1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pt.c: Intel Processor Trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <linux/perf_event.h> 9 #include <stdio.h> 10 #include <stdbool.h> 11 #include <errno.h> 12 #include <linux/kernel.h> 13 #include <linux/string.h> 14 #include <linux/types.h> 15 #include <linux/zalloc.h> 16 17 #include "session.h" 18 #include "machine.h" 19 #include "memswap.h" 20 #include "sort.h" 21 #include "tool.h" 22 #include "event.h" 23 #include "evlist.h" 24 #include "evsel.h" 25 #include "map.h" 26 #include "color.h" 27 #include "thread.h" 28 #include "thread-stack.h" 29 #include "symbol.h" 30 #include "callchain.h" 31 #include "dso.h" 32 #include "debug.h" 33 #include "auxtrace.h" 34 #include "tsc.h" 35 #include "intel-pt.h" 36 #include "config.h" 37 #include "util/perf_api_probe.h" 38 #include "util/synthetic-events.h" 39 #include "time-utils.h" 40 41 #include "../arch/x86/include/uapi/asm/perf_regs.h" 42 43 #include "intel-pt-decoder/intel-pt-log.h" 44 #include "intel-pt-decoder/intel-pt-decoder.h" 45 #include "intel-pt-decoder/intel-pt-insn-decoder.h" 46 #include "intel-pt-decoder/intel-pt-pkt-decoder.h" 47 48 #define MAX_TIMESTAMP (~0ULL) 49 50 #define INTEL_PT_CFG_PASS_THRU BIT_ULL(0) 51 #define INTEL_PT_CFG_PWR_EVT_EN BIT_ULL(4) 52 #define INTEL_PT_CFG_BRANCH_EN BIT_ULL(13) 53 #define INTEL_PT_CFG_EVT_EN BIT_ULL(31) 54 #define INTEL_PT_CFG_TNT_DIS BIT_ULL(55) 55 56 struct range { 57 u64 start; 58 u64 end; 59 }; 60 61 struct intel_pt { 62 struct auxtrace auxtrace; 63 struct auxtrace_queues queues; 64 struct auxtrace_heap heap; 65 u32 auxtrace_type; 66 struct perf_session *session; 67 struct machine *machine; 68 struct evsel *switch_evsel; 69 struct thread *unknown_thread; 70 bool timeless_decoding; 71 bool sampling_mode; 72 bool snapshot_mode; 73 bool per_cpu_mmaps; 74 bool have_tsc; 75 bool data_queued; 76 bool est_tsc; 77 bool sync_switch; 78 bool sync_switch_not_supported; 79 bool mispred_all; 80 bool use_thread_stack; 81 bool callstack; 82 bool cap_event_trace; 83 bool have_guest_sideband; 84 unsigned int br_stack_sz; 85 unsigned int br_stack_sz_plus; 86 int have_sched_switch; 87 u32 pmu_type; 88 u64 kernel_start; 89 u64 switch_ip; 90 u64 ptss_ip; 91 u64 first_timestamp; 92 93 struct perf_tsc_conversion tc; 94 bool cap_user_time_zero; 95 96 struct itrace_synth_opts synth_opts; 97 98 bool sample_instructions; 99 u64 instructions_sample_type; 100 u64 instructions_id; 101 102 bool sample_cycles; 103 u64 cycles_sample_type; 104 u64 cycles_id; 105 106 bool sample_branches; 107 u32 branches_filter; 108 u64 branches_sample_type; 109 u64 branches_id; 110 111 bool sample_transactions; 112 u64 transactions_sample_type; 113 u64 transactions_id; 114 115 bool sample_ptwrites; 116 u64 ptwrites_sample_type; 117 u64 ptwrites_id; 118 119 bool sample_pwr_events; 120 u64 pwr_events_sample_type; 121 u64 mwait_id; 122 u64 pwre_id; 123 u64 exstop_id; 124 u64 pwrx_id; 125 u64 cbr_id; 126 u64 psb_id; 127 128 bool single_pebs; 129 bool sample_pebs; 130 struct evsel *pebs_evsel; 131 132 u64 evt_sample_type; 133 u64 evt_id; 134 135 u64 iflag_chg_sample_type; 136 u64 iflag_chg_id; 137 138 u64 tsc_bit; 139 u64 mtc_bit; 140 u64 mtc_freq_bits; 141 u32 tsc_ctc_ratio_n; 142 u32 tsc_ctc_ratio_d; 143 u64 cyc_bit; 144 u64 noretcomp_bit; 145 unsigned max_non_turbo_ratio; 146 unsigned cbr2khz; 147 int max_loops; 148 149 unsigned long num_events; 150 151 char *filter; 152 struct addr_filters filts; 153 154 struct range *time_ranges; 155 unsigned int range_cnt; 156 157 struct ip_callchain *chain; 158 struct branch_stack *br_stack; 159 160 u64 dflt_tsc_offset; 161 struct rb_root vmcs_info; 162 }; 163 164 enum switch_state { 165 INTEL_PT_SS_NOT_TRACING, 166 INTEL_PT_SS_UNKNOWN, 167 INTEL_PT_SS_TRACING, 168 INTEL_PT_SS_EXPECTING_SWITCH_EVENT, 169 INTEL_PT_SS_EXPECTING_SWITCH_IP, 170 }; 171 172 /* applicable_counters is 64-bits */ 173 #define INTEL_PT_MAX_PEBS 64 174 175 struct intel_pt_pebs_event { 176 struct evsel *evsel; 177 u64 id; 178 }; 179 180 struct intel_pt_queue { 181 struct intel_pt *pt; 182 unsigned int queue_nr; 183 struct auxtrace_buffer *buffer; 184 struct auxtrace_buffer *old_buffer; 185 void *decoder; 186 const struct intel_pt_state *state; 187 struct ip_callchain *chain; 188 struct branch_stack *last_branch; 189 union perf_event *event_buf; 190 bool on_heap; 191 bool stop; 192 bool step_through_buffers; 193 bool use_buffer_pid_tid; 194 bool sync_switch; 195 bool sample_ipc; 196 pid_t pid, tid; 197 int cpu; 198 int switch_state; 199 pid_t next_tid; 200 struct thread *thread; 201 struct machine *guest_machine; 202 struct thread *guest_thread; 203 struct thread *unknown_guest_thread; 204 pid_t guest_machine_pid; 205 pid_t guest_pid; 206 pid_t guest_tid; 207 int vcpu; 208 bool exclude_kernel; 209 bool have_sample; 210 u64 time; 211 u64 timestamp; 212 u64 sel_timestamp; 213 bool sel_start; 214 unsigned int sel_idx; 215 u32 flags; 216 u16 insn_len; 217 u64 last_insn_cnt; 218 u64 ipc_insn_cnt; 219 u64 ipc_cyc_cnt; 220 u64 last_in_insn_cnt; 221 u64 last_in_cyc_cnt; 222 u64 last_cy_insn_cnt; 223 u64 last_cy_cyc_cnt; 224 u64 last_br_insn_cnt; 225 u64 last_br_cyc_cnt; 226 unsigned int cbr_seen; 227 char insn[INTEL_PT_INSN_BUF_SZ]; 228 struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS]; 229 }; 230 231 static void intel_pt_dump(struct intel_pt *pt __maybe_unused, 232 unsigned char *buf, size_t len) 233 { 234 struct intel_pt_pkt packet; 235 size_t pos = 0; 236 int ret, pkt_len, i; 237 char desc[INTEL_PT_PKT_DESC_MAX]; 238 const char *color = PERF_COLOR_BLUE; 239 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX; 240 241 color_fprintf(stdout, color, 242 ". ... Intel Processor Trace data: size %zu bytes\n", 243 len); 244 245 while (len) { 246 ret = intel_pt_get_packet(buf, len, &packet, &ctx); 247 if (ret > 0) 248 pkt_len = ret; 249 else 250 pkt_len = 1; 251 printf("."); 252 color_fprintf(stdout, color, " %08x: ", pos); 253 for (i = 0; i < pkt_len; i++) 254 color_fprintf(stdout, color, " %02x", buf[i]); 255 for (; i < 16; i++) 256 color_fprintf(stdout, color, " "); 257 if (ret > 0) { 258 ret = intel_pt_pkt_desc(&packet, desc, 259 INTEL_PT_PKT_DESC_MAX); 260 if (ret > 0) 261 color_fprintf(stdout, color, " %s\n", desc); 262 } else { 263 color_fprintf(stdout, color, " Bad packet!\n"); 264 } 265 pos += pkt_len; 266 buf += pkt_len; 267 len -= pkt_len; 268 } 269 } 270 271 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf, 272 size_t len) 273 { 274 printf(".\n"); 275 intel_pt_dump(pt, buf, len); 276 } 277 278 static void intel_pt_log_event(union perf_event *event) 279 { 280 FILE *f = intel_pt_log_fp(); 281 282 if (!intel_pt_enable_logging || !f) 283 return; 284 285 perf_event__fprintf(event, NULL, f); 286 } 287 288 static void intel_pt_dump_sample(struct perf_session *session, 289 struct perf_sample *sample) 290 { 291 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 292 auxtrace); 293 294 printf("\n"); 295 intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size); 296 } 297 298 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm) 299 { 300 struct perf_time_interval *range = pt->synth_opts.ptime_range; 301 int n = pt->synth_opts.range_num; 302 303 if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS) 304 return true; 305 306 if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS) 307 return false; 308 309 /* perf_time__ranges_skip_sample does not work if time is zero */ 310 if (!tm) 311 tm = 1; 312 313 return !n || !perf_time__ranges_skip_sample(range, n, tm); 314 } 315 316 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root, 317 u64 vmcs, 318 u64 dflt_tsc_offset) 319 { 320 struct rb_node **p = &rb_root->rb_node; 321 struct rb_node *parent = NULL; 322 struct intel_pt_vmcs_info *v; 323 324 while (*p) { 325 parent = *p; 326 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node); 327 328 if (v->vmcs == vmcs) 329 return v; 330 331 if (vmcs < v->vmcs) 332 p = &(*p)->rb_left; 333 else 334 p = &(*p)->rb_right; 335 } 336 337 v = zalloc(sizeof(*v)); 338 if (v) { 339 v->vmcs = vmcs; 340 v->tsc_offset = dflt_tsc_offset; 341 v->reliable = dflt_tsc_offset; 342 343 rb_link_node(&v->rb_node, parent, p); 344 rb_insert_color(&v->rb_node, rb_root); 345 } 346 347 return v; 348 } 349 350 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs) 351 { 352 struct intel_pt_queue *ptq = data; 353 struct intel_pt *pt = ptq->pt; 354 355 if (!vmcs && !pt->dflt_tsc_offset) 356 return NULL; 357 358 return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset); 359 } 360 361 static void intel_pt_free_vmcs_info(struct intel_pt *pt) 362 { 363 struct intel_pt_vmcs_info *v; 364 struct rb_node *n; 365 366 n = rb_first(&pt->vmcs_info); 367 while (n) { 368 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node); 369 n = rb_next(n); 370 rb_erase(&v->rb_node, &pt->vmcs_info); 371 free(v); 372 } 373 } 374 375 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a, 376 struct auxtrace_buffer *b) 377 { 378 bool consecutive = false; 379 void *start; 380 381 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size, 382 pt->have_tsc, &consecutive, 383 pt->synth_opts.vm_time_correlation); 384 if (!start) 385 return -EINVAL; 386 /* 387 * In the case of vm_time_correlation, the overlap might contain TSC 388 * packets that will not be fixed, and that will then no longer work for 389 * overlap detection. Avoid that by zeroing out the overlap. 390 */ 391 if (pt->synth_opts.vm_time_correlation) 392 memset(b->data, 0, start - b->data); 393 b->use_size = b->data + b->size - start; 394 b->use_data = start; 395 if (b->use_size && consecutive) 396 b->consecutive = true; 397 return 0; 398 } 399 400 static int intel_pt_get_buffer(struct intel_pt_queue *ptq, 401 struct auxtrace_buffer *buffer, 402 struct auxtrace_buffer *old_buffer, 403 struct intel_pt_buffer *b) 404 { 405 bool might_overlap; 406 407 if (!buffer->data) { 408 int fd = perf_data__fd(ptq->pt->session->data); 409 410 buffer->data = auxtrace_buffer__get_data(buffer, fd); 411 if (!buffer->data) 412 return -ENOMEM; 413 } 414 415 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode; 416 if (might_overlap && !buffer->consecutive && old_buffer && 417 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer)) 418 return -ENOMEM; 419 420 if (buffer->use_data) { 421 b->len = buffer->use_size; 422 b->buf = buffer->use_data; 423 } else { 424 b->len = buffer->size; 425 b->buf = buffer->data; 426 } 427 b->ref_timestamp = buffer->reference; 428 429 if (!old_buffer || (might_overlap && !buffer->consecutive)) { 430 b->consecutive = false; 431 b->trace_nr = buffer->buffer_nr + 1; 432 } else { 433 b->consecutive = true; 434 } 435 436 return 0; 437 } 438 439 /* Do not drop buffers with references - refer intel_pt_get_trace() */ 440 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq, 441 struct auxtrace_buffer *buffer) 442 { 443 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer) 444 return; 445 446 auxtrace_buffer__drop_data(buffer); 447 } 448 449 /* Must be serialized with respect to intel_pt_get_trace() */ 450 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb, 451 void *cb_data) 452 { 453 struct intel_pt_queue *ptq = data; 454 struct auxtrace_buffer *buffer = ptq->buffer; 455 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 456 struct auxtrace_queue *queue; 457 int err = 0; 458 459 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 460 461 while (1) { 462 struct intel_pt_buffer b = { .len = 0 }; 463 464 buffer = auxtrace_buffer__next(queue, buffer); 465 if (!buffer) 466 break; 467 468 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b); 469 if (err) 470 break; 471 472 if (b.len) { 473 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 474 old_buffer = buffer; 475 } else { 476 intel_pt_lookahead_drop_buffer(ptq, buffer); 477 continue; 478 } 479 480 err = cb(&b, cb_data); 481 if (err) 482 break; 483 } 484 485 if (buffer != old_buffer) 486 intel_pt_lookahead_drop_buffer(ptq, buffer); 487 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 488 489 return err; 490 } 491 492 /* 493 * This function assumes data is processed sequentially only. 494 * Must be serialized with respect to intel_pt_lookahead() 495 */ 496 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data) 497 { 498 struct intel_pt_queue *ptq = data; 499 struct auxtrace_buffer *buffer = ptq->buffer; 500 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 501 struct auxtrace_queue *queue; 502 int err; 503 504 if (ptq->stop) { 505 b->len = 0; 506 return 0; 507 } 508 509 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 510 511 buffer = auxtrace_buffer__next(queue, buffer); 512 if (!buffer) { 513 if (old_buffer) 514 auxtrace_buffer__drop_data(old_buffer); 515 b->len = 0; 516 return 0; 517 } 518 519 ptq->buffer = buffer; 520 521 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b); 522 if (err) 523 return err; 524 525 if (ptq->step_through_buffers) 526 ptq->stop = true; 527 528 if (b->len) { 529 if (old_buffer) 530 auxtrace_buffer__drop_data(old_buffer); 531 ptq->old_buffer = buffer; 532 } else { 533 auxtrace_buffer__drop_data(buffer); 534 return intel_pt_get_trace(b, data); 535 } 536 537 return 0; 538 } 539 540 struct intel_pt_cache_entry { 541 struct auxtrace_cache_entry entry; 542 u64 insn_cnt; 543 u64 byte_cnt; 544 enum intel_pt_insn_op op; 545 enum intel_pt_insn_branch branch; 546 bool emulated_ptwrite; 547 int length; 548 int32_t rel; 549 char insn[INTEL_PT_INSN_BUF_SZ]; 550 }; 551 552 static int intel_pt_config_div(const char *var, const char *value, void *data) 553 { 554 int *d = data; 555 long val; 556 557 if (!strcmp(var, "intel-pt.cache-divisor")) { 558 val = strtol(value, NULL, 0); 559 if (val > 0 && val <= INT_MAX) 560 *d = val; 561 } 562 563 return 0; 564 } 565 566 static int intel_pt_cache_divisor(void) 567 { 568 static int d; 569 570 if (d) 571 return d; 572 573 perf_config(intel_pt_config_div, &d); 574 575 if (!d) 576 d = 64; 577 578 return d; 579 } 580 581 static unsigned int intel_pt_cache_size(struct dso *dso, 582 struct machine *machine) 583 { 584 off_t size; 585 586 size = dso__data_size(dso, machine); 587 size /= intel_pt_cache_divisor(); 588 if (size < 1000) 589 return 10; 590 if (size > (1 << 21)) 591 return 21; 592 return 32 - __builtin_clz(size); 593 } 594 595 static struct auxtrace_cache *intel_pt_cache(struct dso *dso, 596 struct machine *machine) 597 { 598 struct auxtrace_cache *c; 599 unsigned int bits; 600 601 if (dso->auxtrace_cache) 602 return dso->auxtrace_cache; 603 604 bits = intel_pt_cache_size(dso, machine); 605 606 /* Ignoring cache creation failure */ 607 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200); 608 609 dso->auxtrace_cache = c; 610 611 return c; 612 } 613 614 static int intel_pt_cache_add(struct dso *dso, struct machine *machine, 615 u64 offset, u64 insn_cnt, u64 byte_cnt, 616 struct intel_pt_insn *intel_pt_insn) 617 { 618 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 619 struct intel_pt_cache_entry *e; 620 int err; 621 622 if (!c) 623 return -ENOMEM; 624 625 e = auxtrace_cache__alloc_entry(c); 626 if (!e) 627 return -ENOMEM; 628 629 e->insn_cnt = insn_cnt; 630 e->byte_cnt = byte_cnt; 631 e->op = intel_pt_insn->op; 632 e->branch = intel_pt_insn->branch; 633 e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite; 634 e->length = intel_pt_insn->length; 635 e->rel = intel_pt_insn->rel; 636 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ); 637 638 err = auxtrace_cache__add(c, offset, &e->entry); 639 if (err) 640 auxtrace_cache__free_entry(c, e); 641 642 return err; 643 } 644 645 static struct intel_pt_cache_entry * 646 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset) 647 { 648 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 649 650 if (!c) 651 return NULL; 652 653 return auxtrace_cache__lookup(dso->auxtrace_cache, offset); 654 } 655 656 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine, 657 u64 offset) 658 { 659 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 660 661 if (!c) 662 return; 663 664 auxtrace_cache__remove(dso->auxtrace_cache, offset); 665 } 666 667 static inline bool intel_pt_guest_kernel_ip(uint64_t ip) 668 { 669 /* Assumes 64-bit kernel */ 670 return ip & (1ULL << 63); 671 } 672 673 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr) 674 { 675 if (nr) { 676 return intel_pt_guest_kernel_ip(ip) ? 