xref: /linux/tools/perf/util/intel-pt.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39 
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41 
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46 
47 #define MAX_TIMESTAMP (~0ULL)
48 
49 #define INTEL_PT_CFG_PASS_THRU	BIT_ULL(0)
50 #define INTEL_PT_CFG_PWR_EVT_EN	BIT_ULL(4)
51 #define INTEL_PT_CFG_BRANCH_EN	BIT_ULL(13)
52 #define INTEL_PT_CFG_EVT_EN	BIT_ULL(31)
53 #define INTEL_PT_CFG_TNT_DIS	BIT_ULL(55)
54 
55 struct range {
56 	u64 start;
57 	u64 end;
58 };
59 
60 struct intel_pt {
61 	struct auxtrace auxtrace;
62 	struct auxtrace_queues queues;
63 	struct auxtrace_heap heap;
64 	u32 auxtrace_type;
65 	struct perf_session *session;
66 	struct machine *machine;
67 	struct evsel *switch_evsel;
68 	struct thread *unknown_thread;
69 	bool timeless_decoding;
70 	bool sampling_mode;
71 	bool snapshot_mode;
72 	bool per_cpu_mmaps;
73 	bool have_tsc;
74 	bool data_queued;
75 	bool est_tsc;
76 	bool sync_switch;
77 	bool sync_switch_not_supported;
78 	bool mispred_all;
79 	bool use_thread_stack;
80 	bool callstack;
81 	bool cap_event_trace;
82 	bool have_guest_sideband;
83 	unsigned int br_stack_sz;
84 	unsigned int br_stack_sz_plus;
85 	int have_sched_switch;
86 	u32 pmu_type;
87 	u64 kernel_start;
88 	u64 switch_ip;
89 	u64 ptss_ip;
90 	u64 first_timestamp;
91 
92 	struct perf_tsc_conversion tc;
93 	bool cap_user_time_zero;
94 
95 	struct itrace_synth_opts synth_opts;
96 
97 	bool sample_instructions;
98 	u64 instructions_sample_type;
99 	u64 instructions_id;
100 
101 	bool sample_branches;
102 	u32 branches_filter;
103 	u64 branches_sample_type;
104 	u64 branches_id;
105 
106 	bool sample_transactions;
107 	u64 transactions_sample_type;
108 	u64 transactions_id;
109 
110 	bool sample_ptwrites;
111 	u64 ptwrites_sample_type;
112 	u64 ptwrites_id;
113 
114 	bool sample_pwr_events;
115 	u64 pwr_events_sample_type;
116 	u64 mwait_id;
117 	u64 pwre_id;
118 	u64 exstop_id;
119 	u64 pwrx_id;
120 	u64 cbr_id;
121 	u64 psb_id;
122 
123 	bool single_pebs;
124 	bool sample_pebs;
125 	struct evsel *pebs_evsel;
126 
127 	u64 evt_sample_type;
128 	u64 evt_id;
129 
130 	u64 iflag_chg_sample_type;
131 	u64 iflag_chg_id;
132 
133 	u64 tsc_bit;
134 	u64 mtc_bit;
135 	u64 mtc_freq_bits;
136 	u32 tsc_ctc_ratio_n;
137 	u32 tsc_ctc_ratio_d;
138 	u64 cyc_bit;
139 	u64 noretcomp_bit;
140 	unsigned max_non_turbo_ratio;
141 	unsigned cbr2khz;
142 	int max_loops;
143 
144 	unsigned long num_events;
145 
146 	char *filter;
147 	struct addr_filters filts;
148 
149 	struct range *time_ranges;
150 	unsigned int range_cnt;
151 
152 	struct ip_callchain *chain;
153 	struct branch_stack *br_stack;
154 
155 	u64 dflt_tsc_offset;
156 	struct rb_root vmcs_info;
157 };
158 
159 enum switch_state {
160 	INTEL_PT_SS_NOT_TRACING,
161 	INTEL_PT_SS_UNKNOWN,
162 	INTEL_PT_SS_TRACING,
163 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
164 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
165 };
166 
167 /* applicable_counters is 64-bits */
168 #define INTEL_PT_MAX_PEBS 64
169 
170 struct intel_pt_pebs_event {
171 	struct evsel *evsel;
172 	u64 id;
173 };
174 
175 struct intel_pt_queue {
176 	struct intel_pt *pt;
177 	unsigned int queue_nr;
178 	struct auxtrace_buffer *buffer;
179 	struct auxtrace_buffer *old_buffer;
180 	void *decoder;
181 	const struct intel_pt_state *state;
182 	struct ip_callchain *chain;
183 	struct branch_stack *last_branch;
184 	union perf_event *event_buf;
185 	bool on_heap;
186 	bool stop;
187 	bool step_through_buffers;
188 	bool use_buffer_pid_tid;
189 	bool sync_switch;
190 	bool sample_ipc;
191 	pid_t pid, tid;
192 	int cpu;
193 	int switch_state;
194 	pid_t next_tid;
195 	struct thread *thread;
196 	struct machine *guest_machine;
197 	struct thread *guest_thread;
198 	struct thread *unknown_guest_thread;
199 	pid_t guest_machine_pid;
200 	pid_t guest_pid;
201 	pid_t guest_tid;
202 	int vcpu;
203 	bool exclude_kernel;
204 	bool have_sample;
205 	u64 time;
206 	u64 timestamp;
207 	u64 sel_timestamp;
208 	bool sel_start;
209 	unsigned int sel_idx;
210 	u32 flags;
211 	u16 insn_len;
212 	u64 last_insn_cnt;
213 	u64 ipc_insn_cnt;
214 	u64 ipc_cyc_cnt;
215 	u64 last_in_insn_cnt;
216 	u64 last_in_cyc_cnt;
217 	u64 last_br_insn_cnt;
218 	u64 last_br_cyc_cnt;
219 	unsigned int cbr_seen;
220 	char insn[INTEL_PT_INSN_BUF_SZ];
221 	struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
222 };
223 
224 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
225 			  unsigned char *buf, size_t len)
226 {
227 	struct intel_pt_pkt packet;
228 	size_t pos = 0;
229 	int ret, pkt_len, i;
230 	char desc[INTEL_PT_PKT_DESC_MAX];
231 	const char *color = PERF_COLOR_BLUE;
232 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
233 
234 	color_fprintf(stdout, color,
235 		      ". ... Intel Processor Trace data: size %zu bytes\n",
236 		      len);
237 
238 	while (len) {
239 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
240 		if (ret > 0)
241 			pkt_len = ret;
242 		else
243 			pkt_len = 1;
244 		printf(".");
245 		color_fprintf(stdout, color, "  %08x: ", pos);
246 		for (i = 0; i < pkt_len; i++)
247 			color_fprintf(stdout, color, " %02x", buf[i]);
248 		for (; i < 16; i++)
249 			color_fprintf(stdout, color, "   ");
250 		if (ret > 0) {
251 			ret = intel_pt_pkt_desc(&packet, desc,
252 						INTEL_PT_PKT_DESC_MAX);
253 			if (ret > 0)
254 				color_fprintf(stdout, color, " %s\n", desc);
255 		} else {
256 			color_fprintf(stdout, color, " Bad packet!\n");
257 		}
258 		pos += pkt_len;
259 		buf += pkt_len;
260 		len -= pkt_len;
261 	}
262 }
263 
264 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
265 				size_t len)
266 {
267 	printf(".\n");
268 	intel_pt_dump(pt, buf, len);
269 }
270 
271 static void intel_pt_log_event(union perf_event *event)
272 {
273 	FILE *f = intel_pt_log_fp();
274 
275 	if (!intel_pt_enable_logging || !f)
276 		return;
277 
278 	perf_event__fprintf(event, NULL, f);
279 }
280 
281 static void intel_pt_dump_sample(struct perf_session *session,
282 				 struct perf_sample *sample)
283 {
284 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
285 					   auxtrace);
286 
287 	printf("\n");
288 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
289 }
290 
291 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
292 {
293 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
294 	int n = pt->synth_opts.range_num;
295 
296 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
297 		return true;
298 
299 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
300 		return false;
301 
302 	/* perf_time__ranges_skip_sample does not work if time is zero */
303 	if (!tm)
304 		tm = 1;
305 
306 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
307 }
308 
309 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
310 							u64 vmcs,
311 							u64 dflt_tsc_offset)
312 {
313 	struct rb_node **p = &rb_root->rb_node;
314 	struct rb_node *parent = NULL;
315 	struct intel_pt_vmcs_info *v;
316 
317 	while (*p) {
318 		parent = *p;
319 		v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
320 
321 		if (v->vmcs == vmcs)
322 			return v;
323 
324 		if (vmcs < v->vmcs)
325 			p = &(*p)->rb_left;
326 		else
327 			p = &(*p)->rb_right;
328 	}
329 
330 	v = zalloc(sizeof(*v));
331 	if (v) {
332 		v->vmcs = vmcs;
333 		v->tsc_offset = dflt_tsc_offset;
334 		v->reliable = dflt_tsc_offset;
335 
336 		rb_link_node(&v->rb_node, parent, p);
337 		rb_insert_color(&v->rb_node, rb_root);
338 	}
339 
340 	return v;
341 }
342 
343 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
344 {
345 	struct intel_pt_queue *ptq = data;
346 	struct intel_pt *pt = ptq->pt;
347 
348 	if (!vmcs && !pt->dflt_tsc_offset)
349 		return NULL;
350 
351 	return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
352 }
353 
354 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
355 {
356 	struct intel_pt_vmcs_info *v;
357 	struct rb_node *n;
358 
359 	n = rb_first(&pt->vmcs_info);
360 	while (n) {
361 		v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
362 		n = rb_next(n);
363 		rb_erase(&v->rb_node, &pt->vmcs_info);
364 		free(v);
365 	}
366 }
367 
368 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
369 				   struct auxtrace_buffer *b)
370 {
371 	bool consecutive = false;
372 	void *start;
373 
374 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
375 				      pt->have_tsc, &consecutive,
376 				      pt->synth_opts.vm_time_correlation);
377 	if (!start)
378 		return -EINVAL;
379 	/*
380 	 * In the case of vm_time_correlation, the overlap might contain TSC
381 	 * packets that will not be fixed, and that will then no longer work for
382 	 * overlap detection. Avoid that by zeroing out the overlap.
383 	 */
384 	if (pt->synth_opts.vm_time_correlation)
385 		memset(b->data, 0, start - b->data);
386 	b->use_size = b->data + b->size - start;
387 	b->use_data = start;
388 	if (b->use_size && consecutive)
389 		b->consecutive = true;
390 	return 0;
391 }
392 
393 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
394 			       struct auxtrace_buffer *buffer,
395 			       struct auxtrace_buffer *old_buffer,
396 			       struct intel_pt_buffer *b)
397 {
398 	bool might_overlap;
399 
400 	if (!buffer->data) {
401 		int fd = perf_data__fd(ptq->pt->session->data);
402 
403 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
404 		if (!buffer->data)
405 			return -ENOMEM;
406 	}
407 
408 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
409 	if (might_overlap && !buffer->consecutive && old_buffer &&
410 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
411 		return -ENOMEM;
412 
413 	if (buffer->use_data) {
414 		b->len = buffer->use_size;
415 		b->buf = buffer->use_data;
416 	} else {
417 		b->len = buffer->size;
418 		b->buf = buffer->data;
419 	}
420 	b->ref_timestamp = buffer->reference;
421 
422 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
423 		b->consecutive = false;
424 		b->trace_nr = buffer->buffer_nr + 1;
425 	} else {
426 		b->consecutive = true;
427 	}
428 
429 	return 0;
430 }
431 
432 /* Do not drop buffers with references - refer intel_pt_get_trace() */
433 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
434 					   struct auxtrace_buffer *buffer)
435 {
436 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
437 		return;
438 
439 	auxtrace_buffer__drop_data(buffer);
440 }
441 
442 /* Must be serialized with respect to intel_pt_get_trace() */
443 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
444 			      void *cb_data)
445 {
446 	struct intel_pt_queue *ptq = data;
447 	struct auxtrace_buffer *buffer = ptq->buffer;
448 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
449 	struct auxtrace_queue *queue;
450 	int err = 0;
451 
452 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
453 
454 	while (1) {
455 		struct intel_pt_buffer b = { .len = 0 };
456 
457 		buffer = auxtrace_buffer__next(queue, buffer);
458 		if (!buffer)
459 			break;
460 
461 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
462 		if (err)
463 			break;
464 
465 		if (b.len) {
466 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
467 			old_buffer = buffer;
468 		} else {
469 			intel_pt_lookahead_drop_buffer(ptq, buffer);
470 			continue;
471 		}
472 
473 		err = cb(&b, cb_data);
474 		if (err)
475 			break;
476 	}
477 
478 	if (buffer != old_buffer)
479 		intel_pt_lookahead_drop_buffer(ptq, buffer);
480 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
481 
482 	return err;
483 }
484 
485 /*
486  * This function assumes data is processed sequentially only.
487  * Must be serialized with respect to intel_pt_lookahead()
488  */
489 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
490 {
491 	struct intel_pt_queue *ptq = data;
492 	struct auxtrace_buffer *buffer = ptq->buffer;
493 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
494 	struct auxtrace_queue *queue;
495 	int err;
496 
497 	if (ptq->stop) {
498 		b->len = 0;
499 		return 0;
500 	}
501 
502 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
503 
504 	buffer = auxtrace_buffer__next(queue, buffer);
505 	if (!buffer) {
506 		if (old_buffer)
507 			auxtrace_buffer__drop_data(old_buffer);
508 		b->len = 0;
509 		return 0;
510 	}
511 
512 	ptq->buffer = buffer;
513 
514 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
515 	if (err)
516 		return err;
517 
518 	if (ptq->step_through_buffers)
519 		ptq->stop = true;
520 
521 	if (b->len) {
522 		if (old_buffer)
523 			auxtrace_buffer__drop_data(old_buffer);
524 		ptq->old_buffer = buffer;
525 	} else {
526 		auxtrace_buffer__drop_data(buffer);
527 		return intel_pt_get_trace(b, data);
528 	}
529 
530 	return 0;
531 }
532 
533 struct intel_pt_cache_entry {
534 	struct auxtrace_cache_entry	entry;
535 	u64				insn_cnt;
536 	u64				byte_cnt;
537 	enum intel_pt_insn_op		op;
538 	enum intel_pt_insn_branch	branch;
539 	bool				emulated_ptwrite;
540 	int				length;
541 	int32_t				rel;
542 	char				insn[INTEL_PT_INSN_BUF_SZ];
543 };
544 
545 static int intel_pt_config_div(const char *var, const char *value, void *data)
546 {
547 	int *d = data;
548 	long val;
549 
550 	if (!strcmp(var, "intel-pt.cache-divisor")) {
551 		val = strtol(value, NULL, 0);
552 		if (val > 0 && val <= INT_MAX)
553 			*d = val;
554 	}
555 
556 	return 0;
557 }
558 
559 static int intel_pt_cache_divisor(void)
560 {
561 	static int d;
562 
563 	if (d)
564 		return d;
565 
566 	perf_config(intel_pt_config_div, &d);
567 
568 	if (!d)
569 		d = 64;
570 
571 	return d;
572 }
573 
574 static unsigned int intel_pt_cache_size(struct dso *dso,
575 					struct machine *machine)
576 {
577 	off_t size;
578 
579 	size = dso__data_size(dso, machine);
580 	size /= intel_pt_cache_divisor();
581 	if (size < 1000)
582 		return 10;
583 	if (size > (1 << 21))
584 		return 21;
585 	return 32 - __builtin_clz(size);
586 }
587 
588 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
589 					     struct machine *machine)
590 {
591 	struct auxtrace_cache *c;
592 	unsigned int bits;
593 
594 	if (dso->auxtrace_cache)
595 		return dso->auxtrace_cache;
596 
597 	bits = intel_pt_cache_size(dso, machine);
598 
599 	/* Ignoring cache creation failure */
600 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
601 
602 	dso->auxtrace_cache = c;
603 
604 	return c;
605 }
606 
607 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
608 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
609 			      struct intel_pt_insn *intel_pt_insn)
610 {
611 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
612 	struct intel_pt_cache_entry *e;
613 	int err;
614 
615 	if (!c)
616 		return -ENOMEM;
617 
618 	e = auxtrace_cache__alloc_entry(c);
619 	if (!e)
620 		return -ENOMEM;
621 
622 	e->insn_cnt = insn_cnt;
623 	e->byte_cnt = byte_cnt;
624 	e->op = intel_pt_insn->op;
625 	e->branch = intel_pt_insn->branch;
626 	e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
627 	e->length = intel_pt_insn->length;
628 	e->rel = intel_pt_insn->rel;
629 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
630 
631 	err = auxtrace_cache__add(c, offset, &e->entry);
632 	if (err)
633 		auxtrace_cache__free_entry(c, e);
634 
635 	return err;
636 }
637 
638 static struct intel_pt_cache_entry *
639 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
640 {
641 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
642 
643 	if (!c)
644 		return NULL;
645 
646 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
647 }
648 
649 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
650 				      u64 offset)
651 {
652 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
653 
654 	if (!c)
655 		return;
656 
657 	auxtrace_cache__remove(dso->auxtrace_cache, offset);
658 }
659 
660 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
661 {
662 	/* Assumes 64-bit kernel */
663 	return ip & (1ULL << 63);
664 }
665 
666 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
667 {
668 	if (nr) {
669 		return intel_pt_guest_kernel_ip(ip) ?
