1 // SPDX-License-Identifier: GPL-2.0 2 #include "util.h" 3 #include "build-id.h" 4 #include "hist.h" 5 #include "map.h" 6 #include "session.h" 7 #include "namespaces.h" 8 #include "sort.h" 9 #include "evlist.h" 10 #include "evsel.h" 11 #include "annotate.h" 12 #include "srcline.h" 13 #include "thread.h" 14 #include "ui/progress.h" 15 #include <errno.h> 16 #include <math.h> 17 #include <sys/param.h> 18 19 static bool hists__filter_entry_by_dso(struct hists *hists, 20 struct hist_entry *he); 21 static bool hists__filter_entry_by_thread(struct hists *hists, 22 struct hist_entry *he); 23 static bool hists__filter_entry_by_symbol(struct hists *hists, 24 struct hist_entry *he); 25 static bool hists__filter_entry_by_socket(struct hists *hists, 26 struct hist_entry *he); 27 28 u16 hists__col_len(struct hists *hists, enum hist_column col) 29 { 30 return hists->col_len[col]; 31 } 32 33 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 34 { 35 hists->col_len[col] = len; 36 } 37 38 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 39 { 40 if (len > hists__col_len(hists, col)) { 41 hists__set_col_len(hists, col, len); 42 return true; 43 } 44 return false; 45 } 46 47 void hists__reset_col_len(struct hists *hists) 48 { 49 enum hist_column col; 50 51 for (col = 0; col < HISTC_NR_COLS; ++col) 52 hists__set_col_len(hists, col, 0); 53 } 54 55 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 56 { 57 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 58 59 if (hists__col_len(hists, dso) < unresolved_col_width && 60 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 61 !symbol_conf.dso_list) 62 hists__set_col_len(hists, dso, unresolved_col_width); 63 } 64 65 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 66 { 67 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 68 int symlen; 69 u16 len; 70 71 /* 72 * +4 accounts for '[x] ' priv level info 73 * +2 accounts for 0x prefix on raw addresses 74 * +3 accounts for ' y ' symtab origin info 75 */ 76 if (h->ms.sym) { 77 symlen = h->ms.sym->namelen + 4; 78 if (verbose > 0) 79 symlen += BITS_PER_LONG / 4 + 2 + 3; 80 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 81 } else { 82 symlen = unresolved_col_width + 4 + 2; 83 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 84 hists__set_unres_dso_col_len(hists, HISTC_DSO); 85 } 86 87 len = thread__comm_len(h->thread); 88 if (hists__new_col_len(hists, HISTC_COMM, len)) 89 hists__set_col_len(hists, HISTC_THREAD, len + 8); 90 91 if (h->ms.map) { 92 len = dso__name_len(h->ms.map->dso); 93 hists__new_col_len(hists, HISTC_DSO, len); 94 } 95 96 if (h->parent) 97 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 98 99 if (h->branch_info) { 100 if (h->branch_info->from.sym) { 101 symlen = (int)h->branch_info->from.sym->namelen + 4; 102 if (verbose > 0) 103 symlen += BITS_PER_LONG / 4 + 2 + 3; 104 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 105 106 symlen = dso__name_len(h->branch_info->from.map->dso); 107 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 108 } else { 109 symlen = unresolved_col_width + 4 + 2; 110 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 111 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 112 } 113 114 if (h->branch_info->to.sym) { 115 symlen = (int)h->branch_info->to.sym->namelen + 4; 116 if (verbose > 0) 117 symlen += BITS_PER_LONG / 4 + 2 + 3; 118 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 119 120 symlen = dso__name_len(h->branch_info->to.map->dso); 121 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 122 } else { 123 symlen = unresolved_col_width + 4 + 2; 124 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 125 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 126 } 127 128 if (h->branch_info->srcline_from) 129 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 130 strlen(h->branch_info->srcline_from)); 131 if (h->branch_info->srcline_to) 132 hists__new_col_len(hists, HISTC_SRCLINE_TO, 133 strlen(h->branch_info->srcline_to)); 134 } 135 136 if (h->mem_info) { 137 if (h->mem_info->daddr.sym) { 138 symlen = (int)h->mem_info->daddr.sym->namelen + 4 139 + unresolved_col_width + 2; 140 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 141 symlen); 142 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 143 symlen + 1); 144 } else { 145 symlen = unresolved_col_width + 4 + 2; 146 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 147 symlen); 148 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 149 symlen); 150 } 151 152 if (h->mem_info->iaddr.sym) { 153 symlen = (int)h->mem_info->iaddr.sym->namelen + 4 154 + unresolved_col_width + 2; 155 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 156 symlen); 157 } else { 158 symlen = unresolved_col_width + 4 + 2; 159 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 160 symlen); 161 } 162 163 if (h->mem_info->daddr.map) { 164 symlen = dso__name_len(h->mem_info->daddr.map->dso); 165 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 166 symlen); 167 } else { 168 symlen = unresolved_col_width + 4 + 2; 169 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 170 } 171 172 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR, 173 unresolved_col_width + 4 + 2); 174 175 } else { 176 symlen = unresolved_col_width + 4 + 2; 177 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 178 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 179 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 180 } 181 182 hists__new_col_len(hists, HISTC_CGROUP_ID, 20); 183 hists__new_col_len(hists, HISTC_CPU, 3); 184 hists__new_col_len(hists, HISTC_SOCKET, 6); 185 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 186 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 187 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 188 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3); 189 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 190 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 191 192 if (h->srcline) { 193 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header)); 194 hists__new_col_len(hists, HISTC_SRCLINE, len); 195 } 196 197 if (h->srcfile) 198 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 199 200 if (h->transaction) 201 hists__new_col_len(hists, HISTC_TRANSACTION, 202 hist_entry__transaction_len()); 203 204 if (h->trace_output) 205 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 206 } 207 208 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 209 { 210 struct rb_node *next = rb_first(&hists->entries); 211 struct hist_entry *n; 212 int row = 0; 213 214 hists__reset_col_len(hists); 215 216 while (next && row++ < max_rows) { 217 n = rb_entry(next, struct hist_entry, rb_node); 218 if (!n->filtered) 219 hists__calc_col_len(hists, n); 220 next = rb_next(&n->rb_node); 221 } 222 } 223 224 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 225 unsigned int cpumode, u64 period) 226 { 227 switch (cpumode) { 228 case PERF_RECORD_MISC_KERNEL: 229 he_stat->period_sys += period; 230 break; 231 case PERF_RECORD_MISC_USER: 232 he_stat->period_us += period; 233 break; 234 case PERF_RECORD_MISC_GUEST_KERNEL: 235 he_stat->period_guest_sys += period; 236 break; 237 case PERF_RECORD_MISC_GUEST_USER: 238 he_stat->period_guest_us += period; 239 break; 240 default: 241 break; 242 } 243 } 244 245 static void he_stat__add_period(struct he_stat *he_stat, u64 period, 246 u64 weight) 247 { 248 249 he_stat->period += period; 250 he_stat->weight += weight; 251 he_stat->nr_events += 1; 252 } 253 254 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 255 { 256 dest->period += src->period; 257 dest->period_sys += src->period_sys; 258 dest->period_us += src->period_us; 259 dest->period_guest_sys += src->period_guest_sys; 260 dest->period_guest_us += src->period_guest_us; 261 dest->nr_events += src->nr_events; 262 dest->weight += src->weight; 263 } 264 265 static void he_stat__decay(struct he_stat *he_stat) 266 { 267 he_stat->period = (he_stat->period * 7) / 8; 268 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 269 /* XXX need decay for weight too? */ 270 } 271 272 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 273 274 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 275 { 276 u64 prev_period = he->stat.period; 277 u64 diff; 278 279 if (prev_period == 0) 280 return true; 281 282 he_stat__decay(&he->stat); 