677 PERF_RECORD_MISC_GUEST_KERNEL : 678 PERF_RECORD_MISC_GUEST_USER; 679 } 680 681 return ip >= ptq->pt->kernel_start ? 682 PERF_RECORD_MISC_KERNEL : 683 PERF_RECORD_MISC_USER; 684 } 685 686 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip) 687 { 688 /* No support for non-zero CS base */ 689 if (from_ip) 690 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr); 691 return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr); 692 } 693 694 static int intel_pt_get_guest(struct intel_pt_queue *ptq) 695 { 696 struct machines *machines = &ptq->pt->session->machines; 697 struct machine *machine; 698 pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid; 699 700 if (ptq->guest_machine && pid == ptq->guest_machine->pid) 701 return 0; 702 703 ptq->guest_machine = NULL; 704 thread__zput(ptq->unknown_guest_thread); 705 706 if (symbol_conf.guest_code) { 707 thread__zput(ptq->guest_thread); 708 ptq->guest_thread = machines__findnew_guest_code(machines, pid); 709 } 710 711 machine = machines__find_guest(machines, pid); 712 if (!machine) 713 return -1; 714 715 ptq->unknown_guest_thread = machine__idle_thread(machine); 716 if (!ptq->unknown_guest_thread) 717 return -1; 718 719 ptq->guest_machine = machine; 720 721 return 0; 722 } 723 724 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn) 725 { 726 return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL; 727 } 728 729 #define PTWRITE_MAGIC "\x0f\x0bperf,ptwrite " 730 #define PTWRITE_MAGIC_LEN 16 731 732 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset) 733 { 734 unsigned char buf[PTWRITE_MAGIC_LEN]; 735 ssize_t len; 736 737 len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN); 738 if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) { 739 intel_pt_log("Emulated ptwrite signature found\n"); 740 return true; 741 } 742 intel_pt_log("Emulated ptwrite signature not found\n"); 743 return false; 744 } 745 746 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn, 747 uint64_t *insn_cnt_ptr, uint64_t *ip, 748 uint64_t to_ip, uint64_t max_insn_cnt, 749 void *data) 750 { 751 struct intel_pt_queue *ptq = data; 752 struct machine *machine = ptq->pt->machine; 753 struct thread *thread; 754 struct addr_location al; 755 unsigned char buf[INTEL_PT_INSN_BUF_SZ]; 756 ssize_t len; 757 int x86_64, ret = 0; 758 u8 cpumode; 759 u64 offset, start_offset, start_ip; 760 u64 insn_cnt = 0; 761 bool one_map = true; 762 bool nr; 763 764 765 addr_location__init(&al); 766 intel_pt_insn->length = 0; 767 768 if (to_ip && *ip == to_ip) 769 goto out_no_cache; 770 771 nr = ptq->state->to_nr; 772 cpumode = intel_pt_nr_cpumode(ptq, *ip, nr); 773 774 if (nr) { 775 if (ptq->pt->have_guest_sideband) { 776 if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) { 777 intel_pt_log("ERROR: guest sideband but no guest machine\n"); 778 ret = -EINVAL; 779 goto out_ret; 780 } 781 } else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) || 782 intel_pt_get_guest(ptq)) { 783 intel_pt_log("ERROR: no guest machine\n"); 784 ret = -EINVAL; 785 goto out_ret; 786 } 787 machine = ptq->guest_machine; 788 thread = ptq->guest_thread; 789 if (!thread) { 790 if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) { 791 intel_pt_log("ERROR: no guest thread\n"); 792 ret = -EINVAL; 793 goto out_ret; 794 } 795 thread = ptq->unknown_guest_thread; 796 } 797 } else { 798 thread = ptq->thread; 799 if (!thread) { 800 if (cpumode != PERF_RECORD_MISC_KERNEL) { 801 intel_pt_log("ERROR: no thread\n"); 802 ret = -EINVAL; 803 goto out_ret; 804 } 805 thread = ptq->pt->unknown_thread; 806 } 807 } 808 809 while (1) { 810 struct dso *dso; 811 812 if (!thread__find_map(thread, cpumode, *ip, &al) || !map__dso(al.map)) { 813 if (al.map) 814 intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip); 815 else 816 intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip); 817 addr_location__exit(&al); 818 ret = -EINVAL; 819 goto out_ret; 820 } 821 dso = map__dso(al.map); 822 823 if (dso->data.status == DSO_DATA_STATUS_ERROR && 824 dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) { 825 ret = -ENOENT; 826 goto out_ret; 827 } 828 829 offset = map__map_ip(al.map, *ip); 830 831 if (!to_ip && one_map) { 832 struct intel_pt_cache_entry *e; 833 834 e = intel_pt_cache_lookup(dso, machine, offset); 835 if (e && 836 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) { 837 *insn_cnt_ptr = e->insn_cnt; 838 *ip += e->byte_cnt; 839 intel_pt_insn->op = e->op; 840 intel_pt_insn->branch = e->branch; 841 intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite; 842 intel_pt_insn->length = e->length; 843 intel_pt_insn->rel = e->rel; 844 memcpy(intel_pt_insn->buf, e->insn, INTEL_PT_INSN_BUF_SZ); 845 intel_pt_log_insn_no_data(intel_pt_insn, *ip); 846 ret = 0; 847 goto out_ret; 848 } 849 } 850 851 start_offset = offset; 852 start_ip = *ip; 853 854 /* Load maps to ensure dso->is_64_bit has been updated */ 855 map__load(al.map); 856 857 x86_64 = dso->is_64_bit; 858 859 while (1) { 860 len = dso__data_read_offset(dso, machine, 861 offset, buf, 862 INTEL_PT_INSN_BUF_SZ); 863 if (len <= 0) { 864 intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ", 865 offset); 866 if (intel_pt_enable_logging) 867 dso__fprintf(dso, intel_pt_log_fp()); 868 ret = -EINVAL; 869 goto out_ret; 870 } 871 872 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) { 873 ret = -EINVAL; 874 goto out_ret; 875 } 876 877 intel_pt_log_insn(intel_pt_insn, *ip); 878 879 insn_cnt += 1; 880 881 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) { 882 bool eptw; 883 u64 offs; 884 885 if (!intel_pt_jmp_16(intel_pt_insn)) 886 goto out; 887 /* Check for emulated ptwrite */ 888 offs = offset + intel_pt_insn->length; 889 eptw = intel_pt_emulated_ptwrite(dso, machine, offs); 890 intel_pt_insn->emulated_ptwrite = eptw; 891 goto out; 892 } 893 894 if (max_insn_cnt && insn_cnt >= max_insn_cnt) 895 goto out_no_cache; 896 897 *ip += intel_pt_insn->length; 898 899 if (to_ip && *ip == to_ip) { 900 intel_pt_insn->length = 0; 901 goto out_no_cache; 902 } 903 904 if (*ip >= map__end(al.map)) 905 break; 906 907 offset += intel_pt_insn->length; 908 } 909 one_map = false; 910 } 911 out: 912 *insn_cnt_ptr = insn_cnt; 913 914 if (!one_map) 915 goto out_no_cache; 916 917 /* 918 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate 919 * entries. 920 */ 921 if (to_ip) { 922 struct intel_pt_cache_entry *e; 923 924 e = intel_pt_cache_lookup(map__dso(al.map), machine, start_offset); 925 if (e) 926 goto out_ret; 927 } 928 929 /* Ignore cache errors */ 930 intel_pt_cache_add(map__dso(al.map), machine, start_offset, insn_cnt, 931 *ip - start_ip, intel_pt_insn); 932 933 out_ret: 934 addr_location__exit(&al); 935 return ret; 936 937 out_no_cache: 938 *insn_cnt_ptr = insn_cnt; 939 addr_location__exit(&al); 940 return 0; 941 } 942 943 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip, 944 uint64_t offset, const char *filename) 945 { 946 struct addr_filter *filt; 947 bool have_filter = false; 948 bool hit_tracestop = false; 949 bool hit_filter = false; 950 951 list_for_each_entry(filt, &pt->filts.head, list) { 952 if (filt->start) 953 have_filter = true; 954 955 if ((filename && !filt->filename) || 956 (!filename && filt->filename) || 957 (filename && strcmp(filename, filt->filename))) 958 continue; 959 960 if (!(offset >= filt->addr && offset < filt->addr + filt->size)) 961 continue; 962 963 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n", 964 ip, offset, filename ? filename : "[kernel]", 965 filt->start ? "filter" : "stop", 966 filt->addr, filt->size); 967 968 if (filt->start) 969 hit_filter = true; 970 else 971 hit_tracestop = true; 972 } 973 974 if (!hit_tracestop && !hit_filter) 975 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n", 976 ip, offset, filename ? filename : "[kernel]"); 977 978 return hit_tracestop || (have_filter && !hit_filter); 979 } 980 981 static int __intel_pt_pgd_ip(uint64_t ip, void *data) 982 { 983 struct intel_pt_queue *ptq = data; 984 struct thread *thread; 985 struct addr_location al; 986 u8 cpumode; 987 u64 offset; 988 int res; 989 990 if (ptq->state->to_nr) { 991 if (intel_pt_guest_kernel_ip(ip)) 992 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); 993 /* No support for decoding guest user space */ 994 return -EINVAL; 995 } else if (ip >= ptq->pt->kernel_start) { 996 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); 997 } 998 999 cpumode = PERF_RECORD_MISC_USER; 1000 1001 thread = ptq->thread; 1002 if (!thread) 1003 return -EINVAL; 1004 1005 addr_location__init(&al); 1006 if (!thread__find_map(thread, cpumode, ip, &al) || !map__dso(al.map)) 1007 return -EINVAL; 1008 1009 offset = map__map_ip(al.map, ip); 1010 1011 res = intel_pt_match_pgd_ip(ptq->pt, ip, offset, map__dso(al.map)->long_name); 1012 addr_location__exit(&al); 1013 return res; 1014 } 1015 1016 static bool intel_pt_pgd_ip(uint64_t ip, void *data) 1017 { 1018 return __intel_pt_pgd_ip(ip, data) > 0; 1019 } 1020 1021 static bool intel_pt_get_config(struct intel_pt *pt, 1022 struct perf_event_attr *attr, u64 *config) 1023 { 1024 if (attr->type == pt->pmu_type) { 1025 if (config) 1026 *config = attr->config; 1027 return true; 1028 } 1029 1030 return false; 1031 } 1032 1033 static bool intel_pt_exclude_kernel(struct intel_pt *pt) 1034 { 1035 struct evsel *evsel; 1036 1037 evlist__for_each_entry(pt->session->evlist, evsel) { 1038 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 1039 !evsel->core.attr.exclude_kernel) 1040 return false; 1041 } 1042 return true; 1043 } 1044 1045 static bool intel_pt_return_compression(struct intel_pt *pt) 1046 { 1047 struct evsel *evsel; 1048 u64 config; 1049 1050 if (!pt->noretcomp_bit) 1051 return true; 1052 1053 evlist__for_each_entry(pt->session->evlist, evsel) { 1054 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 1055 (config & pt->noretcomp_bit)) 1056 return false; 1057 } 1058 return true; 1059 } 1060 1061 static bool intel_pt_branch_enable(struct intel_pt *pt) 1062 { 1063 struct evsel *evsel; 1064 u64 config; 1065 1066 evlist__for_each_entry(pt->session->evlist, evsel) { 1067 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 1068 (config & INTEL_PT_CFG_PASS_THRU) && 1069 !(config & INTEL_PT_CFG_BRANCH_EN)) 1070 return false; 1071 } 1072 return true; 1073 } 1074 1075 static bool intel_pt_disabled_tnt(struct intel_pt *pt) 1076 { 1077 struct evsel *evsel; 1078 u64 config; 1079 1080 evlist__for_each_entry(pt->session->evlist, evsel) { 1081 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 1082 config & INTEL_PT_CFG_TNT_DIS) 1083 return true; 1084 } 1085 return false; 1086 } 1087 1088 static unsigned int intel_pt_mtc_period(struct intel_pt *pt) 1089 { 1090 struct evsel *evsel; 1091 unsigned int shift; 1092 u64 config; 1093 1094 if (!pt->mtc_freq_bits) 1095 return 0; 1096 1097 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++) 1098 config >>= 1; 1099 1100 evlist__for_each_entry(pt->session->evlist, evsel) { 1101 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) 1102 return (config & pt->mtc_freq_bits) >> shift; 1103 } 1104 return 0; 1105 } 1106 1107 static bool intel_pt_timeless_decoding(struct intel_pt *pt) 1108 { 1109 struct evsel *evsel; 1110 bool timeless_decoding = true; 1111 u64 config; 1112 1113 if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding) 1114 return true; 1115 1116 evlist__for_each_entry(pt->session->evlist, evsel) { 1117 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 1118 return true; 1119 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 1120 if (config & pt->tsc_bit) 1121 timeless_decoding = false; 1122 else 1123 return true; 1124 } 1125 } 1126 return timeless_decoding; 1127 } 1128 1129 static bool intel_pt_tracing_kernel(struct intel_pt *pt) 1130 { 1131 struct evsel *evsel; 1132 1133 evlist__for_each_entry(pt->session->evlist, evsel) { 1134 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 1135 !evsel->core.attr.exclude_kernel) 1136 return true; 1137 } 1138 return false; 1139 } 1140 1141 static bool intel_pt_have_tsc(struct intel_pt *pt) 1142 { 1143 struct evsel *evsel; 1144 bool have_tsc = false; 1145 u64 config; 1146 1147 if (!pt->tsc_bit) 1148 return false; 1149 1150 evlist__for_each_entry(pt->session->evlist, evsel) { 1151 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 1152 if (config & pt->tsc_bit) 1153 have_tsc = true; 1154 else 1155 return false; 1156 } 1157 } 1158 return have_tsc; 1159 } 1160 1161 static bool intel_pt_have_mtc(struct intel_pt *pt) 1162 { 1163 struct evsel *evsel; 1164 u64 config; 1165 1166 evlist__for_each_entry(pt->session->evlist, evsel) { 1167 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 1168 (config & pt->mtc_bit)) 1169 return true; 1170 } 1171 return false; 1172 } 1173 1174 static bool intel_pt_sampling_mode(struct intel_pt *pt) 1175 { 1176 struct evsel *evsel; 1177 1178 evlist__for_each_entry(pt->session->evlist, evsel) { 1179 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) && 1180 evsel->core.attr.aux_sample_size) 1181 return true; 1182 } 1183 return false; 1184 } 1185 1186 static u64 intel_pt_ctl(struct intel_pt *pt) 1187 { 1188 struct evsel *evsel; 1189 u64 config; 1190 1191 evlist__for_each_entry(pt->session->evlist, evsel) { 1192 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) 1193 return config; 1194 } 1195 return 0; 1196 } 1197 1198 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns) 1199 { 1200 u64 quot, rem; 1201 1202 quot = ns / pt->tc.time_mult; 1203 rem = ns % pt->tc.time_mult; 1204 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) / 1205 pt->tc.time_mult; 1206 } 1207 1208 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt) 1209 { 1210 size_t sz = sizeof(struct ip_callchain); 1211 1212 /* Add 1 to callchain_sz for callchain context */ 1213 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64); 1214 return zalloc(sz); 1215 } 1216 1217 static int intel_pt_callchain_init(struct intel_pt *pt) 1218 { 1219 struct evsel *evsel; 1220 1221 evlist__for_each_entry(pt->session->evlist, evsel) { 1222 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN)) 1223 evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN; 1224 } 1225 1226 pt->chain = intel_pt_alloc_chain(pt); 1227 if (!pt->chain) 1228 return -ENOMEM; 1229 1230 return 0; 1231 } 1232 1233 static void intel_pt_add_callchain(struct intel_pt *pt, 1234 struct perf_sample *sample) 1235 { 1236 struct thread *thread = machine__findnew_thread(pt->machine, 1237 sample->pid, 1238 sample->tid); 1239 1240 thread_stack__sample_late(thread, sample->cpu, pt->chain, 1241 pt->synth_opts.callchain_sz + 1, sample->ip, 1242 pt->kernel_start); 1243 1244 sample->callchain = pt->chain; 1245 } 1246 1247 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt) 1248 { 1249 size_t sz = sizeof(struct branch_stack); 1250 1251 sz += entry_cnt * sizeof(struct