670 		       PERF_RECORD_MISC_GUEST_KERNEL :
671 		       PERF_RECORD_MISC_GUEST_USER;
672 	}
673 
674 	return ip >= ptq->pt->kernel_start ?
675 	       PERF_RECORD_MISC_KERNEL :
676 	       PERF_RECORD_MISC_USER;
677 }
678 
679 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
680 {
681 	/* No support for non-zero CS base */
682 	if (from_ip)
683 		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
684 	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
685 }
686 
687 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
688 {
689 	struct machines *machines = &ptq->pt->session->machines;
690 	struct machine *machine;
691 	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
692 
693 	if (ptq->guest_machine && pid == ptq->guest_machine->pid)
694 		return 0;
695 
696 	ptq->guest_machine = NULL;
697 	thread__zput(ptq->unknown_guest_thread);
698 
699 	if (symbol_conf.guest_code) {
700 		thread__zput(ptq->guest_thread);
701 		ptq->guest_thread = machines__findnew_guest_code(machines, pid);
702 	}
703 
704 	machine = machines__find_guest(machines, pid);
705 	if (!machine)
706 		return -1;
707 
708 	ptq->unknown_guest_thread = machine__idle_thread(machine);
709 	if (!ptq->unknown_guest_thread)
710 		return -1;
711 
712 	ptq->guest_machine = machine;
713 
714 	return 0;
715 }
716 
717 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
718 {
719 	return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
720 }
721 
722 #define PTWRITE_MAGIC		"\x0f\x0bperf,ptwrite  "
723 #define PTWRITE_MAGIC_LEN	16
724 
725 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
726 {
727 	unsigned char buf[PTWRITE_MAGIC_LEN];
728 	ssize_t len;
729 
730 	len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
731 	if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
732 		intel_pt_log("Emulated ptwrite signature found\n");
733 		return true;
734 	}
735 	intel_pt_log("Emulated ptwrite signature not found\n");
736 	return false;
737 }
738 
739 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
740 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
741 				   uint64_t to_ip, uint64_t max_insn_cnt,
742 				   void *data)
743 {
744 	struct intel_pt_queue *ptq = data;
745 	struct machine *machine = ptq->pt->machine;
746 	struct thread *thread;
747 	struct addr_location al;
748 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
749 	ssize_t len;
750 	int x86_64;
751 	u8 cpumode;
752 	u64 offset, start_offset, start_ip;
753 	u64 insn_cnt = 0;
754 	bool one_map = true;
755 	bool nr;
756 
757 	intel_pt_insn->length = 0;
758 
759 	if (to_ip && *ip == to_ip)
760 		goto out_no_cache;
761 
762 	nr = ptq->state->to_nr;
763 	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
764 
765 	if (nr) {
766 		if (ptq->pt->have_guest_sideband) {
767 			if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
768 				intel_pt_log("ERROR: guest sideband but no guest machine\n");
769 				return -EINVAL;
770 			}
771 		} else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
772 			   intel_pt_get_guest(ptq)) {
773 			intel_pt_log("ERROR: no guest machine\n");
774 			return -EINVAL;
775 		}
776 		machine = ptq->guest_machine;
777 		thread = ptq->guest_thread;
778 		if (!thread) {
779 			if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
780 				intel_pt_log("ERROR: no guest thread\n");
781 				return -EINVAL;
782 			}
783 			thread = ptq->unknown_guest_thread;
784 		}
785 	} else {
786 		thread = ptq->thread;
787 		if (!thread) {
788 			if (cpumode != PERF_RECORD_MISC_KERNEL) {
789 				intel_pt_log("ERROR: no thread\n");
790 				return -EINVAL;
791 			}
792 			thread = ptq->pt->unknown_thread;
793 		}
794 	}
795 
796 	while (1) {
797 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso) {
798 			if (al.map)
799 				intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
800 			else
801 				intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
802 			return -EINVAL;
803 		}
804 
805 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
806 		    dso__data_status_seen(al.map->dso,
807 					  DSO_DATA_STATUS_SEEN_ITRACE))
808 			return -ENOENT;
809 
810 		offset = al.map->map_ip(al.map, *ip);
811 
812 		if (!to_ip && one_map) {
813 			struct intel_pt_cache_entry *e;
814 
815 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
816 			if (e &&
817 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
818 				*insn_cnt_ptr = e->insn_cnt;
819 				*ip += e->byte_cnt;
820 				intel_pt_insn->op = e->op;
821 				intel_pt_insn->branch = e->branch;
822 				intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
823 				intel_pt_insn->length = e->length;
824 				intel_pt_insn->rel = e->rel;
825 				memcpy(intel_pt_insn->buf, e->insn,
826 				       INTEL_PT_INSN_BUF_SZ);
827 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
828 				return 0;
829 			}
830 		}
831 
832 		start_offset = offset;
833 		start_ip = *ip;
834 
835 		/* Load maps to ensure dso->is_64_bit has been updated */
836 		map__load(al.map);
837 
838 		x86_64 = al.map->dso->is_64_bit;
839 
840 		while (1) {
841 			len = dso__data_read_offset(al.map->dso, machine,
842 						    offset, buf,
843 						    INTEL_PT_INSN_BUF_SZ);
844 			if (len <= 0) {
845 				intel_pt_log("ERROR: failed to read at %" PRIu64 " ", offset);
846 				if (intel_pt_enable_logging)
847 					dso__fprintf(al.map->dso, intel_pt_log_fp());
848 				return -EINVAL;
849 			}
850 
851 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
852 				return -EINVAL;
853 
854 			intel_pt_log_insn(intel_pt_insn, *ip);
855 
856 			insn_cnt += 1;
857 
858 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
859 				bool eptw;
860 				u64 offs;
861 
862 				if (!intel_pt_jmp_16(intel_pt_insn))
863 					goto out;
864 				/* Check for emulated ptwrite */
865 				offs = offset + intel_pt_insn->length;
866 				eptw = intel_pt_emulated_ptwrite(al.map->dso, machine, offs);
867 				intel_pt_insn->emulated_ptwrite = eptw;
868 				goto out;
869 			}
870 
871 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
872 				goto out_no_cache;
873 
874 			*ip += intel_pt_insn->length;
875 
876 			if (to_ip && *ip == to_ip) {
877 				intel_pt_insn->length = 0;
878 				goto out_no_cache;
879 			}
880 
881 			if (*ip >= al.map->end)
882 				break;
883 
884 			offset += intel_pt_insn->length;
885 		}
886 		one_map = false;
887 	}
888 out:
889 	*insn_cnt_ptr = insn_cnt;
890 
891 	if (!one_map)
892 		goto out_no_cache;
893 
894 	/*
895 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
896 	 * entries.
897 	 */
898 	if (to_ip) {
899 		struct intel_pt_cache_entry *e;
900 
901 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
902 		if (e)
903 			return 0;
904 	}
905 
906 	/* Ignore cache errors */
907 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
908 			   *ip - start_ip, intel_pt_insn);
909 
910 	return 0;
911 
912 out_no_cache:
913 	*insn_cnt_ptr = insn_cnt;
914 	return 0;
915 }
916 
917 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
918 				  uint64_t offset, const char *filename)
919 {
920 	struct addr_filter *filt;
921 	bool have_filter   = false;
922 	bool hit_tracestop = false;
923 	bool hit_filter    = false;
924 
925 	list_for_each_entry(filt, &pt->filts.head, list) {
926 		if (filt->start)
927 			have_filter = true;
928 
929 		if ((filename && !filt->filename) ||
930 		    (!filename && filt->filename) ||
931 		    (filename && strcmp(filename, filt->filename)))
932 			continue;
933 
934 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
935 			continue;
936 
937 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
938 			     ip, offset, filename ? filename : "[kernel]",
939 			     filt->start ? "filter" : "stop",
940 			     filt->addr, filt->size);
941 
942 		if (filt->start)
943 			hit_filter = true;
944 		else
945 			hit_tracestop = true;
946 	}
947 
948 	if (!hit_tracestop && !hit_filter)
949 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
950 			     ip, offset, filename ? filename : "[kernel]");
951 
952 	return hit_tracestop || (have_filter && !hit_filter);
953 }
954 
955 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
956 {
957 	struct intel_pt_queue *ptq = data;
958 	struct thread *thread;
959 	struct addr_location al;
960 	u8 cpumode;
961 	u64 offset;
962 
963 	if (ptq->state->to_nr) {
964 		if (intel_pt_guest_kernel_ip(ip))
965 			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
966 		/* No support for decoding guest user space */
967 		return -EINVAL;
968 	} else if (ip >= ptq->pt->kernel_start) {
969 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
970 	}
971 
972 	cpumode = PERF_RECORD_MISC_USER;
973 
974 	thread = ptq->thread;
975 	if (!thread)
976 		return -EINVAL;
977 
978 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
979 		return -EINVAL;
980 
981 	offset = al.map->map_ip(al.map, ip);
982 
983 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
984 				     al.map->dso->long_name);
985 }
986 
987 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
988 {
989 	return __intel_pt_pgd_ip(ip, data) > 0;
990 }
991 
992 static bool intel_pt_get_config(struct intel_pt *pt,
993 				struct perf_event_attr *attr, u64 *config)
994 {
995 	if (attr->type == pt->pmu_type) {
996 		if (config)
997 			*config = attr->config;
998 		return true;
999 	}
1000 
1001 	return false;
1002 }
1003 
1004 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1005 {
1006 	struct evsel *evsel;
1007 
1008 	evlist__for_each_entry(pt->session->evlist, evsel) {
1009 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1010 		    !evsel->core.attr.exclude_kernel)
1011 			return false;
1012 	}
1013 	return true;
1014 }
1015 
1016 static bool intel_pt_return_compression(struct intel_pt *pt)
1017 {
1018 	struct evsel *evsel;
1019 	u64 config;
1020 
1021 	if (!pt->noretcomp_bit)
1022 		return true;
1023 
1024 	evlist__for_each_entry(pt->session->evlist, evsel) {
1025 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1026 		    (config & pt->noretcomp_bit))
1027 			return false;
1028 	}
1029 	return true;
1030 }
1031 
1032 static bool intel_pt_branch_enable(struct intel_pt *pt)
1033 {
1034 	struct evsel *evsel;
1035 	u64 config;
1036 
1037 	evlist__for_each_entry(pt->session->evlist, evsel) {
1038 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1039 		    (config & INTEL_PT_CFG_PASS_THRU) &&
1040 		    !(config & INTEL_PT_CFG_BRANCH_EN))
1041 			return false;
1042 	}
1043 	return true;
1044 }
1045 
1046 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1047 {
1048 	struct evsel *evsel;
1049 	u64 config;
1050 
1051 	evlist__for_each_entry(pt->session->evlist, evsel) {
1052 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1053 		    config & INTEL_PT_CFG_TNT_DIS)
1054 			return true;
1055 	}
1056 	return false;
1057 }
1058 
1059 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1060 {
1061 	struct evsel *evsel;
1062 	unsigned int shift;
1063 	u64 config;
1064 
1065 	if (!pt->mtc_freq_bits)
1066 		return 0;
1067 
1068 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1069 		config >>= 1;
1070 
1071 	evlist__for_each_entry(pt->session->evlist, evsel) {
1072 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1073 			return (config & pt->mtc_freq_bits) >> shift;
1074 	}
1075 	return 0;
1076 }
1077 
1078 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1079 {
1080 	struct evsel *evsel;
1081 	bool timeless_decoding = true;
1082 	u64 config;
1083 
1084 	if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1085 		return true;
1086 
1087 	evlist__for_each_entry(pt->session->evlist, evsel) {
1088 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1089 			return true;
1090 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1091 			if (config & pt->tsc_bit)
1092 				timeless_decoding = false;
1093 			else
1094 				return true;
1095 		}
1096 	}
1097 	return timeless_decoding;
1098 }
1099 
1100 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1101 {
1102 	struct evsel *evsel;
1103 
1104 	evlist__for_each_entry(pt->session->evlist, evsel) {
1105 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1106 		    !evsel->core.attr.exclude_kernel)
1107 			return true;
1108 	}
1109 	return false;
1110 }
1111 
1112 static bool intel_pt_have_tsc(struct intel_pt *pt)
1113 {
1114 	struct evsel *evsel;
1115 	bool have_tsc = false;
1116 	u64 config;
1117 
1118 	if (!pt->tsc_bit)
1119 		return false;
1120 
1121 	evlist__for_each_entry(pt->session->evlist, evsel) {
1122 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1123 			if (config & pt->tsc_bit)
1124 				have_tsc = true;
1125 			else
1126 				return false;
1127 		}
1128 	}
1129 	return have_tsc;
1130 }
1131 
1132 static bool intel_pt_have_mtc(struct intel_pt *pt)
1133 {
1134 	struct evsel *evsel;
1135 	u64 config;
1136 
1137 	evlist__for_each_entry(pt->session->evlist, evsel) {
1138 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1139 		    (config & pt->mtc_bit))
1140 			return true;
1141 	}
1142 	return false;
1143 }
1144 
1145 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1146 {
1147 	struct evsel *evsel;
1148 
1149 	evlist__for_each_entry(pt->session->evlist, evsel) {
1150 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1151 		    evsel->core.attr.aux_sample_size)
1152 			return true;
1153 	}
1154 	return false;
1155 }
1156 
1157 static u64 intel_pt_ctl(struct intel_pt *pt)
1158 {
1159 	struct evsel *evsel;
1160 	u64 config;
1161 
1162 	evlist__for_each_entry(pt->session->evlist, evsel) {
1163 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1164 			return config;
1165 	}
1166 	return 0;
1167 }
1168 
1169 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1170 {
1171 	u64 quot, rem;
1172 
1173 	quot = ns / pt->tc.time_mult;
1174 	rem  = ns % pt->tc.time_mult;
1175 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1176 		pt->tc.time_mult;
1177 }
1178 
1179 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1180 {
1181 	size_t sz = sizeof(struct ip_callchain);
1182 
1183 	/* Add 1 to callchain_sz for callchain context */
1184 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1185 	return zalloc(sz);
1186 }
1187 
1188 static int intel_pt_callchain_init(struct intel_pt *pt)
1189 {
1190 	struct evsel *evsel;
1191 
1192 	evlist__for_each_entry(pt->session->evlist, evsel) {
1193 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1194 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1195 	}
1196 
1197 	pt->chain = intel_pt_alloc_chain(pt);
1198 	if (!pt->chain)
1199 		return -ENOMEM;
1200 
1201 	return 0;
1202 }
1203 
1204 static void intel_pt_add_callchain(struct intel_pt *pt,
1205 				   struct perf_sample *sample)
1206 {
1207 	struct thread *thread = machine__findnew_thread(pt->machine,
1208 							sample->pid,
1209 							sample->tid);
1210 
1211 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1212 				  pt->synth_opts.callchain_sz + 1, sample->ip,
1213 				  pt->kernel_start);
1214 
1215 	sample->callchain = pt->chain;
1216 }
1217 
1218 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1219 {
1220 	size_t sz = sizeof(struct branch_stack);
1221 
1222 	sz += entry_cnt * sizeof(struct branch_entry);
1223 	return zalloc(sz);
1224 }
1225 
1226 static int intel_pt_br_stack_init(struct intel_pt *pt)
1227 {
1228 	struct evsel *evsel;
1229 
1230 	evlist__for_each_entry(pt->session->evlist, evsel) {
1231 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1232 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1233 	}
1234 
1235 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1236 	if (!pt->br_stack)
1237 		return -ENOMEM;
