xref: /linux/tools/perf/util/hist.c (revision f4dc5a3355a84f53ff3287d496728c7b77160069)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "callchain.h"
3 #include "debug.h"
4 #include "dso.h"
5 #include "build-id.h"
6 #include "hist.h"
7 #include "kvm-stat.h"
8 #include "map.h"
9 #include "map_symbol.h"
10 #include "branch.h"
11 #include "mem-events.h"
12 #include "mem-info.h"
13 #include "session.h"
14 #include "namespaces.h"
15 #include "cgroup.h"
16 #include "sort.h"
17 #include "units.h"
18 #include "evlist.h"
19 #include "evsel.h"
20 #include "annotate.h"
21 #include "srcline.h"
22 #include "symbol.h"
23 #include "thread.h"
24 #include "block-info.h"
25 #include "ui/progress.h"
26 #include <errno.h>
27 #include <math.h>
28 #include <inttypes.h>
29 #include <sys/param.h>
30 #include <linux/rbtree.h>
31 #include <linux/string.h>
32 #include <linux/time64.h>
33 #include <linux/zalloc.h>
34 
35 static int64_t hist_entry__cmp(struct hist_entry *left, struct hist_entry *right);
36 static int64_t hist_entry__collapse(struct hist_entry *left, struct hist_entry *right);
37 
38 static bool hists__filter_entry_by_dso(struct hists *hists,
39 				       struct hist_entry *he);
40 static bool hists__filter_entry_by_thread(struct hists *hists,
41 					  struct hist_entry *he);
42 static bool hists__filter_entry_by_symbol(struct hists *hists,
43 					  struct hist_entry *he);
44 static bool hists__filter_entry_by_socket(struct hists *hists,
45 					  struct hist_entry *he);
46 static bool hists__filter_entry_by_parallelism(struct hists *hists,
47 					       struct hist_entry *he);
48 
49 u16 hists__col_len(struct hists *hists, enum hist_column col)
50 {
51 	return hists->col_len[col];
52 }
53 
54 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
55 {
56 	hists->col_len[col] = len;
57 }
58 
59 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
60 {
61 	if (len > hists__col_len(hists, col)) {
62 		hists__set_col_len(hists, col, len);
63 		return true;
64 	}
65 	return false;
66 }
67 
68 void hists__reset_col_len(struct hists *hists)
69 {
70 	enum hist_column col;
71 
72 	for (col = 0; col < HISTC_NR_COLS; ++col)
73 		hists__set_col_len(hists, col, 0);
74 }
75 
76 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
77 {
78 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
79 
80 	if (hists__col_len(hists, dso) < unresolved_col_width &&
81 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
82 	    !symbol_conf.dso_list)
83 		hists__set_col_len(hists, dso, unresolved_col_width);
84 }
85 
86 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
87 {
88 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
89 	int symlen;
90 	u16 len;
91 
92 	if (h->block_info)
93 		return;
94 	/*
95 	 * +4 accounts for '[x] ' priv level info
96 	 * +2 accounts for 0x prefix on raw addresses
97 	 * +3 accounts for ' y ' symtab origin info
98 	 */
99 	if (h->ms.sym) {
100 		symlen = h->ms.sym->namelen + 4;
101 		if (verbose > 0)
102 			symlen += BITS_PER_LONG / 4 + 2 + 3;
103 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
104 	} else {
105 		symlen = unresolved_col_width + 4 + 2;
106 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
107 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
108 	}
109 
110 	len = thread__comm_len(h->thread);
111 	if (hists__new_col_len(hists, HISTC_COMM, len))
112 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
113 
114 	if (h->ms.map) {
115 		len = dso__name_len(map__dso(h->ms.map));
116 		hists__new_col_len(hists, HISTC_DSO, len);
117 	}
118 
119 	if (h->parent)
120 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
121 
122 	if (h->branch_info) {
123 		if (h->branch_info->from.ms.sym) {
124 			symlen = (int)h->branch_info->from.ms.sym->namelen + 4;
125 			if (verbose > 0)
126 				symlen += BITS_PER_LONG / 4 + 2 + 3;
127 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
128 
129 			symlen = dso__name_len(map__dso(h->branch_info->from.ms.map));
130 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
131 		} else {
132 			symlen = unresolved_col_width + 4 + 2;
133 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
134 			hists__new_col_len(hists, HISTC_ADDR_FROM, symlen);
135 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
136 		}
137 
138 		if (h->branch_info->to.ms.sym) {
139 			symlen = (int)h->branch_info->to.ms.sym->namelen + 4;
140 			if (verbose > 0)
141 				symlen += BITS_PER_LONG / 4 + 2 + 3;
142 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
143 
144 			symlen = dso__name_len(map__dso(h->branch_info->to.ms.map));
145 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
146 		} else {
147 			symlen = unresolved_col_width + 4 + 2;
148 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
149 			hists__new_col_len(hists, HISTC_ADDR_TO, symlen);
150 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
151 		}
152 
153 		if (h->branch_info->srcline_from)
154 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
155 					strlen(h->branch_info->srcline_from));
156 		if (h->branch_info->srcline_to)
157 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
158 					strlen(h->branch_info->srcline_to));
159 	}
160 
161 	if (h->mem_info) {
162 		if (mem_info__daddr(h->mem_info)->ms.sym) {
163 			symlen = (int)mem_info__daddr(h->mem_info)->ms.sym->namelen + 4
164 			       + unresolved_col_width + 2;
165 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
166 					   symlen);
167 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
168 					   symlen + 1);
169 		} else {
170 			symlen = unresolved_col_width + 4 + 2;
171 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
172 					   symlen);
173 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
174 					   symlen);
175 		}
176 
177 		if (mem_info__iaddr(h->mem_info)->ms.sym) {
178 			symlen = (int)mem_info__iaddr(h->mem_info)->ms.sym->namelen + 4
179 			       + unresolved_col_width + 2;
180 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
181 					   symlen);
182 		} else {
183 			symlen = unresolved_col_width + 4 + 2;
184 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
185 					   symlen);
186 		}
187 
188 		if (mem_info__daddr(h->mem_info)->ms.map) {
189 			symlen = dso__name_len(map__dso(mem_info__daddr(h->mem_info)->ms.map));
190 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
191 					   symlen);
192 		} else {
193 			symlen = unresolved_col_width + 4 + 2;
194 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
195 		}
196 
197 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
198 				   unresolved_col_width + 4 + 2);
199 
200 		hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE,
201 				   unresolved_col_width + 4 + 2);
202 
203 	} else {
204 		symlen = unresolved_col_width + 4 + 2;
205 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
206 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
207 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
208 	}
209 
210 	hists__new_col_len(hists, HISTC_CGROUP, 6);
211 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
212 	hists__new_col_len(hists, HISTC_PARALLELISM, 11);
213 	hists__new_col_len(hists, HISTC_CPU, 3);
214 	hists__new_col_len(hists, HISTC_SOCKET, 6);
215 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
216 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
217 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
218 	hists__new_col_len(hists, HISTC_MEM_LVL, 36 + 3);
219 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
220 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
221 	hists__new_col_len(hists, HISTC_MEM_BLOCKED, 10);
222 	hists__new_col_len(hists, HISTC_LOCAL_INS_LAT, 13);
223 	hists__new_col_len(hists, HISTC_GLOBAL_INS_LAT, 13);
224 	hists__new_col_len(hists, HISTC_LOCAL_P_STAGE_CYC, 13);
225 	hists__new_col_len(hists, HISTC_GLOBAL_P_STAGE_CYC, 13);
226 	hists__new_col_len(hists, HISTC_ADDR, BITS_PER_LONG / 4 + 2);
227 	hists__new_col_len(hists, HISTC_CALLCHAIN_BRANCH_PREDICTED, 9);
228 	hists__new_col_len(hists, HISTC_CALLCHAIN_BRANCH_ABORT, 5);
229 	hists__new_col_len(hists, HISTC_CALLCHAIN_BRANCH_CYCLES, 6);
230 
231 	if (symbol_conf.nanosecs)
232 		hists__new_col_len(hists, HISTC_TIME, 16);
233 	else
234 		hists__new_col_len(hists, HISTC_TIME, 12);
235 	hists__new_col_len(hists, HISTC_CODE_PAGE_SIZE, 6);
236 
237 	if (h->srcline) {
238 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
239 		hists__new_col_len(hists, HISTC_SRCLINE, len);
240 	}
241 
242 	if (h->srcfile)
243 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
244 
245 	if (h->transaction)
246 		hists__new_col_len(hists, HISTC_TRANSACTION,
247 				   hist_entry__transaction_len());
248 
249 	if (h->trace_output)
250 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
251 
252 	if (h->cgroup) {
253 		const char *cgrp_name = "unknown";
254 		struct cgroup *cgrp = cgroup__find(maps__machine(h->ms.maps)->env,
255 						   h->cgroup);
256 		if (cgrp != NULL)
257 			cgrp_name = cgrp->name;
258 
259 		hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name));
260 	}
261 }
262 
263 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
264 {
265 	struct rb_node *next = rb_first_cached(&hists->entries);
266 	struct hist_entry *n;
267 	int row = 0;
268 
269 	hists__reset_col_len(hists);
270 
271 	while (next && row++ < max_rows) {
272 		n = rb_entry(next, struct hist_entry, rb_node);
273 		if (!n->filtered)
274 			hists__calc_col_len(hists, n);
275 		next = rb_next(&n->rb_node);
276 	}
277 }
278 
279 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
280 					unsigned int cpumode, u64 period)
281 {
282 	switch (cpumode) {
283 	case PERF_RECORD_MISC_KERNEL:
284 		he_stat->period_sys += period;
285 		break;
286 	case PERF_RECORD_MISC_USER:
287 		he_stat->period_us += period;
288 		break;
289 	case PERF_RECORD_MISC_GUEST_KERNEL:
290 		he_stat->period_guest_sys += period;
