xref: /linux/tools/perf/util/intel-pt.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39 
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41 
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46 
47 #define MAX_TIMESTAMP (~0ULL)
48 
49 struct range {
50 	u64 start;
51 	u64 end;
52 };
53 
54 struct intel_pt {
55 	struct auxtrace auxtrace;
56 	struct auxtrace_queues queues;
57 	struct auxtrace_heap heap;
58 	u32 auxtrace_type;
59 	struct perf_session *session;
60 	struct machine *machine;
61 	struct evsel *switch_evsel;
62 	struct thread *unknown_thread;
63 	bool timeless_decoding;
64 	bool sampling_mode;
65 	bool snapshot_mode;
66 	bool per_cpu_mmaps;
67 	bool have_tsc;
68 	bool data_queued;
69 	bool est_tsc;
70 	bool sync_switch;
71 	bool mispred_all;
72 	bool use_thread_stack;
73 	bool callstack;
74 	unsigned int br_stack_sz;
75 	unsigned int br_stack_sz_plus;
76 	int have_sched_switch;
77 	u32 pmu_type;
78 	u64 kernel_start;
79 	u64 switch_ip;
80 	u64 ptss_ip;
81 
82 	struct perf_tsc_conversion tc;
83 	bool cap_user_time_zero;
84 
85 	struct itrace_synth_opts synth_opts;
86 
87 	bool sample_instructions;
88 	u64 instructions_sample_type;
89 	u64 instructions_id;
90 
91 	bool sample_branches;
92 	u32 branches_filter;
93 	u64 branches_sample_type;
94 	u64 branches_id;
95 
96 	bool sample_transactions;
97 	u64 transactions_sample_type;
98 	u64 transactions_id;
99 
100 	bool sample_ptwrites;
101 	u64 ptwrites_sample_type;
102 	u64 ptwrites_id;
103 
104 	bool sample_pwr_events;
105 	u64 pwr_events_sample_type;
106 	u64 mwait_id;
107 	u64 pwre_id;
108 	u64 exstop_id;
109 	u64 pwrx_id;
110 	u64 cbr_id;
111 
112 	bool sample_pebs;
113 	struct evsel *pebs_evsel;
114 
115 	u64 tsc_bit;
116 	u64 mtc_bit;
117 	u64 mtc_freq_bits;
118 	u32 tsc_ctc_ratio_n;
119 	u32 tsc_ctc_ratio_d;
120 	u64 cyc_bit;
121 	u64 noretcomp_bit;
122 	unsigned max_non_turbo_ratio;
123 	unsigned cbr2khz;
124 
125 	unsigned long num_events;
126 
127 	char *filter;
128 	struct addr_filters filts;
129 
130 	struct range *time_ranges;
131 	unsigned int range_cnt;
132 
133 	struct ip_callchain *chain;
134 	struct branch_stack *br_stack;
135 };
136 
137 enum switch_state {
138 	INTEL_PT_SS_NOT_TRACING,
139 	INTEL_PT_SS_UNKNOWN,
140 	INTEL_PT_SS_TRACING,
141 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
142 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
143 };
144 
145 struct intel_pt_queue {
146 	struct intel_pt *pt;
147 	unsigned int queue_nr;
148 	struct auxtrace_buffer *buffer;
149 	struct auxtrace_buffer *old_buffer;
150 	void *decoder;
151 	const struct intel_pt_state *state;
152 	struct ip_callchain *chain;
153 	struct branch_stack *last_branch;
154 	union perf_event *event_buf;
155 	bool on_heap;
156 	bool stop;
157 	bool step_through_buffers;
158 	bool use_buffer_pid_tid;
159 	bool sync_switch;
160 	pid_t pid, tid;
161 	int cpu;
162 	int switch_state;
163 	pid_t next_tid;
164 	struct thread *thread;
165 	bool exclude_kernel;
166 	bool have_sample;
167 	u64 time;
168 	u64 timestamp;
169 	u64 sel_timestamp;
170 	bool sel_start;
171 	unsigned int sel_idx;
172 	u32 flags;
173 	u16 insn_len;
174 	u64 last_insn_cnt;
175 	u64 ipc_insn_cnt;
176 	u64 ipc_cyc_cnt;
177 	u64 last_in_insn_cnt;
178 	u64 last_in_cyc_cnt;
179 	u64 last_br_insn_cnt;
180 	u64 last_br_cyc_cnt;
181 	unsigned int cbr_seen;
182 	char insn[INTEL_PT_INSN_BUF_SZ];
183 };
184 
185 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
186 			  unsigned char *buf, size_t len)
187 {
188 	struct intel_pt_pkt packet;
189 	size_t pos = 0;
190 	int ret, pkt_len, i;
191 	char desc[INTEL_PT_PKT_DESC_MAX];
192 	const char *color = PERF_COLOR_BLUE;
193 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
194 
195 	color_fprintf(stdout, color,
196 		      ". ... Intel Processor Trace data: size %zu bytes\n",
197 		      len);
198 
199 	while (len) {
200 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
201 		if (ret > 0)
202 			pkt_len = ret;
203 		else
204 			pkt_len = 1;
205 		printf(".");
206 		color_fprintf(stdout, color, "  %08x: ", pos);
207 		for (i = 0; i < pkt_len; i++)
208 			color_fprintf(stdout, color, " %02x", buf[i]);
209 		for (; i < 16; i++)
210 			color_fprintf(stdout, color, "   ");
211 		if (ret > 0) {
212 			ret = intel_pt_pkt_desc(&packet, desc,
213 						INTEL_PT_PKT_DESC_MAX);
214 			if (ret > 0)
215 				color_fprintf(stdout, color, " %s\n", desc);
216 		} else {
217 			color_fprintf(stdout, color, " Bad packet!\n");
218 		}
219 		pos += pkt_len;
220 		buf += pkt_len;
221 		len -= pkt_len;
222 	}
223 }
224 
225 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
226 				size_t len)
227 {
228 	printf(".\n");
229 	intel_pt_dump(pt, buf, len);
230 }
231 
232 static void intel_pt_log_event(union perf_event *event)
233 {
234 	FILE *f = intel_pt_log_fp();
235 
236 	if (!intel_pt_enable_logging || !f)
237 		return;
238 
239 	perf_event__fprintf(event, NULL, f);
240 }
241 
242 static void intel_pt_dump_sample(struct perf_session *session,
243 				 struct perf_sample *sample)
244 {
245 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
246 					   auxtrace);
247 
248 	printf("\n");
249 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
250 }
251 
252 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
253 {
254 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
255 	int n = pt->synth_opts.range_num;
256 
257 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
258 		return true;
259 
260 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
261 		return false;
262 
263 	/* perf_time__ranges_skip_sample does not work if time is zero */
264 	if (!tm)
265 		tm = 1;
266 
267 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
268 }
269 
270 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
271 				   struct auxtrace_buffer *b)
272 {
273 	bool consecutive = false;
274 	void *start;
275 
276 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
277 				      pt->have_tsc, &consecutive);
278 	if (!start)
279 		return -EINVAL;
280 	b->use_size = b->data + b->size - start;
281 	b->use_data = start;
282 	if (b->use_size && consecutive)
283 		b->consecutive = true;
284 	return 0;
285 }
286 
287 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
288 			       struct auxtrace_buffer *buffer,
289 			       struct auxtrace_buffer *old_buffer,
290 			       struct intel_pt_buffer *b)
291 {
292 	bool might_overlap;
293 
294 	if (!buffer->data) {
295 		int fd = perf_data__fd(ptq->pt->session->data);
296 
297 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
298 		if (!buffer->data)
299 			return -ENOMEM;
300 	}
301 
302 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
303 	if (might_overlap && !buffer->consecutive && old_buffer &&
304 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
305 		return -ENOMEM;
306 
307 	if (buffer->use_data) {
308 		b->len = buffer->use_size;
309 		b->buf = buffer->use_data;
310 	} else {
311 		b->len = buffer->size;
312 		b->buf = buffer->data;
313 	}
314 	b->ref_timestamp = buffer->reference;
315 
316 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
317 		b->consecutive = false;
318 		b->trace_nr = buffer->buffer_nr + 1;
319 	} else {
320 		b->consecutive = true;
321 	}
322 
323 	return 0;
324 }
325 
326 /* Do not drop buffers with references - refer intel_pt_get_trace() */
327 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
328 					   struct auxtrace_buffer *buffer)
329 {
330 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
331 		return;
332 
333 	auxtrace_buffer__drop_data(buffer);
334 }
335 
336 /* Must be serialized with respect to intel_pt_get_trace() */
337 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
338 			      void *cb_data)
339 {
340 	struct intel_pt_queue *ptq = data;
341 	struct auxtrace_buffer *buffer = ptq->buffer;
342 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
343 	struct auxtrace_queue *queue;
344 	int err = 0;
345 
346 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
347 
348 	while (1) {
349 		struct intel_pt_buffer b = { .len = 0 };
350 
351 		buffer = auxtrace_buffer__next(queue, buffer);
352 		if (!buffer)
353 			break;
354 
355 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
356 		if (err)
357 			break;
358 
359 		if (b.len) {
360 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
361 			old_buffer = buffer;
362 		} else {
363 			intel_pt_lookahead_drop_buffer(ptq, buffer);
364 			continue;
365 		}
366 
367 		err = cb(&b, cb_data);
368 		if (err)
369 			break;
370 	}
371 
372 	if (buffer != old_buffer)
373 		intel_pt_lookahead_drop_buffer(ptq, buffer);
374 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
375 
376 	return err;
377 }
378 
379 /*
380  * This function assumes data is processed sequentially only.
381  * Must be serialized with respect to intel_pt_lookahead()
382  */
383 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
384 {
385 	struct intel_pt_queue *ptq = data;
386 	struct auxtrace_buffer *buffer = ptq->buffer;
387 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
388 	struct auxtrace_queue *queue;
389 	int err;
390 
391 	if (ptq->stop) {
392 		b->len = 0;
393 		return 0;
394 	}
395 
396 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
397 
398 	buffer = auxtrace_buffer__next(queue, buffer);
399 	if (!buffer) {
400 		if (old_buffer)
401 			auxtrace_buffer__drop_data(old_buffer);
402 		b->len = 0;
403 		return 0;
404 	}
405 
406 	ptq->buffer = buffer;
407 
408 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
409 	if (err)
410 		return err;
411 
412 	if (ptq->step_through_buffers)
413 		ptq->stop = true;
414 
415 	if (b->len) {
416 		if (old_buffer)
417 			auxtrace_buffer__drop_data(old_buffer);
418 		ptq->old_buffer = buffer;
419 	} else {
420 		auxtrace_buffer__drop_data(buffer);
421 		return intel_pt_get_trace(b, data);
422 	}
423 
424 	return 0;
425 }
426 
427 struct intel_pt_cache_entry {
428 	struct auxtrace_cache_entry	entry;
429 	u64				insn_cnt;
430 	u64				byte_cnt;
431 	enum intel_pt_insn_op		op;
432 	enum intel_pt_insn_branch	branch;
433 	int				length;
434 	int32_t				rel;
435 	char				insn[INTEL_PT_INSN_BUF_SZ];
436 };
437 
438 static int intel_pt_config_div(const char *var, const char *value, void *data)
439 {
440 	int *d = data;
441 	long val;
442 
443 	if (!strcmp(var, "intel-pt.cache-divisor")) {
444 		val = strtol(value, NULL, 0);
445 		if (val > 0 && val <= INT_MAX)
446 			*d = val;
447 	}
448 
449 	return 0;
450 }
451 
452 static int intel_pt_cache_divisor(void)
453 {
454 	static int d;
455 
456 	if (d)
457 		return d;
458 
459 	perf_config(intel_pt_config_div, &d);
460 
461 	if (!d)
462 		d = 64;
463 
464 	return d;
465 }
466 
467 static unsigned int intel_pt_cache_size(struct dso *dso,
468 					struct machine *machine)
469 {
470 	off_t size;
471 
472 	size = dso__data_size(dso, machine);
473 	size /= intel_pt_cache_divisor();
474 	if (size < 1000)
475 		return 10;
476 	if (size > (1 << 21))
477 		return 21;
478 	return 32 - __builtin_clz(size);
479 }
480 
481 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
482 					     struct machine *machine)
483 {
484 	struct auxtrace_cache *c;
485 	unsigned int bits;
486 
487 	if (dso->auxtrace_cache)
488 		return dso->auxtrace_cache;
489 
490 	bits = intel_pt_cache_size(dso, machine);
491 
492 	/* Ignoring cache creation failure */
493 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
494 
495 	dso->auxtrace_cache = c;
496 
497 	return c;
498 }
499 
500 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
501 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
502 			      struct intel_pt_insn *intel_pt_insn)
503 {
504 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
505 	struct intel_pt_cache_entry *e;
506 	int err;
507 
508 	if (!c)
509 		return -ENOMEM;
510 
511 	e = auxtrace_cache__alloc_entry(c);
512 	if (!e)
513 		return -ENOMEM;
514 
515 	e->insn_cnt = insn_cnt;
516 	e->byte_cnt = byte_cnt;
517 	e->op = intel_pt_insn->op;
518 	e->branch = intel_pt_insn->branch;
519 	e->length = intel_pt_insn->length;
520 	e->rel = intel_pt_insn->rel;
521 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
522 
523 	err = auxtrace_cache__add(c, offset, &e->entry);
524 	if (err)
525 		auxtrace_cache__free_entry(c, e);
526 
527 	return err;
528 }
529 
530 static struct intel_pt_cache_entry *
531 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
532 {
533 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
534 
535 	if (!c)
536 		return NULL;
537 
538 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
539 }
540 
541 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
542 				      u64 offset)
543 {
544 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
545 
546 	if (!c)
547 		return;
548 
549 	auxtrace_cache__remove(dso->auxtrace_cache, offset);
550 }
551 
552 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
553 {
554 	return ip >= pt->kernel_start ?
