skip_event(struct intel_pt *pt) 1231 { 1232 return pt->synth_opts.initial_skip && 1233 pt->num_events++ < pt->synth_opts.initial_skip; 1234 } 1235 1236 /* 1237 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen. 1238 * Also ensure CBR is first non-skipped event by allowing for 4 more samples 1239 * from this decoder state. 1240 */ 1241 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt) 1242 { 1243 return pt->synth_opts.initial_skip && 1244 pt->num_events + 4 < pt->synth_opts.initial_skip; 1245 } 1246 1247 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq, 1248 union perf_event *event, 1249 struct perf_sample *sample) 1250 { 1251 event->sample.header.type = PERF_RECORD_SAMPLE; 1252 event->sample.header.size = sizeof(struct perf_event_header); 1253 1254 sample->pid = ptq->pid; 1255 sample->tid = ptq->tid; 1256 sample->cpu = ptq->cpu; 1257 sample->insn_len = ptq->insn_len; 1258 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ); 1259 } 1260 1261 static void intel_pt_prep_b_sample(struct intel_pt *pt, 1262 struct intel_pt_queue *ptq, 1263 union perf_event *event, 1264 struct perf_sample *sample) 1265 { 1266 intel_pt_prep_a_sample(ptq, event, sample); 1267 1268 if (!pt->timeless_decoding) 1269 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc); 1270 1271 sample->ip = ptq->state->from_ip; 1272 sample->cpumode = intel_pt_cpumode(pt, sample->ip); 1273 sample->addr = ptq->state->to_ip; 1274 sample->period = 1; 1275 sample->flags = ptq->flags; 1276 1277 event->sample.header.misc = sample->cpumode; 1278 } 1279 1280 static int intel_pt_inject_event(union perf_event *event, 1281 struct perf_sample *sample, u64 type) 1282 { 1283 event->header.size = perf_event__sample_event_size(sample, type, 0); 1284 return perf_event__synthesize_sample(event, type, 0, sample); 1285 } 1286 1287 static inline int intel_pt_opt_inject(struct intel_pt *pt, 1288 union perf_event *event, 1289 struct perf_sample *sample, u64 type) 1290 { 1291 if (!pt->synth_opts.inject) 1292 return 0; 1293 1294 return intel_pt_inject_event(event, sample, type); 1295 } 1296 1297 static int intel_pt_deliver_synth_event(struct intel_pt *pt, 1298 union perf_event *event, 1299 struct perf_sample *sample, u64 type) 1300 { 1301 int ret; 1302 1303 ret = intel_pt_opt_inject(pt, event, sample, type); 1304 if (ret) 1305 return ret; 1306 1307 ret = perf_session__deliver_synth_event(pt->session, event, sample); 1308 if (ret) 1309 pr_err("Intel PT: failed to deliver event, error %d\n", ret); 1310 1311 return ret; 1312 } 1313 1314 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq) 1315 { 1316 struct intel_pt *pt = ptq->pt; 1317 union perf_event *event = ptq->event_buf; 1318 struct perf_sample sample = { .ip = 0, }; 1319 struct dummy_branch_stack { 1320 u64 nr; 1321 u64 hw_idx; 1322 struct branch_entry entries; 1323 } dummy_bs; 1324 1325 if (pt->branches_filter && !(pt->branches_filter & ptq->flags)) 1326 return 0; 1327 1328 if (intel_pt_skip_event(pt)) 1329 return 0; 1330 1331 intel_pt_prep_b_sample(pt, ptq, event, &sample); 1332 1333 sample.id = ptq->pt->branches_id; 1334 sample.stream_id = ptq->pt->branches_id; 1335 1336 /* 1337 * perf report cannot handle events without a branch stack when using 1338 * SORT_MODE__BRANCH so make a dummy one. 1339 */ 1340 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) { 1341 dummy_bs = (struct dummy_branch_stack){ 1342 .nr = 1, 1343 .hw_idx = -1ULL, 1344 .entries = { 1345 .from = sample.ip, 1346 .to = sample.addr, 1347 }, 1348 }; 1349 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1350 } 1351 1352 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt; 1353 if (sample.cyc_cnt) { 1354 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt; 1355 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt; 1356 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt; 1357 } 1358 1359 return intel_pt_deliver_synth_event(pt, event, &sample, 1360 pt->branches_sample_type); 1361 } 1362 1363 static void intel_pt_prep_sample(struct intel_pt *pt, 1364 struct intel_pt_queue *ptq, 1365 union perf_event *event, 1366 struct perf_sample *sample) 1367 { 1368 intel_pt_prep_b_sample(pt, ptq, event, sample); 1369 1370 if (pt->synth_opts.callchain) { 1371 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 1372 pt->synth_opts.callchain_sz + 1, 1373 sample->ip, pt->kernel_start); 1374 sample->callchain = ptq->chain; 1375 } 1376 1377 if (pt->synth_opts.last_branch) { 1378 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch, 1379 pt->br_stack_sz); 1380 sample->branch_stack = ptq->last_branch; 1381 } 1382 } 1383 1384 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq) 1385 { 1386 struct intel_pt *pt = ptq->pt; 1387 union perf_event *event = ptq->event_buf; 1388 struct perf_sample sample = { .ip = 0, }; 1389 1390 if (intel_pt_skip_event(pt)) 1391 return 0; 1392 1393 intel_pt_prep_sample(pt, ptq, event, &sample); 1394 1395 sample.id = ptq->pt->instructions_id; 1396 sample.stream_id = ptq->pt->instructions_id; 1397 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt; 1398 1399 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt; 1400 if (sample.cyc_cnt) { 1401 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt; 1402 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt; 1403 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt; 1404 } 1405 1406 ptq->last_insn_cnt = ptq->state->tot_insn_cnt; 1407 1408 return intel_pt_deliver_synth_event(pt, event, &sample, 1409 pt->instructions_sample_type); 1410 } 1411 1412 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq) 1413 { 1414 struct intel_pt *pt = ptq->pt; 1415 union perf_event *event = ptq->event_buf; 1416 struct perf_sample sample = { .ip = 0, }; 1417 1418 if (intel_pt_skip_event(pt)) 1419 return 0; 1420 1421 intel_pt_prep_sample(pt, ptq, event, &sample); 1422 1423 sample.id = ptq->pt->transactions_id; 1424 sample.stream_id = ptq->pt->transactions_id; 1425 1426 return intel_pt_deliver_synth_event(pt, event, &sample, 1427 pt->transactions_sample_type); 1428 } 1429 1430 static void intel_pt_prep_p_sample(struct intel_pt *pt, 1431 struct intel_pt_queue *ptq, 1432 union perf_event *event, 1433 struct perf_sample *sample) 1434 { 1435 intel_pt_prep_sample(pt, ptq, event, sample); 1436 1437 /* 1438 * Zero IP is used to mean "trace start" but that is not the case for 1439 * power or PTWRITE events with no IP, so clear the flags. 1440 */ 1441 if (!sample->ip) 1442 sample->flags = 0; 1443 } 1444 1445 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq) 1446 { 1447 struct intel_pt *pt = ptq->pt; 1448 union perf_event *event = ptq->event_buf; 1449 struct perf_sample sample = { .ip = 0, }; 1450 struct perf_synth_intel_ptwrite raw; 1451 1452 if (intel_pt_skip_event(pt)) 1453 return 0; 1454 1455 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1456 1457 sample.id = ptq->pt->ptwrites_id; 1458 sample.stream_id = ptq->pt->ptwrites_id; 1459 1460 raw.flags = 0; 1461 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1462 raw.payload = cpu_to_le64(ptq->state->ptw_payload); 1463 1464 sample.raw_size = perf_synth__raw_size(raw); 1465 sample.raw_data = perf_synth__raw_data(&raw); 1466 1467 return intel_pt_deliver_synth_event(pt, event, &sample, 1468 pt->ptwrites_sample_type); 1469 } 1470 1471 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq) 1472 { 1473 struct intel_pt *pt = ptq->pt; 1474 union perf_event *event = ptq->event_buf; 1475 struct perf_sample sample = { .ip = 0, }; 1476 struct perf_synth_intel_cbr raw; 1477 u32 flags; 1478 1479 if (intel_pt_skip_cbr_event(pt)) 1480 return 0; 1481 1482 ptq->cbr_seen = ptq->state->cbr; 1483 1484 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1485 1486 sample.id = ptq->pt->cbr_id; 1487 sample.stream_id = ptq->pt->cbr_id; 1488 1489 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16); 1490 raw.flags = cpu_to_le32(flags); 1491 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz); 1492 raw.reserved3 = 0; 1493 1494 sample.raw_size = perf_synth__raw_size(raw); 1495 sample.raw_data = perf_synth__raw_data(&raw); 1496 1497 return