xref: /linux/tools/perf/util/intel-pt.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39 
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41 
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46 
47 #define MAX_TIMESTAMP (~0ULL)
48 
49 struct range {
50 	u64 start;
51 	u64 end;
52 };
53 
54 struct intel_pt {
55 	struct auxtrace auxtrace;
56 	struct auxtrace_queues queues;
57 	struct auxtrace_heap heap;
58 	u32 auxtrace_type;
59 	struct perf_session *session;
60 	struct machine *machine;
61 	struct evsel *switch_evsel;
62 	struct thread *unknown_thread;
63 	bool timeless_decoding;
64 	bool sampling_mode;
65 	bool snapshot_mode;
66 	bool per_cpu_mmaps;
67 	bool have_tsc;
68 	bool data_queued;
69 	bool est_tsc;
70 	bool sync_switch;
71 	bool mispred_all;
72 	bool use_thread_stack;
73 	bool callstack;
74 	unsigned int br_stack_sz;
75 	unsigned int br_stack_sz_plus;
76 	int have_sched_switch;
77 	u32 pmu_type;
78 	u64 kernel_start;
79 	u64 switch_ip;
80 	u64 ptss_ip;
81 	u64 first_timestamp;
82 
83 	struct perf_tsc_conversion tc;
84 	bool cap_user_time_zero;
85 
86 	struct itrace_synth_opts synth_opts;
87 
88 	bool sample_instructions;
89 	u64 instructions_sample_type;
90 	u64 instructions_id;
91 
92 	bool sample_branches;
93 	u32 branches_filter;
94 	u64 branches_sample_type;
95 	u64 branches_id;
96 
97 	bool sample_transactions;
98 	u64 transactions_sample_type;
99 	u64 transactions_id;
100 
101 	bool sample_ptwrites;
102 	u64 ptwrites_sample_type;
103 	u64 ptwrites_id;
104 
105 	bool sample_pwr_events;
106 	u64 pwr_events_sample_type;
107 	u64 mwait_id;
108 	u64 pwre_id;
109 	u64 exstop_id;
110 	u64 pwrx_id;
111 	u64 cbr_id;
112 	u64 psb_id;
113 
114 	bool single_pebs;
115 	bool sample_pebs;
116 	struct evsel *pebs_evsel;
117 
118 	u64 tsc_bit;
119 	u64 mtc_bit;
120 	u64 mtc_freq_bits;
121 	u32 tsc_ctc_ratio_n;
122 	u32 tsc_ctc_ratio_d;
123 	u64 cyc_bit;
124 	u64 noretcomp_bit;
125 	unsigned max_non_turbo_ratio;
126 	unsigned cbr2khz;
127 	int max_loops;
128 
129 	unsigned long num_events;
130 
131 	char *filter;
132 	struct addr_filters filts;
133 
134 	struct range *time_ranges;
135 	unsigned int range_cnt;
136 
137 	struct ip_callchain *chain;
138 	struct branch_stack *br_stack;
139 
140 	u64 dflt_tsc_offset;
141 	struct rb_root vmcs_info;
142 };
143 
144 enum switch_state {
145 	INTEL_PT_SS_NOT_TRACING,
146 	INTEL_PT_SS_UNKNOWN,
147 	INTEL_PT_SS_TRACING,
148 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
149 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
150 };
151 
152 /* applicable_counters is 64-bits */
153 #define INTEL_PT_MAX_PEBS 64
154 
155 struct intel_pt_pebs_event {
156 	struct evsel *evsel;
157 	u64 id;
158 };
159 
160 struct intel_pt_queue {
161 	struct intel_pt *pt;
162 	unsigned int queue_nr;
163 	struct auxtrace_buffer *buffer;
164 	struct auxtrace_buffer *old_buffer;
165 	void *decoder;
166 	const struct intel_pt_state *state;
167 	struct ip_callchain *chain;
168 	struct branch_stack *last_branch;
169 	union perf_event *event_buf;
170 	bool on_heap;
171 	bool stop;
172 	bool step_through_buffers;
173 	bool use_buffer_pid_tid;
174 	bool sync_switch;
175 	bool sample_ipc;
176 	pid_t pid, tid;
177 	int cpu;
178 	int switch_state;
179 	pid_t next_tid;
180 	struct thread *thread;
181 	struct machine *guest_machine;
182 	struct thread *unknown_guest_thread;
183 	pid_t guest_machine_pid;
184 	bool exclude_kernel;
185 	bool have_sample;
186 	u64 time;
187 	u64 timestamp;
188 	u64 sel_timestamp;
189 	bool sel_start;
190 	unsigned int sel_idx;
191 	u32 flags;
192 	u16 insn_len;
193 	u64 last_insn_cnt;
194 	u64 ipc_insn_cnt;
195 	u64 ipc_cyc_cnt;
196 	u64 last_in_insn_cnt;
197 	u64 last_in_cyc_cnt;
198 	u64 last_br_insn_cnt;
199 	u64 last_br_cyc_cnt;
200 	unsigned int cbr_seen;
201 	char insn[INTEL_PT_INSN_BUF_SZ];
202 	struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
203 };
204 
205 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
206 			  unsigned char *buf, size_t len)
207 {
208 	struct intel_pt_pkt packet;
209 	size_t pos = 0;
210 	int ret, pkt_len, i;
211 	char desc[INTEL_PT_PKT_DESC_MAX];
212 	const char *color = PERF_COLOR_BLUE;
213 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
214 
215 	color_fprintf(stdout, color,
216 		      ". ... Intel Processor Trace data: size %zu bytes\n",
217 		      len);
218 
219 	while (len) {
220 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
221 		if (ret > 0)
222 			pkt_len = ret;
223 		else
224 			pkt_len = 1;
225 		printf(".");
226 		color_fprintf(stdout, color, "  %08x: ", pos);
227 		for (i = 0; i < pkt_len; i++)
228 			color_fprintf(stdout, color, " %02x", buf[i]);
229 		for (; i < 16; i++)
230 			color_fprintf(stdout, color, "   ");
231 		if (ret > 0) {
232 			ret = intel_pt_pkt_desc(&packet, desc,
233 						INTEL_PT_PKT_DESC_MAX);
234 			if (ret > 0)
235 				color_fprintf(stdout, color, " %s\n", desc);
236 		} else {
237 			color_fprintf(stdout, color, " Bad packet!\n");
238 		}
239 		pos += pkt_len;
240 		buf += pkt_len;
241 		len -= pkt_len;
242 	}
243 }
244 
245 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
246 				size_t len)
247 {
248 	printf(".\n");
249 	intel_pt_dump(pt, buf, len);
250 }
251 
252 static void intel_pt_log_event(union perf_event *event)
253 {
254 	FILE *f = intel_pt_log_fp();
255 
256 	if (!intel_pt_enable_logging || !f)
257 		return;
258 
259 	perf_event__fprintf(event, NULL, f);
260 }
261 
262 static void intel_pt_dump_sample(struct perf_session *session,
263 				 struct perf_sample *sample)
264 {
265 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
266 					   auxtrace);
267 
268 	printf("\n");
269 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
270 }
271 
272 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
273 {
274 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
275 	int n = pt->synth_opts.range_num;
276 
277 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
278 		return true;
279 
280 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
281 		return false;
282 
283 	/* perf_time__ranges_skip_sample does not work if time is zero */
284 	if (!tm)
285 		tm = 1;
286 
287 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
288 }
289 
290 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
291 							u64 vmcs,
292 							u64 dflt_tsc_offset)
293 {
294 	struct rb_node **p = &rb_root->rb_node;
295 	struct rb_node *parent = NULL;
296 	struct intel_pt_vmcs_info *v;
297 
298 	while (*p) {
299 		parent = *p;
300 		v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
301 
302 		if (v->vmcs == vmcs)
303 			return v;
304 
305 		if (vmcs < v->vmcs)
306 			p = &(*p)->rb_left;
307 		else
308 			p = &(*p)->rb_right;
309 	}
310 
311 	v = zalloc(sizeof(*v));
312 	if (v) {
313 		v->vmcs = vmcs;
314 		v->tsc_offset = dflt_tsc_offset;
315 		v->reliable = dflt_tsc_offset;
316 
317 		rb_link_node(&v->rb_node, parent, p);
318 		rb_insert_color(&v->rb_node, rb_root);
319 	}
320 
321 	return v;
322 }
323 
324 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
325 {
326 	struct intel_pt_queue *ptq = data;
327 	struct intel_pt *pt = ptq->pt;
328 
329 	if (!vmcs && !pt->dflt_tsc_offset)
330 		return NULL;
331 
332 	return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
333 }
334 
335 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
336 {
337 	struct intel_pt_vmcs_info *v;
338 	struct rb_node *n;
339 
340 	n = rb_first(&pt->vmcs_info);
341 	while (n) {
342 		v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
343 		n = rb_next(n);
344 		rb_erase(&v->rb_node, &pt->vmcs_info);
345 		free(v);
346 	}
347 }
348 
349 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
350 				   struct auxtrace_buffer *b)
351 {
352 	bool consecutive = false;
353 	void *start;
354 
355 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
356 				      pt->have_tsc, &consecutive,
357 				      pt->synth_opts.vm_time_correlation);
358 	if (!start)
359 		return -EINVAL;
360 	/*
361 	 * In the case of vm_time_correlation, the overlap might contain TSC
362 	 * packets that will not be fixed, and that will then no longer work for
363 	 * overlap detection. Avoid that by zeroing out the overlap.
364 	 */
365 	if (pt->synth_opts.vm_time_correlation)
366 		memset(b->data, 0, start - b->data);
367 	b->use_size = b->data + b->size - start;
368 	b->use_data = start;
369 	if (b->use_size && consecutive)
370 		b->consecutive = true;
371 	return 0;
372 }
373 
374 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
375 			       struct auxtrace_buffer *buffer,
376 			       struct auxtrace_buffer *old_buffer,
377 			       struct intel_pt_buffer *b)
378 {
379 	bool might_overlap;
380 
381 	if (!buffer->data) {
382 		int fd = perf_data__fd(ptq->pt->session->data);
383 
384 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
385 		if (!buffer->data)
386 			return -ENOMEM;
387 	}
388 
389 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
390 	if (might_overlap && !buffer->consecutive && old_buffer &&
391 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
392 		return -ENOMEM;
393 
394 	if (buffer->use_data) {
395 		b->len = buffer->use_size;
396 		b->buf = buffer->use_data;
397 	} else {
398 		b->len = buffer->size;
399 		b->buf = buffer->data;
400 	}
401 	b->ref_timestamp = buffer->reference;
402 
403 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
404 		b->consecutive = false;
405 		b->trace_nr = buffer->buffer_nr + 1;
406 	} else {
407 		b->consecutive = true;
408 	}
409 
410 	return 0;
411 }
412 
413 /* Do not drop buffers with references - refer intel_pt_get_trace() */
414 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
415 					   struct auxtrace_buffer *buffer)
416 {
417 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
418 		return;
419 
420 	auxtrace_buffer__drop_data(buffer);
421 }
422 
423 /* Must be serialized with respect to intel_pt_get_trace() */
424 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
425 			      void *cb_data)
426 {
427 	struct intel_pt_queue *ptq = data;
428 	struct auxtrace_buffer *buffer = ptq->buffer;
429 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
430 	struct auxtrace_queue *queue;
431 	int err = 0;
432 
433 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
434 
435 	while (1) {
436 		struct intel_pt_buffer b = { .len = 0 };
437 
438 		buffer = auxtrace_buffer__next(queue, buffer);
439 		if (!buffer)
440 			break;
441 
442 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
443 		if (err)
444 			break;
445 
446 		if (b.len) {
447 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
448 			old_buffer = buffer;
449 		} else {
450 			intel_pt_lookahead_drop_buffer(ptq, buffer);
451 			continue;
452 		}
453 
454 		err = cb(&b, cb_data);
455 		if (err)
456 			break;
457 	}
458 
459 	if (buffer != old_buffer)
460 		intel_pt_lookahead_drop_buffer(ptq, buffer);
461 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
462 
463 	return err;
464 }
465 
466 /*
467  * This function assumes data is processed sequentially only.
468  * Must be serialized with respect to intel_pt_lookahead()
469  */
470 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
471 {
472 	struct intel_pt_queue *ptq = data;
473 	struct auxtrace_buffer *buffer = ptq->buffer;
474 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
475 	struct auxtrace_queue *queue;
476 	int err;
477 
478 	if (ptq->stop) {
479 		b->len = 0;
480 		return 0;
481 	}
482 
483 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
484 
485 	buffer = auxtrace_buffer__next(queue, buffer);
486 	if (!buffer) {
487 		if (old_buffer)
488 			auxtrace_buffer__drop_data(old_buffer);
489 		b->len = 0;
490 		return 0;
491 	}
492 
493 	ptq->buffer = buffer;
494 
495 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
496 	if (err)
497 		return err;
498 
499 	if (ptq->step_through_buffers)
500 		ptq->stop = true;
501 
502 	if (b->len) {
503 		if (old_buffer)
504 			auxtrace_buffer__drop_data(old_buffer);
505 		ptq->old_buffer = buffer;
506 	} else {
507 		auxtrace_buffer__drop_data(buffer);
508 		return intel_pt_get_trace(b, data);
509 	}
510 
511 	return 0;
512 }
513 
514 struct intel_pt_cache_entry {
515 	struct auxtrace_cache_entry	entry;
516 	u64				insn_cnt;
517 	u64				byte_cnt;
518 	enum intel_pt_insn_op		op;
519 	enum intel_pt_insn_branch	branch;
520 	int				length;
521 	int32_t				rel;
522 	char				insn[INTEL_PT_INSN_BUF_SZ];
523 };
524 
525 static int intel_pt_config_div(const char *var, const char *value, void *data)
526 {
527 	int *d = data;
528 	long val;
529 
530 	if (!strcmp(var, "intel-pt.cache-divisor")) {
531 		val = strtol(value, NULL, 0);
532 		if (val > 0 && val <= INT_MAX)
533 			*d = val;
534 	}
535 
536 	return 0;
537 }
538 
539 static int intel_pt_cache_divisor(void)
540 {
541 	static int d;
542 
543 	if (d)
544 		return d;
545 
546 	perf_config(intel_pt_config_div, &d);
547 
548 	if (!d)
549 		d = 64;
550 
551 	return d;
552 }
553 
554 static unsigned int intel_pt_cache_size(struct dso *dso,
555 					struct machine *machine)
556 {
557 	off_t size;
558 
559 	size = dso__data_size(dso, machine);
560 	size /= intel_pt_cache_divisor();
561 	if (size < 1000)
562 		return 10;
563 	if (size > (1 << 21))
564 		return 21;
565 	return 32 - __builtin_clz(size);
566 }
567 
568 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
569 					     struct machine *machine)
570 {
571 	struct auxtrace_cache *c;
572 	unsigned int bits;
573 
574 	if (dso->auxtrace_cache)
575 		return dso->auxtrace_cache;
576 
577 	bits = intel_pt_cache_size(dso, machine);
578 
579 	/* Ignoring cache creation failure */
580 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
581 
582 	dso->auxtrace_cache = c;
583 
584 	return c;
585 }
586 
587 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
588 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
589 			      struct intel_pt_insn *intel_pt_insn)
590 {
591 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
592 	struct intel_pt_cache_entry *e;
593 	int err;
594 
595 	if (!c)
596 		return -ENOMEM;
597 
598 	e = auxtrace_cache__alloc_entry(c);
599 	if (!e)
600 		return -ENOMEM;
601 
602 	e->insn_cnt = insn_cnt;
603 	e->byte_cnt = byte_cnt;
604 	e->op = intel_pt_insn->op;
605 	e->branch = intel_pt_insn->branch;
606 	e->length = intel_pt_insn->length;
607 	e->rel = intel_pt_insn->rel;
608 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
609 
610 	err = auxtrace_cache__add(c, offset, &e->entry);
611 	if (err)
612 		auxtrace_cache__free_entry(c, e);
613 
614 	return err;
615 }
616 
617 static struct intel_pt_cache_entry *
618 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
619 {
620 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
621 
622 	if (!c)
623 		return NULL;
624 
625 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
626 }
627 
628 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
629 				      u64 offset)
630 {
631 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
632 
633 	if (!c)
634 		return;
635 
636 	auxtrace_cache__remove(dso->auxtrace_cache, offset);
637 }
638 
639 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
640 {
641 	/* Assumes 64-bit kernel */
642 	return ip & (1ULL << 63);
643 }
644 
645 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
646 {
647 	if (nr) {
648 		return intel_pt_guest_kernel_ip(ip) ?