555 	       PERF_RECORD_MISC_KERNEL :
556 	       PERF_RECORD_MISC_USER;
557 }
558 
559 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
560 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
561 				   uint64_t to_ip, uint64_t max_insn_cnt,
562 				   void *data)
563 {
564 	struct intel_pt_queue *ptq = data;
565 	struct machine *machine = ptq->pt->machine;
566 	struct thread *thread;
567 	struct addr_location al;
568 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
569 	ssize_t len;
570 	int x86_64;
571 	u8 cpumode;
572 	u64 offset, start_offset, start_ip;
573 	u64 insn_cnt = 0;
574 	bool one_map = true;
575 
576 	intel_pt_insn->length = 0;
577 
578 	if (to_ip && *ip == to_ip)
579 		goto out_no_cache;
580 
581 	cpumode = intel_pt_cpumode(ptq->pt, *ip);
582 
583 	thread = ptq->thread;
584 	if (!thread) {
585 		if (cpumode != PERF_RECORD_MISC_KERNEL)
586 			return -EINVAL;
587 		thread = ptq->pt->unknown_thread;
588 	}
589 
590 	while (1) {
591 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
592 			return -EINVAL;
593 
594 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
595 		    dso__data_status_seen(al.map->dso,
596 					  DSO_DATA_STATUS_SEEN_ITRACE))
597 			return -ENOENT;
598 
599 		offset = al.map->map_ip(al.map, *ip);
600 
601 		if (!to_ip && one_map) {
602 			struct intel_pt_cache_entry *e;
603 
604 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
605 			if (e &&
606 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
607 				*insn_cnt_ptr = e->insn_cnt;
608 				*ip += e->byte_cnt;
609 				intel_pt_insn->op = e->op;
610 				intel_pt_insn->branch = e->branch;
611 				intel_pt_insn->length = e->length;
612 				intel_pt_insn->rel = e->rel;
613 				memcpy(intel_pt_insn->buf, e->insn,
614 				       INTEL_PT_INSN_BUF_SZ);
615 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
616 				return 0;
617 			}
618 		}
619 
620 		start_offset = offset;
621 		start_ip = *ip;
622 
623 		/* Load maps to ensure dso->is_64_bit has been updated */
624 		map__load(al.map);
625 
626 		x86_64 = al.map->dso->is_64_bit;
627 
628 		while (1) {
629 			len = dso__data_read_offset(al.map->dso, machine,
630 						    offset, buf,
631 						    INTEL_PT_INSN_BUF_SZ);
632 			if (len <= 0)
633 				return -EINVAL;
634 
635 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
636 				return -EINVAL;
637 
638 			intel_pt_log_insn(intel_pt_insn, *ip);
639 
640 			insn_cnt += 1;
641 
642 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
643 				goto out;
644 
645 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
646 				goto out_no_cache;
647 
648 			*ip += intel_pt_insn->length;
649 
650 			if (to_ip && *ip == to_ip)
651 				goto out_no_cache;
652 
653 			if (*ip >= al.map->end)
654 				break;
655 
656 			offset += intel_pt_insn->length;
657 		}
658 		one_map = false;
659 	}
660 out:
661 	*insn_cnt_ptr = insn_cnt;
662 
663 	if (!one_map)
664 		goto out_no_cache;
665 
666 	/*
667 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
668 	 * entries.
669 	 */
670 	if (to_ip) {
671 		struct intel_pt_cache_entry *e;
672 
673 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
674 		if (e)
675 			return 0;
676 	}
677 
678 	/* Ignore cache errors */
679 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
680 			   *ip - start_ip, intel_pt_insn);
681 
682 	return 0;
683 
684 out_no_cache:
685 	*insn_cnt_ptr = insn_cnt;
686 	return 0;
687 }
688 
689 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
690 				  uint64_t offset, const char *filename)
691 {
692 	struct addr_filter *filt;
693 	bool have_filter   = false;
694 	bool hit_tracestop = false;
695 	bool hit_filter    = false;
696 
697 	list_for_each_entry(filt, &pt->filts.head, list) {
698 		if (filt->start)
699 			have_filter = true;
700 
701 		if ((filename && !filt->filename) ||
702 		    (!filename && filt->filename) ||
703 		    (filename && strcmp(filename, filt->filename)))
704 			continue;
705 
706 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
707 			continue;
708 
709 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
710 			     ip, offset, filename ? filename : "[kernel]",
711 			     filt->start ? "filter" : "stop",
712 			     filt->addr, filt->size);
713 
714 		if (filt->start)
715 			hit_filter = true;
716 		else
717 			hit_tracestop = true;
718 	}
719 
720 	if (!hit_tracestop && !hit_filter)
721 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
722 			     ip, offset, filename ? filename : "[kernel]");
723 
724 	return hit_tracestop || (have_filter && !hit_filter);
725 }
726 
727 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
728 {
729 	struct intel_pt_queue *ptq = data;
730 	struct thread *thread;
731 	struct addr_location al;
732 	u8 cpumode;
733 	u64 offset;
734 
735 	if (ip >= ptq->pt->kernel_start)
736 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
737 
738 	cpumode = PERF_RECORD_MISC_USER;
739 
740 	thread = ptq->thread;
741 	if (!thread)
742 		return -EINVAL;
743 
744 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
745 		return -EINVAL;
746 
747 	offset = al.map->map_ip(al.map, ip);
748 
749 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
750 				     al.map->dso->long_name);
751 }
752 
753 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
754 {
755 	return __intel_pt_pgd_ip(ip, data) > 0;
756 }
757 
758 static bool intel_pt_get_config(struct intel_pt *pt,
759 				struct perf_event_attr *attr, u64 *config)
760 {
761 	if (attr->type == pt->pmu_type) {
762 		if (config)
763 			*config = attr->config;
764 		return true;
765 	}
766 
767 	return false;
768 }
769 
770 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
771 {
772 	struct evsel *evsel;
773 
774 	evlist__for_each_entry(pt->session->evlist, evsel) {
775 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
776 		    !evsel->core.attr.exclude_kernel)
777 			return false;
778 	}
779 	return true;
780 }
781 
782 static bool intel_pt_return_compression(struct intel_pt *pt)
783 {
784 	struct evsel *evsel;
785 	u64 config;
786 
787 	if (!pt->noretcomp_bit)
788 		return true;
789 
790 	evlist__for_each_entry(pt->session->evlist, evsel) {
791 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
792 		    (config & pt->noretcomp_bit))
793 			return false;
794 	}
795 	return true;
796 }
797 
798 static bool intel_pt_branch_enable(struct intel_pt *pt)
799 {
800 	struct evsel *evsel;
801 	u64 config;
802 
803 	evlist__for_each_entry(pt->session->evlist, evsel) {
804 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
805 		    (config & 1) && !(config & 0x2000))
806 			return false;
807 	}
808 	return true;
809 }
810 
811 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
812 {
813 	struct evsel *evsel;
814 	unsigned int shift;
815 	u64 config;
816 
817 	if (!pt->mtc_freq_bits)
818 		return 0;
819 
820 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
821 		config >>= 1;
822 
823 	evlist__for_each_entry(pt->session->evlist, evsel) {
824 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
825 			return (config & pt->mtc_freq_bits) >> shift;
826 	}
827 	return 0;
828 }
829 
830 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
831 {
832 	struct evsel *evsel;
833 	bool timeless_decoding = true;
834 	u64 config;
835 
836 	if (!pt->tsc_bit || !pt->cap_user_time_zero)
837 		return true;
838 
839 	evlist__for_each_entry(pt->session->evlist, evsel) {
840 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
841 			return true;
842 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
843 			if (config & pt->tsc_bit)
844 				timeless_decoding = false;
845 			else
846 				return true;
847 		}
848 	}
849 	return timeless_decoding;
850 }
851 
852 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
853 {
854 	struct evsel *evsel;
855 
856 	evlist__for_each_entry(pt->session->evlist, evsel) {
857 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
858 		    !evsel->core.attr.exclude_kernel)
859 			return true;
860 	}
861 	return false;
862 }
863 
864 static bool intel_pt_have_tsc(struct intel_pt *pt)
865 {
866 	struct evsel *evsel;
867 	bool have_tsc = false;
868 	u64 config;
869 
870 	if (!pt->tsc_bit)
871 		return false;
872 
873 	evlist__for_each_entry(pt->session->evlist, evsel) {
874 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
875 			if (config & pt->tsc_bit)
876 				have_tsc = true;
877 			else
878 				return false;
879 		}
880 	}
881 	return have_tsc;
882 }
883 
884 static bool intel_pt_sampling_mode(struct intel_pt *pt)
885 {
886 	struct evsel *evsel;
887 
888 	evlist__for_each_entry(pt->session->evlist, evsel) {
889 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
890 		    evsel->core.attr.aux_sample_size)
891 			return true;
892 	}
893 	return false;
894 }
895 
896 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
897 {
898 	u64 quot, rem;
899 
900 	quot = ns / pt->tc.time_mult;
901 	rem  = ns % pt->tc.time_mult;
902 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
903 		pt->tc.time_mult;
904 }
905 
906 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
907 {
908 	size_t sz = sizeof(struct ip_callchain);
909 
910 	/* Add 1 to callchain_sz for callchain context */
911 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
912 	return zalloc(sz);
913 }
914 
915 static int intel_pt_callchain_init(struct intel_pt *pt)
916 {
917 	struct evsel *evsel;
918 
919 	evlist__for_each_entry(pt->session->evlist, evsel) {
920 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
921 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
922 	}
923 
924 	pt->chain = intel_pt_alloc_chain(pt);
925 	if (!pt->chain)
926 		return -ENOMEM;
927 
928 	return 0;
929 }
930 
931 static void intel_pt_add_callchain(struct intel_pt *pt,
932 				   struct perf_sample *sample)
933 {
934 	struct thread *thread = machine__findnew_thread(pt->machine,
935 							sample->pid,
936 							sample->tid);
937 
938 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
939 				  pt->synth_opts.callchain_sz + 1, sample->ip,
940 				  pt->kernel_start);
941 
942 	sample->callchain = pt->chain;
943 }
944 
945 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
946 {
947 	size_t sz = sizeof(struct branch_stack);
948 
949 	sz += entry_cnt * sizeof(struct branch_entry);
950 	return zalloc(sz);
951 }
952 
953 static int intel_pt_br_stack_init(struct intel_pt *pt)
954 {
955 	struct evsel *evsel;
956 
957 	evlist__for_each_entry(pt->session->evlist, evsel) {
958 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
959 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
960 	}
961 
962 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
963 	if (!pt->br_stack)
964 		return -ENOMEM;
965 
966 	return 0;
967 }
968 
969 static void intel_pt_add_br_stack(struct intel_pt *pt,
970 				  struct perf_sample *sample)
971 {
972 	struct thread *thread = machine__findnew_thread(pt->machine,
973 							sample->pid,
974 							sample->tid);
975 
976 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
977 				     pt->br_stack_sz, sample->ip,
978 				     pt->kernel_start);
979 
980 	sample->branch_stack = pt->br_stack;
981 }
982 
983 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
984 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
985 
986 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
987 						   unsigned int queue_nr)
988 {
989 	struct intel_pt_params params = { .get_trace = 0, };
990 	struct perf_env *env = pt->machine->env;
991 	struct intel_pt_queue *ptq;
992 
993 	ptq = zalloc(sizeof(struct intel_pt_queue));
994 	if (!ptq)
995 		return NULL;
996 
997 	if (pt->synth_opts.callchain) {
998 		ptq->chain = intel_pt_alloc_chain(pt);
999 		if (!ptq->chain)
1000 			goto out_free;
1001 	}
1002 
1003 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1004 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1005 
1006 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1007 		if (!ptq->last_branch)
1008 			goto out_free;
1009 	}
1010 
1011 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1012 	if (!ptq->event_buf)
1013 		goto out_free;
1014 
1015 	ptq->pt = pt;
1016 	ptq->queue_nr = queue_nr;
1017 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1018 	ptq->pid = -1;
1019 	ptq->tid = -1;
1020 	ptq->cpu = -1;
1021 	ptq->next_tid = -1;
1022 
1023 	params.get_trace = intel_pt_get_trace;
1024 	params.walk_insn = intel_pt_walk_next_insn;
1025 	params.lookahead = intel_pt_lookahead;
1026 	params.data = ptq;
1027 	params.return_compression = intel_pt_return_compression(pt);
1028 	params.branch_enable = intel_pt_branch_enable(pt);
1029 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1030 	params.mtc_period = intel_pt_mtc_period(pt);
1031 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1032 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1033 	params.quick = pt->synth_opts.quick;
1034 
1035 	if (pt->filts.cnt > 0)
1036 		params.pgd_ip = intel_pt_pgd_ip;
1037 
1038 	if (pt->synth_opts.instructions) {