branch_entry); 1252 return zalloc(sz); 1253 } 1254 1255 static int intel_pt_br_stack_init(struct intel_pt *pt) 1256 { 1257 struct evsel *evsel; 1258 1259 evlist__for_each_entry(pt->session->evlist, evsel) { 1260 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK)) 1261 evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK; 1262 } 1263 1264 pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz); 1265 if (!pt->br_stack) 1266 return -ENOMEM; 1267 1268 return 0; 1269 } 1270 1271 static void intel_pt_add_br_stack(struct intel_pt *pt, 1272 struct perf_sample *sample) 1273 { 1274 struct thread *thread = machine__findnew_thread(pt->machine, 1275 sample->pid, 1276 sample->tid); 1277 1278 thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack, 1279 pt->br_stack_sz, sample->ip, 1280 pt->kernel_start); 1281 1282 sample->branch_stack = pt->br_stack; 1283 thread__put(thread); 1284 } 1285 1286 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */ 1287 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U) 1288 1289 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt, 1290 unsigned int queue_nr) 1291 { 1292 struct intel_pt_params params = { .get_trace = 0, }; 1293 struct perf_env *env = pt->machine->env; 1294 struct intel_pt_queue *ptq; 1295 1296 ptq = zalloc(sizeof(struct intel_pt_queue)); 1297 if (!ptq) 1298 return NULL; 1299 1300 if (pt->synth_opts.callchain) { 1301 ptq->chain = intel_pt_alloc_chain(pt); 1302 if (!ptq->chain) 1303 goto out_free; 1304 } 1305 1306 if (pt->synth_opts.last_branch || pt->synth_opts.other_events) { 1307 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz); 1308 1309 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt); 1310 if (!ptq->last_branch) 1311 goto out_free; 1312 } 1313 1314 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 1315 if (!ptq->event_buf) 1316 goto out_free; 1317 1318 ptq->pt = pt; 1319 ptq->queue_nr = queue_nr; 1320 ptq->exclude_kernel = intel_pt_exclude_kernel(pt); 1321 ptq->pid = -1; 1322 ptq->tid = -1; 1323 ptq->cpu = -1; 1324 ptq->next_tid = -1; 1325 1326 params.get_trace = intel_pt_get_trace; 1327 params.walk_insn = intel_pt_walk_next_insn; 1328 params.lookahead = intel_pt_lookahead; 1329 params.findnew_vmcs_info = intel_pt_findnew_vmcs_info; 1330 params.data = ptq; 1331 params.return_compression = intel_pt_return_compression(pt); 1332 params.branch_enable = intel_pt_branch_enable(pt); 1333 params.ctl = intel_pt_ctl(pt); 1334 params.max_non_turbo_ratio = pt->max_non_turbo_ratio; 1335 params.mtc_period = intel_pt_mtc_period(pt); 1336 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n; 1337 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d; 1338 params.quick = pt->synth_opts.quick; 1339 params.vm_time_correlation = pt->synth_opts.vm_time_correlation; 1340 params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run; 1341 params.first_timestamp = pt->first_timestamp; 1342 params.max_loops = pt->max_loops; 1343 1344 /* Cannot walk code without TNT, so force 'quick' mode */ 1345 if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick) 1346 params.quick = 1; 1347 1348 if (pt->filts.cnt > 0) 1349 params.pgd_ip = intel_pt_pgd_ip; 1350 1351 if (pt->synth_opts.instructions || pt->synth_opts.cycles) { 1352 if (pt->synth_opts.period) { 1353 switch (pt->synth_opts.period_type) { 1354 case PERF_ITRACE_PERIOD_INSTRUCTIONS: 1355 params.period_type = 1356 INTEL_PT_PERIOD_INSTRUCTIONS; 1357 params.period = pt->synth_opts.period; 1358 break; 1359 case PERF_ITRACE_PERIOD_TICKS: 1360 params.period_type = INTEL_PT_PERIOD_TICKS; 1361 params.period = pt->synth_opts.period; 1362 break; 1363 case PERF_ITRACE_PERIOD_NANOSECS: 1364 params.period_type = INTEL_PT_PERIOD_TICKS; 1365 params.period = intel_pt_ns_to_ticks(pt, 1366 pt->synth_opts.period); 1367 break; 1368 default: 1369 break; 1370 } 1371 } 1372 1373 if (!params.period) { 1374 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS; 1375 params.period = 1; 1376 } 1377 } 1378 1379 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18)) 1380 params.flags |= INTEL_PT_FUP_WITH_NLIP; 1381 1382 ptq->decoder = intel_pt_decoder_new(¶ms); 1383 if (!ptq->decoder) 1384 goto out_free; 1385 1386 return ptq; 1387 1388 out_free: 1389 zfree(&ptq->event_buf); 1390 zfree(&ptq->last_branch); 1391 zfree(&ptq->chain); 1392 free(ptq); 1393 return NULL; 1394 } 1395 1396 static void intel_pt_free_queue(void *priv) 1397 { 1398 struct intel_pt_queue *ptq = priv; 1399 1400 if (!ptq) 1401 return; 1402 thread__zput(ptq->thread); 1403 thread__zput(ptq->guest_thread); 1404 thread__zput(ptq->unknown_guest_thread); 1405 intel_pt_decoder_free(ptq->decoder); 1406 zfree(&ptq->event_buf); 1407 zfree(&ptq->last_branch); 1408 zfree(&ptq->chain); 1409 free(ptq); 1410 } 1411 1412 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp) 1413 { 1414 unsigned int i; 1415 1416 pt->first_timestamp = timestamp; 1417 1418 for (i = 0; i < pt->queues.nr_queues; i++) { 1419 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 1420 struct intel_pt_queue *ptq = queue->priv; 1421 1422 if (ptq && ptq->decoder) 1423 intel_pt_set_first_timestamp(ptq->decoder, timestamp); 1424 } 1425 } 1426 1427 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq) 1428 { 1429 struct machines *machines = &ptq->pt->session->machines; 1430 struct machine *machine; 1431 pid_t machine_pid = ptq->pid; 1432 pid_t tid; 1433 int vcpu; 1434 1435 if (machine_pid <= 0) 1436 return 0; /* Not a guest machine */ 1437 1438 machine = machines__find(machines, machine_pid); 1439 if (!machine) 1440 return 0; /* Not a guest machine */ 1441 1442 if (ptq->guest_machine != machine) { 1443 ptq->guest_machine = NULL; 1444 thread__zput(ptq->guest_thread); 1445 thread__zput(ptq->unknown_guest_thread); 1446 1447 ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0); 1448 if (!ptq->unknown_guest_thread) 1449 return -1; 1450 ptq->guest_machine = machine; 1451 } 1452 1453 vcpu = ptq->thread ? thread__guest_cpu(ptq->thread) : -1; 1454 if (vcpu < 0) 1455 return -1; 1456 1457 tid = machine__get_current_tid(machine, vcpu); 1458 1459 if (ptq->guest_thread && thread__tid(ptq->guest_thread) != tid) 1460 thread__zput(ptq->guest_thread); 1461 1462 if (!ptq->guest_thread) { 1463 ptq->guest_thread = machine__find_thread(machine, -1, tid); 1464 if (!ptq->guest_thread) 1465 return -1; 1466 } 1467 1468 ptq->guest_machine_pid = machine_pid; 1469 ptq->guest_pid = thread__pid(ptq->guest_thread); 1470 ptq->guest_tid = tid; 1471 ptq->vcpu = vcpu; 1472 1473 return 0; 1474 } 1475 1476 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt, 1477 struct auxtrace_queue *queue) 1478 { 1479 struct intel_pt_queue *ptq = queue->priv; 1480 1481 if (queue->tid == -1 || pt->have_sched_switch) { 1482 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu); 1483 if (ptq->tid == -1) 1484 ptq->pid = -1; 1485 thread__zput(ptq->thread); 1486 } 1487 1488 if (!ptq->thread && ptq->tid != -1) 1489 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid); 1490 1491 if (ptq->thread) { 1492 ptq->pid = thread__pid(ptq->thread); 1493 if (queue->cpu == -1) 1494 ptq->cpu = thread__cpu(ptq->thread); 1495 } 1496 1497 if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) { 1498 ptq->guest_machine_pid = 0; 1499 ptq->guest_pid = -1; 1500 ptq->guest_tid = -1; 1501 ptq->vcpu = -1; 1502 } 1503 } 1504 1505 static void intel_pt_sample_flags(struct intel_pt_queue *ptq) 1506 { 1507 struct intel_pt *pt = ptq->pt; 1508 1509 ptq->insn_len = 0; 1510 if (ptq->state->flags & INTEL_PT_ABORT_TX) { 1511 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT; 1512 } else if (ptq->state->flags & INTEL_PT_ASYNC) { 1513 if (!ptq->state->to_ip) 1514 ptq->flags = PERF_IP_FLAG_BRANCH | 1515 PERF_IP_FLAG_ASYNC | 1516 PERF_IP_FLAG_TRACE_END; 1517 else if (ptq->state->from_nr && !ptq->state->to_nr) 1518 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | 1519 PERF_IP_FLAG_ASYNC | 1520 PERF_IP_FLAG_VMEXIT; 1521 else 1522 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | 1523 PERF_IP_FLAG_ASYNC | 1524 PERF_IP_FLAG_INTERRUPT; 1525 } else { 1526 if (ptq->state->from_ip) 1527 ptq->flags = intel_pt_insn_type(ptq->state->insn_op); 1528 else 1529 ptq->flags = PERF_IP_FLAG_BRANCH | 1530 PERF_IP_FLAG_TRACE_BEGIN; 1531 if (ptq->state->flags & INTEL_PT_IN_TX) 1532 ptq->flags |= PERF_IP_FLAG_IN_TX; 1533 ptq->insn_len = ptq->state->insn_len; 1534 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ); 1535 } 1536 1537 if (ptq->state->type & INTEL_PT_TRACE_BEGIN) 1538 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN; 1539 if (ptq->state->type & INTEL_PT_TRACE_END) 1540 ptq->flags |= PERF_IP_FLAG_TRACE_END; 1541 1542 if (pt->cap_event_trace) { 1543 if (ptq->state->type & INTEL_PT_IFLAG_CHG) { 1544 if (!ptq->state->from_iflag) 1545 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE; 1546 if (ptq->state->from_iflag != ptq->state->to_iflag) 1547 ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE; 1548 } else if (!ptq->state->to_iflag) { 1549 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE; 1550 } 1551 } 1552 } 1553 1554 static void intel_pt_setup_time_range(struct intel_pt *pt, 1555 struct intel_pt_queue *ptq) 1556 { 1557 if (!pt->range_cnt) 1558 return; 1559 1560 ptq->sel_timestamp = pt->time_ranges[0].start; 1561 ptq->sel_idx = 0; 1562 1563 if (ptq->sel_timestamp) { 1564 ptq->sel_start = true; 1565 } else { 1566 ptq->sel_timestamp = pt->time_ranges[0].end; 1567 ptq->sel_start = false; 1568 } 1569 } 1570 1571 static int intel_pt_setup_queue(struct intel_pt *pt, 1572 struct auxtrace_queue *queue, 1573 unsigned int queue_nr) 1574 { 1575 struct intel_pt_queue *ptq = queue->priv; 1576 1577 if (list_empty(&queue->head)) 1578 return 0; 1579 1580 if (!ptq) { 1581 ptq = intel_pt_alloc_queue(pt, queue_nr); 1582 if (!ptq) 1583 return -ENOMEM; 1584 queue->priv = ptq; 1585 1586 if (queue->cpu != -1) 1587 ptq->cpu = queue->cpu; 1588 ptq->tid = queue->tid; 1589 1590 ptq->cbr_seen = UINT_MAX; 1591 1592 if (pt->sampling_mode && !pt->snapshot_mode && 1593 pt->timeless_decoding) 1594 ptq->step_through_buffers = true; 1595 1596 ptq->sync_switch = pt->sync_switch; 1597 1598 intel_pt_setup_time_range(pt, ptq); 1599 } 1600 1601 if (!ptq->on_heap && 1602 (!ptq->sync_switch || 1603 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) { 1604 const struct intel_pt_state *state; 1605 int ret; 1606 1607 if (pt->timeless_decoding) 1608 return 0; 1609 1610 intel_pt_log("queue %u getting timestamp\n", queue_nr); 1611 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 1612 queue_nr, ptq->cpu, ptq->pid, ptq->tid); 1613 1614 if (ptq->sel_start && ptq->sel_timestamp) { 1615 ret = intel_pt_fast_forward(ptq->decoder, 1616 ptq->sel_timestamp); 1617 if (ret) 1618 return ret; 1619 } 1620 1621 while (1) { 1622 state = intel_pt_decode(ptq->decoder); 1623 if (state->err) { 1624 if (state->err == INTEL_PT_ERR_NODATA) { 1625 intel_pt_log("queue %u has no timestamp\n", 1626 queue_nr); 1627 return 0; 1628 } 1629 continue; 1630 } 1631 if (state->timestamp) 1632 break; 1633 } 1634 1635 ptq->timestamp = state->timestamp; 1636 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n", 1637 queue_nr, ptq->timestamp); 1638 ptq->state = state; 1639 ptq->have_sample = true; 1640 if (ptq->sel_start && ptq->sel_timestamp && 1641 ptq->timestamp < ptq->sel_timestamp) 1642 ptq->have_sample = false; 1643 intel_pt_sample_flags(ptq); 1644 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp); 1645 if (ret) 1646 return ret; 1647 ptq->on_heap = true; 1648 } 1649 1650 return 0; 1651 } 1652 1653 static int intel_pt_setup_queues(struct intel_pt *pt) 1654 { 1655 unsigned int i; 1656 int ret; 1657 1658 for (i = 0; i < pt->queues.nr_queues; i++) { 1659 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i); 1660 if (ret) 1661 return ret; 1662 } 1663 return 0; 1664 } 1665 1666 static inline bool intel_pt_skip_event(struct intel_pt *pt) 1667 { 1668 return pt->synth_opts.initial_skip && 1669 pt->num_events++ < pt->synth_opts.initial_skip; 1670 } 1671 1672 /* 1673 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen. 1674 * Also ensure CBR is first non-skipped event by allowing for 4 more samples 1675 * from this decoder state. 1676 */ 1677 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt) 1678 { 1679 return pt->synth_opts.initial_skip && 1680 pt->num_events + 4 < pt->synth_opts.initial_skip; 1681 } 1682 1683 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq, 1684 union perf_event *event, 1685 struct perf_sample *sample) 1686 { 1687 event->sample.header.type = PERF_RECORD_SAMPLE; 1688 event->sample.header.size = sizeof(struct perf_event_header); 1689 1690 sample->pid = ptq->pid; 1691 sample->tid = ptq->tid; 1692 1693 if (ptq->pt->have_guest_sideband) { 1694 if ((ptq->state->from_ip && ptq->state->from_nr) || 1695 (ptq->state->to_ip && ptq->state->to_nr)) { 1696 sample->pid = ptq->guest_pid; 1697 sample->tid = ptq->guest_tid; 1698 sample->machine_pid = ptq->guest_machine_pid; 1699 sample->vcpu = ptq->vcpu; 1700 } 1701 } 1702 1703 sample->cpu = ptq->cpu; 1704 sample->insn_len = ptq->insn_len; 1705 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ); 1706 } 1707 1708 static void intel_pt_prep_b_sample(struct intel_pt *pt, 1709 struct intel_pt_queue *ptq, 1710 union perf_event *event, 1711 struct perf_sample *sample) 1712 { 1713 intel_pt_prep_a_sample(ptq, event, sample); 1714 1715 if (!pt->timeless_decoding) 1716 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc); 1717 1718 sample->ip = ptq->state->from_ip; 1719 sample->addr = ptq->state->to_ip; 1720 sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr); 1721 sample->period = 1; 1722 sample->flags = ptq->flags; 1723 1724 event->sample.header.misc = sample->cpumode; 1725 } 1726 1727 static int intel_pt_inject_event(union perf_event *event, 1728 struct perf_sample *sample, u64 type) 1729 { 1730 event->header.size = perf_event__sample_event_size(sample, type, 0); 1731 return perf_event__synthesize_sample(event, type, 0, sample); 1732 } 1733 1734 static inline int intel_pt_opt_inject(struct intel_pt *pt, 1735 union perf_event *event, 1736 struct perf_sample *sample, u64 type) 1737 { 1738 if (!pt->synth_opts.inject) 1739 return 0; 1740 1741 return intel_pt_inject_event(event, sample, type); 1742 } 1743 1744 static int intel_pt_deliver_synth_event(struct intel_pt *pt, 1745 union perf_event *event, 1746 struct perf_sample *sample, u64 type) 1747 { 1748 int ret; 1749 1750 ret = intel_pt_opt_inject(pt, event, sample, type); 1751 if (ret) 1752 return ret; 1753 1754 ret = perf_session__deliver_synth_event(pt->session, event, sample); 1755 if (ret) 1756 pr_err("Intel PT: failed to deliver event, error %d\n", ret); 1757 1758 return ret; 1759 } 1760 1761 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq) 1762 { 1763 struct intel_pt *pt = ptq->pt; 1764 union perf_event *event = ptq->event_buf; 1765 struct perf_sample sample = { .ip = 0, }; 1766 struct dummy_branch_stack { 1767 u64 nr; 1768 u64 hw_idx; 1769 struct branch_entry entries; 1770 } dummy_bs; 1771 1772 if (pt->branches_filter && !