649 		       PERF_RECORD_MISC_GUEST_KERNEL :
650 		       PERF_RECORD_MISC_GUEST_USER;
651 	}
652 
653 	return ip >= ptq->pt->kernel_start ?
654 	       PERF_RECORD_MISC_KERNEL :
655 	       PERF_RECORD_MISC_USER;
656 }
657 
658 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
659 {
660 	/* No support for non-zero CS base */
661 	if (from_ip)
662 		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
663 	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
664 }
665 
666 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
667 {
668 	struct machines *machines = &ptq->pt->session->machines;
669 	struct machine *machine;
670 	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
671 
672 	if (ptq->guest_machine && pid == ptq->guest_machine_pid)
673 		return 0;
674 
675 	ptq->guest_machine = NULL;
676 	thread__zput(ptq->unknown_guest_thread);
677 
678 	machine = machines__find_guest(machines, pid);
679 	if (!machine)
680 		return -1;
681 
682 	ptq->unknown_guest_thread = machine__idle_thread(machine);
683 	if (!ptq->unknown_guest_thread)
684 		return -1;
685 
686 	ptq->guest_machine = machine;
687 	ptq->guest_machine_pid = pid;
688 
689 	return 0;
690 }
691 
692 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
693 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
694 				   uint64_t to_ip, uint64_t max_insn_cnt,
695 				   void *data)
696 {
697 	struct intel_pt_queue *ptq = data;
698 	struct machine *machine = ptq->pt->machine;
699 	struct thread *thread;
700 	struct addr_location al;
701 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
702 	ssize_t len;
703 	int x86_64;
704 	u8 cpumode;
705 	u64 offset, start_offset, start_ip;
706 	u64 insn_cnt = 0;
707 	bool one_map = true;
708 	bool nr;
709 
710 	intel_pt_insn->length = 0;
711 
712 	if (to_ip && *ip == to_ip)
713 		goto out_no_cache;
714 
715 	nr = ptq->state->to_nr;
716 	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
717 
718 	if (nr) {
719 		if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL ||
720 		    intel_pt_get_guest(ptq))
721 			return -EINVAL;
722 		machine = ptq->guest_machine;
723 		thread = ptq->unknown_guest_thread;
724 	} else {
725 		thread = ptq->thread;
726 		if (!thread) {
727 			if (cpumode != PERF_RECORD_MISC_KERNEL)
728 				return -EINVAL;
729 			thread = ptq->pt->unknown_thread;
730 		}
731 	}
732 
733 	while (1) {
734 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
735 			return -EINVAL;
736 
737 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
738 		    dso__data_status_seen(al.map->dso,
739 					  DSO_DATA_STATUS_SEEN_ITRACE))
740 			return -ENOENT;
741 
742 		offset = al.map->map_ip(al.map, *ip);
743 
744 		if (!to_ip && one_map) {
745 			struct intel_pt_cache_entry *e;
746 
747 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
748 			if (e &&
749 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
750 				*insn_cnt_ptr = e->insn_cnt;
751 				*ip += e->byte_cnt;
752 				intel_pt_insn->op = e->op;
753 				intel_pt_insn->branch = e->branch;
754 				intel_pt_insn->length = e->length;
755 				intel_pt_insn->rel = e->rel;
756 				memcpy(intel_pt_insn->buf, e->insn,
757 				       INTEL_PT_INSN_BUF_SZ);
758 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
759 				return 0;
760 			}
761 		}
762 
763 		start_offset = offset;
764 		start_ip = *ip;
765 
766 		/* Load maps to ensure dso->is_64_bit has been updated */
767 		map__load(al.map);
768 
769 		x86_64 = al.map->dso->is_64_bit;
770 
771 		while (1) {
772 			len = dso__data_read_offset(al.map->dso, machine,
773 						    offset, buf,
774 						    INTEL_PT_INSN_BUF_SZ);
775 			if (len <= 0)
776 				return -EINVAL;
777 
778 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
779 				return -EINVAL;
780 
781 			intel_pt_log_insn(intel_pt_insn, *ip);
782 
783 			insn_cnt += 1;
784 
785 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
786 				goto out;
787 
788 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
789 				goto out_no_cache;
790 
791 			*ip += intel_pt_insn->length;
792 
793 			if (to_ip && *ip == to_ip) {
794 				intel_pt_insn->length = 0;
795 				goto out_no_cache;
796 			}
797 
798 			if (*ip >= al.map->end)
799 				break;
800 
801 			offset += intel_pt_insn->length;
802 		}
803 		one_map = false;
804 	}
805 out:
806 	*insn_cnt_ptr = insn_cnt;
807 
808 	if (!one_map)
809 		goto out_no_cache;
810 
811 	/*
812 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
813 	 * entries.
814 	 */
815 	if (to_ip) {
816 		struct intel_pt_cache_entry *e;
817 
818 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
819 		if (e)
820 			return 0;
821 	}
822 
823 	/* Ignore cache errors */
824 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
825 			   *ip - start_ip, intel_pt_insn);
826 
827 	return 0;
828 
829 out_no_cache:
830 	*insn_cnt_ptr = insn_cnt;
831 	return 0;
832 }
833 
834 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
835 				  uint64_t offset, const char *filename)
836 {
837 	struct addr_filter *filt;
838 	bool have_filter   = false;
839 	bool hit_tracestop = false;
840 	bool hit_filter    = false;
841 
842 	list_for_each_entry(filt, &pt->filts.head, list) {
843 		if (filt->start)
844 			have_filter = true;
845 
846 		if ((filename && !filt->filename) ||
847 		    (!filename && filt->filename) ||
848 		    (filename && strcmp(filename, filt->filename)))
849 			continue;
850 
851 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
852 			continue;
853 
854 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
855 			     ip, offset, filename ? filename : "[kernel]",
856 			     filt->start ? "filter" : "stop",
857 			     filt->addr, filt->size);
858 
859 		if (filt->start)
860 			hit_filter = true;
861 		else
862 			hit_tracestop = true;
863 	}
864 
865 	if (!hit_tracestop && !hit_filter)
866 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
867 			     ip, offset, filename ? filename : "[kernel]");
868 
869 	return hit_tracestop || (have_filter && !hit_filter);
870 }
871 
872 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
873 {
874 	struct intel_pt_queue *ptq = data;
875 	struct thread *thread;
876 	struct addr_location al;
877 	u8 cpumode;
878 	u64 offset;
879 
880 	if (ptq->state->to_nr) {
881 		if (intel_pt_guest_kernel_ip(ip))
882 			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
883 		/* No support for decoding guest user space */
884 		return -EINVAL;
885 	} else if (ip >= ptq->pt->kernel_start) {
886 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
887 	}
888 
889 	cpumode = PERF_RECORD_MISC_USER;
890 
891 	thread = ptq->thread;
892 	if (!thread)
893 		return -EINVAL;
894 
895 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
896 		return -EINVAL;
897 
898 	offset = al.map->map_ip(al.map, ip);
899 
900 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
901 				     al.map->dso->long_name);
902 }
903 
904 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
905 {
906 	return __intel_pt_pgd_ip(ip, data) > 0;
907 }
908 
909 static bool intel_pt_get_config(struct intel_pt *pt,
910 				struct perf_event_attr *attr, u64 *config)
911 {
912 	if (attr->type == pt->pmu_type) {
913 		if (config)
914 			*config = attr->config;
915 		return true;
916 	}
917 
918 	return false;
919 }
920 
921 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
922 {
923 	struct evsel *evsel;
924 
925 	evlist__for_each_entry(pt->session->evlist, evsel) {
926 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
927 		    !evsel->core.attr.exclude_kernel)
928 			return false;
929 	}
930 	return true;
931 }
932 
933 static bool intel_pt_return_compression(struct intel_pt *pt)
934 {
935 	struct evsel *evsel;
936 	u64 config;
937 
938 	if (!pt->noretcomp_bit)
939 		return true;
940 
941 	evlist__for_each_entry(pt->session->evlist, evsel) {
942 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
943 		    (config & pt->noretcomp_bit))
944 			return false;
945 	}
946 	return true;
947 }
948 
949 static bool intel_pt_branch_enable(struct intel_pt *pt)
950 {
951 	struct evsel *evsel;
952 	u64 config;
953 
954 	evlist__for_each_entry(pt->session->evlist, evsel) {
955 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
956 		    (config & 1) && !(config & 0x2000))
957 			return false;
958 	}
959 	return true;
960 }
961 
962 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
963 {
964 	struct evsel *evsel;
965 	unsigned int shift;
966 	u64 config;
967 
968 	if (!pt->mtc_freq_bits)
969 		return 0;
970 
971 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
972 		config >>= 1;
973 
974 	evlist__for_each_entry(pt->session->evlist, evsel) {
975 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
976 			return (config & pt->mtc_freq_bits) >> shift;
977 	}
978 	return 0;
979 }
980 
981 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
982 {
983 	struct evsel *evsel;
984 	bool timeless_decoding = true;
985 	u64 config;
986 
987 	if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
988 		return true;
989 
990 	evlist__for_each_entry(pt->session->evlist, evsel) {
991 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
992 			return true;
993 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
994 			if (config & pt->tsc_bit)
995 				timeless_decoding = false;
996 			else
997 				return true;
998 		}
999 	}
1000 	return timeless_decoding;
1001 }
1002 
1003 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1004 {
1005 	struct evsel *evsel;
1006 
1007 	evlist__for_each_entry(pt->session->evlist, evsel) {
1008 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1009 		    !evsel->core.attr.exclude_kernel)
1010 			return true;
1011 	}
1012 	return false;
1013 }
1014 
1015 static bool intel_pt_have_tsc(struct intel_pt *pt)
1016 {
1017 	struct evsel *evsel;
1018 	bool have_tsc = false;
1019 	u64 config;
1020 
1021 	if (!pt->tsc_bit)
1022 		return false;
1023 
1024 	evlist__for_each_entry(pt->session->evlist, evsel) {
1025 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1026 			if (config & pt->tsc_bit)
1027 				have_tsc = true;
1028 			else
1029 				return false;
1030 		}
1031 	}
1032 	return have_tsc;
1033 }
1034 
1035 static bool intel_pt_have_mtc(struct intel_pt *pt)
1036 {
1037 	struct evsel *evsel;
1038 	u64 config;
1039 
1040 	evlist__for_each_entry(pt->session->evlist, evsel) {
1041 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1042 		    (config & pt->mtc_bit))
1043 			return true;
1044 	}
1045 	return false;
1046 }
1047 
1048 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1049 {
1050 	struct evsel *evsel;
1051 
1052 	evlist__for_each_entry(pt->session->evlist, evsel) {
1053 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1054 		    evsel->core.attr.aux_sample_size)
1055 			return true;
1056 	}
1057 	return false;
1058 }
1059 
1060 static u64 intel_pt_ctl(struct intel_pt *pt)
1061 {
1062 	struct evsel *evsel;
1063 	u64 config;
1064 
1065 	evlist__for_each_entry(pt->session->evlist, evsel) {
1066 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1067 			return config;
1068 	}
1069 	return 0;
1070 }
1071 
1072 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1073 {
1074 	u64 quot, rem;
1075 
1076 	quot = ns / pt->tc.time_mult;
1077 	rem  = ns % pt->tc.time_mult;
1078 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1079 		pt->tc.time_mult;
1080 }
1081 
1082 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1083 {
1084 	size_t sz = sizeof(struct ip_callchain);
1085 
1086 	/* Add 1 to callchain_sz for callchain context */
1087 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1088 	return zalloc(sz);
1089 }
1090 
1091 static int intel_pt_callchain_init(struct intel_pt *pt)
1092 {
1093 	struct evsel *evsel;
1094 
1095 	evlist__for_each_entry(pt->session->evlist, evsel) {
1096 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1097 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1098 	}
1099 
1100 	pt->chain = intel_pt_alloc_chain(pt);
1101 	if (!pt->chain)
1102 		return -ENOMEM;
1103 
1104 	return 0;
1105 }
1106 
1107 static void intel_pt_add_callchain(struct intel_pt *pt,
1108 				   struct perf_sample *sample)
1109 {
1110 	struct thread *thread = machine__findnew_thread(pt->machine,
1111 							sample->pid,
1112 							sample->tid);
1113 
1114 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1115 				  pt->synth_opts.callchain_sz + 1, sample->ip,
1116 				  pt->kernel_start);
1117 
1118 	sample->callchain = pt->chain;
1119 }
1120 
1121 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1122 {
1123 	size_t sz = sizeof(struct branch_stack);
1124 
1125 	sz += entry_cnt * sizeof(struct branch_entry);
1126 	return zalloc(sz);
1127 }
1128 
1129 static int intel_pt_br_stack_init(struct intel_pt *pt)
1130 {
1131 	struct evsel *evsel;
1132 
1133 	evlist__for_each_entry(pt->session->evlist, evsel) {
1134 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1135 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1136 	}
1137 
1138 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1139 	if (!pt->br_stack)