283 if (symbol_conf.cumulate_callchain) 284 he_stat__decay(he->stat_acc); 285 decay_callchain(he->callchain); 286 287 diff = prev_period - he->stat.period; 288 289 if (!he->depth) { 290 hists->stats.total_period -= diff; 291 if (!he->filtered) 292 hists->stats.total_non_filtered_period -= diff; 293 } 294 295 if (!he->leaf) { 296 struct hist_entry *child; 297 struct rb_node *node = rb_first(&he->hroot_out); 298 while (node) { 299 child = rb_entry(node, struct hist_entry, rb_node); 300 node = rb_next(node); 301 302 if (hists__decay_entry(hists, child)) 303 hists__delete_entry(hists, child); 304 } 305 } 306 307 return he->stat.period == 0; 308 } 309 310 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 311 { 312 struct rb_root *root_in; 313 struct rb_root *root_out; 314 315 if (he->parent_he) { 316 root_in = &he->parent_he->hroot_in; 317 root_out = &he->parent_he->hroot_out; 318 } else { 319 if (hists__has(hists, need_collapse)) 320 root_in = &hists->entries_collapsed; 321 else 322 root_in = hists->entries_in; 323 root_out = &hists->entries; 324 } 325 326 rb_erase(&he->rb_node_in, root_in); 327 rb_erase(&he->rb_node, root_out); 328 329 --hists->nr_entries; 330 if (!he->filtered) 331 --hists->nr_non_filtered_entries; 332 333 hist_entry__delete(he); 334 } 335 336 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 337 { 338 struct rb_node *next = rb_first(&hists->entries); 339 struct hist_entry *n; 340 341 while (next) { 342 n = rb_entry(next, struct hist_entry, rb_node); 343 next = rb_next(&n->rb_node); 344 if (((zap_user && n->level == '.') || 345 (zap_kernel && n->level != '.') || 346 hists__decay_entry(hists, n))) { 347 hists__delete_entry(hists, n); 348 } 349 } 350 } 351 352 void hists__delete_entries(struct hists *hists) 353 { 354 struct rb_node *next = rb_first(&hists->entries); 355 struct hist_entry *n; 356 357 while (next) { 358 n = rb_entry(next, struct hist_entry, rb_node); 359 next = rb_next(&n->rb_node); 360 361 hists__delete_entry(hists, n); 362 } 363 } 364 365 /* 366 * histogram, sorted on item, collects periods 367 */ 368 369 static int hist_entry__init(struct hist_entry *he, 370 struct hist_entry *template, 371 bool sample_self) 372 { 373 *he = *template; 374 375 if (symbol_conf.cumulate_callchain) { 376 he->stat_acc = malloc(sizeof(he->stat)); 377 if (he->stat_acc == NULL) 378 return -ENOMEM; 379 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 380 if (!sample_self) 381 memset(&he->stat, 0, sizeof(he->stat)); 382 } 383 384 map__get(he->ms.map); 385 386 if (he->branch_info) { 387 /* 388 * This branch info is (a part of) allocated from 389 * sample__resolve_bstack() and will be freed after 390 * adding new entries. So we need to save a copy. 391 */ 392 he->branch_info = malloc(sizeof(*he->branch_info)); 393 if (he->branch_info == NULL) { 394 map__zput(he->ms.map); 395 free(he->stat_acc); 396 return -ENOMEM; 397 } 398 399 memcpy(he->branch_info, template->branch_info, 400 sizeof(*he->branch_info)); 401 402 map__get(he->branch_info->from.map); 403 map__get(he->branch_info->to.map); 404 } 405 406 if (he->mem_info) { 407 map__get(he->mem_info->iaddr.map); 408 map__get(he->mem_info->daddr.map); 409 } 410 411 if (symbol_conf.use_callchain) 412 callchain_init(he->callchain); 413 414 if (he->raw_data) { 415 he->raw_data = memdup(he->raw_data, he->raw_size); 416 417 if (he->raw_data == NULL) { 418 map__put(he->ms.map); 419 if (he->branch_info) { 420 map__put(he->branch_info->from.map); 421 map__put(he->branch_info->to.map); 422 free(he->branch_info); 423 } 424 if (he->mem_info) { 425 map__put(he->mem_info->iaddr.map); 426 map__put(he->mem_info->daddr.map); 427 } 428 free(he->stat_acc); 429 return -ENOMEM; 430 } 431 } 432 INIT_LIST_HEAD(&he->pairs.node); 433 thread__get(he->thread); 434 he->hroot_in = RB_ROOT; 435 he->hroot_out = RB_ROOT; 436 437 if (!symbol_conf.report_hierarchy) 438 he->leaf = true; 439 440 return 0; 441 } 442 443 static void *hist_entry__zalloc(size_t size) 444 { 445 return zalloc(size + sizeof(struct hist_entry)); 446 } 447 448 static void hist_entry__free(void *ptr) 449 { 450 free(ptr); 451 } 452 453 static struct hist_entry_ops default_ops = { 454 .new = hist_entry__zalloc, 455 .free = hist_entry__free, 456 }; 457 458 static struct hist_entry *hist_entry__new(struct hist_entry *template, 459 bool sample_self) 460 { 461 struct hist_entry_ops *ops = template->ops; 462 size_t callchain_size = 0; 463 struct hist_entry *he; 464 int err = 0; 465 466 if (!ops) 467 ops = template->ops = &default_ops; 468 469 if (symbol_conf.use_callchain) 470 callchain_size = sizeof(struct callchain_root); 471 472 he = ops->new(callchain_size); 473 if (he) { 474 err = hist_entry__init(he, template, sample_self); 475 if (err) { 476 ops->free(he); 477 he = NULL; 478 } 479 } 480 481 return he; 482 } 483 484 static u8 symbol__parent_filter(const struct symbol *parent) 485 { 486 if (symbol_conf.exclude_other && parent == NULL) 487 return 1 << HIST_FILTER__PARENT; 488 return 0; 489 } 490 491 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 492 { 493 if (!symbol_conf.use_callchain) 494 return; 495 496 he->hists->callchain_period += period; 497 if (!he->filtered) 498 he->hists->callchain_non_filtered_period += period; 499 } 500 501 static struct hist_entry *hists__findnew_entry(struct hists *hists, 502 struct hist_entry *entry, 503 struct addr_location *al, 504 bool sample_self) 505 { 506 struct rb_node **p; 507 struct rb_node *parent = NULL; 508 struct hist_entry *he; 509 int64_t cmp; 510 u64 period = entry->stat.period; 511 u64 weight = entry->stat.weight; 512 513 p = &hists->entries_in->rb_node; 514 515 while (*p != NULL) { 516 parent = *p; 517 he = rb_entry(parent, struct hist_entry, rb_node_in); 518 519 /* 520 * Make sure that it receives arguments in a same order as 521 * hist_entry__collapse() so that we can use an appropriate 522 * function when searching an entry regardless which sort 523 * keys were used. 524 */ 525 cmp = hist_entry__cmp(he, entry); 526 527 if (!cmp) { 528 if (sample_self) { 529 he_stat__add_period(&he->stat, period, weight); 530 hist_entry__add_callchain_period(he, period); 531 } 532 if (symbol_conf.cumulate_callchain) 533 he_stat__add_period(he->stat_acc, period, weight); 534 535 /* 536 * This mem info was allocated from sample__resolve_mem 537 * and will not be used anymore. 538 */ 539 zfree(&entry->mem_info); 540 541 /* If the map of an existing hist_entry has 542 * become out-of-date due to an exec() or 543 * similar, update it. Otherwise we will 544 * mis-adjust symbol addresses when computing 545 * the history counter to increment. 546 */ 547 if (he->ms.map != entry->ms.map) { 548 map__put(he->ms.map); 549 he->ms.map = map__get(entry->ms.map); 550 } 551 goto out; 552 } 553 554 if (cmp < 0) 555 p = &(*p)->rb_left; 556 else 557 p = &(*p)->rb_right; 558 } 559 560 he = hist_entry__new(entry, sample_self); 561 if (!he) 562 return NULL; 563 564 if (sample_self) 565 hist_entry__add_callchain_period(he, period); 566 hists->nr_entries++; 567 568 rb_link_node(&he->rb_node_in, parent, p); 569 rb_insert_color(&he->rb_node_in, hists->entries_in); 570 out: 571 if (sample_self) 572 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 573 if (symbol_conf.cumulate_callchain) 574 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 575 return he; 576 } 577 578 static struct hist_entry* 579 __hists__add_entry(struct hists *hists, 580 struct addr_location *al, 581 struct symbol *sym_parent, 582 struct branch_info *bi, 583 struct mem_info *mi, 584 struct perf_sample *sample, 585 bool sample_self, 586 struct hist_entry_ops *ops) 587 { 588 struct namespaces *ns = thread__namespaces(al->thread); 589 struct hist_entry entry = { 590 .thread = al->thread, 591 .comm = thread__comm(al->thread), 592 .cgroup_id = { 593 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0, 594 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0, 595 }, 596 .ms = { 597 .map = al->map, 598 .sym = al->sym, 599 }, 600 .srcline = al->srcline ? strdup(al->srcline) : NULL, 601 .socket = al->socket, 602 .cpu = al->cpu, 603 .cpumode = al->cpumode, 604 .ip = al->addr, 605 .level = al->level, 606 .stat = { 607 .nr_events = 1, 608 .period = sample->period, 609 .weight = sample->weight, 610 }, 611 .parent = sym_parent, 612 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 