1039 		if (pt->synth_opts.period) {
1040 			switch (pt->synth_opts.period_type) {
1041 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1042 				params.period_type =
1043 						INTEL_PT_PERIOD_INSTRUCTIONS;
1044 				params.period = pt->synth_opts.period;
1045 				break;
1046 			case PERF_ITRACE_PERIOD_TICKS:
1047 				params.period_type = INTEL_PT_PERIOD_TICKS;
1048 				params.period = pt->synth_opts.period;
1049 				break;
1050 			case PERF_ITRACE_PERIOD_NANOSECS:
1051 				params.period_type = INTEL_PT_PERIOD_TICKS;
1052 				params.period = intel_pt_ns_to_ticks(pt,
1053 							pt->synth_opts.period);
1054 				break;
1055 			default:
1056 				break;
1057 			}
1058 		}
1059 
1060 		if (!params.period) {
1061 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1062 			params.period = 1;
1063 		}
1064 	}
1065 
1066 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1067 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1068 
1069 	ptq->decoder = intel_pt_decoder_new(&params);
1070 	if (!ptq->decoder)
1071 		goto out_free;
1072 
1073 	return ptq;
1074 
1075 out_free:
1076 	zfree(&ptq->event_buf);
1077 	zfree(&ptq->last_branch);
1078 	zfree(&ptq->chain);
1079 	free(ptq);
1080 	return NULL;
1081 }
1082 
1083 static void intel_pt_free_queue(void *priv)
1084 {
1085 	struct intel_pt_queue *ptq = priv;
1086 
1087 	if (!ptq)
1088 		return;
1089 	thread__zput(ptq->thread);
1090 	intel_pt_decoder_free(ptq->decoder);
1091 	zfree(&ptq->event_buf);
1092 	zfree(&ptq->last_branch);
1093 	zfree(&ptq->chain);
1094 	free(ptq);
1095 }
1096 
1097 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1098 				     struct auxtrace_queue *queue)
1099 {
1100 	struct intel_pt_queue *ptq = queue->priv;
1101 
1102 	if (queue->tid == -1 || pt->have_sched_switch) {
1103 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1104 		thread__zput(ptq->thread);
1105 	}
1106 
1107 	if (!ptq->thread && ptq->tid != -1)
1108 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1109 
1110 	if (ptq->thread) {
1111 		ptq->pid = ptq->thread->pid_;
1112 		if (queue->cpu == -1)
1113 			ptq->cpu = ptq->thread->cpu;
1114 	}
1115 }
1116 
1117 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1118 {
1119 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1120 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1121 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1122 		if (ptq->state->to_ip)
1123 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1124 				     PERF_IP_FLAG_ASYNC |
1125 				     PERF_IP_FLAG_INTERRUPT;
1126 		else
1127 			ptq->flags = PERF_IP_FLAG_BRANCH |
1128 				     PERF_IP_FLAG_TRACE_END;
1129 		ptq->insn_len = 0;
1130 	} else {
1131 		if (ptq->state->from_ip)
1132 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1133 		else
1134 			ptq->flags = PERF_IP_FLAG_BRANCH |
1135 				     PERF_IP_FLAG_TRACE_BEGIN;
1136 		if (ptq->state->flags & INTEL_PT_IN_TX)
1137 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1138 		ptq->insn_len = ptq->state->insn_len;
1139 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1140 	}
1141 
1142 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1143 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1144 	if (ptq->state->type & INTEL_PT_TRACE_END)
1145 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1146 }
1147 
1148 static void intel_pt_setup_time_range(struct intel_pt *pt,
1149 				      struct intel_pt_queue *ptq)
1150 {
1151 	if (!pt->range_cnt)
1152 		return;
1153 
1154 	ptq->sel_timestamp = pt->time_ranges[0].start;
1155 	ptq->sel_idx = 0;
1156 
1157 	if (ptq->sel_timestamp) {
1158 		ptq->sel_start = true;
1159 	} else {
1160 		ptq->sel_timestamp = pt->time_ranges[0].end;
1161 		ptq->sel_start = false;
1162 	}
1163 }
1164 
1165 static int intel_pt_setup_queue(struct intel_pt *pt,
1166 				struct auxtrace_queue *queue,
1167 				unsigned int queue_nr)
1168 {
1169 	struct intel_pt_queue *ptq = queue->priv;
1170 
1171 	if (list_empty(&queue->head))
1172 		return 0;
1173 
1174 	if (!ptq) {
1175 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1176 		if (!ptq)
1177 			return -ENOMEM;
1178 		queue->priv = ptq;
1179 
1180 		if (queue->cpu != -1)
1181 			ptq->cpu = queue->cpu;
1182 		ptq->tid = queue->tid;
1183 
1184 		ptq->cbr_seen = UINT_MAX;
1185 
1186 		if (pt->sampling_mode && !pt->snapshot_mode &&
1187 		    pt->timeless_decoding)
1188 			ptq->step_through_buffers = true;
1189 
1190 		ptq->sync_switch = pt->sync_switch;
1191 
1192 		intel_pt_setup_time_range(pt, ptq);
1193 	}
1194 
1195 	if (!ptq->on_heap &&
1196 	    (!ptq->sync_switch ||
1197 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1198 		const struct intel_pt_state *state;
1199 		int ret;
1200 
1201 		if (pt->timeless_decoding)
1202 			return 0;
1203 
1204 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1205 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1206 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1207 
1208 		if (ptq->sel_start && ptq->sel_timestamp) {
1209 			ret = intel_pt_fast_forward(ptq->decoder,
1210 						    ptq->sel_timestamp);
1211 			if (ret)
1212 				return ret;
1213 		}
1214 
1215 		while (1) {
1216 			state = intel_pt_decode(ptq->decoder);
1217 			if (state->err) {
1218 				if (state->err == INTEL_PT_ERR_NODATA) {
1219 					intel_pt_log("queue %u has no timestamp\n",
1220 						     queue_nr);
1221 					return 0;
1222 				}
1223 				continue;
1224 			}
1225 			if (state->timestamp)
1226 				break;
1227 		}
1228 
1229 		ptq->timestamp = state->timestamp;
1230 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1231 			     queue_nr, ptq->timestamp);
1232 		ptq->state = state;
1233 		ptq->have_sample = true;
1234 		if (ptq->sel_start && ptq->sel_timestamp &&
1235 		    ptq->timestamp < ptq->sel_timestamp)
1236 			ptq->have_sample = false;
1237 		intel_pt_sample_flags(ptq);
1238 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1239 		if (ret)
1240 			return ret;
1241 		ptq->on_heap = true;
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 static int intel_pt_setup_queues(struct intel_pt *pt)
1248 {
1249 	unsigned int i;
1250 	int ret;
1251 
1252 	for (i = 0; i < pt->queues.nr_queues; i++) {
1253 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1254 		if (ret)
1255 			return ret;
1256 	}
1257 	return 0;
1258 }
1259 
1260 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1261 {
1262 	return pt->synth_opts.initial_skip &&
1263 	       pt->num_events++ < pt->synth_opts.initial_skip;
1264 }
1265 
1266 /*
1267  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1268  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1269  * from this decoder state.
1270  */
1271 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1272 {
1273 	return pt->synth_opts.initial_skip &&
1274 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1275 }
1276 
1277 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1278 				   union perf_event *event,
1279 				   struct perf_sample *sample)
1280 {
1281 	event->sample.header.type = PERF_RECORD_SAMPLE;
1282 	event->sample.header.size = sizeof(struct perf_event_header);
1283 
1284 	sample->pid = ptq->pid;
1285 	sample->tid = ptq->tid;
1286 	sample->cpu = ptq->cpu;
1287 	sample->insn_len = ptq->insn_len;
1288 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1289 }
1290 
1291 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1292 				   struct intel_pt_queue *ptq,
1293 				   union perf_event *event,
1294 				   struct perf_sample *sample)
1295 {
1296 	intel_pt_prep_a_sample(ptq, event, sample);
1297 
1298 	if (!pt->timeless_decoding)
1299 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1300 
1301 	sample->ip = ptq->state->from_ip;
1302 	sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1303 	sample->addr = ptq->state->to_ip;
1304 	sample->period = 1;
1305 	sample->flags = ptq->flags;
1306 
1307 	event->sample.header.misc = sample->cpumode;
1308 }
1309 
1310 static int intel_pt_inject_event(union perf_event *event,
1311 				 struct perf_sample *sample, u64 type)
1312 {
1313 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1314 	return perf_event__synthesize_sample(event, type, 0, sample);
1315 }
1316 
1317 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1318 				      union perf_event *event,
1319 				      struct perf_sample *sample, u64 type)
1320 {
1321 	if (!pt->synth_opts.inject)
1322 		return 0;
1323 
1324 	return intel_pt_inject_event(event, sample, type);
1325 }
1326 
1327 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1328 					union perf_event *event,
1329 					struct perf_sample *sample, u64 type)
1330 {
1331 	int ret;
1332 
1333 	ret = intel_pt_opt_inject(pt, event, sample, type);
1334 	if (ret)
1335 		return ret;
1336 
1337 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1338 	if (ret)
1339 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1340 
1341 	return ret;
1342 }
1343 
1344 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1345 {
1346 	struct intel_pt *pt = ptq->pt;
1347 	union perf_event *event = ptq->event_buf;
1348 	struct perf_sample sample = { .ip = 0, };
1349 	struct dummy_branch_stack {
1350 		u64			nr;
1351 		u64			hw_idx;
1352 		struct branch_entry	entries;
1353 	} dummy_bs;
1354 
1355 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1356 		return 0;
1357 
1358 	if (intel_pt_skip_event(pt))
1359 		return 0;
1360 
1361 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1362 
1363 	sample.id = ptq->pt->branches_id;
1364 	sample.stream_id = ptq->pt->branches_id;
1365 
1366 	/*
1367 	 * perf report cannot handle events without a branch stack when using
1368 	 * SORT_MODE__BRANCH so make a dummy one.
1369 	 */
1370 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1371 		dummy_bs = (struct dummy_branch_stack){
1372 			.nr = 1,
1373 			.hw_idx = -1ULL,
1374 			.entries = {
1375 				.from = sample.ip,
1376 				.to = sample.addr,
1377 			},
1378 		};
1379 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1380 	}
1381 
1382 	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1383 	if (sample.cyc_cnt) {
1384 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1385 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1386 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1387 	}
1388 
1389 	return intel_pt_deliver_synth_event(pt, event, &sample,
1390 					    pt->branches_sample_type);
1391 }
1392 
1393 static void intel_pt_prep_sample(struct intel_pt *pt,
1394 				 struct intel_pt_queue *ptq,
1395 				 union perf_event *event,
1396 				 struct perf_sample *sample)
1397 {
1398 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1399 
1400 	if (pt->synth_opts.callchain) {
1401 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1402 				     pt->synth_opts.callchain_sz + 1,
1403 				     sample->ip, pt->kernel_start);
1404 		sample->callchain = ptq->chain;
1405 	}
1406 
1407 	if (pt->synth_opts.last_branch) {
1408 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1409 					pt->br_stack_sz);
1410 		sample->branch_stack = ptq->last_branch;
1411 	}
1412 }
1413 
1414 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1415 {
1416 	struct intel_pt *pt = ptq->pt;
1417 	union perf_event *event = ptq->event_buf;
1418 	struct perf_sample sample = { .ip = 0, };
1419 
1420 	if (intel_pt_skip_event(pt))
1421 		return 0;
1422 
1423 	intel_pt_prep_sample(pt, ptq, event, &sample);
1424 
1425 	sample.id = ptq->pt->instructions_id;
1426 	sample.stream_id = ptq->pt->instructions_id;
1427 	if (pt->synth_opts.quick)
1428 		sample.period = 1;
1429 	else
1430 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1431 
1432 	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1433 	if (sample.cyc_cnt) {
1434 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1435 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1436 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1437 	}
1438 
1439 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1440 
1441 	return intel_pt_deliver_synth_event(pt, event, &sample,
1442 					    pt->instructions_sample_type);
1443 }
1444 
1445 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1446 {
1447 	struct intel_pt *pt = ptq->pt;
1448 	union perf_event *event = ptq->event_buf;
1449 	struct perf_sample sample = { .ip = 0, };
1450 
1451 	if (intel_pt_skip_event(pt))
1452 		return 0;
1453 
1454 	intel_pt_prep_sample(pt, ptq, event, &sample);
1455 
1456 	sample.id = ptq->pt->transactions_id;
1457 	sample.stream_id = ptq->pt->transactions_id;
1458 
1459 	return intel_pt_deliver_synth_event(pt, event, &sample,
1460 					    pt->transactions_sample_type);
1461 }
1462 
1463 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1464 				   struct intel_pt_queue *ptq,
1465 				   union perf_event *event,
1466 				   struct perf_sample *sample)
1467 {
1468 	intel_pt_prep_sample(pt, ptq, event, sample);
1469 
1470 	/*
1471 	 * Zero IP is used to mean "trace start" but that is not the case for
1472 	 * power or PTWRITE events with no IP, so clear the flags.