1140 		return -ENOMEM;
1141 
1142 	return 0;
1143 }
1144 
1145 static void intel_pt_add_br_stack(struct intel_pt *pt,
1146 				  struct perf_sample *sample)
1147 {
1148 	struct thread *thread = machine__findnew_thread(pt->machine,
1149 							sample->pid,
1150 							sample->tid);
1151 
1152 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1153 				     pt->br_stack_sz, sample->ip,
1154 				     pt->kernel_start);
1155 
1156 	sample->branch_stack = pt->br_stack;
1157 }
1158 
1159 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1160 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1161 
1162 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1163 						   unsigned int queue_nr)
1164 {
1165 	struct intel_pt_params params = { .get_trace = 0, };
1166 	struct perf_env *env = pt->machine->env;
1167 	struct intel_pt_queue *ptq;
1168 
1169 	ptq = zalloc(sizeof(struct intel_pt_queue));
1170 	if (!ptq)
1171 		return NULL;
1172 
1173 	if (pt->synth_opts.callchain) {
1174 		ptq->chain = intel_pt_alloc_chain(pt);
1175 		if (!ptq->chain)
1176 			goto out_free;
1177 	}
1178 
1179 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1180 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1181 
1182 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1183 		if (!ptq->last_branch)
1184 			goto out_free;
1185 	}
1186 
1187 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1188 	if (!ptq->event_buf)
1189 		goto out_free;
1190 
1191 	ptq->pt = pt;
1192 	ptq->queue_nr = queue_nr;
1193 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1194 	ptq->pid = -1;
1195 	ptq->tid = -1;
1196 	ptq->cpu = -1;
1197 	ptq->next_tid = -1;
1198 
1199 	params.get_trace = intel_pt_get_trace;
1200 	params.walk_insn = intel_pt_walk_next_insn;
1201 	params.lookahead = intel_pt_lookahead;
1202 	params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1203 	params.data = ptq;
1204 	params.return_compression = intel_pt_return_compression(pt);
1205 	params.branch_enable = intel_pt_branch_enable(pt);
1206 	params.ctl = intel_pt_ctl(pt);
1207 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1208 	params.mtc_period = intel_pt_mtc_period(pt);
1209 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1210 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1211 	params.quick = pt->synth_opts.quick;
1212 	params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1213 	params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1214 	params.first_timestamp = pt->first_timestamp;
1215 	params.max_loops = pt->max_loops;
1216 
1217 	if (pt->filts.cnt > 0)
1218 		params.pgd_ip = intel_pt_pgd_ip;
1219 
1220 	if (pt->synth_opts.instructions) {
1221 		if (pt->synth_opts.period) {
1222 			switch (pt->synth_opts.period_type) {
1223 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1224 				params.period_type =
1225 						INTEL_PT_PERIOD_INSTRUCTIONS;
1226 				params.period = pt->synth_opts.period;
1227 				break;
1228 			case PERF_ITRACE_PERIOD_TICKS:
1229 				params.period_type = INTEL_PT_PERIOD_TICKS;
1230 				params.period = pt->synth_opts.period;
1231 				break;
1232 			case PERF_ITRACE_PERIOD_NANOSECS:
1233 				params.period_type = INTEL_PT_PERIOD_TICKS;
1234 				params.period = intel_pt_ns_to_ticks(pt,
1235 							pt->synth_opts.period);
1236 				break;
1237 			default:
1238 				break;
1239 			}
1240 		}
1241 
1242 		if (!params.period) {
1243 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1244 			params.period = 1;
1245 		}
1246 	}
1247 
1248 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1249 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1250 
1251 	ptq->decoder = intel_pt_decoder_new(&params);
1252 	if (!ptq->decoder)
1253 		goto out_free;
1254 
1255 	return ptq;
1256 
1257 out_free:
1258 	zfree(&ptq->event_buf);
1259 	zfree(&ptq->last_branch);
1260 	zfree(&ptq->chain);
1261 	free(ptq);
1262 	return NULL;
1263 }
1264 
1265 static void intel_pt_free_queue(void *priv)
1266 {
1267 	struct intel_pt_queue *ptq = priv;
1268 
1269 	if (!ptq)
1270 		return;
1271 	thread__zput(ptq->thread);
1272 	thread__zput(ptq->unknown_guest_thread);
1273 	intel_pt_decoder_free(ptq->decoder);
1274 	zfree(&ptq->event_buf);
1275 	zfree(&ptq->last_branch);
1276 	zfree(&ptq->chain);
1277 	free(ptq);
1278 }
1279 
1280 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1281 {
1282 	unsigned int i;
1283 
1284 	pt->first_timestamp = timestamp;
1285 
1286 	for (i = 0; i < pt->queues.nr_queues; i++) {
1287 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1288 		struct intel_pt_queue *ptq = queue->priv;
1289 
1290 		if (ptq && ptq->decoder)
1291 			intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1292 	}
1293 }
1294 
1295 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1296 				     struct auxtrace_queue *queue)
1297 {
1298 	struct intel_pt_queue *ptq = queue->priv;
1299 
1300 	if (queue->tid == -1 || pt->have_sched_switch) {
1301 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1302 		if (ptq->tid == -1)
1303 			ptq->pid = -1;
1304 		thread__zput(ptq->thread);
1305 	}
1306 
1307 	if (!ptq->thread && ptq->tid != -1)
1308 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1309 
1310 	if (ptq->thread) {
1311 		ptq->pid = ptq->thread->pid_;
1312 		if (queue->cpu == -1)
1313 			ptq->cpu = ptq->thread->cpu;
1314 	}
1315 }
1316 
1317 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1318 {
1319 	ptq->insn_len = 0;
1320 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1321 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1322 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1323 		if (!ptq->state->to_ip)
1324 			ptq->flags = PERF_IP_FLAG_BRANCH |
1325 				     PERF_IP_FLAG_TRACE_END;
1326 		else if (ptq->state->from_nr && !ptq->state->to_nr)
1327 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1328 				     PERF_IP_FLAG_VMEXIT;
1329 		else
1330 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1331 				     PERF_IP_FLAG_ASYNC |
1332 				     PERF_IP_FLAG_INTERRUPT;
1333 	} else {
1334 		if (ptq->state->from_ip)
1335 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1336 		else
1337 			ptq->flags = PERF_IP_FLAG_BRANCH |
1338 				     PERF_IP_FLAG_TRACE_BEGIN;
1339 		if (ptq->state->flags & INTEL_PT_IN_TX)
1340 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1341 		ptq->insn_len = ptq->state->insn_len;
1342 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1343 	}
1344 
1345 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1346 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1347 	if (ptq->state->type & INTEL_PT_TRACE_END)
1348 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1349 }
1350 
1351 static void intel_pt_setup_time_range(struct intel_pt *pt,
1352 				      struct intel_pt_queue *ptq)
1353 {
1354 	if (!pt->range_cnt)
1355 		return;
1356 
1357 	ptq->sel_timestamp = pt->time_ranges[0].start;
1358 	ptq->sel_idx = 0;
1359 
1360 	if (ptq->sel_timestamp) {
1361 		ptq->sel_start = true;
1362 	} else {
1363 		ptq->sel_timestamp = pt->time_ranges[0].end;
1364 		ptq->sel_start = false;
1365 	}
1366 }
1367 
1368 static int intel_pt_setup_queue(struct intel_pt *pt,
1369 				struct auxtrace_queue *queue,
1370 				unsigned int queue_nr)
1371 {
1372 	struct intel_pt_queue *ptq = queue->priv;
1373 
1374 	if (list_empty(&queue->head))
1375 		return 0;
1376 
1377 	if (!ptq) {
1378 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1379 		if (!ptq)
1380 			return -ENOMEM;
1381 		queue->priv = ptq;
1382 
1383 		if (queue->cpu != -1)
1384 			ptq->cpu = queue->cpu;
1385 		ptq->tid = queue->tid;
1386 
1387 		ptq->cbr_seen = UINT_MAX;
1388 
1389 		if (pt->sampling_mode && !pt->snapshot_mode &&
1390 		    pt->timeless_decoding)
1391 			ptq->step_through_buffers = true;
1392 
1393 		ptq->sync_switch = pt->sync_switch;
1394 
1395 		intel_pt_setup_time_range(pt, ptq);
1396 	}
1397 
1398 	if (!ptq->on_heap &&
1399 	    (!ptq->sync_switch ||
1400 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1401 		const struct intel_pt_state *state;
1402 		int ret;
1403 
1404 		if (pt->timeless_decoding)
1405 			return 0;
1406 
1407 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1408 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1409 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1410 
1411 		if (ptq->sel_start && ptq->sel_timestamp) {
1412 			ret = intel_pt_fast_forward(ptq->decoder,
1413 						    ptq->sel_timestamp);
1414 			if (ret)
1415 				return ret;
1416 		}
1417 
1418 		while (1) {
1419 			state = intel_pt_decode(ptq->decoder);
1420 			if (state->err) {
1421 				if (state->err == INTEL_PT_ERR_NODATA) {
1422 					intel_pt_log("queue %u has no timestamp\n",
1423 						     queue_nr);
1424 					return 0;
1425 				}
1426 				continue;
1427 			}
1428 			if (state->timestamp)
1429 				break;
1430 		}
1431 
1432 		ptq->timestamp = state->timestamp;
1433 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1434 			     queue_nr, ptq->timestamp);
1435 		ptq->state = state;
1436 		ptq->have_sample = true;
1437 		if (ptq->sel_start && ptq->sel_timestamp &&
1438 		    ptq->timestamp < ptq->sel_timestamp)
1439 			ptq->have_sample = false;
1440 		intel_pt_sample_flags(ptq);
1441 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1442 		if (ret)
1443 			return ret;
1444 		ptq->on_heap = true;
1445 	}
1446 
1447 	return 0;
1448 }
1449 
1450 static int intel_pt_setup_queues(struct intel_pt *pt)
1451 {
1452 	unsigned int i;
1453 	int ret;
1454 
1455 	for (i = 0; i < pt->queues.nr_queues; i++) {
1456 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1457 		if (ret)
1458 			return ret;
1459 	}
1460 	return 0;
1461 }
1462 
1463 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1464 {
1465 	return pt->synth_opts.initial_skip &&
1466 	       pt->num_events++ < pt->synth_opts.initial_skip;
1467 }
1468 
1469 /*
1470  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1471  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1472  * from this decoder state.
1473  */
1474 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1475 {
1476 	return pt->synth_opts.initial_skip &&
1477 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1478 }
1479 
1480 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1481 				   union perf_event *event,
1482 				   struct perf_sample *sample)
1483 {
1484 	event->sample.header.type = PERF_RECORD_SAMPLE;
1485 	event->sample.header.size = sizeof(struct perf_event_header);
1486 
1487 	sample->pid = ptq->pid;
1488 	sample->tid = ptq->tid;
1489 	sample->cpu = ptq->cpu;
1490 	sample->insn_len = ptq->insn_len;
1491 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1492 }
1493 
1494 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1495 				   struct intel_pt_queue *ptq,
1496 				   union perf_event *event,
1497 				   struct perf_sample *sample)
1498 {
1499 	intel_pt_prep_a_sample(ptq, event, sample);
1500 
1501 	if (!pt->timeless_decoding)
1502 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1503 
1504 	sample->ip = ptq->state->from_ip;
1505 	sample->addr = ptq->state->to_ip;
1506 	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1507 	sample->period = 1;
1508 	sample->flags = ptq->flags;
1509 
1510 	event->sample.header.misc = sample->cpumode;
1511 }
1512 
1513 static int intel_pt_inject_event(union perf_event *event,
1514 				 struct perf_sample *sample, u64 type)
1515 {
1516 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1517 	return perf_event__synthesize_sample(event, type, 0, sample);
1518 }
1519 
1520 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1521 				      union perf_event *event,
1522 				      struct perf_sample *sample, u64 type)
1523 {
1524 	if (!pt->synth_opts.inject)
1525 		return 0;
1526 
1527 	return intel_pt_inject_event(event, sample, type);
1528 }
1529 
1530 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1531 					union perf_event *event,
1532 					struct perf_sample *sample, u64 type)
1533 {
1534 	int ret;
1535 
1536 	ret = intel_pt_opt_inject(pt, event, sample, type);
1537 	if (ret)
1538 		return ret;
1539 
1540 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1541 	if (ret)
1542 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1543 
1544 	return ret;
1545 }
1546 
1547 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1548 {
1549 	struct intel_pt *pt = ptq->pt;
1550 	union perf_event *event = ptq->event_buf;
1551 	struct perf_sample sample = { .ip = 0, };
1552 	struct dummy_branch_stack {
1553 		u64			nr;
1554 		u64			hw_idx;
1555 		struct branch_entry	entries;
1556 	} dummy_bs;
1557 
1558 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1559 		return 0;
1560 
1561 	if (intel_pt_skip_event(pt))
1562 		return 0;
1563 
1564 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1565 
1566 	sample.id = ptq->pt->branches_id;
1567 	sample.stream_id = ptq->pt->branches_id;
1568 
1569 	/*
1570 	 * perf report cannot handle events without a branch stack when using
1571 	 * SORT_MODE__BRANCH so make a dummy one.