intel_pt_deliver_synth_event(pt, event, &sample, 1498 pt->pwr_events_sample_type); 1499 } 1500 1501 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq) 1502 { 1503 struct intel_pt *pt = ptq->pt; 1504 union perf_event *event = ptq->event_buf; 1505 struct perf_sample sample = { .ip = 0, }; 1506 struct perf_synth_intel_mwait raw; 1507 1508 if (intel_pt_skip_event(pt)) 1509 return 0; 1510 1511 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1512 1513 sample.id = ptq->pt->mwait_id; 1514 sample.stream_id = ptq->pt->mwait_id; 1515 1516 raw.reserved = 0; 1517 raw.payload = cpu_to_le64(ptq->state->mwait_payload); 1518 1519 sample.raw_size = perf_synth__raw_size(raw); 1520 sample.raw_data = perf_synth__raw_data(&raw); 1521 1522 return intel_pt_deliver_synth_event(pt, event, &sample, 1523 pt->pwr_events_sample_type); 1524 } 1525 1526 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq) 1527 { 1528 struct intel_pt *pt = ptq->pt; 1529 union perf_event *event = ptq->event_buf; 1530 struct perf_sample sample = { .ip = 0, }; 1531 struct perf_synth_intel_pwre raw; 1532 1533 if (intel_pt_skip_event(pt)) 1534 return 0; 1535 1536 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1537 1538 sample.id = ptq->pt->pwre_id; 1539 sample.stream_id = ptq->pt->pwre_id; 1540 1541 raw.reserved = 0; 1542 raw.payload = cpu_to_le64(ptq->state->pwre_payload); 1543 1544 sample.raw_size = perf_synth__raw_size(raw); 1545 sample.raw_data = perf_synth__raw_data(&raw); 1546 1547 return intel_pt_deliver_synth_event(pt, event, &sample, 1548 pt->pwr_events_sample_type); 1549 } 1550 1551 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq) 1552 { 1553 struct intel_pt *pt = ptq->pt; 1554 union perf_event *event = ptq->event_buf; 1555 struct perf_sample sample = { .ip = 0, }; 1556 struct perf_synth_intel_exstop raw; 1557 1558 if (intel_pt_skip_event(pt)) 1559 return 0; 1560 1561 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1562 1563 sample.id = ptq->pt->exstop_id; 1564 sample.stream_id = ptq->pt->exstop_id; 1565 1566 raw.flags = 0; 1567 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1568 1569 sample.raw_size = perf_synth__raw_size(raw); 1570 sample.raw_data = perf_synth__raw_data(&raw); 1571 1572 return intel_pt_deliver_synth_event(pt, event, &sample, 1573 pt->pwr_events_sample_type); 1574 } 1575 1576 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq) 1577 { 1578 struct intel_pt *pt = ptq->pt; 1579 union perf_event *event = ptq->event_buf; 1580 struct perf_sample sample = { .ip = 0, }; 1581 struct perf_synth_intel_pwrx raw; 1582 1583 if (intel_pt_skip_event(pt)) 1584 return 0; 1585 1586 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1587 1588 sample.id = ptq->pt->pwrx_id; 1589 sample.stream_id = ptq->pt->pwrx_id; 1590 1591 raw.reserved = 0; 1592 raw.payload = cpu_to_le64(ptq->state->pwrx_payload); 1593 1594 sample.raw_size = perf_synth__raw_size(raw); 1595 sample.raw_data = perf_synth__raw_data(&raw); 1596 1597 return intel_pt_deliver_synth_event(pt, event, &sample, 1598 pt->pwr_events_sample_type); 1599 } 1600 1601 /* 1602 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer 1603 * intel_pt_add_gp_regs(). 1604 */ 1605 static const int pebs_gp_regs[] = { 1606 [PERF_REG_X86_FLAGS] = 1, 1607 [PERF_REG_X86_IP] = 2, 1608 [PERF_REG_X86_AX] = 3, 1609 [PERF_REG_X86_CX] = 4, 1610 [PERF_REG_X86_DX] = 5, 1611 [PERF_REG_X86_BX] = 6, 1612 [PERF_REG_X86_SP] = 7, 1613 [PERF_REG_X86_BP] = 8, 1614 [PERF_REG_X86_SI] = 9, 1615 [PERF_REG_X86_DI] = 10, 1616 [PERF_REG_X86_R8] = 11, 1617 [PERF_REG_X86_R9] = 12, 1618 [PERF_REG_X86_R10] = 13, 1619 [PERF_REG_X86_R11] = 14, 1620 [PERF_REG_X86_R12] = 15, 1621 [PERF_REG_X86_R13] = 16, 1622 [PERF_REG_X86_R14] = 17, 1623 [PERF_REG_X86_R15] = 18, 1624 }; 1625 1626 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos, 1627 const struct intel_pt_blk_items *items, 1628 u64 regs_mask) 1629 { 1630 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS]; 1631 u32 mask = items->mask[INTEL_PT_GP_REGS_POS]; 1632 u32 bit; 1633 int i; 1634 1635 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) { 1636 /* Get the PEBS gp_regs array index */ 1637 int n = pebs_gp_regs[i] - 1; 1638 1639 if (n < 0) 1640 continue; 1641 /* 1642 * Add only registers that were requested (i.e. 'regs_mask') and 1643 * that were provided (i.e. 'mask'), and update the resulting 1644 * mask (i.e. 'intr_regs->mask') accordingly. 1645 */ 1646 if (mask & 1 << n && regs_mask & bit) { 1647 intr_regs->mask |= bit; 1648 *pos++ = gp_regs[n]; 1649 } 1650 } 1651 1652 return pos; 1653 } 1654 1655 #ifndef PERF_REG_X86_XMM0 1656 #define PERF_REG_X86_XMM0 32 1657 #endif 1658 1659 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos, 1660 const struct intel_pt_blk_items *items, 1661 u64 regs_mask) 1662 { 1663 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0); 1664 const u64 *xmm = items->xmm; 1665 1666 /* 1667 * If there are any XMM registers, then there should be all of them. 1668 * Nevertheless, follow the logic to add only registers that were 1669 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'), 1670 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly. 1671 */ 1672 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0; 1673 1674 for (; mask; mask >>= 1, xmm++) { 1675 if (mask & 1) 1676 *pos++ = *xmm; 1677 } 1678 } 1679 1680 #define LBR_INFO_MISPRED (1ULL << 63) 1681 #define LBR_INFO_IN_TX (1ULL << 62) 1682 #define LBR_INFO_ABORT (1ULL << 61) 1683 #define LBR_INFO_CYCLES 0xffff 1684 1685 /* Refer kernel's intel_pmu_store_pebs_lbrs() */ 1686 static u64 intel_pt_lbr_flags(u64 info) 1687 { 1688 union { 1689 struct branch_flags flags; 1690 u64 result; 1691 } u; 1692 1693 u.result = 0; 1694 u.flags.mispred = !!(info & LBR_INFO_MISPRED); 1695 u.flags.predicted = !(info & LBR_INFO_MISPRED); 1696 u.flags.in_tx = !!(info & LBR_INFO_IN_TX); 1697 u.flags.abort = !!(info & LBR_INFO_ABORT); 1698 u.flags.cycles = info & LBR_INFO_CYCLES; 1699 1700 return u.result; 1701 } 1702 1703 static void intel_pt_add_lbrs(struct branch_stack *br_stack, 1704 const struct intel_pt_blk_items *items) 1705 { 1706 u64 *to; 1707 int i; 1708 1709 br_stack->nr = 0; 1710 1711 to = &br_stack->entries[0].from; 1712 1713 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) { 1714 u32 mask = items->mask[i]; 1715 const u64 *from = items->val[i]; 1716 1717 for (; mask; mask >>= 3, from += 3) { 1718 if ((mask & 7) == 7) { 1719 *to++ = from[0]; 1720 *to++ = from[1]; 1721 *to++ = intel_pt_lbr_flags(from[2]); 1722 br_stack->nr += 1; 1723 } 1724 } 1725 } 1726 } 1727 1728 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq) 1729 { 1730 const struct intel_pt_blk_items *items = &ptq->state->items; 1731 struct perf_sample sample = { .ip = 0, }; 1732 union perf_event *event = ptq->event_buf; 1733 struct intel_pt *pt = ptq->pt; 1734 struct evsel *evsel = pt->pebs_evsel; 1735 u64 sample_type = evsel->core.attr.sample_type; 1736 u64 id = evsel->core.id[0]; 1737 u8 cpumode; 1738 u64 regs[8 * sizeof(sample.intr_regs.mask)]; 1739 1740 if (intel_pt_skip_event(pt)) 1741 return 0; 1742 1743 intel_pt_prep_a_sample(ptq, event, &sample); 1744 1745 sample.id = id; 1746 sample.stream_id = id; 1747 1748 if (!evsel->core.attr.freq) 1749 sample.period = evsel->core.attr.sample_period; 1750 1751 /* No support for non-zero CS base */ 1752 if (items->has_ip) 1753 sample.ip = items->ip; 1754 else if (items->has_rip) 1755 sample.ip = items->rip; 1756 else 1757 sample.ip = ptq->state->from_ip; 1758 1759 /* No support for guest mode at this time */ 1760 cpumode = sample.ip < ptq->pt->kernel_start ? 1761 PERF_RECORD_MISC_USER : 1762 PERF_RECORD_MISC_KERNEL; 1763 1764 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP; 1765 1766 sample.cpumode = cpumode; 1767 1768 if (sample_type & PERF_SAMPLE_TIME) { 1769 u64 timestamp = 0; 1770 1771 if (items->has_timestamp) 1772 timestamp = items->timestamp; 1773 else if (!pt->timeless_decoding) 1774 timestamp = ptq->timestamp; 1775 if (timestamp) 1776 sample.time = tsc_to_perf_time(timestamp, &pt->tc); 1777 } 1778 1779 if (sample_type & PERF_SAMPLE_CALLCHAIN && 1780 pt->synth_opts.callchain) { 1781 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 1782 pt->synth_opts.callchain_sz, sample.ip, 1783 pt->kernel_start); 1784 sample.callchain = ptq->chain; 1785 } 1786 1787 if (sample_type & PERF_SAMPLE_REGS_INTR && 1788 (items->mask[INTEL_PT_GP_REGS_POS] || 1789 items->mask[INTEL_PT_XMM_POS])) { 1790 u64 regs_mask = evsel->core.attr.sample_regs_intr; 1791 u64 *pos; 1792 1793 sample.intr_regs.abi = items->is_32_bit ? 