291 		break;
292 	case PERF_RECORD_MISC_GUEST_USER:
293 		he_stat->period_guest_us += period;
294 		break;
295 	default:
296 		break;
297 	}
298 }
299 
300 static long hist_time(unsigned long htime)
301 {
302 	unsigned long time_quantum = symbol_conf.time_quantum;
303 	if (time_quantum)
304 		return (htime / time_quantum) * time_quantum;
305 	return htime;
306 }
307 
308 static void he_stat__add_period(struct he_stat *he_stat, u64 period, u64 latency)
309 {
310 	he_stat->period		+= period;
311 	he_stat->latency	+= latency;
312 	he_stat->nr_events	+= 1;
313 }
314 
315 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
316 {
317 	dest->period		+= src->period;
318 	dest->period_sys	+= src->period_sys;
319 	dest->period_us		+= src->period_us;
320 	dest->period_guest_sys	+= src->period_guest_sys;
321 	dest->period_guest_us	+= src->period_guest_us;
322 	dest->weight1		+= src->weight1;
323 	dest->weight2		+= src->weight2;
324 	dest->weight3		+= src->weight3;
325 	dest->nr_events		+= src->nr_events;
326 	dest->latency		+= src->latency;
327 }
328 
329 static void he_stat__decay(struct he_stat *he_stat)
330 {
331 	he_stat->period = (he_stat->period * 7) / 8;
332 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
333 	he_stat->weight1 = (he_stat->weight1 * 7) / 8;
334 	he_stat->weight2 = (he_stat->weight2 * 7) / 8;
335 	he_stat->weight3 = (he_stat->weight3 * 7) / 8;
336 	he_stat->latency = (he_stat->latency * 7) / 8;
337 }
338 
339 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
340 
341 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
342 {
343 	u64 prev_period = he->stat.period;
344 	u64 prev_latency = he->stat.latency;
345 
346 	if (prev_period == 0)
347 		return true;
348 
349 	he_stat__decay(&he->stat);
350 	if (symbol_conf.cumulate_callchain)
351 		he_stat__decay(he->stat_acc);
352 	decay_callchain(he->callchain);
353 
354 	if (!he->depth) {
355 		u64 period_diff = prev_period - he->stat.period;
356 		u64 latency_diff = prev_latency - he->stat.latency;
357 
358 		hists->stats.total_period -= period_diff;
359 		hists->stats.total_latency -= latency_diff;
360 		if (!he->filtered) {
361 			hists->stats.total_non_filtered_period -= period_diff;
362 			hists->stats.total_non_filtered_latency -= latency_diff;
363 		}
364 	}
365 
366 	if (!he->leaf) {
367 		struct hist_entry *child;
368 		struct rb_node *node = rb_first_cached(&he->hroot_out);
369 		while (node) {
370 			child = rb_entry(node, struct hist_entry, rb_node);
371 			node = rb_next(node);
372 
373 			if (hists__decay_entry(hists, child))
374 				hists__delete_entry(hists, child);
375 		}
376 	}
377 
378 	return he->stat.period == 0 && he->stat.latency == 0;
379 }
380 
381 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
382 {
383 	struct rb_root_cached *root_in;
384 	struct rb_root_cached *root_out;
385 
386 	if (he->parent_he) {
387 		root_in  = &he->parent_he->hroot_in;
388 		root_out = &he->parent_he->hroot_out;
389 	} else {
390 		if (hists__has(hists, need_collapse))
391 			root_in = &hists->entries_collapsed;
392 		else
393 			root_in = hists->entries_in;
394 		root_out = &hists->entries;
395 	}
396 
397 	rb_erase_cached(&he->rb_node_in, root_in);
398 	rb_erase_cached(&he->rb_node, root_out);
399 
400 	--hists->nr_entries;
401 	if (!he->filtered)
402 		--hists->nr_non_filtered_entries;
403 
404 	hist_entry__delete(he);
405 }
406 
407 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
408 {
409 	struct rb_node *next = rb_first_cached(&hists->entries);
410 	struct hist_entry *n;
411 
412 	while (next) {
413 		n = rb_entry(next, struct hist_entry, rb_node);
414 		next = rb_next(&n->rb_node);
415 		if (((zap_user && n->level == '.') ||
416 		     (zap_kernel && n->level != '.') ||
417 		     hists__decay_entry(hists, n))) {
418 			hists__delete_entry(hists, n);
419 		}
420 	}
421 }
422 
423 void hists__delete_entries(struct hists *hists)
424 {
425 	struct rb_node *next = rb_first_cached(&hists->entries);
426 	struct hist_entry *n;
427 
428 	while (next) {
429 		n = rb_entry(next, struct hist_entry, rb_node);
430 		next = rb_next(&n->rb_node);
431 
432 		hists__delete_entry(hists, n);
433 	}
434 }
435 
436 struct hist_entry *hists__get_entry(struct hists *hists, int idx)
437 {
438 	struct rb_node *next = rb_first_cached(&hists->entries);
439 	struct hist_entry *n;
440 	int i = 0;
441 
442 	while (next) {
443 		n = rb_entry(next, struct hist_entry, rb_node);
444 		if (i == idx)
445 			return n;
446 
447 		next = rb_next(&n->rb_node);
448 		i++;
449 	}
450 
451 	return NULL;
452 }
453 
454 /*
455  * histogram, sorted on item, collects periods
456  */
457 
458 static int hist_entry__init(struct hist_entry *he,
459 			    struct hist_entry *template,
460 			    bool sample_self,
461 			    size_t callchain_size)
462 {
463 	*he = *template;
464 	he->callchain_size = callchain_size;
465 
466 	if (symbol_conf.cumulate_callchain) {
467 		he->stat_acc = malloc(sizeof(he->stat));
468 		if (he->stat_acc == NULL)
469 			return -ENOMEM;
470 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
471 		if (!sample_self)
472 			memset(&he->stat, 0, sizeof(he->stat));
473 	}
474 
475 	he->ms.maps = maps__get(he->ms.maps);
476 	he->ms.map = map__get(he->ms.map);
477 
478 	if (he->branch_info) {
479 		/*
480 		 * This branch info is (a part of) allocated from
481 		 * sample__resolve_bstack() and will be freed after
482 		 * adding new entries.  So we need to save a copy.
483 		 */
484 		he->branch_info = malloc(sizeof(*he->branch_info));
485 		if (he->branch_info == NULL)
486 			goto err;
487 
488 		memcpy(he->branch_info, template->branch_info,
489 		       sizeof(*he->branch_info));
490 
491 		he->branch_info->from.ms.maps = maps__get(he->branch_info->from.ms.maps);
492 		he->branch_info->from.ms.map = map__get(he->branch_info->from.ms.map);
493 		he->branch_info->to.ms.maps = maps__get(he->branch_info->to.ms.maps);
494 		he->branch_info->to.ms.map = map__get(he->branch_info->to.ms.map);
495 	}
496 
497 	if (he->mem_info) {
498 		he->mem_info = mem_info__clone(template->mem_info);
499 		if (he->mem_info == NULL)
500 			goto err_infos;
501 	}
502 
503 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
504 		callchain_init(he->callchain);
505 
506 	if (he->raw_data) {
507 		he->raw_data = memdup(he->raw_data, he->raw_size);
508 		if (he->raw_data == NULL)
509 			goto err_infos;
510 	}
511 
512 	if (he->srcline && he->srcline != SRCLINE_UNKNOWN) {
513 		he->srcline = strdup(he->srcline);
514 		if (he->srcline == NULL)
515 			goto err_rawdata;
516 	}
517 
518 	if (symbol_conf.res_sample) {
519 		he->res_samples = calloc(symbol_conf.res_sample,
520 					sizeof(struct res_sample));
521 		if (!he->res_samples)
522 			goto err_srcline;
523 	}
524 
525 	INIT_LIST_HEAD(&he->pairs.node);
526 	he->thread = thread__get(he->thread);
527 	he->hroot_in  = RB_ROOT_CACHED;
528 	he->hroot_out = RB_ROOT_CACHED;
529 
530 	if (!symbol_conf.report_hierarchy)
531 		he->leaf = true;
532 
533 	return 0;
534 
535 err_srcline:
536 	zfree(&he->srcline);
537 
538 err_rawdata:
539 	zfree(&he->raw_data);
540 
541 err_infos:
542 	if (he->branch_info) {
543 		map_symbol__exit(&he->branch_info->from.ms);
544 		map_symbol__exit(&he->branch_info->to.ms);
545 		zfree(&he->branch_info);
546 	}
547 	if (he->mem_info) {
548 		map_symbol__exit(&mem_info__iaddr(he->mem_info)->ms);
549 		map_symbol__exit(&mem_info__daddr(he->mem_info)->ms);
550 	}
551 err:
552 	map_symbol__exit(&he->ms);
553 	zfree(&he->stat_acc);
554 	return -ENOMEM;
555 }
556 
557 static void *hist_entry__zalloc(size_t size)
558 {
559 	return zalloc(size + sizeof(struct hist_entry));
560 }
561 
562 static void hist_entry__free(void *ptr)
563 {
564 	free(ptr);
565 }
566 
567 static struct hist_entry_ops default_ops = {
568 	.new	= hist_entry__zalloc,
569 	.free	= hist_entry__free,
570 };
571 
572 static struct hist_entry *hist_entry__new(struct hist_entry *template,
573 					  bool sample_self)
574 {
575 	struct hist_entry_ops *ops = template->ops;
576 	size_t callchain_size = 0;
577 	struct hist_entry *he;
578 	int err = 0;
579 
580 	if (!ops)
581 		ops = template->ops = &default_ops;
582 
583 	if (symbol_conf.use_callchain)
584 		callchain_size = sizeof(struct callchain_root);
585 
586 	he = ops->new(callchain_size);
587 	if (he) {
588 		err = hist_entry__init(he, template, sample_self, callchain_size);
589 		if (err) {
590 			ops->free(he);
591 			he = NULL;
592 		}
593 	}
594 	return he;
595 }
596 
597 static filter_mask_t symbol__parent_filter(const struct symbol *parent)
598 {
599 	if (symbol_conf.exclude_other && parent == NULL)
600 		return 1 << HIST_FILTER__PARENT;
601 	return 0;
602 }
603 
604 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period, u64 latency)
605 {
606 	if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
607 		return;
608 
609 	he->hists->callchain_period += period;
610 	he->hists->callchain_latency += latency;
611 	if (!he->filtered) {
612 		he->hists->callchain_non_filtered_period += period;
613 		he->hists->callchain_non_filtered_latency += latency;
614 	}
615 }
616 
617 static struct hist_entry *hists__findnew_entry(struct hists *hists,
618 					       struct hist_entry *entry,
619 					       const struct addr_location *al,
620 					       bool sample_self)
621 {
622 	struct rb_node **p;
623 	struct rb_node *parent = NULL;
624 	struct hist_entry *he;
625 	int64_t cmp;
626 	u64 period = entry->stat.period;
627 	u64 latency = entry->stat.latency;
628 	bool leftmost = true;
629 
630 	p = &hists->entries_in->rb_root.rb_node;
631 
632 	while (*p != NULL) {
633 		parent = *p;
634 		he = rb_entry(parent, struct hist_entry, rb_node_in);
635 
636 		/*
637 		 * Make sure that it receives arguments in a same order as
638 		 * hist_entry__collapse() so that we can use an appropriate
639 		 * function when searching an entry regardless which sort
640 		 * keys were used.