1572 	 */
1573 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1574 		dummy_bs = (struct dummy_branch_stack){
1575 			.nr = 1,
1576 			.hw_idx = -1ULL,
1577 			.entries = {
1578 				.from = sample.ip,
1579 				.to = sample.addr,
1580 			},
1581 		};
1582 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1583 	}
1584 
1585 	if (ptq->sample_ipc)
1586 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1587 	if (sample.cyc_cnt) {
1588 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1589 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1590 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1591 	}
1592 
1593 	return intel_pt_deliver_synth_event(pt, event, &sample,
1594 					    pt->branches_sample_type);
1595 }
1596 
1597 static void intel_pt_prep_sample(struct intel_pt *pt,
1598 				 struct intel_pt_queue *ptq,
1599 				 union perf_event *event,
1600 				 struct perf_sample *sample)
1601 {
1602 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1603 
1604 	if (pt->synth_opts.callchain) {
1605 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1606 				     pt->synth_opts.callchain_sz + 1,
1607 				     sample->ip, pt->kernel_start);
1608 		sample->callchain = ptq->chain;
1609 	}
1610 
1611 	if (pt->synth_opts.last_branch) {
1612 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1613 					pt->br_stack_sz);
1614 		sample->branch_stack = ptq->last_branch;
1615 	}
1616 }
1617 
1618 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1619 {
1620 	struct intel_pt *pt = ptq->pt;
1621 	union perf_event *event = ptq->event_buf;
1622 	struct perf_sample sample = { .ip = 0, };
1623 
1624 	if (intel_pt_skip_event(pt))
1625 		return 0;
1626 
1627 	intel_pt_prep_sample(pt, ptq, event, &sample);
1628 
1629 	sample.id = ptq->pt->instructions_id;
1630 	sample.stream_id = ptq->pt->instructions_id;
1631 	if (pt->synth_opts.quick)
1632 		sample.period = 1;
1633 	else
1634 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1635 
1636 	if (ptq->sample_ipc)
1637 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1638 	if (sample.cyc_cnt) {
1639 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1640 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1641 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1642 	}
1643 
1644 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1645 
1646 	return intel_pt_deliver_synth_event(pt, event, &sample,
1647 					    pt->instructions_sample_type);
1648 }
1649 
1650 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1651 {
1652 	struct intel_pt *pt = ptq->pt;
1653 	union perf_event *event = ptq->event_buf;
1654 	struct perf_sample sample = { .ip = 0, };
1655 
1656 	if (intel_pt_skip_event(pt))
1657 		return 0;
1658 
1659 	intel_pt_prep_sample(pt, ptq, event, &sample);
1660 
1661 	sample.id = ptq->pt->transactions_id;
1662 	sample.stream_id = ptq->pt->transactions_id;
1663 
1664 	return intel_pt_deliver_synth_event(pt, event, &sample,
1665 					    pt->transactions_sample_type);
1666 }
1667 
1668 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1669 				   struct intel_pt_queue *ptq,
1670 				   union perf_event *event,
1671 				   struct perf_sample *sample)
1672 {
1673 	intel_pt_prep_sample(pt, ptq, event, sample);
1674 
1675 	/*
1676 	 * Zero IP is used to mean "trace start" but that is not the case for
1677 	 * power or PTWRITE events with no IP, so clear the flags.
1678 	 */
1679 	if (!sample->ip)
1680 		sample->flags = 0;
1681 }
1682 
1683 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1684 {
1685 	struct intel_pt *pt = ptq->pt;
1686 	union perf_event *event = ptq->event_buf;
1687 	struct perf_sample sample = { .ip = 0, };
1688 	struct perf_synth_intel_ptwrite raw;
1689 
1690 	if (intel_pt_skip_event(pt))
1691 		return 0;
1692 
1693 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1694 
1695 	sample.id = ptq->pt->ptwrites_id;
1696 	sample.stream_id = ptq->pt->ptwrites_id;
1697 
1698 	raw.flags = 0;
1699 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1700 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1701 
1702 	sample.raw_size = perf_synth__raw_size(raw);
1703 	sample.raw_data = perf_synth__raw_data(&raw);
1704 
1705 	return intel_pt_deliver_synth_event(pt, event, &sample,
1706 					    pt->ptwrites_sample_type);
1707 }
1708 
1709 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1710 {
1711 	struct intel_pt *pt = ptq->pt;
1712 	union perf_event *event = ptq->event_buf;
1713 	struct perf_sample sample = { .ip = 0, };
1714 	struct perf_synth_intel_cbr raw;
1715 	u32 flags;
1716 
1717 	if (intel_pt_skip_cbr_event(pt))
1718 		return 0;
1719 
1720 	ptq->cbr_seen = ptq->state->cbr;
1721 
1722 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1723 
1724 	sample.id = ptq->pt->cbr_id;
1725 	sample.stream_id = ptq->pt->cbr_id;
1726 
1727 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1728 	raw.flags = cpu_to_le32(flags);
1729 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1730 	raw.reserved3 = 0;
1731 
1732 	sample.raw_size = perf_synth__raw_size(raw);
1733 	sample.raw_data = perf_synth__raw_data(&raw);
1734 
1735 	return intel_pt_deliver_synth_event(pt, event, &sample,
1736 					    pt->pwr_events_sample_type);
1737 }
1738 
1739 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1740 {
1741 	struct intel_pt *pt = ptq->pt;
1742 	union perf_event *event = ptq->event_buf;
1743 	struct perf_sample sample = { .ip = 0, };
1744 	struct perf_synth_intel_psb raw;
1745 
1746 	if (intel_pt_skip_event(pt))
1747 		return 0;
1748 
1749 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1750 
1751 	sample.id = ptq->pt->psb_id;
1752 	sample.stream_id = ptq->pt->psb_id;
1753 	sample.flags = 0;
1754 
1755 	raw.reserved = 0;
1756 	raw.offset = ptq->state->psb_offset;
1757 
1758 	sample.raw_size = perf_synth__raw_size(raw);
1759 	sample.raw_data = perf_synth__raw_data(&raw);
1760 
1761 	return intel_pt_deliver_synth_event(pt, event, &sample,
1762 					    pt->pwr_events_sample_type);
1763 }
1764 
1765 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1766 {
1767 	struct intel_pt *pt = ptq->pt;
1768 	union perf_event *event = ptq->event_buf;
1769 	struct perf_sample sample = { .ip = 0, };
1770 	struct perf_synth_intel_mwait raw;
1771 
1772 	if (intel_pt_skip_event(pt))
1773 		return 0;
1774 
1775 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1776 
1777 	sample.id = ptq->pt->mwait_id;
1778 	sample.stream_id = ptq->pt->mwait_id;
1779 
1780 	raw.reserved = 0;
1781 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1782 
1783 	sample.raw_size = perf_synth__raw_size(raw);
1784 	sample.raw_data = perf_synth__raw_data(&raw);
1785 
1786 	return intel_pt_deliver_synth_event(pt, event, &sample,
1787 					    pt->pwr_events_sample_type);
1788 }
1789 
1790 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1791 {
1792 	struct intel_pt *pt = ptq->pt;
1793 	union perf_event *event = ptq->event_buf;
1794 	struct perf_sample sample = { .ip = 0, };
1795 	struct perf_synth_intel_pwre raw;
1796 
1797 	if (intel_pt_skip_event(pt))
1798 		return 0;
1799 
1800 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1801 
1802 	sample.id = ptq->pt->pwre_id;
1803 	sample.stream_id = ptq->pt->pwre_id;
1804 
1805 	raw.reserved = 0;
1806 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1807 
1808 	sample.raw_size = perf_synth__raw_size(raw);
1809 	sample.raw_data = perf_synth__raw_data(&raw);
1810 
1811 	return intel_pt_deliver_synth_event(pt, event, &sample,
1812 					    pt->pwr_events_sample_type);
1813 }
1814 
1815 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1816 {
1817 	struct intel_pt *pt = ptq->pt;
1818 	union perf_event *event = ptq->event_buf;
1819 	struct perf_sample sample = { .ip = 0, };
1820 	struct perf_synth_intel_exstop raw;
1821 
1822 	if (intel_pt_skip_event(pt))
1823 		return 0;
1824 
1825 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1826 
1827 	sample.id = ptq->pt->exstop_id;
1828 	sample.stream_id = ptq->pt->exstop_id;
1829 
1830 	raw.flags = 0;
1831 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1832 
1833 	sample.raw_size = perf_synth__raw_size(raw);
1834 	sample.raw_data = perf_synth__raw_data(&raw);
1835 
1836 	return intel_pt_deliver_synth_event(pt, event, &sample,
1837 					    pt->pwr_events_sample_type);
1838 }
1839 
1840 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1841 {
1842 	struct intel_pt *pt = ptq->pt;
1843 	union perf_event *event = ptq->event_buf;
1844 	struct perf_sample sample = { .ip = 0, };
1845 	struct perf_synth_intel_pwrx raw;
1846 
1847 	if (intel_pt_skip_event(pt))
1848 		return 0;
1849 
1850 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1851 
1852 	sample.id = ptq->pt->pwrx_id;
1853 	sample.stream_id = ptq->pt->pwrx_id;
1854 
1855 	raw.reserved = 0;
1856 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1857 
1858 	sample.raw_size = perf_synth__raw_size(raw);
1859 	sample.raw_data = perf_synth__raw_data(&raw);
1860 
1861 	return intel_pt_deliver_synth_event(pt, event, &sample,
1862 					    pt->pwr_events_sample_type);
1863 }
1864 
1865 /*
1866  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1867  * intel_pt_add_gp_regs().
1868  */
1869 static const int pebs_gp_regs[] = {
1870 	[PERF_REG_X86_FLAGS]	= 1,
1871 	[PERF_REG_X86_IP]	= 2,
1872 	[PERF_REG_X86_AX]	= 3,
1873 	[PERF_REG_X86_CX]	= 4,
1874 	[PERF_REG_X86_DX]	= 5,
1875 	[PERF_REG_X86_BX]	= 6,
1876 	[PERF_REG_X86_SP]	= 7,
1877 	[PERF_REG_X86_BP]	= 8,
1878 	[PERF_REG_X86_SI]	= 9,
1879 	[PERF_REG_X86_DI]	= 10,
1880 	[PERF_REG_X86_R8]	= 11,
1881 	[PERF_REG_X86_R9]	= 12,
1882 	[PERF_REG_X86_R10]	= 13,
1883 	[PERF_REG_X86_R11]	= 14,
1884 	[PERF_REG_X86_R12]	= 15,
1885 	[PERF_REG_X86_R13]	= 16,
1886 	[PERF_REG_X86_R14]	= 17,
1887 	[PERF_REG_X86_R15]	= 18,
1888 };
1889 
1890 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1891 				 const struct intel_pt_blk_items *items,
1892 				 u64 regs_mask)
1893 {
1894 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1895 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1896 	u32 bit;
1897 	int i;
1898 
1899 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1900 		/* Get the PEBS gp_regs array index */
1901 		int n = pebs_gp_regs[i] - 1;
1902 
1903 		if (n < 0)
1904 			continue;
1905 		/*
1906 		 * Add only registers that were requested (i.e. 'regs_mask') and
1907 		 * that were provided (i.e. 'mask'), and update the resulting
1908 		 * mask (i.e. 'intr_regs->mask') accordingly.
1909 		 */
1910 		if (mask & 1 << n && regs_mask & bit) {
1911 			intr_regs->mask |= bit;
1912 			*pos++ = gp_regs[n];
1913 		}
1914 	}
1915 
1916 	return pos;
1917 }
1918 
1919 #ifndef PERF_REG_X86_XMM0
1920 #define PERF_REG_X86_XMM0 32
1921 #endif
1922 
1923 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1924 			     const struct intel_pt_blk_items *items,
1925 			     u64 regs_mask)
1926 {
1927 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1928 	const u64 *xmm = items->xmm;
1929 
1930 	/*
1931 	 * If there are any XMM registers, then there should be all of them.
1932 	 * Nevertheless, follow the logic to add only registers that were
1933 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1934 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1935 	 */
1936 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1937 
1938 	for (; mask; mask >>= 1, xmm++) {
1939 		if (mask & 1)
1940 			*pos++ = *xmm;
1941 	}
1942 }
1943 
1944 #define LBR_INFO_MISPRED	(1ULL << 63)
1945 #define LBR_INFO_IN_TX		(1ULL << 62)
1946 #define LBR_INFO_ABORT		(1ULL << 61)
1947 #define LBR_INFO_CYCLES		0xffff
1948 
1949 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1950 static u64 intel_pt_lbr_flags(u64 info)
1951 {
1952 	union {
1953 		struct branch_flags flags;
1954 		u64 result;
1955 	} u;
1956 
1957 	u.result	  = 0;
1958 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
1959 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
1960 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
1961 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
1962 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
1963 
1964 	return u.result;
1965 }
1966 
1967 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1968 			      const struct intel_pt_blk_items *items)
1969 {
1970 	u64 *to;
1971 	int i;
1972 
1973 	br_stack->nr = 0;
1974 
1975 	to = &br_stack->entries[0].from;
1976 
1977 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1978 		u32 mask = items->mask[i];
1979 		const u64 *from = items->val[i];
1980 
1981 		for (; mask; mask >>= 3, from += 3) {
1982 			if ((mask & 7) == 7) {
1983 				*to++ = from[0];
1984 				*to++ = from[1];
1985 				*to++ = intel_pt_lbr_flags(from[2]);
1986 				br_stack->nr += 1;
1987 			}
1988 		}
1989 	}
1990 }
1991 
1992 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
1993 {
1994 	const struct intel_pt_blk_items *items = &ptq->state->items;
1995 	struct perf_sample sample = { .ip = 0, };
1996 	union perf_event *event = ptq->event_buf;
1997 	struct intel_pt *pt = ptq->pt;
1998 	u64 sample_type = evsel->core.attr.sample_type;
1999 	u8 cpumode;
2000 	u64 regs[8 * sizeof(sample.intr_regs.mask)];
2001 
2002 	if (intel_pt_skip_event(pt))
2003 		return 0;
2004 
2005 	intel_pt_prep_a_sample(ptq, event, &sample);
2006 
2007 	sample.id = id;
2008 	sample.stream_id = id;
2009 
2010 	if (!evsel->core.attr.freq)
2011 		sample.period = evsel->core.attr.sample_period;
2012 
2013 	/* No support for non-zero CS base */
2014 	if (items->has_ip)
2015 		sample.ip = items->ip;
2016 	else if (items->has_rip)
2017 		sample.ip = items->rip;
2018 	else
2019 		sample.ip = ptq->state->from_ip;
2020 
2021 	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2022 
2023 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2024 
2025 	sample.cpumode = cpumode;
2026 
2027 	if (sample_type & PERF_SAMPLE_TIME) {
2028 		u64 timestamp = 0;
2029 
2030 		if (items->has_timestamp)
2031 			timestamp = items->timestamp;
2032 		else if (!pt->timeless_decoding)
2033 			timestamp = ptq->timestamp;
2034 		if (timestamp)
2035 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2036 	}
2037 
2038 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2039 	    pt->synth_opts.callchain) {
2040 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2041 				     pt->synth_opts.callchain_sz, sample.ip,
2042 				     pt->kernel_start);
2043 		sample.callchain = ptq->chain;
2044 	}
2045 
2046 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
2047 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
2048 	     items->mask[INTEL_PT_XMM_POS])) {
2049 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
2050 		u64 *pos;
2051 
2052 		sample.intr_regs.abi = items->is_32_bit ?
2053 				       PERF_SAMPLE_REGS_ABI_32 :
2054 				       PERF_SAMPLE_REGS_ABI_64;
2055 		sample.intr_regs.regs = regs;
2056 
2057 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2058 
2059 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2060 	}
2061 
2062 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2063 		if (items->mask[INTEL_PT_LBR_0_POS] ||
2064 		    items->mask[INTEL_PT_LBR_1_POS] ||
2065 		    items->mask[INTEL_PT_LBR_2_POS]) {
2066 			intel_pt_add_lbrs(ptq->last_branch, items);
2067 		} else if (pt->synth_opts.last_branch) {
2068 			thread_stack__br_sample(ptq->thread, ptq->cpu,
2069 						ptq->last_branch,
2070 						pt->br_stack_sz);
2071 		} else {
2072 			ptq->last_branch->nr = 0;
2073 		}
2074 		sample.branch_stack = ptq->last_branch;
2075 	}
2076 
2077 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2078 		sample.addr = items->mem_access_address;
2079 
2080 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2081 		/*
2082 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
2083 		 * intel_hsw_weight().