1794 PERF_SAMPLE_REGS_ABI_32 : 1795 PERF_SAMPLE_REGS_ABI_64; 1796 sample.intr_regs.regs = regs; 1797 1798 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask); 1799 1800 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask); 1801 } 1802 1803 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 1804 if (items->mask[INTEL_PT_LBR_0_POS] || 1805 items->mask[INTEL_PT_LBR_1_POS] || 1806 items->mask[INTEL_PT_LBR_2_POS]) { 1807 intel_pt_add_lbrs(ptq->last_branch, items); 1808 } else if (pt->synth_opts.last_branch) { 1809 thread_stack__br_sample(ptq->thread, ptq->cpu, 1810 ptq->last_branch, 1811 pt->br_stack_sz); 1812 } else { 1813 ptq->last_branch->nr = 0; 1814 } 1815 sample.branch_stack = ptq->last_branch; 1816 } 1817 1818 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address) 1819 sample.addr = items->mem_access_address; 1820 1821 if (sample_type & PERF_SAMPLE_WEIGHT) { 1822 /* 1823 * Refer kernel's setup_pebs_adaptive_sample_data() and 1824 * intel_hsw_weight(). 1825 */ 1826 if (items->has_mem_access_latency) 1827 sample.weight = items->mem_access_latency; 1828 if (!sample.weight && items->has_tsx_aux_info) { 1829 /* Cycles last block */ 1830 sample.weight = (u32)items->tsx_aux_info; 1831 } 1832 } 1833 1834 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) { 1835 u64 ax = items->has_rax ? items->rax : 0; 1836 /* Refer kernel's intel_hsw_transaction() */ 1837 u64 txn = (u8)(items->tsx_aux_info >> 32); 1838 1839 /* For RTM XABORTs also log the abort code from AX */ 1840 if (txn & PERF_TXN_TRANSACTION && ax & 1) 1841 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 1842 sample.transaction = txn; 1843 } 1844 1845 return intel_pt_deliver_synth_event(pt, event, &sample, sample_type); 1846 } 1847 1848 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu, 1849 pid_t pid, pid_t tid, u64 ip, u64 timestamp) 1850 { 1851 union perf_event event; 1852 char msg[MAX_AUXTRACE_ERROR_MSG]; 1853 int err; 1854 1855 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG); 1856 1857 auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE, 1858 code, cpu, pid, tid, ip, msg, timestamp); 1859 1860 err = perf_session__deliver_synth_event(pt->session, &event, NULL); 1861 if (err) 1862 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n", 1863 err); 1864 1865 return err; 1866 } 1867 1868 static int intel_ptq_synth_error(struct intel_pt_queue *ptq, 1869 const struct intel_pt_state *state) 1870 { 1871 struct intel_pt *pt = ptq->pt; 1872 u64 tm = ptq->timestamp; 1873 1874 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc); 1875 1876 return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid, 1877 ptq->tid, state->from_ip, tm); 1878 } 1879 1880 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq) 1881 { 1882 struct auxtrace_queue *queue; 1883 pid_t tid = ptq->next_tid; 1884 int err; 1885 1886 if (tid == -1) 1887 return 0; 1888 1889 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid); 1890 1891 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid); 1892 1893 queue = &pt->queues.queue_array[ptq->queue_nr]; 1894 intel_pt_set_pid_tid_cpu(pt, queue); 1895 1896 ptq->next_tid = -1; 1897 1898 return err; 1899 } 1900 1901 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip) 1902 { 1903 struct intel_pt *pt = ptq->pt; 1904 1905 return ip == pt->switch_ip && 1906 (ptq->flags & PERF_IP_FLAG_BRANCH) && 1907 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC | 1908 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT)); 1909 } 1910 1911 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \ 1912 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT) 1913 1914 static int intel_pt_sample(struct intel_pt_queue *ptq) 1915 { 1916 const struct intel_pt_state *state = ptq->state; 1917 struct intel_pt *pt = ptq->pt; 1918 int err; 1919 1920 if (!ptq->have_sample) 1921 return 0; 1922 1923 ptq->have_sample = false; 1924 1925 if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) { 1926 /* 1927 * Cycle count and instruction count only go together to create 1928 * a valid IPC ratio when the cycle count changes. 1929 */ 1930 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt; 1931 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt; 1932 } 1933 1934 /* 1935 * Do PEBS first to allow for the possibility that the PEBS timestamp 1936 * precedes the current timestamp. 1937 */ 1938 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) { 1939 err = intel_pt_synth_pebs_sample(ptq); 1940 if (err) 1941 return err; 1942 } 1943 1944 if (pt->sample_pwr_events) { 1945 if (ptq->state->cbr != ptq->cbr_seen) { 1946 err = intel_pt_synth_cbr_sample(ptq); 1947 if (err) 1948 return err; 1949 } 1950 if (state->type & INTEL_PT_PWR_EVT) { 1951 if (state->type & INTEL_PT_MWAIT_OP) { 1952 err = intel_pt_synth_mwait_sample(ptq); 1953 if (err) 1954 return err; 1955 } 1956 if (state->type & INTEL_PT_PWR_ENTRY) { 1957 err = intel_pt_synth_pwre_sample(ptq); 1958 if (err) 1959 return err; 1960 } 1961 if (state->type & INTEL_PT_EX_STOP) { 1962 err = intel_pt_synth_exstop_sample(ptq); 1963 if (err) 1964 return err; 1965 } 1966 if (state->type & INTEL_PT_PWR_EXIT) { 1967 err = intel_pt_synth_pwrx_sample(ptq); 1968 if (err) 1969 return err; 1970 } 1971 } 1972 } 1973 1974 if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) { 1975 err = intel_pt_synth_instruction_sample(ptq); 1976 if (err) 1977 return err; 1978 } 1979 1980 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) { 1981 err = intel_pt_synth_transaction_sample(ptq); 1982 if (err) 1983 return err; 1984 } 1985 1986 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) { 1987 err = intel_pt_synth_ptwrite_sample(ptq); 1988 if (err) 1989 return err; 1990 } 1991 1992 if (!(state->type & INTEL_PT_BRANCH)) 1993 return 0; 1994 1995 if (pt->use_thread_stack) { 1996 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, 1997 state->from_ip, state->to_ip, ptq->insn_len, 1998 state->trace_nr, pt->callstack, 1999 pt->br_stack_sz_plus, 2000 pt->mispred_all); 2001 } else { 2002 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr); 2003 } 2004 2005 if (pt->sample_branches) { 2006 err = intel_pt_synth_branch_sample(ptq); 2007 if (err) 2008 return err; 2009 } 2010 2011 if (!ptq->sync_switch) 2012 return 0; 2013 2014 if (intel_pt_is_switch_ip(ptq, state->to_ip)) { 2015 switch (ptq->switch_state) { 2016 case INTEL_PT_SS_NOT_TRACING: 2017 case INTEL_PT_SS_UNKNOWN: 2018 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2019 err = intel_pt_next_tid(pt, ptq); 2020 if (err) 2021 return err; 2022 ptq->switch_state = INTEL_PT_SS_TRACING; 2023 break; 2024 default: 2025 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT; 2026 return 1; 2027 } 2028 } else if (!state->to_ip) { 2029 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2030 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) { 2031 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2032 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2033 state->to_ip == pt->ptss_ip && 2034 (ptq->flags & PERF_IP_FLAG_CALL)) { 2035 ptq->switch_state = INTEL_PT_SS_TRACING; 2036 } 2037 2038 return 0; 2039 } 2040 2041 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip) 2042 { 2043 struct machine *machine = pt->machine; 2044 struct map *map; 2045 struct symbol *sym, *start; 2046 u64 ip, switch_ip = 0; 2047 const char *ptss; 2048 2049 if (ptss_ip) 2050 *ptss_ip = 0; 2051 2052 map = machine__kernel_map(machine); 2053 if (!map) 2054 return 0; 2055 2056 if (map__load(map)) 2057 return 0; 2058 2059 start = dso__first_symbol(map->dso); 2060 2061 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2062 if (sym->binding == STB_GLOBAL && 2063 !strcmp(sym->name, "__switch_to")) { 2064 ip = map->unmap_ip(map, sym->start); 2065 if (ip >= map->start && ip < map->end) { 2066 switch_ip = ip; 2067 break; 2068 } 2069 } 2070 } 2071 2072 if (!switch_ip || !ptss_ip) 2073 return 0; 2074 2075 if (pt->have_sched_switch == 1) 2076 ptss = "perf_trace_sched_switch"; 2077 else 2078 ptss = "__perf_event_task_sched_out"; 2079 2080 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2081 if (!strcmp(sym->name, ptss)) { 2082 ip = map->unmap_ip(map, sym->start); 2083 if (ip >= map->start && ip < map->end) { 2084 *ptss_ip = ip; 2085 break; 2086 } 2087 } 2088 } 2089 2090 return switch_ip; 2091 } 2092 2093 static void intel_pt_enable_sync_switch(struct intel_pt *pt) 2094 { 2095 unsigned int i; 2096 2097 pt->sync_switch = true; 2098 2099 for (i = 0; i < pt->queues.nr_queues; i++) { 2100 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2101 struct intel_pt_queue *ptq = queue->priv; 2102 2103 if (ptq) 2104 ptq->sync_switch = true; 2105 } 2106 } 2107 2108 /* 2109 * To filter against time ranges, it is only necessary to look at the next start 2110 * or end time. 2111 */ 2112 static bool intel_pt_next_time(struct intel_pt_queue *ptq) 2113 { 2114 struct intel_pt *pt = ptq->pt; 2115 2116 if (ptq->sel_start) { 2117 /* Next time is an end time */ 2118 ptq->sel_start = false; 2119 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end; 2120 return true; 2121 } else if (ptq->sel_idx + 1 < pt->range_cnt) { 2122 /* Next time is a start time */ 2123 ptq->sel_start = true; 2124 ptq->sel_idx += 1; 2125 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start; 2126 return true; 2127 } 2128 2129 /* No next time */ 2130 return false; 2131 } 2132 2133 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp) 2134 { 2135 int err; 2136 2137 while (1) { 2138 if (ptq->sel_start) { 2139 if (ptq->timestamp >= ptq->sel_timestamp) { 2140 /* After start time, so consider next time */ 2141 intel_pt_next_time(ptq); 2142 if (!ptq->sel_timestamp) { 2143 /* No end time */ 2144 return 0; 2145 } 2146 /* Check against end time */ 2147 continue; 2148 } 2149 /* Before start time, so fast forward */ 2150 ptq->have_sample = false; 2151 if (ptq->sel_timestamp > *ff_timestamp) { 2152 if (ptq->sync_switch) { 2153 intel_pt_next_tid(ptq->pt, ptq); 2154 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2155 } 2156 *ff_timestamp = ptq->sel_timestamp; 2157 err = intel_pt_fast_forward(ptq->decoder, 2158 ptq->sel_timestamp); 2159 if (err) 2160 return err; 2161 } 2162 return 0; 2163 } else if (ptq->timestamp > ptq->sel_timestamp) { 2164 /* After end time, so consider next time */ 2165 if (!intel_pt_next_time(ptq)) { 2166 /* No next time range, so stop decoding */ 2167 ptq->have_sample = false; 2168 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2169 return 1; 2170 } 2171 /* Check against next start time */ 2172 continue; 2173 } else { 2174 /* Before end time */ 2175 return 0; 2176 } 2177 } 2178 } 2179 2180 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp) 2181 { 2182 const struct intel_pt_state *state = ptq->state; 2183 struct intel_pt *pt = ptq->pt; 2184 u64 ff_timestamp = 0; 2185 int err; 2186 2187 if (!pt->kernel_start) { 2188 pt->kernel_start = machine__kernel_start(pt->machine); 2189 if (pt->per_cpu_mmaps && 2190 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) && 2191 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) && 2192 !pt->sampling_mode) { 2193 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip); 2194 if (pt->switch_ip) { 2195 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n", 2196 pt->switch_ip, pt->ptss_ip); 2197 intel_pt_enable_sync_switch(pt); 2198 } 2199 } 2200 } 2201 2202 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 2203 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2204 while (1) { 2205 err = intel_pt_sample(ptq); 2206 if (err) 2207 return err; 2208 2209 state = intel_pt_decode(ptq->decoder); 2210 if (state->err) { 2211 if (state->err == INTEL_PT_ERR_NODATA) 2212 return 1; 2213 if (ptq->sync_switch && 2214 state->from_ip >= pt->kernel_start) { 2215 ptq->sync_switch = false; 2216 intel_pt_next_tid(pt, ptq); 2217 } 2218 if (pt->synth_opts.errors) { 2219 err = intel_ptq_synth_error(ptq, state); 2220 if (err) 2221 return err; 2222 } 2223 continue; 2224 } 2225 2226 ptq->state = state; 2227 ptq->have_sample = true; 2228 intel_pt_sample_flags(ptq); 2229 2230 /* Use estimated TSC upon return to user space */ 2231 if (pt->est_tsc && 2232 (state->from_ip >= pt->kernel_start || !state->from_ip) && 2233 state->to_ip && state->to_ip < pt->kernel_start) { 2234 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2235 state->timestamp, state->est_timestamp); 2236 ptq->timestamp = state->est_timestamp; 2237 /* Use estimated TSC in unknown switch state */ 2238 } else if (ptq->sync_switch && 2239 ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2240 intel_pt_is_switch_ip(ptq, state->to_ip) && 2241 ptq->next_tid == -1) { 2242 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2243 state->timestamp, state->est_timestamp); 2244 ptq->timestamp = state->est_timestamp; 2245 } else if (state->timestamp > ptq->timestamp) { 2246 ptq->timestamp = state->timestamp; 2247 } 2248 2249 if (ptq->sel_timestamp) { 2250 err = intel_pt_time_filter(ptq, &ff_timestamp); 2251 if (err) 2252 return err; 2253 } 2254 2255 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) { 2256 *timestamp = ptq->timestamp; 2257 return 0; 2258 } 2259 } 2260 return 0; 2261 } 2262 2263 static inline int intel_pt_update_queues(struct intel_pt *pt) 2264 { 2265 if (pt->queues.new_data) { 2266 pt->queues.new_data = false; 2267 return intel_pt_setup_queues(pt); 2268 } 2269 return 0; 2270 } 2271 2272 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp) 2273 { 2274 unsigned int queue_nr; 2275 u64 ts; 2276 int ret; 2277 2278 while (1) { 2279 struct auxtrace_queue *queue; 2280 struct intel_pt_queue *ptq; 2281 2282 if (!pt->heap.heap_cnt) 2283 return 0; 2284 2285 if (pt->heap.heap_array[0].ordinal >= timestamp) 2286 return 0; 2287 2288 queue_nr = pt->heap.heap_array[0].queue_nr; 2289 queue = &pt->queues.queue_array[queue_nr]; 2290 ptq = queue->priv; 2291 2292 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n", 2293 queue_nr, pt->heap.heap_array[0].ordinal, 2294 timestamp); 2295 2296 auxtrace_heap__pop(&pt->heap); 2297 2298 if (pt->heap.heap_cnt) { 2299 ts = pt->heap.heap_array[0].ordinal + 1; 2300 if (ts > timestamp) 2301 ts = timestamp; 2302 } else { 2303 ts = timestamp; 2304 } 2305 2306 intel_pt_set_pid_tid_cpu(pt, queue); 2307 2308 ret = intel_pt_run_decoder(ptq, &ts); 2309 2310 if (ret < 0) { 2311 auxtrace_heap__add(&pt->heap, queue_nr, ts); 2312 return ret; 2313 } 2314 2315 if (!ret) { 2316 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts); 2317 if (ret < 0) 2318 return ret; 2319 } else { 2320 ptq->on_heap = false; 2321 } 2322 } 2323 2324 return 0; 2325 } 2326 2327 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid, 2328 u64 time_) 2329 { 2330 struct auxtrace_queues *queues = &pt->queues; 2331 unsigned int i; 2332 u64 ts = 0; 2333 2334 for (i = 0; i < queues->nr_queues; i++) { 2335 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2336 struct intel_pt_queue *ptq = queue->priv; 2337 2338 if (ptq && (tid == -1 || ptq->tid == tid)) { 2339 ptq->time = time_; 2340 intel_pt_set_pid_tid_cpu(pt, queue); 2341 intel_pt_run_decoder(ptq, &ts); 2342 } 2343 } 2344 return 0; 2345 } 2346 2347 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq, 2348 struct auxtrace_queue *queue, 2349 struct perf_sample *sample) 2350 { 2351 struct machine *m = ptq->pt->machine; 2352 2353 ptq->pid = sample->pid; 2354 ptq->tid = sample->tid; 2355 ptq->cpu = queue->cpu; 2356 2357 intel_pt_log("queue %u cpu %d pid %d tid %d\n", 2358 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2359 2360 thread__zput(ptq->thread); 2361 2362 if (ptq->tid == -1) 2363 return; 2364 2365 if (ptq->pid == -1) { 2366 ptq->thread = machine__find_thread(m, -1, ptq->tid); 2367 if (ptq->thread) 2368 ptq->pid = ptq->thread->pid_; 2369 return; 2370 } 2371 2372 ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid); 2373 } 2374 2375 static int intel_pt_process_timeless_sample(struct intel_pt *pt, 2376 struct perf_sample *sample) 2377 { 2378 struct auxtrace_queue *queue; 2379 struct intel_pt_queue *ptq; 2380 u64 ts = 0; 2381 2382 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session); 2383 if (!queue) 2384 return -EINVAL; 2385 2386 ptq = queue->priv; 2387 if (!ptq) 2388 return 0; 2389 2390 ptq->stop = false; 2391 ptq->time = sample->time; 2392 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample); 2393 intel_pt_run_decoder(ptq, &ts); 2394 return 0; 2395 } 2396 2397 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample) 2398 { 2399 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu, 2400 sample->pid, sample->tid, 0, sample->time); 2401 } 2402 2403 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu) 2404 { 2405 unsigned i, j; 2406 2407 if (cpu < 0 || !pt->queues.nr_queues) 2408 return NULL; 2409 2410 if ((unsigned)cpu >= pt->queues.nr_queues) 2411 i = pt->queues.nr_queues - 1; 2412 else 2413 i = cpu; 2414 2415 if (pt->queues.queue_array[i].cpu == cpu) 2416 return pt->queues.queue_array[i].priv; 2417 2418 for (j = 0; i > 0; j++) { 2419 if (pt->queues.queue_array[--i].cpu == cpu) 2420 return pt->queues.queue_array[i].priv; 2421 } 2422 2423 for (; j < pt->queues.nr_queues; j++) { 2424 if (pt->queues.queue_array[j].cpu == cpu) 2425 return pt->queues.queue_array[j].priv; 2426 } 2427 2428 return NULL; 2429 } 2430 2431 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid, 2432 u64 timestamp) 2433 { 2434 struct intel_pt_queue *ptq; 2435 int err; 2436 2437 if (!pt->sync_switch) 2438 return 1; 2439 2440 ptq = intel_pt_cpu_to_ptq(pt, cpu); 2441 if (!ptq || !ptq->sync_switch) 2442 return 1; 2443 2444 switch (ptq->switch_state) { 2445 case INTEL_PT_SS_NOT_TRACING: 2446 break; 2447 case INTEL_PT_SS_UNKNOWN: 2448 case INTEL_PT_SS_TRACING: 2449 ptq->next_tid = tid; 2450 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP; 2451 return 0; 2452 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 2453 if (!ptq->on_heap) { 2454 ptq->timestamp = perf_time_to_tsc(timestamp, 2455 &pt->tc); 2456 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr, 2457 ptq->timestamp); 2458 if (err) 2459 return err; 2460 ptq->on_heap = true; 2461 } 2462 ptq->switch_state = INTEL_PT_SS_TRACING; 2463 break; 2464 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2465 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu); 2466 break; 2467 default: 2468 break; 2469 } 2470 2471 ptq->next_tid = -1; 2472 2473 return 1; 2474 } 2475 2476 static int intel_pt_process_switch(struct intel_pt *pt, 2477 struct perf_sample *sample) 2478 { 2479 struct evsel *evsel; 2480 pid_t tid; 2481 int cpu, ret; 2482 2483 evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id); 2484 if (evsel != pt->switch_evsel) 2485 return 0; 2486 2487 tid = evsel__intval(evsel, sample, "next_pid"); 2488 cpu = sample->cpu; 2489 2490 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 2491 cpu, tid, sample->time, perf_time_to_tsc(sample->time, 2492 &pt->tc)); 2493 2494 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 2495 if (ret <= 0) 2496 return ret; 2497 2498 return machine__set_current_tid(pt->machine, cpu, -1, tid); 2499 } 2500 2501 static int intel_pt_context_switch_in(struct intel_pt *pt, 2502 struct perf_sample *sample) 2503 { 2504 pid_t pid = sample->pid; 2505 pid_t tid = sample->tid; 2506 int cpu = sample->cpu; 2507 2508 if (pt->sync_switch) { 2509 struct intel_pt_queue *ptq; 2510 2511 ptq = intel_pt_cpu_to_ptq(pt, cpu); 2512 if (ptq && ptq->sync_switch) { 2513 ptq->next_tid = -1; 2514 switch (ptq->switch_state) { 2515 case INTEL_PT_SS_NOT_TRACING: 2516 case INTEL_PT_SS_UNKNOWN: 2517 case INTEL_PT_SS_TRACING: 2518 break; 2519 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 2520 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2521 ptq->switch_state = INTEL_PT_SS_TRACING; 2522 break; 2523 default: 2524 break; 2525 } 2526 } 2527 } 2528 2529 /* 2530 * If the current tid has not been updated yet, ensure it is now that 2531 * a "switch in" event has occurred. 2532 */ 2533 if (machine__get_current_tid(pt->machine, cpu) == tid) 2534 return 0; 2535 2536 return machine__set_current_tid(pt->machine, cpu, pid, tid); 2537 } 2538 2539 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event, 2540 struct perf_sample *sample) 2541 { 2542 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 2543 pid_t pid, tid; 2544 int cpu, ret; 2545 2546 cpu = sample->cpu; 2547 2548 if (pt->have_sched_switch == 3) { 2549 if (!out) 2550 return intel_pt_context_switch_in(pt, sample); 2551 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) { 2552 pr_err("Expecting CPU-wide context switch event\n"); 2553 return -EINVAL; 2554 } 2555 pid = event->context_switch.next_prev_pid; 2556 tid = event->context_switch.next_prev_tid; 2557 } else { 2558 if (out) 2559 return 0; 2560 pid = sample->pid; 2561 tid = sample->tid; 2562 } 2563 2564 if (tid == -1) { 2565 pr_err("context_switch event has no tid\n"); 2566 return -EINVAL; 2567 } 2568 2569 intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 2570 cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time, 2571 &pt->tc)); 2572 2573 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 2574 if (ret <= 0) 2575 return ret; 2576 2577 return machine__set_current_tid(pt->machine, cpu, pid, tid); 2578 } 2579 2580 static int intel_pt_process_itrace_start(struct intel_pt *pt, 2581 union perf_event *event, 2582 struct perf_sample *sample) 2583 { 2584 if (!pt->per_cpu_mmaps) 2585 return 0; 2586 2587 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 2588 sample->cpu, event->itrace_start.pid, 2589 event->itrace_start.tid, sample->time, 2590 perf_time_to_tsc(sample->time, &pt->tc)); 2591 2592 return machine__set_current_tid(pt->machine, sample->cpu, 2593 event->itrace_start.pid, 2594 event->itrace_start.tid); 2595 } 2596 2597 static int intel_pt_process_event(struct perf_session *session, 2598 union perf_event *event, 2599 struct perf_sample *sample, 2600 struct perf_tool *tool) 2601 { 2602 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2603 auxtrace); 2604 u64 timestamp; 2605 int err = 0; 2606 2607 if (dump_trace) 2608 return 0; 2609 2610 if (!tool->ordered_events) { 2611 pr_err("Intel Processor Trace requires ordered events\n"); 2612 return -EINVAL; 2613 } 2614 2615 if (sample->time && sample->time != (u64)-1) 2616 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 2617 else 2618 timestamp = 0; 2619 2620 if (timestamp || pt->timeless_decoding) { 2621 err = intel_pt_update_queues(pt); 2622 if (err) 2623 return err; 2624 } 2625 2626 if (pt->timeless_decoding) { 2627 if (pt->sampling_mode) { 2628 if (sample->aux_sample.size) 2629 err = intel_pt_process_timeless_sample(pt, 2630 sample); 2631 } else if (event->header.type == PERF_RECORD_EXIT) { 2632 err = intel_pt_process_timeless_queues(pt, 2633 event->fork.tid, 2634 sample->time); 2635 } 2636 } else if (timestamp) { 2637 err = intel_pt_process_queues(pt, timestamp); 2638 } 2639 if (err) 2640 return err; 2641 2642 if (event->header.type == PERF_RECORD_SAMPLE) { 2643 if (pt->synth_opts.add_callchain && !sample->callchain) 2644 intel_pt_add_callchain(pt, sample); 2645 if (pt->synth_opts.add_last_branch && !sample->branch_stack) 2646 intel_pt_add_br_stack(pt, sample); 2647 } 2648 2649 if (event->header.type == PERF_RECORD_AUX && 2650 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) && 2651 pt->synth_opts.errors) { 2652 err = intel_pt_lost(pt, sample); 2653 if (err) 2654 return err; 2655 } 2656 2657 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE) 2658 err = intel_pt_process_switch(pt, sample); 2659 else if (event->header.type == PERF_RECORD_ITRACE_START) 2660 err = intel_pt_process_itrace_start(pt, event, sample); 2661 else if (event->header.type == PERF_RECORD_SWITCH || 2662 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 2663 err = intel_pt_context_switch(pt, event, sample); 2664 2665 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ", 