1473 	 */
1474 	if (!sample->ip)
1475 		sample->flags = 0;
1476 }
1477 
1478 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1479 {
1480 	struct intel_pt *pt = ptq->pt;
1481 	union perf_event *event = ptq->event_buf;
1482 	struct perf_sample sample = { .ip = 0, };
1483 	struct perf_synth_intel_ptwrite raw;
1484 
1485 	if (intel_pt_skip_event(pt))
1486 		return 0;
1487 
1488 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1489 
1490 	sample.id = ptq->pt->ptwrites_id;
1491 	sample.stream_id = ptq->pt->ptwrites_id;
1492 
1493 	raw.flags = 0;
1494 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1495 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1496 
1497 	sample.raw_size = perf_synth__raw_size(raw);
1498 	sample.raw_data = perf_synth__raw_data(&raw);
1499 
1500 	return intel_pt_deliver_synth_event(pt, event, &sample,
1501 					    pt->ptwrites_sample_type);
1502 }
1503 
1504 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1505 {
1506 	struct intel_pt *pt = ptq->pt;
1507 	union perf_event *event = ptq->event_buf;
1508 	struct perf_sample sample = { .ip = 0, };
1509 	struct perf_synth_intel_cbr raw;
1510 	u32 flags;
1511 
1512 	if (intel_pt_skip_cbr_event(pt))
1513 		return 0;
1514 
1515 	ptq->cbr_seen = ptq->state->cbr;
1516 
1517 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1518 
1519 	sample.id = ptq->pt->cbr_id;
1520 	sample.stream_id = ptq->pt->cbr_id;
1521 
1522 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1523 	raw.flags = cpu_to_le32(flags);
1524 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1525 	raw.reserved3 = 0;
1526 
1527 	sample.raw_size = perf_synth__raw_size(raw);
1528 	sample.raw_data = perf_synth__raw_data(&raw);
1529 
1530 	return intel_pt_deliver_synth_event(pt, event, &sample,
1531 					    pt->pwr_events_sample_type);
1532 }
1533 
1534 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1535 {
1536 	struct intel_pt *pt = ptq->pt;
1537 	union perf_event *event = ptq->event_buf;
1538 	struct perf_sample sample = { .ip = 0, };
1539 	struct perf_synth_intel_mwait raw;
1540 
1541 	if (intel_pt_skip_event(pt))
1542 		return 0;
1543 
1544 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1545 
1546 	sample.id = ptq->pt->mwait_id;
1547 	sample.stream_id = ptq->pt->mwait_id;
1548 
1549 	raw.reserved = 0;
1550 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1551 
1552 	sample.raw_size = perf_synth__raw_size(raw);
1553 	sample.raw_data = perf_synth__raw_data(&raw);
1554 
1555 	return intel_pt_deliver_synth_event(pt, event, &sample,
1556 					    pt->pwr_events_sample_type);
1557 }
1558 
1559 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1560 {
1561 	struct intel_pt *pt = ptq->pt;
1562 	union perf_event *event = ptq->event_buf;
1563 	struct perf_sample sample = { .ip = 0, };
1564 	struct perf_synth_intel_pwre raw;
1565 
1566 	if (intel_pt_skip_event(pt))
1567 		return 0;
1568 
1569 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1570 
1571 	sample.id = ptq->pt->pwre_id;
1572 	sample.stream_id = ptq->pt->pwre_id;
1573 
1574 	raw.reserved = 0;
1575 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1576 
1577 	sample.raw_size = perf_synth__raw_size(raw);
1578 	sample.raw_data = perf_synth__raw_data(&raw);
1579 
1580 	return intel_pt_deliver_synth_event(pt, event, &sample,
1581 					    pt->pwr_events_sample_type);
1582 }
1583 
1584 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1585 {
1586 	struct intel_pt *pt = ptq->pt;
1587 	union perf_event *event = ptq->event_buf;
1588 	struct perf_sample sample = { .ip = 0, };
1589 	struct perf_synth_intel_exstop raw;
1590 
1591 	if (intel_pt_skip_event(pt))
1592 		return 0;
1593 
1594 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1595 
1596 	sample.id = ptq->pt->exstop_id;
1597 	sample.stream_id = ptq->pt->exstop_id;
1598 
1599 	raw.flags = 0;
1600 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1601 
1602 	sample.raw_size = perf_synth__raw_size(raw);
1603 	sample.raw_data = perf_synth__raw_data(&raw);
1604 
1605 	return intel_pt_deliver_synth_event(pt, event, &sample,
1606 					    pt->pwr_events_sample_type);
1607 }
1608 
1609 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1610 {
1611 	struct intel_pt *pt = ptq->pt;
1612 	union perf_event *event = ptq->event_buf;
1613 	struct perf_sample sample = { .ip = 0, };
1614 	struct perf_synth_intel_pwrx raw;
1615 
1616 	if (intel_pt_skip_event(pt))
1617 		return 0;
1618 
1619 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1620 
1621 	sample.id = ptq->pt->pwrx_id;
1622 	sample.stream_id = ptq->pt->pwrx_id;
1623 
1624 	raw.reserved = 0;
1625 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1626 
1627 	sample.raw_size = perf_synth__raw_size(raw);
1628 	sample.raw_data = perf_synth__raw_data(&raw);
1629 
1630 	return intel_pt_deliver_synth_event(pt, event, &sample,
1631 					    pt->pwr_events_sample_type);
1632 }
1633 
1634 /*
1635  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1636  * intel_pt_add_gp_regs().
1637  */
1638 static const int pebs_gp_regs[] = {
1639 	[PERF_REG_X86_FLAGS]	= 1,
1640 	[PERF_REG_X86_IP]	= 2,
1641 	[PERF_REG_X86_AX]	= 3,
1642 	[PERF_REG_X86_CX]	= 4,
1643 	[PERF_REG_X86_DX]	= 5,
1644 	[PERF_REG_X86_BX]	= 6,
1645 	[PERF_REG_X86_SP]	= 7,
1646 	[PERF_REG_X86_BP]	= 8,
1647 	[PERF_REG_X86_SI]	= 9,
1648 	[PERF_REG_X86_DI]	= 10,
1649 	[PERF_REG_X86_R8]	= 11,
1650 	[PERF_REG_X86_R9]	= 12,
1651 	[PERF_REG_X86_R10]	= 13,
1652 	[PERF_REG_X86_R11]	= 14,
1653 	[PERF_REG_X86_R12]	= 15,
1654 	[PERF_REG_X86_R13]	= 16,
1655 	[PERF_REG_X86_R14]	= 17,
1656 	[PERF_REG_X86_R15]	= 18,
1657 };
1658 
1659 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1660 				 const struct intel_pt_blk_items *items,
1661 				 u64 regs_mask)
1662 {
1663 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1664 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1665 	u32 bit;
1666 	int i;
1667 
1668 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1669 		/* Get the PEBS gp_regs array index */
1670 		int n = pebs_gp_regs[i] - 1;
1671 
1672 		if (n < 0)
1673 			continue;
1674 		/*
1675 		 * Add only registers that were requested (i.e. 'regs_mask') and
1676 		 * that were provided (i.e. 'mask'), and update the resulting
1677 		 * mask (i.e. 'intr_regs->mask') accordingly.
1678 		 */
1679 		if (mask & 1 << n && regs_mask & bit) {
1680 			intr_regs->mask |= bit;
1681 			*pos++ = gp_regs[n];
1682 		}
1683 	}
1684 
1685 	return pos;
1686 }
1687 
1688 #ifndef PERF_REG_X86_XMM0
1689 #define PERF_REG_X86_XMM0 32
1690 #endif
1691 
1692 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1693 			     const struct intel_pt_blk_items *items,
1694 			     u64 regs_mask)
1695 {
1696 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1697 	const u64 *xmm = items->xmm;
1698 
1699 	/*
1700 	 * If there are any XMM registers, then there should be all of them.
1701 	 * Nevertheless, follow the logic to add only registers that were
1702 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1703 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1704 	 */
1705 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1706 
1707 	for (; mask; mask >>= 1, xmm++) {
1708 		if (mask & 1)
1709 			*pos++ = *xmm;
1710 	}
1711 }
1712 
1713 #define LBR_INFO_MISPRED	(1ULL << 63)
1714 #define LBR_INFO_IN_TX		(1ULL << 62)
1715 #define LBR_INFO_ABORT		(1ULL << 61)
1716 #define LBR_INFO_CYCLES		0xffff
1717 
1718 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1719 static u64 intel_pt_lbr_flags(u64 info)
1720 {
1721 	union {
1722 		struct branch_flags flags;
1723 		u64 result;
1724 	} u;
1725 
1726 	u.result	  = 0;
1727 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
1728 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
1729 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
1730 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
1731 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
1732 
1733 	return u.result;
1734 }
1735 
1736 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1737 			      const struct intel_pt_blk_items *items)
1738 {
1739 	u64 *to;
1740 	int i;
1741 
1742 	br_stack->nr = 0;
1743 
1744 	to = &br_stack->entries[0].from;
1745 
1746 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1747 		u32 mask = items->mask[i];
1748 		const u64 *from = items->val[i];
1749 
1750 		for (; mask; mask >>= 3, from += 3) {
1751 			if ((mask & 7) == 7) {
1752 				*to++ = from[0];
1753 				*to++ = from[1];
1754 				*to++ = intel_pt_lbr_flags(from[2]);
1755 				br_stack->nr += 1;
1756 			}
1757 		}
1758 	}
1759 }
1760 
1761 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1762 {
1763 	const struct intel_pt_blk_items *items = &ptq->state->items;
1764 	struct perf_sample sample = { .ip = 0, };
1765 	union perf_event *event = ptq->event_buf;
1766 	struct intel_pt *pt = ptq->pt;
1767 	struct evsel *evsel = pt->pebs_evsel;
1768 	u64 sample_type = evsel->core.attr.sample_type;
1769 	u64 id = evsel->core.id[0];
1770 	u8 cpumode;
1771 	u64 regs[8 * sizeof(sample.intr_regs.mask)];
1772 
1773 	if (intel_pt_skip_event(pt))
1774 		return 0;
1775 
1776 	intel_pt_prep_a_sample(ptq, event, &sample);
1777 
1778 	sample.id = id;
1779 	sample.stream_id = id;
1780 
1781 	if (!evsel->core.attr.freq)
1782 		sample.period = evsel->core.attr.sample_period;
1783 
1784 	/* No support for non-zero CS base */
1785 	if (items->has_ip)
1786 		sample.ip = items->ip;
1787 	else if (items->has_rip)
1788 		sample.ip = items->rip;
1789 	else
1790 		sample.ip = ptq->state->from_ip;
1791 
1792 	/* No support for guest mode at this time */
1793 	cpumode = sample.ip < ptq->pt->kernel_start ?
1794 		  PERF_RECORD_MISC_USER :
1795 		  PERF_RECORD_MISC_KERNEL;
1796 
1797 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1798 
1799 	sample.cpumode = cpumode;
1800 
1801 	if (sample_type & PERF_SAMPLE_TIME) {
1802 		u64 timestamp = 0;
1803 
1804 		if (items->has_timestamp)
1805 			timestamp = items->timestamp;
1806 		else if (!pt->timeless_decoding)
1807 			timestamp = ptq->timestamp;
1808 		if (timestamp)
1809 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1810 	}
1811 
1812 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1813 	    pt->synth_opts.callchain) {
1814 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1815 				     pt->synth_opts.callchain_sz, sample.ip,
1816 				     pt->kernel_start);
1817 		sample.callchain = ptq->chain;
1818 	}
1819 
1820 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
1821 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
1822 	     items->mask[INTEL_PT_XMM_POS])) {
1823 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
1824 		u64 *pos;
1825 
1826 		sample.intr_regs.abi = items->is_32_bit ?