613 .hists = hists, 614 .branch_info = bi, 615 .mem_info = mi, 616 .transaction = sample->transaction, 617 .raw_data = sample->raw_data, 618 .raw_size = sample->raw_size, 619 .ops = ops, 620 }; 621 622 return hists__findnew_entry(hists, &entry, al, sample_self); 623 } 624 625 struct hist_entry *hists__add_entry(struct hists *hists, 626 struct addr_location *al, 627 struct symbol *sym_parent, 628 struct branch_info *bi, 629 struct mem_info *mi, 630 struct perf_sample *sample, 631 bool sample_self) 632 { 633 return __hists__add_entry(hists, al, sym_parent, bi, mi, 634 sample, sample_self, NULL); 635 } 636 637 struct hist_entry *hists__add_entry_ops(struct hists *hists, 638 struct hist_entry_ops *ops, 639 struct addr_location *al, 640 struct symbol *sym_parent, 641 struct branch_info *bi, 642 struct mem_info *mi, 643 struct perf_sample *sample, 644 bool sample_self) 645 { 646 return __hists__add_entry(hists, al, sym_parent, bi, mi, 647 sample, sample_self, ops); 648 } 649 650 static int 651 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 652 struct addr_location *al __maybe_unused) 653 { 654 return 0; 655 } 656 657 static int 658 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 659 struct addr_location *al __maybe_unused) 660 { 661 return 0; 662 } 663 664 static int 665 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 666 { 667 struct perf_sample *sample = iter->sample; 668 struct mem_info *mi; 669 670 mi = sample__resolve_mem(sample, al); 671 if (mi == NULL) 672 return -ENOMEM; 673 674 iter->priv = mi; 675 return 0; 676 } 677 678 static int 679 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 680 { 681 u64 cost; 682 struct mem_info *mi = iter->priv; 683 struct hists *hists = evsel__hists(iter->evsel); 684 struct perf_sample *sample = iter->sample; 685 struct hist_entry *he; 686 687 if (mi == NULL) 688 return -EINVAL; 689 690 cost = sample->weight; 691 if (!cost) 692 cost = 1; 693 694 /* 695 * must pass period=weight in order to get the correct 696 * sorting from hists__collapse_resort() which is solely 697 * based on periods. We want sorting be done on nr_events * weight 698 * and this is indirectly achieved by passing period=weight here 699 * and the he_stat__add_period() function. 700 */ 701 sample->period = cost; 702 703 he = hists__add_entry(hists, al, iter->parent, NULL, mi, 704 sample, true); 705 if (!he) 706 return -ENOMEM; 707 708 iter->he = he; 709 return 0; 710 } 711 712 static int 713 iter_finish_mem_entry(struct hist_entry_iter *iter, 714 struct addr_location *al __maybe_unused) 715 { 716 struct perf_evsel *evsel = iter->evsel; 717 struct hists *hists = evsel__hists(evsel); 718 struct hist_entry *he = iter->he; 719 int err = -EINVAL; 720 721 if (he == NULL) 722 goto out; 723 724 hists__inc_nr_samples(hists, he->filtered); 725 726 err = hist_entry__append_callchain(he, iter->sample); 727 728 out: 729 /* 730 * We don't need to free iter->priv (mem_info) here since the mem info 731 * was either already freed in hists__findnew_entry() or passed to a 732 * new hist entry by hist_entry__new(). 733 */ 734 iter->priv = NULL; 735 736 iter->he = NULL; 737 return err; 738 } 739 740 static int 741 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 742 { 743 struct branch_info *bi; 744 struct perf_sample *sample = iter->sample; 745 746 bi = sample__resolve_bstack(sample, al); 747 if (!bi) 748 return -ENOMEM; 749 750 iter->curr = 0; 751 iter->total = sample->branch_stack->nr; 752 753 iter->priv = bi; 754 return 0; 755 } 756 757 static int 758 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused, 759 struct addr_location *al __maybe_unused) 760 { 761 return 0; 762 } 763 764 static int 765 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 766 { 767 struct branch_info *bi = iter->priv; 768 int i = iter->curr; 769 770 if (bi == NULL) 771 return 0; 772 773 if (iter->curr >= iter->total) 774 return 0; 775 776 al->map = bi[i].to.map; 777 al->sym = bi[i].to.sym; 778 al->addr = bi[i].to.addr; 779 return 1; 780 } 781 782 static int 783 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 784 { 785 struct branch_info *bi; 786 struct perf_evsel *evsel = iter->evsel; 787 struct hists *hists = evsel__hists(evsel); 788 struct perf_sample *sample = iter->sample; 789 struct hist_entry *he = NULL; 790 int i = iter->curr; 791 int err = 0; 792 793 bi = iter->priv; 794 795 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym)) 796 goto out; 797 798 /* 799 * The report shows the percentage of total branches captured 800 * and not events sampled. Thus we use a pseudo period of 1. 801 */ 802 sample->period = 1; 803 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 804 805 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, 806 sample, true); 807 if (he == NULL) 808 return -ENOMEM; 809 810 hists__inc_nr_samples(hists, he->filtered); 811 812 out: 813 iter->he = he; 814 iter->curr++; 815 return err; 816 } 817 818 static int 819 iter_finish_branch_entry(struct hist_entry_iter *iter, 820 struct addr_location *al __maybe_unused) 821 { 822 zfree(&iter->priv); 823 iter->he = NULL; 824 825 return iter->curr >= iter->total ? 0 : -1; 826 } 827 828 static int 829 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 830 struct addr_location *al __maybe_unused) 831 { 832 return 0; 833 } 834 835 static int 836 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 837 { 838 struct perf_evsel *evsel = iter->evsel; 839 struct perf_sample *sample = iter->sample; 840 struct hist_entry *he; 841 842 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 843 sample, true); 844 if (he == NULL) 845 return -ENOMEM; 846 847 iter->he = he; 848 return 0; 849 } 850 851 static int 852 iter_finish_normal_entry(struct hist_entry_iter *iter, 853 struct addr_location *al __maybe_unused) 854 { 855 struct hist_entry *he = iter->he; 856 struct perf_evsel *evsel = iter->evsel; 857 struct perf_sample *sample = iter->sample; 858 859 if (he == NULL) 860 return 0; 861 862 iter->he = NULL; 863 864 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 865 866 return hist_entry__append_callchain(he, sample); 867 } 868 869 static int 870 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 871 struct addr_location *al __maybe_unused) 872 { 873 struct hist_entry **he_cache; 874 875 callchain_cursor_commit(&callchain_cursor); 876 877 /* 878 * This is for detecting cycles or recursions so that they're 879 * cumulated only one time to prevent entries more than 100% 880 * overhead. 881 */ 882 he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1)); 883 if (he_cache == NULL) 884 return -ENOMEM; 885 886 iter->priv = he_cache; 887 iter->curr = 0; 888 889 return 0; 890 } 891 892 static int 893 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 894 struct addr_location *al) 895 { 896 struct perf_evsel *evsel = iter->evsel; 897 struct hists *hists = evsel__hists(evsel); 898 struct perf_sample *sample = iter->sample; 899 struct hist_entry **he_cache = iter->priv; 900 struct hist_entry *he; 901 int err = 0; 902 903 he = hists__add_entry(hists, al, iter->parent, NULL, NULL, 904 sample, true); 905 if (he == NULL) 906 return -ENOMEM; 907 908 iter->he = he; 909 he_cache[iter->curr++] = he; 910 911 hist_entry__append_callchain(he, sample); 912 913 /* 914 * We need to re-initialize the cursor since callchain_append() 915 * advanced the cursor to the end. 916 */ 917 callchain_cursor_commit(&callchain_cursor); 918 919 hists__inc_nr_samples(hists, he->filtered); 920 921 return err; 922 } 923 924 static int 925 iter_next_cumulative_entry(struct hist_entry_iter *iter, 926 struct addr_location *al) 927 { 928 struct callchain_cursor_node *node; 929 930 node = callchain_cursor_current(&callchain_cursor); 931 if (node == NULL) 932 return 0; 933 934 return fill_callchain_info(al, node, iter->hide_unresolved); 935 } 936 937 static int 938 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 939 struct addr_location *al) 940 { 941 struct perf_evsel *evsel = iter->evsel; 942 struct perf_sample *sample = iter->sample; 943 struct hist_entry **he_cache = iter->priv; 944 struct hist_entry *he; 945 struct hist_entry he_tmp = { 946 .hists = evsel__hists(evsel), 947 .cpu = al->cpu, 948 .thread = al->thread, 949 .comm = thread__comm(al->thread), 950 .ip = al->addr, 951 .ms = { 952 .map = al->map, 953 .sym = al->sym, 954 }, 955 .srcline = al->srcline ? strdup(al->srcline) : NULL, 956 .parent = iter->parent, 957 .raw_data = sample->raw_data, 958 .raw_size = sample->raw_size, 959 }; 960 int i; 961 struct callchain_cursor cursor; 962 963 callchain_cursor_snapshot(&cursor, &callchain_cursor); 964 965 callchain_cursor_advance(&callchain_cursor); 966 967 /* 968 * Check if there's duplicate entries in the callchain. 