641 		 */
642 		cmp = hist_entry__cmp(he, entry);
643 		if (!cmp) {
644 			if (sample_self) {
645 				he_stat__add_stat(&he->stat, &entry->stat);
646 				hist_entry__add_callchain_period(he, period, latency);
647 			}
648 			if (symbol_conf.cumulate_callchain)
649 				he_stat__add_period(he->stat_acc, period, latency);
650 
651 			block_info__delete(entry->block_info);
652 
653 			kvm_info__zput(entry->kvm_info);
654 
655 			/* If the map of an existing hist_entry has
656 			 * become out-of-date due to an exec() or
657 			 * similar, update it.  Otherwise we will
658 			 * mis-adjust symbol addresses when computing
659 			 * the history counter to increment.
660 			 */
661 			if (hists__has(hists, sym) && he->ms.map != entry->ms.map) {
662 				if (he->ms.sym) {
663 					u64 addr = he->ms.sym->start;
664 					he->ms.sym = map__find_symbol(entry->ms.map, addr);
665 				}
666 
667 				map__put(he->ms.map);
668 				he->ms.map = map__get(entry->ms.map);
669 			}
670 			goto out;
671 		}
672 
673 		if (cmp < 0)
674 			p = &(*p)->rb_left;
675 		else {
676 			p = &(*p)->rb_right;
677 			leftmost = false;
678 		}
679 	}
680 
681 	he = hist_entry__new(entry, sample_self);
682 	if (!he)
683 		return NULL;
684 
685 	if (sample_self)
686 		hist_entry__add_callchain_period(he, period, latency);
687 	hists->nr_entries++;
688 
689 	rb_link_node(&he->rb_node_in, parent, p);
690 	rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
691 out:
692 	if (sample_self)
693 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
694 	if (symbol_conf.cumulate_callchain)
695 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
696 	return he;
697 }
698 
699 static unsigned random_max(unsigned high)
700 {
701 	unsigned thresh = -high % high;
702 	for (;;) {
703 		unsigned r = random();
704 		if (r >= thresh)
705 			return r % high;
706 	}
707 }
708 
709 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
710 {
711 	struct res_sample *r;
712 	int j;
713 
714 	if (he->num_res < symbol_conf.res_sample) {
715 		j = he->num_res++;
716 	} else {
717 		j = random_max(symbol_conf.res_sample);
718 	}
719 	r = &he->res_samples[j];
720 	r->time = sample->time;
721 	r->cpu = sample->cpu;
722 	r->tid = sample->tid;
723 }
724 
725 static struct hist_entry*
726 __hists__add_entry(struct hists *hists,
727 		   struct addr_location *al,
728 		   struct symbol *sym_parent,
729 		   struct branch_info *bi,
730 		   struct mem_info *mi,
731 		   struct kvm_info *ki,
732 		   struct block_info *block_info,
733 		   struct perf_sample *sample,
734 		   bool sample_self,
735 		   struct hist_entry_ops *ops)
736 {
737 	struct namespaces *ns = thread__namespaces(al->thread);
738 	struct hist_entry entry = {
739 		.thread	= al->thread,
740 		.comm = thread__comm(al->thread),
741 		.cgroup_id = {
742 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
743 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
744 		},
745 		.cgroup = sample->cgroup,
746 		.ms = {
747 			.maps	= al->maps,
748 			.map	= al->map,
749 			.sym	= al->sym,
750 		},
751 		.srcline = (char *) al->srcline,
752 		.socket	 = al->socket,
753 		.cpu	 = al->cpu,
754 		.cpumode = al->cpumode,
755 		.ip	 = al->addr,
756 		.level	 = al->level,
757 		.code_page_size = sample->code_page_size,
758 		.parallelism	= al->parallelism,
759 		.stat = {
760 			.nr_events = 1,
761 			.period	= sample->period,
762 			.weight1 = sample->weight,
763 			.weight2 = sample->ins_lat,
764 			.weight3 = sample->p_stage_cyc,
765 			.latency = al->latency,
766 		},
767 		.parent = sym_parent,
768 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
769 		.hists	= hists,
770 		.branch_info = bi,
771 		.mem_info = mi,
772 		.kvm_info = ki,
773 		.block_info = block_info,
774 		.transaction = sample->transaction,
775 		.raw_data = sample->raw_data,
776 		.raw_size = sample->raw_size,
777 		.ops = ops,
778 		.time = hist_time(sample->time),
779 		.weight = sample->weight,
780 		.ins_lat = sample->ins_lat,
781 		.p_stage_cyc = sample->p_stage_cyc,
782 		.simd_flags = sample->simd_flags,
783 	}, *he = hists__findnew_entry(hists, &entry, al, sample_self);
784 
785 	if (!hists->has_callchains && he && he->callchain_size != 0)
786 		hists->has_callchains = true;
787 	if (he && symbol_conf.res_sample)
788 		hists__res_sample(he, sample);
789 	return he;
790 }
791 
792 struct hist_entry *hists__add_entry(struct hists *hists,
793 				    struct addr_location *al,
794 				    struct symbol *sym_parent,
795 				    struct branch_info *bi,
796 				    struct mem_info *mi,
797 				    struct kvm_info *ki,
798 				    struct perf_sample *sample,
799 				    bool sample_self)
800 {
801 	return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL,
802 				  sample, sample_self, NULL);
803 }
804 
805 struct hist_entry *hists__add_entry_ops(struct hists *hists,
806 					struct hist_entry_ops *ops,
807 					struct addr_location *al,
808 					struct symbol *sym_parent,
809 					struct branch_info *bi,
810 					struct mem_info *mi,
811 					struct kvm_info *ki,
812 					struct perf_sample *sample,
813 					bool sample_self)
814 {
815 	return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL,
816 				  sample, sample_self, ops);
817 }
818 
819 struct hist_entry *hists__add_entry_block(struct hists *hists,
820 					  struct addr_location *al,
821 					  struct block_info *block_info)
822 {
823 	struct hist_entry entry = {
824 		.block_info = block_info,
825 		.hists = hists,
826 		.ms = {
827 			.maps = al->maps,
828 			.map = al->map,
829 			.sym = al->sym,
830 		},
831 	}, *he = hists__findnew_entry(hists, &entry, al, false);
832 
833 	return he;
834 }
835 
836 static int
837 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
838 		    struct addr_location *al __maybe_unused)
839 {
840 	return 0;
841 }
842 
843 static int
844 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
845 			struct addr_location *al __maybe_unused)
846 {
847 	return 0;
848 }
849 
850 static int
851 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
852 {
853 	struct perf_sample *sample = iter->sample;
854 	struct mem_info *mi;
855 
856 	mi = sample__resolve_mem(sample, al);
857 	if (mi == NULL)
858 		return -ENOMEM;
859 
860 	iter->mi = mi;
861 	return 0;
862 }
863 
864 static int
865 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
866 {
867 	u64 cost;
868 	struct mem_info *mi = iter->mi;
869 	struct hists *hists = evsel__hists(iter->evsel);
870 	struct perf_sample *sample = iter->sample;
871 	struct hist_entry *he;
872 
873 	if (mi == NULL)
874 		return -EINVAL;
875 
876 	cost = sample->weight;
877 	if (!cost)
878 		cost = 1;
879 
880 	/*
881 	 * must pass period=weight in order to get the correct
882 	 * sorting from hists__collapse_resort() which is solely
883 	 * based on periods. We want sorting be done on nr_events * weight
884 	 * and this is indirectly achieved by passing period=weight here
885 	 * and the he_stat__add_period() function.