2084 		 */
2085 		if (items->has_mem_access_latency) {
2086 			u64 weight = items->mem_access_latency >> 32;
2087 
2088 			/*
2089 			 * Starts from SPR, the mem access latency field
2090 			 * contains both cache latency [47:32] and instruction
2091 			 * latency [15:0]. The cache latency is the same as the
2092 			 * mem access latency on previous platforms.
2093 			 *
2094 			 * In practice, no memory access could last than 4G
2095 			 * cycles. Use latency >> 32 to distinguish the
2096 			 * different format of the mem access latency field.
2097 			 */
2098 			if (weight > 0) {
2099 				sample.weight = weight & 0xffff;
2100 				sample.ins_lat = items->mem_access_latency & 0xffff;
2101 			} else
2102 				sample.weight = items->mem_access_latency;
2103 		}
2104 		if (!sample.weight && items->has_tsx_aux_info) {
2105 			/* Cycles last block */
2106 			sample.weight = (u32)items->tsx_aux_info;
2107 		}
2108 	}
2109 
2110 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2111 		u64 ax = items->has_rax ? items->rax : 0;
2112 		/* Refer kernel's intel_hsw_transaction() */
2113 		u64 txn = (u8)(items->tsx_aux_info >> 32);
2114 
2115 		/* For RTM XABORTs also log the abort code from AX */
2116 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2117 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2118 		sample.transaction = txn;
2119 	}
2120 
2121 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2122 }
2123 
2124 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2125 {
2126 	struct intel_pt *pt = ptq->pt;
2127 	struct evsel *evsel = pt->pebs_evsel;
2128 	u64 id = evsel->core.id[0];
2129 
2130 	return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2131 }
2132 
2133 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2134 {
2135 	const struct intel_pt_blk_items *items = &ptq->state->items;
2136 	struct intel_pt_pebs_event *pe;
2137 	struct intel_pt *pt = ptq->pt;
2138 	int err = -EINVAL;
2139 	int hw_id;
2140 
2141 	if (!items->has_applicable_counters || !items->applicable_counters) {
2142 		if (!pt->single_pebs)
2143 			pr_err("PEBS-via-PT record with no applicable_counters\n");
2144 		return intel_pt_synth_single_pebs_sample(ptq);
2145 	}
2146 
2147 	for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2148 		pe = &ptq->pebs[hw_id];
2149 		if (!pe->evsel) {
2150 			if (!pt->single_pebs)
2151 				pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2152 				       hw_id);
2153 			return intel_pt_synth_single_pebs_sample(ptq);
2154 		}
2155 		err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2156 		if (err)
2157 			return err;
2158 	}
2159 
2160 	return err;
2161 }
2162 
2163 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2164 				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
2165 {
2166 	union perf_event event;
2167 	char msg[MAX_AUXTRACE_ERROR_MSG];
2168 	int err;
2169 
2170 	if (pt->synth_opts.error_minus_flags) {
2171 		if (code == INTEL_PT_ERR_OVR &&
2172 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2173 			return 0;
2174 		if (code == INTEL_PT_ERR_LOST &&
2175 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2176 			return 0;
2177 	}
2178 
2179 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2180 
2181 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2182 			     code, cpu, pid, tid, ip, msg, timestamp);
2183 
2184 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2185 	if (err)
2186 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2187 		       err);
2188 
2189 	return err;
2190 }
2191 
2192 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2193 				 const struct intel_pt_state *state)
2194 {
2195 	struct intel_pt *pt = ptq->pt;
2196 	u64 tm = ptq->timestamp;
2197 
2198 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2199 
2200 	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
2201 				    ptq->tid, state->from_ip, tm);
2202 }
2203 
2204 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2205 {
2206 	struct auxtrace_queue *queue;
2207 	pid_t tid = ptq->next_tid;
2208 	int err;
2209 
2210 	if (tid == -1)
2211 		return 0;
2212 
2213 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2214 
2215 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2216 
2217 	queue = &pt->queues.queue_array[ptq->queue_nr];
2218 	intel_pt_set_pid_tid_cpu(pt, queue);
2219 
2220 	ptq->next_tid = -1;
2221 
2222 	return err;
2223 }
2224 
2225 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2226 {
2227 	struct intel_pt *pt = ptq->pt;
2228 
2229 	return ip == pt->switch_ip &&
2230 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2231 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2232 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2233 }
2234 
2235 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2236 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2237 
2238 static int intel_pt_sample(struct intel_pt_queue *ptq)
2239 {
2240 	const struct intel_pt_state *state = ptq->state;
2241 	struct intel_pt *pt = ptq->pt;
2242 	int err;
2243 
2244 	if (!ptq->have_sample)
2245 		return 0;
2246 
2247 	ptq->have_sample = false;
2248 
2249 	if (pt->synth_opts.approx_ipc) {
2250 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2251 		ptq->ipc_cyc_cnt = ptq->state->cycles;
2252 		ptq->sample_ipc = true;
2253 	} else {
2254 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2255 		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2256 		ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2257 	}
2258 
2259 	/*
2260 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2261 	 * precedes the current timestamp.
2262 	 */
2263 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2264 		err = intel_pt_synth_pebs_sample(ptq);
2265 		if (err)
2266 			return err;
2267 	}
2268 
2269 	if (pt->sample_pwr_events) {
2270 		if (state->type & INTEL_PT_PSB_EVT) {
2271 			err = intel_pt_synth_psb_sample(ptq);
2272 			if (err)
2273 				return err;
2274 		}
2275 		if (ptq->state->cbr != ptq->cbr_seen) {
2276 			err = intel_pt_synth_cbr_sample(ptq);
2277 			if (err)
2278 				return err;
2279 		}
2280 		if (state->type & INTEL_PT_PWR_EVT) {
2281 			if (state->type & INTEL_PT_MWAIT_OP) {
2282 				err = intel_pt_synth_mwait_sample(ptq);
2283 				if (err)
2284 					return err;
2285 			}
2286 			if (state->type & INTEL_PT_PWR_ENTRY) {
2287 				err = intel_pt_synth_pwre_sample(ptq);
2288 				if (err)
2289 					return err;
2290 			}
2291 			if (state->type & INTEL_PT_EX_STOP) {
2292 				err = intel_pt_synth_exstop_sample(ptq);
2293 				if (err)
2294 					return err;
2295 			}
2296 			if (state->type & INTEL_PT_PWR_EXIT) {
2297 				err = intel_pt_synth_pwrx_sample(ptq);
2298 				if (err)
2299 					return err;
2300 			}
2301 		}
2302 	}
2303 
2304 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2305 		err = intel_pt_synth_instruction_sample(ptq);
2306 		if (err)
2307 			return err;
2308 	}
2309 
2310 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2311 		err = intel_pt_synth_transaction_sample(ptq);
2312 		if (err)
2313 			return err;
2314 	}
2315 
2316 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2317 		err = intel_pt_synth_ptwrite_sample(ptq);
2318 		if (err)
2319 			return err;
2320 	}
2321 
2322 	if (!(state->type & INTEL_PT_BRANCH))
2323 		return 0;
2324 
2325 	if (pt->use_thread_stack) {
2326 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2327 				    state->from_ip, state->to_ip, ptq->insn_len,
2328 				    state->trace_nr, pt->callstack,
2329 				    pt->br_stack_sz_plus,
2330 				    pt->mispred_all);
2331 	} else {
2332 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2333 	}
2334 
2335 	if (pt->sample_branches) {
2336 		if (state->from_nr != state->to_nr &&
2337 		    state->from_ip && state->to_ip) {
2338 			struct intel_pt_state *st = (struct intel_pt_state *)state;
2339 			u64 to_ip = st->to_ip;
2340 			u64 from_ip = st->from_ip;
2341 
2342 			/*
2343 			 * perf cannot handle having different machines for ip
2344 			 * and addr, so create 2 branches.
2345 			 */
2346 			st->to_ip = 0;
2347 			err = intel_pt_synth_branch_sample(ptq);
2348 			if (err)
2349 				return err;
2350 			st->from_ip = 0;
2351 			st->to_ip = to_ip;
2352 			err = intel_pt_synth_branch_sample(ptq);
2353 			st->from_ip = from_ip;
2354 		} else {
2355 			err = intel_pt_synth_branch_sample(ptq);
2356 		}
2357 		if (err)
2358 			return err;
2359 	}
2360 
2361 	if (!ptq->sync_switch)
2362 		return 0;
2363 
2364 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2365 		switch (ptq->switch_state) {
2366 		case INTEL_PT_SS_NOT_TRACING:
2367 		case INTEL_PT_SS_UNKNOWN:
2368 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2369 			err = intel_pt_next_tid(pt, ptq);
2370 			if (err)
2371 				return err;
2372 			ptq->switch_state = INTEL_PT_SS_TRACING;
2373 			break;
2374 		default:
2375 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2376 			return 1;
2377 		}
2378 	} else if (!state->to_ip) {
2379 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2380 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2381 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2382 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2383 		   state->to_ip == pt->ptss_ip &&
2384 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2385 		ptq->switch_state = INTEL_PT_SS_TRACING;
2386 	}
2387 
2388 	return 0;
2389 }
2390 
2391 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2392 {
2393 	struct machine *machine = pt->machine;
2394 	struct map *map;
2395 	struct symbol *sym, *start;
2396 	u64 ip, switch_ip = 0;
2397 	const char *ptss;
2398 
2399 	if (ptss_ip)
2400 		*ptss_ip = 0;
2401 
2402 	map = machine__kernel_map(machine);
2403 	if (!map)
2404 		return 0;
2405 
2406 	if (map__load(map))
2407 		return 0;
2408 
2409 	start = dso__first_symbol(map->dso);
2410 
2411 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2412 		if (sym->binding == STB_GLOBAL &&
2413 		    !strcmp(sym->name, "__switch_to")) {
2414 			ip = map->unmap_ip(map, sym->start);
2415 			if (ip >= map->start && ip < map->end) {
2416 				switch_ip = ip;
2417 				break;
2418 			}
2419 		}
2420 	}
2421 
2422 	if (!switch_ip || !ptss_ip)
2423 		return 0;
2424 
2425 	if (pt->have_sched_switch == 1)
2426 		ptss = "perf_trace_sched_switch";
2427 	else
2428 		ptss = "__perf_event_task_sched_out";
2429 
2430 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2431 		if (!strcmp(sym->name, ptss)) {
2432 			ip = map->unmap_ip(map, sym->start);
2433 			if (ip >= map->start && ip < map->end) {
2434 				*ptss_ip = ip;
2435 				break;
2436 			}
2437 		}
2438 	}
2439 
2440 	return switch_ip;
2441 }
2442 
2443 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2444 {
2445 	unsigned int i;
2446 
2447 	pt->sync_switch = true;
2448 
2449 	for (i = 0; i < pt->queues.nr_queues; i++) {
2450 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2451 		struct intel_pt_queue *ptq = queue->priv;
2452 
2453 		if (ptq)
2454 			ptq->sync_switch = true;
2455 	}
2456 }
2457 
2458 /*
2459  * To filter against time ranges, it is only necessary to look at the next start
2460  * or end time.