969 * It's possible that it has cycles or recursive calls. 970 */ 971 for (i = 0; i < iter->curr; i++) { 972 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 973 /* to avoid calling callback function */ 974 iter->he = NULL; 975 return 0; 976 } 977 } 978 979 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 980 sample, false); 981 if (he == NULL) 982 return -ENOMEM; 983 984 iter->he = he; 985 he_cache[iter->curr++] = he; 986 987 if (symbol_conf.use_callchain) 988 callchain_append(he->callchain, &cursor, sample->period); 989 return 0; 990 } 991 992 static int 993 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 994 struct addr_location *al __maybe_unused) 995 { 996 zfree(&iter->priv); 997 iter->he = NULL; 998 999 return 0; 1000 } 1001 1002 const struct hist_iter_ops hist_iter_mem = { 1003 .prepare_entry = iter_prepare_mem_entry, 1004 .add_single_entry = iter_add_single_mem_entry, 1005 .next_entry = iter_next_nop_entry, 1006 .add_next_entry = iter_add_next_nop_entry, 1007 .finish_entry = iter_finish_mem_entry, 1008 }; 1009 1010 const struct hist_iter_ops hist_iter_branch = { 1011 .prepare_entry = iter_prepare_branch_entry, 1012 .add_single_entry = iter_add_single_branch_entry, 1013 .next_entry = iter_next_branch_entry, 1014 .add_next_entry = iter_add_next_branch_entry, 1015 .finish_entry = iter_finish_branch_entry, 1016 }; 1017 1018 const struct hist_iter_ops hist_iter_normal = { 1019 .prepare_entry = iter_prepare_normal_entry, 1020 .add_single_entry = iter_add_single_normal_entry, 1021 .next_entry = iter_next_nop_entry, 1022 .add_next_entry = iter_add_next_nop_entry, 1023 .finish_entry = iter_finish_normal_entry, 1024 }; 1025 1026 const struct hist_iter_ops hist_iter_cumulative = { 1027 .prepare_entry = iter_prepare_cumulative_entry, 1028 .add_single_entry = iter_add_single_cumulative_entry, 1029 .next_entry = iter_next_cumulative_entry, 1030 .add_next_entry = iter_add_next_cumulative_entry, 1031 .finish_entry = iter_finish_cumulative_entry, 1032 }; 1033 1034 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1035 int max_stack_depth, void *arg) 1036 { 1037 int err, err2; 1038 struct map *alm = NULL; 1039 1040 if (al && al->map) 1041 alm = map__get(al->map); 1042 1043 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, 1044 iter->evsel, al, max_stack_depth); 1045 if (err) 1046 return err; 1047 1048 iter->max_stack = max_stack_depth; 1049 1050 err = iter->ops->prepare_entry(iter, al); 1051 if (err) 1052 goto out; 1053 1054 err = iter->ops->add_single_entry(iter, al); 1055 if (err) 1056 goto out; 1057 1058 if (iter->he && iter->add_entry_cb) { 1059 err = iter->add_entry_cb(iter, al, true, arg); 1060 if (err) 1061 goto out; 1062 } 1063 1064 while (iter->ops->next_entry(iter, al)) { 1065 err = iter->ops->add_next_entry(iter, al); 1066 if (err) 1067 break; 1068 1069 if (iter->he && iter->add_entry_cb) { 1070 err = iter->add_entry_cb(iter, al, false, arg); 1071 if (err) 1072 goto out; 1073 } 1074 } 1075 1076 out: 1077 err2 = iter->ops->finish_entry(iter, al); 1078 if (!err) 1079 err = err2; 1080 1081 map__put(alm); 1082 1083 return err; 1084 } 1085 1086 int64_t 1087 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1088 { 1089 struct hists *hists = left->hists; 1090 struct perf_hpp_fmt *fmt; 1091 int64_t cmp = 0; 1092 1093 hists__for_each_sort_list(hists, fmt) { 1094 if (perf_hpp__is_dynamic_entry(fmt) && 1095 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1096 continue; 1097 1098 cmp = fmt->cmp(fmt, left, right); 1099 if (cmp) 1100 break; 1101 } 1102 1103 return cmp; 1104 } 1105 1106 int64_t 1107 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1108 { 1109 struct hists *hists = left->hists; 1110 struct perf_hpp_fmt *fmt; 1111 int64_t cmp = 0; 1112 1113 hists__for_each_sort_list(hists, fmt) { 1114 if (perf_hpp__is_dynamic_entry(fmt) && 1115 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1116 continue; 1117 1118 cmp = fmt->collapse(fmt, left, right); 1119 if (cmp) 1120 break; 1121 } 1122 1123 return cmp; 1124 } 1125 1126 void hist_entry__delete(struct hist_entry *he) 1127 { 1128 struct hist_entry_ops *ops = he->ops; 1129 1130 thread__zput(he->thread); 1131 map__zput(he->ms.map); 1132 1133 if (he->branch_info) { 1134 map__zput(he->branch_info->from.map); 1135 map__zput(he->branch_info->to.map); 1136 free_srcline(he->branch_info->srcline_from); 1137 free_srcline(he->branch_info->srcline_to); 1138 zfree(&he->branch_info); 1139 } 1140 1141 if (he->mem_info) { 1142 map__zput(he->mem_info->iaddr.map); 1143 map__zput(he->mem_info->daddr.map); 1144 zfree(&he->mem_info); 1145 } 1146 1147 zfree(&he->stat_acc); 1148 free_srcline(he->srcline); 1149 if (he->srcfile && he->srcfile[0]) 1150 free(he->srcfile); 1151 free_callchain(he->callchain); 1152 free(he->trace_output); 1153 free(he->raw_data); 1154 ops->free(he); 1155 } 1156 1157 /* 1158 * If this is not the last column, then we need to pad it according to the 1159 * pre-calculated max lenght for this column, otherwise don't bother adding 1160 * spaces because that would break viewing this with, for instance, 'less', 1161 * that would show tons of trailing spaces when a long C++ demangled method 1162 * names is sampled. 1163 */ 1164 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1165 struct perf_hpp_fmt *fmt, int printed) 1166 { 1167 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1168 const int width = fmt->width(fmt, hpp, he->hists); 1169 if (printed < width) { 1170 advance_hpp(hpp, printed); 1171 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1172 } 1173 } 1174 1175 return printed; 1176 } 1177 1178 /* 1179 * collapse the histogram 1180 */ 1181 1182 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1183 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1184 enum hist_filter type); 1185 1186 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1187 1188 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1189 { 1190 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1191 } 1192 1193 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1194 enum hist_filter type, 1195 fmt_chk_fn check) 1196 { 1197 struct perf_hpp_fmt *fmt; 1198 bool type_match = false; 1199 struct hist_entry *parent = he->parent_he; 1200 1201 switch (type) { 1202 case HIST_FILTER__THREAD: 1203 if (symbol_conf.comm_list == NULL && 1204 symbol_conf.pid_list == NULL && 1205 symbol_conf.tid_list == NULL) 1206 return; 1207 break; 1208 case HIST_FILTER__DSO: 1209 if (symbol_conf.dso_list == NULL) 1210 return; 1211 break; 1212 case HIST_FILTER__SYMBOL: 1213 if (symbol_conf.sym_list == NULL) 1214 return; 1215 break; 1216 case HIST_FILTER__PARENT: 1217 case HIST_FILTER__GUEST: 1218 case HIST_FILTER__HOST: 1219 case HIST_FILTER__SOCKET: 1220 case HIST_FILTER__C2C: 1221 default: 1222 return; 1223 } 1224 1225 /* if it's filtered by own fmt, it has to have filter bits */ 1226 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1227 if (check(fmt)) { 1228 type_match = true; 1229 break; 1230 } 1231 } 1232 1233 if (type_match) { 1234 /* 1235 * If the filter is for current level entry, propagate 1236 * filter marker to parents. The marker bit was 1237 * already set by default so it only needs to clear 1238 * non-filtered entries. 1239 */ 1240 if (!(he->filtered & (1 << type))) { 1241 while (parent) { 1242 parent->filtered &= ~(1 << type); 1243 parent = parent->parent_he; 1244 } 1245 } 1246 } else { 1247 /* 1248 * If current entry doesn't have matching formats, set 1249 * filter marker for upper level entries. it will be 1250 * cleared if its lower level entries is not filtered. 1251 * 1252 * For lower-level entries, it inherits parent's 1253 * filter bit so that lower level entries of a 1254 * non-filtered entry won't set the filter marker. 