886 	 */
887 	sample->period = cost;
888 
889 	he = hists__add_entry(hists, al, iter->parent, NULL, mi, NULL,
890 			      sample, true);
891 	if (!he)
892 		return -ENOMEM;
893 
894 	iter->he = he;
895 	return 0;
896 }
897 
898 static int
899 iter_finish_mem_entry(struct hist_entry_iter *iter,
900 		      struct addr_location *al __maybe_unused)
901 {
902 	struct evsel *evsel = iter->evsel;
903 	struct hists *hists = evsel__hists(evsel);
904 	struct hist_entry *he = iter->he;
905 	int err = -EINVAL;
906 
907 	if (he == NULL)
908 		goto out;
909 
910 	hists__inc_nr_samples(hists, he->filtered);
911 
912 	err = hist_entry__append_callchain(he, iter->sample);
913 
914 out:
915 	mem_info__zput(iter->mi);
916 
917 	iter->he = NULL;
918 	return err;
919 }
920 
921 static int
922 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
923 {
924 	struct branch_info *bi;
925 	struct perf_sample *sample = iter->sample;
926 
927 	bi = sample__resolve_bstack(sample, al);
928 	if (!bi)
929 		return -ENOMEM;
930 
931 	iter->curr = 0;
932 	iter->total = sample->branch_stack->nr;
933 
934 	iter->bi = bi;
935 	return 0;
936 }
937 
938 static int
939 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
940 			     struct addr_location *al __maybe_unused)
941 {
942 	return 0;
943 }
944 
945 static int
946 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
947 {
948 	struct branch_info *bi = iter->bi;
949 	int i = iter->curr;
950 
951 	if (bi == NULL)
952 		return 0;
953 
954 	if (iter->curr >= iter->total)
955 		return 0;
956 
957 	maps__put(al->maps);
958 	al->maps = maps__get(bi[i].to.ms.maps);
959 	map__put(al->map);
960 	al->map = map__get(bi[i].to.ms.map);
961 	al->sym = bi[i].to.ms.sym;
962 	al->addr = bi[i].to.addr;
963 	return 1;
964 }
965 
966 static int
967 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
968 {
969 	struct branch_info *bi;
970 	struct evsel *evsel = iter->evsel;
971 	struct hists *hists = evsel__hists(evsel);
972 	struct perf_sample *sample = iter->sample;
973 	struct hist_entry *he = NULL;
974 	int i = iter->curr;
975 	int err = 0;
976 
977 	bi = iter->bi;
978 
979 	if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym))
980 		goto out;
981 
982 	/*
983 	 * The report shows the percentage of total branches captured
984 	 * and not events sampled. Thus we use a pseudo period of 1.
985 	 */
986 	sample->period = 1;
987 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
988 
989 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, NULL,
990 			      sample, true);
991 	if (he == NULL)
992 		return -ENOMEM;
993 
994 out:
995 	iter->he = he;
996 	iter->curr++;
997 	return err;
998 }
999 
1000 static void branch_info__exit(struct branch_info *bi)
1001 {
1002 	map_symbol__exit(&bi->from.ms);
1003 	map_symbol__exit(&bi->to.ms);
1004 	zfree_srcline(&bi->srcline_from);
1005 	zfree_srcline(&bi->srcline_to);
1006 }
1007 
1008 static int
1009 iter_finish_branch_entry(struct hist_entry_iter *iter,
1010 			 struct addr_location *al __maybe_unused)
1011 {
1012 	struct evsel *evsel = iter->evsel;
1013 	struct hists *hists = evsel__hists(evsel);
1014 
1015 	for (int i = 0; i < iter->total; i++)
1016 		branch_info__exit(&iter->bi[i]);
1017 
1018 	if (iter->he)
1019 		hists__inc_nr_samples(hists, iter->he->filtered);
1020 
1021 	zfree(&iter->bi);
1022 	iter->he = NULL;
1023 
1024 	return iter->curr >= iter->total ? 0 : -1;
1025 }
1026 
1027 static int
1028 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
1029 			  struct addr_location *al __maybe_unused)
1030 {
1031 	return 0;
1032 }
1033 
1034 static int
1035 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
1036 {
1037 	struct evsel *evsel = iter->evsel;
1038 	struct perf_sample *sample = iter->sample;
1039 	struct hist_entry *he;
1040 
1041 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1042 			      NULL, sample, true);
1043 	if (he == NULL)
1044 		return -ENOMEM;
1045 
1046 	iter->he = he;
1047 	return 0;
1048 }
1049 
1050 static int
1051 iter_finish_normal_entry(struct hist_entry_iter *iter,
1052 			 struct addr_location *al __maybe_unused)
1053 {
1054 	struct hist_entry *he = iter->he;
1055 	struct evsel *evsel = iter->evsel;
1056 	struct perf_sample *sample = iter->sample;
1057 
1058 	if (he == NULL)
1059 		return 0;
1060 
1061 	iter->he = NULL;
1062 
1063 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
1064 
1065 	return hist_entry__append_callchain(he, sample);
1066 }
1067 
1068 static int
1069 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
1070 			      struct addr_location *al __maybe_unused)
1071 {
1072 	struct hist_entry **he_cache;
1073 	struct callchain_cursor *cursor = get_tls_callchain_cursor();
1074 
1075 	if (cursor == NULL)
1076 		return -ENOMEM;
1077 
1078 	callchain_cursor_commit(cursor);
1079 
1080 	/*
1081 	 * This is for detecting cycles or recursions so that they're
1082 	 * cumulated only one time to prevent entries more than 100%
1083 	 * overhead.
1084 	 */
1085 	he_cache = malloc(sizeof(*he_cache) * (cursor->nr + 1));
1086 	if (he_cache == NULL)
1087 		return -ENOMEM;
1088 
1089 	iter->he_cache = he_cache;
1090 	iter->curr = 0;
1091 
1092 	return 0;
1093 }
1094 
1095 static int
1096 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1097 				 struct addr_location *al)
1098 {
1099 	struct evsel *evsel = iter->evsel;
1100 	struct hists *hists = evsel__hists(evsel);
1101 	struct perf_sample *sample = iter->sample;
1102 	struct hist_entry **he_cache = iter->he_cache;
1103 	struct hist_entry *he;
1104 	int err = 0;
1105 
1106 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL, NULL,
1107 			      sample, true);
1108 	if (he == NULL)
1109 		return -ENOMEM;
1110 
1111 	iter->he = he;
1112 	he_cache[iter->curr++] = he;
1113 
1114 	hist_entry__append_callchain(he, sample);
1115 
1116 	/*
1117 	 * We need to re-initialize the cursor since callchain_append()
1118 	 * advanced the cursor to the end.
1119 	 */
1120 	callchain_cursor_commit(get_tls_callchain_cursor());
1121 
1122 	hists__inc_nr_samples(hists, he->filtered);
1123 
1124 	return err;
1125 }
1126 
1127 static int
1128 iter_next_cumulative_entry(struct hist_entry_iter *iter,
1129 			   struct addr_location *al)
1130 {
1131 	struct callchain_cursor_node *node;
1132 
1133 	node = callchain_cursor_current(get_tls_callchain_cursor());
1134 	if (node == NULL)
1135 		return 0;
1136 
1137 	return fill_callchain_info(al, node, iter->hide_unresolved);
1138 }
1139 
1140 static bool
1141 hist_entry__fast__sym_diff(struct hist_entry *left,
1142 			   struct hist_entry *right)
1143 {
1144 	struct symbol *sym_l = left->ms.sym;
1145 	struct symbol *sym_r = right->ms.sym;
1146 
1147 	if (!sym_l && !sym_r)
1148 		return left->ip != right->ip;
1149 
1150 	return !!_sort__sym_cmp(sym_l, sym_r);
1151 }
1152 
1153 
1154 static int
1155 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1156 			       struct addr_location *al)
1157 {
1158 	struct evsel *evsel = iter->evsel;
1159 	struct perf_sample *sample = iter->sample;
1160 	struct hist_entry **he_cache = iter->he_cache;
1161 	struct hist_entry *he;
1162 	struct hist_entry he_tmp = {
1163 		.hists = evsel__hists(evsel),
1164 		.cpu = al->cpu,
1165 		.thread = al->thread,
1166 		.comm = thread__comm(al->thread),
1167 		.ip = al->addr,
1168 		.ms = {
1169 			.maps = al->maps,
1170 			.map = al->map,
1171 			.sym = al->sym,
1172 		},
1173 		.srcline = (char *) al->srcline,
1174 		.parent = iter->parent,
1175 		.raw_data = sample->raw_data,
1176 		.raw_size = sample->raw_size,
1177 	};
1178 	int i;
1179 	struct callchain_cursor cursor, *tls_cursor = get_tls_callchain_cursor();
1180 	bool fast = hists__has(he_tmp.hists, sym);
1181 
1182 	if (tls_cursor == NULL)
1183 		return -ENOMEM;
1184 
1185 	callchain_cursor_snapshot(&cursor, tls_cursor);
1186 
1187 	callchain_cursor_advance(tls_cursor);
1188 
1189 	/*
1190 	 * Check if there's duplicate entries in the callchain.
1191 	 * It's possible that it has cycles or recursive calls.
1192 	 */
1193 	for (i = 0; i < iter->curr; i++) {
1194 		/*
1195 		 * For most cases, there are no duplicate entries in callchain.
1196 		 * The symbols are usually different. Do a quick check for
1197 		 * symbols first.