(pt->branches_filter & ptq->flags)) 1773 return 0; 1774 1775 if (intel_pt_skip_event(pt)) 1776 return 0; 1777 1778 intel_pt_prep_b_sample(pt, ptq, event, &sample); 1779 1780 sample.id = ptq->pt->branches_id; 1781 sample.stream_id = ptq->pt->branches_id; 1782 1783 /* 1784 * perf report cannot handle events without a branch stack when using 1785 * SORT_MODE__BRANCH so make a dummy one. 1786 */ 1787 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) { 1788 dummy_bs = (struct dummy_branch_stack){ 1789 .nr = 1, 1790 .hw_idx = -1ULL, 1791 .entries = { 1792 .from = sample.ip, 1793 .to = sample.addr, 1794 }, 1795 }; 1796 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1797 } 1798 1799 if (ptq->sample_ipc) 1800 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt; 1801 if (sample.cyc_cnt) { 1802 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt; 1803 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt; 1804 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt; 1805 } 1806 1807 return intel_pt_deliver_synth_event(pt, event, &sample, 1808 pt->branches_sample_type); 1809 } 1810 1811 static void intel_pt_prep_sample(struct intel_pt *pt, 1812 struct intel_pt_queue *ptq, 1813 union perf_event *event, 1814 struct perf_sample *sample) 1815 { 1816 intel_pt_prep_b_sample(pt, ptq, event, sample); 1817 1818 if (pt->synth_opts.callchain) { 1819 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 1820 pt->synth_opts.callchain_sz + 1, 1821 sample->ip, pt->kernel_start); 1822 sample->callchain = ptq->chain; 1823 } 1824 1825 if (pt->synth_opts.last_branch) { 1826 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch, 1827 pt->br_stack_sz); 1828 sample->branch_stack = ptq->last_branch; 1829 } 1830 } 1831 1832 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq) 1833 { 1834 struct intel_pt *pt = ptq->pt; 1835 union perf_event *event = ptq->event_buf; 1836 struct perf_sample sample = { .ip = 0, }; 1837 1838 if (intel_pt_skip_event(pt)) 1839 return 0; 1840 1841 intel_pt_prep_sample(pt, ptq, event, &sample); 1842 1843 sample.id = ptq->pt->instructions_id; 1844 sample.stream_id = ptq->pt->instructions_id; 1845 if (pt->synth_opts.quick) 1846 sample.period = 1; 1847 else 1848 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt; 1849 1850 if (ptq->sample_ipc) 1851 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt; 1852 if (sample.cyc_cnt) { 1853 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt; 1854 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt; 1855 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt; 1856 } 1857 1858 ptq->last_insn_cnt = ptq->state->tot_insn_cnt; 1859 1860 return intel_pt_deliver_synth_event(pt, event, &sample, 1861 pt->instructions_sample_type); 1862 } 1863 1864 static int intel_pt_synth_cycle_sample(struct intel_pt_queue *ptq) 1865 { 1866 struct intel_pt *pt = ptq->pt; 1867 union perf_event *event = ptq->event_buf; 1868 struct perf_sample sample = { .ip = 0, }; 1869 u64 period = 0; 1870 1871 if (ptq->sample_ipc) 1872 period = ptq->ipc_cyc_cnt - ptq->last_cy_cyc_cnt; 1873 1874 if (!period || intel_pt_skip_event(pt)) 1875 return 0; 1876 1877 intel_pt_prep_sample(pt, ptq, event, &sample); 1878 1879 sample.id = ptq->pt->cycles_id; 1880 sample.stream_id = ptq->pt->cycles_id; 1881 sample.period = period; 1882 1883 sample.cyc_cnt = period; 1884 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_cy_insn_cnt; 1885 ptq->last_cy_insn_cnt = ptq->ipc_insn_cnt; 1886 ptq->last_cy_cyc_cnt = ptq->ipc_cyc_cnt; 1887 1888 return intel_pt_deliver_synth_event(pt, event, &sample, pt->cycles_sample_type); 1889 } 1890 1891 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq) 1892 { 1893 struct intel_pt *pt = ptq->pt; 1894 union perf_event *event = ptq->event_buf; 1895 struct perf_sample sample = { .ip = 0, }; 1896 1897 if (intel_pt_skip_event(pt)) 1898 return 0; 1899 1900 intel_pt_prep_sample(pt, ptq, event, &sample); 1901 1902 sample.id = ptq->pt->transactions_id; 1903 sample.stream_id = ptq->pt->transactions_id; 1904 1905 return intel_pt_deliver_synth_event(pt, event, &sample, 1906 pt->transactions_sample_type); 1907 } 1908 1909 static void intel_pt_prep_p_sample(struct intel_pt *pt, 1910 struct intel_pt_queue *ptq, 1911 union perf_event *event, 1912 struct perf_sample *sample) 1913 { 1914 intel_pt_prep_sample(pt, ptq, event, sample); 1915 1916 /* 1917 * Zero IP is used to mean "trace start" but that is not the case for 1918 * power or PTWRITE events with no IP, so clear the flags. 1919 */ 1920 if (!sample->ip) 1921 sample->flags = 0; 1922 } 1923 1924 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq) 1925 { 1926 struct intel_pt *pt = ptq->pt; 1927 union perf_event *event = ptq->event_buf; 1928 struct perf_sample sample = { .ip = 0, }; 1929 struct perf_synth_intel_ptwrite raw; 1930 1931 if (intel_pt_skip_event(pt)) 1932 return 0; 1933 1934 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1935 1936 sample.id = ptq->pt->ptwrites_id; 1937 sample.stream_id = ptq->pt->ptwrites_id; 1938 1939 raw.flags = 0; 1940 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1941 raw.payload = cpu_to_le64(ptq->state->ptw_payload); 1942 1943 sample.raw_size = perf_synth__raw_size(raw); 1944 sample.raw_data = perf_synth__raw_data(&raw); 1945 1946 return intel_pt_deliver_synth_event(pt, event, &sample, 1947 pt->ptwrites_sample_type); 1948 } 1949 1950 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq) 1951 { 1952 struct intel_pt *pt = ptq->pt; 1953 union perf_event *event = ptq->event_buf; 1954 struct perf_sample sample = { .ip = 0, }; 1955 struct perf_synth_intel_cbr raw; 1956 u32 flags; 1957 1958 if (intel_pt_skip_cbr_event(pt)) 1959 return 0; 1960 1961 ptq->cbr_seen = ptq->state->cbr; 1962 1963 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1964 1965 sample.id = ptq->pt->cbr_id; 1966 sample.stream_id = ptq->pt->cbr_id; 1967 1968 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16); 1969 raw.flags = cpu_to_le32(flags); 1970 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz); 1971 raw.reserved3 = 0; 1972 1973 sample.raw_size = perf_synth__raw_size(raw); 1974 sample.raw_data = perf_synth__raw_data(&raw); 1975 1976 return intel_pt_deliver_synth_event(pt, event, &sample, 1977 pt->pwr_events_sample_type); 1978 } 1979 1980 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq) 1981 { 1982 struct intel_pt *pt = ptq->pt; 1983 union perf_event *event = ptq->event_buf; 1984 struct perf_sample sample = { .ip = 0, }; 1985 struct perf_synth_intel_psb raw; 1986 1987 if (intel_pt_skip_event(pt)) 1988 return 0; 1989 1990 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1991 1992 sample.id = ptq->pt->psb_id; 1993 sample.stream_id = ptq->pt->psb_id; 1994 sample.flags = 0; 1995 1996 raw.reserved = 0; 1997 raw.offset = ptq->state->psb_offset; 1998 1999 sample.raw_size = perf_synth__raw_size(raw); 2000 sample.raw_data = perf_synth__raw_data(&raw); 2001 2002 return intel_pt_deliver_synth_event(pt, event, &sample, 2003 pt->pwr_events_sample_type); 2004 } 2005 2006 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq) 2007 { 2008 struct intel_pt *pt = ptq->pt; 2009 union perf_event *event = ptq->event_buf; 2010 struct perf_sample sample = { .ip = 0, }; 2011 struct perf_synth_intel_mwait raw; 2012 2013 if (intel_pt_skip_event(pt)) 2014 return 0; 2015 2016 intel_pt_prep_p_sample(pt, ptq, event, &sample); 2017 2018 sample.id = ptq->pt->mwait_id; 2019 sample.stream_id = ptq->pt->mwait_id; 2020 2021 raw.reserved = 0; 2022 raw.payload = cpu_to_le64(ptq->state->mwait_payload); 2023 2024 sample.raw_size = perf_synth__raw_size(raw); 2025 sample.raw_data = perf_synth__raw_data(&raw); 2026 2027 return intel_pt_deliver_synth_event(pt, event, &sample, 2028 pt->pwr_events_sample_type); 2029 } 2030 2031 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq) 2032 { 2033 struct intel_pt *pt = ptq->pt; 2034 union perf_event *event = ptq->event_buf; 2035 struct perf_sample sample = { .ip = 0, }; 2036 struct perf_synth_intel_pwre raw; 2037 2038 if (intel_pt_skip_event(pt)) 2039 return 0; 2040 2041 intel_pt_prep_p_sample(pt, ptq, event, &sample); 2042 2043 sample.id = ptq->pt->pwre_id; 2044 sample.stream_id = ptq->pt->pwre_id; 2045 2046 raw.reserved = 0; 2047 raw.payload = cpu_to_le64(ptq->state->pwre_payload); 2048 2049 sample.raw_size = perf_synth__raw_size(raw); 2050 sample.raw_data = perf_synth__raw_data(&raw); 2051 2052 return intel_pt_deliver_synth_event(pt, event, &sample, 2053 pt->pwr_events_sample_type); 2054 } 2055 2056 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq) 2057 { 2058 struct intel_pt *pt = ptq->pt; 2059 union perf_event *event = ptq->event_buf; 2060 struct perf_sample sample = { .ip = 0, }; 2061 struct perf_synth_intel_exstop raw; 2062 2063 if (intel_pt_skip_event(pt)) 2064 return 0; 2065 2066 intel_pt_prep_p_sample(pt, ptq, event, &sample); 2067 2068 sample.id = ptq->pt->exstop_id; 2069 sample.stream_id = ptq->pt->exstop_id; 2070 2071 raw.flags = 0; 2072 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 2073 2074 sample.raw_size = perf_synth__raw_size(raw); 2075 sample.raw_data = perf_synth__raw_data(&raw); 2076 2077 return intel_pt_deliver_synth_event(pt, event, &sample, 2078 pt->pwr_events_sample_type); 2079 } 2080 2081 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq) 2082 { 2083 struct intel_pt *pt = ptq->pt; 2084 union perf_event *event = ptq->event_buf; 2085 struct perf_sample sample = { .ip = 0, }; 2086 struct perf_synth_intel_pwrx raw; 2087 2088 if (intel_pt_skip_event(pt)) 2089 return 0; 2090 2091 intel_pt_prep_p_sample(pt, ptq, event, &sample); 2092 2093 sample.id = ptq->pt->pwrx_id; 2094 sample.stream_id = ptq->pt->pwrx_id; 2095 2096 raw.reserved = 0; 2097 raw.payload = cpu_to_le64(ptq->state->pwrx_payload); 2098 2099 sample.raw_size = perf_synth__raw_size(raw); 2100 sample.raw_data = perf_synth__raw_data(&raw); 2101 2102 return intel_pt_deliver_synth_event(pt, event, &sample, 2103 pt->pwr_events_sample_type); 2104 } 2105 2106 /* 2107 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer 2108 * intel_pt_add_gp_regs(). 2109 */ 2110 static const int pebs_gp_regs[] = { 2111 [PERF_REG_X86_FLAGS] = 1, 2112 [PERF_REG_X86_IP] = 2, 2113 [PERF_REG_X86_AX] = 3, 2114 [PERF_REG_X86_CX] = 4, 2115 [PERF_REG_X86_DX] = 5, 2116 [PERF_REG_X86_BX] = 6, 2117 [PERF_REG_X86_SP] = 7, 2118 [PERF_REG_X86_BP] = 8, 2119 [PERF_REG_X86_SI] = 9, 2120 [PERF_REG_X86_DI] = 10, 2121 [PERF_REG_X86_R8] = 11, 2122 [PERF_REG_X86_R9] = 12, 2123 [PERF_REG_X86_R10] = 13, 2124 [PERF_REG_X86_R11] = 14, 2125 [PERF_REG_X86_R12] = 15, 2126 [PERF_REG_X86_R13] = 16, 2127 [PERF_REG_X86_R14] = 17, 2128 [PERF_REG_X86_R15] = 18, 2129 }; 2130 2131 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos, 2132 const struct intel_pt_blk_items *items, 2133 u64 regs_mask) 2134 { 2135 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS]; 2136 u32 mask = items->mask[INTEL_PT_GP_REGS_POS]; 2137 u32 bit; 2138 int i; 2139 2140 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) { 2141 /* Get the PEBS gp_regs array index */ 2142 int n = pebs_gp_regs[i] - 1; 2143 2144 if (n < 0) 2145 continue; 2146 /* 2147 * Add only registers that were requested (i.e. 'regs_mask') and 2148 * that were provided (i.e. 'mask'), and update the resulting 2149 * mask (i.e. 'intr_regs->mask') accordingly. 2150 */ 2151 if (mask & 1 << n && regs_mask & bit) { 2152 intr_regs->mask |= bit; 2153 *pos++ = gp_regs[n]; 2154 } 2155 } 2156 2157 return pos; 2158 } 2159 2160 #ifndef PERF_REG_X86_XMM0 2161 #define PERF_REG_X86_XMM0 32 2162 #endif 2163 2164 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos, 2165 const struct intel_pt_blk_items *items, 2166 u64 regs_mask) 2167 { 2168 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0); 2169 const u64 *xmm = items->xmm; 2170 2171 /* 2172 * If there are any XMM registers, then there should be all of them. 2173 * Nevertheless, follow the logic to add only registers that were 2174 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'), 2175 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly. 2176 */ 2177 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0; 2178 2179 for (; mask; mask >>= 1, xmm++) { 2180 if (mask & 1) 2181 *pos++ = *xmm; 2182 } 2183 } 2184 2185 #define LBR_INFO_MISPRED (1ULL << 63) 2186 #define LBR_INFO_IN_TX (1ULL << 62) 2187 #define LBR_INFO_ABORT (1ULL << 61) 2188 #define LBR_INFO_CYCLES 0xffff 2189 2190 /* Refer kernel's intel_pmu_store_pebs_lbrs() */ 2191 static u64 intel_pt_lbr_flags(u64 info) 2192 { 2193 union { 2194 struct branch_flags flags; 2195 u64 result; 2196 } u; 2197 2198 u.result = 0; 2199 u.flags.mispred = !!(info & LBR_INFO_MISPRED); 2200 u.flags.predicted = !(info & LBR_INFO_MISPRED); 2201 u.flags.in_tx = !!(info & LBR_INFO_IN_TX); 2202 u.flags.abort = !!(info & LBR_INFO_ABORT); 2203 u.flags.cycles = info & LBR_INFO_CYCLES; 2204 2205 return u.result; 2206 } 2207 2208 static void intel_pt_add_lbrs(struct branch_stack *br_stack, 2209 const struct intel_pt_blk_items *items) 2210 { 2211 u64 *to; 2212 int i; 2213 2214 br_stack->nr = 0; 2215 2216 to = &br_stack->entries[0].from; 2217 2218 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) { 2219 u32 mask = items->mask[i]; 2220 const u64 *from = items->val[i]; 2221 2222 for (; mask; mask >>= 3, from += 3) { 2223 if ((mask & 7) == 7) { 2224 *to++ = from[0]; 2225 *to++ = from[1]; 2226 *to++ = intel_pt_lbr_flags(from[2]); 2227 br_stack->nr += 1; 2228 } 2229 } 2230 } 2231 } 2232 2233 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id) 2234 { 2235 const struct intel_pt_blk_items *items = &ptq->state->items; 2236 struct perf_sample sample = { .ip = 0, }; 2237 union perf_event *event = ptq->event_buf; 2238 struct intel_pt *pt = ptq->pt; 2239 u64 sample_type = evsel->core.attr.sample_type; 2240 u8 cpumode; 2241 u64 regs[8 * sizeof(sample.intr_regs.mask)]; 2242 2243 if (intel_pt_skip_event(pt)) 2244 return 0; 2245 2246 intel_pt_prep_a_sample(ptq, event, &sample); 2247 2248 sample.id = id; 2249 sample.stream_id = id; 2250 2251 if (!evsel->core.attr.freq) 2252 sample.period = evsel->core.attr.sample_period; 2253 2254 /* No support for non-zero CS base */ 2255 if (items->has_ip) 2256 sample.ip = items->ip; 2257 else if (items->has_rip) 2258 sample.ip = items->rip; 2259 else 2260 sample.ip = ptq->state->from_ip; 2261 2262 cpumode = intel_pt_cpumode(ptq, sample.ip, 0); 2263 2264 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP; 2265 2266 sample.cpumode = cpumode; 2267 2268 if (sample_type & PERF_SAMPLE_TIME) { 2269 u64 timestamp = 0; 2270 2271 if (items->has_timestamp) 2272 timestamp = items->timestamp; 2273 else if (!pt->timeless_decoding) 2274 timestamp = ptq->timestamp; 2275 if (timestamp) 2276 sample.time = tsc_to_perf_time(timestamp, &pt->tc); 2277 } 2278 2279 if (sample_type & PERF_SAMPLE_CALLCHAIN && 2280 pt->synth_opts.callchain) { 2281 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 2282 pt->synth_opts.callchain_sz, sample.ip, 2283 pt->kernel_start); 2284 sample.callchain = ptq->chain; 2285 } 2286 2287 if (sample_type & PERF_SAMPLE_REGS_INTR && 2288 (items->mask[INTEL_PT_GP_REGS_POS] || 2289 items->mask[INTEL_PT_XMM_POS])) { 2290 u64 regs_mask = evsel->core.attr.sample_regs_intr; 2291 u64 *pos; 2292 2293 sample.intr_regs.abi = items->is_32_bit ? 2294 PERF_SAMPLE_REGS_ABI_32 : 2295 PERF_SAMPLE_REGS_ABI_64; 2296 sample.intr_regs.regs = regs; 2297 2298 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask); 2299 2300 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask); 2301 } 2302 2303 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 2304 if (items->mask[INTEL_PT_LBR_0_POS] || 2305 items->mask[INTEL_PT_LBR_1_POS] || 2306 items->mask[INTEL_PT_LBR_2_POS]) { 2307 intel_pt_add_lbrs(ptq->last_branch, items); 2308 } else if (pt->synth_opts.last_branch) { 2309 thread_stack__br_sample(ptq->thread, ptq->cpu, 2310 ptq->last_branch, 2311 pt->br_stack_sz); 2312 } else { 2313 ptq->last_branch->nr = 0; 2314 } 2315 sample.branch_stack = ptq->last_branch; 2316 } 2317 2318 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address) 2319 sample.addr = items->mem_access_address; 2320 2321 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 2322 /* 2323 * Refer kernel's setup_pebs_adaptive_sample_data() and 2324 * intel_hsw_weight(). 