1255 */ 1256 if (parent == NULL) 1257 he->filtered |= (1 << type); 1258 else 1259 he->filtered |= (parent->filtered & (1 << type)); 1260 } 1261 } 1262 1263 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1264 { 1265 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1266 check_thread_entry); 1267 1268 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1269 perf_hpp__is_dso_entry); 1270 1271 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1272 perf_hpp__is_sym_entry); 1273 1274 hists__apply_filters(he->hists, he); 1275 } 1276 1277 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1278 struct rb_root *root, 1279 struct hist_entry *he, 1280 struct hist_entry *parent_he, 1281 struct perf_hpp_list *hpp_list) 1282 { 1283 struct rb_node **p = &root->rb_node; 1284 struct rb_node *parent = NULL; 1285 struct hist_entry *iter, *new; 1286 struct perf_hpp_fmt *fmt; 1287 int64_t cmp; 1288 1289 while (*p != NULL) { 1290 parent = *p; 1291 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1292 1293 cmp = 0; 1294 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1295 cmp = fmt->collapse(fmt, iter, he); 1296 if (cmp) 1297 break; 1298 } 1299 1300 if (!cmp) { 1301 he_stat__add_stat(&iter->stat, &he->stat); 1302 return iter; 1303 } 1304 1305 if (cmp < 0) 1306 p = &parent->rb_left; 1307 else 1308 p = &parent->rb_right; 1309 } 1310 1311 new = hist_entry__new(he, true); 1312 if (new == NULL) 1313 return NULL; 1314 1315 hists->nr_entries++; 1316 1317 /* save related format list for output */ 1318 new->hpp_list = hpp_list; 1319 new->parent_he = parent_he; 1320 1321 hist_entry__apply_hierarchy_filters(new); 1322 1323 /* some fields are now passed to 'new' */ 1324 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1325 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1326 he->trace_output = NULL; 1327 else 1328 new->trace_output = NULL; 1329 1330 if (perf_hpp__is_srcline_entry(fmt)) 1331 he->srcline = NULL; 1332 else 1333 new->srcline = NULL; 1334 1335 if (perf_hpp__is_srcfile_entry(fmt)) 1336 he->srcfile = NULL; 1337 else 1338 new->srcfile = NULL; 1339 } 1340 1341 rb_link_node(&new->rb_node_in, parent, p); 1342 rb_insert_color(&new->rb_node_in, root); 1343 return new; 1344 } 1345 1346 static int hists__hierarchy_insert_entry(struct hists *hists, 1347 struct rb_root *root, 1348 struct hist_entry *he) 1349 { 1350 struct perf_hpp_list_node *node; 1351 struct hist_entry *new_he = NULL; 1352 struct hist_entry *parent = NULL; 1353 int depth = 0; 1354 int ret = 0; 1355 1356 list_for_each_entry(node, &hists->hpp_formats, list) { 1357 /* skip period (overhead) and elided columns */ 1358 if (node->level == 0 || node->skip) 1359 continue; 1360 1361 /* insert copy of 'he' for each fmt into the hierarchy */ 1362 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1363 if (new_he == NULL) { 1364 ret = -1; 1365 break; 1366 } 1367 1368 root = &new_he->hroot_in; 1369 new_he->depth = depth++; 1370 parent = new_he; 1371 } 1372 1373 if (new_he) { 1374 new_he->leaf = true; 1375 1376 if (symbol_conf.use_callchain) { 1377 callchain_cursor_reset(&callchain_cursor); 1378 if (callchain_merge(&callchain_cursor, 1379 new_he->callchain, 1380 he->callchain) < 0) 1381 ret = -1; 1382 } 1383 } 1384 1385 /* 'he' is no longer used */ 1386 hist_entry__delete(he); 1387 1388 /* return 0 (or -1) since it already applied filters */ 1389 return ret; 1390 } 1391 1392 static int hists__collapse_insert_entry(struct hists *hists, 1393 struct rb_root *root, 1394 struct hist_entry *he) 1395 { 1396 struct rb_node **p = &root->rb_node; 1397 struct rb_node *parent = NULL; 1398 struct hist_entry *iter; 1399 int64_t cmp; 1400 1401 if (symbol_conf.report_hierarchy) 1402 return hists__hierarchy_insert_entry(hists, root, he); 1403 1404 while (*p != NULL) { 1405 parent = *p; 1406 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1407 1408 cmp = hist_entry__collapse(iter, he); 1409 1410 if (!cmp) { 1411 int ret = 0; 1412 1413 he_stat__add_stat(&iter->stat, &he->stat); 1414 if (symbol_conf.cumulate_callchain) 1415 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1416 1417 if (symbol_conf.use_callchain) { 1418 callchain_cursor_reset(&callchain_cursor); 1419 if (callchain_merge(&callchain_cursor, 1420 iter->callchain, 1421 he->callchain) < 0) 1422 ret = -1; 1423 } 1424 hist_entry__delete(he); 1425 return ret; 1426 } 1427 1428 if (cmp < 0) 1429 p = &(*p)->rb_left; 1430 else 1431 p = &(*p)->rb_right; 1432 } 1433 hists->nr_entries++; 1434 1435 rb_link_node(&he->rb_node_in, parent, p); 1436 rb_insert_color(&he->rb_node_in, root); 1437 return 1; 1438 } 1439 1440 struct rb_root *hists__get_rotate_entries_in(struct hists *hists) 1441 { 1442 struct rb_root *root; 1443 1444 pthread_mutex_lock(&hists->lock); 1445 1446 root = hists->entries_in; 1447 if (++hists->entries_in > &hists->entries_in_array[1]) 1448 hists->entries_in = &hists->entries_in_array[0]; 1449 1450 pthread_mutex_unlock(&hists->lock); 1451 1452 return root; 1453 } 1454 1455 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1456 { 1457 hists__filter_entry_by_dso(hists, he); 1458 hists__filter_entry_by_thread(hists, he); 1459 hists__filter_entry_by_symbol(hists, he); 1460 hists__filter_entry_by_socket(hists, he); 1461 } 1462 1463 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1464 { 1465 struct rb_root *root; 1466 struct rb_node *next; 1467 struct hist_entry *n; 1468 int ret; 1469 1470 if (!hists__has(hists, need_collapse)) 1471 return 0; 1472 1473 hists->nr_entries = 0; 1474 1475 root = hists__get_rotate_entries_in(hists); 1476 1477 next = rb_first(root); 1478 1479 while (next) { 1480 if (session_done()) 1481 break; 1482 n = rb_entry(next, struct hist_entry, rb_node_in); 1483 next = rb_next(&n->rb_node_in); 1484 1485 rb_erase(&n->rb_node_in, root); 1486 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1487 if (ret < 0) 1488 return -1; 1489 1490 if (ret) { 1491 /* 1492 * If it wasn't combined with one of the entries already 1493 * collapsed, we need to apply the filters that may have 1494 * been set by, say, the hist_browser. 1495 */ 1496 hists__apply_filters(hists, n); 1497 } 1498 if (prog) 1499 ui_progress__update(prog, 1); 1500 } 1501 return 0; 1502 } 1503 1504 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1505 { 1506 struct hists *hists = a->hists; 1507 struct perf_hpp_fmt *fmt; 1508 int64_t cmp = 0; 1509 1510 hists__for_each_sort_list(hists, fmt) { 1511 if (perf_hpp__should_skip(fmt, a->hists)) 1512 continue; 1513 1514 cmp = fmt->sort(fmt, a, b); 1515 if (cmp) 1516 break; 1517 } 1518 1519 return cmp; 1520 } 1521 1522 static void hists__reset_filter_stats(struct hists *hists) 1523 { 1524 hists->nr_non_filtered_entries = 0; 1525 hists->stats.total_non_filtered_period = 0; 1526 } 1527 1528 void hists__reset_stats(struct hists *hists) 1529 { 1530 hists->nr_entries = 0; 1531 hists->stats.total_period = 0; 1532 1533 hists__reset_filter_stats(hists); 1534 } 1535 1536 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1537 { 1538 hists->nr_non_filtered_entries++; 1539 hists->stats.total_non_filtered_period += h->stat.period; 1540 } 1541 1542 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1543 { 1544 if (!h->filtered) 1545 hists__inc_filter_stats(hists, h); 1546 1547 hists->nr_entries++; 1548 hists->stats.total_period += h->stat.period; 1549 } 1550 1551 static void hierarchy_recalc_total_periods(struct hists *hists) 1552 { 1553 struct rb_node *node; 1554 struct hist_entry *he; 1555 1556 node = rb_first(&hists->entries); 1557 1558 hists->stats.total_period = 0; 1559 hists->stats.total_non_filtered_period = 0; 1560 1561 /* 1562 * recalculate total period using top-level entries only 1563 * since lower level entries only see non-filtered entries 1564 * but upper level entries have sum of both entries. 