1198 		 */
1199 		if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp))
1200 			continue;
1201 
1202 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1203 			/* to avoid calling callback function */
1204 			iter->he = NULL;
1205 			return 0;
1206 		}
1207 	}
1208 
1209 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1210 			      NULL, sample, false);
1211 	if (he == NULL)
1212 		return -ENOMEM;
1213 
1214 	iter->he = he;
1215 	he_cache[iter->curr++] = he;
1216 
1217 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1218 		callchain_append(he->callchain, &cursor, sample->period);
1219 	return 0;
1220 }
1221 
1222 static int
1223 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1224 			     struct addr_location *al __maybe_unused)
1225 {
1226 	mem_info__zput(iter->mi);
1227 	zfree(&iter->bi);
1228 	zfree(&iter->he_cache);
1229 	iter->he = NULL;
1230 
1231 	return 0;
1232 }
1233 
1234 const struct hist_iter_ops hist_iter_mem = {
1235 	.prepare_entry 		= iter_prepare_mem_entry,
1236 	.add_single_entry 	= iter_add_single_mem_entry,
1237 	.next_entry 		= iter_next_nop_entry,
1238 	.add_next_entry 	= iter_add_next_nop_entry,
1239 	.finish_entry 		= iter_finish_mem_entry,
1240 };
1241 
1242 const struct hist_iter_ops hist_iter_branch = {
1243 	.prepare_entry 		= iter_prepare_branch_entry,
1244 	.add_single_entry 	= iter_add_single_branch_entry,
1245 	.next_entry 		= iter_next_branch_entry,
1246 	.add_next_entry 	= iter_add_next_branch_entry,
1247 	.finish_entry 		= iter_finish_branch_entry,
1248 };
1249 
1250 const struct hist_iter_ops hist_iter_normal = {
1251 	.prepare_entry 		= iter_prepare_normal_entry,
1252 	.add_single_entry 	= iter_add_single_normal_entry,
1253 	.next_entry 		= iter_next_nop_entry,
1254 	.add_next_entry 	= iter_add_next_nop_entry,
1255 	.finish_entry 		= iter_finish_normal_entry,
1256 };
1257 
1258 const struct hist_iter_ops hist_iter_cumulative = {
1259 	.prepare_entry 		= iter_prepare_cumulative_entry,
1260 	.add_single_entry 	= iter_add_single_cumulative_entry,
1261 	.next_entry 		= iter_next_cumulative_entry,
1262 	.add_next_entry 	= iter_add_next_cumulative_entry,
1263 	.finish_entry 		= iter_finish_cumulative_entry,
1264 };
1265 
1266 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1267 			 int max_stack_depth, void *arg)
1268 {
1269 	int err, err2;
1270 	struct map *alm = NULL;
1271 
1272 	if (al)
1273 		alm = map__get(al->map);
1274 
1275 	err = sample__resolve_callchain(iter->sample, get_tls_callchain_cursor(), &iter->parent,
1276 					iter->evsel, al, max_stack_depth);
1277 	if (err) {
1278 		map__put(alm);
1279 		return err;
1280 	}
1281 
1282 	err = iter->ops->prepare_entry(iter, al);
1283 	if (err)
1284 		goto out;
1285 
1286 	err = iter->ops->add_single_entry(iter, al);
1287 	if (err)
1288 		goto out;
1289 
1290 	if (iter->he && iter->add_entry_cb) {
1291 		err = iter->add_entry_cb(iter, al, true, arg);
1292 		if (err)
1293 			goto out;
1294 	}
1295 
1296 	while (iter->ops->next_entry(iter, al)) {
1297 		err = iter->ops->add_next_entry(iter, al);
1298 		if (err)
1299 			break;
1300 
1301 		if (iter->he && iter->add_entry_cb) {
1302 			err = iter->add_entry_cb(iter, al, false, arg);
1303 			if (err)
1304 				goto out;
1305 		}
1306 	}
1307 
1308 out:
1309 	err2 = iter->ops->finish_entry(iter, al);
1310 	if (!err)
1311 		err = err2;
1312 
1313 	map__put(alm);
1314 
1315 	return err;
1316 }
1317 
1318 static int64_t
1319 hist_entry__cmp_impl(struct perf_hpp_list *hpp_list, struct hist_entry *left,
1320 		     struct hist_entry *right, unsigned long fn_offset,
1321 		     bool ignore_dynamic, bool ignore_skipped)
1322 {
1323 	struct hists *hists = left->hists;
1324 	struct perf_hpp_fmt *fmt;
1325 	perf_hpp_fmt_cmp_t *fn;
1326 	int64_t cmp;
1327 
1328 	/*
1329 	 * Never collapse filtered and non-filtered entries.
1330 	 * Note this is not the same as having an extra (invisible) fmt
1331 	 * that corresponds to the filtered status.
1332 	 */
1333 	cmp = (int64_t)!!left->filtered - (int64_t)!!right->filtered;
1334 	if (cmp)
1335 		return cmp;
1336 
1337 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1338 		if (ignore_dynamic && perf_hpp__is_dynamic_entry(fmt) &&
1339 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1340 			continue;
1341 
1342 		if (ignore_skipped && perf_hpp__should_skip(fmt, hists))
1343 			continue;
1344 
1345 		fn = (void *)fmt + fn_offset;
1346 		cmp = (*fn)(fmt, left, right);
1347 		if (cmp)
1348 			break;
1349 	}
1350 
1351 	return cmp;
1352 }
1353 
1354 int64_t
1355 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1356 {
1357 	return hist_entry__cmp_impl(left->hists->hpp_list, left, right,
1358 		offsetof(struct perf_hpp_fmt, cmp), true, false);
1359 }
1360 
1361 static int64_t
1362 hist_entry__sort(struct hist_entry *left, struct hist_entry *right)
1363 {
1364 	return hist_entry__cmp_impl(left->hists->hpp_list, left, right,
1365 		offsetof(struct perf_hpp_fmt, sort), false, true);
1366 }
1367 
1368 int64_t
1369 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1370 {
1371 	return hist_entry__cmp_impl(left->hists->hpp_list, left, right,
1372 		offsetof(struct perf_hpp_fmt, collapse), true, false);
1373 }
1374 
1375 static int64_t
1376 hist_entry__collapse_hierarchy(struct perf_hpp_list *hpp_list,
1377 			       struct hist_entry *left,
1378 			       struct hist_entry *right)
1379 {
1380 	return hist_entry__cmp_impl(hpp_list, left, right,
1381 		offsetof(struct perf_hpp_fmt, collapse), false, false);
1382 }
1383 
1384 void hist_entry__delete(struct hist_entry *he)
1385 {
1386 	struct hist_entry_ops *ops = he->ops;
1387 
1388 	thread__zput(he->thread);
1389 	map_symbol__exit(&he->ms);
1390 
1391 	if (he->branch_info) {
1392 		branch_info__exit(he->branch_info);
1393 		zfree(&he->branch_info);
1394 	}
1395 
1396 	if (he->mem_info) {
1397 		map_symbol__exit(&mem_info__iaddr(he->mem_info)->ms);
1398 		map_symbol__exit(&mem_info__daddr(he->mem_info)->ms);
1399 		mem_info__zput(he->mem_info);
1400 	}
1401 
1402 	if (he->block_info)
1403 		block_info__delete(he->block_info);
1404 
1405 	if (he->kvm_info)
1406 		kvm_info__zput(he->kvm_info);
1407 
1408 	zfree(&he->res_samples);
1409 	zfree(&he->stat_acc);
1410 	zfree_srcline(&he->srcline);
1411 	if (he->srcfile && he->srcfile[0])
1412 		zfree(&he->srcfile);
1413 	free_callchain(he->callchain);
1414 	zfree(&he->trace_output);
1415 	zfree(&he->raw_data);
1416 	ops->free(he);
1417 }
1418 
1419 /*
1420  * If this is not the last column, then we need to pad it according to the
1421  * pre-calculated max length for this column, otherwise don't bother adding
1422  * spaces because that would break viewing this with, for instance, 'less',
1423  * that would show tons of trailing spaces when a long C++ demangled method
1424  * names is sampled.
1425 */
1426 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1427 				   struct perf_hpp_fmt *fmt, int printed)
1428 {
1429 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1430 		const int width = fmt->width(fmt, hpp, he->hists);
1431 		if (printed < width) {
1432 			advance_hpp(hpp, printed);
1433 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1434 		}
1435 	}
1436 
1437 	return printed;
1438 }
1439 
1440 /*
1441  * collapse the histogram
1442  */
1443 
1444 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1445 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1446 				       enum hist_filter type);
1447 
1448 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1449 
1450 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1451 {
1452 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1453 }
1454 
1455 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1456 						enum hist_filter type,
1457 						fmt_chk_fn check)
1458 {
1459 	struct perf_hpp_fmt *fmt;
1460 	bool type_match = false;
1461 	struct hist_entry *parent = he->parent_he;
1462 
1463 	switch (type) {
1464 	case HIST_FILTER__THREAD:
1465 		if (symbol_conf.comm_list == NULL &&
1466 		    symbol_conf.pid_list == NULL &&
1467 		    symbol_conf.tid_list == NULL)
1468 			return;
1469 		break;
1470 	case HIST_FILTER__DSO:
1471 		if (symbol_conf.dso_list == NULL)
1472 			return;
1473 		break;
1474 	case HIST_FILTER__SYMBOL:
1475 		if (symbol_conf.sym_list == NULL)
1476 			return;
1477 		break;
1478 	case HIST_FILTER__PARALLELISM:
1479 		if (__bitmap_weight(symbol_conf.parallelism_filter, MAX_NR_CPUS + 1) == 0)
1480 			return;
1481 		break;
1482 	case HIST_FILTER__PARENT:
1483 	case HIST_FILTER__GUEST:
1484 	case HIST_FILTER__HOST:
1485 	case HIST_FILTER__SOCKET:
1486 	case HIST_FILTER__C2C:
1487 	default:
1488 		return;
1489 	}
1490 
1491 	/* if it's filtered by own fmt, it has to have filter bits */
1492 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1493 		if (check(fmt)) {
1494 			type_match = true;
1495 			break;
1496 		}
1497 	}
1498 
1499 	if (type_match) {
1500 		/*
1501 		 * If the filter is for current level entry, propagate
1502 		 * filter marker to parents.  The marker bit was
1503 		 * already set by default so it only needs to clear
1504 		 * non-filtered entries.
1505 		 */
1506 		if (!(he->filtered & (1 << type))) {
1507 			while (parent) {
1508 				parent->filtered &= ~(1 << type);
1509 				parent = parent->parent_he;
1510 			}
1511 		}
1512 	} else {
1513 		/*
1514 		 * If current entry doesn't have matching formats, set
1515 		 * filter marker for upper level entries.  it will be
1516 		 * cleared if its lower level entries is not filtered.