2325 */ 2326 if (items->has_mem_access_latency) { 2327 u64 weight = items->mem_access_latency >> 32; 2328 2329 /* 2330 * Starts from SPR, the mem access latency field 2331 * contains both cache latency [47:32] and instruction 2332 * latency [15:0]. The cache latency is the same as the 2333 * mem access latency on previous platforms. 2334 * 2335 * In practice, no memory access could last than 4G 2336 * cycles. Use latency >> 32 to distinguish the 2337 * different format of the mem access latency field. 2338 */ 2339 if (weight > 0) { 2340 sample.weight = weight & 0xffff; 2341 sample.ins_lat = items->mem_access_latency & 0xffff; 2342 } else 2343 sample.weight = items->mem_access_latency; 2344 } 2345 if (!sample.weight && items->has_tsx_aux_info) { 2346 /* Cycles last block */ 2347 sample.weight = (u32)items->tsx_aux_info; 2348 } 2349 } 2350 2351 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) { 2352 u64 ax = items->has_rax ? items->rax : 0; 2353 /* Refer kernel's intel_hsw_transaction() */ 2354 u64 txn = (u8)(items->tsx_aux_info >> 32); 2355 2356 /* For RTM XABORTs also log the abort code from AX */ 2357 if (txn & PERF_TXN_TRANSACTION && ax & 1) 2358 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 2359 sample.transaction = txn; 2360 } 2361 2362 return intel_pt_deliver_synth_event(pt, event, &sample, sample_type); 2363 } 2364 2365 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq) 2366 { 2367 struct intel_pt *pt = ptq->pt; 2368 struct evsel *evsel = pt->pebs_evsel; 2369 u64 id = evsel->core.id[0]; 2370 2371 return intel_pt_do_synth_pebs_sample(ptq, evsel, id); 2372 } 2373 2374 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq) 2375 { 2376 const struct intel_pt_blk_items *items = &ptq->state->items; 2377 struct intel_pt_pebs_event *pe; 2378 struct intel_pt *pt = ptq->pt; 2379 int err = -EINVAL; 2380 int hw_id; 2381 2382 if (!items->has_applicable_counters || !items->applicable_counters) { 2383 if (!pt->single_pebs) 2384 pr_err("PEBS-via-PT record with no applicable_counters\n"); 2385 return intel_pt_synth_single_pebs_sample(ptq); 2386 } 2387 2388 for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) { 2389 pe = &ptq->pebs[hw_id]; 2390 if (!pe->evsel) { 2391 if (!pt->single_pebs) 2392 pr_err("PEBS-via-PT record with no matching event, hw_id %d\n", 2393 hw_id); 2394 return intel_pt_synth_single_pebs_sample(ptq); 2395 } 2396 err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id); 2397 if (err) 2398 return err; 2399 } 2400 2401 return err; 2402 } 2403 2404 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq) 2405 { 2406 struct intel_pt *pt = ptq->pt; 2407 union perf_event *event = ptq->event_buf; 2408 struct perf_sample sample = { .ip = 0, }; 2409 struct { 2410 struct perf_synth_intel_evt cfe; 2411 struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS]; 2412 } raw; 2413 int i; 2414 2415 if (intel_pt_skip_event(pt)) 2416 return 0; 2417 2418 intel_pt_prep_p_sample(pt, ptq, event, &sample); 2419 2420 sample.id = ptq->pt->evt_id; 2421 sample.stream_id = ptq->pt->evt_id; 2422 2423 raw.cfe.type = ptq->state->cfe_type; 2424 raw.cfe.reserved = 0; 2425 raw.cfe.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 2426 raw.cfe.vector = ptq->state->cfe_vector; 2427 raw.cfe.evd_cnt = ptq->state->evd_cnt; 2428 2429 for (i = 0; i < ptq->state->evd_cnt; i++) { 2430 raw.evd[i].et = 0; 2431 raw.evd[i].evd_type = ptq->state->evd[i].type; 2432 raw.evd[i].payload = ptq->state->evd[i].payload; 2433 } 2434 2435 sample.raw_size = perf_synth__raw_size(raw) + 2436 ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd); 2437 sample.raw_data = perf_synth__raw_data(&raw); 2438 2439 return intel_pt_deliver_synth_event(pt, event, &sample, 2440 pt->evt_sample_type); 2441 } 2442 2443 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq) 2444 { 2445 struct intel_pt *pt = ptq->pt; 2446 union perf_event *event = ptq->event_buf; 2447 struct perf_sample sample = { .ip = 0, }; 2448 struct perf_synth_intel_iflag_chg raw; 2449 2450 if (intel_pt_skip_event(pt)) 2451 return 0; 2452 2453 intel_pt_prep_p_sample(pt, ptq, event, &sample); 2454 2455 sample.id = ptq->pt->iflag_chg_id; 2456 sample.stream_id = ptq->pt->iflag_chg_id; 2457 2458 raw.flags = 0; 2459 raw.iflag = ptq->state->to_iflag; 2460 2461 if (ptq->state->type & INTEL_PT_BRANCH) { 2462 raw.via_branch = 1; 2463 raw.branch_ip = ptq->state->to_ip; 2464 } else { 2465 sample.addr = 0; 2466 } 2467 sample.flags = ptq->flags; 2468 2469 sample.raw_size = perf_synth__raw_size(raw); 2470 sample.raw_data = perf_synth__raw_data(&raw); 2471 2472 return intel_pt_deliver_synth_event(pt, event, &sample, 2473 pt->iflag_chg_sample_type); 2474 } 2475 2476 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu, 2477 pid_t pid, pid_t tid, u64 ip, u64 timestamp, 2478 pid_t machine_pid, int vcpu) 2479 { 2480 bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR; 2481 bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT; 2482 union perf_event event; 2483 char msg[MAX_AUXTRACE_ERROR_MSG]; 2484 int err; 2485 2486 if (pt->synth_opts.error_minus_flags) { 2487 if (code == INTEL_PT_ERR_OVR && 2488 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW) 2489 return 0; 2490 if (code == INTEL_PT_ERR_LOST && 2491 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST) 2492 return 0; 2493 } 2494 2495 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG); 2496 2497 auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE, 2498 code, cpu, pid, tid, ip, msg, timestamp, 2499 machine_pid, vcpu); 2500 2501 if (intel_pt_enable_logging && !log_on_stdout) { 2502 FILE *fp = intel_pt_log_fp(); 2503 2504 if (fp) 2505 perf_event__fprintf_auxtrace_error(&event, fp); 2506 } 2507 2508 if (code != INTEL_PT_ERR_LOST && dump_log_on_error) 2509 intel_pt_log_dump_buf(); 2510 2511 err = perf_session__deliver_synth_event(pt->session, &event, NULL); 2512 if (err) 2513 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n", 2514 err); 2515 2516 return err; 2517 } 2518 2519 static int intel_ptq_synth_error(struct intel_pt_queue *ptq, 2520 const struct intel_pt_state *state) 2521 { 2522 struct intel_pt *pt = ptq->pt; 2523 u64 tm = ptq->timestamp; 2524 pid_t machine_pid = 0; 2525 pid_t pid = ptq->pid; 2526 pid_t tid = ptq->tid; 2527 int vcpu = -1; 2528 2529 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc); 2530 2531 if (pt->have_guest_sideband && state->from_nr) { 2532 machine_pid = ptq->guest_machine_pid; 2533 vcpu = ptq->vcpu; 2534 pid = ptq->guest_pid; 2535 tid = ptq->guest_tid; 2536 } 2537 2538 return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid, 2539 state->from_ip, tm, machine_pid, vcpu); 2540 } 2541 2542 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq) 2543 { 2544 struct auxtrace_queue *queue; 2545 pid_t tid = ptq->next_tid; 2546 int err; 2547 2548 if (tid == -1) 2549 return 0; 2550 2551 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid); 2552 2553 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid); 2554 2555 queue = &pt->queues.queue_array[ptq->queue_nr]; 2556 intel_pt_set_pid_tid_cpu(pt, queue); 2557 2558 ptq->next_tid = -1; 2559 2560 return err; 2561 } 2562 2563 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip) 2564 { 2565 struct intel_pt *pt = ptq->pt; 2566 2567 return ip == pt->switch_ip && 2568 (ptq->flags & PERF_IP_FLAG_BRANCH) && 2569 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC | 2570 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT)); 2571 } 2572 2573 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \ 2574 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT) 2575 2576 static int intel_pt_sample(struct intel_pt_queue *ptq) 2577 { 2578 const struct intel_pt_state *state = ptq->state; 2579 struct intel_pt *pt = ptq->pt; 2580 int err; 2581 2582 if (!ptq->have_sample) 2583 return 0; 2584 2585 ptq->have_sample = false; 2586 2587 if (pt->synth_opts.approx_ipc) { 2588 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt; 2589 ptq->ipc_cyc_cnt = ptq->state->cycles; 2590 ptq->sample_ipc = true; 2591 } else { 2592 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt; 2593 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt; 2594 ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC; 2595 } 2596 2597 /* Ensure guest code maps are set up */ 2598 if (symbol_conf.guest_code && (state->from_nr || state->to_nr)) 2599 intel_pt_get_guest(ptq); 2600 2601 /* 2602 * Do PEBS first to allow for the possibility that the PEBS timestamp 2603 * precedes the current timestamp. 2604 */ 2605 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) { 2606 err = intel_pt_synth_pebs_sample(ptq); 2607 if (err) 2608 return err; 2609 } 2610 2611 if (pt->synth_opts.intr_events) { 2612 if (state->type & INTEL_PT_EVT) { 2613 err = intel_pt_synth_events_sample(ptq); 2614 if (err) 2615 return err; 2616 } 2617 if (state->type & INTEL_PT_IFLAG_CHG) { 2618 err = intel_pt_synth_iflag_chg_sample(ptq); 2619 if (err) 2620 return err; 2621 } 2622 } 2623 2624 if (pt->sample_pwr_events) { 2625 if (state->type & INTEL_PT_PSB_EVT) { 2626 err = intel_pt_synth_psb_sample(ptq); 2627 if (err) 2628 return err; 2629 } 2630 if (ptq->state->cbr != ptq->cbr_seen) { 2631 err = intel_pt_synth_cbr_sample(ptq); 2632 if (err) 2633 return err; 2634 } 2635 if (state->type & INTEL_PT_PWR_EVT) { 2636 if (state->type & INTEL_PT_MWAIT_OP) { 2637 err = intel_pt_synth_mwait_sample(ptq); 2638 if (err) 2639 return err; 2640 } 2641 if (state->type & INTEL_PT_PWR_ENTRY) { 2642 err = intel_pt_synth_pwre_sample(ptq); 2643 if (err) 2644 return err; 2645 } 2646 if (state->type & INTEL_PT_EX_STOP) { 2647 err = intel_pt_synth_exstop_sample(ptq); 2648 if (err) 2649 return err; 2650 } 2651 if (state->type & INTEL_PT_PWR_EXIT) { 2652 err = intel_pt_synth_pwrx_sample(ptq); 2653 if (err) 2654 return err; 2655 } 2656 } 2657 } 2658 2659 if (state->type & INTEL_PT_INSTRUCTION) { 2660 if (pt->sample_instructions) { 2661 err = intel_pt_synth_instruction_sample(ptq); 2662 if (err) 2663 return err; 2664 } 2665 if (pt->sample_cycles) { 2666 err = intel_pt_synth_cycle_sample(ptq); 2667 if (err) 2668 return err; 2669 } 2670 } 2671 2672 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) { 2673 err = intel_pt_synth_transaction_sample(ptq); 2674 if (err) 2675 return err; 2676 } 2677 2678 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) { 2679 err = intel_pt_synth_ptwrite_sample(ptq); 2680 if (err) 2681 return err; 2682 } 2683 2684 if (!(state->type & INTEL_PT_BRANCH)) 2685 return 0; 2686 2687 if (pt->use_thread_stack) { 2688 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, 2689 state->from_ip, state->to_ip, ptq->insn_len, 2690 state->trace_nr, pt->callstack, 2691 pt->br_stack_sz_plus, 2692 pt->mispred_all); 2693 } else { 2694 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr); 2695 } 2696 2697 if (pt->sample_branches) { 2698 if (state->from_nr != state->to_nr && 2699 state->from_ip && state->to_ip) { 2700 struct intel_pt_state *st = (struct intel_pt_state *)state; 2701 u64 to_ip = st->to_ip; 2702 u64 from_ip = st->from_ip; 2703 2704 /* 2705 * perf cannot handle having different machines for ip 2706 * and addr, so create 2 branches. 2707 */ 2708 st->to_ip = 0; 2709 err = intel_pt_synth_branch_sample(ptq); 2710 if (err) 2711 return err; 2712 st->from_ip = 0; 2713 st->to_ip = to_ip; 2714 err = intel_pt_synth_branch_sample(ptq); 2715 st->from_ip = from_ip; 2716 } else { 2717 err = intel_pt_synth_branch_sample(ptq); 2718 } 2719 if (err) 2720 return err; 2721 } 2722 2723 if (!ptq->sync_switch) 2724 return 0; 2725 2726 if (intel_pt_is_switch_ip(ptq, state->to_ip)) { 2727 switch (ptq->switch_state) { 2728 case INTEL_PT_SS_NOT_TRACING: 2729 case INTEL_PT_SS_UNKNOWN: 2730 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2731 err = intel_pt_next_tid(pt, ptq); 2732 if (err) 2733 return err; 2734 ptq->switch_state = INTEL_PT_SS_TRACING; 2735 break; 2736 default: 2737 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT; 2738 return 1; 2739 } 2740 } else if (!state->to_ip) { 2741 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2742 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) { 2743 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2744 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2745 state->to_ip == pt->ptss_ip && 2746 (ptq->flags & PERF_IP_FLAG_CALL)) { 2747 ptq->switch_state = INTEL_PT_SS_TRACING; 2748 } 2749 2750 return 0; 2751 } 2752 2753 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip) 2754 { 2755 struct machine *machine = pt->machine; 2756 struct map *map; 2757 struct symbol *sym, *start; 2758 u64 ip, switch_ip = 0; 2759 const char *ptss; 2760 2761 if (ptss_ip) 2762 *ptss_ip = 0; 2763 2764 map = machine__kernel_map(machine); 2765 if (!map) 2766 return 0; 2767 2768 if (map__load(map)) 2769 return 0; 2770 2771 start = dso__first_symbol(map__dso(map)); 2772 2773 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2774 if (sym->binding == STB_GLOBAL && 2775 !strcmp(sym->name, "__switch_to")) { 2776 ip = map__unmap_ip(map, sym->start); 2777 if (ip >= map__start(map) && ip < map__end(map)) { 2778 switch_ip = ip; 2779 break; 2780 } 2781 } 2782 } 2783 2784 if (!switch_ip || !ptss_ip) 2785 return 0; 2786 2787 if (pt->have_sched_switch == 1) 2788 ptss = "perf_trace_sched_switch"; 2789 else 2790 ptss = "__perf_event_task_sched_out"; 2791 2792 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2793 if (!strcmp(sym->name, ptss)) { 2794 ip = map__unmap_ip(map, sym->start); 2795 if (ip >= map__start(map) && ip < map__end(map)) { 2796 *ptss_ip = ip; 2797 break; 2798 } 2799 } 2800 } 2801 2802 return switch_ip; 2803 } 2804 2805 static void intel_pt_enable_sync_switch(struct intel_pt *pt) 2806 { 2807 unsigned int i; 2808 2809 if (pt->sync_switch_not_supported) 2810 return; 2811 2812 pt->sync_switch = true; 2813 2814 for (i = 0; i < pt->queues.nr_queues; i++) { 2815 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2816 struct intel_pt_queue *ptq = queue->priv; 2817 2818 if (ptq) 2819 ptq->sync_switch = true; 2820 } 2821 } 2822 2823 static void intel_pt_disable_sync_switch(struct intel_pt *pt) 2824 { 2825 unsigned int i; 2826 2827 pt->sync_switch = false; 2828 2829 for (i = 0; i < pt->queues.nr_queues; i++) { 2830 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2831 struct intel_pt_queue *ptq = queue->priv; 2832 2833 if (ptq) { 2834 ptq->sync_switch = false; 2835 intel_pt_next_tid(pt, ptq); 2836 } 2837 } 2838 } 2839 2840 /* 2841 * To filter against time ranges, it is only necessary to look at the next start 2842 * or end time. 2843 */ 2844 static bool intel_pt_next_time(struct intel_pt_queue *ptq) 2845 { 2846 struct intel_pt *pt = ptq->pt; 2847 2848 if (ptq->sel_start) { 2849 /* Next time is an end time */ 2850 ptq->sel_start = false; 2851 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end; 2852 return true; 2853 } else if (ptq->sel_idx + 1 < pt->range_cnt) { 2854 /* Next time is a start time */ 2855 ptq->sel_start = true; 2856 ptq->sel_idx += 1; 2857 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start; 2858 return true; 2859 } 2860 2861 /* No next time */ 2862 return false; 2863 } 2864 2865 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp) 2866 { 2867 int err; 2868 2869 while (1) { 2870 if (ptq->sel_start) { 2871 if (ptq->timestamp >= ptq->sel_timestamp) { 2872 /* After start time, so consider next time */ 2873 intel_pt_next_time(ptq); 2874 if (!ptq->sel_timestamp) { 2875 /* No end time */ 2876 return 0; 2877 } 2878 /* Check against end time */ 2879 continue; 2880 } 2881 /* Before start time, so fast forward */ 2882 ptq->have_sample = false; 2883 if (ptq->sel_timestamp > *ff_timestamp) { 2884 if (ptq->sync_switch) { 2885 intel_pt_next_tid(ptq->pt, ptq); 2886 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2887 } 2888 *ff_timestamp = ptq->sel_timestamp; 2889 err = intel_pt_fast_forward(ptq->decoder, 2890 ptq->sel_timestamp); 2891 if (err) 2892 return err; 2893 } 2894 return 0; 2895 } else if (ptq->timestamp > ptq->sel_timestamp) { 2896 /* After end time, so consider next time */ 2897 if (!intel_pt_next_time(ptq)) { 2898 /* No next time range, so stop decoding */ 2899 ptq->have_sample = false; 2900 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2901 return 1; 2902 } 2903 /* Check against next start time */ 2904 continue; 2905 } else { 2906 /* Before end time */ 2907 return 0; 2908 } 2909 } 2910 } 2911 2912 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp) 2913 { 2914 const struct intel_pt_state *state = ptq->state; 2915 struct intel_pt *pt = ptq->pt; 2916 u64 ff_timestamp = 0; 2917 int err; 2918 2919 if (!pt->kernel_start) { 2920 pt->kernel_start = machine__kernel_start(pt->machine); 2921 if (pt->per_cpu_mmaps && 2922 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) && 2923 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) && 2924 !