2666 event->header.type, sample->cpu, sample->time, timestamp); 2667 intel_pt_log_event(event); 2668 2669 return err; 2670 } 2671 2672 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool) 2673 { 2674 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2675 auxtrace); 2676 int ret; 2677 2678 if (dump_trace) 2679 return 0; 2680 2681 if (!tool->ordered_events) 2682 return -EINVAL; 2683 2684 ret = intel_pt_update_queues(pt); 2685 if (ret < 0) 2686 return ret; 2687 2688 if (pt->timeless_decoding) 2689 return intel_pt_process_timeless_queues(pt, -1, 2690 MAX_TIMESTAMP - 1); 2691 2692 return intel_pt_process_queues(pt, MAX_TIMESTAMP); 2693 } 2694 2695 static void intel_pt_free_events(struct perf_session *session) 2696 { 2697 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2698 auxtrace); 2699 struct auxtrace_queues *queues = &pt->queues; 2700 unsigned int i; 2701 2702 for (i = 0; i < queues->nr_queues; i++) { 2703 intel_pt_free_queue(queues->queue_array[i].priv); 2704 queues->queue_array[i].priv = NULL; 2705 } 2706 intel_pt_log_disable(); 2707 auxtrace_queues__free(queues); 2708 } 2709 2710 static void intel_pt_free(struct perf_session *session) 2711 { 2712 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2713 auxtrace); 2714 2715 auxtrace_heap__free(&pt->heap); 2716 intel_pt_free_events(session); 2717 session->auxtrace = NULL; 2718 thread__put(pt->unknown_thread); 2719 addr_filters__exit(&pt->filts); 2720 zfree(&pt->chain); 2721 zfree(&pt->filter); 2722 zfree(&pt->time_ranges); 2723 free(pt); 2724 } 2725 2726 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session, 2727 struct evsel *evsel) 2728 { 2729 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2730 auxtrace); 2731 2732 return evsel->core.attr.type == pt->pmu_type; 2733 } 2734 2735 static int intel_pt_process_auxtrace_event(struct perf_session *session, 2736 union perf_event *event, 2737 struct perf_tool *tool __maybe_unused) 2738 { 2739 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2740 auxtrace); 2741 2742 if (!pt->data_queued) { 2743 struct auxtrace_buffer *buffer; 2744 off_t data_offset; 2745 int fd = perf_data__fd(session->data); 2746 int err; 2747 2748 if (perf_data__is_pipe(session->data)) { 2749 data_offset = 0; 2750 } else { 2751 data_offset = lseek(fd, 0, SEEK_CUR); 2752 if (data_offset == -1) 2753 return -errno; 2754 } 2755 2756 err = auxtrace_queues__add_event(&pt->queues, session, event, 2757 data_offset, &buffer); 2758 if (err) 2759 return err; 2760 2761 /* Dump here now we have copied a piped trace out of the pipe */ 2762 if (dump_trace) { 2763 if (auxtrace_buffer__get_data(buffer, fd)) { 2764 intel_pt_dump_event(pt, buffer->data, 2765 buffer->size); 2766 auxtrace_buffer__put_data(buffer); 2767 } 2768 } 2769 } 2770 2771 return 0; 2772 } 2773 2774 static int intel_pt_queue_data(struct perf_session *session, 2775 struct perf_sample *sample, 2776 union perf_event *event, u64 data_offset) 2777 { 2778 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2779 auxtrace); 2780 u64 timestamp; 2781 2782 if (event) { 2783 return auxtrace_queues__add_event(&pt->queues, session, event, 2784 data_offset, NULL); 2785 } 2786 2787 if (sample->time && sample->time != (u64)-1) 2788 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 2789 else 2790 timestamp = 0; 2791 2792 return auxtrace_queues__add_sample(&pt->queues, session, sample, 2793 data_offset, timestamp); 2794 } 2795 2796 struct intel_pt_synth { 2797 struct perf_tool dummy_tool; 2798 struct perf_session *session; 2799 }; 2800 2801 static int intel_pt_event_synth(struct perf_tool *tool, 2802 union perf_event *event, 2803 struct perf_sample *sample __maybe_unused, 2804 struct machine *machine __maybe_unused) 2805 { 2806 struct intel_pt_synth *intel_pt_synth = 2807 container_of(tool, struct intel_pt_synth, dummy_tool); 2808 2809 return perf_session__deliver_synth_event(intel_pt_synth->session, event, 2810 NULL); 2811 } 2812 2813 static int intel_pt_synth_event(struct perf_session *session, const char *name, 2814 struct perf_event_attr *attr, u64 id) 2815 { 2816 struct intel_pt_synth intel_pt_synth; 2817 int err; 2818 2819 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n", 2820 name, id, (u64)attr->sample_type); 2821 2822 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth)); 2823 intel_pt_synth.session = session; 2824 2825 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1, 2826 &id, intel_pt_event_synth); 2827 if (err) 2828 pr_err("%s: failed to synthesize '%s' event type\n", 2829 __func__, name); 2830 2831 return err; 2832 } 2833 2834 static void intel_pt_set_event_name(struct evlist *evlist, u64 id, 2835 const char *name) 2836 { 2837 struct evsel *evsel; 2838 2839 evlist__for_each_entry(evlist, evsel) { 2840 if (evsel->core.id && evsel->core.id[0] == id) { 2841 if (evsel->name) 2842 zfree(&evsel->name); 2843 evsel->name = strdup(name); 2844 break; 2845 } 2846 } 2847 } 2848 2849 static struct evsel *intel_pt_evsel(struct intel_pt *pt, 2850 struct evlist *evlist) 2851 { 2852 struct evsel *evsel; 2853 2854 evlist__for_each_entry(evlist, evsel) { 2855 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids) 2856 return evsel; 2857 } 2858 2859 return NULL; 2860 } 2861 2862 static int intel_pt_synth_events(struct intel_pt *pt, 2863 struct perf_session *session) 2864 { 2865 struct evlist *evlist = session->evlist; 2866 struct evsel *evsel = intel_pt_evsel(pt, evlist); 2867 struct perf_event_attr attr; 2868 u64 id; 2869 int err; 2870 2871 if (!evsel) { 2872 pr_debug("There are no selected events with Intel Processor Trace data\n"); 2873 return 0; 2874 } 2875 2876 memset(&attr, 0, sizeof(struct perf_event_attr)); 2877 attr.size = sizeof(struct perf_event_attr); 2878 attr.type = PERF_TYPE_HARDWARE; 2879 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 2880 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 2881 PERF_SAMPLE_PERIOD; 2882 if (pt->timeless_decoding) 2883 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 2884 else 2885 attr.sample_type |= PERF_SAMPLE_TIME; 2886 if (!pt->per_cpu_mmaps) 2887 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU; 2888 attr.exclude_user = evsel->core.attr.exclude_user; 2889 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 2890 attr.exclude_hv = evsel->core.attr.exclude_hv; 2891 attr.exclude_host = evsel->core.attr.exclude_host; 2892 attr.exclude_guest = evsel->core.attr.exclude_guest; 2893 attr.sample_id_all = evsel->core.attr.sample_id_all; 2894 attr.read_format = evsel->core.attr.read_format; 2895 2896 id = evsel->core.id[0] + 1000000000; 2897 if (!id) 2898 id = 1; 2899 2900 if (pt->synth_opts.branches) { 2901 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 2902 attr.sample_period = 1; 2903 attr.sample_type |= PERF_SAMPLE_ADDR; 2904 err = intel_pt_synth_event(session, "branches", &attr, id); 2905 if (err) 2906 return err; 2907 pt->sample_branches = true; 2908 pt->branches_sample_type = attr.sample_type; 2909 pt->branches_id = id; 2910 id += 1; 2911 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 2912 } 2913 2914 if (pt->synth_opts.callchain) 2915 attr.sample_type |= PERF_SAMPLE_CALLCHAIN; 2916 if (pt->synth_opts.last_branch) 2917 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 2918 2919 if (pt->synth_opts.instructions) { 2920 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 2921 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS) 2922 attr.sample_period = 2923 intel_pt_ns_to_ticks(pt, pt->synth_opts.period); 2924 else 2925 attr.sample_period = pt->synth_opts.period; 2926 err = intel_pt_synth_event(session, "instructions", &attr, id); 2927 if (err) 2928 return err; 2929 pt->sample_instructions = true; 2930 pt->instructions_sample_type = attr.sample_type; 2931 pt->instructions_id = id; 2932 id += 1; 2933 } 2934 2935 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD; 2936 attr.sample_period = 1; 2937 2938 if (pt->synth_opts.transactions) { 2939 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 2940 err = intel_pt_synth_event(session, "transactions", &attr, id); 2941 if (err) 2942 return err; 2943 