1517 		 *
1518 		 * For lower-level entries, it inherits parent's
1519 		 * filter bit so that lower level entries of a
1520 		 * non-filtered entry won't set the filter marker.
1521 		 */
1522 		if (parent == NULL)
1523 			he->filtered |= (1 << type);
1524 		else
1525 			he->filtered |= (parent->filtered & (1 << type));
1526 	}
1527 }
1528 
1529 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1530 {
1531 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1532 					    check_thread_entry);
1533 
1534 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1535 					    perf_hpp__is_dso_entry);
1536 
1537 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1538 					    perf_hpp__is_sym_entry);
1539 
1540 	hist_entry__check_and_remove_filter(he, HIST_FILTER__PARALLELISM,
1541 					    perf_hpp__is_parallelism_entry);
1542 
1543 	hists__apply_filters(he->hists, he);
1544 }
1545 
1546 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1547 						 struct rb_root_cached *root,
1548 						 struct hist_entry *he,
1549 						 struct hist_entry *parent_he,
1550 						 struct perf_hpp_list *hpp_list)
1551 {
1552 	struct rb_node **p = &root->rb_root.rb_node;
1553 	struct rb_node *parent = NULL;
1554 	struct hist_entry *iter, *new;
1555 	struct perf_hpp_fmt *fmt;
1556 	int64_t cmp;
1557 	bool leftmost = true;
1558 
1559 	while (*p != NULL) {
1560 		parent = *p;
1561 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1562 		cmp = hist_entry__collapse_hierarchy(hpp_list, iter, he);
1563 		if (!cmp) {
1564 			he_stat__add_stat(&iter->stat, &he->stat);
1565 			return iter;
1566 		}
1567 
1568 		if (cmp < 0)
1569 			p = &parent->rb_left;
1570 		else {
1571 			p = &parent->rb_right;
1572 			leftmost = false;
1573 		}
1574 	}
1575 
1576 	new = hist_entry__new(he, true);
1577 	if (new == NULL)
1578 		return NULL;
1579 
1580 	hists->nr_entries++;
1581 
1582 	/* save related format list for output */
1583 	new->hpp_list = hpp_list;
1584 	new->parent_he = parent_he;
1585 
1586 	hist_entry__apply_hierarchy_filters(new);
1587 
1588 	/* some fields are now passed to 'new' */
1589 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1590 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1591 			he->trace_output = NULL;
1592 		else
1593 			new->trace_output = NULL;
1594 
1595 		if (perf_hpp__is_srcline_entry(fmt))
1596 			he->srcline = NULL;
1597 		else
1598 			new->srcline = NULL;
1599 
1600 		if (perf_hpp__is_srcfile_entry(fmt))
1601 			he->srcfile = NULL;
1602 		else
1603 			new->srcfile = NULL;
1604 	}
1605 
1606 	rb_link_node(&new->rb_node_in, parent, p);
1607 	rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1608 	return new;
1609 }
1610 
1611 static int hists__hierarchy_insert_entry(struct hists *hists,
1612 					 struct rb_root_cached *root,
1613 					 struct hist_entry *he)
1614 {
1615 	struct perf_hpp_list_node *node;
1616 	struct hist_entry *new_he = NULL;
1617 	struct hist_entry *parent = NULL;
1618 	int depth = 0;
1619 	int ret = 0;
1620 
1621 	list_for_each_entry(node, &hists->hpp_formats, list) {
1622 		/* skip period (overhead) and elided columns */
1623 		if (node->level == 0 || node->skip)
1624 			continue;
1625 
1626 		/* insert copy of 'he' for each fmt into the hierarchy */
1627 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1628 		if (new_he == NULL) {
1629 			ret = -1;
1630 			break;
1631 		}
1632 
1633 		root = &new_he->hroot_in;
1634 		new_he->depth = depth++;
1635 		parent = new_he;
1636 	}
1637 
1638 	if (new_he) {
1639 		new_he->leaf = true;
1640 
1641 		if (hist_entry__has_callchains(new_he) &&
1642 		    symbol_conf.use_callchain) {
1643 			struct callchain_cursor *cursor = get_tls_callchain_cursor();
1644 
1645 			if (cursor == NULL)
1646 				return -1;
1647 
1648 			callchain_cursor_reset(cursor);
1649 			if (callchain_merge(cursor,
1650 					    new_he->callchain,
1651 					    he->callchain) < 0)
1652 				ret = -1;
1653 		}
1654 	}
1655 
1656 	/* 'he' is no longer used */
1657 	hist_entry__delete(he);
1658 
1659 	/* return 0 (or -1) since it already applied filters */
1660 	return ret;
1661 }
1662 
1663 static int hists__collapse_insert_entry(struct hists *hists,
1664 					struct rb_root_cached *root,
1665 					struct hist_entry *he)
1666 {
1667 	struct rb_node **p = &root->rb_root.rb_node;
1668 	struct rb_node *parent = NULL;
1669 	struct hist_entry *iter;
1670 	int64_t cmp;
1671 	bool leftmost = true;
1672 
1673 	if (symbol_conf.report_hierarchy)
1674 		return hists__hierarchy_insert_entry(hists, root, he);
1675 
1676 	while (*p != NULL) {
1677 		parent = *p;
1678 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1679 
1680 		cmp = hist_entry__collapse(iter, he);
1681 
1682 		if (!cmp) {
1683 			int ret = 0;
1684 
1685 			he_stat__add_stat(&iter->stat, &he->stat);
1686 			if (symbol_conf.cumulate_callchain)
1687 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1688 
1689 			if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1690 				struct callchain_cursor *cursor = get_tls_callchain_cursor();
1691 
1692 				if (cursor != NULL) {
1693 					callchain_cursor_reset(cursor);
1694 					if (callchain_merge(cursor, iter->callchain, he->callchain) < 0)
1695 						ret = -1;
1696 				} else {
1697 					ret = 0;
1698 				}
1699 			}
1700 			hist_entry__delete(he);
1701 			return ret;
1702 		}
1703 
1704 		if (cmp < 0)
1705 			p = &(*p)->rb_left;
1706 		else {
1707 			p = &(*p)->rb_right;
1708 			leftmost = false;
1709 		}
1710 	}
1711 	hists->nr_entries++;
1712 
1713 	rb_link_node(&he->rb_node_in, parent, p);
1714 	rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1715 	return 1;
1716 }
1717 
1718 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1719 {
1720 	struct rb_root_cached *root;
1721 
1722 	mutex_lock(&hists->lock);
1723 
1724 	root = hists->entries_in;
1725 	if (++hists->entries_in > &hists->entries_in_array[1])
1726 		hists->entries_in = &hists->entries_in_array[0];
1727 
1728 	mutex_unlock(&hists->lock);
1729 
1730 	return root;
1731 }
1732 
1733 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1734 {
1735 	hists__filter_entry_by_dso(hists, he);
1736 	hists__filter_entry_by_thread(hists, he);
1737 	hists__filter_entry_by_symbol(hists, he);
1738 	hists__filter_entry_by_socket(hists, he);
1739 	hists__filter_entry_by_parallelism(hists, he);
1740 }
1741 
1742 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1743 {
1744 	struct rb_root_cached *root;
1745 	struct rb_node *next;
1746 	struct hist_entry *n;
1747 	int ret;
1748 
1749 	if (!hists__has(hists, need_collapse))
1750 		return 0;
1751 
1752 	hists->nr_entries = 0;
1753 
1754 	root = hists__get_rotate_entries_in(hists);
1755 
1756 	next = rb_first_cached(root);
1757 
1758 	while (next) {
1759 		if (session_done())
1760 			break;
1761 		n = rb_entry(next, struct hist_entry, rb_node_in);
1762 		next = rb_next(&n->rb_node_in);
1763 
1764 		rb_erase_cached(&n->rb_node_in, root);
1765 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1766 		if (ret < 0)
1767 			return -1;
1768 
1769 		if (ret) {
1770 			/*
1771 			 * If it wasn't combined with one of the entries already
1772 			 * collapsed, we need to apply the filters that may have
1773 			 * been set by, say, the hist_browser.
1774 			 */
1775 			hists__apply_filters(hists, n);
1776 		}
1777 		if (prog)
1778 			ui_progress__update(prog, 1);
1779 	}
1780 	return 0;
1781 }
1782 
1783 static void hists__reset_filter_stats(struct hists *hists)
1784 {
1785 	hists->nr_non_filtered_entries = 0;
1786 	hists->stats.total_non_filtered_period = 0;
1787 	hists->stats.total_non_filtered_latency = 0;
1788 }
1789 
1790 void hists__reset_stats(struct hists *hists)
1791 {
1792 	hists->nr_entries = 0;
1793 	hists->stats.total_period = 0;
1794 	hists->stats.total_latency = 0;
1795 
1796 	hists__reset_filter_stats(hists);
1797 }
1798 
1799 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1800 {
1801 	hists->nr_non_filtered_entries++;
1802 	hists->stats.total_non_filtered_period += h->stat.period;
1803 	hists->stats.total_non_filtered_latency += h->stat.latency;
1804 }
1805 
1806 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1807 {
1808 	if (!h->filtered)
1809 		hists__inc_filter_stats(hists, h);
1810 
1811 	hists->nr_entries++;
1812 	hists->stats.total_period += h->stat.period;
1813 	hists->stats.total_latency += h->stat.latency;
1814 }
1815 
1816 static void hierarchy_recalc_total_periods(struct hists *hists)
1817 {
1818 	struct rb_node *node;
1819 	struct hist_entry *he;
1820 
1821 	node = rb_first_cached(&hists->entries);
1822 
1823 	hists->stats.total_period = 0;
1824 	hists->stats.total_non_filtered_period = 0;
1825 	hists->stats.total_latency = 0;
1826 	hists->stats.total_non_filtered_latency = 0;
1827 
1828 	/*
1829 	 * recalculate total period using top-level entries only
1830 	 * since lower level entries only see non-filtered entries
1831 	 * but upper level entries have sum of both entries.