2461  */
2462 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2463 {
2464 	struct intel_pt *pt = ptq->pt;
2465 
2466 	if (ptq->sel_start) {
2467 		/* Next time is an end time */
2468 		ptq->sel_start = false;
2469 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2470 		return true;
2471 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2472 		/* Next time is a start time */
2473 		ptq->sel_start = true;
2474 		ptq->sel_idx += 1;
2475 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2476 		return true;
2477 	}
2478 
2479 	/* No next time */
2480 	return false;
2481 }
2482 
2483 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2484 {
2485 	int err;
2486 
2487 	while (1) {
2488 		if (ptq->sel_start) {
2489 			if (ptq->timestamp >= ptq->sel_timestamp) {
2490 				/* After start time, so consider next time */
2491 				intel_pt_next_time(ptq);
2492 				if (!ptq->sel_timestamp) {
2493 					/* No end time */
2494 					return 0;
2495 				}
2496 				/* Check against end time */
2497 				continue;
2498 			}
2499 			/* Before start time, so fast forward */
2500 			ptq->have_sample = false;
2501 			if (ptq->sel_timestamp > *ff_timestamp) {
2502 				if (ptq->sync_switch) {
2503 					intel_pt_next_tid(ptq->pt, ptq);
2504 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2505 				}
2506 				*ff_timestamp = ptq->sel_timestamp;
2507 				err = intel_pt_fast_forward(ptq->decoder,
2508 							    ptq->sel_timestamp);
2509 				if (err)
2510 					return err;
2511 			}
2512 			return 0;
2513 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2514 			/* After end time, so consider next time */
2515 			if (!intel_pt_next_time(ptq)) {
2516 				/* No next time range, so stop decoding */
2517 				ptq->have_sample = false;
2518 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2519 				return 1;
2520 			}
2521 			/* Check against next start time */
2522 			continue;
2523 		} else {
2524 			/* Before end time */
2525 			return 0;
2526 		}
2527 	}
2528 }
2529 
2530 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2531 {
2532 	const struct intel_pt_state *state = ptq->state;
2533 	struct intel_pt *pt = ptq->pt;
2534 	u64 ff_timestamp = 0;
2535 	int err;
2536 
2537 	if (!pt->kernel_start) {
2538 		pt->kernel_start = machine__kernel_start(pt->machine);
2539 		if (pt->per_cpu_mmaps &&
2540 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2541 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2542 		    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2543 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2544 			if (pt->switch_ip) {
2545 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2546 					     pt->switch_ip, pt->ptss_ip);
2547 				intel_pt_enable_sync_switch(pt);
2548 			}
2549 		}
2550 	}
2551 
2552 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2553 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2554 	while (1) {
2555 		err = intel_pt_sample(ptq);
2556 		if (err)
2557 			return err;
2558 
2559 		state = intel_pt_decode(ptq->decoder);
2560 		if (state->err) {
2561 			if (state->err == INTEL_PT_ERR_NODATA)
2562 				return 1;
2563 			if (ptq->sync_switch &&
2564 			    state->from_ip >= pt->kernel_start) {
2565 				ptq->sync_switch = false;
2566 				intel_pt_next_tid(pt, ptq);
2567 			}
2568 			if (pt->synth_opts.errors) {
2569 				err = intel_ptq_synth_error(ptq, state);
2570 				if (err)
2571 					return err;
2572 			}
2573 			continue;
2574 		}
2575 
2576 		ptq->state = state;
2577 		ptq->have_sample = true;
2578 		intel_pt_sample_flags(ptq);
2579 
2580 		/* Use estimated TSC upon return to user space */
2581 		if (pt->est_tsc &&
2582 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2583 		    state->to_ip && state->to_ip < pt->kernel_start) {
2584 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2585 				     state->timestamp, state->est_timestamp);
2586 			ptq->timestamp = state->est_timestamp;
2587 		/* Use estimated TSC in unknown switch state */
2588 		} else if (ptq->sync_switch &&
2589 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2590 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2591 			   ptq->next_tid == -1) {
2592 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2593 				     state->timestamp, state->est_timestamp);
2594 			ptq->timestamp = state->est_timestamp;
2595 		} else if (state->timestamp > ptq->timestamp) {
2596 			ptq->timestamp = state->timestamp;
2597 		}
2598 
2599 		if (ptq->sel_timestamp) {
2600 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2601 			if (err)
2602 				return err;
2603 		}
2604 
2605 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2606 			*timestamp = ptq->timestamp;
2607 			return 0;
2608 		}
2609 	}
2610 	return 0;
2611 }
2612 
2613 static inline int intel_pt_update_queues(struct intel_pt *pt)
2614 {
2615 	if (pt->queues.new_data) {
2616 		pt->queues.new_data = false;
2617 		return intel_pt_setup_queues(pt);
2618 	}
2619 	return 0;
2620 }
2621 
2622 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2623 {
2624 	unsigned int queue_nr;
2625 	u64 ts;
2626 	int ret;
2627 
2628 	while (1) {
2629 		struct auxtrace_queue *queue;
2630 		struct intel_pt_queue *ptq;
2631 
2632 		if (!pt->heap.heap_cnt)
2633 			return 0;
2634 
2635 		if (pt->heap.heap_array[0].ordinal >= timestamp)
2636 			return 0;
2637 
2638 		queue_nr = pt->heap.heap_array[0].queue_nr;
2639 		queue = &pt->queues.queue_array[queue_nr];
2640 		ptq = queue->priv;
2641 
2642 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2643 			     queue_nr, pt->heap.heap_array[0].ordinal,
2644 			     timestamp);
2645 
2646 		auxtrace_heap__pop(&pt->heap);
2647 
2648 		if (pt->heap.heap_cnt) {
2649 			ts = pt->heap.heap_array[0].ordinal + 1;
2650 			if (ts > timestamp)
2651 				ts = timestamp;
2652 		} else {
2653 			ts = timestamp;
2654 		}
2655 
2656 		intel_pt_set_pid_tid_cpu(pt, queue);
2657 
2658 		ret = intel_pt_run_decoder(ptq, &ts);
2659 
2660 		if (ret < 0) {
2661 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2662 			return ret;
2663 		}
2664 
2665 		if (!ret) {
2666 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2667 			if (ret < 0)
2668 				return ret;
2669 		} else {
2670 			ptq->on_heap = false;
2671 		}
2672 	}
2673 
2674 	return 0;
2675 }
2676 
2677 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2678 					    u64 time_)
2679 {
2680 	struct auxtrace_queues *queues = &pt->queues;
2681 	unsigned int i;
2682 	u64 ts = 0;
2683 
2684 	for (i = 0; i < queues->nr_queues; i++) {
2685 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2686 		struct intel_pt_queue *ptq = queue->priv;
2687 
2688 		if (ptq && (tid == -1 || ptq->tid == tid)) {
2689 			ptq->time = time_;
2690 			intel_pt_set_pid_tid_cpu(pt, queue);
2691 			intel_pt_run_decoder(ptq, &ts);
2692 		}
2693 	}
2694 	return 0;
2695 }
2696 
2697 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2698 					    struct auxtrace_queue *queue,
2699 					    struct perf_sample *sample)
2700 {
2701 	struct machine *m = ptq->pt->machine;
2702 
2703 	ptq->pid = sample->pid;
2704 	ptq->tid = sample->tid;
2705 	ptq->cpu = queue->cpu;
2706 
2707 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2708 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2709 
2710 	thread__zput(ptq->thread);
2711 
2712 	if (ptq->tid == -1)
2713 		return;
2714 
2715 	if (ptq->pid == -1) {
2716 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
2717 		if (ptq->thread)
2718 			ptq->pid = ptq->thread->pid_;
2719 		return;
2720 	}
2721 
2722 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2723 }
2724 
2725 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2726 					    struct perf_sample *sample)
2727 {
2728 	struct auxtrace_queue *queue;
2729 	struct intel_pt_queue *ptq;
2730 	u64 ts = 0;
2731 
2732 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2733 	if (!queue)
2734 		return -EINVAL;
2735 
2736 	ptq = queue->priv;
2737 	if (!ptq)
2738 		return 0;
2739 
2740 	ptq->stop = false;
2741 	ptq->time = sample->time;
2742 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2743 	intel_pt_run_decoder(ptq, &ts);
2744 	return 0;
2745 }
2746 
2747 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2748 {
2749 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2750 				    sample->pid, sample->tid, 0, sample->time);
2751 }
2752 
2753 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2754 {
2755 	unsigned i, j;
2756 
2757 	if (cpu < 0 || !pt->queues.nr_queues)
2758 		return NULL;
2759 
2760 	if ((unsigned)cpu >= pt->queues.nr_queues)
2761 		i = pt->queues.nr_queues - 1;
2762 	else
2763 		i = cpu;
2764 
2765 	if (pt->queues.queue_array[i].cpu == cpu)
2766 		return pt->queues.queue_array[i].priv;
2767 
2768 	for (j = 0; i > 0; j++) {
2769 		if (pt->queues.queue_array[--i].cpu == cpu)
2770 			return pt->queues.queue_array[i].priv;
2771 	}
2772 
2773 	for (; j < pt->queues.nr_queues; j++) {
2774 		if (pt->queues.queue_array[j].cpu == cpu)
2775 			return pt->queues.queue_array[j].priv;
2776 	}
2777 
2778 	return NULL;
2779 }
2780 
2781 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2782 				u64 timestamp)
2783 {
2784 	struct intel_pt_queue *ptq;
2785 	int err;
2786 
2787 	if (!pt->sync_switch)
2788 		return 1;
2789 
2790 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2791 	if (!ptq || !ptq->sync_switch)
2792 		return 1;
2793 
2794 	switch (ptq->switch_state) {
2795 	case INTEL_PT_SS_NOT_TRACING:
2796 		break;
2797 	case INTEL_PT_SS_UNKNOWN:
2798 	case INTEL_PT_SS_TRACING:
2799 		ptq->next_tid = tid;
2800 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2801 		return 0;
2802 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2803 		if (!ptq->on_heap) {
2804 			ptq->timestamp = perf_time_to_tsc(timestamp,
2805 							  &pt->tc);
2806 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2807 						 ptq->timestamp);
2808 			if (err)
2809 				return err;
2810 			ptq->on_heap = true;
2811 		}
2812 		ptq->switch_state = INTEL_PT_SS_TRACING;
2813 		break;
2814 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2815 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2816 		break;
2817 	default:
2818 		break;
2819 	}
2820 
2821 	ptq->next_tid = -1;
2822 
2823 	return 1;
2824 }
2825 
2826 static int intel_pt_process_switch(struct intel_pt *pt,
2827 				   struct perf_sample *sample)
2828 {
2829 	pid_t tid;
2830 	int cpu, ret;
2831 	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
2832 
2833 	if (evsel != pt->switch_evsel)
2834 		return 0;
2835 
2836 	tid = evsel__intval(evsel, sample, "next_pid");
2837 	cpu = sample->cpu;
2838 
2839 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2840 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2841 		     &pt->tc));
2842 
2843 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2844 	if (ret <= 0)
2845 		return ret;
2846 
2847 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
2848 }
2849 
2850 static int intel_pt_context_switch_in(struct intel_pt *pt,
2851 				      struct perf_sample *sample)
2852 {
2853 	pid_t pid = sample->pid;
2854 	pid_t tid = sample->tid;
2855 	int cpu = sample->cpu;
2856 
2857 	if (pt->sync_switch) {
2858 		struct intel_pt_queue *ptq;
2859 
2860 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
2861 		if (ptq && ptq->sync_switch) {
2862 			ptq->next_tid = -1;
2863 			switch (ptq->switch_state) {
2864 			case INTEL_PT_SS_NOT_TRACING:
2865 			case INTEL_PT_SS_UNKNOWN:
2866 			case INTEL_PT_SS_TRACING:
2867 				break;
2868 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2869 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2870 				ptq->switch_state = INTEL_PT_SS_TRACING;
2871 				break;
2872 			default:
2873 				break;
2874 			}
2875 		}
2876 	}
2877 
2878 	/*
2879 	 * If the current tid has not been updated yet, ensure it is now that
2880 	 * a "switch in" event has occurred.
2881 	 */
2882 	if (machine__get_current_tid(pt->machine, cpu) == tid)
2883 		return 0;
2884 
2885 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2886 }
2887 
2888 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2889 				   struct perf_sample *sample)
2890 {
2891 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2892 	pid_t pid, tid;
2893 	int cpu, ret;
2894 
2895 	cpu = sample->cpu;
2896 
2897 	if (pt->have_sched_switch == 3) {
2898 		if (!out)
2899 			return intel_pt_context_switch_in(pt, sample);
2900 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2901 			pr_err("Expecting CPU-wide context switch event\n");
2902 			return -EINVAL;
2903 		}
2904 		pid = event->context_switch.next_prev_pid;
2905 		tid = event->context_switch.next_prev_tid;
2906 	} else {
2907 		if (out)
2908 			return 0;
2909 		pid = sample->pid;
2910 		tid = sample->tid;
2911 	}
2912 
2913 	if (tid == -1)
2914 		intel_pt_log("context_switch event has no tid\n");
2915 
2916 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2917 	if (ret <= 0)
2918 		return ret;
2919 
2920 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2921 }
2922 
2923 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2924 					 union perf_event *event,
2925 					 struct perf_sample *sample)
2926 {
2927 	if (!pt->per_cpu_mmaps)
2928 		return 0;
2929 
2930 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2931 		     sample->cpu, event->itrace_start.pid,
2932 		     event->itrace_start.tid, sample->time,
2933 		     perf_time_to_tsc(sample->time, &pt->tc));
2934 
2935 	return machine__set_current_tid(pt->machine, sample->cpu,
2936 					event->itrace_start.pid,
2937 					event->itrace_start.tid);
2938 }
2939 
2940 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
2941 					     union perf_event *event,
2942 					     struct perf_sample *sample)
2943 {
2944 	u64 hw_id = event->aux_output_hw_id.hw_id;
2945 	struct auxtrace_queue *queue;
2946 	struct intel_pt_queue *ptq;
2947 	struct evsel *evsel;
2948 
2949 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2950 	evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
2951 	if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
2952 		pr_err("Bad AUX output hardware ID\n");
2953 		return -EINVAL;
2954 	}
2955 
2956 	ptq = queue->priv;
2957 
2958 	ptq->pebs[hw_id].evsel = evsel;
2959 	ptq->pebs[hw_id].id = sample->id;
2960 
2961 	return 0;
2962 }
2963 
2964 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2965 			     struct addr_location *al)
2966 {
2967 	if (!al->map || addr < al->map->start || addr >= al->map->end) {
2968 		if (!thread__find_map(thread, cpumode, addr, al))
2969 			return -1;
2970 	}
2971 
2972 	return 0;
2973 }
2974 
2975 /* Invalidate all instruction cache entries that overlap the text poke */
2976 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2977 {
2978 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2979 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2980 	/* Assume text poke begins in a basic block no more than 4096 bytes */
2981 	int cnt = 4096 + event->text_poke.new_len;
2982 	struct thread *thread = pt->unknown_thread;
2983 	struct addr_location al = { .map = NULL };
2984 	struct machine *machine = pt->machine;
2985 	struct intel_pt_cache_entry *e;
2986 	u64 offset;
2987 
2988 	if (!event->text_poke.new_len)
2989 		return 0;
2990 
2991 	for (; cnt; cnt--, addr--) {
2992 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2993 			if (addr < event->text_poke.addr)
2994 				return 0;
2995 			continue;
2996 		}
2997 
2998 		if (!al.map->dso || !al.map->dso->auxtrace_cache)
2999 			continue;
3000 
3001 		offset = al.map->map_ip(al.map, addr);
3002 
3003 		e = intel_pt_cache_lookup(al.map->dso, machine, offset);
3004 		if (!e)
3005 			continue;
3006 
3007 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3008 			/*
3009 			 * No overlap. Working backwards there cannot be another
3010 			 * basic block that overlaps the text poke if there is a
3011 			 * branch instruction before the text poke address.