1827 				       PERF_SAMPLE_REGS_ABI_32 :
1828 				       PERF_SAMPLE_REGS_ABI_64;
1829 		sample.intr_regs.regs = regs;
1830 
1831 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1832 
1833 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1834 	}
1835 
1836 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1837 		if (items->mask[INTEL_PT_LBR_0_POS] ||
1838 		    items->mask[INTEL_PT_LBR_1_POS] ||
1839 		    items->mask[INTEL_PT_LBR_2_POS]) {
1840 			intel_pt_add_lbrs(ptq->last_branch, items);
1841 		} else if (pt->synth_opts.last_branch) {
1842 			thread_stack__br_sample(ptq->thread, ptq->cpu,
1843 						ptq->last_branch,
1844 						pt->br_stack_sz);
1845 		} else {
1846 			ptq->last_branch->nr = 0;
1847 		}
1848 		sample.branch_stack = ptq->last_branch;
1849 	}
1850 
1851 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1852 		sample.addr = items->mem_access_address;
1853 
1854 	if (sample_type & PERF_SAMPLE_WEIGHT) {
1855 		/*
1856 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
1857 		 * intel_hsw_weight().
1858 		 */
1859 		if (items->has_mem_access_latency)
1860 			sample.weight = items->mem_access_latency;
1861 		if (!sample.weight && items->has_tsx_aux_info) {
1862 			/* Cycles last block */
1863 			sample.weight = (u32)items->tsx_aux_info;
1864 		}
1865 	}
1866 
1867 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1868 		u64 ax = items->has_rax ? items->rax : 0;
1869 		/* Refer kernel's intel_hsw_transaction() */
1870 		u64 txn = (u8)(items->tsx_aux_info >> 32);
1871 
1872 		/* For RTM XABORTs also log the abort code from AX */
1873 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
1874 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1875 		sample.transaction = txn;
1876 	}
1877 
1878 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
1879 }
1880 
1881 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1882 				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1883 {
1884 	union perf_event event;
1885 	char msg[MAX_AUXTRACE_ERROR_MSG];
1886 	int err;
1887 
1888 	if (pt->synth_opts.error_minus_flags) {
1889 		if (code == INTEL_PT_ERR_OVR &&
1890 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
1891 			return 0;
1892 		if (code == INTEL_PT_ERR_LOST &&
1893 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
1894 			return 0;
1895 	}
1896 
1897 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1898 
1899 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1900 			     code, cpu, pid, tid, ip, msg, timestamp);
1901 
1902 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1903 	if (err)
1904 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1905 		       err);
1906 
1907 	return err;
1908 }
1909 
1910 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1911 				 const struct intel_pt_state *state)
1912 {
1913 	struct intel_pt *pt = ptq->pt;
1914 	u64 tm = ptq->timestamp;
1915 
1916 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1917 
1918 	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1919 				    ptq->tid, state->from_ip, tm);
1920 }
1921 
1922 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1923 {
1924 	struct auxtrace_queue *queue;
1925 	pid_t tid = ptq->next_tid;
1926 	int err;
1927 
1928 	if (tid == -1)
1929 		return 0;
1930 
1931 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1932 
1933 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1934 
1935 	queue = &pt->queues.queue_array[ptq->queue_nr];
1936 	intel_pt_set_pid_tid_cpu(pt, queue);
1937 
1938 	ptq->next_tid = -1;
1939 
1940 	return err;
1941 }
1942 
1943 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1944 {
1945 	struct intel_pt *pt = ptq->pt;
1946 
1947 	return ip == pt->switch_ip &&
1948 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1949 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1950 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1951 }
1952 
1953 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1954 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1955 
1956 static int intel_pt_sample(struct intel_pt_queue *ptq)
1957 {
1958 	const struct intel_pt_state *state = ptq->state;
1959 	struct intel_pt *pt = ptq->pt;
1960 	int err;
1961 
1962 	if (!ptq->have_sample)
1963 		return 0;
1964 
1965 	ptq->have_sample = false;
1966 
1967 	if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1968 		/*
1969 		 * Cycle count and instruction count only go together to create
1970 		 * a valid IPC ratio when the cycle count changes.
1971 		 */
1972 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1973 		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1974 	}
1975 
1976 	/*
1977 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
1978 	 * precedes the current timestamp.
1979 	 */
1980 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1981 		err = intel_pt_synth_pebs_sample(ptq);
1982 		if (err)
1983 			return err;
1984 	}
1985 
1986 	if (pt->sample_pwr_events) {
1987 		if (ptq->state->cbr != ptq->cbr_seen) {
1988 			err = intel_pt_synth_cbr_sample(ptq);
1989 			if (err)
1990 				return err;
1991 		}
1992 		if (state->type & INTEL_PT_PWR_EVT) {
1993 			if (state->type & INTEL_PT_MWAIT_OP) {
1994 				err = intel_pt_synth_mwait_sample(ptq);
1995 				if (err)
1996 					return err;
1997 			}
1998 			if (state->type & INTEL_PT_PWR_ENTRY) {
1999 				err = intel_pt_synth_pwre_sample(ptq);
2000 				if (err)
2001 					return err;
2002 			}
2003 			if (state->type & INTEL_PT_EX_STOP) {
2004 				err = intel_pt_synth_exstop_sample(ptq);
2005 				if (err)
2006 					return err;
2007 			}
2008 			if (state->type & INTEL_PT_PWR_EXIT) {
2009 				err = intel_pt_synth_pwrx_sample(ptq);
2010 				if (err)
2011 					return err;
2012 			}
2013 		}
2014 	}
2015 
2016 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2017 		err = intel_pt_synth_instruction_sample(ptq);
2018 		if (err)
2019 			return err;
2020 	}
2021 
2022 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2023 		err = intel_pt_synth_transaction_sample(ptq);
2024 		if (err)
2025 			return err;
2026 	}
2027 
2028 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2029 		err = intel_pt_synth_ptwrite_sample(ptq);
2030 		if (err)
2031 			return err;
2032 	}
2033 
2034 	if (!(state->type & INTEL_PT_BRANCH))
2035 		return 0;
2036 
2037 	if (pt->use_thread_stack) {
2038 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2039 				    state->from_ip, state->to_ip, ptq->insn_len,
2040 				    state->trace_nr, pt->callstack,
2041 				    pt->br_stack_sz_plus,
2042 				    pt->mispred_all);
2043 	} else {
2044 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2045 	}
2046 
2047 	if (pt->sample_branches) {
2048 		err = intel_pt_synth_branch_sample(ptq);
2049 		if (err)
2050 			return err;
2051 	}
2052 
2053 	if (!ptq->sync_switch)
2054 		return 0;
2055 
2056 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2057 		switch (ptq->switch_state) {
2058 		case INTEL_PT_SS_NOT_TRACING:
2059 		case INTEL_PT_SS_UNKNOWN:
2060 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2061 			err = intel_pt_next_tid(pt, ptq);
2062 			if (err)
2063 				return err;
2064 			ptq->switch_state = INTEL_PT_SS_TRACING;
2065 			break;
2066 		default:
2067 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2068 			return 1;
2069 		}
2070 	} else if (!state->to_ip) {
2071 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2072 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2073 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2074 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2075 		   state->to_ip == pt->ptss_ip &&
2076 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2077 		ptq->switch_state = INTEL_PT_SS_TRACING;
2078 	}
2079 
2080 	return 0;
2081 }
2082 
2083 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2084 {
2085 	struct machine *machine = pt->machine;
2086 	struct map *map;
2087 	struct symbol *sym, *start;
2088 	u64 ip, switch_ip = 0;
2089 	const char *ptss;
2090 
2091 	if (ptss_ip)
2092 		*ptss_ip = 0;
2093 
2094 	map = machine__kernel_map(machine);
2095 	if (!map)
2096 		return 0;
2097 
2098 	if (map__load(map))
2099 		return 0;
2100 
2101 	start = dso__first_symbol(map->dso);
2102 
2103 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2104 		if (sym->binding == STB_GLOBAL &&
2105 		    !strcmp(sym->name, "__switch_to")) {
2106 			ip = map->unmap_ip(map, sym->start);
2107 			if (ip >= map->start && ip < map->end) {
2108 				switch_ip = ip;
2109 				break;
2110 			}
2111 		}
2112 	}
2113 
2114 	if (!switch_ip || !ptss_ip)
2115 		return 0;
2116 
2117 	if (pt->have_sched_switch == 1)
2118 		ptss = "perf_trace_sched_switch";
2119 	else
2120 		ptss = "__perf_event_task_sched_out";
2121 
2122 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2123 		if (!strcmp(sym->name, ptss)) {
2124 			ip = map->unmap_ip(map, sym->start);
2125 			if (ip >= map->start && ip < map->end) {
2126 				*ptss_ip = ip;
2127 				break;
2128 			}
2129 		}
2130 	}
2131 
2132 	return switch_ip;
2133 }
2134 
2135 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2136 {
2137 	unsigned int i;
2138 
2139 	pt->sync_switch = true;
2140 
2141 	for (i = 0; i < pt->queues.nr_queues; i++) {
2142 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2143 		struct intel_pt_queue *ptq = queue->priv;
2144 
2145 		if (ptq)
2146 			ptq->sync_switch = true;
2147 	}
2148 }
2149 
2150 /*
2151  * To filter against time ranges, it is only necessary to look at the next start
2152  * or end time.
2153  */
2154 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2155 {
2156 	struct intel_pt *pt = ptq->pt;
2157 
2158 	if (ptq->sel_start) {
2159 		/* Next time is an end time */
2160 		ptq->sel_start = false;
2161 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2162 		return true;
2163 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2164 		/* Next time is a start time */
2165 		ptq->sel_start = true;
2166 		ptq->sel_idx += 1;
2167 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2168 		return true;
2169 	}
2170 
2171 	/* No next time */
2172 	return false;
2173 }
2174 
2175 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2176 {
2177 	int err;
2178 
2179 	while (1) {
2180 		if (ptq->sel_start) {
2181 			if (ptq->timestamp >= ptq->sel_timestamp) {
2182 				/* After start time, so consider next time */
2183 				intel_pt_next_time(ptq);
2184 				if (!ptq->sel_timestamp) {
2185 					/* No end time */
2186 					return 0;
2187 				}
2188 				/* Check against end time */
2189 				continue;
2190 			}
2191 			/* Before start time, so fast forward */
2192 			ptq->have_sample = false;
2193 			if (ptq->sel_timestamp > *ff_timestamp) {
2194 				if (ptq->sync_switch) {
2195 					intel_pt_next_tid(ptq->pt, ptq);
2196 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2197 				}
2198 				*ff_timestamp = ptq->sel_timestamp;
2199 				err = intel_pt_fast_forward(ptq->decoder,
2200 							    ptq->sel_timestamp);
2201 				if (err)
2202 					return err;
2203 			}
2204 			return 0;
2205 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2206 			/* After end time, so consider next time */
2207 			if (!intel_pt_next_time(ptq)) {
2208 				/* No next time range, so stop decoding */
2209 				ptq->have_sample = false;
2210 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2211 				return 1;
2212 			}
2213 			/* Check against next start time */
2214 			continue;
2215 		} else {
2216 			/* Before end time */
2217 			return 0;
2218 		}
2219 	}
2220 }
2221 
2222 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2223 {
2224 	const struct intel_pt_state *state = ptq->state;
2225 	struct intel_pt *pt = ptq->pt;
2226 	u64 ff_timestamp = 0;
2227 	int err;
2228 
2229 	if (!pt->kernel_start) {
2230 		pt->kernel_start = machine__kernel_start(pt->machine);
2231 		if (pt->per_cpu_mmaps &&
2232 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2233 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2234 		    !pt->sampling_mode) {
2235 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2236 			if (pt->switch_ip) {
2237 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2238 					     pt->switch_ip, pt->ptss_ip);
2239 				intel_pt_enable_sync_switch(pt);
2240 			}
2241 		}
2242 	}
2243 
2244 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2245 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2246 	while (1) {