1832 	 */
1833 	while (node) {
1834 		he = rb_entry(node, struct hist_entry, rb_node);
1835 		node = rb_next(node);
1836 
1837 		hists->stats.total_period += he->stat.period;
1838 		hists->stats.total_latency += he->stat.latency;
1839 		if (!he->filtered) {
1840 			hists->stats.total_non_filtered_period += he->stat.period;
1841 			hists->stats.total_non_filtered_latency += he->stat.latency;
1842 		}
1843 	}
1844 }
1845 
1846 static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1847 					  struct hist_entry *he)
1848 {
1849 	struct rb_node **p = &root->rb_root.rb_node;
1850 	struct rb_node *parent = NULL;
1851 	struct hist_entry *iter;
1852 	struct perf_hpp_fmt *fmt;
1853 	bool leftmost = true;
1854 
1855 	while (*p != NULL) {
1856 		parent = *p;
1857 		iter = rb_entry(parent, struct hist_entry, rb_node);
1858 
1859 		if (hist_entry__sort(he, iter) > 0)
1860 			p = &parent->rb_left;
1861 		else {
1862 			p = &parent->rb_right;
1863 			leftmost = false;
1864 		}
1865 	}
1866 
1867 	rb_link_node(&he->rb_node, parent, p);
1868 	rb_insert_color_cached(&he->rb_node, root, leftmost);
1869 
1870 	/* update column width of dynamic entry */
1871 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1872 		if (fmt->init)
1873 			fmt->init(fmt, he);
1874 	}
1875 }
1876 
1877 static void hists__hierarchy_output_resort(struct hists *hists,
1878 					   struct ui_progress *prog,
1879 					   struct rb_root_cached *root_in,
1880 					   struct rb_root_cached *root_out,
1881 					   u64 min_callchain_hits,
1882 					   bool use_callchain)
1883 {
1884 	struct rb_node *node;
1885 	struct hist_entry *he;
1886 
1887 	*root_out = RB_ROOT_CACHED;
1888 	node = rb_first_cached(root_in);
1889 
1890 	while (node) {
1891 		he = rb_entry(node, struct hist_entry, rb_node_in);
1892 		node = rb_next(node);
1893 
1894 		hierarchy_insert_output_entry(root_out, he);
1895 
1896 		if (prog)
1897 			ui_progress__update(prog, 1);
1898 
1899 		hists->nr_entries++;
1900 		if (!he->filtered) {
1901 			hists->nr_non_filtered_entries++;
1902 			hists__calc_col_len(hists, he);
1903 		}
1904 
1905 		if (!he->leaf) {
1906 			hists__hierarchy_output_resort(hists, prog,
1907 						       &he->hroot_in,
1908 						       &he->hroot_out,
1909 						       min_callchain_hits,
1910 						       use_callchain);
1911 			continue;
1912 		}
1913 
1914 		if (!use_callchain)
1915 			continue;
1916 
1917 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1918 			u64 total = he->stat.period;
1919 
1920 			if (symbol_conf.cumulate_callchain)
1921 				total = he->stat_acc->period;
1922 
1923 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1924 		}
1925 
1926 		callchain_param.sort(&he->sorted_chain, he->callchain,
1927 				     min_callchain_hits, &callchain_param);
1928 	}
1929 }
1930 
1931 static void __hists__insert_output_entry(struct rb_root_cached *entries,
1932 					 struct hist_entry *he,
1933 					 u64 min_callchain_hits,
1934 					 bool use_callchain)
1935 {
1936 	struct rb_node **p = &entries->rb_root.rb_node;
1937 	struct rb_node *parent = NULL;
1938 	struct hist_entry *iter;
1939 	struct perf_hpp_fmt *fmt;
1940 	bool leftmost = true;
1941 
1942 	if (use_callchain) {
1943 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1944 			u64 total = he->stat.period;
1945 
1946 			if (symbol_conf.cumulate_callchain)
1947 				total = he->stat_acc->period;
1948 
1949 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1950 		}
1951 		callchain_param.sort(&he->sorted_chain, he->callchain,
1952 				      min_callchain_hits, &callchain_param);
1953 	}
1954 
1955 	while (*p != NULL) {
1956 		parent = *p;
1957 		iter = rb_entry(parent, struct hist_entry, rb_node);
1958 
1959 		if (hist_entry__sort(he, iter) > 0)
1960 			p = &(*p)->rb_left;
1961 		else {
1962 			p = &(*p)->rb_right;
1963 			leftmost = false;
1964 		}
1965 	}
1966 
1967 	rb_link_node(&he->rb_node, parent, p);
1968 	rb_insert_color_cached(&he->rb_node, entries, leftmost);
1969 
1970 	/* update column width of dynamic entries */
1971 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1972 		if (fmt->init)
1973 			fmt->init(fmt, he);
1974 	}
1975 }
1976 
1977 static void output_resort(struct hists *hists, struct ui_progress *prog,
1978 			  bool use_callchain, hists__resort_cb_t cb,
1979 			  void *cb_arg)
1980 {
1981 	struct rb_root_cached *root;
1982 	struct rb_node *next;
1983 	struct hist_entry *n;
1984 	u64 callchain_total;
1985 	u64 min_callchain_hits;
1986 
1987 	callchain_total = hists->callchain_period;
1988 	if (symbol_conf.filter_relative)
1989 		callchain_total = hists->callchain_non_filtered_period;
1990 
1991 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1992 
1993 	hists__reset_stats(hists);
1994 	hists__reset_col_len(hists);
1995 
1996 	if (symbol_conf.report_hierarchy) {
1997 		hists__hierarchy_output_resort(hists, prog,
1998 					       &hists->entries_collapsed,
1999 					       &hists->entries,
2000 					       min_callchain_hits,
2001 					       use_callchain);
2002 		hierarchy_recalc_total_periods(hists);
2003 		return;
2004 	}
2005 
2006 	if (hists__has(hists, need_collapse))
2007 		root = &hists->entries_collapsed;
2008 	else
2009 		root = hists->entries_in;
2010 
2011 	next = rb_first_cached(root);
2012 	hists->entries = RB_ROOT_CACHED;
2013 
2014 	while (next) {
2015 		n = rb_entry(next, struct hist_entry, rb_node_in);
2016 		next = rb_next(&n->rb_node_in);
2017 
2018 		if (cb && cb(n, cb_arg))
2019 			continue;
2020 
2021 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
2022 		hists__inc_stats(hists, n);
2023 
2024 		if (!n->filtered)
2025 			hists__calc_col_len(hists, n);
2026 
2027 		if (prog)
2028 			ui_progress__update(prog, 1);
2029 	}
2030 }
2031 
2032 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
2033 			     hists__resort_cb_t cb, void *cb_arg)
2034 {
2035 	bool use_callchain;
2036 
2037 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
2038 		use_callchain = evsel__has_callchain(evsel);
2039 	else
2040 		use_callchain = symbol_conf.use_callchain;
2041 
2042 	use_callchain |= symbol_conf.show_branchflag_count;
2043 
2044 	output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
2045 }
2046 
2047 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
2048 {
2049 	return evsel__output_resort_cb(evsel, prog, NULL, NULL);
2050 }
2051 
2052 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
2053 {
2054 	output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
2055 }
2056 
2057 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
2058 			     hists__resort_cb_t cb)
2059 {
2060 	output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
2061 }
2062 
2063 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
2064 {
2065 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
2066 		return false;
2067 
2068 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
2069 		return true;
2070 
2071 	return false;
2072 }
2073 
2074 struct rb_node *rb_hierarchy_last(struct rb_node *node)
2075 {
2076 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2077 
2078 	while (can_goto_child(he, HMD_NORMAL)) {
2079 		node = rb_last(&he->hroot_out.rb_root);
2080 		he = rb_entry(node, struct hist_entry, rb_node);
2081 	}
2082 	return node;
2083 }
2084 
2085 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
2086 {
2087 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2088 
2089 	if (can_goto_child(he, hmd))
2090 		node = rb_first_cached(&he->hroot_out);
2091 	else
2092 		node = rb_next(node);
2093 
2094 	while (node == NULL) {
2095 		he = he->parent_he;
2096 		if (he == NULL)
2097 			break;
2098 
2099 		node = rb_next(&he->rb_node);
2100 	}
2101 	return node;
2102 }
2103 
2104 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
2105 {
2106 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2107 
2108 	node = rb_prev(node);
2109 	if (node)
2110 		return rb_hierarchy_last(node);
2111 
2112 	he = he->parent_he;
2113 	if (he == NULL)
2114 		return NULL;
2115 
2116 	return &he->rb_node;
2117 }
2118 
2119 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
2120 {
2121 	struct rb_node *node;
2122 	struct hist_entry *child;
2123 	float percent;
2124 
2125 	if (he->leaf)
2126 		return false;
2127 
2128 	node = rb_first_cached(&he->hroot_out);
2129 	child = rb_entry(node, struct hist_entry, rb_node);
2130 
2131 	while (node && child->filtered) {
2132 		node = rb_next(node);
2133 		child = rb_entry(node, struct hist_entry, rb_node);
2134 	}
2135 
2136 	if (node)
2137 		percent = hist_entry__get_percent_limit(child);
2138 	else
2139 		percent = 0;
2140 
2141 	return node && percent >= limit;
2142 }
2143 
2144 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
2145 				       enum hist_filter filter)
2146 {
2147 	h->filtered &= ~(1 << filter);
2148 
2149 	if (symbol_conf.report_hierarchy) {
2150 		struct hist_entry *parent = h->parent_he;
2151 
2152 		while (parent) {