1565 */ 1566 while (node) { 1567 he = rb_entry(node, struct hist_entry, rb_node); 1568 node = rb_next(node); 1569 1570 hists->stats.total_period += he->stat.period; 1571 if (!he->filtered) 1572 hists->stats.total_non_filtered_period += he->stat.period; 1573 } 1574 } 1575 1576 static void hierarchy_insert_output_entry(struct rb_root *root, 1577 struct hist_entry *he) 1578 { 1579 struct rb_node **p = &root->rb_node; 1580 struct rb_node *parent = NULL; 1581 struct hist_entry *iter; 1582 struct perf_hpp_fmt *fmt; 1583 1584 while (*p != NULL) { 1585 parent = *p; 1586 iter = rb_entry(parent, struct hist_entry, rb_node); 1587 1588 if (hist_entry__sort(he, iter) > 0) 1589 p = &parent->rb_left; 1590 else 1591 p = &parent->rb_right; 1592 } 1593 1594 rb_link_node(&he->rb_node, parent, p); 1595 rb_insert_color(&he->rb_node, root); 1596 1597 /* update column width of dynamic entry */ 1598 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1599 if (perf_hpp__is_dynamic_entry(fmt)) 1600 fmt->sort(fmt, he, NULL); 1601 } 1602 } 1603 1604 static void hists__hierarchy_output_resort(struct hists *hists, 1605 struct ui_progress *prog, 1606 struct rb_root *root_in, 1607 struct rb_root *root_out, 1608 u64 min_callchain_hits, 1609 bool use_callchain) 1610 { 1611 struct rb_node *node; 1612 struct hist_entry *he; 1613 1614 *root_out = RB_ROOT; 1615 node = rb_first(root_in); 1616 1617 while (node) { 1618 he = rb_entry(node, struct hist_entry, rb_node_in); 1619 node = rb_next(node); 1620 1621 hierarchy_insert_output_entry(root_out, he); 1622 1623 if (prog) 1624 ui_progress__update(prog, 1); 1625 1626 hists->nr_entries++; 1627 if (!he->filtered) { 1628 hists->nr_non_filtered_entries++; 1629 hists__calc_col_len(hists, he); 1630 } 1631 1632 if (!he->leaf) { 1633 hists__hierarchy_output_resort(hists, prog, 1634 &he->hroot_in, 1635 &he->hroot_out, 1636 min_callchain_hits, 1637 use_callchain); 1638 continue; 1639 } 1640 1641 if (!use_callchain) 1642 continue; 1643 1644 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1645 u64 total = he->stat.period; 1646 1647 if (symbol_conf.cumulate_callchain) 1648 total = he->stat_acc->period; 1649 1650 min_callchain_hits = total * (callchain_param.min_percent / 100); 1651 } 1652 1653 callchain_param.sort(&he->sorted_chain, he->callchain, 1654 min_callchain_hits, &callchain_param); 1655 } 1656 } 1657 1658 static void __hists__insert_output_entry(struct rb_root *entries, 1659 struct hist_entry *he, 1660 u64 min_callchain_hits, 1661 bool use_callchain) 1662 { 1663 struct rb_node **p = &entries->rb_node; 1664 struct rb_node *parent = NULL; 1665 struct hist_entry *iter; 1666 struct perf_hpp_fmt *fmt; 1667 1668 if (use_callchain) { 1669 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1670 u64 total = he->stat.period; 1671 1672 if (symbol_conf.cumulate_callchain) 1673 total = he->stat_acc->period; 1674 1675 min_callchain_hits = total * (callchain_param.min_percent / 100); 1676 } 1677 callchain_param.sort(&he->sorted_chain, he->callchain, 1678 min_callchain_hits, &callchain_param); 1679 } 1680 1681 while (*p != NULL) { 1682 parent = *p; 1683 iter = rb_entry(parent, struct hist_entry, rb_node); 1684 1685 if (hist_entry__sort(he, iter) > 0) 1686 p = &(*p)->rb_left; 1687 else 1688 p = &(*p)->rb_right; 1689 } 1690 1691 rb_link_node(&he->rb_node, parent, p); 1692 rb_insert_color(&he->rb_node, entries); 1693 1694 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1695 if (perf_hpp__is_dynamic_entry(fmt) && 1696 perf_hpp__defined_dynamic_entry(fmt, he->hists)) 1697 fmt->sort(fmt, he, NULL); /* update column width */ 1698 } 1699 } 1700 1701 static void output_resort(struct hists *hists, struct ui_progress *prog, 1702 bool use_callchain, hists__resort_cb_t cb) 1703 { 1704 struct rb_root *root; 1705 struct rb_node *next; 1706 struct hist_entry *n; 1707 u64 callchain_total; 1708 u64 min_callchain_hits; 1709 1710 callchain_total = hists->callchain_period; 1711 if (symbol_conf.filter_relative) 1712 callchain_total = hists->callchain_non_filtered_period; 1713 1714 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1715 1716 hists__reset_stats(hists); 1717 hists__reset_col_len(hists); 1718 1719 if (symbol_conf.report_hierarchy) { 1720 hists__hierarchy_output_resort(hists, prog, 1721 &hists->entries_collapsed, 1722 &hists->entries, 1723 min_callchain_hits, 1724 use_callchain); 1725 hierarchy_recalc_total_periods(hists); 1726 return; 1727 } 1728 1729 if (hists__has(hists, need_collapse)) 1730 root = &hists->entries_collapsed; 1731 else 1732 root = hists->entries_in; 1733 1734 next = rb_first(root); 1735 hists->entries = RB_ROOT; 1736 1737 while (next) { 1738 n = rb_entry(next, struct hist_entry, rb_node_in); 1739 next = rb_next(&n->rb_node_in); 1740 1741 if (cb && cb(n)) 1742 continue; 1743 1744 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1745 hists__inc_stats(hists, n); 1746 1747 if (!n->filtered) 1748 hists__calc_col_len(hists, n); 1749 1750 if (prog) 1751 ui_progress__update(prog, 1); 1752 } 1753 } 1754 1755 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog) 1756 { 1757 bool use_callchain; 1758 1759 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1760 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN; 1761 else 1762 use_callchain = symbol_conf.use_callchain; 1763 1764 use_callchain |= symbol_conf.show_branchflag_count; 1765 1766 output_resort(evsel__hists(evsel), prog, use_callchain, NULL); 1767 } 1768 1769 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 1770 { 1771 output_resort(hists, prog, symbol_conf.use_callchain, NULL); 1772 } 1773 1774 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, 1775 hists__resort_cb_t cb) 1776 { 1777 output_resort(hists, prog, symbol_conf.use_callchain, cb); 1778 } 1779 1780 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 1781 { 1782 if (he->leaf || hmd == HMD_FORCE_SIBLING) 1783 return false; 1784 1785 if (he->unfolded || hmd == HMD_FORCE_CHILD) 1786 return true; 1787 1788 return false; 1789 } 1790 1791 struct rb_node *rb_hierarchy_last(struct rb_node *node) 1792 { 1793 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1794 1795 while (can_goto_child(he, HMD_NORMAL)) { 1796 node = rb_last(&he->hroot_out); 1797 he = rb_entry(node, struct hist_entry, rb_node); 1798 } 1799 return node; 1800 } 1801 1802 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 1803 { 1804 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1805 1806 if (can_goto_child(he, hmd)) 1807 node = rb_first(&he->hroot_out); 1808 else 1809 node = rb_next(node); 1810 1811 while (node == NULL) { 1812 he = he->parent_he; 1813 if (he == NULL) 1814 break; 1815 1816 node = rb_next(&he->rb_node); 1817 } 1818 return node; 1819 } 1820 1821 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 1822 { 1823 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1824 1825 node = rb_prev(node); 1826 if (node) 1827 return rb_hierarchy_last(node); 1828 1829 he = he->parent_he; 1830 if (he == NULL) 1831 return NULL; 1832 1833 return &he->rb_node; 1834 } 1835 1836 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 1837 { 1838 struct rb_node *node; 1839 struct hist_entry *child; 1840 float percent; 1841 1842 if (he->leaf) 1843 return false; 1844 1845 node = rb_first(&he->hroot_out); 1846 child = rb_entry(node, struct hist_entry, rb_node); 1847 1848 while (node && child->filtered) { 1849 node = rb_next(node); 1850 child = rb_entry(node, struct hist_entry, rb_node); 1851 } 1852 1853 if (node) 1854 percent = hist_entry__get_percent_limit(child); 1855 else 1856 percent = 0; 1857 1858 return node && percent >= limit; 1859 } 1860 1861 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 1862 enum hist_filter filter) 1863 { 1864 h->filtered &= ~(1 << filter); 1865 1866 if (symbol_conf.report_hierarchy) { 1867 struct hist_entry *parent = h->parent_he; 1868 1869 while (parent) { 1870 he_stat__add_stat(&parent->stat, &h->stat); 1871 1872 parent->filtered &= ~(1 << filter); 1873 1874 if (parent->filtered) 1875 goto next; 1876 1877 /* force fold unfiltered entry for simplicity */ 1878 parent->unfolded = false; 1879 parent->has_no_entry = false; 1880 parent->row_offset = 0; 1881 parent->nr_rows = 0; 1882 next: 1883 parent = parent->parent_he; 1884 } 1885 } 1886 1887 if (h->filtered) 1888 return; 1889 1890 /* force fold unfiltered entry for simplicity */ 1891 h->unfolded = false; 1892 h->has_no_entry = false; 1893 h->row_offset = 0; 1894 h->nr_rows = 0; 1895 1896 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 1897 1898 hists__inc_filter_stats(hists, h); 1899 hists__calc_col_len(hists, h); 1900 } 1901 1902 1903 static bool hists__filter_entry_by_dso(struct hists *hists, 1904 struct hist_entry *he) 1905 { 1906 if (hists->dso_filter != NULL && 1907 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) { 1908 he->filtered |= (1 << HIST_FILTER__DSO); 1909 return true; 1910 } 1911 1912 return false; 1913 } 1914 1915 static bool hists__filter_entry_by_thread(struct hists *hists, 1916 struct hist_entry *he) 1917 { 1918 