2247 		err = intel_pt_sample(ptq);
2248 		if (err)
2249 			return err;
2250 
2251 		state = intel_pt_decode(ptq->decoder);
2252 		if (state->err) {
2253 			if (state->err == INTEL_PT_ERR_NODATA)
2254 				return 1;
2255 			if (ptq->sync_switch &&
2256 			    state->from_ip >= pt->kernel_start) {
2257 				ptq->sync_switch = false;
2258 				intel_pt_next_tid(pt, ptq);
2259 			}
2260 			if (pt->synth_opts.errors) {
2261 				err = intel_ptq_synth_error(ptq, state);
2262 				if (err)
2263 					return err;
2264 			}
2265 			continue;
2266 		}
2267 
2268 		ptq->state = state;
2269 		ptq->have_sample = true;
2270 		intel_pt_sample_flags(ptq);
2271 
2272 		/* Use estimated TSC upon return to user space */
2273 		if (pt->est_tsc &&
2274 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2275 		    state->to_ip && state->to_ip < pt->kernel_start) {
2276 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2277 				     state->timestamp, state->est_timestamp);
2278 			ptq->timestamp = state->est_timestamp;
2279 		/* Use estimated TSC in unknown switch state */
2280 		} else if (ptq->sync_switch &&
2281 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2282 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2283 			   ptq->next_tid == -1) {
2284 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2285 				     state->timestamp, state->est_timestamp);
2286 			ptq->timestamp = state->est_timestamp;
2287 		} else if (state->timestamp > ptq->timestamp) {
2288 			ptq->timestamp = state->timestamp;
2289 		}
2290 
2291 		if (ptq->sel_timestamp) {
2292 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2293 			if (err)
2294 				return err;
2295 		}
2296 
2297 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2298 			*timestamp = ptq->timestamp;
2299 			return 0;
2300 		}
2301 	}
2302 	return 0;
2303 }
2304 
2305 static inline int intel_pt_update_queues(struct intel_pt *pt)
2306 {
2307 	if (pt->queues.new_data) {
2308 		pt->queues.new_data = false;
2309 		return intel_pt_setup_queues(pt);
2310 	}
2311 	return 0;
2312 }
2313 
2314 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2315 {
2316 	unsigned int queue_nr;
2317 	u64 ts;
2318 	int ret;
2319 
2320 	while (1) {
2321 		struct auxtrace_queue *queue;
2322 		struct intel_pt_queue *ptq;
2323 
2324 		if (!pt->heap.heap_cnt)
2325 			return 0;
2326 
2327 		if (pt->heap.heap_array[0].ordinal >= timestamp)
2328 			return 0;
2329 
2330 		queue_nr = pt->heap.heap_array[0].queue_nr;
2331 		queue = &pt->queues.queue_array[queue_nr];
2332 		ptq = queue->priv;
2333 
2334 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2335 			     queue_nr, pt->heap.heap_array[0].ordinal,
2336 			     timestamp);
2337 
2338 		auxtrace_heap__pop(&pt->heap);
2339 
2340 		if (pt->heap.heap_cnt) {
2341 			ts = pt->heap.heap_array[0].ordinal + 1;
2342 			if (ts > timestamp)
2343 				ts = timestamp;
2344 		} else {
2345 			ts = timestamp;
2346 		}
2347 
2348 		intel_pt_set_pid_tid_cpu(pt, queue);
2349 
2350 		ret = intel_pt_run_decoder(ptq, &ts);
2351 
2352 		if (ret < 0) {
2353 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2354 			return ret;
2355 		}
2356 
2357 		if (!ret) {
2358 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2359 			if (ret < 0)
2360 				return ret;
2361 		} else {
2362 			ptq->on_heap = false;
2363 		}
2364 	}
2365 
2366 	return 0;
2367 }
2368 
2369 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2370 					    u64 time_)
2371 {
2372 	struct auxtrace_queues *queues = &pt->queues;
2373 	unsigned int i;
2374 	u64 ts = 0;
2375 
2376 	for (i = 0; i < queues->nr_queues; i++) {
2377 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2378 		struct intel_pt_queue *ptq = queue->priv;
2379 
2380 		if (ptq && (tid == -1 || ptq->tid == tid)) {
2381 			ptq->time = time_;
2382 			intel_pt_set_pid_tid_cpu(pt, queue);
2383 			intel_pt_run_decoder(ptq, &ts);
2384 		}
2385 	}
2386 	return 0;
2387 }
2388 
2389 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2390 					    struct auxtrace_queue *queue,
2391 					    struct perf_sample *sample)
2392 {
2393 	struct machine *m = ptq->pt->machine;
2394 
2395 	ptq->pid = sample->pid;
2396 	ptq->tid = sample->tid;
2397 	ptq->cpu = queue->cpu;
2398 
2399 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2400 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2401 
2402 	thread__zput(ptq->thread);
2403 
2404 	if (ptq->tid == -1)
2405 		return;
2406 
2407 	if (ptq->pid == -1) {
2408 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
2409 		if (ptq->thread)
2410 			ptq->pid = ptq->thread->pid_;
2411 		return;
2412 	}
2413 
2414 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2415 }
2416 
2417 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2418 					    struct perf_sample *sample)
2419 {
2420 	struct auxtrace_queue *queue;
2421 	struct intel_pt_queue *ptq;
2422 	u64 ts = 0;
2423 
2424 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2425 	if (!queue)
2426 		return -EINVAL;
2427 
2428 	ptq = queue->priv;
2429 	if (!ptq)
2430 		return 0;
2431 
2432 	ptq->stop = false;
2433 	ptq->time = sample->time;
2434 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2435 	intel_pt_run_decoder(ptq, &ts);
2436 	return 0;
2437 }
2438 
2439 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2440 {
2441 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2442 				    sample->pid, sample->tid, 0, sample->time);
2443 }
2444 
2445 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2446 {
2447 	unsigned i, j;
2448 
2449 	if (cpu < 0 || !pt->queues.nr_queues)
2450 		return NULL;
2451 
2452 	if ((unsigned)cpu >= pt->queues.nr_queues)
2453 		i = pt->queues.nr_queues - 1;
2454 	else
2455 		i = cpu;
2456 
2457 	if (pt->queues.queue_array[i].cpu == cpu)
2458 		return pt->queues.queue_array[i].priv;
2459 
2460 	for (j = 0; i > 0; j++) {
2461 		if (pt->queues.queue_array[--i].cpu == cpu)
2462 			return pt->queues.queue_array[i].priv;
2463 	}
2464 
2465 	for (; j < pt->queues.nr_queues; j++) {
2466 		if (pt->queues.queue_array[j].cpu == cpu)
2467 			return pt->queues.queue_array[j].priv;
2468 	}
2469 
2470 	return NULL;
2471 }
2472 
2473 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2474 				u64 timestamp)
2475 {
2476 	struct intel_pt_queue *ptq;
2477 	int err;
2478 
2479 	if (!pt->sync_switch)
2480 		return 1;
2481 
2482 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2483 	if (!ptq || !ptq->sync_switch)
2484 		return 1;
2485 
2486 	switch (ptq->switch_state) {
2487 	case INTEL_PT_SS_NOT_TRACING:
2488 		break;
2489 	case INTEL_PT_SS_UNKNOWN:
2490 	case INTEL_PT_SS_TRACING:
2491 		ptq->next_tid = tid;
2492 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2493 		return 0;
2494 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2495 		if (!ptq->on_heap) {
2496 			ptq->timestamp = perf_time_to_tsc(timestamp,
2497 							  &pt->tc);
2498 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2499 						 ptq->timestamp);
2500 			if (err)
2501 				return err;
2502 			ptq->on_heap = true;
2503 		}
2504 		ptq->switch_state = INTEL_PT_SS_TRACING;
2505 		break;
2506 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2507 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2508 		break;
2509 	default:
2510 		break;
2511 	}
2512 
2513 	ptq->next_tid = -1;
2514 
2515 	return 1;
2516 }
2517 
2518 static int intel_pt_process_switch(struct intel_pt *pt,
2519 				   struct perf_sample *sample)
2520 {
2521 	struct evsel *evsel;
2522 	pid_t tid;
2523 	int cpu, ret;
2524 
2525 	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2526 	if (evsel != pt->switch_evsel)
2527 		return 0;
2528 
2529 	tid = evsel__intval(evsel, sample, "next_pid");
2530 	cpu = sample->cpu;
2531 
2532 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2533 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2534 		     &pt->tc));
2535 
2536 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2537 	if (ret <= 0)
2538 		return ret;
2539 
2540 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
2541 }
2542 
2543 static int intel_pt_context_switch_in(struct intel_pt *pt,
2544 				      struct perf_sample *sample)
2545 {
2546 	pid_t pid = sample->pid;
2547 	pid_t tid = sample->tid;
2548 	int cpu = sample->cpu;
2549 
2550 	if (pt->sync_switch) {
2551 		struct intel_pt_queue *ptq;
2552 
2553 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
2554 		if (ptq && ptq->sync_switch) {
2555 			ptq->next_tid = -1;
2556 			switch (ptq->switch_state) {
2557 			case INTEL_PT_SS_NOT_TRACING:
2558 			case INTEL_PT_SS_UNKNOWN:
2559 			case INTEL_PT_SS_TRACING:
2560 				break;
2561 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2562 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2563 				ptq->switch_state = INTEL_PT_SS_TRACING;
2564 				break;
2565 			default:
2566 				break;
2567 			}
2568 		}
2569 	}
2570 
2571 	/*
2572 	 * If the current tid has not been updated yet, ensure it is now that
2573 	 * a "switch in" event has occurred.
2574 	 */
2575 	if (machine__get_current_tid(pt->machine, cpu) == tid)
2576 		return 0;
2577 
2578 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2579 }
2580 
2581 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2582 				   struct perf_sample *sample)
2583 {
2584 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2585 	pid_t pid, tid;
2586 	int cpu, ret;
2587 
2588 	cpu = sample->cpu;
2589 
2590 	if (pt->have_sched_switch == 3) {
2591 		if (!out)
2592 			return intel_pt_context_switch_in(pt, sample);
2593 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2594 			pr_err("Expecting CPU-wide context switch event\n");
2595 			return -EINVAL;
2596 		}
2597 		pid = event->context_switch.next_prev_pid;
2598 		tid = event->context_switch.next_prev_tid;
2599 	} else {
2600 		if (out)
2601 			return 0;
2602 		pid = sample->pid;
2603 		tid = sample->tid;
2604 	}
2605 
2606 	if (tid == -1) {
2607 		pr_err("context_switch event has no tid\n");
2608 		return -EINVAL;
2609 	}
2610 
2611 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2612 	if (ret <= 0)
2613 		return ret;
2614 
2615 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2616 }
2617 
2618 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2619 					 union perf_event *event,
2620 					 struct perf_sample *sample)
2621 {
2622 	if (!pt->per_cpu_mmaps)
2623 		return 0;
2624 
2625 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2626 		     sample->cpu, event->itrace_start.pid,
2627 		     event->itrace_start.tid, sample->time,
2628 		     perf_time_to_tsc(sample->time, &pt->tc));
2629 
2630 	return machine__set_current_tid(pt->machine, sample->cpu,
2631 					event->itrace_start.pid,
2632 					event->itrace_start.tid);
2633 }
2634 
2635 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2636 			     struct addr_location *al)
2637 {
2638 	if (!al->map || addr < al->map->start || addr >= al->map->end) {
2639 		if (!thread__find_map(thread, cpumode, addr, al))
2640 			return -1;
2641 	}
2642 
2643 	return 0;
2644 }
2645 
2646 /* Invalidate all instruction cache entries that overlap the text poke */
2647 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2648 {
2649 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2650 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2651 	/* Assume text poke begins in a basic block no more than 4096 bytes */
2652 	int cnt = 4096 + event->text_poke.new_len;
2653 	struct thread *thread = pt->unknown_thread;
2654 	struct addr_location al = { .map = NULL };
2655 	struct machine *machine = pt->machine;
2656 	struct intel_pt_cache_entry *e;
2657 	u64 offset;
2658 
2659 	if (!event->text_poke.new_len)
2660 		return 0;
2661 
2662 	for (; cnt; cnt--, addr--) {
2663 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2664 			if (addr < event->text_poke.addr)
2665 				return 0;
2666 			continue;
2667 		}
2668 
2669 		if (!al.map->dso || !al.map->dso->auxtrace_cache)
2670 			continue;
2671 
2672 		offset = al.map->map_ip(al.map, addr);
2673 
2674 		e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2675 		if (!e)
2676 			continue;
2677 
2678 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2679 			/*
2680 			 * No overlap. Working backwards there cannot be another
2681 			 * basic block that overlaps the text poke if there is a
2682 			 * branch instruction before the text poke address.