3012 			 */
3013 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
3014 				return 0;
3015 		} else {
3016 			intel_pt_cache_invalidate(al.map->dso, machine, offset);
3017 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3018 				     al.map->dso->long_name, addr);
3019 		}
3020 	}
3021 
3022 	return 0;
3023 }
3024 
3025 static int intel_pt_process_event(struct perf_session *session,
3026 				  union perf_event *event,
3027 				  struct perf_sample *sample,
3028 				  struct perf_tool *tool)
3029 {
3030 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3031 					   auxtrace);
3032 	u64 timestamp;
3033 	int err = 0;
3034 
3035 	if (dump_trace)
3036 		return 0;
3037 
3038 	if (!tool->ordered_events) {
3039 		pr_err("Intel Processor Trace requires ordered events\n");
3040 		return -EINVAL;
3041 	}
3042 
3043 	if (sample->time && sample->time != (u64)-1)
3044 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3045 	else
3046 		timestamp = 0;
3047 
3048 	if (timestamp || pt->timeless_decoding) {
3049 		err = intel_pt_update_queues(pt);
3050 		if (err)
3051 			return err;
3052 	}
3053 
3054 	if (pt->timeless_decoding) {
3055 		if (pt->sampling_mode) {
3056 			if (sample->aux_sample.size)
3057 				err = intel_pt_process_timeless_sample(pt,
3058 								       sample);
3059 		} else if (event->header.type == PERF_RECORD_EXIT) {
3060 			err = intel_pt_process_timeless_queues(pt,
3061 							       event->fork.tid,
3062 							       sample->time);
3063 		}
3064 	} else if (timestamp) {
3065 		if (!pt->first_timestamp)
3066 			intel_pt_first_timestamp(pt, timestamp);
3067 		err = intel_pt_process_queues(pt, timestamp);
3068 	}
3069 	if (err)
3070 		return err;
3071 
3072 	if (event->header.type == PERF_RECORD_SAMPLE) {
3073 		if (pt->synth_opts.add_callchain && !sample->callchain)
3074 			intel_pt_add_callchain(pt, sample);
3075 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3076 			intel_pt_add_br_stack(pt, sample);
3077 	}
3078 
3079 	if (event->header.type == PERF_RECORD_AUX &&
3080 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3081 	    pt->synth_opts.errors) {
3082 		err = intel_pt_lost(pt, sample);
3083 		if (err)
3084 			return err;
3085 	}
3086 
3087 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3088 		err = intel_pt_process_switch(pt, sample);
3089 	else if (event->header.type == PERF_RECORD_ITRACE_START)
3090 		err = intel_pt_process_itrace_start(pt, event, sample);
3091 	else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3092 		err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3093 	else if (event->header.type == PERF_RECORD_SWITCH ||
3094 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3095 		err = intel_pt_context_switch(pt, event, sample);
3096 
3097 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3098 		err = intel_pt_text_poke(pt, event);
3099 
3100 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3101 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3102 			     event->header.type, sample->cpu, sample->time, timestamp);
3103 		intel_pt_log_event(event);
3104 	}
3105 
3106 	return err;
3107 }
3108 
3109 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3110 {
3111 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3112 					   auxtrace);
3113 	int ret;
3114 
3115 	if (dump_trace)
3116 		return 0;
3117 
3118 	if (!tool->ordered_events)
3119 		return -EINVAL;
3120 
3121 	ret = intel_pt_update_queues(pt);
3122 	if (ret < 0)
3123 		return ret;
3124 
3125 	if (pt->timeless_decoding)
3126 		return intel_pt_process_timeless_queues(pt, -1,
3127 							MAX_TIMESTAMP - 1);
3128 
3129 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3130 }
3131 
3132 static void intel_pt_free_events(struct perf_session *session)
3133 {
3134 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3135 					   auxtrace);
3136 	struct auxtrace_queues *queues = &pt->queues;
3137 	unsigned int i;
3138 
3139 	for (i = 0; i < queues->nr_queues; i++) {
3140 		intel_pt_free_queue(queues->queue_array[i].priv);
3141 		queues->queue_array[i].priv = NULL;
3142 	}
3143 	intel_pt_log_disable();
3144 	auxtrace_queues__free(queues);
3145 }
3146 
3147 static void intel_pt_free(struct perf_session *session)
3148 {
3149 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3150 					   auxtrace);
3151 
3152 	auxtrace_heap__free(&pt->heap);
3153 	intel_pt_free_events(session);
3154 	session->auxtrace = NULL;
3155 	intel_pt_free_vmcs_info(pt);
3156 	thread__put(pt->unknown_thread);
3157 	addr_filters__exit(&pt->filts);
3158 	zfree(&pt->chain);
3159 	zfree(&pt->filter);
3160 	zfree(&pt->time_ranges);
3161 	free(pt);
3162 }
3163 
3164 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3165 				       struct evsel *evsel)
3166 {
3167 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3168 					   auxtrace);
3169 
3170 	return evsel->core.attr.type == pt->pmu_type;
3171 }
3172 
3173 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3174 					   union perf_event *event,
3175 					   struct perf_tool *tool __maybe_unused)
3176 {
3177 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3178 					   auxtrace);
3179 
3180 	if (!pt->data_queued) {
3181 		struct auxtrace_buffer *buffer;
3182 		off_t data_offset;
3183 		int fd = perf_data__fd(session->data);
3184 		int err;
3185 
3186 		if (perf_data__is_pipe(session->data)) {
3187 			data_offset = 0;
3188 		} else {
3189 			data_offset = lseek(fd, 0, SEEK_CUR);
3190 			if (data_offset == -1)
3191 				return -errno;
3192 		}
3193 
3194 		err = auxtrace_queues__add_event(&pt->queues, session, event,
3195 						 data_offset, &buffer);
3196 		if (err)
3197 			return err;
3198 
3199 		/* Dump here now we have copied a piped trace out of the pipe */
3200 		if (dump_trace) {
3201 			if (auxtrace_buffer__get_data(buffer, fd)) {
3202 				intel_pt_dump_event(pt, buffer->data,
3203 						    buffer->size);
3204 				auxtrace_buffer__put_data(buffer);
3205 			}
3206 		}
3207 	}
3208 
3209 	return 0;
3210 }
3211 
3212 static int intel_pt_queue_data(struct perf_session *session,
3213 			       struct perf_sample *sample,
3214 			       union perf_event *event, u64 data_offset)
3215 {
3216 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3217 					   auxtrace);
3218 	u64 timestamp;
3219 
3220 	if (event) {
3221 		return auxtrace_queues__add_event(&pt->queues, session, event,
3222 						  data_offset, NULL);
3223 	}
3224 
3225 	if (sample->time && sample->time != (u64)-1)
3226 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3227 	else
3228 		timestamp = 0;
3229 
3230 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3231 					   data_offset, timestamp);
3232 }
3233 
3234 struct intel_pt_synth {
3235 	struct perf_tool dummy_tool;
3236 	struct perf_session *session;
3237 };
3238 
3239 static int intel_pt_event_synth(struct perf_tool *tool,
3240 				union perf_event *event,
3241 				struct perf_sample *sample __maybe_unused,
3242 				struct machine *machine __maybe_unused)
3243 {
3244 	struct intel_pt_synth *intel_pt_synth =
3245 			container_of(tool, struct intel_pt_synth, dummy_tool);
3246 
3247 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3248 						 NULL);
3249 }
3250 
3251 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3252 				struct perf_event_attr *attr, u64 id)
3253 {
3254 	struct intel_pt_synth intel_pt_synth;
3255 	int err;
3256 
3257 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3258 		 name, id, (u64)attr->sample_type);
3259 
3260 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3261 	intel_pt_synth.session = session;
3262 
3263 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3264 					  &id, intel_pt_event_synth);
3265 	if (err)
3266 		pr_err("%s: failed to synthesize '%s' event type\n",
3267 		       __func__, name);
3268 
3269 	return err;
3270 }
3271 
3272 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3273 				    const char *name)
3274 {
3275 	struct evsel *evsel;
3276 
3277 	evlist__for_each_entry(evlist, evsel) {
3278 		if (evsel->core.id && evsel->core.id[0] == id) {
3279 			if (evsel->name)
3280 				zfree(&evsel->name);
3281 			evsel->name = strdup(name);
3282 			break;
3283 		}
3284 	}
3285 }
3286 
3287 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3288 					 struct evlist *evlist)
3289 {
3290 	struct evsel *evsel;
3291 
3292 	evlist__for_each_entry(evlist, evsel) {
3293 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3294 			return evsel;
3295 	}
3296 
3297 	return NULL;
3298 }
3299 
3300 static int intel_pt_synth_events(struct intel_pt *pt,
3301 				 struct perf_session *session)
3302 {
3303 	struct evlist *evlist = session->evlist;
3304 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3305 	struct perf_event_attr attr;
3306 	u64 id;
3307 	int err;
3308 
3309 	if (!evsel) {
3310 		pr_debug("There are no selected events with Intel Processor Trace data\n");
3311 		return 0;
3312 	}
3313 
3314 	memset(&attr, 0, sizeof(struct perf_event_attr));
3315 	attr.size = sizeof(struct perf_event_attr);
3316 	attr.type = PERF_TYPE_HARDWARE;
3317 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3318 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3319 			    PERF_SAMPLE_PERIOD;
3320 	if (pt->timeless_decoding)
3321 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3322 	else
3323 		attr.sample_type |= PERF_SAMPLE_TIME;
3324 	if (!pt->per_cpu_mmaps)
3325 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3326 	attr.exclude_user = evsel->core.attr.exclude_user;
3327 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3328 	attr.exclude_hv = evsel->core.attr.exclude_hv;
3329 	attr.exclude_host = evsel->core.attr.exclude_host;
3330 	attr.exclude_guest = evsel->core.attr.exclude_guest;
3331 	attr.sample_id_all = evsel->core.attr.sample_id_all;
3332 	attr.read_format = evsel->core.attr.read_format;
3333 
3334 	id = evsel->core.id[0] + 1000000000;
3335 	if (!id)
3336 		id = 1;
3337 
3338 	if (pt->synth_opts.branches) {
3339 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3340 		attr.sample_period = 1;
3341 		attr.sample_type |= PERF_SAMPLE_ADDR;
3342 		err = intel_pt_synth_event(session, "branches", &attr, id);
3343 		if (err)
3344 			return err;
3345 		pt->sample_branches = true;
3346 		pt->branches_sample_type = attr.sample_type;
3347 		pt->branches_id = id;
3348 		id += 1;
3349 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3350 	}
3351 
3352 	if (pt->synth_opts.callchain)
3353 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3354 	if (pt->synth_opts.last_branch) {
3355 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3356 		/*
3357 		 * We don't use the hardware index, but the sample generation
3358 		 * code uses the new format branch_stack with this field,
3359 		 * so the event attributes must indicate that it's present.
3360 		 */
3361 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3362 	}
3363 
3364 	if (pt->synth_opts.instructions) {
3365 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3366 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3367 			attr.sample_period =
3368 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3369 		else
3370 			attr.sample_period = pt->synth_opts.period;
3371 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3372 		if (err)
3373 			return err;
3374 		pt->sample_instructions = true;
3375 		pt->instructions_sample_type = attr.sample_type;
3376 		pt->instructions_id = id;
3377 		id += 1;
3378 	}
3379 
3380 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3381 	attr.sample_period = 1;
3382 
3383 	if (pt->synth_opts.transactions) {
3384 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3385 		err = intel_pt_synth_event(session, "transactions", &attr, id);
3386 		if (err)
3387 			return err;
3388 		pt->sample_transactions = true;
3389 		pt->transactions_sample_type = attr.sample_type;
3390 		pt->transactions_id = id;
3391 		intel_pt_set_event_name(evlist, id, "transactions");
3392 		id += 1;
3393 	}
3394 
3395 	attr.type = PERF_TYPE_SYNTH;
3396 	attr.sample_type |= PERF_SAMPLE_RAW;
3397 
3398 	if (pt->synth_opts.ptwrites) {
3399 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3400 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3401 		if (err)
3402 			return err;
3403 		pt->sample_ptwrites = true;
3404 		pt->ptwrites_sample_type = attr.sample_type;
3405 		pt->ptwrites_id = id;
3406 		intel_pt_set_event_name(evlist, id, "ptwrite");
3407 		id += 1;
3408 	}
3409 
3410 	if (pt->synth_opts.pwr_events) {
3411 		pt->sample_pwr_events = true;
3412 		pt->pwr_events_sample_type = attr.sample_type;
3413 
3414 		attr.config = PERF_SYNTH_INTEL_CBR;
3415 		err = intel_pt_synth_event(session, "cbr", &attr, id);
3416 		if (err)
3417 			return err;
3418 		pt->cbr_id = id;
3419 		intel_pt_set_event_name(evlist, id, "cbr");
3420 		id += 1;
3421 
3422 		attr.config = PERF_SYNTH_INTEL_PSB;
3423 		err = intel_pt_synth_event(session, "psb", &attr, id);
3424 		if (err)
3425 			return err;
3426 		pt->psb_id = id;
3427 		intel_pt_set_event_name(evlist, id, "psb");
3428 		id += 1;
3429 	}
3430 
3431 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3432 		attr.config = PERF_SYNTH_INTEL_MWAIT;
3433 		err = intel_pt_synth_event(session, "mwait", &attr, id);
3434 		if (err)
3435 			return err;
3436 		pt->mwait_id = id;
3437 		intel_pt_set_event_name(evlist, id, "mwait");
3438 		id += 1;
3439 
3440 		attr.config = PERF_SYNTH_INTEL_PWRE;
3441 		err = intel_pt_synth_event(session, "pwre", &attr, id);
3442 		if (err)
3443 			return err;
3444 		pt->pwre_id = id;
3445 		intel_pt_set_event_name(evlist, id, "pwre");
3446 		id += 1;
3447 
3448 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3449 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3450 		if (err)
3451 			return err;
3452 		pt->exstop_id = id;
3453 		intel_pt_set_event_name(evlist, id, "exstop");
3454 		id += 1;
3455 
3456 		attr.config = PERF_SYNTH_INTEL_PWRX;
3457 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3458 		if (err)
3459 			return err;
3460 		pt->pwrx_id = id;
3461 		intel_pt_set_event_name(evlist, id, "pwrx");
3462 		id += 1;
3463 	}
3464 
3465 	return 0;
3466 }
3467 
3468 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3469 {
3470 	struct evsel *evsel;
3471 
3472 	if (!pt->synth_opts.other_events)
3473 		return;
3474 
3475 	evlist__for_each_entry(pt->session->evlist, evsel) {
3476 		if (evsel->core.attr.aux_output && evsel->core.id) {
3477 			if (pt->single_pebs) {
3478 				pt->single_pebs = false;
3479 				return;
3480 			}
3481 			pt->single_pebs = true;
3482 			pt->sample_pebs = true;
3483 			pt->pebs_evsel = evsel;
3484 		}
3485 	}
3486 }
3487 
3488 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3489 {
3490 	struct evsel *evsel;
3491 
3492 	evlist__for_each_entry_reverse(evlist, evsel) {
3493 		const char *name = evsel__name(evsel);
3494 
3495 		if (!strcmp(name, "sched:sched_switch"))
3496 			return evsel;
3497 	}
3498 
3499 	return NULL;
3500 }
3501 
3502 static bool intel_pt_find_switch(struct evlist *evlist)
3503 {
3504 	struct evsel *evsel;
3505 
3506 	evlist__for_each_entry(evlist, evsel) {
3507 		if (evsel->core.attr.context_switch)
3508 			return true;
3509 	}
3510 
3511 	return false;
3512 }
3513 
3514 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3515 {
3516 	struct intel_pt *pt = data;
3517 
3518 	if (!strcmp(var, "intel-pt.mispred-all"))
3519 		pt->mispred_all = perf_config_bool(var, value);
3520 
3521 	if (!strcmp(var, "intel-pt.max-loops"))
3522 		perf_config_int(&pt->max_loops, var, value);
3523 
3524 	return 0;
3525 }
3526 
3527 /* Find least TSC which converts to ns or later */
3528 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3529 {
3530 	u64 tsc, tm;
3531 
3532 	tsc = perf_time_to_tsc(ns, &pt->tc);
3533 
3534 	while (1) {
3535 		tm = tsc_to_perf_time(tsc, &pt->tc);
3536 		if (tm < ns)
3537 			break;
3538 		tsc -= 1;
3539 	}
3540 
3541 	while (tm < ns)
3542 		tm = tsc_to_perf_time(++tsc, &pt->tc);
3543 
3544 	return tsc;
3545 }
3546 
3547 /* Find greatest TSC which converts to ns or earlier */
3548 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3549 {
3550 	u64 tsc, tm;
3551 
3552 	tsc = perf_time_to_tsc(ns, &pt->tc);
3553 
3554 	while (1) {
3555 		tm = tsc_to_perf_time(tsc, &pt->tc);
3556 		if (tm > ns)
3557 			break;
3558 		tsc += 1;
3559 	}
3560 
3561 	while (tm > ns)
3562 		tm = tsc_to_perf_time(--tsc, &pt->tc);
3563 
3564 	return tsc;
3565 }
3566 
3567 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3568 				      struct itrace_synth_opts *opts)
3569 {
3570 	struct perf_time_interval *p = opts->ptime_range;
3571 	int n = opts->range_num;
3572 	int i;
3573 
3574 	if (!n || !p || pt->timeless_decoding)
3575 		return 0;
3576 
3577 	pt->time_ranges = calloc(n, sizeof(struct range));
3578 	if (!pt->time_ranges)
3579 		return -ENOMEM;
3580 
3581 	pt->range_cnt = n;
3582 
3583 	intel_pt_log("%s: %u range(s)\n", __func__, n);
3584 
3585 	for (i = 0; i < n; i++) {
3586 		struct range *r = &pt->time_ranges[i];
3587 		u64 ts = p[i].start;
3588 		u64 te = p[i].end;
3589 
3590 		/*
3591 		 * Take care to ensure the TSC range matches the perf-time range
3592 		 * when converted back to perf-time.