if (hists->thread_filter != NULL && 1919 he->thread != hists->thread_filter) { 1920 he->filtered |= (1 << HIST_FILTER__THREAD); 1921 return true; 1922 } 1923 1924 return false; 1925 } 1926 1927 static bool hists__filter_entry_by_symbol(struct hists *hists, 1928 struct hist_entry *he) 1929 { 1930 if (hists->symbol_filter_str != NULL && 1931 (!he->ms.sym || strstr(he->ms.sym->name, 1932 hists->symbol_filter_str) == NULL)) { 1933 he->filtered |= (1 << HIST_FILTER__SYMBOL); 1934 return true; 1935 } 1936 1937 return false; 1938 } 1939 1940 static bool hists__filter_entry_by_socket(struct hists *hists, 1941 struct hist_entry *he) 1942 { 1943 if ((hists->socket_filter > -1) && 1944 (he->socket != hists->socket_filter)) { 1945 he->filtered |= (1 << HIST_FILTER__SOCKET); 1946 return true; 1947 } 1948 1949 return false; 1950 } 1951 1952 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 1953 1954 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 1955 { 1956 struct rb_node *nd; 1957 1958 hists->stats.nr_non_filtered_samples = 0; 1959 1960 hists__reset_filter_stats(hists); 1961 hists__reset_col_len(hists); 1962 1963 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) { 1964 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1965 1966 if (filter(hists, h)) 1967 continue; 1968 1969 hists__remove_entry_filter(hists, h, type); 1970 } 1971 } 1972 1973 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he) 1974 { 1975 struct rb_node **p = &root->rb_node; 1976 struct rb_node *parent = NULL; 1977 struct hist_entry *iter; 1978 struct rb_root new_root = RB_ROOT; 1979 struct rb_node *nd; 1980 1981 while (*p != NULL) { 1982 parent = *p; 1983 iter = rb_entry(parent, struct hist_entry, rb_node); 1984 1985 if (hist_entry__sort(he, iter) > 0) 1986 p = &(*p)->rb_left; 1987 else 1988 p = &(*p)->rb_right; 1989 } 1990 1991 rb_link_node(&he->rb_node, parent, p); 1992 rb_insert_color(&he->rb_node, root); 1993 1994 if (he->leaf || he->filtered) 1995 return; 1996 1997 nd = rb_first(&he->hroot_out); 1998 while (nd) { 1999 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2000 2001 nd = rb_next(nd); 2002 rb_erase(&h->rb_node, &he->hroot_out); 2003 2004 resort_filtered_entry(&new_root, h); 2005 } 2006 2007 he->hroot_out = new_root; 2008 } 2009 2010 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 2011 { 2012 struct rb_node *nd; 2013 struct rb_root new_root = RB_ROOT; 2014 2015 hists->stats.nr_non_filtered_samples = 0; 2016 2017 hists__reset_filter_stats(hists); 2018 hists__reset_col_len(hists); 2019 2020 nd = rb_first(&hists->entries); 2021 while (nd) { 2022 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2023 int ret; 2024 2025 ret = hist_entry__filter(h, type, arg); 2026 2027 /* 2028 * case 1. non-matching type 2029 * zero out the period, set filter marker and move to child 2030 */ 2031 if (ret < 0) { 2032 memset(&h->stat, 0, sizeof(h->stat)); 2033 h->filtered |= (1 << type); 2034 2035 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 2036 } 2037 /* 2038 * case 2. matched type (filter out) 2039 * set filter marker and move to next 2040 */ 2041 else if (ret == 1) { 2042 h->filtered |= (1 << type); 2043 2044 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2045 } 2046 /* 2047 * case 3. ok (not filtered) 2048 * add period to hists and parents, erase the filter marker 2049 * and move to next sibling 2050 */ 2051 else { 2052 hists__remove_entry_filter(hists, h, type); 2053 2054 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2055 } 2056 } 2057 2058 hierarchy_recalc_total_periods(hists); 2059 2060 /* 2061 * resort output after applying a new filter since filter in a lower 2062 * hierarchy can change periods in a upper hierarchy. 2063 */ 2064 nd = rb_first(&hists->entries); 2065 while (nd) { 2066 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2067 2068 nd = rb_next(nd); 2069 rb_erase(&h->rb_node, &hists->entries); 2070 2071 resort_filtered_entry(&new_root, h); 2072 } 2073 2074 hists->entries = new_root; 2075 } 2076 2077 void hists__filter_by_thread(struct hists *hists) 2078 { 2079 if (symbol_conf.report_hierarchy) 2080 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 2081 hists->thread_filter); 2082 else 2083 hists__filter_by_type(hists, HIST_FILTER__THREAD, 2084 hists__filter_entry_by_thread); 2085 } 2086 2087 void hists__filter_by_dso(struct hists *hists) 2088 { 2089 if (symbol_conf.report_hierarchy) 2090 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 2091 hists->dso_filter); 2092 else 2093 hists__filter_by_type(hists, HIST_FILTER__DSO, 2094 hists__filter_entry_by_dso); 2095 } 2096 2097 void hists__filter_by_symbol(struct hists *hists) 2098 { 2099 if (symbol_conf.report_hierarchy) 2100 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2101 hists->symbol_filter_str); 2102 else 2103 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2104 hists__filter_entry_by_symbol); 2105 } 2106 2107 void hists__filter_by_socket(struct hists *hists) 2108 { 2109 if (symbol_conf.report_hierarchy) 2110 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2111 &hists->socket_filter); 2112 else 2113 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2114 hists__filter_entry_by_socket); 2115 } 2116 2117 void events_stats__inc(struct events_stats *stats, u32 type) 2118 { 2119 ++stats->nr_events[0]; 2120 ++stats->nr_events[type]; 2121 } 2122 2123 void hists__inc_nr_events(struct hists *hists, u32 type) 2124 { 2125 events_stats__inc(&hists->stats, type); 2126 } 2127 2128 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2129 { 2130 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE); 2131 if (!filtered) 2132 hists->stats.nr_non_filtered_samples++; 2133 } 2134 2135 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2136 struct hist_entry *pair) 2137 { 2138 struct rb_root *root; 2139 struct rb_node **p; 2140 struct rb_node *parent = NULL; 2141 struct hist_entry *he; 2142 int64_t cmp; 2143 2144 if (hists__has(hists, need_collapse)) 2145 root = &hists->entries_collapsed; 2146 else 2147 root = hists->entries_in; 2148 2149 p = &root->rb_node; 2150 2151 while (*p != NULL) { 2152 parent = *p; 2153 he = rb_entry(parent, struct hist_entry, rb_node_in); 2154 2155 cmp = hist_entry__collapse(he, pair); 2156 2157 if (!cmp) 2158 goto out; 2159 2160 if (cmp < 0) 2161 p = &(*p)->rb_left; 2162 else 2163 p = &(*p)->rb_right; 2164 } 2165 2166 he = hist_entry__new(pair, true); 2167 if (he) { 2168 memset(&he->stat, 0, sizeof(he->stat)); 2169 he->hists = hists; 2170 if (symbol_conf.cumulate_callchain) 2171 memset(he->stat_acc, 0, sizeof(he->stat)); 2172 rb_link_node(&he->rb_node_in, parent, p); 2173 rb_insert_color(&he->rb_node_in, root); 2174 hists__inc_stats(hists, he); 2175 he->dummy = true; 2176 } 2177 out: 2178 return he; 2179 } 2180 2181 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, 2182 struct rb_root *root, 2183 struct hist_entry *pair) 2184 { 2185 struct rb_node **p; 2186 struct rb_node *parent = NULL; 2187 struct hist_entry *he; 2188 struct perf_hpp_fmt *fmt; 2189 2190 p = &root->rb_node; 2191 while (*p != NULL) { 2192 int64_t cmp = 0; 2193 2194 parent = *p; 2195 he = rb_entry(parent, struct hist_entry, rb_node_in); 2196 2197 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2198 cmp = fmt->collapse(fmt, he, pair); 2199 if (cmp) 2200 break; 2201 } 2202 if (!cmp) 2203 goto out; 2204 2205 if (cmp < 0) 2206 p = &parent->rb_left; 2207 else 2208 p = &parent->rb_right; 2209 } 2210 2211 he = hist_entry__new(pair, true); 2212 if (he) { 2213 rb_link_node(&he->rb_node_in, parent, p); 2214 rb_insert_color(&he->rb_node_in, root); 2215 2216 he->dummy = true; 2217 he->hists = hists; 2218 memset(&he->stat, 0, sizeof(he->stat)); 2219 hists__inc_stats(hists, he); 2220 } 2221 out: 2222 return he; 2223 } 2224 2225 static struct hist_entry *hists__find_entry(struct hists *hists, 2226 struct hist_entry *he) 2227 { 2228 struct rb_node *n; 2229 2230 if (hists__has(hists, need_collapse)) 2231 n = hists->entries_collapsed.rb_node; 2232 else 2233 n = hists->entries_in->rb_node; 2234 2235 while (n) { 2236 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2237 int64_t cmp = hist_entry__collapse(iter, he); 2238 2239 if (cmp < 0) 2240 n = n->rb_left; 2241 else if (cmp > 0) 2242 n = n->rb_right; 2243 else 2244 return iter; 2245 } 2246 2247 return NULL; 2248 } 2249 2250 