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) { 2925 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip); 2926 if (pt->switch_ip) { 2927 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n", 2928 pt->switch_ip, pt->ptss_ip); 2929 intel_pt_enable_sync_switch(pt); 2930 } 2931 } 2932 } 2933 2934 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 2935 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2936 while (1) { 2937 err = intel_pt_sample(ptq); 2938 if (err) 2939 return err; 2940 2941 state = intel_pt_decode(ptq->decoder); 2942 if (state->err) { 2943 if (state->err == INTEL_PT_ERR_NODATA) 2944 return 1; 2945 if (ptq->sync_switch && 2946 state->from_ip >= pt->kernel_start) { 2947 ptq->sync_switch = false; 2948 intel_pt_next_tid(pt, ptq); 2949 } 2950 ptq->timestamp = state->est_timestamp; 2951 if (pt->synth_opts.errors) { 2952 err = intel_ptq_synth_error(ptq, state); 2953 if (err) 2954 return err; 2955 } 2956 continue; 2957 } 2958 2959 ptq->state = state; 2960 ptq->have_sample = true; 2961 intel_pt_sample_flags(ptq); 2962 2963 /* Use estimated TSC upon return to user space */ 2964 if (pt->est_tsc && 2965 (state->from_ip >= pt->kernel_start || !state->from_ip) && 2966 state->to_ip && state->to_ip < pt->kernel_start) { 2967 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2968 state->timestamp, state->est_timestamp); 2969 ptq->timestamp = state->est_timestamp; 2970 /* Use estimated TSC in unknown switch state */ 2971 } else if (ptq->sync_switch && 2972 ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2973 intel_pt_is_switch_ip(ptq, state->to_ip) && 2974 ptq->next_tid == -1) { 2975 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2976 state->timestamp, state->est_timestamp); 2977 ptq->timestamp = state->est_timestamp; 2978 } else if (state->timestamp > ptq->timestamp) { 2979 ptq->timestamp = state->timestamp; 2980 } 2981 2982 if (ptq->sel_timestamp) { 2983 err = intel_pt_time_filter(ptq, &ff_timestamp); 2984 if (err) 2985 return err; 2986 } 2987 2988 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) { 2989 *timestamp = ptq->timestamp; 2990 return 0; 2991 } 2992 } 2993 return 0; 2994 } 2995 2996 static inline int intel_pt_update_queues(struct intel_pt *pt) 2997 { 2998 if (pt->queues.new_data) { 2999 pt->queues.new_data = false; 3000 return intel_pt_setup_queues(pt); 3001 } 3002 return 0; 3003 } 3004 3005 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp) 3006 { 3007 unsigned int queue_nr; 3008 u64 ts; 3009 int ret; 3010 3011 while (1) { 3012 struct auxtrace_queue *queue; 3013 struct intel_pt_queue *ptq; 3014 3015 if (!pt->heap.heap_cnt) 3016 return 0; 3017 3018 if (pt->heap.heap_array[0].ordinal >= timestamp) 3019 return 0; 3020 3021 queue_nr = pt->heap.heap_array[0].queue_nr; 3022 queue = &pt->queues.queue_array[queue_nr]; 3023 ptq = queue->priv; 3024 3025 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n", 3026 queue_nr, pt->heap.heap_array[0].ordinal, 3027 timestamp); 3028 3029 auxtrace_heap__pop(&pt->heap); 3030 3031 if (pt->heap.heap_cnt) { 3032 ts = pt->heap.heap_array[0].ordinal + 1; 3033 if (ts > timestamp) 3034 ts = timestamp; 3035 } else { 3036 ts = timestamp; 3037 } 3038 3039 intel_pt_set_pid_tid_cpu(pt, queue); 3040 3041 ret = intel_pt_run_decoder(ptq, &ts); 3042 3043 if (ret < 0) { 3044 auxtrace_heap__add(&pt->heap, queue_nr, ts); 3045 return ret; 3046 } 3047 3048 if (!ret) { 3049 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts); 3050 if (ret < 0) 3051 return ret; 3052 } else { 3053 ptq->on_heap = false; 3054 } 3055 } 3056 3057 return 0; 3058 } 3059 3060 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid, 3061 u64 time_) 3062 { 3063 struct auxtrace_queues *queues = &pt->queues; 3064 unsigned int i; 3065 u64 ts = 0; 3066 3067 for (i = 0; i < queues->nr_queues; i++) { 3068 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 3069 struct intel_pt_queue *ptq = queue->priv; 3070 3071 if (ptq && (tid == -1 || ptq->tid == tid)) { 3072 ptq->time = time_; 3073 intel_pt_set_pid_tid_cpu(pt, queue); 3074 intel_pt_run_decoder(ptq, &ts); 3075 } 3076 } 3077 return 0; 3078 } 3079 3080 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq, 3081 struct auxtrace_queue *queue, 3082 struct perf_sample *sample) 3083 { 3084 struct machine *m = ptq->pt->machine; 3085 3086 ptq->pid = sample->pid; 3087 ptq->tid = sample->tid; 3088 ptq->cpu = queue->cpu; 3089 3090 intel_pt_log("queue %u cpu %d pid %d tid %d\n", 3091 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 3092 3093 thread__zput(ptq->thread); 3094 3095 if (ptq->tid == -1) 3096 return; 3097 3098 if (ptq->pid == -1) { 3099 ptq->thread = machine__find_thread(m, -1, ptq->tid); 3100 if (ptq->thread) 3101 ptq->pid = thread__pid(ptq->thread); 3102 return; 3103 } 3104 3105 ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid); 3106 } 3107 3108 static int intel_pt_process_timeless_sample(struct intel_pt *pt, 3109 struct perf_sample *sample) 3110 { 3111 struct auxtrace_queue *queue; 3112 struct intel_pt_queue *ptq; 3113 u64 ts = 0; 3114 3115 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session); 3116 if (!queue) 3117 return -EINVAL; 3118 3119 ptq = queue->priv; 3120 if (!ptq) 3121 return 0; 3122 3123 ptq->stop = false; 3124 ptq->time = sample->time; 3125 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample); 3126 intel_pt_run_decoder(ptq, &ts); 3127 return 0; 3128 } 3129 3130 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample) 3131 { 3132 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu, 3133 sample->pid, sample->tid, 0, sample->time, 3134 sample->machine_pid, sample->vcpu); 3135 } 3136 3137 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu) 3138 { 3139 unsigned i, j; 3140 3141 if (cpu < 0 || !pt->queues.nr_queues) 3142 return NULL; 3143 3144 if ((unsigned)cpu >= pt->queues.nr_queues) 3145 i = pt->queues.nr_queues - 1; 3146 else 3147 i = cpu; 3148 3149 if (pt->queues.queue_array[i].cpu == cpu) 3150 return pt->queues.queue_array[i].priv; 3151 3152 for (j = 0; i > 0; j++) { 3153 if (pt->queues.queue_array[--i].cpu == cpu) 3154 return pt->queues.queue_array[i].priv; 3155 } 3156 3157 for (; j < pt->queues.nr_queues; j++) { 3158 if (pt->queues.queue_array[j].cpu == cpu) 3159 return pt->queues.queue_array[j].priv; 3160 } 3161 3162 return NULL; 3163 } 3164 3165 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid, 3166 u64 timestamp) 3167 { 3168 struct intel_pt_queue *ptq; 3169 int err; 3170 3171 if (!pt->sync_switch) 3172 return 1; 3173 3174 ptq = intel_pt_cpu_to_ptq(pt, cpu); 3175 if (!ptq || !ptq->sync_switch) 3176 return 1; 3177 3178 switch (ptq->switch_state) { 3179 case INTEL_PT_SS_NOT_TRACING: 3180 break; 3181 case INTEL_PT_SS_UNKNOWN: 3182 case INTEL_PT_SS_TRACING: 3183 ptq->next_tid = tid; 3184 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP; 3185 return 0; 3186 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 3187 if (!ptq->on_heap) { 3188 ptq->timestamp = perf_time_to_tsc(timestamp, 3189 &pt->tc); 3190 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr, 3191 ptq->timestamp); 3192 if (err) 3193 return err; 3194 ptq->on_heap = true; 3195 } 3196 ptq->switch_state = INTEL_PT_SS_TRACING; 3197 break; 3198 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 3199 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu); 3200 break; 3201 default: 3202 break; 3203 } 3204 3205 ptq->next_tid = -1; 3206 3207 return 1; 3208 } 3209 3210 #ifdef HAVE_LIBTRACEEVENT 3211 static int intel_pt_process_switch(struct intel_pt *pt, 3212 struct perf_sample *sample) 3213 { 3214 pid_t tid; 3215 int cpu, ret; 3216 struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id); 3217 3218 if (evsel != pt->switch_evsel) 3219 return 0; 3220 3221 tid = evsel__intval(evsel, sample, "next_pid"); 3222 cpu = sample->cpu; 3223 3224 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 3225 cpu, tid, sample->time, perf_time_to_tsc(sample->time, 3226 &pt->tc)); 3227 3228 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 3229 if (ret <= 0) 3230 return ret; 3231 3232 return machine__set_current_tid(pt->machine, cpu, -1, tid); 3233 } 3234 #endif /* HAVE_LIBTRACEEVENT */ 3235 3236 static int intel_pt_context_switch_in(struct intel_pt *pt, 3237 struct perf_sample *sample) 3238 { 3239 pid_t pid = sample->pid; 3240 pid_t tid = sample->tid; 3241 int cpu = sample->cpu; 3242 3243 if (pt->sync_switch) { 3244 struct intel_pt_queue *ptq; 3245 3246 ptq = intel_pt_cpu_to_ptq(pt, cpu); 3247 if (ptq && ptq->sync_switch) { 3248 ptq->next_tid = -1; 3249 switch (ptq->switch_state) { 3250 case INTEL_PT_SS_NOT_TRACING: 3251 case INTEL_PT_SS_UNKNOWN: 3252 case INTEL_PT_SS_TRACING: 3253 break; 3254 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 3255 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 3256 ptq->switch_state = INTEL_PT_SS_TRACING; 3257 break; 3258 default: 3259 break; 3260 } 3261 } 3262 } 3263 3264 /* 3265 * If the current tid has not been updated yet, ensure it is now that 3266 * a "switch in" event has occurred. 3267 */ 3268 if (machine__get_current_tid(pt->machine, cpu) == tid) 3269 return 0; 3270 3271 return machine__set_current_tid(pt->machine, cpu, pid, tid); 3272 } 3273 3274 static int intel_pt_guest_context_switch(struct intel_pt *pt, 3275 union perf_event *event, 3276 struct perf_sample *sample) 3277 { 3278 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 3279 struct machines *machines = &pt->session->machines; 3280 struct machine *machine = machines__find(machines, sample->machine_pid); 3281 3282 pt->have_guest_sideband = true; 3283 3284 /* 3285 * sync_switch cannot handle guest machines at present, so just disable 3286 * it. 3287 */ 3288 pt->sync_switch_not_supported = true; 3289 if (pt->sync_switch) 3290 intel_pt_disable_sync_switch(pt); 3291 3292 if (out) 3293 return 0; 3294 3295 if (!machine) 3296 return -EINVAL; 3297 3298 return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid); 3299 } 3300 3301 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event, 3302 struct perf_sample *sample) 3303 { 3304 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 3305 pid_t pid, tid; 3306 int cpu, ret; 3307 3308 if (perf_event__is_guest(event)) 3309 return intel_pt_guest_context_switch(pt, event, sample); 3310 3311 cpu = sample->cpu; 3312 3313 if (pt->have_sched_switch == 3) { 3314 if (!out) 3315 return intel_pt_context_switch_in(pt, sample); 3316 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) { 3317 pr_err("Expecting CPU-wide context switch event\n"); 3318 return -EINVAL; 3319 } 3320 pid = event->context_switch.next_prev_pid; 3321 tid = event->context_switch.next_prev_tid; 3322 } else { 3323 if (out) 3324 return 0; 3325 pid = sample->pid; 3326 tid = sample->tid; 3327 } 3328 3329 if (tid == -1) 3330 intel_pt_log("context_switch event has no tid\n"); 3331 3332 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 3333 if (ret <= 0) 3334 return ret; 3335 3336 return machine__set_current_tid(pt->machine, cpu, pid, tid); 3337 } 3338 3339 static int intel_pt_process_itrace_start(struct intel_pt *pt, 3340 union perf_event *event, 3341 struct perf_sample *sample) 3342 { 3343 if (!pt->per_cpu_mmaps) 3344 return 0; 3345 3346 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 3347 sample->cpu, event->itrace_start.pid, 3348 event->itrace_start.tid, sample->time, 3349 perf_time_to_tsc(sample->time, &pt->tc)); 3350 3351 return machine__set_current_tid(pt->machine, sample->cpu, 3352 event->itrace_start.pid, 3353 event->itrace_start.tid); 3354 } 3355 3356 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt, 3357 union perf_event *event, 3358 struct perf_sample *sample) 3359 { 3360 u64 hw_id = event->aux_output_hw_id.hw_id; 3361 struct auxtrace_queue *queue; 3362 struct intel_pt_queue *ptq; 3363 struct evsel *evsel; 3364 3365 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session); 3366 evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id); 3367 if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) { 3368 pr_err("Bad AUX output hardware ID\n"); 3369 return -EINVAL; 3370 } 3371 3372 ptq = queue->priv; 3373 3374 ptq->pebs[hw_id].evsel = evsel; 3375 ptq->pebs[hw_id].id = sample->id; 3376 3377 return 0; 3378 } 3379 3380 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr, 3381 struct addr_location *al) 3382 { 3383 if (!al->map || addr < map__start(al->map) || addr >= map__end(al->map)) { 3384 if (!thread__find_map(thread, cpumode, addr, al)) 3385 return -1; 3386 } 3387 3388 return 0; 3389 } 3390 3391 /* Invalidate all instruction cache entries that overlap the text poke */ 3392 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event) 3393 { 3394 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 3395 u64 addr = event->text_poke.addr + event->text_poke.new_len - 1; 3396 /* Assume text poke begins in a basic block no more than 4096 bytes */ 3397 int cnt = 4096 + event->text_poke.new_len; 3398 struct thread *thread = pt->unknown_thread; 3399 struct addr_location al; 3400 struct machine *machine = pt->machine; 3401 struct intel_pt_cache_entry *e; 3402 u64 offset; 3403 int ret = 0; 3404 3405 addr_location__init(&al); 3406 if (!event->text_poke.new_len) 3407 goto out; 3408 3409 for (; cnt; cnt--, addr--) { 3410 struct dso *dso; 3411 3412 if (intel_pt_find_map(thread, cpumode, addr, &al)) { 3413 if (addr < event->text_poke.addr) 3414 goto out; 3415 continue; 3416 } 3417 3418 dso = map__dso(al.map); 3419 if (!dso || !dso->auxtrace_cache) 3420 continue; 3421 3422 offset = map__map_ip(al.map, addr); 3423 3424 e = intel_pt_cache_lookup(dso, machine, offset); 3425 if (!e) 3426 continue; 3427 3428 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) { 3429 /* 3430 * No overlap. Working backwards there cannot be another 3431 * basic block that overlaps the text poke if there is a 3432 * branch instruction before the text poke address. 