1238 
1239 	return 0;
1240 }
1241 
1242 static void intel_pt_add_br_stack(struct intel_pt *pt,
1243 				  struct perf_sample *sample)
1244 {
1245 	struct thread *thread = machine__findnew_thread(pt->machine,
1246 							sample->pid,
1247 							sample->tid);
1248 
1249 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1250 				     pt->br_stack_sz, sample->ip,
1251 				     pt->kernel_start);
1252 
1253 	sample->branch_stack = pt->br_stack;
1254 }
1255 
1256 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1257 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1258 
1259 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1260 						   unsigned int queue_nr)
1261 {
1262 	struct intel_pt_params params = { .get_trace = 0, };
1263 	struct perf_env *env = pt->machine->env;
1264 	struct intel_pt_queue *ptq;
1265 
1266 	ptq = zalloc(sizeof(struct intel_pt_queue));
1267 	if (!ptq)
1268 		return NULL;
1269 
1270 	if (pt->synth_opts.callchain) {
1271 		ptq->chain = intel_pt_alloc_chain(pt);
1272 		if (!ptq->chain)
1273 			goto out_free;
1274 	}
1275 
1276 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1277 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1278 
1279 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1280 		if (!ptq->last_branch)
1281 			goto out_free;
1282 	}
1283 
1284 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1285 	if (!ptq->event_buf)
1286 		goto out_free;
1287 
1288 	ptq->pt = pt;
1289 	ptq->queue_nr = queue_nr;
1290 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1291 	ptq->pid = -1;
1292 	ptq->tid = -1;
1293 	ptq->cpu = -1;
1294 	ptq->next_tid = -1;
1295 
1296 	params.get_trace = intel_pt_get_trace;
1297 	params.walk_insn = intel_pt_walk_next_insn;
1298 	params.lookahead = intel_pt_lookahead;
1299 	params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1300 	params.data = ptq;
1301 	params.return_compression = intel_pt_return_compression(pt);
1302 	params.branch_enable = intel_pt_branch_enable(pt);
1303 	params.ctl = intel_pt_ctl(pt);
1304 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1305 	params.mtc_period = intel_pt_mtc_period(pt);
1306 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1307 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1308 	params.quick = pt->synth_opts.quick;
1309 	params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1310 	params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1311 	params.first_timestamp = pt->first_timestamp;
1312 	params.max_loops = pt->max_loops;
1313 
1314 	/* Cannot walk code without TNT, so force 'quick' mode */
1315 	if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1316 		params.quick = 1;
1317 
1318 	if (pt->filts.cnt > 0)
1319 		params.pgd_ip = intel_pt_pgd_ip;
1320 
1321 	if (pt->synth_opts.instructions) {
1322 		if (pt->synth_opts.period) {
1323 			switch (pt->synth_opts.period_type) {
1324 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1325 				params.period_type =
1326 						INTEL_PT_PERIOD_INSTRUCTIONS;
1327 				params.period = pt->synth_opts.period;
1328 				break;
1329 			case PERF_ITRACE_PERIOD_TICKS:
1330 				params.period_type = INTEL_PT_PERIOD_TICKS;
1331 				params.period = pt->synth_opts.period;
1332 				break;
1333 			case PERF_ITRACE_PERIOD_NANOSECS:
1334 				params.period_type = INTEL_PT_PERIOD_TICKS;
1335 				params.period = intel_pt_ns_to_ticks(pt,
1336 							pt->synth_opts.period);
1337 				break;
1338 			default:
1339 				break;
1340 			}
1341 		}
1342 
1343 		if (!params.period) {
1344 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1345 			params.period = 1;
1346 		}
1347 	}
1348 
1349 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1350 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1351 
1352 	ptq->decoder = intel_pt_decoder_new(&params);
1353 	if (!ptq->decoder)
1354 		goto out_free;
1355 
1356 	return ptq;
1357 
1358 out_free:
1359 	zfree(&ptq->event_buf);
1360 	zfree(&ptq->last_branch);
1361 	zfree(&ptq->chain);
1362 	free(ptq);
1363 	return NULL;
1364 }
1365 
1366 static void intel_pt_free_queue(void *priv)
1367 {
1368 	struct intel_pt_queue *ptq = priv;
1369 
1370 	if (!ptq)
1371 		return;
1372 	thread__zput(ptq->thread);
1373 	thread__zput(ptq->guest_thread);
1374 	thread__zput(ptq->unknown_guest_thread);
1375 	intel_pt_decoder_free(ptq->decoder);
1376 	zfree(&ptq->event_buf);
1377 	zfree(&ptq->last_branch);
1378 	zfree(&ptq->chain);
1379 	free(ptq);
1380 }
1381 
1382 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1383 {
1384 	unsigned int i;
1385 
1386 	pt->first_timestamp = timestamp;
1387 
1388 	for (i = 0; i < pt->queues.nr_queues; i++) {
1389 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1390 		struct intel_pt_queue *ptq = queue->priv;
1391 
1392 		if (ptq && ptq->decoder)
1393 			intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1394 	}
1395 }
1396 
1397 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1398 {
1399 	struct machines *machines = &ptq->pt->session->machines;
1400 	struct machine *machine;
1401 	pid_t machine_pid = ptq->pid;
1402 	pid_t tid;
1403 	int vcpu;
1404 
1405 	if (machine_pid <= 0)
1406 		return 0; /* Not a guest machine */
1407 
1408 	machine = machines__find(machines, machine_pid);
1409 	if (!machine)
1410 		return 0; /* Not a guest machine */
1411 
1412 	if (ptq->guest_machine != machine) {
1413 		ptq->guest_machine = NULL;
1414 		thread__zput(ptq->guest_thread);
1415 		thread__zput(ptq->unknown_guest_thread);
1416 
1417 		ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1418 		if (!ptq->unknown_guest_thread)
1419 			return -1;
1420 		ptq->guest_machine = machine;
1421 	}
1422 
1423 	vcpu = ptq->thread ? ptq->thread->guest_cpu : -1;
1424 	if (vcpu < 0)
1425 		return -1;
1426 
1427 	tid = machine__get_current_tid(machine, vcpu);
1428 
1429 	if (ptq->guest_thread && ptq->guest_thread->tid != tid)
1430 		thread__zput(ptq->guest_thread);
1431 
1432 	if (!ptq->guest_thread) {
1433 		ptq->guest_thread = machine__find_thread(machine, -1, tid);
1434 		if (!ptq->guest_thread)
1435 			return -1;
1436 	}
1437 
1438 	ptq->guest_machine_pid = machine_pid;
1439 	ptq->guest_pid = ptq->guest_thread->pid_;
1440 	ptq->guest_tid = tid;
1441 	ptq->vcpu = vcpu;
1442 
1443 	return 0;
1444 }
1445 
1446 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1447 				     struct auxtrace_queue *queue)
1448 {
1449 	struct intel_pt_queue *ptq = queue->priv;
1450 
1451 	if (queue->tid == -1 || pt->have_sched_switch) {
1452 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1453 		if (ptq->tid == -1)
1454 			ptq->pid = -1;
1455 		thread__zput(ptq->thread);
1456 	}
1457 
1458 	if (!ptq->thread && ptq->tid != -1)
1459 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1460 
1461 	if (ptq->thread) {
1462 		ptq->pid = ptq->thread->pid_;
1463 		if (queue->cpu == -1)
1464 			ptq->cpu = ptq->thread->cpu;
1465 	}
1466 
1467 	if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1468 		ptq->guest_machine_pid = 0;
1469 		ptq->guest_pid = -1;
1470 		ptq->guest_tid = -1;
1471 		ptq->vcpu = -1;
1472 	}
1473 }
1474 
1475 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1476 {
1477 	struct intel_pt *pt = ptq->pt;
1478 
1479 	ptq->insn_len = 0;
1480 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1481 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1482 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1483 		if (!ptq->state->to_ip)
1484 			ptq->flags = PERF_IP_FLAG_BRANCH |
1485 				     PERF_IP_FLAG_TRACE_END;
1486 		else if (ptq->state->from_nr && !ptq->state->to_nr)
1487 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1488 				     PERF_IP_FLAG_VMEXIT;
1489 		else
1490 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1491 				     PERF_IP_FLAG_ASYNC |
1492 				     PERF_IP_FLAG_INTERRUPT;
1493 	} else {
1494 		if (ptq->state->from_ip)
1495 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1496 		else
1497 			ptq->flags = PERF_IP_FLAG_BRANCH |
1498 				     PERF_IP_FLAG_TRACE_BEGIN;
1499 		if (ptq->state->flags & INTEL_PT_IN_TX)
1500 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1501 		ptq->insn_len = ptq->state->insn_len;
1502 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1503 	}
1504 
1505 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1506 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1507 	if (ptq->state->type & INTEL_PT_TRACE_END)
1508 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1509 
1510 	if (pt->cap_event_trace) {
1511 		if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1512 			if (!ptq->state->from_iflag)
1513 				ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1514 			if (ptq->state->from_iflag != ptq->state->to_iflag)
1515 				ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1516 		} else if (!ptq->state->to_iflag) {
1517 			ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1518 		}
1519 	}
1520 }
1521 
1522 static void intel_pt_setup_time_range(struct intel_pt *pt,
1523 				      struct intel_pt_queue *ptq)
1524 {
1525 	if (!pt->range_cnt)
1526 		return;
1527 
1528 	ptq->sel_timestamp = pt->time_ranges[0].start;
1529 	ptq->sel_idx = 0;
1530 
1531 	if (ptq->sel_timestamp) {
1532 		ptq->sel_start = true;
1533 	} else {
1534 		ptq->sel_timestamp = pt->time_ranges[0].end;
1535 		ptq->sel_start = false;
1536 	}
1537 }
1538 
1539 static int intel_pt_setup_queue(struct intel_pt *pt,
1540 				struct auxtrace_queue *queue,
1541 				unsigned int queue_nr)
1542 {
1543 	struct intel_pt_queue *ptq = queue->priv;
1544 
1545 	if (list_empty(&queue->head))
1546 		return 0;
1547 
1548 	if (!ptq) {
1549 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1550 		if (!ptq)
1551 			return -ENOMEM;
1552 		queue->priv = ptq;
1553 
1554 		if (queue->cpu != -1)
1555 			ptq->cpu = queue->cpu;
1556 		ptq->tid = queue->tid;
1557 
1558 		ptq->cbr_seen = UINT_MAX;
1559 
1560 		if (pt->sampling_mode && !pt->snapshot_mode &&
1561 		    pt->timeless_decoding)
1562 			ptq->step_through_buffers = true;
1563 
1564 		ptq->sync_switch = pt->sync_switch;
1565 
1566 		intel_pt_setup_time_range(pt, ptq);
1567 	}
1568 
1569 	if (!ptq->on_heap &&
1570 	    (!ptq->sync_switch ||
1571 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1572 		const struct intel_pt_state *state;
1573 		int ret;
1574 
1575 		if (pt->timeless_decoding)
1576 			return 0;
1577 
1578 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1579 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1580 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1581 
1582 		if (ptq->sel_start && ptq->sel_timestamp) {
1583 			ret = intel_pt_fast_forward(ptq->decoder,
1584 						    ptq->sel_timestamp);
1585 			if (ret)
1586 				return ret;
1587 		}
1588 
1589 		while (1) {
1590 			state = intel_pt_decode(ptq->decoder);
1591 			if (state->err) {
1592 				if (state->err == INTEL_PT_ERR_NODATA) {
1593 					intel_pt_log("queue %u has no timestamp\n",
1594 						     queue_nr);
1595 					return 0;
1596 				}
1597 				continue;
1598 			}
1599 			if (state->timestamp)
1600 				break;
1601 		}
1602 
1603 		ptq->timestamp = state->timestamp;
1604 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1605 			     queue_nr, ptq->timestamp);
1606 		ptq->state = state;
1607 		ptq->have_sample = true;
1608 		if (ptq->sel_start && ptq->sel_timestamp &&
1609 		    ptq->timestamp < ptq->sel_timestamp)
1610 			ptq->have_sample = false;
1611 		intel_pt_sample_flags(ptq);
1612 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1613 		if (ret)
1614 			return ret;
1615 		ptq->on_heap = true;
1616 	}
1617 
1618 	return 0;
1619 }
1620 
1621 static int intel_pt_setup_queues(struct intel_pt *pt)
1622 {
1623 	unsigned int i;
1624 	int ret;
1625 
1626 	for (i = 0; i < pt->queues.nr_queues; i++) {
1627 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1628 		if (ret)
1629 			return ret;
1630 	}
1631 	return 0;
1632 }
1633 
1634 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1635 {
1636 	return pt->synth_opts.initial_skip &&
1637 	       pt->num_events++ < pt->synth_opts.initial_skip;
1638 }
1639 
1640 /*
1641  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1642  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1643  * from this decoder state.
1644  */
1645 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1646 {
1647 	return pt->synth_opts.initial_skip &&
1648 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1649 }
1650 
1651 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1652 				   union perf_event *event,
1653 				   struct perf_sample *sample)
1654 {
1655 	event->sample.header.type = PERF_RECORD_SAMPLE;
1656 	event->sample.header.size = sizeof(struct perf_event_header);
1657 
1658 	sample->pid = ptq->pid;
1659 	sample->tid = ptq->tid;
1660 
1661 	if (ptq->pt->have_guest_sideband) {
1662 		if ((ptq->state->from_ip && ptq->state->from_nr) ||
1663 		    (ptq->state->to_ip && ptq->state->to_nr)) {
1664 			sample->pid = ptq->guest_pid;
1665 			sample->tid = ptq->guest_tid;
1666 			sample->machine_pid = ptq->guest_machine_pid;
1667 			sample->vcpu = ptq->vcpu;
1668 		}
1669 	}
1670 
1671 	sample->cpu = ptq->cpu;
1672 	sample->insn_len = ptq->insn_len;
1673 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1674 }
1675 
1676 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1677 				   struct intel_pt_queue *ptq,
1678 				   union perf_event *event,
1679 				   struct perf_sample *sample)
1680 {
1681 	intel_pt_prep_a_sample(ptq, event, sample);
1682 
1683 	if (!pt->timeless_decoding)
1684 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1685 
1686 	sample->ip = ptq->state->from_ip;
1687 	sample->addr = ptq->state->to_ip;
1688 	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1689 	sample->period = 1;
1690 	sample->flags = ptq->flags;
1691 
1692 	event->sample.header.misc = sample->cpumode;
1693 }
1694 
1695 static int intel_pt_inject_event(union perf_event *event,
1696 				 struct perf_sample *sample, u64 type)
1697 {
1698 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1699 	return perf_event__synthesize_sample(event, type, 0, sample);
1700 }
1701 
1702 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1703 				      union perf_event *event,
1704 				      struct perf_sample *sample, u64 type)
1705 {
1706 	if (!pt->synth_opts.inject)
1707 		return 0;
1708 
1709 	return intel_pt_inject_event(event, sample, type);
1710 }
1711 
1712 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1713 					union perf_event *event,
1714 					struct perf_sample *sample, u64 type)
1715 {
1716 	int ret;
1717 
1718 	ret = intel_pt_opt_inject(pt, event, sample, type);
1719 	if (ret)
1720 		return ret;
1721 
1722 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1723 	if (ret)
1724 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1725 
1726 	return ret;
1727 }
1728 
1729 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1730 {
1731 	struct intel_pt *pt = ptq->pt;
1732 	union perf_event *event = ptq->event_buf;
1733 	struct perf_sample sample = { .ip = 0, };
1734 	struct dummy_branch_stack {
1735 		u64			nr;
1736 		u64			hw_idx;
1737 		struct branch_entry	entries;
1738 	} dummy_bs;
1739 
1740 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1741 		return 0;
1742 
1743 	if (intel_pt_skip_event(pt))
1744 		return 0;
1745 
1746 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1747 
1748 	sample.id = ptq->pt->branches_id;
1749 	sample.stream_id = ptq->pt->branches_id;
1750 
1751 	/*
1752 	 * perf report cannot handle events without a branch stack when using
1753 	 * SORT_MODE__BRANCH so make a dummy one.