pt->sample_transactions = true; 2944 pt->transactions_sample_type = attr.sample_type; 2945 pt->transactions_id = id; 2946 intel_pt_set_event_name(evlist, id, "transactions"); 2947 id += 1; 2948 } 2949 2950 attr.type = PERF_TYPE_SYNTH; 2951 attr.sample_type |= PERF_SAMPLE_RAW; 2952 2953 if (pt->synth_opts.ptwrites) { 2954 attr.config = PERF_SYNTH_INTEL_PTWRITE; 2955 err = intel_pt_synth_event(session, "ptwrite", &attr, id); 2956 if (err) 2957 return err; 2958 pt->sample_ptwrites = true; 2959 pt->ptwrites_sample_type = attr.sample_type; 2960 pt->ptwrites_id = id; 2961 intel_pt_set_event_name(evlist, id, "ptwrite"); 2962 id += 1; 2963 } 2964 2965 if (pt->synth_opts.pwr_events) { 2966 pt->sample_pwr_events = true; 2967 pt->pwr_events_sample_type = attr.sample_type; 2968 2969 attr.config = PERF_SYNTH_INTEL_CBR; 2970 err = intel_pt_synth_event(session, "cbr", &attr, id); 2971 if (err) 2972 return err; 2973 pt->cbr_id = id; 2974 intel_pt_set_event_name(evlist, id, "cbr"); 2975 id += 1; 2976 } 2977 2978 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) { 2979 attr.config = PERF_SYNTH_INTEL_MWAIT; 2980 err = intel_pt_synth_event(session, "mwait", &attr, id); 2981 if (err) 2982 return err; 2983 pt->mwait_id = id; 2984 intel_pt_set_event_name(evlist, id, "mwait"); 2985 id += 1; 2986 2987 attr.config = PERF_SYNTH_INTEL_PWRE; 2988 err = intel_pt_synth_event(session, "pwre", &attr, id); 2989 if (err) 2990 return err; 2991 pt->pwre_id = id; 2992 intel_pt_set_event_name(evlist, id, "pwre"); 2993 id += 1; 2994 2995 attr.config = PERF_SYNTH_INTEL_EXSTOP; 2996 err = intel_pt_synth_event(session, "exstop", &attr, id); 2997 if (err) 2998 return err; 2999 pt->exstop_id = id; 3000 intel_pt_set_event_name(evlist, id, "exstop"); 3001 id += 1; 3002 3003 attr.config = PERF_SYNTH_INTEL_PWRX; 3004 err = intel_pt_synth_event(session, "pwrx", &attr, id); 3005 if (err) 3006 return err; 3007 pt->pwrx_id = id; 3008 intel_pt_set_event_name(evlist, id, "pwrx"); 3009 id += 1; 3010 } 3011 3012 return 0; 3013 } 3014 3015 static void intel_pt_setup_pebs_events(struct intel_pt *pt) 3016 { 3017 struct evsel *evsel; 3018 3019 if (!pt->synth_opts.other_events) 3020 return; 3021 3022 evlist__for_each_entry(pt->session->evlist, evsel) { 3023 if (evsel->core.attr.aux_output && evsel->core.id) { 3024 pt->sample_pebs = true; 3025 pt->pebs_evsel = evsel; 3026 return; 3027 } 3028 } 3029 } 3030 3031 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist) 3032 { 3033 struct evsel *evsel; 3034 3035 evlist__for_each_entry_reverse(evlist, evsel) { 3036 const char *name = evsel__name(evsel); 3037 3038 if (!strcmp(name, "sched:sched_switch")) 3039 return evsel; 3040 } 3041 3042 return NULL; 3043 } 3044 3045 static bool intel_pt_find_switch(struct evlist *evlist) 3046 { 3047 struct evsel *evsel; 3048 3049 evlist__for_each_entry(evlist, evsel) { 3050 if (evsel->core.attr.context_switch) 3051 return true; 3052 } 3053 3054 return false; 3055 } 3056 3057 static int intel_pt_perf_config(const char *var, const char *value, void *data) 3058 { 3059 struct intel_pt *pt = data; 3060 3061 if (!strcmp(var, "intel-pt.mispred-all")) 3062 pt->mispred_all = perf_config_bool(var, value); 3063 3064 return 0; 3065 } 3066 3067 /* Find least TSC which converts to ns or later */ 3068 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt) 3069 { 3070 u64 tsc, tm; 3071 3072 tsc = perf_time_to_tsc(ns, &pt->tc); 3073 3074 while (1) { 3075 tm = tsc_to_perf_time(tsc, &pt->tc); 3076 if (tm < ns) 3077 break; 3078 tsc -= 1; 3079 } 3080 3081 while (tm < ns) 3082 tm = tsc_to_perf_time(++tsc, &pt->tc); 3083 3084 return tsc; 3085 } 3086 3087 /* Find greatest TSC which converts to ns or earlier */ 3088 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt) 3089 { 3090 u64 tsc, tm; 3091 3092 tsc = perf_time_to_tsc(ns, &pt->tc); 3093 3094 while (1) { 3095 tm = tsc_to_perf_time(tsc, &pt->tc); 3096 if (tm > ns) 3097 break; 3098 tsc += 1; 3099 } 3100 3101 while (tm > ns) 3102 tm = tsc_to_perf_time(--tsc, &pt->tc); 3103 3104 return tsc; 3105 } 3106 3107 static int intel_pt_setup_time_ranges(struct intel_pt *pt, 3108 struct itrace_synth_opts *opts) 3109 { 3110 struct perf_time_interval *p = opts->ptime_range; 3111 int n = opts->range_num; 3112 int i; 3113 3114 if (!n || !p || pt->timeless_decoding) 3115 return 0; 3116 3117 pt->time_ranges = calloc(n, sizeof(struct range)); 3118 if (!pt->time_ranges) 3119 return -ENOMEM; 3120 3121 pt->range_cnt = n; 3122 3123 intel_pt_log("%s: %u range(s)\n", __func__, n); 3124 3125 for (i = 0; i < n; i++) { 3126 struct range *r = &pt->time_ranges[i]; 3127 u64 ts = p[i].start; 3128 u64 te = p[i].end; 3129 3130 /* 3131 * Take care to ensure the TSC range matches the perf-time range 3132 * when converted back to perf-time. 3133 */ 3134 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0; 3135 r->end = te ? intel_pt_tsc_end(te, pt) : 0; 3136 3137 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n", 3138 i, ts, te); 3139 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n", 3140 i, r->start, r->end); 3141 } 3142 3143 return 0; 3144 } 3145 3146 static const char * const intel_pt_info_fmts[] = { 3147 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n", 3148 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n", 3149 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n", 3150 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n", 3151 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n", 3152 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n", 3153 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n", 3154 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n", 3155 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n", 3156 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n", 3157 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n", 3158 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n", 3159 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n", 3160 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n", 3161 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n", 3162 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n", 3163 }; 3164 3165 static void intel_pt_print_info(__u64 *arr, int start, int finish) 3166 { 3167 int i; 3168 3169 if (!dump_trace) 3170 return; 3171 3172 for (i = start; i <= finish; i++) 3173 fprintf(stdout, intel_pt_info_fmts[i], arr[i]); 3174 } 3175 3176 static void intel_pt_print_info_str(const char *name, const char *str) 3177 { 3178 if (!dump_trace) 3179 return; 3180 3181 fprintf(stdout, " %-20s%s\n", name, str ? str : ""); 3182 } 3183 3184 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos) 3185 { 3186 return auxtrace_info->header.size >= 3187 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1)); 3188 } 3189 3190 int intel_pt_process_auxtrace_info(union perf_event *event, 3191 struct perf_session *session) 3192 { 3193 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 3194 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS; 3195 struct intel_pt *pt; 3196 void *info_end; 3197 __u64 *info; 3198 int err; 3199 3200 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) + 3201 min_sz) 3202 return -EINVAL; 3203 3204 pt = zalloc(sizeof(struct intel_pt)); 3205 if (!pt) 3206 return -ENOMEM; 3207 3208 addr_filters__init(&pt->filts); 3209 3210 err = perf_config(intel_pt_perf_config, pt); 3211 if (err) 3212 goto err_free; 3213 3214 err = auxtrace_queues__init(&pt->queues); 3215 if (err) 3216 goto err_free; 3217 3218 intel_pt_log_set_name(INTEL_PT_PMU_NAME); 3219 3220 pt->session = session; 3221 pt->machine = &session->machines.host; /* No kvm support */ 3222 pt->auxtrace_type = auxtrace_info->type; 3223 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE]; 3224 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT]; 3225 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT]; 3226 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO]; 3227 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO]; 3228 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT]; 3229 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT]; 