3433 */ 3434 if (e->branch != INTEL_PT_BR_NO_BRANCH) 3435 goto out; 3436 } else { 3437 intel_pt_cache_invalidate(dso, machine, offset); 3438 intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n", 3439 dso->long_name, addr); 3440 } 3441 } 3442 out: 3443 addr_location__exit(&al); 3444 return ret; 3445 } 3446 3447 static int intel_pt_process_event(struct perf_session *session, 3448 union perf_event *event, 3449 struct perf_sample *sample, 3450 struct perf_tool *tool) 3451 { 3452 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3453 auxtrace); 3454 u64 timestamp; 3455 int err = 0; 3456 3457 if (dump_trace) 3458 return 0; 3459 3460 if (!tool->ordered_events) { 3461 pr_err("Intel Processor Trace requires ordered events\n"); 3462 return -EINVAL; 3463 } 3464 3465 if (sample->time && sample->time != (u64)-1) 3466 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 3467 else 3468 timestamp = 0; 3469 3470 if (timestamp || pt->timeless_decoding) { 3471 err = intel_pt_update_queues(pt); 3472 if (err) 3473 return err; 3474 } 3475 3476 if (pt->timeless_decoding) { 3477 if (pt->sampling_mode) { 3478 if (sample->aux_sample.size) 3479 err = intel_pt_process_timeless_sample(pt, 3480 sample); 3481 } else if (event->header.type == PERF_RECORD_EXIT) { 3482 err = intel_pt_process_timeless_queues(pt, 3483 event->fork.tid, 3484 sample->time); 3485 } 3486 } else if (timestamp) { 3487 if (!pt->first_timestamp) 3488 intel_pt_first_timestamp(pt, timestamp); 3489 err = intel_pt_process_queues(pt, timestamp); 3490 } 3491 if (err) 3492 return err; 3493 3494 if (event->header.type == PERF_RECORD_SAMPLE) { 3495 if (pt->synth_opts.add_callchain && !sample->callchain) 3496 intel_pt_add_callchain(pt, sample); 3497 if (pt->synth_opts.add_last_branch && !sample->branch_stack) 3498 intel_pt_add_br_stack(pt, sample); 3499 } 3500 3501 if (event->header.type == PERF_RECORD_AUX && 3502 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) && 3503 pt->synth_opts.errors) { 3504 err = intel_pt_lost(pt, sample); 3505 if (err) 3506 return err; 3507 } 3508 3509 #ifdef HAVE_LIBTRACEEVENT 3510 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE) 3511 err = intel_pt_process_switch(pt, sample); 3512 else 3513 #endif 3514 if (event->header.type == PERF_RECORD_ITRACE_START) 3515 err = intel_pt_process_itrace_start(pt, event, sample); 3516 else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID) 3517 err = intel_pt_process_aux_output_hw_id(pt, event, sample); 3518 else if (event->header.type == PERF_RECORD_SWITCH || 3519 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 3520 err = intel_pt_context_switch(pt, event, sample); 3521 3522 if (!err && event->header.type == PERF_RECORD_TEXT_POKE) 3523 err = intel_pt_text_poke(pt, event); 3524 3525 if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) { 3526 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ", 3527 event->header.type, sample->cpu, sample->time, timestamp); 3528 intel_pt_log_event(event); 3529 } 3530 3531 return err; 3532 } 3533 3534 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool) 3535 { 3536 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3537 auxtrace); 3538 int ret; 3539 3540 if (dump_trace) 3541 return 0; 3542 3543 if (!tool->ordered_events) 3544 return -EINVAL; 3545 3546 ret = intel_pt_update_queues(pt); 3547 if (ret < 0) 3548 return ret; 3549 3550 if (pt->timeless_decoding) 3551 return intel_pt_process_timeless_queues(pt, -1, 3552 MAX_TIMESTAMP - 1); 3553 3554 return intel_pt_process_queues(pt, MAX_TIMESTAMP); 3555 } 3556 3557 static void intel_pt_free_events(struct perf_session *session) 3558 { 3559 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3560 auxtrace); 3561 struct auxtrace_queues *queues = &pt->queues; 3562 unsigned int i; 3563 3564 for (i = 0; i < queues->nr_queues; i++) { 3565 intel_pt_free_queue(queues->queue_array[i].priv); 3566 queues->queue_array[i].priv = NULL; 3567 } 3568 intel_pt_log_disable(); 3569 auxtrace_queues__free(queues); 3570 } 3571 3572 static void intel_pt_free(struct perf_session *session) 3573 { 3574 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3575 auxtrace); 3576 3577 auxtrace_heap__free(&pt->heap); 3578 intel_pt_free_events(session); 3579 session->auxtrace = NULL; 3580 intel_pt_free_vmcs_info(pt); 3581 thread__put(pt->unknown_thread); 3582 addr_filters__exit(&pt->filts); 3583 zfree(&pt->chain); 3584 zfree(&pt->filter); 3585 zfree(&pt->time_ranges); 3586 zfree(&pt->br_stack); 3587 free(pt); 3588 } 3589 3590 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session, 3591 struct evsel *evsel) 3592 { 3593 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3594 auxtrace); 3595 3596 return evsel->core.attr.type == pt->pmu_type; 3597 } 3598 3599 static int intel_pt_process_auxtrace_event(struct perf_session *session, 3600 union perf_event *event, 3601 struct perf_tool *tool __maybe_unused) 3602 { 3603 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3604 auxtrace); 3605 3606 if (!pt->data_queued) { 3607 struct auxtrace_buffer *buffer; 3608 off_t data_offset; 3609 int fd = perf_data__fd(session->data); 3610 int err; 3611 3612 if (perf_data__is_pipe(session->data)) { 3613 data_offset = 0; 3614 } else { 3615 data_offset = lseek(fd, 0, SEEK_CUR); 3616 if (data_offset == -1) 3617 return -errno; 3618 } 3619 3620 err = auxtrace_queues__add_event(&pt->queues, session, event, 3621 data_offset, &buffer); 3622 if (err) 3623 return err; 3624 3625 /* Dump here now we have copied a piped trace out of the pipe */ 3626 if (dump_trace) { 3627 if (auxtrace_buffer__get_data(buffer, fd)) { 3628 intel_pt_dump_event(pt, buffer->data, 3629 buffer->size); 3630 auxtrace_buffer__put_data(buffer); 3631 } 3632 } 3633 } 3634 3635 return 0; 3636 } 3637 3638 static int intel_pt_queue_data(struct perf_session *session, 3639 struct perf_sample *sample, 3640 union perf_event *event, u64 data_offset) 3641 { 3642 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3643 auxtrace); 3644 u64 timestamp; 3645 3646 if (event) { 3647 return auxtrace_queues__add_event(&pt->queues, session, event, 3648 data_offset, NULL); 3649 } 3650 3651 if (sample->time && sample->time != (u64)-1) 3652 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 3653 else 3654 timestamp = 0; 3655 3656 return auxtrace_queues__add_sample(&pt->queues, session, sample, 3657 data_offset, timestamp); 3658 } 3659 3660 struct intel_pt_synth { 3661 struct perf_tool dummy_tool; 3662 struct perf_session *session; 3663 }; 3664 3665 static int intel_pt_event_synth(struct perf_tool *tool, 3666 union perf_event *event, 3667 struct perf_sample *sample __maybe_unused, 3668 struct machine *machine __maybe_unused) 3669 { 3670 struct intel_pt_synth *intel_pt_synth = 3671 container_of(tool, struct intel_pt_synth, dummy_tool); 3672 3673 return perf_session__deliver_synth_event(intel_pt_synth->session, event, 3674 NULL); 3675 } 3676 3677 static int intel_pt_synth_event(struct perf_session *session, const char *name, 3678 struct perf_event_attr *attr, u64 id) 3679 { 3680 struct intel_pt_synth intel_pt_synth; 3681 int err; 3682 3683 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n", 3684 name, id, (u64)attr->sample_type); 3685 3686 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth)); 3687 intel_pt_synth.session = session; 3688 3689 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1, 3690 &id, intel_pt_event_synth); 3691 if (err) 3692 pr_err("%s: failed to synthesize '%s' event type\n", 3693 __func__, name); 3694 3695 return err; 3696 } 3697 3698 static void intel_pt_set_event_name(struct evlist *evlist, u64 id, 3699 const char *name) 3700 { 3701 struct evsel *evsel; 3702 3703 evlist__for_each_entry(evlist, evsel) { 3704 if (evsel->core.id && evsel->core.id[0] == id) { 3705 if (evsel->name) 3706 zfree(&evsel->name); 3707 evsel->name = strdup(name); 3708 break; 3709 } 3710 } 3711 } 3712 3713 static struct evsel *intel_pt_evsel(struct intel_pt *pt, 3714 struct evlist *evlist) 3715 { 3716 struct evsel *evsel; 3717 3718 evlist__for_each_entry(evlist, evsel) { 3719 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids) 3720 return evsel; 3721 } 3722 3723 return NULL; 3724 } 3725 3726 static int intel_pt_synth_events(struct intel_pt *pt, 3727 struct perf_session *session) 3728 { 3729 struct evlist *evlist = session->evlist; 3730 struct evsel *evsel = intel_pt_evsel(pt, evlist); 3731 struct perf_event_attr attr; 3732 u64 id; 3733 int err; 3734 3735 if (!evsel) { 3736 pr_debug("There are no selected events with Intel Processor Trace data\n"); 3737 return 0; 3738 } 3739 3740 memset(&attr, 0, sizeof(struct perf_event_attr)); 3741 attr.size = sizeof(struct perf_event_attr); 3742 attr.type = PERF_TYPE_HARDWARE; 3743 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 3744 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 3745 PERF_SAMPLE_PERIOD; 3746 if (pt->timeless_decoding) 3747 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 3748 else 3749 attr.sample_type |= PERF_SAMPLE_TIME; 3750 if (!pt->per_cpu_mmaps) 3751 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU; 3752 attr.exclude_user = evsel->core.attr.exclude_user; 3753 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 3754 attr.exclude_hv = evsel->core.attr.exclude_hv; 3755 attr.exclude_host = evsel->core.attr.exclude_host; 3756 attr.exclude_guest = evsel->core.attr.exclude_guest; 3757 attr.sample_id_all = evsel->core.attr.sample_id_all; 3758 attr.read_format = evsel->core.attr.read_format; 3759 3760 id = evsel->core.id[0] + 1000000000; 3761 if (!id) 3762 id = 1; 3763 3764 if (pt->synth_opts.branches) { 3765 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 3766 attr.sample_period = 1; 3767 attr.sample_type |= PERF_SAMPLE_ADDR; 3768 err = intel_pt_synth_event(session, "branches", &attr, id); 3769 if (err) 3770 return err; 3771 pt->sample_branches = true; 3772 pt->branches_sample_type = attr.sample_type; 3773 pt->branches_id = id; 3774 id += 1; 3775 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 3776 } 3777 3778 if (pt->synth_opts.callchain) 3779 attr.sample_type |= PERF_SAMPLE_CALLCHAIN; 3780 if (pt->synth_opts.last_branch) { 3781 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 3782 /* 3783 * We don't use the hardware index, but the sample generation 3784 * code uses the new format branch_stack with this field, 3785 * so the event attributes must indicate that it's present. 3786 */ 3787 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; 3788 } 3789 3790 if (pt->synth_opts.instructions) { 3791 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 3792 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS) 3793 attr.sample_period = 3794 intel_pt_ns_to_ticks(pt, pt->synth_opts.period); 3795 else 3796 attr.sample_period = pt->synth_opts.period; 3797 err = intel_pt_synth_event(session, "instructions", &attr, id); 3798 if (err) 3799 return err; 3800 pt->sample_instructions = true; 3801 pt->instructions_sample_type = attr.sample_type; 3802 pt->instructions_id = id; 3803 id += 1; 3804 } 3805 3806 if (pt->synth_opts.cycles) { 3807 attr.config = PERF_COUNT_HW_CPU_CYCLES; 3808 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS) 3809 attr.sample_period = 3810 intel_pt_ns_to_ticks(pt, pt->synth_opts.period); 3811 else 3812 attr.sample_period = pt->synth_opts.period; 3813 err = intel_pt_synth_event(session, "cycles", &attr, id); 3814 if (err) 3815 return err; 3816 pt->sample_cycles = true; 3817 pt->cycles_sample_type = attr.sample_type; 3818 pt->cycles_id = id; 3819 id += 1; 3820 } 3821 3822 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD; 3823 attr.sample_period = 1; 3824 3825 if (pt->synth_opts.transactions) { 3826 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 3827 err = intel_pt_synth_event(session, "transactions", &attr, id); 3828 if (err) 3829 return err; 3830 pt->sample_transactions = true; 3831 pt->transactions_sample_type = attr.sample_type; 3832 pt->transactions_id = id; 3833 intel_pt_set_event_name(evlist, id, "transactions"); 3834 id += 1; 3835 } 3836 3837 attr.type = PERF_TYPE_SYNTH; 3838 attr.sample_type |= PERF_SAMPLE_RAW; 3839 3840 if (pt->synth_opts.ptwrites) { 3841 attr.config = PERF_SYNTH_INTEL_PTWRITE; 3842 err = intel_pt_synth_event(session, "ptwrite", &attr, id); 3843 if (err) 3844 return err; 3845 pt->sample_ptwrites = true; 3846 pt->ptwrites_sample_type = attr.sample_type; 3847 pt->ptwrites_id = id; 3848 intel_pt_set_event_name(evlist, id, "ptwrite"); 3849 id += 1; 3850 } 3851 3852 if (pt->synth_opts.pwr_events) { 3853 pt->sample_pwr_events = true; 3854 pt->pwr_events_sample_type = attr.sample_type; 3855 3856 attr.config = PERF_SYNTH_INTEL_CBR; 3857 err = intel_pt_synth_event(session, "cbr", &attr, id); 3858 if (err) 3859 return err; 3860 pt->cbr_id = id; 3861 intel_pt_set_event_name(evlist, id, "cbr"); 3862 id += 1; 3863 3864 attr.config = PERF_SYNTH_INTEL_PSB; 3865 err = intel_pt_synth_event(session, "psb", &attr, id); 3866 if (err) 3867 return err; 3868 pt->psb_id = id; 3869 intel_pt_set_event_name(evlist, id, "psb"); 3870 id += 1; 3871 } 3872 3873 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) { 3874 attr.config = PERF_SYNTH_INTEL_MWAIT; 3875 err = intel_pt_synth_event(session, "mwait", &attr, id); 3876 if (err) 3877 return err; 3878 pt->mwait_id = id; 3879 intel_pt_set_event_name(evlist, id, "mwait"); 3880 id += 1; 3881 3882 attr.config = PERF_SYNTH_INTEL_PWRE; 3883 err = intel_pt_synth_event(session, "pwre", &attr, id); 3884 if (err) 3885 return err; 3886 pt->pwre_id = id; 3887 intel_pt_set_event_name(evlist, id, "pwre"); 3888 id += 1; 3889 3890 attr.config = PERF_SYNTH_INTEL_EXSTOP; 3891 err = intel_pt_synth_event(session, "exstop", &attr, id); 3892 if (err) 3893 return err; 3894 pt->exstop_id = id; 3895 intel_pt_set_event_name(evlist, id, "exstop"); 3896 id += 1; 3897 3898 attr.config = PERF_SYNTH_INTEL_PWRX; 3899 err = intel_pt_synth_event(session, "pwrx", &attr, id); 3900 if (err) 3901 return err; 3902 pt->pwrx_id = id; 3903 intel_pt_set_event_name(evlist, id, "pwrx"); 3904 id += 1; 3905 } 3906 3907 if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) { 3908 attr.config = PERF_SYNTH_INTEL_EVT; 3909 err = intel_pt_synth_event(session, "evt", &attr, id); 3910 if (err) 3911 return err; 3912 pt->evt_sample_type = attr.sample_type; 3913 pt->evt_id = id; 3914 intel_pt_set_event_name(evlist, id, "evt"); 3915 id += 1; 3916 } 3917 3918 if (pt->synth_opts.intr_events && pt->cap_event_trace) { 3919 attr.config = PERF_SYNTH_INTEL_IFLAG_CHG; 3920 err = intel_pt_synth_event(session, "iflag", &attr, id); 3921 if (err) 3922 return err; 3923 pt->iflag_chg_sample_type = attr.sample_type; 3924 pt->iflag_chg_id = id; 3925 intel_pt_set_event_name(evlist, id, "iflag"); 3926 id += 1; 3927 } 3928 3929 return 0; 3930 } 3931 3932 static void intel_pt_setup_pebs_events(struct intel_pt *pt) 3933 { 3934 struct evsel *evsel; 3935 3936 if (!pt->synth_opts.other_events) 3937 return; 3938 3939 evlist__for_each_entry(pt->session->evlist, evsel) { 3940 if (evsel->core.attr.aux_output && evsel->core.id) { 3941 if (pt->single_pebs) { 3942 pt->single_pebs = false; 3943 return; 3944 } 3945 pt->single_pebs = true; 3946 pt->sample_pebs = true; 3947 pt->pebs_evsel = evsel; 3948 } 3949 } 3950 } 3951 3952 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist) 3953 { 3954 struct evsel *evsel; 3955 3956 evlist__for_each_entry_reverse(evlist, evsel) { 3957 const char *name = evsel__name(evsel); 3958 3959 if (!strcmp(name, "sched:sched_switch")) 3960 return evsel; 3961 } 3962 3963 return NULL; 3964 } 3965 3966 static bool intel_pt_find_switch(struct evlist *evlist) 3967 { 3968 struct evsel *evsel; 3969 3970 evlist__for_each_entry(evlist, evsel) { 3971 if (evsel->core.attr.context_switch) 3972 return true; 3973 } 3974 3975 return false; 3976 } 3977 3978 static int intel_pt_perf_config(const char *var, const char *value, void *data) 3979 { 3980 struct intel_pt *pt = data; 3981 3982 if (!strcmp(var, "intel-pt.mispred-all")) 3983 pt->mispred_all = perf_config_bool(var, value); 3984 3985 if (!strcmp(var, "intel-pt.max-loops")) 3986 perf_config_int(&pt->max_loops, var, value); 3987 3988 return 0; 3989 } 3990 3991 /* Find least TSC which converts to ns or later */ 3992 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt) 3993 { 3994 u64 tsc, tm; 3995 3996 tsc = perf_time_to_tsc(ns, &pt->tc); 3997 3998 while (1) { 3999 tm = tsc_to_perf_time(tsc, &pt->tc); 4000 if (tm < ns) 4001 break; 4002 tsc -= 1; 4003 } 4004 4005 while (tm < ns) 4006 tm = tsc_to_perf_time(++tsc, &pt->tc); 4007 4008 return tsc; 4009 } 4010 4011 /* Find greatest TSC which converts to ns or earlier */ 4012 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt) 4013 { 4014 u64 tsc, tm; 4015 4016 tsc = perf_time_to_tsc(ns, &pt->tc); 4017 4018 while (1) { 4019 tm = tsc_to_perf_time(tsc, &pt->tc); 4020 if (tm > ns) 4021 break; 4022 tsc += 1; 4023 } 4024 4025 while (tm > ns) 4026 tm = tsc_to_perf_time(--tsc, &pt->tc); 4027 4028 return tsc; 4029 } 4030 4031 static int intel_pt_setup_time_ranges(struct intel_pt *pt, 4032 struct itrace_synth_opts *opts) 4033 { 4034 struct perf_time_interval *p = opts->ptime_range; 4035 int n = opts->range_num; 4036 int i; 4037 4038 if (!n || !p || pt->timeless_decoding) 4039 return 0; 4040 4041 pt->time_ranges = calloc(n, sizeof(struct range)); 4042 if (!pt->time_ranges) 4043 return -ENOMEM; 4044 4045 pt->range_cnt = n; 4046 4047 intel_pt_log("%s: %u range(s)\n", __func__, n); 4048 4049 for (i = 0; i < n; i++) { 4050 struct range *r = &pt->time_ranges[i]; 4051 u64 ts = p[i].start; 4052 u64 te = p[i].end; 4053 4054 /* 4055 * Take care to ensure the TSC range matches the perf-time range 4056 * when converted back to perf-time. 4057 */ 4058 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0; 4059 r->end = te ? intel_pt_tsc_end(te, pt) : 0; 4060 4061 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n", 4062 i, ts, te); 4063 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n", 4064 i, r->start, r->end); 4065 } 4066 4067 return 0; 4068 } 4069 4070 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args) 4071 { 4072 struct intel_pt_vmcs_info *vmcs_info; 4073 u64 tsc_offset, vmcs; 4074 char *p = *args; 4075 4076 errno = 0; 4077 4078 p = skip_spaces(p); 4079 if (!