1754 	 */
1755 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1756 		dummy_bs = (struct dummy_branch_stack){
1757 			.nr = 1,
1758 			.hw_idx = -1ULL,
1759 			.entries = {
1760 				.from = sample.ip,
1761 				.to = sample.addr,
1762 			},
1763 		};
1764 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1765 	}
1766 
1767 	if (ptq->sample_ipc)
1768 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1769 	if (sample.cyc_cnt) {
1770 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1771 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1772 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1773 	}
1774 
1775 	return intel_pt_deliver_synth_event(pt, event, &sample,
1776 					    pt->branches_sample_type);
1777 }
1778 
1779 static void intel_pt_prep_sample(struct intel_pt *pt,
1780 				 struct intel_pt_queue *ptq,
1781 				 union perf_event *event,
1782 				 struct perf_sample *sample)
1783 {
1784 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1785 
1786 	if (pt->synth_opts.callchain) {
1787 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1788 				     pt->synth_opts.callchain_sz + 1,
1789 				     sample->ip, pt->kernel_start);
1790 		sample->callchain = ptq->chain;
1791 	}
1792 
1793 	if (pt->synth_opts.last_branch) {
1794 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1795 					pt->br_stack_sz);
1796 		sample->branch_stack = ptq->last_branch;
1797 	}
1798 }
1799 
1800 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1801 {
1802 	struct intel_pt *pt = ptq->pt;
1803 	union perf_event *event = ptq->event_buf;
1804 	struct perf_sample sample = { .ip = 0, };
1805 
1806 	if (intel_pt_skip_event(pt))
1807 		return 0;
1808 
1809 	intel_pt_prep_sample(pt, ptq, event, &sample);
1810 
1811 	sample.id = ptq->pt->instructions_id;
1812 	sample.stream_id = ptq->pt->instructions_id;
1813 	if (pt->synth_opts.quick)
1814 		sample.period = 1;
1815 	else
1816 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1817 
1818 	if (ptq->sample_ipc)
1819 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1820 	if (sample.cyc_cnt) {
1821 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1822 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1823 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1824 	}
1825 
1826 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1827 
1828 	return intel_pt_deliver_synth_event(pt, event, &sample,
1829 					    pt->instructions_sample_type);
1830 }
1831 
1832 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1833 {
1834 	struct intel_pt *pt = ptq->pt;
1835 	union perf_event *event = ptq->event_buf;
1836 	struct perf_sample sample = { .ip = 0, };
1837 
1838 	if (intel_pt_skip_event(pt))
1839 		return 0;
1840 
1841 	intel_pt_prep_sample(pt, ptq, event, &sample);
1842 
1843 	sample.id = ptq->pt->transactions_id;
1844 	sample.stream_id = ptq->pt->transactions_id;
1845 
1846 	return intel_pt_deliver_synth_event(pt, event, &sample,
1847 					    pt->transactions_sample_type);
1848 }
1849 
1850 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1851 				   struct intel_pt_queue *ptq,
1852 				   union perf_event *event,
1853 				   struct perf_sample *sample)
1854 {
1855 	intel_pt_prep_sample(pt, ptq, event, sample);
1856 
1857 	/*
1858 	 * Zero IP is used to mean "trace start" but that is not the case for
1859 	 * power or PTWRITE events with no IP, so clear the flags.
1860 	 */
1861 	if (!sample->ip)
1862 		sample->flags = 0;
1863 }
1864 
1865 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1866 {
1867 	struct intel_pt *pt = ptq->pt;
1868 	union perf_event *event = ptq->event_buf;
1869 	struct perf_sample sample = { .ip = 0, };
1870 	struct perf_synth_intel_ptwrite raw;
1871 
1872 	if (intel_pt_skip_event(pt))
1873 		return 0;
1874 
1875 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1876 
1877 	sample.id = ptq->pt->ptwrites_id;
1878 	sample.stream_id = ptq->pt->ptwrites_id;
1879 
1880 	raw.flags = 0;
1881 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1882 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1883 
1884 	sample.raw_size = perf_synth__raw_size(raw);
1885 	sample.raw_data = perf_synth__raw_data(&raw);
1886 
1887 	return intel_pt_deliver_synth_event(pt, event, &sample,
1888 					    pt->ptwrites_sample_type);
1889 }
1890 
1891 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1892 {
1893 	struct intel_pt *pt = ptq->pt;
1894 	union perf_event *event = ptq->event_buf;
1895 	struct perf_sample sample = { .ip = 0, };
1896 	struct perf_synth_intel_cbr raw;
1897 	u32 flags;
1898 
1899 	if (intel_pt_skip_cbr_event(pt))
1900 		return 0;
1901 
1902 	ptq->cbr_seen = ptq->state->cbr;
1903 
1904 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1905 
1906 	sample.id = ptq->pt->cbr_id;
1907 	sample.stream_id = ptq->pt->cbr_id;
1908 
1909 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1910 	raw.flags = cpu_to_le32(flags);
1911 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1912 	raw.reserved3 = 0;
1913 
1914 	sample.raw_size = perf_synth__raw_size(raw);
1915 	sample.raw_data = perf_synth__raw_data(&raw);
1916 
1917 	return intel_pt_deliver_synth_event(pt, event, &sample,
1918 					    pt->pwr_events_sample_type);
1919 }
1920 
1921 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1922 {
1923 	struct intel_pt *pt = ptq->pt;
1924 	union perf_event *event = ptq->event_buf;
1925 	struct perf_sample sample = { .ip = 0, };
1926 	struct perf_synth_intel_psb raw;
1927 
1928 	if (intel_pt_skip_event(pt))
1929 		return 0;
1930 
1931 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1932 
1933 	sample.id = ptq->pt->psb_id;
1934 	sample.stream_id = ptq->pt->psb_id;
1935 	sample.flags = 0;
1936 
1937 	raw.reserved = 0;
1938 	raw.offset = ptq->state->psb_offset;
1939 
1940 	sample.raw_size = perf_synth__raw_size(raw);
1941 	sample.raw_data = perf_synth__raw_data(&raw);
1942 
1943 	return intel_pt_deliver_synth_event(pt, event, &sample,
1944 					    pt->pwr_events_sample_type);
1945 }
1946 
1947 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1948 {
1949 	struct intel_pt *pt = ptq->pt;
1950 	union perf_event *event = ptq->event_buf;
1951 	struct perf_sample sample = { .ip = 0, };
1952 	struct perf_synth_intel_mwait raw;
1953 
1954 	if (intel_pt_skip_event(pt))
1955 		return 0;
1956 
1957 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1958 
1959 	sample.id = ptq->pt->mwait_id;
1960 	sample.stream_id = ptq->pt->mwait_id;
1961 
1962 	raw.reserved = 0;
1963 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1964 
1965 	sample.raw_size = perf_synth__raw_size(raw);
1966 	sample.raw_data = perf_synth__raw_data(&raw);
1967 
1968 	return intel_pt_deliver_synth_event(pt, event, &sample,
1969 					    pt->pwr_events_sample_type);
1970 }
1971 
1972 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1973 {
1974 	struct intel_pt *pt = ptq->pt;
1975 	union perf_event *event = ptq->event_buf;
1976 	struct perf_sample sample = { .ip = 0, };
1977 	struct perf_synth_intel_pwre raw;
1978 
1979 	if (intel_pt_skip_event(pt))
1980 		return 0;
1981 
1982 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1983 
1984 	sample.id = ptq->pt->pwre_id;
1985 	sample.stream_id = ptq->pt->pwre_id;
1986 
1987 	raw.reserved = 0;
1988 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1989 
1990 	sample.raw_size = perf_synth__raw_size(raw);
1991 	sample.raw_data = perf_synth__raw_data(&raw);
1992 
1993 	return intel_pt_deliver_synth_event(pt, event, &sample,
1994 					    pt->pwr_events_sample_type);
1995 }
1996 
1997 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1998 {
1999 	struct intel_pt *pt = ptq->pt;
2000 	union perf_event *event = ptq->event_buf;
2001 	struct perf_sample sample = { .ip = 0, };
2002 	struct perf_synth_intel_exstop raw;
2003 
2004 	if (intel_pt_skip_event(pt))
2005 		return 0;
2006 
2007 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2008 
2009 	sample.id = ptq->pt->exstop_id;
2010 	sample.stream_id = ptq->pt->exstop_id;
2011 
2012 	raw.flags = 0;
2013 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2014 
2015 	sample.raw_size = perf_synth__raw_size(raw);
2016 	sample.raw_data = perf_synth__raw_data(&raw);
2017 
2018 	return intel_pt_deliver_synth_event(pt, event, &sample,
2019 					    pt->pwr_events_sample_type);
2020 }
2021 
2022 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2023 {
2024 	struct intel_pt *pt = ptq->pt;
2025 	union perf_event *event = ptq->event_buf;
2026 	struct perf_sample sample = { .ip = 0, };
2027 	struct perf_synth_intel_pwrx raw;
2028 
2029 	if (intel_pt_skip_event(pt))
2030 		return 0;
2031 
2032 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2033 
2034 	sample.id = ptq->pt->pwrx_id;
2035 	sample.stream_id = ptq->pt->pwrx_id;
2036 
2037 	raw.reserved = 0;
2038 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2039 
2040 	sample.raw_size = perf_synth__raw_size(raw);
2041 	sample.raw_data = perf_synth__raw_data(&raw);
2042 
2043 	return intel_pt_deliver_synth_event(pt, event, &sample,
2044 					    pt->pwr_events_sample_type);
2045 }
2046 
2047 /*
2048  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2049  * intel_pt_add_gp_regs().
2050  */
2051 static const int pebs_gp_regs[] = {
2052 	[PERF_REG_X86_FLAGS]	= 1,
2053 	[PERF_REG_X86_IP]	= 2,
2054 	[PERF_REG_X86_AX]	= 3,
2055 	[PERF_REG_X86_CX]	= 4,
2056 	[PERF_REG_X86_DX]	= 5,
2057 	[PERF_REG_X86_BX]	= 6,
2058 	[PERF_REG_X86_SP]	= 7,
2059 	[PERF_REG_X86_BP]	= 8,
2060 	[PERF_REG_X86_SI]	= 9,
2061 	[PERF_REG_X86_DI]	= 10,
2062 	[PERF_REG_X86_R8]	= 11,
2063 	[PERF_REG_X86_R9]	= 12,
2064 	[PERF_REG_X86_R10]	= 13,
2065 	[PERF_REG_X86_R11]	= 14,
2066 	[PERF_REG_X86_R12]	= 15,
2067 	[PERF_REG_X86_R13]	= 16,
2068 	[PERF_REG_X86_R14]	= 17,
2069 	[PERF_REG_X86_R15]	= 18,
2070 };
2071 
2072 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2073 				 const struct intel_pt_blk_items *items,
2074 				 u64 regs_mask)
2075 {
2076 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2077 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2078 	u32 bit;
2079 	int i;
2080 
2081 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2082 		/* Get the PEBS gp_regs array index */
2083 		int n = pebs_gp_regs[i] - 1;
2084 
2085 		if (n < 0)
2086 			continue;
2087 		/*
2088 		 * Add only registers that were requested (i.e. 'regs_mask') and
2089 		 * that were provided (i.e. 'mask'), and update the resulting
2090 		 * mask (i.e. 'intr_regs->mask') accordingly.
2091 		 */
2092 		if (mask & 1 << n && regs_mask & bit) {
2093 			intr_regs->mask |= bit;
2094 			*pos++ = gp_regs[n];
2095 		}
2096 	}
2097 
2098 	return pos;
2099 }
2100 
2101 #ifndef PERF_REG_X86_XMM0
2102 #define PERF_REG_X86_XMM0 32
2103 #endif
2104 
2105 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2106 			     const struct intel_pt_blk_items *items,
2107 			     u64 regs_mask)
2108 {
2109 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2110 	const u64 *xmm = items->xmm;
2111 
2112 	/*
2113 	 * If there are any XMM registers, then there should be all of them.
2114 	 * Nevertheless, follow the logic to add only registers that were
2115 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2116 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2117 	 */
2118 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2119 
2120 	for (; mask; mask >>= 1, xmm++) {
2121 		if (mask & 1)
2122 			*pos++ = *xmm;
2123 	}
2124 }
2125 
2126 #define LBR_INFO_MISPRED	(1ULL << 63)
2127 #define LBR_INFO_IN_TX		(1ULL << 62)
2128 #define LBR_INFO_ABORT		(1ULL << 61)
2129 #define LBR_INFO_CYCLES		0xffff
2130 
2131 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
2132 static u64 intel_pt_lbr_flags(u64 info)
2133 {
2134 	union {
2135 		struct branch_flags flags;
2136 		u64 result;
2137 	} u;
2138 
2139 	u.result	  = 0;
2140 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
2141 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
2142 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
2143 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
2144 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
2145 
2146 	return u.result;
2147 }
2148 
2149 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2150 			      const struct intel_pt_blk_items *items)
2151 {
2152 	u64 *to;
2153 	int i;
2154 
2155 	br_stack->nr = 0;
2156 
2157 	to = &br_stack->entries[0].from;
2158 
2159 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2160 		u32 mask = items->mask[i];
2161 		const u64 *from = items->val[i];
2162 
2163 		for (; mask; mask >>= 3, from += 3) {
2164 			if ((mask & 7) == 7) {
2165 				*to++ = from[0];
2166 				*to++ = from[1];
2167 				*to++ = intel_pt_lbr_flags(from[2]);
2168 				br_stack->nr += 1;
2169 			}
2170 		}
2171 	}
2172 }
2173 
2174 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2175 {
2176 	const struct intel_pt_blk_items *items = &ptq->state->items;
2177 	struct perf_sample sample = { .ip = 0, };
2178 	union perf_event *event = ptq->event_buf;
2179 	struct intel_pt *pt = ptq->pt;
2180 	u64 sample_type = evsel->core.attr.sample_type;
2181 	u8 cpumode;
2182 	u64 regs[8 * sizeof(sample.intr_regs.mask)];
2183 
2184 	if (intel_pt_skip_event(pt))
2185 		return 0;
2186 
2187 	intel_pt_prep_a_sample(ptq, event, &sample);
2188 
2189 	sample.id = id;
2190 	sample.stream_id = id;
2191 
2192 	if (!evsel->core.attr.freq)
2193 		sample.period = evsel->core.attr.sample_period;
2194 
2195 	/* No support for non-zero CS base */
2196 	if (items->has_ip)
2197 		sample.ip = items->ip;
2198 	else if (items->has_rip)
2199 		sample.ip = items->rip;
2200 	else
2201 		sample.ip = ptq->state->from_ip;
2202 
2203 	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2204 
2205 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2206 
2207 	sample.cpumode = cpumode;
2208 
2209 	if (sample_type & PERF_SAMPLE_TIME) {
2210 		u64 timestamp = 0;
2211 
2212 		if (items->has_timestamp)
2213 			timestamp = items->timestamp;
2214 		else if (!pt->timeless_decoding)
2215 			timestamp = ptq->timestamp;
2216 		if (timestamp)
2217 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2218 	}
2219 
2220 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2221 	    pt->synth_opts.callchain) {
2222 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2223 				     pt->synth_opts.callchain_sz, sample.ip,
2224 				     pt->kernel_start);
2225 		sample.callchain = ptq->chain;
2226 	}
2227 
2228 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
2229 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
2230 	     items->mask[INTEL_PT_XMM_POS])) {
2231 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
2232 		u64 *pos;
2233 
2234 		sample.intr_regs.abi = items->is_32_bit ?