3230 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH]; 3231 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE]; 3232 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS]; 3233 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE, 3234 INTEL_PT_PER_CPU_MMAPS); 3235 3236 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) { 3237 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT]; 3238 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS]; 3239 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N]; 3240 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D]; 3241 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT]; 3242 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT, 3243 INTEL_PT_CYC_BIT); 3244 } 3245 3246 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) { 3247 pt->max_non_turbo_ratio = 3248 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO]; 3249 intel_pt_print_info(&auxtrace_info->priv[0], 3250 INTEL_PT_MAX_NONTURBO_RATIO, 3251 INTEL_PT_MAX_NONTURBO_RATIO); 3252 } 3253 3254 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1; 3255 info_end = (void *)info + auxtrace_info->header.size; 3256 3257 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) { 3258 size_t len; 3259 3260 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN]; 3261 intel_pt_print_info(&auxtrace_info->priv[0], 3262 INTEL_PT_FILTER_STR_LEN, 3263 INTEL_PT_FILTER_STR_LEN); 3264 if (len) { 3265 const char *filter = (const char *)info; 3266 3267 len = roundup(len + 1, 8); 3268 info += len >> 3; 3269 if ((void *)info > info_end) { 3270 pr_err("%s: bad filter string length\n", __func__); 3271 err = -EINVAL; 3272 goto err_free_queues; 3273 } 3274 pt->filter = memdup(filter, len); 3275 if (!pt->filter) { 3276 err = -ENOMEM; 3277 goto err_free_queues; 3278 } 3279 if (session->header.needs_swap) 3280 mem_bswap_64(pt->filter, len); 3281 if (pt->filter[len - 1]) { 3282 pr_err("%s: filter string not null terminated\n", __func__); 3283 err = -EINVAL; 3284 goto err_free_queues; 3285 } 3286 err = addr_filters__parse_bare_filter(&pt->filts, 3287 filter); 3288 if (err) 3289 goto err_free_queues; 3290 } 3291 intel_pt_print_info_str("Filter string", pt->filter); 3292 } 3293 3294 pt->timeless_decoding = intel_pt_timeless_decoding(pt); 3295 if (pt->timeless_decoding && !pt->tc.time_mult) 3296 pt->tc.time_mult = 1; 3297 pt->have_tsc = intel_pt_have_tsc(pt); 3298 pt->sampling_mode = intel_pt_sampling_mode(pt); 3299 pt->est_tsc = !pt->timeless_decoding; 3300 3301 pt->unknown_thread = thread__new(999999999, 999999999); 3302 if (!pt->unknown_thread) { 3303 err = -ENOMEM; 3304 goto err_free_queues; 3305 } 3306 3307 /* 3308 * Since this thread will not be kept in any rbtree not in a 3309 * list, initialize its list node so that at thread__put() the 3310 * current thread lifetime assuption is kept and we don't segfault 3311 * at list_del_init(). 3312 */ 3313 INIT_LIST_HEAD(&pt->unknown_thread->node); 3314 3315 err = thread__set_comm(pt->unknown_thread, "unknown", 0); 3316 if (err) 3317 goto err_delete_thread; 3318 if (thread__init_maps(pt->unknown_thread, pt->machine)) { 3319 err = -ENOMEM; 3320 goto err_delete_thread; 3321 } 3322 3323 pt->auxtrace.process_event = intel_pt_process_event; 3324 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event; 3325 pt->auxtrace.queue_data = intel_pt_queue_data; 3326 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample; 3327 pt->auxtrace.flush_events = intel_pt_flush; 3328 pt->auxtrace.free_events = intel_pt_free_events; 3329 pt->auxtrace.free = intel_pt_free; 3330 pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace; 3331 session->auxtrace = &pt->auxtrace; 3332 3333 if (dump_trace) 3334 return 0; 3335 3336 if (pt->have_sched_switch == 1) { 3337 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist); 3338 if (!pt->switch_evsel) { 3339 pr_err("%s: missing sched_switch event\n", __func__); 3340 err = -EINVAL; 3341 goto err_delete_thread; 3342 } 3343 } else if (pt->have_sched_switch == 2 && 3344 !intel_pt_find_switch(session->evlist)) { 3345 pr_err("%s: missing context_switch attribute flag\n", __func__); 3346 err = -EINVAL; 3347 goto err_delete_thread; 3348 } 3349 3350 if (session->itrace_synth_opts->set) { 3351 pt->synth_opts = *session->itrace_synth_opts; 3352 } else { 3353 itrace_synth_opts__set_default(&pt->synth_opts, 3354 session->itrace_synth_opts->default_no_sample); 3355 if (!session->itrace_synth_opts->default_no_sample && 3356 !session->itrace_synth_opts->inject) { 3357 pt->synth_opts.branches = false; 3358 pt->synth_opts.callchain = true; 3359 pt->synth_opts.add_callchain = true; 3360 } 3361 pt->synth_opts.thread_stack = 3362 session->itrace_synth_opts->thread_stack; 3363 } 3364 3365 if (pt->synth_opts.log) 3366 intel_pt_log_enable(); 3367 3368 /* Maximum non-turbo ratio is TSC freq / 100 MHz */ 3369 if (pt->tc.time_mult) { 3370 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000); 3371 3372 if (!pt->max_non_turbo_ratio) 3373 pt->max_non_turbo_ratio = 3374 (tsc_freq + 50000000) / 100000000; 3375 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq); 3376 intel_pt_log("Maximum non-turbo ratio %u\n", 3377 pt->max_non_turbo_ratio); 3378 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000; 3379 } 3380 3381 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts); 3382 if (err) 3383 goto err_delete_thread; 3384 3385 if (pt->synth_opts.calls) 3386 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC | 3387 PERF_IP_FLAG_TRACE_END; 3388 if (pt->synth_opts.returns) 3389 pt->branches_filter |= PERF_IP_FLAG_RETURN | 3390 PERF_IP_FLAG_TRACE_BEGIN; 3391 3392 if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) && 3393 !symbol_conf.use_callchain) { 3394 symbol_conf.use_callchain = true; 3395 if (callchain_register_param(&callchain_param) < 0) { 3396 symbol_conf.use_callchain = false; 3397 pt->synth_opts.callchain = false; 3398 pt->synth_opts.add_callchain = false; 3399 } 3400 } 3401 3402 if (pt->synth_opts.add_callchain) { 3403 err = intel_pt_callchain_init(pt); 3404 if (err) 3405 goto err_delete_thread; 3406 } 3407 3408 if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) { 3409 pt->br_stack_sz = pt->synth_opts.last_branch_sz; 3410 pt->br_stack_sz_plus = pt->br_stack_sz; 3411 } 3412 3413 if (pt->synth_opts.add_last_branch) { 3414 err = intel_pt_br_stack_init(pt); 3415 if (err) 3416 goto err_delete_thread; 3417 /* 3418 * Additional branch stack size to cater for tracing from the 3419 * actual sample ip to where the sample time is recorded. 3420 * Measured at about 200 branches, but generously set to 1024. 3421 * If kernel space is not being traced, then add just 1 for the 3422 * branch to kernel space. 3423 */ 3424 if (intel_pt_tracing_kernel(pt)) 3425 pt->br_stack_sz_plus += 1024; 3426 else 3427 pt->br_stack_sz_plus += 1; 3428 } 3429 3430 pt->use_thread_stack = pt->synth_opts.callchain || 3431 pt->synth_opts.add_callchain || 3432 pt->synth_opts.thread_stack || 3433 pt->synth_opts.last_branch || 3434 pt->synth_opts.add_last_branch; 3435 3436 pt->callstack = pt->synth_opts.callchain || 3437 pt->synth_opts.add_callchain || 3438 pt->synth_opts.thread_stack; 3439 3440 err = intel_pt_synth_events(pt, session); 3441 if (err) 3442 goto err_delete_thread; 3443 3444 intel_pt_setup_pebs_events(pt); 3445 3446 if (pt->sampling_mode || list_empty(&session->auxtrace_index)) 3447 err = auxtrace_queue_data(session, true, true); 3448 else 3449 err = auxtrace_queues__process_index(&pt->queues, session); 3450 if (err) 3451 goto err_delete_thread; 3452 3453 if (pt->queues.populated) 3454 pt->data_queued = true; 3455 3456 if (pt->timeless_decoding) 3457 pr_debug2("Intel PT decoding without timestamps\n"); 3458 3459 return 0; 3460 3461 err_delete_thread: 3462 zfree(&pt->chain); 3463 thread__zput(pt->unknown_thread); 3464 err_free_queues: 3465 intel_pt_log_disable(); 3466 auxtrace_queues__free(&pt->queues); 3467 session->auxtrace = NULL; 3468 err_free: 3469 addr_filters__exit(&pt->filts); 3470 zfree(&pt->filter); 3471 zfree(&pt->time_ranges); 3472 free(pt); 3473 return err; 3474 } 3475