*p) 4080 return 1; 4081 4082 tsc_offset = strtoull(p, &p, 0); 4083 if (errno) 4084 return -errno; 4085 p = skip_spaces(p); 4086 if (*p != ':') { 4087 pt->dflt_tsc_offset = tsc_offset; 4088 *args = p; 4089 return 0; 4090 } 4091 p += 1; 4092 while (1) { 4093 vmcs = strtoull(p, &p, 0); 4094 if (errno) 4095 return -errno; 4096 if (!vmcs) 4097 return -EINVAL; 4098 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset); 4099 if (!vmcs_info) 4100 return -ENOMEM; 4101 p = skip_spaces(p); 4102 if (*p != ',') 4103 break; 4104 p += 1; 4105 } 4106 *args = p; 4107 return 0; 4108 } 4109 4110 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt) 4111 { 4112 char *args = pt->synth_opts.vm_tm_corr_args; 4113 int ret; 4114 4115 if (!args) 4116 return 0; 4117 4118 do { 4119 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args); 4120 } while (!ret); 4121 4122 if (ret < 0) { 4123 pr_err("Failed to parse VM Time Correlation options\n"); 4124 return ret; 4125 } 4126 4127 return 0; 4128 } 4129 4130 static const char * const intel_pt_info_fmts[] = { 4131 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n", 4132 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n", 4133 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n", 4134 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n", 4135 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n", 4136 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n", 4137 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n", 4138 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n", 4139 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n", 4140 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n", 4141 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n", 4142 [INTEL_PT_MTC_FREQ_BITS] = " MTC freq bits %#"PRIx64"\n", 4143 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n", 4144 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n", 4145 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n", 4146 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n", 4147 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n", 4148 }; 4149 4150 static void intel_pt_print_info(__u64 *arr, int start, int finish) 4151 { 4152 int i; 4153 4154 if (!dump_trace) 4155 return; 4156 4157 for (i = start; i <= finish; i++) { 4158 const char *fmt = intel_pt_info_fmts[i]; 4159 4160 if (fmt) 4161 fprintf(stdout, fmt, arr[i]); 4162 } 4163 } 4164 4165 static void intel_pt_print_info_str(const char *name, const char *str) 4166 { 4167 if (!dump_trace) 4168 return; 4169 4170 fprintf(stdout, " %-20s%s\n", name, str ? str : ""); 4171 } 4172 4173 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos) 4174 { 4175 return auxtrace_info->header.size >= 4176 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1)); 4177 } 4178 4179 int intel_pt_process_auxtrace_info(union perf_event *event, 4180 struct perf_session *session) 4181 { 4182 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 4183 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS; 4184 struct intel_pt *pt; 4185 void *info_end; 4186 __u64 *info; 4187 int err; 4188 4189 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) + 4190 min_sz) 4191 return -EINVAL; 4192 4193 pt = zalloc(sizeof(struct intel_pt)); 4194 if (!pt) 4195 return -ENOMEM; 4196 4197 pt->vmcs_info = RB_ROOT; 4198 4199 addr_filters__init(&pt->filts); 4200 4201 err = perf_config(intel_pt_perf_config, pt); 4202 if (err) 4203 goto err_free; 4204 4205 err = auxtrace_queues__init(&pt->queues); 4206 if (err) 4207 goto err_free; 4208 4209 if (session->itrace_synth_opts->set) { 4210 pt->synth_opts = *session->itrace_synth_opts; 4211 } else { 4212 struct itrace_synth_opts *opts = session->itrace_synth_opts; 4213 4214 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample); 4215 if (!opts->default_no_sample && !opts->inject) { 4216 pt->synth_opts.branches = false; 4217 pt->synth_opts.callchain = true; 4218 pt->synth_opts.add_callchain = true; 4219 } 4220 pt->synth_opts.thread_stack = opts->thread_stack; 4221 } 4222 4223 if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT)) 4224 intel_pt_log_set_name(INTEL_PT_PMU_NAME); 4225 4226 pt->session = session; 4227 pt->machine = &session->machines.host; /* No kvm support */ 4228 pt->auxtrace_type = auxtrace_info->type; 4229 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE]; 4230 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT]; 4231 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT]; 4232 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO]; 4233 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO]; 4234 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT]; 4235 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT]; 4236 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH]; 4237 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE]; 4238 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS]; 4239 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE, 4240 INTEL_PT_PER_CPU_MMAPS); 4241 4242 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) { 4243 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT]; 4244 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS]; 4245 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N]; 4246 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D]; 4247 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT]; 4248 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT, 4249 INTEL_PT_CYC_BIT); 4250 } 4251 4252 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) { 4253 pt->max_non_turbo_ratio = 4254 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO]; 4255 intel_pt_print_info(&auxtrace_info->priv[0], 4256 INTEL_PT_MAX_NONTURBO_RATIO, 4257 INTEL_PT_MAX_NONTURBO_RATIO); 4258 } 4259 4260 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1; 4261 info_end = (void *)auxtrace_info + auxtrace_info->header.size; 4262 4263 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) { 4264 size_t len; 4265 4266 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN]; 4267 intel_pt_print_info(&auxtrace_info->priv[0], 4268 INTEL_PT_FILTER_STR_LEN, 4269 INTEL_PT_FILTER_STR_LEN); 4270 if (len) { 4271 const char *filter = (const char *)info; 4272 4273 len = roundup(len + 1, 8); 4274 info += len >> 3; 4275 if ((void *)info > info_end) { 4276 pr_err("%s: bad filter string length\n", __func__); 4277 err = -EINVAL; 4278 goto err_free_queues; 4279 } 4280 pt->filter = memdup(filter, len); 4281 if (!pt->filter) { 4282 err = -ENOMEM; 4283 goto err_free_queues; 4284 } 4285 if (session->header.needs_swap) 4286 mem_bswap_64(pt->filter, len); 4287 if (pt->filter[len - 1]) { 4288 pr_err("%s: filter string not null terminated\n", __func__); 4289 err = -EINVAL; 4290 goto err_free_queues; 4291 } 4292 err = addr_filters__parse_bare_filter(&pt->filts, 4293 filter); 4294 if (err) 4295 goto err_free_queues; 4296 } 4297 intel_pt_print_info_str("Filter string", pt->filter); 4298 } 4299 4300 if ((void *)info < info_end) { 4301 pt->cap_event_trace = *info++; 4302 if (dump_trace) 4303 fprintf(stdout, " Cap Event Trace %d\n", 4304 pt->cap_event_trace); 4305 } 4306 4307 pt->timeless_decoding = intel_pt_timeless_decoding(pt); 4308 if (pt->timeless_decoding && !pt->tc.time_mult) 4309 pt->tc.time_mult = 1; 4310 pt->have_tsc = intel_pt_have_tsc(pt); 4311 pt->sampling_mode = intel_pt_sampling_mode(pt); 4312 pt->est_tsc = !pt->timeless_decoding; 4313 4314 if (pt->synth_opts.vm_time_correlation) { 4315 if (pt->timeless_decoding) { 4316 pr_err("Intel PT has no time information for VM Time Correlation\n"); 4317 err = -EINVAL; 4318 goto err_free_queues; 4319 } 4320 if (session->itrace_synth_opts->ptime_range) { 4321 pr_err("Time ranges cannot be specified with VM Time Correlation\n"); 4322 err = -EINVAL; 4323 goto err_free_queues; 4324 } 4325 /* Currently TSC Offset is calculated using MTC packets */ 4326 if (!intel_pt_have_mtc(pt)) { 4327 pr_err("MTC packets must have been enabled for VM Time Correlation\n"); 4328 err = -EINVAL; 4329 goto err_free_queues; 4330 } 4331 err = intel_pt_parse_vm_tm_corr_args(pt); 4332 if (err) 4333 goto err_free_queues; 4334 } 4335 4336 pt->unknown_thread = thread__new(999999999, 999999999); 4337 if (!pt->unknown_thread) { 4338 err = -ENOMEM; 4339 goto err_free_queues; 4340 } 4341 4342 err = thread__set_comm(pt->unknown_thread, "unknown", 0); 4343 if (err) 4344 goto err_delete_thread; 4345 if (thread__init_maps(pt->unknown_thread, pt->machine)) { 4346 err = -ENOMEM; 4347 goto err_delete_thread; 4348 } 4349 4350 pt->auxtrace.process_event = intel_pt_process_event; 4351 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event; 4352 pt->auxtrace.queue_data = intel_pt_queue_data; 4353 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample; 4354 pt->auxtrace.flush_events = intel_pt_flush; 4355 pt->auxtrace.free_events = intel_pt_free_events; 4356 pt->auxtrace.free = intel_pt_free; 4357 pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace; 4358 session->auxtrace = &pt->auxtrace; 4359 4360 if (dump_trace) 4361 return 0; 4362 4363 if (pt->have_sched_switch == 1) { 4364 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist); 4365 if (!pt->switch_evsel) { 4366 pr_err("%s: missing sched_switch event\n", __func__); 4367 err = -EINVAL; 4368 goto err_delete_thread; 4369 } 4370 } else if (pt->have_sched_switch == 2 && 4371 !intel_pt_find_switch(session->evlist)) { 4372 pr_err("%s: missing context_switch attribute flag\n", __func__); 4373 err = -EINVAL; 4374 goto err_delete_thread; 4375 } 4376 4377 if (pt->synth_opts.log) { 4378 bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR; 4379 unsigned int log_on_error_size = pt->synth_opts.log_on_error_size; 4380 4381 intel_pt_log_enable(log_on_error, log_on_error_size); 4382 } 4383 4384 /* Maximum non-turbo ratio is TSC freq / 100 MHz */ 4385 if (pt->tc.time_mult) { 4386 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000); 4387 4388 if (!pt->max_non_turbo_ratio) 4389 pt->max_non_turbo_ratio = 4390 (tsc_freq + 50000000) / 100000000; 4391 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq); 4392 intel_pt_log("Maximum non-turbo ratio %u\n", 4393 pt->max_non_turbo_ratio); 4394 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000; 4395 } 4396 4397 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts); 4398 if (err) 4399 goto err_delete_thread; 4400 4401 if (pt->synth_opts.calls) 4402 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC | 4403 PERF_IP_FLAG_TRACE_END; 4404 if (pt->synth_opts.returns) 4405 pt->branches_filter |= PERF_IP_FLAG_RETURN | 4406 PERF_IP_FLAG_TRACE_BEGIN; 4407 4408 if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) && 4409 !symbol_conf.use_callchain) { 4410 symbol_conf.use_callchain = true; 4411 if (callchain_register_param(&callchain_param) < 0) { 4412 symbol_conf.use_callchain = false; 4413 pt->synth_opts.callchain = false; 4414 pt->synth_opts.add_callchain = false; 4415 } 4416 } 4417 4418 if (pt->synth_opts.add_callchain) { 4419 err = intel_pt_callchain_init(pt); 4420 if (err) 4421 goto err_delete_thread; 4422 } 4423 4424 if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) { 4425 pt->br_stack_sz = pt->synth_opts.last_branch_sz; 4426 pt->br_stack_sz_plus = pt->br_stack_sz; 4427 } 4428 4429 if (pt->synth_opts.add_last_branch) { 4430 err = intel_pt_br_stack_init(pt); 4431 if (err) 4432 goto err_delete_thread; 4433 /* 4434 * Additional branch stack size to cater for tracing from the 4435 * actual sample ip to where the sample time is recorded. 4436 * Measured at about 200 branches, but generously set to 1024. 4437 * If kernel space is not being traced, then add just 1 for the 4438 * branch to kernel space. 4439 */ 4440 if (intel_pt_tracing_kernel(pt)) 4441 pt->br_stack_sz_plus += 1024; 4442 else 4443 pt->br_stack_sz_plus += 1; 4444 } 4445 4446 pt->use_thread_stack = pt->synth_opts.callchain || 4447 pt->synth_opts.add_callchain || 4448 pt->synth_opts.thread_stack || 4449 pt->synth_opts.last_branch || 4450 pt->synth_opts.add_last_branch; 4451 4452 pt->callstack = pt->synth_opts.callchain || 4453 pt->synth_opts.add_callchain || 4454 pt->synth_opts.thread_stack; 4455 4456 err = intel_pt_synth_events(pt, session); 4457 if (err) 4458 goto err_delete_thread; 4459 4460 intel_pt_setup_pebs_events(pt); 4461 4462 if (perf_data__is_pipe(session->data)) { 4463 pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n" 4464 " The output cannot relied upon. In particular,\n" 4465 " timestamps and the order of events may be incorrect.\n"); 4466 } 4467 4468 if (pt->sampling_mode || list_empty(&session->auxtrace_index)) 4469 err = auxtrace_queue_data(session, true, true); 4470 else 4471 err = auxtrace_queues__process_index(&pt->queues, session); 4472 if (err) 4473 goto err_delete_thread; 4474 4475 if (pt->queues.populated) 4476 pt->data_queued = true; 4477 4478 if (pt->timeless_decoding) 4479 pr_debug2("Intel PT decoding without timestamps\n"); 4480 4481 return 0; 4482 4483 err_delete_thread: 4484 zfree(&pt->chain); 4485 thread__zput(pt->unknown_thread); 4486 err_free_queues: 4487 intel_pt_log_disable(); 4488 auxtrace_queues__free(&pt->queues); 4489 session->auxtrace = NULL; 4490 err_free: 4491 addr_filters__exit(&pt->filts); 4492 zfree(&pt->filter); 4493 zfree(&pt->time_ranges); 4494 free(pt); 4495 return err; 4496 } 4497