2235 				       PERF_SAMPLE_REGS_ABI_32 :
2236 				       PERF_SAMPLE_REGS_ABI_64;
2237 		sample.intr_regs.regs = regs;
2238 
2239 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2240 
2241 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2242 	}
2243 
2244 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2245 		if (items->mask[INTEL_PT_LBR_0_POS] ||
2246 		    items->mask[INTEL_PT_LBR_1_POS] ||
2247 		    items->mask[INTEL_PT_LBR_2_POS]) {
2248 			intel_pt_add_lbrs(ptq->last_branch, items);
2249 		} else if (pt->synth_opts.last_branch) {
2250 			thread_stack__br_sample(ptq->thread, ptq->cpu,
2251 						ptq->last_branch,
2252 						pt->br_stack_sz);
2253 		} else {
2254 			ptq->last_branch->nr = 0;
2255 		}
2256 		sample.branch_stack = ptq->last_branch;
2257 	}
2258 
2259 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2260 		sample.addr = items->mem_access_address;
2261 
2262 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2263 		/*
2264 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
2265 		 * intel_hsw_weight().
2266 		 */
2267 		if (items->has_mem_access_latency) {
2268 			u64 weight = items->mem_access_latency >> 32;
2269 
2270 			/*
2271 			 * Starts from SPR, the mem access latency field
2272 			 * contains both cache latency [47:32] and instruction
2273 			 * latency [15:0]. The cache latency is the same as the
2274 			 * mem access latency on previous platforms.
2275 			 *
2276 			 * In practice, no memory access could last than 4G
2277 			 * cycles. Use latency >> 32 to distinguish the
2278 			 * different format of the mem access latency field.
2279 			 */
2280 			if (weight > 0) {
2281 				sample.weight = weight & 0xffff;
2282 				sample.ins_lat = items->mem_access_latency & 0xffff;
2283 			} else
2284 				sample.weight = items->mem_access_latency;
2285 		}
2286 		if (!sample.weight && items->has_tsx_aux_info) {
2287 			/* Cycles last block */
2288 			sample.weight = (u32)items->tsx_aux_info;
2289 		}
2290 	}
2291 
2292 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2293 		u64 ax = items->has_rax ? items->rax : 0;
2294 		/* Refer kernel's intel_hsw_transaction() */
2295 		u64 txn = (u8)(items->tsx_aux_info >> 32);
2296 
2297 		/* For RTM XABORTs also log the abort code from AX */
2298 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2299 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2300 		sample.transaction = txn;
2301 	}
2302 
2303 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2304 }
2305 
2306 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2307 {
2308 	struct intel_pt *pt = ptq->pt;
2309 	struct evsel *evsel = pt->pebs_evsel;
2310 	u64 id = evsel->core.id[0];
2311 
2312 	return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2313 }
2314 
2315 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2316 {
2317 	const struct intel_pt_blk_items *items = &ptq->state->items;
2318 	struct intel_pt_pebs_event *pe;
2319 	struct intel_pt *pt = ptq->pt;
2320 	int err = -EINVAL;
2321 	int hw_id;
2322 
2323 	if (!items->has_applicable_counters || !items->applicable_counters) {
2324 		if (!pt->single_pebs)
2325 			pr_err("PEBS-via-PT record with no applicable_counters\n");
2326 		return intel_pt_synth_single_pebs_sample(ptq);
2327 	}
2328 
2329 	for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2330 		pe = &ptq->pebs[hw_id];
2331 		if (!pe->evsel) {
2332 			if (!pt->single_pebs)
2333 				pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2334 				       hw_id);
2335 			return intel_pt_synth_single_pebs_sample(ptq);
2336 		}
2337 		err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2338 		if (err)
2339 			return err;
2340 	}
2341 
2342 	return err;
2343 }
2344 
2345 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2346 {
2347 	struct intel_pt *pt = ptq->pt;
2348 	union perf_event *event = ptq->event_buf;
2349 	struct perf_sample sample = { .ip = 0, };
2350 	struct {
2351 		struct perf_synth_intel_evt cfe;
2352 		struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2353 	} raw;
2354 	int i;
2355 
2356 	if (intel_pt_skip_event(pt))
2357 		return 0;
2358 
2359 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2360 
2361 	sample.id        = ptq->pt->evt_id;
2362 	sample.stream_id = ptq->pt->evt_id;
2363 
2364 	raw.cfe.type     = ptq->state->cfe_type;
2365 	raw.cfe.reserved = 0;
2366 	raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2367 	raw.cfe.vector   = ptq->state->cfe_vector;
2368 	raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2369 
2370 	for (i = 0; i < ptq->state->evd_cnt; i++) {
2371 		raw.evd[i].et       = 0;
2372 		raw.evd[i].evd_type = ptq->state->evd[i].type;
2373 		raw.evd[i].payload  = ptq->state->evd[i].payload;
2374 	}
2375 
2376 	sample.raw_size = perf_synth__raw_size(raw) +
2377 			  ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2378 	sample.raw_data = perf_synth__raw_data(&raw);
2379 
2380 	return intel_pt_deliver_synth_event(pt, event, &sample,
2381 					    pt->evt_sample_type);
2382 }
2383 
2384 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2385 {
2386 	struct intel_pt *pt = ptq->pt;
2387 	union perf_event *event = ptq->event_buf;
2388 	struct perf_sample sample = { .ip = 0, };
2389 	struct perf_synth_intel_iflag_chg raw;
2390 
2391 	if (intel_pt_skip_event(pt))
2392 		return 0;
2393 
2394 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2395 
2396 	sample.id = ptq->pt->iflag_chg_id;
2397 	sample.stream_id = ptq->pt->iflag_chg_id;
2398 
2399 	raw.flags = 0;
2400 	raw.iflag = ptq->state->to_iflag;
2401 
2402 	if (ptq->state->type & INTEL_PT_BRANCH) {
2403 		raw.via_branch = 1;
2404 		raw.branch_ip = ptq->state->to_ip;
2405 	} else {
2406 		sample.addr = 0;
2407 	}
2408 	sample.flags = ptq->flags;
2409 
2410 	sample.raw_size = perf_synth__raw_size(raw);
2411 	sample.raw_data = perf_synth__raw_data(&raw);
2412 
2413 	return intel_pt_deliver_synth_event(pt, event, &sample,
2414 					    pt->iflag_chg_sample_type);
2415 }
2416 
2417 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2418 				pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2419 				pid_t machine_pid, int vcpu)
2420 {
2421 	union perf_event event;
2422 	char msg[MAX_AUXTRACE_ERROR_MSG];
2423 	int err;
2424 
2425 	if (pt->synth_opts.error_minus_flags) {
2426 		if (code == INTEL_PT_ERR_OVR &&
2427 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2428 			return 0;
2429 		if (code == INTEL_PT_ERR_LOST &&
2430 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2431 			return 0;
2432 	}
2433 
2434 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2435 
2436 	auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2437 				   code, cpu, pid, tid, ip, msg, timestamp,
2438 				   machine_pid, vcpu);
2439 
2440 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2441 	if (err)
2442 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2443 		       err);
2444 
2445 	return err;
2446 }
2447 
2448 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2449 				 const struct intel_pt_state *state)
2450 {
2451 	struct intel_pt *pt = ptq->pt;
2452 	u64 tm = ptq->timestamp;
2453 	pid_t machine_pid = 0;
2454 	pid_t pid = ptq->pid;
2455 	pid_t tid = ptq->tid;
2456 	int vcpu = -1;
2457 
2458 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2459 
2460 	if (pt->have_guest_sideband && state->from_nr) {
2461 		machine_pid = ptq->guest_machine_pid;
2462 		vcpu = ptq->vcpu;
2463 		pid = ptq->guest_pid;
2464 		tid = ptq->guest_tid;
2465 	}
2466 
2467 	return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2468 				    state->from_ip, tm, machine_pid, vcpu);
2469 }
2470 
2471 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2472 {
2473 	struct auxtrace_queue *queue;
2474 	pid_t tid = ptq->next_tid;
2475 	int err;
2476 
2477 	if (tid == -1)
2478 		return 0;
2479 
2480 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2481 
2482 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2483 
2484 	queue = &pt->queues.queue_array[ptq->queue_nr];
2485 	intel_pt_set_pid_tid_cpu(pt, queue);
2486 
2487 	ptq->next_tid = -1;
2488 
2489 	return err;
2490 }
2491 
2492 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2493 {
2494 	struct intel_pt *pt = ptq->pt;
2495 
2496 	return ip == pt->switch_ip &&
2497 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2498 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2499 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2500 }
2501 
2502 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2503 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2504 
2505 static int intel_pt_sample(struct intel_pt_queue *ptq)
2506 {
2507 	const struct intel_pt_state *state = ptq->state;
2508 	struct intel_pt *pt = ptq->pt;
2509 	int err;
2510 
2511 	if (!ptq->have_sample)
2512 		return 0;
2513 
2514 	ptq->have_sample = false;
2515 
2516 	if (pt->synth_opts.approx_ipc) {
2517 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2518 		ptq->ipc_cyc_cnt = ptq->state->cycles;
2519 		ptq->sample_ipc = true;
2520 	} else {
2521 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2522 		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2523 		ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2524 	}
2525 
2526 	/* Ensure guest code maps are set up */
2527 	if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2528 		intel_pt_get_guest(ptq);
2529 
2530 	/*
2531 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2532 	 * precedes the current timestamp.
2533 	 */
2534 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2535 		err = intel_pt_synth_pebs_sample(ptq);
2536 		if (err)
2537 			return err;
2538 	}
2539 
2540 	if (pt->synth_opts.intr_events) {
2541 		if (state->type & INTEL_PT_EVT) {
2542 			err = intel_pt_synth_events_sample(ptq);
2543 			if (err)
2544 				return err;
2545 		}
2546 		if (state->type & INTEL_PT_IFLAG_CHG) {
2547 			err = intel_pt_synth_iflag_chg_sample(ptq);
2548 			if (err)
2549 				return err;
2550 		}
2551 	}
2552 
2553 	if (pt->sample_pwr_events) {
2554 		if (state->type & INTEL_PT_PSB_EVT) {
2555 			err = intel_pt_synth_psb_sample(ptq);
2556 			if (err)
2557 				return err;
2558 		}
2559 		if (ptq->state->cbr != ptq->cbr_seen) {
2560 			err = intel_pt_synth_cbr_sample(ptq);
2561 			if (err)
2562 				return err;
2563 		}
2564 		if (state->type & INTEL_PT_PWR_EVT) {
2565 			if (state->type & INTEL_PT_MWAIT_OP) {
2566 				err = intel_pt_synth_mwait_sample(ptq);
2567 				if (err)
2568 					return err;
2569 			}
2570 			if (state->type & INTEL_PT_PWR_ENTRY) {
2571 				err = intel_pt_synth_pwre_sample(ptq);
2572 				if (err)
2573 					return err;
2574 			}
2575 			if (state->type & INTEL_PT_EX_STOP) {
2576 				err = intel_pt_synth_exstop_sample(ptq);
2577 				if (err)
2578 					return err;
2579 			}
2580 			if (state->type & INTEL_PT_PWR_EXIT) {
2581 				err = intel_pt_synth_pwrx_sample(ptq);
2582 				if (err)
2583 					return err;
2584 			}
2585 		}
2586 	}
2587 
2588 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2589 		err = intel_pt_synth_instruction_sample(ptq);
2590 		if (err)
2591 			return err;
2592 	}
2593 
2594 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2595 		err = intel_pt_synth_transaction_sample(ptq);
2596 		if (err)
2597 			return err;
2598 	}
2599 
2600 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2601 		err = intel_pt_synth_ptwrite_sample(ptq);
2602 		if (err)
2603 			return err;
2604 	}
2605 
2606 	if (!(state->type & INTEL_PT_BRANCH))
2607 		return 0;
2608 
2609 	if (pt->use_thread_stack) {
2610 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2611 				    state->from_ip, state->to_ip, ptq->insn_len,
2612 				    state->trace_nr, pt->callstack,
2613 				    pt->br_stack_sz_plus,
2614 				    pt->mispred_all);
2615 	} else {
2616 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2617 	}
2618 
2619 	if (pt->sample_branches) {
2620 		if (state->from_nr != state->to_nr &&
2621 		    state->from_ip && state->to_ip) {
2622 			struct intel_pt_state *st = (struct intel_pt_state *)state;
2623 			u64 to_ip = st->to_ip;
2624 			u64 from_ip = st->from_ip;
2625 
2626 			/*
2627 			 * perf cannot handle having different machines for ip
2628 			 * and addr, so create 2 branches.
2629 			 */
2630 			st->to_ip = 0;
2631 			err = intel_pt_synth_branch_sample(ptq);
2632 			if (err)
2633 				return err;
2634 			st->from_ip = 0;
2635 			st->to_ip = to_ip;
2636 			err = intel_pt_synth_branch_sample(ptq);
2637 			st->from_ip = from_ip;
2638 		} else {
2639 			err = intel_pt_synth_branch_sample(ptq);
2640 		}
2641 		if (err)
2642 			return err;
2643 	}
2644 
2645 	if (!ptq->sync_switch)
2646 		return 0;
2647 
2648 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2649 		switch (ptq->switch_state) {
2650 		case INTEL_PT_SS_NOT_TRACING:
2651 		case INTEL_PT_SS_UNKNOWN:
2652 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2653 			err = intel_pt_next_tid(pt, ptq);
2654 			if (err)
2655 				return err;
2656 			ptq->switch_state = INTEL_PT_SS_TRACING;
2657 			break;
2658 		default:
2659 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2660 			return 1;
2661 		}
2662 	} else if (!state->to_ip) {
2663 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2664 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2665 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2666 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2667 		   state->to_ip == pt->ptss_ip &&
2668 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2669 		ptq->switch_state = INTEL_PT_SS_TRACING;
2670 	}
2671 
2672 	return 0;
2673 }
2674 
2675 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2676 {
2677 	struct machine *machine = pt->machine;
2678 	struct map *map;
2679 	struct symbol *sym, *start;
2680 	u64 ip, switch_ip = 0;
2681 	const char *ptss;
2682 
2683 	if (ptss_ip)
2684 		*ptss_ip = 0;
2685 
2686 	map = machine__kernel_map(machine);
2687 	if (!map)
2688 		return 0;
2689 
2690 	if (map__load(map))
2691 		return 0;
2692 
2693 	start = dso__first_symbol(map->dso);
2694 
2695 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2696 		if (sym->binding == STB_GLOBAL &&
2697 		    !strcmp(sym->name, "__switch_to")) {
2698 			ip = map->unmap_ip(map, sym->start);
2699 			if (ip >= map->start && ip < map->end) {
2700 				switch_ip = ip;
2701 				break;
2702 			}
2703 		}
2704 	}
2705 
2706 	if (!switch_ip || !ptss_ip)
2707 		return 0;
2708 
2709 	if (pt->have_sched_switch == 1)
2710 		ptss = "perf_trace_sched_switch";
2711 	else
2712 		ptss = "__perf_event_task_sched_out";
2713 
2714 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2715 		if (!strcmp(sym->name, ptss)) {
2716 			ip = map->unmap_ip(map, sym->start);
2717 			if (ip >= map->start && ip < map->end) {
2718 				*ptss_ip = ip;
2719 				break;
2720 			}
2721 		}
2722 	}
2723 
2724 	return switch_ip;
2725 }
2726 
2727 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2728 {
2729 	unsigned int i;
2730 
2731 	if (pt->sync_switch_not_supported)
2732 		return;
2733 
2734 	pt->sync_switch = true;
2735 
2736 	for (i = 0; i < pt->queues.nr_queues; i++) {
2737 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2738 		struct intel_pt_queue *ptq = queue->priv;
2739 
2740 		if (ptq)
2741 			ptq->sync_switch = true;
2742 	}
2743 }
2744 
2745 static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2746 {
2747 	unsigned int i;
2748 
2749 	pt->sync_switch = false;
2750 
2751 	for (i = 0; i < pt->queues.nr_queues; i++) {
2752 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2753 		struct intel_pt_queue *ptq = queue->priv;
2754 
2755 		if (ptq) {
2756 			ptq->sync_switch = false;
2757 			intel_pt_next_tid(pt, ptq);
2758 		}
2759 	}
2760 }
2761 
2762 /*
2763  * To filter against time ranges, it is only necessary to look at the next start
2764  * or end time.