2683 			 */
2684 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
2685 				return 0;
2686 		} else {
2687 			intel_pt_cache_invalidate(al.map->dso, machine, offset);
2688 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2689 				     al.map->dso->long_name, addr);
2690 		}
2691 	}
2692 
2693 	return 0;
2694 }
2695 
2696 static int intel_pt_process_event(struct perf_session *session,
2697 				  union perf_event *event,
2698 				  struct perf_sample *sample,
2699 				  struct perf_tool *tool)
2700 {
2701 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2702 					   auxtrace);
2703 	u64 timestamp;
2704 	int err = 0;
2705 
2706 	if (dump_trace)
2707 		return 0;
2708 
2709 	if (!tool->ordered_events) {
2710 		pr_err("Intel Processor Trace requires ordered events\n");
2711 		return -EINVAL;
2712 	}
2713 
2714 	if (sample->time && sample->time != (u64)-1)
2715 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2716 	else
2717 		timestamp = 0;
2718 
2719 	if (timestamp || pt->timeless_decoding) {
2720 		err = intel_pt_update_queues(pt);
2721 		if (err)
2722 			return err;
2723 	}
2724 
2725 	if (pt->timeless_decoding) {
2726 		if (pt->sampling_mode) {
2727 			if (sample->aux_sample.size)
2728 				err = intel_pt_process_timeless_sample(pt,
2729 								       sample);
2730 		} else if (event->header.type == PERF_RECORD_EXIT) {
2731 			err = intel_pt_process_timeless_queues(pt,
2732 							       event->fork.tid,
2733 							       sample->time);
2734 		}
2735 	} else if (timestamp) {
2736 		err = intel_pt_process_queues(pt, timestamp);
2737 	}
2738 	if (err)
2739 		return err;
2740 
2741 	if (event->header.type == PERF_RECORD_SAMPLE) {
2742 		if (pt->synth_opts.add_callchain && !sample->callchain)
2743 			intel_pt_add_callchain(pt, sample);
2744 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2745 			intel_pt_add_br_stack(pt, sample);
2746 	}
2747 
2748 	if (event->header.type == PERF_RECORD_AUX &&
2749 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2750 	    pt->synth_opts.errors) {
2751 		err = intel_pt_lost(pt, sample);
2752 		if (err)
2753 			return err;
2754 	}
2755 
2756 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2757 		err = intel_pt_process_switch(pt, sample);
2758 	else if (event->header.type == PERF_RECORD_ITRACE_START)
2759 		err = intel_pt_process_itrace_start(pt, event, sample);
2760 	else if (event->header.type == PERF_RECORD_SWITCH ||
2761 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2762 		err = intel_pt_context_switch(pt, event, sample);
2763 
2764 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
2765 		err = intel_pt_text_poke(pt, event);
2766 
2767 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
2768 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2769 			     event->header.type, sample->cpu, sample->time, timestamp);
2770 		intel_pt_log_event(event);
2771 	}
2772 
2773 	return err;
2774 }
2775 
2776 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2777 {
2778 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2779 					   auxtrace);
2780 	int ret;
2781 
2782 	if (dump_trace)
2783 		return 0;
2784 
2785 	if (!tool->ordered_events)
2786 		return -EINVAL;
2787 
2788 	ret = intel_pt_update_queues(pt);
2789 	if (ret < 0)
2790 		return ret;
2791 
2792 	if (pt->timeless_decoding)
2793 		return intel_pt_process_timeless_queues(pt, -1,
2794 							MAX_TIMESTAMP - 1);
2795 
2796 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2797 }
2798 
2799 static void intel_pt_free_events(struct perf_session *session)
2800 {
2801 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2802 					   auxtrace);
2803 	struct auxtrace_queues *queues = &pt->queues;
2804 	unsigned int i;
2805 
2806 	for (i = 0; i < queues->nr_queues; i++) {
2807 		intel_pt_free_queue(queues->queue_array[i].priv);
2808 		queues->queue_array[i].priv = NULL;
2809 	}
2810 	intel_pt_log_disable();
2811 	auxtrace_queues__free(queues);
2812 }
2813 
2814 static void intel_pt_free(struct perf_session *session)
2815 {
2816 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2817 					   auxtrace);
2818 
2819 	auxtrace_heap__free(&pt->heap);
2820 	intel_pt_free_events(session);
2821 	session->auxtrace = NULL;
2822 	thread__put(pt->unknown_thread);
2823 	addr_filters__exit(&pt->filts);
2824 	zfree(&pt->chain);
2825 	zfree(&pt->filter);
2826 	zfree(&pt->time_ranges);
2827 	free(pt);
2828 }
2829 
2830 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
2831 				       struct evsel *evsel)
2832 {
2833 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2834 					   auxtrace);
2835 
2836 	return evsel->core.attr.type == pt->pmu_type;
2837 }
2838 
2839 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2840 					   union perf_event *event,
2841 					   struct perf_tool *tool __maybe_unused)
2842 {
2843 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2844 					   auxtrace);
2845 
2846 	if (!pt->data_queued) {
2847 		struct auxtrace_buffer *buffer;
2848 		off_t data_offset;
2849 		int fd = perf_data__fd(session->data);
2850 		int err;
2851 
2852 		if (perf_data__is_pipe(session->data)) {
2853 			data_offset = 0;
2854 		} else {
2855 			data_offset = lseek(fd, 0, SEEK_CUR);
2856 			if (data_offset == -1)
2857 				return -errno;
2858 		}
2859 
2860 		err = auxtrace_queues__add_event(&pt->queues, session, event,
2861 						 data_offset, &buffer);
2862 		if (err)
2863 			return err;
2864 
2865 		/* Dump here now we have copied a piped trace out of the pipe */
2866 		if (dump_trace) {
2867 			if (auxtrace_buffer__get_data(buffer, fd)) {
2868 				intel_pt_dump_event(pt, buffer->data,
2869 						    buffer->size);
2870 				auxtrace_buffer__put_data(buffer);
2871 			}
2872 		}
2873 	}
2874 
2875 	return 0;
2876 }
2877 
2878 static int intel_pt_queue_data(struct perf_session *session,
2879 			       struct perf_sample *sample,
2880 			       union perf_event *event, u64 data_offset)
2881 {
2882 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2883 					   auxtrace);
2884 	u64 timestamp;
2885 
2886 	if (event) {
2887 		return auxtrace_queues__add_event(&pt->queues, session, event,
2888 						  data_offset, NULL);
2889 	}
2890 
2891 	if (sample->time && sample->time != (u64)-1)
2892 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2893 	else
2894 		timestamp = 0;
2895 
2896 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
2897 					   data_offset, timestamp);
2898 }
2899 
2900 struct intel_pt_synth {
2901 	struct perf_tool dummy_tool;
2902 	struct perf_session *session;
2903 };
2904 
2905 static int intel_pt_event_synth(struct perf_tool *tool,
2906 				union perf_event *event,
2907 				struct perf_sample *sample __maybe_unused,
2908 				struct machine *machine __maybe_unused)
2909 {
2910 	struct intel_pt_synth *intel_pt_synth =
2911 			container_of(tool, struct intel_pt_synth, dummy_tool);
2912 
2913 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2914 						 NULL);
2915 }
2916 
2917 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2918 				struct perf_event_attr *attr, u64 id)
2919 {
2920 	struct intel_pt_synth intel_pt_synth;
2921 	int err;
2922 
2923 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2924 		 name, id, (u64)attr->sample_type);
2925 
2926 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2927 	intel_pt_synth.session = session;
2928 
2929 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2930 					  &id, intel_pt_event_synth);
2931 	if (err)
2932 		pr_err("%s: failed to synthesize '%s' event type\n",
2933 		       __func__, name);
2934 
2935 	return err;
2936 }
2937 
2938 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2939 				    const char *name)
2940 {
2941 	struct evsel *evsel;
2942 
2943 	evlist__for_each_entry(evlist, evsel) {
2944 		if (evsel->core.id && evsel->core.id[0] == id) {
2945 			if (evsel->name)
2946 				zfree(&evsel->name);
2947 			evsel->name = strdup(name);
2948 			break;
2949 		}
2950 	}
2951 }
2952 
2953 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2954 					 struct evlist *evlist)
2955 {
2956 	struct evsel *evsel;
2957 
2958 	evlist__for_each_entry(evlist, evsel) {
2959 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2960 			return evsel;
2961 	}
2962 
2963 	return NULL;
2964 }
2965 
2966 static int intel_pt_synth_events(struct intel_pt *pt,
2967 				 struct perf_session *session)
2968 {
2969 	struct evlist *evlist = session->evlist;
2970 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
2971 	struct perf_event_attr attr;
2972 	u64 id;
2973 	int err;
2974 
2975 	if (!evsel) {
2976 		pr_debug("There are no selected events with Intel Processor Trace data\n");
2977 		return 0;
2978 	}
2979 
2980 	memset(&attr, 0, sizeof(struct perf_event_attr));
2981 	attr.size = sizeof(struct perf_event_attr);
2982 	attr.type = PERF_TYPE_HARDWARE;
2983 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2984 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2985 			    PERF_SAMPLE_PERIOD;
2986 	if (pt->timeless_decoding)
2987 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2988 	else
2989 		attr.sample_type |= PERF_SAMPLE_TIME;
2990 	if (!pt->per_cpu_mmaps)
2991 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2992 	attr.exclude_user = evsel->core.attr.exclude_user;
2993 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
2994 	attr.exclude_hv = evsel->core.attr.exclude_hv;
2995 	attr.exclude_host = evsel->core.attr.exclude_host;
2996 	attr.exclude_guest = evsel->core.attr.exclude_guest;
2997 	attr.sample_id_all = evsel->core.attr.sample_id_all;
2998 	attr.read_format = evsel->core.attr.read_format;
2999 
3000 	id = evsel->core.id[0] + 1000000000;
3001 	if (!id)
3002 		id = 1;
3003 
3004 	if (pt->synth_opts.branches) {
3005 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3006 		attr.sample_period = 1;
3007 		attr.sample_type |= PERF_SAMPLE_ADDR;
3008 		err = intel_pt_synth_event(session, "branches", &attr, id);
3009 		if (err)
3010 			return err;
3011 		pt->sample_branches = true;
3012 		pt->branches_sample_type = attr.sample_type;
3013 		pt->branches_id = id;
3014 		id += 1;
3015 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3016 	}
3017 
3018 	if (pt->synth_opts.callchain)
3019 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3020 	if (pt->synth_opts.last_branch)
3021 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3022 
3023 	if (pt->synth_opts.instructions) {
3024 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3025 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3026 			attr.sample_period =
3027 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3028 		else
3029 			attr.sample_period = pt->synth_opts.period;
3030 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3031 		if (err)
3032 			return err;
3033 		pt->sample_instructions = true;
3034 		pt->instructions_sample_type = attr.sample_type;
3035 		pt->instructions_id = id;
3036 		id += 1;
3037 	}
3038 
3039 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3040 	attr.sample_period = 1;
3041 
3042 	if (pt->synth_opts.transactions) {
3043 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3044 		err = intel_pt_synth_event(session, "transactions", &attr, id);
3045 		if (err)
3046 			return err;
3047 		pt->sample_transactions = true;
3048 		pt->transactions_sample_type = attr.sample_type;
3049 		pt->transactions_id = id;
3050 		intel_pt_set_event_name(evlist, id, "transactions");
3051 		id += 1;
3052 	}
3053 
3054 	attr.type = PERF_TYPE_SYNTH;
3055 	attr.sample_type |= PERF_SAMPLE_RAW;
3056 
3057 	if (pt->synth_opts.ptwrites) {
3058 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3059 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3060 		if (err)
3061 			return err;
3062 		pt->sample_ptwrites = true;
3063 		pt->ptwrites_sample_type = attr.sample_type;
3064 		pt->ptwrites_id = id;
3065 		intel_pt_set_event_name(evlist, id, "ptwrite");
3066 		id += 1;
3067 	}
3068 
3069 	if (pt->synth_opts.pwr_events) {
3070 		pt->sample_pwr_events = true;
3071 		pt->pwr_events_sample_type = attr.sample_type;
3072 
3073 		attr.config = PERF_SYNTH_INTEL_CBR;
3074 		err = intel_pt_synth_event(session, "cbr", &attr, id);
3075 		if (err)
3076 			return err;
3077 		pt->cbr_id = id;
3078 		intel_pt_set_event_name(evlist, id, "cbr");
3079 		id += 1;
3080 	}
3081 
3082 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3083 		attr.config = PERF_SYNTH_INTEL_MWAIT;
3084 		err = intel_pt_synth_event(session, "mwait", &attr, id);
3085 		if (err)
3086 			return err;
3087 		pt->mwait_id = id;
3088 		intel_pt_set_event_name(evlist, id, "mwait");
3089 		id += 1;
3090 
3091 		attr.config = PERF_SYNTH_INTEL_PWRE;
3092 		err = intel_pt_synth_event(session, "pwre", &attr, id);
3093 		if (err)
3094 			return err;
3095 		pt->pwre_id = id;
3096 		intel_pt_set_event_name(evlist, id, "pwre");
3097 		id += 1;
3098 
3099 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3100 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3101 		if (err)
3102 			return err;
3103 		pt->exstop_id = id;
3104 		intel_pt_set_event_name(evlist, id, "exstop");
3105 		id += 1;
3106 
3107 		attr.config = PERF_SYNTH_INTEL_PWRX;
3108 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3109 		if (err)
3110 			return err;
3111 		pt->pwrx_id = id;
3112 		intel_pt_set_event_name(evlist, id, "pwrx");
3113 		id += 1;
3114 	}
3115 
3116 	return 0;
3117 }
3118 
3119 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3120 {
3121 	struct evsel *evsel;
3122 
3123 	if (!pt->synth_opts.other_events)
3124 		return;
3125 
3126 	evlist__for_each_entry(pt->session->evlist, evsel) {
3127 		if (evsel->core.attr.aux_output && evsel->core.id) {
3128 			pt->sample_pebs = true;
3129 			pt->pebs_evsel = evsel;
3130 			return;
3131 		}
3132 	}
3133 }
3134 
3135 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3136 {
3137 	struct evsel *evsel;
3138 
3139 	evlist__for_each_entry_reverse(evlist, evsel) {
3140 		const char *name = evsel__name(evsel);
3141 
3142 		if (!strcmp(name, "sched:sched_switch"))
3143 			return evsel;
3144 	}
3145 
3146 	return NULL;
3147 }
3148 
3149 static bool intel_pt_find_switch(struct evlist *evlist)
3150 {
3151 	struct evsel *evsel;
3152 
3153 	evlist__for_each_entry(evlist, evsel) {
3154 		if (evsel->core.attr.context_switch)
3155 			return true;
3156 	}
3157 
3158 	return false;
3159 }
3160 
3161 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3162 {
3163 	struct intel_pt *pt = data;
3164 
3165 	if (!strcmp(var, "intel-pt.mispred-all"))
3166 		pt->mispred_all = perf_config_bool(var, value);
3167 
3168 	return 0;
3169 }
3170 
3171 /* Find least TSC which converts to ns or later */
3172 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3173 {
3174 	u64 tsc, tm;
3175 
3176 	tsc = perf_time_to_tsc(ns, &pt->tc);
3177 
3178 	while (1) {
3179 		tm = tsc_to_perf_time(tsc, &pt->tc);
3180 		if (tm < ns)
3181 			break;
3182 		tsc -= 1;
3183 	}
3184 
3185 	while (tm < ns)
3186 		tm = tsc_to_perf_time(++tsc, &pt->tc);
3187 
3188 	return tsc;
3189 }
3190 
3191 /* Find greatest TSC which converts to ns or earlier */
3192 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3193 {
3194 	u64 tsc, tm;
3195 
3196 	tsc = perf_time_to_tsc(ns, &pt->tc);
3197 
3198 	while (1) {
3199 		tm = tsc_to_perf_time(tsc, &pt->tc);
3200 		if (tm > ns)
3201 			break;
3202 		tsc += 1;
3203 	}
3204 
3205 	while (tm > ns)
3206 		tm = tsc_to_perf_time(--tsc, &pt->tc);
3207 
3208 	return tsc;
3209 }
3210 
3211 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3212 				      struct itrace_synth_opts *opts)
3213 {
3214 	struct perf_time_interval *p = opts->ptime_range;
3215 	int n = opts->range_num;
3216 	int i;
3217 
3218 	if (!n || !p || pt->timeless_decoding)
3219 		return 0;
3220 
3221 	pt->time_ranges = calloc(n, sizeof(struct range));
3222 	if (!pt->time_ranges)
3223 		return -ENOMEM;
3224 
3225 	pt->range_cnt = n;
3226 
3227 	intel_pt_log("%s: %u range(s)\n", __func__, n);
3228 
3229 	for (i = 0; i < n; i++) {
3230 		struct range *r = &pt->time_ranges[i];
3231 		u64 ts = p[i].start;
3232 		u64 te = p[i].end;
3233 
3234 		/*
3235 		 * Take care to ensure the TSC range matches the perf-time range
3236 		 * when converted back to perf-time.