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root, 2251 struct hist_entry *he) 2252 { 2253 struct rb_node *n = root->rb_node; 2254 2255 while (n) { 2256 struct hist_entry *iter; 2257 struct perf_hpp_fmt *fmt; 2258 int64_t cmp = 0; 2259 2260 iter = rb_entry(n, struct hist_entry, rb_node_in); 2261 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2262 cmp = fmt->collapse(fmt, iter, he); 2263 if (cmp) 2264 break; 2265 } 2266 2267 if (cmp < 0) 2268 n = n->rb_left; 2269 else if (cmp > 0) 2270 n = n->rb_right; 2271 else 2272 return iter; 2273 } 2274 2275 return NULL; 2276 } 2277 2278 static void hists__match_hierarchy(struct rb_root *leader_root, 2279 struct rb_root *other_root) 2280 { 2281 struct rb_node *nd; 2282 struct hist_entry *pos, *pair; 2283 2284 for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) { 2285 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2286 pair = hists__find_hierarchy_entry(other_root, pos); 2287 2288 if (pair) { 2289 hist_entry__add_pair(pair, pos); 2290 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); 2291 } 2292 } 2293 } 2294 2295 /* 2296 * Look for pairs to link to the leader buckets (hist_entries): 2297 */ 2298 void hists__match(struct hists *leader, struct hists *other) 2299 { 2300 struct rb_root *root; 2301 struct rb_node *nd; 2302 struct hist_entry *pos, *pair; 2303 2304 if (symbol_conf.report_hierarchy) { 2305 /* hierarchy report always collapses entries */ 2306 return hists__match_hierarchy(&leader->entries_collapsed, 2307 &other->entries_collapsed); 2308 } 2309 2310 if (hists__has(leader, need_collapse)) 2311 root = &leader->entries_collapsed; 2312 else 2313 root = leader->entries_in; 2314 2315 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2316 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2317 pair = hists__find_entry(other, pos); 2318 2319 if (pair) 2320 hist_entry__add_pair(pair, pos); 2321 } 2322 } 2323 2324 static int hists__link_hierarchy(struct hists *leader_hists, 2325 struct hist_entry *parent, 2326 struct rb_root *leader_root, 2327 struct rb_root *other_root) 2328 { 2329 struct rb_node *nd; 2330 struct hist_entry *pos, *leader; 2331 2332 for (nd = rb_first(other_root); nd; nd = rb_next(nd)) { 2333 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2334 2335 if (hist_entry__has_pairs(pos)) { 2336 bool found = false; 2337 2338 list_for_each_entry(leader, &pos->pairs.head, pairs.node) { 2339 if (leader->hists == leader_hists) { 2340 found = true; 2341 break; 2342 } 2343 } 2344 if (!found) 2345 return -1; 2346 } else { 2347 leader = add_dummy_hierarchy_entry(leader_hists, 2348 leader_root, pos); 2349 if (leader == NULL) 2350 return -1; 2351 2352 /* do not point parent in the pos */ 2353 leader->parent_he = parent; 2354 2355 hist_entry__add_pair(pos, leader); 2356 } 2357 2358 if (!pos->leaf) { 2359 if (hists__link_hierarchy(leader_hists, leader, 2360 &leader->hroot_in, 2361 &pos->hroot_in) < 0) 2362 return -1; 2363 } 2364 } 2365 return 0; 2366 } 2367 2368 /* 2369 * Look for entries in the other hists that are not present in the leader, if 2370 * we find them, just add a dummy entry on the leader hists, with period=0, 2371 * nr_events=0, to serve as the list header. 2372 */ 2373 int hists__link(struct hists *leader, struct hists *other) 2374 { 2375 struct rb_root *root; 2376 struct rb_node *nd; 2377 struct hist_entry *pos, *pair; 2378 2379 if (symbol_conf.report_hierarchy) { 2380 /* hierarchy report always collapses entries */ 2381 return hists__link_hierarchy(leader, NULL, 2382 &leader->entries_collapsed, 2383 &other->entries_collapsed); 2384 } 2385 2386 if (hists__has(other, need_collapse)) 2387 root = &other->entries_collapsed; 2388 else 2389 root = other->entries_in; 2390 2391 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2392 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2393 2394 if (!hist_entry__has_pairs(pos)) { 2395 pair = hists__add_dummy_entry(leader, pos); 2396 if (pair == NULL) 2397 return -1; 2398 hist_entry__add_pair(pos, pair); 2399 } 2400 } 2401 2402 return 0; 2403 } 2404 2405 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2406 struct perf_sample *sample, bool nonany_branch_mode) 2407 { 2408 struct branch_info *bi; 2409 2410 /* If we have branch cycles always annotate them. */ 2411 if (bs && bs->nr && bs->entries[0].flags.cycles) { 2412 int i; 2413 2414 bi = sample__resolve_bstack(sample, al); 2415 if (bi) { 2416 struct addr_map_symbol *prev = NULL; 2417 2418 /* 2419 * Ignore errors, still want to process the 2420 * other entries. 2421 * 2422 * For non standard branch modes always 2423 * force no IPC (prev == NULL) 2424 * 2425 * Note that perf stores branches reversed from 2426 * program order! 2427 */ 2428 for (i = bs->nr - 1; i >= 0; i--) { 2429 addr_map_symbol__account_cycles(&bi[i].from, 2430 nonany_branch_mode ? NULL : prev, 2431 bi[i].flags.cycles); 2432 prev = &bi[i].to; 2433 } 2434 free(bi); 2435 } 2436 } 2437 } 2438 2439 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp) 2440 { 2441 struct perf_evsel *pos; 2442 size_t ret = 0; 2443 2444 evlist__for_each_entry(evlist, pos) { 2445 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos)); 2446 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp); 2447 } 2448 2449 return ret; 2450 } 2451 2452 2453 u64 hists__total_period(struct hists *hists) 2454 { 2455 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2456 hists->stats.total_period; 2457 } 2458 2459 int parse_filter_percentage(const struct option *opt __maybe_unused, 2460 const char *arg, int unset __maybe_unused) 2461 { 2462 if (!strcmp(arg, "relative")) 2463 symbol_conf.filter_relative = true; 2464 else if (!strcmp(arg, "absolute")) 2465 symbol_conf.filter_relative = false; 2466 else { 2467 pr_debug("Invalid percentage: %s\n", arg); 2468 return -1; 2469 } 2470 2471 return 0; 2472 } 2473 2474 int perf_hist_config(const char *var, const char *value) 2475 { 2476 if (!strcmp(var, "hist.percentage")) 2477 return parse_filter_percentage(NULL, value, 0); 2478 2479 return 0; 2480 } 2481 2482 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2483 { 2484 memset(hists, 0, sizeof(*hists)); 2485 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT; 2486 hists->entries_in = &hists->entries_in_array[0]; 2487 hists->entries_collapsed = RB_ROOT; 2488 hists->entries = RB_ROOT; 2489 pthread_mutex_init(&hists->lock, NULL); 2490 hists->socket_filter = -1; 2491 hists->hpp_list = hpp_list; 2492 INIT_LIST_HEAD(&hists->hpp_formats); 2493 return 0; 2494 } 2495 2496 static void hists__delete_remaining_entries(struct rb_root *root) 2497 { 2498 struct rb_node *node; 2499 struct hist_entry *he; 2500 2501 while (!RB_EMPTY_ROOT(root)) { 2502 node = rb_first(root); 2503 rb_erase(node, root); 2504 2505 he = rb_entry(node, struct hist_entry, rb_node_in); 2506 hist_entry__delete(he); 2507 } 2508 } 2509 2510 static void hists__delete_all_entries(struct hists *hists) 2511 { 2512 hists__delete_entries(hists); 2513 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2514 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2515 hists__delete_remaining_entries(&hists->entries_collapsed); 2516 } 2517 2518 static void hists_evsel__exit(struct perf_evsel *evsel) 2519 { 2520 struct hists *hists = evsel__hists(evsel); 2521 struct perf_hpp_fmt *fmt, *pos; 2522 struct perf_hpp_list_node *node, *tmp; 2523 2524 hists__delete_all_entries(hists); 2525 2526 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2527 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2528 list_del(&fmt->list); 2529 free(fmt); 2530 } 2531 list_del(&node->list); 2532 free(node); 2533 } 2534 } 2535 2536 static int hists_evsel__init(struct perf_evsel *evsel) 2537 { 2538 struct hists *hists = evsel__hists(evsel); 2539 2540 __hists__init(hists, &perf_hpp_list); 2541 return 0; 2542 } 2543 2544 /* 2545 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2546 * stored in the rbtree... 2547 */ 2548 2549 int hists__init(void) 2550 { 2551 int err = perf_evsel__object_config(sizeof(struct hists_evsel), 2552 hists_evsel__init, 2553 hists_evsel__exit); 2554 if (err) 2555 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2556 2557 return err; 2558 } 2559 2560 void perf_hpp_list__init(struct perf_hpp_list *list) 2561 { 2562 INIT_LIST_HEAD(&list->fields); 2563 INIT_LIST_HEAD(&list->sorts); 2564 } 2565