2765  */
2766 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2767 {
2768 	struct intel_pt *pt = ptq->pt;
2769 
2770 	if (ptq->sel_start) {
2771 		/* Next time is an end time */
2772 		ptq->sel_start = false;
2773 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2774 		return true;
2775 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2776 		/* Next time is a start time */
2777 		ptq->sel_start = true;
2778 		ptq->sel_idx += 1;
2779 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2780 		return true;
2781 	}
2782 
2783 	/* No next time */
2784 	return false;
2785 }
2786 
2787 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2788 {
2789 	int err;
2790 
2791 	while (1) {
2792 		if (ptq->sel_start) {
2793 			if (ptq->timestamp >= ptq->sel_timestamp) {
2794 				/* After start time, so consider next time */
2795 				intel_pt_next_time(ptq);
2796 				if (!ptq->sel_timestamp) {
2797 					/* No end time */
2798 					return 0;
2799 				}
2800 				/* Check against end time */
2801 				continue;
2802 			}
2803 			/* Before start time, so fast forward */
2804 			ptq->have_sample = false;
2805 			if (ptq->sel_timestamp > *ff_timestamp) {
2806 				if (ptq->sync_switch) {
2807 					intel_pt_next_tid(ptq->pt, ptq);
2808 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2809 				}
2810 				*ff_timestamp = ptq->sel_timestamp;
2811 				err = intel_pt_fast_forward(ptq->decoder,
2812 							    ptq->sel_timestamp);
2813 				if (err)
2814 					return err;
2815 			}
2816 			return 0;
2817 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2818 			/* After end time, so consider next time */
2819 			if (!intel_pt_next_time(ptq)) {
2820 				/* No next time range, so stop decoding */
2821 				ptq->have_sample = false;
2822 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2823 				return 1;
2824 			}
2825 			/* Check against next start time */
2826 			continue;
2827 		} else {
2828 			/* Before end time */
2829 			return 0;
2830 		}
2831 	}
2832 }
2833 
2834 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2835 {
2836 	const struct intel_pt_state *state = ptq->state;
2837 	struct intel_pt *pt = ptq->pt;
2838 	u64 ff_timestamp = 0;
2839 	int err;
2840 
2841 	if (!pt->kernel_start) {
2842 		pt->kernel_start = machine__kernel_start(pt->machine);
2843 		if (pt->per_cpu_mmaps &&
2844 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2845 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2846 		    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2847 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2848 			if (pt->switch_ip) {
2849 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2850 					     pt->switch_ip, pt->ptss_ip);
2851 				intel_pt_enable_sync_switch(pt);
2852 			}
2853 		}
2854 	}
2855 
2856 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2857 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2858 	while (1) {
2859 		err = intel_pt_sample(ptq);
2860 		if (err)
2861 			return err;
2862 
2863 		state = intel_pt_decode(ptq->decoder);
2864 		if (state->err) {
2865 			if (state->err == INTEL_PT_ERR_NODATA)
2866 				return 1;
2867 			if (ptq->sync_switch &&
2868 			    state->from_ip >= pt->kernel_start) {
2869 				ptq->sync_switch = false;
2870 				intel_pt_next_tid(pt, ptq);
2871 			}
2872 			ptq->timestamp = state->est_timestamp;
2873 			if (pt->synth_opts.errors) {
2874 				err = intel_ptq_synth_error(ptq, state);
2875 				if (err)
2876 					return err;
2877 			}
2878 			continue;
2879 		}
2880 
2881 		ptq->state = state;
2882 		ptq->have_sample = true;
2883 		intel_pt_sample_flags(ptq);
2884 
2885 		/* Use estimated TSC upon return to user space */
2886 		if (pt->est_tsc &&
2887 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2888 		    state->to_ip && state->to_ip < pt->kernel_start) {
2889 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2890 				     state->timestamp, state->est_timestamp);
2891 			ptq->timestamp = state->est_timestamp;
2892 		/* Use estimated TSC in unknown switch state */
2893 		} else if (ptq->sync_switch &&
2894 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2895 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2896 			   ptq->next_tid == -1) {
2897 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2898 				     state->timestamp, state->est_timestamp);
2899 			ptq->timestamp = state->est_timestamp;
2900 		} else if (state->timestamp > ptq->timestamp) {
2901 			ptq->timestamp = state->timestamp;
2902 		}
2903 
2904 		if (ptq->sel_timestamp) {
2905 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2906 			if (err)
2907 				return err;
2908 		}
2909 
2910 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2911 			*timestamp = ptq->timestamp;
2912 			return 0;
2913 		}
2914 	}
2915 	return 0;
2916 }
2917 
2918 static inline int intel_pt_update_queues(struct intel_pt *pt)
2919 {
2920 	if (pt->queues.new_data) {
2921 		pt->queues.new_data = false;
2922 		return intel_pt_setup_queues(pt);
2923 	}
2924 	return 0;
2925 }
2926 
2927 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2928 {
2929 	unsigned int queue_nr;
2930 	u64 ts;
2931 	int ret;
2932 
2933 	while (1) {
2934 		struct auxtrace_queue *queue;
2935 		struct intel_pt_queue *ptq;
2936 
2937 		if (!pt->heap.heap_cnt)
2938 			return 0;
2939 
2940 		if (pt->heap.heap_array[0].ordinal >= timestamp)
2941 			return 0;
2942 
2943 		queue_nr = pt->heap.heap_array[0].queue_nr;
2944 		queue = &pt->queues.queue_array[queue_nr];
2945 		ptq = queue->priv;
2946 
2947 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2948 			     queue_nr, pt->heap.heap_array[0].ordinal,
2949 			     timestamp);
2950 
2951 		auxtrace_heap__pop(&pt->heap);
2952 
2953 		if (pt->heap.heap_cnt) {
2954 			ts = pt->heap.heap_array[0].ordinal + 1;
2955 			if (ts > timestamp)
2956 				ts = timestamp;
2957 		} else {
2958 			ts = timestamp;
2959 		}
2960 
2961 		intel_pt_set_pid_tid_cpu(pt, queue);
2962 
2963 		ret = intel_pt_run_decoder(ptq, &ts);
2964 
2965 		if (ret < 0) {
2966 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2967 			return ret;
2968 		}
2969 
2970 		if (!ret) {
2971 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2972 			if (ret < 0)
2973 				return ret;
2974 		} else {
2975 			ptq->on_heap = false;
2976 		}
2977 	}
2978 
2979 	return 0;
2980 }
2981 
2982 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2983 					    u64 time_)
2984 {
2985 	struct auxtrace_queues *queues = &pt->queues;
2986 	unsigned int i;
2987 	u64 ts = 0;
2988 
2989 	for (i = 0; i < queues->nr_queues; i++) {
2990 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2991 		struct intel_pt_queue *ptq = queue->priv;
2992 
2993 		if (ptq && (tid == -1 || ptq->tid == tid)) {
2994 			ptq->time = time_;
2995 			intel_pt_set_pid_tid_cpu(pt, queue);
2996 			intel_pt_run_decoder(ptq, &ts);
2997 		}
2998 	}
2999 	return 0;
3000 }
3001 
3002 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3003 					    struct auxtrace_queue *queue,
3004 					    struct perf_sample *sample)
3005 {
3006 	struct machine *m = ptq->pt->machine;
3007 
3008 	ptq->pid = sample->pid;
3009 	ptq->tid = sample->tid;
3010 	ptq->cpu = queue->cpu;
3011 
3012 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3013 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3014 
3015 	thread__zput(ptq->thread);
3016 
3017 	if (ptq->tid == -1)
3018 		return;
3019 
3020 	if (ptq->pid == -1) {
3021 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
3022 		if (ptq->thread)
3023 			ptq->pid = ptq->thread->pid_;
3024 		return;
3025 	}
3026 
3027 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3028 }
3029 
3030 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3031 					    struct perf_sample *sample)
3032 {
3033 	struct auxtrace_queue *queue;
3034 	struct intel_pt_queue *ptq;
3035 	u64 ts = 0;
3036 
3037 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3038 	if (!queue)
3039 		return -EINVAL;
3040 
3041 	ptq = queue->priv;
3042 	if (!ptq)
3043 		return 0;
3044 
3045 	ptq->stop = false;
3046 	ptq->time = sample->time;
3047 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3048 	intel_pt_run_decoder(ptq, &ts);
3049 	return 0;
3050 }
3051 
3052 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3053 {
3054 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3055 				    sample->pid, sample->tid, 0, sample->time,
3056 				    sample->machine_pid, sample->vcpu);
3057 }
3058 
3059 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3060 {
3061 	unsigned i, j;
3062 
3063 	if (cpu < 0 || !pt->queues.nr_queues)
3064 		return NULL;
3065 
3066 	if ((unsigned)cpu >= pt->queues.nr_queues)
3067 		i = pt->queues.nr_queues - 1;
3068 	else
3069 		i = cpu;
3070 
3071 	if (pt->queues.queue_array[i].cpu == cpu)
3072 		return pt->queues.queue_array[i].priv;
3073 
3074 	for (j = 0; i > 0; j++) {
3075 		if (pt->queues.queue_array[--i].cpu == cpu)
3076 			return pt->queues.queue_array[i].priv;
3077 	}
3078 
3079 	for (; j < pt->queues.nr_queues; j++) {
3080 		if (pt->queues.queue_array[j].cpu == cpu)
3081 			return pt->queues.queue_array[j].priv;
3082 	}
3083 
3084 	return NULL;
3085 }
3086 
3087 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3088 				u64 timestamp)
3089 {
3090 	struct intel_pt_queue *ptq;
3091 	int err;
3092 
3093 	if (!pt->sync_switch)
3094 		return 1;
3095 
3096 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
3097 	if (!ptq || !ptq->sync_switch)
3098 		return 1;
3099 
3100 	switch (ptq->switch_state) {
3101 	case INTEL_PT_SS_NOT_TRACING:
3102 		break;
3103 	case INTEL_PT_SS_UNKNOWN:
3104 	case INTEL_PT_SS_TRACING:
3105 		ptq->next_tid = tid;
3106 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3107 		return 0;
3108 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3109 		if (!ptq->on_heap) {
3110 			ptq->timestamp = perf_time_to_tsc(timestamp,
3111 							  &pt->tc);
3112 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3113 						 ptq->timestamp);
3114 			if (err)
3115 				return err;
3116 			ptq->on_heap = true;
3117 		}
3118 		ptq->switch_state = INTEL_PT_SS_TRACING;
3119 		break;
3120 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3121 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3122 		break;
3123 	default:
3124 		break;
3125 	}
3126 
3127 	ptq->next_tid = -1;
3128 
3129 	return 1;
3130 }
3131 
3132 static int intel_pt_process_switch(struct intel_pt *pt,
3133 				   struct perf_sample *sample)
3134 {
3135 	pid_t tid;
3136 	int cpu, ret;
3137 	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3138 
3139 	if (evsel != pt->switch_evsel)
3140 		return 0;
3141 
3142 	tid = evsel__intval(evsel, sample, "next_pid");
3143 	cpu = sample->cpu;
3144 
3145 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3146 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3147 		     &pt->tc));
3148 
3149 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3150 	if (ret <= 0)
3151 		return ret;
3152 
3153 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
3154 }
3155 
3156 static int intel_pt_context_switch_in(struct intel_pt *pt,
3157 				      struct perf_sample *sample)
3158 {
3159 	pid_t pid = sample->pid;
3160 	pid_t tid = sample->tid;
3161 	int cpu = sample->cpu;
3162 
3163 	if (pt->sync_switch) {
3164 		struct intel_pt_queue *ptq;
3165 
3166 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
3167 		if (ptq && ptq->sync_switch) {
3168 			ptq->next_tid = -1;
3169 			switch (ptq->switch_state) {
3170 			case INTEL_PT_SS_NOT_TRACING:
3171 			case INTEL_PT_SS_UNKNOWN:
3172 			case INTEL_PT_SS_TRACING:
3173 				break;
3174 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3175 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3176 				ptq->switch_state = INTEL_PT_SS_TRACING;
3177 				break;
3178 			default:
3179 				break;
3180 			}
3181 		}
3182 	}
3183 
3184 	/*
3185 	 * If the current tid has not been updated yet, ensure it is now that
3186 	 * a "switch in" event has occurred.
3187 	 */
3188 	if (machine__get_current_tid(pt->machine, cpu) == tid)
3189 		return 0;
3190 
3191 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3192 }
3193 
3194 static int intel_pt_guest_context_switch(struct intel_pt *pt,
3195 					 union perf_event *event,
3196 					 struct perf_sample *sample)
3197 {
3198 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3199 	struct machines *machines = &pt->session->machines;
3200 	struct machine *machine = machines__find(machines, sample->machine_pid);
3201 
3202 	pt->have_guest_sideband = true;
3203 
3204 	/*
3205 	 * sync_switch cannot handle guest machines at present, so just disable
3206 	 * it.
3207 	 */
3208 	pt->sync_switch_not_supported = true;
3209 	if (pt->sync_switch)
3210 		intel_pt_disable_sync_switch(pt);
3211 
3212 	if (out)
3213 		return 0;
3214 
3215 	if (!machine)
3216 		return -EINVAL;
3217 
3218 	return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3219 }
3220 
3221 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3222 				   struct perf_sample *sample)
3223 {
3224 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3225 	pid_t pid, tid;
3226 	int cpu, ret;
3227 
3228 	if (perf_event__is_guest(event))
3229 		return intel_pt_guest_context_switch(pt, event, sample);
3230 
3231 	cpu = sample->cpu;
3232 
3233 	if (pt->have_sched_switch == 3) {
3234 		if (!out)
3235 			return intel_pt_context_switch_in(pt, sample);
3236 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3237 			pr_err("Expecting CPU-wide context switch event\n");
3238 			return -EINVAL;
3239 		}
3240 		pid = event->context_switch.next_prev_pid;
3241 		tid = event->context_switch.next_prev_tid;
3242 	} else {
3243 		if (out)
3244 			return 0;
3245 		pid = sample->pid;
3246 		tid = sample->tid;
3247 	}
3248 
3249 	if (tid == -1)
3250 		intel_pt_log("context_switch event has no tid\n");
3251 
3252 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3253 	if (ret <= 0)
3254 		return ret;
3255 
3256 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3257 }
3258 
3259 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3260 					 union perf_event *event,
3261 					 struct perf_sample *sample)
3262 {
3263 	if (!pt->per_cpu_mmaps)
3264 		return 0;
3265 
3266 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3267 		     sample->cpu, event->itrace_start.pid,
3268 		     event->itrace_start.tid, sample->time,
3269 		     perf_time_to_tsc(sample->time, &pt->tc));
3270 
3271 	return machine__set_current_tid(pt->machine, sample->cpu,
3272 					event->itrace_start.pid,
3273 					event->itrace_start.tid);
3274 }
3275 
3276 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3277 					     union perf_event *event,
3278 					     struct perf_sample *sample)
3279 {
3280 	u64 hw_id = event->aux_output_hw_id.hw_id;
3281 	struct auxtrace_queue *queue;
3282 	struct intel_pt_queue *ptq;
3283 	struct evsel *evsel;
3284 
3285 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3286 	evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3287 	if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3288 		pr_err("Bad AUX output hardware ID\n");
3289 		return -EINVAL;
3290 	}
3291 
3292 	ptq = queue->priv;
3293 
3294 	ptq->pebs[hw_id].evsel = evsel;
3295 	ptq->pebs[hw_id].id = sample->id;
3296 
3297 	return 0;
3298 }
3299 
3300 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3301 			     struct addr_location *al)
3302 {
3303 	if (!al->map || addr < al->map->start || addr >= al->map->end) {
3304 		if (!thread__find_map(thread, cpumode, addr, al))
3305 			return -1;
3306 	}
3307 
3308 	return 0;
3309 }
3310 
3311 /* Invalidate all instruction cache entries that overlap the text poke */
3312 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3313 {
3314 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3315 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3316 	/* Assume text poke begins in a basic block no more than 4096 bytes */
3317 	int cnt = 4096 + event->text_poke.new_len;
3318 	struct thread *thread = pt->unknown_thread;
3319 	struct addr_location al = { .map = NULL };
3320 	struct machine *machine = pt->machine;
3321 	struct intel_pt_cache_entry *e;
3322 	u64 offset;
3323 
3324 	if (!event->text_poke.new_len)
3325 		return 0;
3326 
3327 	for (; cnt; cnt--, addr--) {
3328 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3329 			if (addr < event->text_poke.addr)
3330 				return 0;
3331 			continue;
3332 		}
3333 
3334 		if (!al.map->dso || !al.map->dso->auxtrace_cache)
3335 			continue;
3336 
3337 		offset = al.map->map_ip(al.map, addr);
3338 
3339 		e = intel_pt_cache_lookup(al.map->dso, machine, offset);
3340 		if (!e)
3341 			continue;
3342 
3343 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3344 			/*
3345 			 * No overlap. Working backwards there cannot be another
3346 			 * basic block that overlaps the text poke if there is a
3347 			 * branch instruction before the text poke address.