3237 		 */
3238 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3239 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3240 
3241 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3242 			     i, ts, te);
3243 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3244 			     i, r->start, r->end);
3245 	}
3246 
3247 	return 0;
3248 }
3249 
3250 static const char * const intel_pt_info_fmts[] = {
3251 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3252 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3253 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3254 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3255 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3256 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3257 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3258 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3259 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3260 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3261 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
3262 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3263 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3264 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3265 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3266 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3267 };
3268 
3269 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3270 {
3271 	int i;
3272 
3273 	if (!dump_trace)
3274 		return;
3275 
3276 	for (i = start; i <= finish; i++)
3277 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3278 }
3279 
3280 static void intel_pt_print_info_str(const char *name, const char *str)
3281 {
3282 	if (!dump_trace)
3283 		return;
3284 
3285 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3286 }
3287 
3288 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3289 {
3290 	return auxtrace_info->header.size >=
3291 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3292 }
3293 
3294 int intel_pt_process_auxtrace_info(union perf_event *event,
3295 				   struct perf_session *session)
3296 {
3297 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3298 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3299 	struct intel_pt *pt;
3300 	void *info_end;
3301 	__u64 *info;
3302 	int err;
3303 
3304 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3305 					min_sz)
3306 		return -EINVAL;
3307 
3308 	pt = zalloc(sizeof(struct intel_pt));
3309 	if (!pt)
3310 		return -ENOMEM;
3311 
3312 	addr_filters__init(&pt->filts);
3313 
3314 	err = perf_config(intel_pt_perf_config, pt);
3315 	if (err)
3316 		goto err_free;
3317 
3318 	err = auxtrace_queues__init(&pt->queues);
3319 	if (err)
3320 		goto err_free;
3321 
3322 	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3323 
3324 	pt->session = session;
3325 	pt->machine = &session->machines.host; /* No kvm support */
3326 	pt->auxtrace_type = auxtrace_info->type;
3327 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3328 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3329 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3330 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3331 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3332 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3333 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3334 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3335 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3336 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3337 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3338 			    INTEL_PT_PER_CPU_MMAPS);
3339 
3340 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3341 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3342 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3343 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3344 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3345 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3346 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3347 				    INTEL_PT_CYC_BIT);
3348 	}
3349 
3350 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3351 		pt->max_non_turbo_ratio =
3352 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3353 		intel_pt_print_info(&auxtrace_info->priv[0],
3354 				    INTEL_PT_MAX_NONTURBO_RATIO,
3355 				    INTEL_PT_MAX_NONTURBO_RATIO);
3356 	}
3357 
3358 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3359 	info_end = (void *)info + auxtrace_info->header.size;
3360 
3361 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3362 		size_t len;
3363 
3364 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3365 		intel_pt_print_info(&auxtrace_info->priv[0],
3366 				    INTEL_PT_FILTER_STR_LEN,
3367 				    INTEL_PT_FILTER_STR_LEN);
3368 		if (len) {
3369 			const char *filter = (const char *)info;
3370 
3371 			len = roundup(len + 1, 8);
3372 			info += len >> 3;
3373 			if ((void *)info > info_end) {
3374 				pr_err("%s: bad filter string length\n", __func__);
3375 				err = -EINVAL;
3376 				goto err_free_queues;
3377 			}
3378 			pt->filter = memdup(filter, len);
3379 			if (!pt->filter) {
3380 				err = -ENOMEM;
3381 				goto err_free_queues;
3382 			}
3383 			if (session->header.needs_swap)
3384 				mem_bswap_64(pt->filter, len);
3385 			if (pt->filter[len - 1]) {
3386 				pr_err("%s: filter string not null terminated\n", __func__);
3387 				err = -EINVAL;
3388 				goto err_free_queues;
3389 			}
3390 			err = addr_filters__parse_bare_filter(&pt->filts,
3391 							      filter);
3392 			if (err)
3393 				goto err_free_queues;
3394 		}
3395 		intel_pt_print_info_str("Filter string", pt->filter);
3396 	}
3397 
3398 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3399 	if (pt->timeless_decoding && !pt->tc.time_mult)
3400 		pt->tc.time_mult = 1;
3401 	pt->have_tsc = intel_pt_have_tsc(pt);
3402 	pt->sampling_mode = intel_pt_sampling_mode(pt);
3403 	pt->est_tsc = !pt->timeless_decoding;
3404 
3405 	pt->unknown_thread = thread__new(999999999, 999999999);
3406 	if (!pt->unknown_thread) {
3407 		err = -ENOMEM;
3408 		goto err_free_queues;
3409 	}
3410 
3411 	/*
3412 	 * Since this thread will not be kept in any rbtree not in a
3413 	 * list, initialize its list node so that at thread__put() the
3414 	 * current thread lifetime assuption is kept and we don't segfault
3415 	 * at list_del_init().
3416 	 */
3417 	INIT_LIST_HEAD(&pt->unknown_thread->node);
3418 
3419 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3420 	if (err)
3421 		goto err_delete_thread;
3422 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3423 		err = -ENOMEM;
3424 		goto err_delete_thread;
3425 	}
3426 
3427 	pt->auxtrace.process_event = intel_pt_process_event;
3428 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3429 	pt->auxtrace.queue_data = intel_pt_queue_data;
3430 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3431 	pt->auxtrace.flush_events = intel_pt_flush;
3432 	pt->auxtrace.free_events = intel_pt_free_events;
3433 	pt->auxtrace.free = intel_pt_free;
3434 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3435 	session->auxtrace = &pt->auxtrace;
3436 
3437 	if (dump_trace)
3438 		return 0;
3439 
3440 	if (pt->have_sched_switch == 1) {
3441 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3442 		if (!pt->switch_evsel) {
3443 			pr_err("%s: missing sched_switch event\n", __func__);
3444 			err = -EINVAL;
3445 			goto err_delete_thread;
3446 		}
3447 	} else if (pt->have_sched_switch == 2 &&
3448 		   !intel_pt_find_switch(session->evlist)) {
3449 		pr_err("%s: missing context_switch attribute flag\n", __func__);
3450 		err = -EINVAL;
3451 		goto err_delete_thread;
3452 	}
3453 
3454 	if (session->itrace_synth_opts->set) {
3455 		pt->synth_opts = *session->itrace_synth_opts;
3456 	} else {
3457 		itrace_synth_opts__set_default(&pt->synth_opts,
3458 				session->itrace_synth_opts->default_no_sample);
3459 		if (!session->itrace_synth_opts->default_no_sample &&
3460 		    !session->itrace_synth_opts->inject) {
3461 			pt->synth_opts.branches = false;
3462 			pt->synth_opts.callchain = true;
3463 			pt->synth_opts.add_callchain = true;
3464 		}
3465 		pt->synth_opts.thread_stack =
3466 				session->itrace_synth_opts->thread_stack;
3467 	}
3468 
3469 	if (pt->synth_opts.log)
3470 		intel_pt_log_enable();
3471 
3472 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
3473 	if (pt->tc.time_mult) {
3474 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3475 
3476 		if (!pt->max_non_turbo_ratio)
3477 			pt->max_non_turbo_ratio =
3478 					(tsc_freq + 50000000) / 100000000;
3479 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3480 		intel_pt_log("Maximum non-turbo ratio %u\n",
3481 			     pt->max_non_turbo_ratio);
3482 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3483 	}
3484 
3485 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3486 	if (err)
3487 		goto err_delete_thread;
3488 
3489 	if (pt->synth_opts.calls)
3490 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3491 				       PERF_IP_FLAG_TRACE_END;
3492 	if (pt->synth_opts.returns)
3493 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
3494 				       PERF_IP_FLAG_TRACE_BEGIN;
3495 
3496 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3497 	    !symbol_conf.use_callchain) {
3498 		symbol_conf.use_callchain = true;
3499 		if (callchain_register_param(&callchain_param) < 0) {
3500 			symbol_conf.use_callchain = false;
3501 			pt->synth_opts.callchain = false;
3502 			pt->synth_opts.add_callchain = false;
3503 		}
3504 	}
3505 
3506 	if (pt->synth_opts.add_callchain) {
3507 		err = intel_pt_callchain_init(pt);
3508 		if (err)
3509 			goto err_delete_thread;
3510 	}
3511 
3512 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3513 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3514 		pt->br_stack_sz_plus = pt->br_stack_sz;
3515 	}
3516 
3517 	if (pt->synth_opts.add_last_branch) {
3518 		err = intel_pt_br_stack_init(pt);
3519 		if (err)
3520 			goto err_delete_thread;
3521 		/*
3522 		 * Additional branch stack size to cater for tracing from the
3523 		 * actual sample ip to where the sample time is recorded.
3524 		 * Measured at about 200 branches, but generously set to 1024.
3525 		 * If kernel space is not being traced, then add just 1 for the
3526 		 * branch to kernel space.
3527 		 */
3528 		if (intel_pt_tracing_kernel(pt))
3529 			pt->br_stack_sz_plus += 1024;
3530 		else
3531 			pt->br_stack_sz_plus += 1;
3532 	}
3533 
3534 	pt->use_thread_stack = pt->synth_opts.callchain ||
3535 			       pt->synth_opts.add_callchain ||
3536 			       pt->synth_opts.thread_stack ||
3537 			       pt->synth_opts.last_branch ||
3538 			       pt->synth_opts.add_last_branch;
3539 
3540 	pt->callstack = pt->synth_opts.callchain ||
3541 			pt->synth_opts.add_callchain ||
3542 			pt->synth_opts.thread_stack;
3543 
3544 	err = intel_pt_synth_events(pt, session);
3545 	if (err)
3546 		goto err_delete_thread;
3547 
3548 	intel_pt_setup_pebs_events(pt);
3549 
3550 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3551 		err = auxtrace_queue_data(session, true, true);
3552 	else
3553 		err = auxtrace_queues__process_index(&pt->queues, session);
3554 	if (err)
3555 		goto err_delete_thread;
3556 
3557 	if (pt->queues.populated)
3558 		pt->data_queued = true;
3559 
3560 	if (pt->timeless_decoding)
3561 		pr_debug2("Intel PT decoding without timestamps\n");
3562 
3563 	return 0;
3564 
3565 err_delete_thread:
3566 	zfree(&pt->chain);
3567 	thread__zput(pt->unknown_thread);
3568 err_free_queues:
3569 	intel_pt_log_disable();
3570 	auxtrace_queues__free(&pt->queues);
3571 	session->auxtrace = NULL;
3572 err_free:
3573 	addr_filters__exit(&pt->filts);
3574 	zfree(&pt->filter);
3575 	zfree(&pt->time_ranges);
3576 	free(pt);
3577 	return err;
3578 }
3579