3593 		 */
3594 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3595 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3596 
3597 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3598 			     i, ts, te);
3599 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3600 			     i, r->start, r->end);
3601 	}
3602 
3603 	return 0;
3604 }
3605 
3606 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
3607 {
3608 	struct intel_pt_vmcs_info *vmcs_info;
3609 	u64 tsc_offset, vmcs;
3610 	char *p = *args;
3611 
3612 	errno = 0;
3613 
3614 	p = skip_spaces(p);
3615 	if (!*p)
3616 		return 1;
3617 
3618 	tsc_offset = strtoull(p, &p, 0);
3619 	if (errno)
3620 		return -errno;
3621 	p = skip_spaces(p);
3622 	if (*p != ':') {
3623 		pt->dflt_tsc_offset = tsc_offset;
3624 		*args = p;
3625 		return 0;
3626 	}
3627 	while (1) {
3628 		vmcs = strtoull(p, &p, 0);
3629 		if (errno)
3630 			return -errno;
3631 		if (!vmcs)
3632 			return -EINVAL;
3633 		vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
3634 		if (!vmcs_info)
3635 			return -ENOMEM;
3636 		p = skip_spaces(p);
3637 		if (*p != ',')
3638 			break;
3639 		p += 1;
3640 	}
3641 	*args = p;
3642 	return 0;
3643 }
3644 
3645 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
3646 {
3647 	char *args = pt->synth_opts.vm_tm_corr_args;
3648 	int ret;
3649 
3650 	if (!args)
3651 		return 0;
3652 
3653 	do {
3654 		ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
3655 	} while (!ret);
3656 
3657 	if (ret < 0) {
3658 		pr_err("Failed to parse VM Time Correlation options\n");
3659 		return ret;
3660 	}
3661 
3662 	return 0;
3663 }
3664 
3665 static const char * const intel_pt_info_fmts[] = {
3666 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3667 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3668 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3669 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3670 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3671 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3672 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3673 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3674 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3675 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3676 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
3677 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3678 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3679 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3680 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3681 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3682 };
3683 
3684 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3685 {
3686 	int i;
3687 
3688 	if (!dump_trace)
3689 		return;
3690 
3691 	for (i = start; i <= finish; i++)
3692 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3693 }
3694 
3695 static void intel_pt_print_info_str(const char *name, const char *str)
3696 {
3697 	if (!dump_trace)
3698 		return;
3699 
3700 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3701 }
3702 
3703 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3704 {
3705 	return auxtrace_info->header.size >=
3706 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3707 }
3708 
3709 int intel_pt_process_auxtrace_info(union perf_event *event,
3710 				   struct perf_session *session)
3711 {
3712 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3713 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3714 	struct intel_pt *pt;
3715 	void *info_end;
3716 	__u64 *info;
3717 	int err;
3718 
3719 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3720 					min_sz)
3721 		return -EINVAL;
3722 
3723 	pt = zalloc(sizeof(struct intel_pt));
3724 	if (!pt)
3725 		return -ENOMEM;
3726 
3727 	pt->vmcs_info = RB_ROOT;
3728 
3729 	addr_filters__init(&pt->filts);
3730 
3731 	err = perf_config(intel_pt_perf_config, pt);
3732 	if (err)
3733 		goto err_free;
3734 
3735 	err = auxtrace_queues__init(&pt->queues);
3736 	if (err)
3737 		goto err_free;
3738 
3739 	if (session->itrace_synth_opts->set) {
3740 		pt->synth_opts = *session->itrace_synth_opts;
3741 	} else {
3742 		struct itrace_synth_opts *opts = session->itrace_synth_opts;
3743 
3744 		itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
3745 		if (!opts->default_no_sample && !opts->inject) {
3746 			pt->synth_opts.branches = false;
3747 			pt->synth_opts.callchain = true;
3748 			pt->synth_opts.add_callchain = true;
3749 		}
3750 		pt->synth_opts.thread_stack = opts->thread_stack;
3751 	}
3752 
3753 	if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
3754 		intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3755 
3756 	pt->session = session;
3757 	pt->machine = &session->machines.host; /* No kvm support */
3758 	pt->auxtrace_type = auxtrace_info->type;
3759 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3760 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3761 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3762 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3763 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3764 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3765 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3766 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3767 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3768 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3769 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3770 			    INTEL_PT_PER_CPU_MMAPS);
3771 
3772 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3773 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3774 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3775 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3776 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3777 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3778 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3779 				    INTEL_PT_CYC_BIT);
3780 	}
3781 
3782 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3783 		pt->max_non_turbo_ratio =
3784 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3785 		intel_pt_print_info(&auxtrace_info->priv[0],
3786 				    INTEL_PT_MAX_NONTURBO_RATIO,
3787 				    INTEL_PT_MAX_NONTURBO_RATIO);
3788 	}
3789 
3790 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3791 	info_end = (void *)info + auxtrace_info->header.size;
3792 
3793 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3794 		size_t len;
3795 
3796 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3797 		intel_pt_print_info(&auxtrace_info->priv[0],
3798 				    INTEL_PT_FILTER_STR_LEN,
3799 				    INTEL_PT_FILTER_STR_LEN);
3800 		if (len) {
3801 			const char *filter = (const char *)info;
3802 
3803 			len = roundup(len + 1, 8);
3804 			info += len >> 3;
3805 			if ((void *)info > info_end) {
3806 				pr_err("%s: bad filter string length\n", __func__);
3807 				err = -EINVAL;
3808 				goto err_free_queues;
3809 			}
3810 			pt->filter = memdup(filter, len);
3811 			if (!pt->filter) {
3812 				err = -ENOMEM;
3813 				goto err_free_queues;
3814 			}
3815 			if (session->header.needs_swap)
3816 				mem_bswap_64(pt->filter, len);
3817 			if (pt->filter[len - 1]) {
3818 				pr_err("%s: filter string not null terminated\n", __func__);
3819 				err = -EINVAL;
3820 				goto err_free_queues;
3821 			}
3822 			err = addr_filters__parse_bare_filter(&pt->filts,
3823 							      filter);
3824 			if (err)
3825 				goto err_free_queues;
3826 		}
3827 		intel_pt_print_info_str("Filter string", pt->filter);
3828 	}
3829 
3830 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3831 	if (pt->timeless_decoding && !pt->tc.time_mult)
3832 		pt->tc.time_mult = 1;
3833 	pt->have_tsc = intel_pt_have_tsc(pt);
3834 	pt->sampling_mode = intel_pt_sampling_mode(pt);
3835 	pt->est_tsc = !pt->timeless_decoding;
3836 
3837 	if (pt->synth_opts.vm_time_correlation) {
3838 		if (pt->timeless_decoding) {
3839 			pr_err("Intel PT has no time information for VM Time Correlation\n");
3840 			err = -EINVAL;
3841 			goto err_free_queues;
3842 		}
3843 		if (session->itrace_synth_opts->ptime_range) {
3844 			pr_err("Time ranges cannot be specified with VM Time Correlation\n");
3845 			err = -EINVAL;
3846 			goto err_free_queues;
3847 		}
3848 		/* Currently TSC Offset is calculated using MTC packets */
3849 		if (!intel_pt_have_mtc(pt)) {
3850 			pr_err("MTC packets must have been enabled for VM Time Correlation\n");
3851 			err = -EINVAL;
3852 			goto err_free_queues;
3853 		}
3854 		err = intel_pt_parse_vm_tm_corr_args(pt);
3855 		if (err)
3856 			goto err_free_queues;
3857 	}
3858 
3859 	pt->unknown_thread = thread__new(999999999, 999999999);
3860 	if (!pt->unknown_thread) {
3861 		err = -ENOMEM;
3862 		goto err_free_queues;
3863 	}
3864 
3865 	/*
3866 	 * Since this thread will not be kept in any rbtree not in a
3867 	 * list, initialize its list node so that at thread__put() the
3868 	 * current thread lifetime assumption is kept and we don't segfault
3869 	 * at list_del_init().
3870 	 */
3871 	INIT_LIST_HEAD(&pt->unknown_thread->node);
3872 
3873 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3874 	if (err)
3875 		goto err_delete_thread;
3876 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3877 		err = -ENOMEM;
3878 		goto err_delete_thread;
3879 	}
3880 
3881 	pt->auxtrace.process_event = intel_pt_process_event;
3882 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3883 	pt->auxtrace.queue_data = intel_pt_queue_data;
3884 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3885 	pt->auxtrace.flush_events = intel_pt_flush;
3886 	pt->auxtrace.free_events = intel_pt_free_events;
3887 	pt->auxtrace.free = intel_pt_free;
3888 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3889 	session->auxtrace = &pt->auxtrace;
3890 
3891 	if (dump_trace)
3892 		return 0;
3893 
3894 	if (pt->have_sched_switch == 1) {
3895 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3896 		if (!pt->switch_evsel) {
3897 			pr_err("%s: missing sched_switch event\n", __func__);
3898 			err = -EINVAL;
3899 			goto err_delete_thread;
3900 		}
3901 	} else if (pt->have_sched_switch == 2 &&
3902 		   !intel_pt_find_switch(session->evlist)) {
3903 		pr_err("%s: missing context_switch attribute flag\n", __func__);
3904 		err = -EINVAL;
3905 		goto err_delete_thread;
3906 	}
3907 
3908 	if (pt->synth_opts.log)
3909 		intel_pt_log_enable();
3910 
3911 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
3912 	if (pt->tc.time_mult) {
3913 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3914 
3915 		if (!pt->max_non_turbo_ratio)
3916 			pt->max_non_turbo_ratio =
3917 					(tsc_freq + 50000000) / 100000000;
3918 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3919 		intel_pt_log("Maximum non-turbo ratio %u\n",
3920 			     pt->max_non_turbo_ratio);
3921 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3922 	}
3923 
3924 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3925 	if (err)
3926 		goto err_delete_thread;
3927 
3928 	if (pt->synth_opts.calls)
3929 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3930 				       PERF_IP_FLAG_TRACE_END;
3931 	if (pt->synth_opts.returns)
3932 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
3933 				       PERF_IP_FLAG_TRACE_BEGIN;
3934 
3935 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3936 	    !symbol_conf.use_callchain) {
3937 		symbol_conf.use_callchain = true;
3938 		if (callchain_register_param(&callchain_param) < 0) {
3939 			symbol_conf.use_callchain = false;
3940 			pt->synth_opts.callchain = false;
3941 			pt->synth_opts.add_callchain = false;
3942 		}
3943 	}
3944 
3945 	if (pt->synth_opts.add_callchain) {
3946 		err = intel_pt_callchain_init(pt);
3947 		if (err)
3948 			goto err_delete_thread;
3949 	}
3950 
3951 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3952 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3953 		pt->br_stack_sz_plus = pt->br_stack_sz;
3954 	}
3955 
3956 	if (pt->synth_opts.add_last_branch) {
3957 		err = intel_pt_br_stack_init(pt);
3958 		if (err)
3959 			goto err_delete_thread;
3960 		/*
3961 		 * Additional branch stack size to cater for tracing from the
3962 		 * actual sample ip to where the sample time is recorded.
3963 		 * Measured at about 200 branches, but generously set to 1024.
3964 		 * If kernel space is not being traced, then add just 1 for the
3965 		 * branch to kernel space.
3966 		 */
3967 		if (intel_pt_tracing_kernel(pt))
3968 			pt->br_stack_sz_plus += 1024;
3969 		else
3970 			pt->br_stack_sz_plus += 1;
3971 	}
3972 
3973 	pt->use_thread_stack = pt->synth_opts.callchain ||
3974 			       pt->synth_opts.add_callchain ||
3975 			       pt->synth_opts.thread_stack ||
3976 			       pt->synth_opts.last_branch ||
3977 			       pt->synth_opts.add_last_branch;
3978 
3979 	pt->callstack = pt->synth_opts.callchain ||
3980 			pt->synth_opts.add_callchain ||
3981 			pt->synth_opts.thread_stack;
3982 
3983 	err = intel_pt_synth_events(pt, session);
3984 	if (err)
3985 		goto err_delete_thread;
3986 
3987 	intel_pt_setup_pebs_events(pt);
3988 
3989 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3990 		err = auxtrace_queue_data(session, true, true);
3991 	else
3992 		err = auxtrace_queues__process_index(&pt->queues, session);
3993 	if (err)
3994 		goto err_delete_thread;
3995 
3996 	if (pt->queues.populated)
3997 		pt->data_queued = true;
3998 
3999 	if (pt->timeless_decoding)
4000 		pr_debug2("Intel PT decoding without timestamps\n");
4001 
4002 	return 0;
4003 
4004 err_delete_thread:
4005 	zfree(&pt->chain);
4006 	thread__zput(pt->unknown_thread);
4007 err_free_queues:
4008 	intel_pt_log_disable();
4009 	auxtrace_queues__free(&pt->queues);
4010 	session->auxtrace = NULL;
4011 err_free:
4012 	addr_filters__exit(&pt->filts);
4013 	zfree(&pt->filter);
4014 	zfree(&pt->time_ranges);
4015 	free(pt);
4016 	return err;
4017 }
4018