3348 			 */
3349 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
3350 				return 0;
3351 		} else {
3352 			intel_pt_cache_invalidate(al.map->dso, machine, offset);
3353 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3354 				     al.map->dso->long_name, addr);
3355 		}
3356 	}
3357 
3358 	return 0;
3359 }
3360 
3361 static int intel_pt_process_event(struct perf_session *session,
3362 				  union perf_event *event,
3363 				  struct perf_sample *sample,
3364 				  struct perf_tool *tool)
3365 {
3366 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3367 					   auxtrace);
3368 	u64 timestamp;
3369 	int err = 0;
3370 
3371 	if (dump_trace)
3372 		return 0;
3373 
3374 	if (!tool->ordered_events) {
3375 		pr_err("Intel Processor Trace requires ordered events\n");
3376 		return -EINVAL;
3377 	}
3378 
3379 	if (sample->time && sample->time != (u64)-1)
3380 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3381 	else
3382 		timestamp = 0;
3383 
3384 	if (timestamp || pt->timeless_decoding) {
3385 		err = intel_pt_update_queues(pt);
3386 		if (err)
3387 			return err;
3388 	}
3389 
3390 	if (pt->timeless_decoding) {
3391 		if (pt->sampling_mode) {
3392 			if (sample->aux_sample.size)
3393 				err = intel_pt_process_timeless_sample(pt,
3394 								       sample);
3395 		} else if (event->header.type == PERF_RECORD_EXIT) {
3396 			err = intel_pt_process_timeless_queues(pt,
3397 							       event->fork.tid,
3398 							       sample->time);
3399 		}
3400 	} else if (timestamp) {
3401 		if (!pt->first_timestamp)
3402 			intel_pt_first_timestamp(pt, timestamp);
3403 		err = intel_pt_process_queues(pt, timestamp);
3404 	}
3405 	if (err)
3406 		return err;
3407 
3408 	if (event->header.type == PERF_RECORD_SAMPLE) {
3409 		if (pt->synth_opts.add_callchain && !sample->callchain)
3410 			intel_pt_add_callchain(pt, sample);
3411 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3412 			intel_pt_add_br_stack(pt, sample);
3413 	}
3414 
3415 	if (event->header.type == PERF_RECORD_AUX &&
3416 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3417 	    pt->synth_opts.errors) {
3418 		err = intel_pt_lost(pt, sample);
3419 		if (err)
3420 			return err;
3421 	}
3422 
3423 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3424 		err = intel_pt_process_switch(pt, sample);
3425 	else if (event->header.type == PERF_RECORD_ITRACE_START)
3426 		err = intel_pt_process_itrace_start(pt, event, sample);
3427 	else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3428 		err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3429 	else if (event->header.type == PERF_RECORD_SWITCH ||
3430 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3431 		err = intel_pt_context_switch(pt, event, sample);
3432 
3433 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3434 		err = intel_pt_text_poke(pt, event);
3435 
3436 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3437 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3438 			     event->header.type, sample->cpu, sample->time, timestamp);
3439 		intel_pt_log_event(event);
3440 	}
3441 
3442 	return err;
3443 }
3444 
3445 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3446 {
3447 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3448 					   auxtrace);
3449 	int ret;
3450 
3451 	if (dump_trace)
3452 		return 0;
3453 
3454 	if (!tool->ordered_events)
3455 		return -EINVAL;
3456 
3457 	ret = intel_pt_update_queues(pt);
3458 	if (ret < 0)
3459 		return ret;
3460 
3461 	if (pt->timeless_decoding)
3462 		return intel_pt_process_timeless_queues(pt, -1,
3463 							MAX_TIMESTAMP - 1);
3464 
3465 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3466 }
3467 
3468 static void intel_pt_free_events(struct perf_session *session)
3469 {
3470 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3471 					   auxtrace);
3472 	struct auxtrace_queues *queues = &pt->queues;
3473 	unsigned int i;
3474 
3475 	for (i = 0; i < queues->nr_queues; i++) {
3476 		intel_pt_free_queue(queues->queue_array[i].priv);
3477 		queues->queue_array[i].priv = NULL;
3478 	}
3479 	intel_pt_log_disable();
3480 	auxtrace_queues__free(queues);
3481 }
3482 
3483 static void intel_pt_free(struct perf_session *session)
3484 {
3485 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3486 					   auxtrace);
3487 
3488 	auxtrace_heap__free(&pt->heap);
3489 	intel_pt_free_events(session);
3490 	session->auxtrace = NULL;
3491 	intel_pt_free_vmcs_info(pt);
3492 	thread__put(pt->unknown_thread);
3493 	addr_filters__exit(&pt->filts);
3494 	zfree(&pt->chain);
3495 	zfree(&pt->filter);
3496 	zfree(&pt->time_ranges);
3497 	free(pt);
3498 }
3499 
3500 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3501 				       struct evsel *evsel)
3502 {
3503 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3504 					   auxtrace);
3505 
3506 	return evsel->core.attr.type == pt->pmu_type;
3507 }
3508 
3509 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3510 					   union perf_event *event,
3511 					   struct perf_tool *tool __maybe_unused)
3512 {
3513 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3514 					   auxtrace);
3515 
3516 	if (!pt->data_queued) {
3517 		struct auxtrace_buffer *buffer;
3518 		off_t data_offset;
3519 		int fd = perf_data__fd(session->data);
3520 		int err;
3521 
3522 		if (perf_data__is_pipe(session->data)) {
3523 			data_offset = 0;
3524 		} else {
3525 			data_offset = lseek(fd, 0, SEEK_CUR);
3526 			if (data_offset == -1)
3527 				return -errno;
3528 		}
3529 
3530 		err = auxtrace_queues__add_event(&pt->queues, session, event,
3531 						 data_offset, &buffer);
3532 		if (err)
3533 			return err;
3534 
3535 		/* Dump here now we have copied a piped trace out of the pipe */
3536 		if (dump_trace) {
3537 			if (auxtrace_buffer__get_data(buffer, fd)) {
3538 				intel_pt_dump_event(pt, buffer->data,
3539 						    buffer->size);
3540 				auxtrace_buffer__put_data(buffer);
3541 			}
3542 		}
3543 	}
3544 
3545 	return 0;
3546 }
3547 
3548 static int intel_pt_queue_data(struct perf_session *session,
3549 			       struct perf_sample *sample,
3550 			       union perf_event *event, u64 data_offset)
3551 {
3552 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3553 					   auxtrace);
3554 	u64 timestamp;
3555 
3556 	if (event) {
3557 		return auxtrace_queues__add_event(&pt->queues, session, event,
3558 						  data_offset, NULL);
3559 	}
3560 
3561 	if (sample->time && sample->time != (u64)-1)
3562 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3563 	else
3564 		timestamp = 0;
3565 
3566 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3567 					   data_offset, timestamp);
3568 }
3569 
3570 struct intel_pt_synth {
3571 	struct perf_tool dummy_tool;
3572 	struct perf_session *session;
3573 };
3574 
3575 static int intel_pt_event_synth(struct perf_tool *tool,
3576 				union perf_event *event,
3577 				struct perf_sample *sample __maybe_unused,
3578 				struct machine *machine __maybe_unused)
3579 {
3580 	struct intel_pt_synth *intel_pt_synth =
3581 			container_of(tool, struct intel_pt_synth, dummy_tool);
3582 
3583 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3584 						 NULL);
3585 }
3586 
3587 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3588 				struct perf_event_attr *attr, u64 id)
3589 {
3590 	struct intel_pt_synth intel_pt_synth;
3591 	int err;
3592 
3593 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3594 		 name, id, (u64)attr->sample_type);
3595 
3596 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3597 	intel_pt_synth.session = session;
3598 
3599 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3600 					  &id, intel_pt_event_synth);
3601 	if (err)
3602 		pr_err("%s: failed to synthesize '%s' event type\n",
3603 		       __func__, name);
3604 
3605 	return err;
3606 }
3607 
3608 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3609 				    const char *name)
3610 {
3611 	struct evsel *evsel;
3612 
3613 	evlist__for_each_entry(evlist, evsel) {
3614 		if (evsel->core.id && evsel->core.id[0] == id) {
3615 			if (evsel->name)
3616 				zfree(&evsel->name);
3617 			evsel->name = strdup(name);
3618 			break;
3619 		}
3620 	}
3621 }
3622 
3623 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3624 					 struct evlist *evlist)
3625 {
3626 	struct evsel *evsel;
3627 
3628 	evlist__for_each_entry(evlist, evsel) {
3629 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3630 			return evsel;
3631 	}
3632 
3633 	return NULL;
3634 }
3635 
3636 static int intel_pt_synth_events(struct intel_pt *pt,
3637 				 struct perf_session *session)
3638 {
3639 	struct evlist *evlist = session->evlist;
3640 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3641 	struct perf_event_attr attr;
3642 	u64 id;
3643 	int err;
3644 
3645 	if (!evsel) {
3646 		pr_debug("There are no selected events with Intel Processor Trace data\n");
3647 		return 0;
3648 	}
3649 
3650 	memset(&attr, 0, sizeof(struct perf_event_attr));
3651 	attr.size = sizeof(struct perf_event_attr);
3652 	attr.type = PERF_TYPE_HARDWARE;
3653 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3654 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3655 			    PERF_SAMPLE_PERIOD;
3656 	if (pt->timeless_decoding)
3657 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3658 	else
3659 		attr.sample_type |= PERF_SAMPLE_TIME;
3660 	if (!pt->per_cpu_mmaps)
3661 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3662 	attr.exclude_user = evsel->core.attr.exclude_user;
3663 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3664 	attr.exclude_hv = evsel->core.attr.exclude_hv;
3665 	attr.exclude_host = evsel->core.attr.exclude_host;
3666 	attr.exclude_guest = evsel->core.attr.exclude_guest;
3667 	attr.sample_id_all = evsel->core.attr.sample_id_all;
3668 	attr.read_format = evsel->core.attr.read_format;
3669 
3670 	id = evsel->core.id[0] + 1000000000;
3671 	if (!id)
3672 		id = 1;
3673 
3674 	if (pt->synth_opts.branches) {
3675 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3676 		attr.sample_period = 1;
3677 		attr.sample_type |= PERF_SAMPLE_ADDR;
3678 		err = intel_pt_synth_event(session, "branches", &attr, id);
3679 		if (err)
3680 			return err;
3681 		pt->sample_branches = true;
3682 		pt->branches_sample_type = attr.sample_type;
3683 		pt->branches_id = id;
3684 		id += 1;
3685 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3686 	}
3687 
3688 	if (pt->synth_opts.callchain)
3689 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3690 	if (pt->synth_opts.last_branch) {
3691 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3692 		/*
3693 		 * We don't use the hardware index, but the sample generation
3694 		 * code uses the new format branch_stack with this field,
3695 		 * so the event attributes must indicate that it's present.
3696 		 */
3697 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3698 	}
3699 
3700 	if (pt->synth_opts.instructions) {
3701 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3702 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3703 			attr.sample_period =
3704 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3705 		else
3706 			attr.sample_period = pt->synth_opts.period;
3707 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3708 		if (err)
3709 			return err;
3710 		pt->sample_instructions = true;
3711 		pt->instructions_sample_type = attr.sample_type;
3712 		pt->instructions_id = id;
3713 		id += 1;
3714 	}
3715 
3716 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3717 	attr.sample_period = 1;
3718 
3719 	if (pt->synth_opts.transactions) {
3720 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3721 		err = intel_pt_synth_event(session, "transactions", &attr, id);
3722 		if (err)
3723 			return err;
3724 		pt->sample_transactions = true;
3725 		pt->transactions_sample_type = attr.sample_type;
3726 		pt->transactions_id = id;
3727 		intel_pt_set_event_name(evlist, id, "transactions");
3728 		id += 1;
3729 	}
3730 
3731 	attr.type = PERF_TYPE_SYNTH;
3732 	attr.sample_type |= PERF_SAMPLE_RAW;
3733 
3734 	if (pt->synth_opts.ptwrites) {
3735 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3736 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3737 		if (err)
3738 			return err;
3739 		pt->sample_ptwrites = true;
3740 		pt->ptwrites_sample_type = attr.sample_type;
3741 		pt->ptwrites_id = id;
3742 		intel_pt_set_event_name(evlist, id, "ptwrite");
3743 		id += 1;
3744 	}
3745 
3746 	if (pt->synth_opts.pwr_events) {
3747 		pt->sample_pwr_events = true;
3748 		pt->pwr_events_sample_type = attr.sample_type;
3749 
3750 		attr.config = PERF_SYNTH_INTEL_CBR;
3751 		err = intel_pt_synth_event(session, "cbr", &attr, id);
3752 		if (err)
3753 			return err;
3754 		pt->cbr_id = id;
3755 		intel_pt_set_event_name(evlist, id, "cbr");
3756 		id += 1;
3757 
3758 		attr.config = PERF_SYNTH_INTEL_PSB;
3759 		err = intel_pt_synth_event(session, "psb", &attr, id);
3760 		if (err)
3761 			return err;
3762 		pt->psb_id = id;
3763 		intel_pt_set_event_name(evlist, id, "psb");
3764 		id += 1;
3765 	}
3766 
3767 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3768 		attr.config = PERF_SYNTH_INTEL_MWAIT;
3769 		err = intel_pt_synth_event(session, "mwait", &attr, id);
3770 		if (err)
3771 			return err;
3772 		pt->mwait_id = id;
3773 		intel_pt_set_event_name(evlist, id, "mwait");
3774 		id += 1;
3775 
3776 		attr.config = PERF_SYNTH_INTEL_PWRE;
3777 		err = intel_pt_synth_event(session, "pwre", &attr, id);
3778 		if (err)
3779 			return err;
3780 		pt->pwre_id = id;
3781 		intel_pt_set_event_name(evlist, id, "pwre");
3782 		id += 1;
3783 
3784 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3785 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3786 		if (err)
3787 			return err;
3788 		pt->exstop_id = id;
3789 		intel_pt_set_event_name(evlist, id, "exstop");
3790 		id += 1;
3791 
3792 		attr.config = PERF_SYNTH_INTEL_PWRX;
3793 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3794 		if (err)
3795 			return err;
3796 		pt->pwrx_id = id;
3797 		intel_pt_set_event_name(evlist, id, "pwrx");
3798 		id += 1;
3799 	}
3800 
3801 	if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3802 		attr.config = PERF_SYNTH_INTEL_EVT;
3803 		err = intel_pt_synth_event(session, "evt", &attr, id);
3804 		if (err)
3805 			return err;
3806 		pt->evt_sample_type = attr.sample_type;
3807 		pt->evt_id = id;
3808 		intel_pt_set_event_name(evlist, id, "evt");
3809 		id += 1;
3810 	}
3811 
3812 	if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3813 		attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3814 		err = intel_pt_synth_event(session, "iflag", &attr, id);
3815 		if (err)
3816 			return err;
3817 		pt->iflag_chg_sample_type = attr.sample_type;
3818 		pt->iflag_chg_id = id;
3819 		intel_pt_set_event_name(evlist, id, "iflag");
3820 		id += 1;
3821 	}
3822 
3823 	return 0;
3824 }
3825 
3826 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3827 {
3828 	struct evsel *evsel;
3829 
3830 	if (!pt->synth_opts.other_events)
3831 		return;
3832 
3833 	evlist__for_each_entry(pt->session->evlist, evsel) {
3834 		if (evsel->core.attr.aux_output && evsel->core.id) {
3835 			if (pt->single_pebs) {
3836 				pt->single_pebs = false;
3837 				return;
3838 			}
3839 			pt->single_pebs = true;
3840 			pt->sample_pebs = true;
3841 			pt->pebs_evsel = evsel;
3842 		}
3843 	}
3844 }
3845 
3846 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3847 {
3848 	struct evsel *evsel;
3849 
3850 	evlist__for_each_entry_reverse(evlist, evsel) {
3851 		const char *name = evsel__name(evsel);
3852 
3853 		if (!strcmp(name, "sched:sched_switch"))
3854 			return evsel;
3855 	}
3856 
3857 	return NULL;
3858 }
3859 
3860 static bool intel_pt_find_switch(struct evlist *evlist)
3861 {
3862 	struct evsel *evsel;
3863 
3864 	evlist__for_each_entry(evlist, evsel) {
3865 		if (evsel->core.attr.context_switch)
3866 			return true;
3867 	}
3868 
3869 	return false;
3870 }
3871 
3872 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3873 {
3874 	struct intel_pt *pt = data;
3875 
3876 	if (!strcmp(var, "intel-pt.mispred-all"))
3877 		pt->mispred_all = perf_config_bool(var, value);
3878 
3879 	if (!strcmp(var, "intel-pt.max-loops"))
3880 		perf_config_int(&pt->max_loops, var, value);
3881 
3882 	return 0;
3883 }
3884 
3885 /* Find least TSC which converts to ns or later */
3886 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3887 {
3888 	u64 tsc, tm;
3889 
3890 	tsc = perf_time_to_tsc(ns, &pt->tc);
3891 
3892 	while (1) {
3893 		tm = tsc_to_perf_time(tsc, &pt->tc);
3894 		if (tm < ns)
3895 			break;
3896 		tsc -= 1;
3897 	}
3898 
3899 	while (tm < ns)
3900 		tm = tsc_to_perf_time(++tsc, &pt->tc);
3901 
3902 	return tsc;
3903 }
3904 
3905 /* Find greatest TSC which converts to ns or earlier */
3906 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3907 {
3908 	u64 tsc, tm;
3909 
3910 	tsc = perf_time_to_tsc(ns, &pt->tc);
3911 
3912 	while (1) {
3913 		tm = tsc_to_perf_time(tsc, &pt->tc);
3914 		if (tm > ns)
3915 			break;
3916 		tsc += 1;
3917 	}
3918 
3919 	while (tm > ns)
3920 		tm = tsc_to_perf_time(--tsc, &pt->tc);
3921 
3922 	return tsc;
3923 }
3924 
3925 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3926 				      struct itrace_synth_opts *opts)
3927 {
3928 	struct perf_time_interval *p = opts->ptime_range;
3929 	int n = opts->range_num;
3930 	int i;
3931 
3932 	if (!n || !p || pt->timeless_decoding)
3933 		return 0;
3934 
3935 	pt->time_ranges = calloc(n, sizeof(struct range));
3936 	if (!pt->time_ranges)
3937 		return -ENOMEM;
3938 
3939 	pt->range_cnt = n;
3940 
3941 	intel_pt_log("%s: %u range(s)\n", __func__, n);
3942 
3943 	for (i = 0; i < n; i++) {
3944 		struct range *r = &pt->time_ranges[i];
3945 		u64 ts = p[i].start;
3946 		u64 te = p[i].end;
3947 
3948 		/*
3949 		 * Take care to ensure the TSC range matches the perf-time range
3950 		 * when converted back to perf-time.
3951 		 */
3952 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3953 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3954 
3955 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3956 			     i, ts, te);
3957 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3958 			     i, r->start, r->end);
3959 	}
3960 
3961 	return 0;
3962 }
3963 
3964 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
3965 {
3966 	struct intel_pt_vmcs_info *vmcs_info;
3967 	u64 tsc_offset, vmcs;
3968 	char *p = *args;
3969 
3970 	errno = 0;
3971 
3972 	p = skip_spaces(p);
3973 	if (!*p)
3974 		return 1;
3975 
3976 	tsc_offset = strtoull(p, &p, 0);
3977 	if (errno)
3978 		return -errno;
3979 	p = skip_spaces(p);
3980 	if (*p != ':') {
3981 		pt->dflt_tsc_offset = tsc_offset;
3982 		*args = p;
3983 		return 0;
3984 	}
3985 	p += 1;
3986 	while (1) {
3987 		vmcs = strtoull(p, &p, 0);
3988 		if (errno)
3989 			return -errno;
3990 		if (!vmcs)
3991 			return -EINVAL;
3992 		vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
3993 		if (!vmcs_info)
3994 			return -ENOMEM;
3995 		p = skip_spaces(p);
3996 		if (*p != ',')
3997 			break;
3998 		p += 1;
3999 	}
4000 	*args = p;
4001 	return 0;
4002 }
4003 
4004 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4005 {
4006 	char *args = pt->synth_opts.vm_tm_corr_args;
4007 	int ret;
4008 
4009 	if (!args)
4010 		return 0;
4011 
4012 	do {
4013 		ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4014 	} while (!ret);
4015 
4016 	if (ret < 0) {
4017 		pr_err("Failed to parse VM Time Correlation options\n");
4018 		return ret;
4019 	}
4020 
4021 	return 0;
4022 }
4023 
4024 static const char * const intel_pt_info_fmts[] = {
4025 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
4026 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
4027 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
4028 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
4029 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
4030 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
4031 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
4032 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
4033 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
4034 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
4035 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
4036 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
4037 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
4038 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
4039 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
4040 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
4041 };
4042 
4043 static void intel_pt_print_info(__u64 *arr, int start, int finish)
4044 {
4045 	int i;
4046 
4047 	if (!dump_trace)
4048 		return;
4049 
4050 	for (i = start; i <= finish; i++)
4051 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
4052 }
4053 
4054 static void intel_pt_print_info_str(const char *name, const char *str)
4055 {
4056 	if (!dump_trace)
4057 		return;
4058 
4059 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
4060 }
4061 
4062 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4063 {
4064 	return auxtrace_info->header.size >=
4065 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4066 }
4067 
4068 int intel_pt_process_auxtrace_info(union perf_event *event,
4069 				   struct perf_session *session)
4070 {
4071 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4072 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4073 	struct intel_pt *pt;
4074 	void *info_end;
4075 	__u64 *info;
4076 	int err;
4077 
4078 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4079 					min_sz)
4080 		return -EINVAL;
4081 
4082 	pt = zalloc(sizeof(struct intel_pt));
4083 	if (!pt)
4084 		return -ENOMEM;
4085 
4086 	pt->vmcs_info = RB_ROOT;
4087 
4088 	addr_filters__init(&pt->filts);
4089 
4090 	err = perf_config(intel_pt_perf_config, pt);
4091 	if (err)
4092 		goto err_free;
4093 
4094 	err = auxtrace_queues__init(&pt->queues);
4095 	if (err)
4096 		goto err_free;
4097 
4098 	if (session->itrace_synth_opts->set) {
4099 		pt->synth_opts = *session->itrace_synth_opts;
4100 	} else {
4101 		struct itrace_synth_opts *opts = session->itrace_synth_opts;
4102 
4103 		itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4104 		if (!opts->default_no_sample && !opts->inject) {
4105 			pt->synth_opts.branches = false;
4106 			pt->synth_opts.callchain = true;
4107 			pt->synth_opts.add_callchain = true;
4108 		}
4109 		pt->synth_opts.thread_stack = opts->thread_stack;
4110 	}
4111 
4112 	if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4113 		intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4114 
4115 	pt->session = session;
4116 	pt->machine = &session->machines.host; /* No kvm support */
4117 	pt->auxtrace_type = auxtrace_info->type;
4118 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4119 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4120 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4121 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4122 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4123 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4124 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4125 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4126 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4127 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4128 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4129 			    INTEL_PT_PER_CPU_MMAPS);
4130 
4131 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4132 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4133 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4134 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4135 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4136 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4137 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4138 				    INTEL_PT_CYC_BIT);
4139 	}
4140 
4141 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4142 		pt->max_non_turbo_ratio =
4143 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4144 		intel_pt_print_info(&auxtrace_info->priv[0],
4145 				    INTEL_PT_MAX_NONTURBO_RATIO,
4146 				    INTEL_PT_MAX_NONTURBO_RATIO);
4147 	}
4148 
4149 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4150 	info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4151 
4152 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4153 		size_t len;
4154 
4155 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4156 		intel_pt_print_info(&auxtrace_info->priv[0],
4157 				    INTEL_PT_FILTER_STR_LEN,
4158 				    INTEL_PT_FILTER_STR_LEN);
4159 		if (len) {
4160 			const char *filter = (const char *)info;
4161 
4162 			len = roundup(len + 1, 8);
4163 			info += len >> 3;
4164 			if ((void *)info > info_end) {
4165 				pr_err("%s: bad filter string length\n", __func__);
4166 				err = -EINVAL;
4167 				goto err_free_queues;
4168 			}
4169 			pt->filter = memdup(filter, len);
4170 			if (!pt->filter) {
4171 				err = -ENOMEM;
4172 				goto err_free_queues;
4173 			}
4174 			if (session->header.needs_swap)
4175 				mem_bswap_64(pt->filter, len);
4176 			if (pt->filter[len - 1]) {
4177 				pr_err("%s: filter string not null terminated\n", __func__);
4178 				err = -EINVAL;
4179 				goto err_free_queues;
4180 			}
4181 			err = addr_filters__parse_bare_filter(&pt->filts,
4182 							      filter);
4183 			if (err)
4184 				goto err_free_queues;
4185 		}
4186 		intel_pt_print_info_str("Filter string", pt->filter);
4187 	}
4188 
4189 	if ((void *)info < info_end) {
4190 		pt->cap_event_trace = *info++;
4191 		if (dump_trace)
4192 			fprintf(stdout, "  Cap Event Trace     %d\n",
4193 				pt->cap_event_trace);
4194 	}
4195 
4196 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4197 	if (pt->timeless_decoding && !pt->tc.time_mult)
4198 		pt->tc.time_mult = 1;
4199 	pt->have_tsc = intel_pt_have_tsc(pt);
4200 	pt->sampling_mode = intel_pt_sampling_mode(pt);
4201 	pt->est_tsc = !pt->timeless_decoding;
4202 
4203 	if (pt->synth_opts.vm_time_correlation) {
4204 		if (pt->timeless_decoding) {
4205 			pr_err("Intel PT has no time information for VM Time Correlation\n");
4206 			err = -EINVAL;
4207 			goto err_free_queues;
4208 		}
4209 		if (session->itrace_synth_opts->ptime_range) {
4210 			pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4211 			err = -EINVAL;
4212 			goto err_free_queues;
4213 		}
4214 		/* Currently TSC Offset is calculated using MTC packets */
4215 		if (!intel_pt_have_mtc(pt)) {
4216 			pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4217 			err = -EINVAL;
4218 			goto err_free_queues;
4219 		}
4220 		err = intel_pt_parse_vm_tm_corr_args(pt);
4221 		if (err)
4222 			goto err_free_queues;
4223 	}
4224 
4225 	pt->unknown_thread = thread__new(999999999, 999999999);
4226 	if (!pt->unknown_thread) {
4227 		err = -ENOMEM;
4228 		goto err_free_queues;
4229 	}
4230 
4231 	/*
4232 	 * Since this thread will not be kept in any rbtree not in a
4233 	 * list, initialize its list node so that at thread__put() the
4234 	 * current thread lifetime assumption is kept and we don't segfault
4235 	 * at list_del_init().
4236 	 */
4237 	INIT_LIST_HEAD(&pt->unknown_thread->node);
4238 
4239 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4240 	if (err)
4241 		goto err_delete_thread;
4242 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4243 		err = -ENOMEM;
4244 		goto err_delete_thread;
4245 	}
4246 
4247 	pt->auxtrace.process_event = intel_pt_process_event;
4248 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4249 	pt->auxtrace.queue_data = intel_pt_queue_data;
4250 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4251 	pt->auxtrace.flush_events = intel_pt_flush;
4252 	pt->auxtrace.free_events = intel_pt_free_events;
4253 	pt->auxtrace.free = intel_pt_free;
4254 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4255 	session->auxtrace = &pt->auxtrace;
4256 
4257 	if (dump_trace)
4258 		return 0;
4259 
4260 	if (pt->have_sched_switch == 1) {
4261 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4262 		if (!pt->switch_evsel) {
4263 			pr_err("%s: missing sched_switch event\n", __func__);
4264 			err = -EINVAL;
4265 			goto err_delete_thread;
4266 		}
4267 	} else if (pt->have_sched_switch == 2 &&
4268 		   !intel_pt_find_switch(session->evlist)) {
4269 		pr_err("%s: missing context_switch attribute flag\n", __func__);
4270 		err = -EINVAL;
4271 		goto err_delete_thread;
4272 	}
4273 
4274 	if (pt->synth_opts.log)
4275 		intel_pt_log_enable();
4276 
4277 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
4278 	if (pt->tc.time_mult) {
4279 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4280 
4281 		if (!pt->max_non_turbo_ratio)
4282 			pt->max_non_turbo_ratio =
4283 					(tsc_freq + 50000000) / 100000000;
4284 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4285 		intel_pt_log("Maximum non-turbo ratio %u\n",
4286 			     pt->max_non_turbo_ratio);
4287 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4288 	}
4289 
4290 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4291 	if (err)
4292 		goto err_delete_thread;
4293 
4294 	if (pt->synth_opts.calls)
4295 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4296 				       PERF_IP_FLAG_TRACE_END;
4297 	if (pt->synth_opts.returns)
4298 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
4299 				       PERF_IP_FLAG_TRACE_BEGIN;
4300 
4301 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4302 	    !symbol_conf.use_callchain) {
4303 		symbol_conf.use_callchain = true;
4304 		if (callchain_register_param(&callchain_param) < 0) {
4305 			symbol_conf.use_callchain = false;
4306 			pt->synth_opts.callchain = false;
4307 			pt->synth_opts.add_callchain = false;
4308 		}
4309 	}
4310 
4311 	if (pt->synth_opts.add_callchain) {
4312 		err = intel_pt_callchain_init(pt);
4313 		if (err)
4314 			goto err_delete_thread;
4315 	}
4316 
4317 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4318 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4319 		pt->br_stack_sz_plus = pt->br_stack_sz;
4320 	}
4321 
4322 	if (pt->synth_opts.add_last_branch) {
4323 		err = intel_pt_br_stack_init(pt);
4324 		if (err)
4325 			goto err_delete_thread;
4326 		/*
4327 		 * Additional branch stack size to cater for tracing from the
4328 		 * actual sample ip to where the sample time is recorded.
4329 		 * Measured at about 200 branches, but generously set to 1024.
4330 		 * If kernel space is not being traced, then add just 1 for the
4331 		 * branch to kernel space.
4332 		 */
4333 		if (intel_pt_tracing_kernel(pt))
4334 			pt->br_stack_sz_plus += 1024;
4335 		else
4336 			pt->br_stack_sz_plus += 1;
4337 	}
4338 
4339 	pt->use_thread_stack = pt->synth_opts.callchain ||
4340 			       pt->synth_opts.add_callchain ||
4341 			       pt->synth_opts.thread_stack ||
4342 			       pt->synth_opts.last_branch ||
4343 			       pt->synth_opts.add_last_branch;
4344 
4345 	pt->callstack = pt->synth_opts.callchain ||
4346 			pt->synth_opts.add_callchain ||
4347 			pt->synth_opts.thread_stack;
4348 
4349 	err = intel_pt_synth_events(pt, session);
4350 	if (err)
4351 		goto err_delete_thread;
4352 
4353 	intel_pt_setup_pebs_events(pt);
4354 
4355 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4356 		err = auxtrace_queue_data(session, true, true);
4357 	else
4358 		err = auxtrace_queues__process_index(&pt->queues, session);
4359 	if (err)
4360 		goto err_delete_thread;
4361 
4362 	if (pt->queues.populated)
4363 		pt->data_queued = true;
4364 
4365 	if (pt->timeless_decoding)
4366 		pr_debug2("Intel PT decoding without timestamps\n");
4367 
4368 	return 0;
4369 
4370 err_delete_thread:
4371 	zfree(&pt->chain);
4372 	thread__zput(pt->unknown_thread);
4373 err_free_queues:
4374 	intel_pt_log_disable();
4375 	auxtrace_queues__free(&pt->queues);
4376 	session->auxtrace = NULL;
4377 err_free:
4378 	addr_filters__exit(&pt->filts);
4379 	zfree(&pt->filter);
4380 	zfree(&pt->time_ranges);
4381 	free(pt);
4382 	return err;
4383 }
4384