2153 			he_stat__add_stat(&parent->stat, &h->stat);
2154 
2155 			parent->filtered &= ~(1 << filter);
2156 
2157 			if (parent->filtered)
2158 				goto next;
2159 
2160 			/* force fold unfiltered entry for simplicity */
2161 			parent->unfolded = false;
2162 			parent->has_no_entry = false;
2163 			parent->row_offset = 0;
2164 			parent->nr_rows = 0;
2165 next:
2166 			parent = parent->parent_he;
2167 		}
2168 	}
2169 
2170 	if (h->filtered)
2171 		return;
2172 
2173 	/* force fold unfiltered entry for simplicity */
2174 	h->unfolded = false;
2175 	h->has_no_entry = false;
2176 	h->row_offset = 0;
2177 	h->nr_rows = 0;
2178 
2179 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2180 
2181 	hists__inc_filter_stats(hists, h);
2182 	hists__calc_col_len(hists, h);
2183 }
2184 
2185 
2186 static bool hists__filter_entry_by_dso(struct hists *hists,
2187 				       struct hist_entry *he)
2188 {
2189 	if (hists->dso_filter != NULL &&
2190 	    (he->ms.map == NULL || !RC_CHK_EQUAL(map__dso(he->ms.map), hists->dso_filter))) {
2191 		he->filtered |= (1 << HIST_FILTER__DSO);
2192 		return true;
2193 	}
2194 
2195 	return false;
2196 }
2197 
2198 static bool hists__filter_entry_by_thread(struct hists *hists,
2199 					  struct hist_entry *he)
2200 {
2201 	if (hists->thread_filter != NULL &&
2202 	    !RC_CHK_EQUAL(he->thread, hists->thread_filter)) {
2203 		he->filtered |= (1 << HIST_FILTER__THREAD);
2204 		return true;
2205 	}
2206 
2207 	return false;
2208 }
2209 
2210 static bool hists__filter_entry_by_symbol(struct hists *hists,
2211 					  struct hist_entry *he)
2212 {
2213 	if (hists->symbol_filter_str != NULL &&
2214 	    (!he->ms.sym || strstr(he->ms.sym->name,
2215 				   hists->symbol_filter_str) == NULL)) {
2216 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
2217 		return true;
2218 	}
2219 
2220 	return false;
2221 }
2222 
2223 static bool hists__filter_entry_by_socket(struct hists *hists,
2224 					  struct hist_entry *he)
2225 {
2226 	if ((hists->socket_filter > -1) &&
2227 	    (he->socket != hists->socket_filter)) {
2228 		he->filtered |= (1 << HIST_FILTER__SOCKET);
2229 		return true;
2230 	}
2231 
2232 	return false;
2233 }
2234 
2235 static bool hists__filter_entry_by_parallelism(struct hists *hists,
2236 					       struct hist_entry *he)
2237 {
2238 	if (test_bit(he->parallelism, hists->parallelism_filter)) {
2239 		he->filtered |= (1 << HIST_FILTER__PARALLELISM);
2240 		return true;
2241 	}
2242 	return false;
2243 }
2244 
2245 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2246 
2247 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2248 {
2249 	struct rb_node *nd;
2250 
2251 	hists->stats.nr_non_filtered_samples = 0;
2252 
2253 	hists__reset_filter_stats(hists);
2254 	hists__reset_col_len(hists);
2255 
2256 	for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2257 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2258 
2259 		if (filter(hists, h))
2260 			continue;
2261 
2262 		hists__remove_entry_filter(hists, h, type);
2263 	}
2264 }
2265 
2266 static void resort_filtered_entry(struct rb_root_cached *root,
2267 				  struct hist_entry *he)
2268 {
2269 	struct rb_node **p = &root->rb_root.rb_node;
2270 	struct rb_node *parent = NULL;
2271 	struct hist_entry *iter;
2272 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2273 	struct rb_node *nd;
2274 	bool leftmost = true;
2275 
2276 	while (*p != NULL) {
2277 		parent = *p;
2278 		iter = rb_entry(parent, struct hist_entry, rb_node);
2279 
2280 		if (hist_entry__sort(he, iter) > 0)
2281 			p = &(*p)->rb_left;
2282 		else {
2283 			p = &(*p)->rb_right;
2284 			leftmost = false;
2285 		}
2286 	}
2287 
2288 	rb_link_node(&he->rb_node, parent, p);
2289 	rb_insert_color_cached(&he->rb_node, root, leftmost);
2290 
2291 	if (he->leaf || he->filtered)
2292 		return;
2293 
2294 	nd = rb_first_cached(&he->hroot_out);
2295 	while (nd) {
2296 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2297 
2298 		nd = rb_next(nd);
2299 		rb_erase_cached(&h->rb_node, &he->hroot_out);
2300 
2301 		resort_filtered_entry(&new_root, h);
2302 	}
2303 
2304 	he->hroot_out = new_root;
2305 }
2306 
2307 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2308 {
2309 	struct rb_node *nd;
2310 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2311 
2312 	hists->stats.nr_non_filtered_samples = 0;
2313 
2314 	hists__reset_filter_stats(hists);
2315 	hists__reset_col_len(hists);
2316 
2317 	nd = rb_first_cached(&hists->entries);
2318 	while (nd) {
2319 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2320 		int ret;
2321 
2322 		ret = hist_entry__filter(h, type, arg);
2323 
2324 		/*
2325 		 * case 1. non-matching type
2326 		 * zero out the period, set filter marker and move to child
2327 		 */
2328 		if (ret < 0) {
2329 			memset(&h->stat, 0, sizeof(h->stat));
2330 			h->filtered |= (1 << type);
2331 
2332 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2333 		}
2334 		/*
2335 		 * case 2. matched type (filter out)
2336 		 * set filter marker and move to next
2337 		 */
2338 		else if (ret == 1) {
2339 			h->filtered |= (1 << type);
2340 
2341 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2342 		}
2343 		/*
2344 		 * case 3. ok (not filtered)
2345 		 * add period to hists and parents, erase the filter marker
2346 		 * and move to next sibling
2347 		 */
2348 		else {
2349 			hists__remove_entry_filter(hists, h, type);
2350 
2351 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2352 		}
2353 	}
2354 
2355 	hierarchy_recalc_total_periods(hists);
2356 
2357 	/*
2358 	 * resort output after applying a new filter since filter in a lower
2359 	 * hierarchy can change periods in a upper hierarchy.
2360 	 */
2361 	nd = rb_first_cached(&hists->entries);
2362 	while (nd) {
2363 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2364 
2365 		nd = rb_next(nd);
2366 		rb_erase_cached(&h->rb_node, &hists->entries);
2367 
2368 		resort_filtered_entry(&new_root, h);
2369 	}
2370 
2371 	hists->entries = new_root;
2372 }
2373 
2374 void hists__filter_by_thread(struct hists *hists)
2375 {
2376 	if (symbol_conf.report_hierarchy)
2377 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2378 					hists->thread_filter);
2379 	else
2380 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2381 				      hists__filter_entry_by_thread);
2382 }
2383 
2384 void hists__filter_by_dso(struct hists *hists)
2385 {
2386 	if (symbol_conf.report_hierarchy)
2387 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2388 					hists->dso_filter);
2389 	else
2390 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2391 				      hists__filter_entry_by_dso);
2392 }
2393 
2394 void hists__filter_by_symbol(struct hists *hists)
2395 {
2396 	if (symbol_conf.report_hierarchy)
2397 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2398 					hists->symbol_filter_str);
2399 	else
2400 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2401 				      hists__filter_entry_by_symbol);
2402 }
2403 
2404 void hists__filter_by_socket(struct hists *hists)
2405 {
2406 	if (symbol_conf.report_hierarchy)
2407 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2408 					&hists->socket_filter);
2409 	else
2410 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2411 				      hists__filter_entry_by_socket);
2412 }
2413 
2414 void hists__filter_by_parallelism(struct hists *hists)
2415 {
2416 	if (symbol_conf.report_hierarchy)
2417 		hists__filter_hierarchy(hists, HIST_FILTER__PARALLELISM,
2418 					hists->parallelism_filter);
2419 	else
2420 		hists__filter_by_type(hists, HIST_FILTER__PARALLELISM,
2421 				      hists__filter_entry_by_parallelism);
2422 }
2423 
2424 void events_stats__inc(struct events_stats *stats, u32 type)
2425 {
2426 	++stats->nr_events[0];
2427 	++stats->nr_events[type];
2428 }
2429 
2430 static void hists_stats__inc(struct hists_stats *stats)
2431 {
2432 	++stats->nr_samples;
2433 }
2434 
2435 void hists__inc_nr_events(struct hists *hists)
2436 {
2437 	hists_stats__inc(&hists->stats);
2438 }
2439 
2440 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2441 {
2442 	hists_stats__inc(&hists->stats);
2443 	if (!filtered)
2444 		hists->stats.nr_non_filtered_samples++;
2445 }
2446 
2447 void hists__inc_nr_lost_samples(struct hists *hists, u32 lost)
2448 {
2449 	hists->stats.nr_lost_samples += lost;
2450 }
2451 
2452 void hists__inc_nr_dropped_samples(struct hists *hists, u32 lost)
2453 {
2454 	hists->stats.nr_dropped_samples += lost;
2455 }
2456 
2457 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2458 						 struct hist_entry *pair)
2459 {
2460 	struct rb_root_cached *root;
2461 	struct rb_node **p;
2462 	struct rb_node *parent = NULL;
2463 	struct hist_entry *he;
2464 	int64_t cmp;
2465 	bool leftmost = true;
2466 
2467 	if (hists__has(hists, need_collapse))
2468 		root = &hists->entries_collapsed;
2469 	else
2470 		root = hists->entries_in;
2471 
2472 	p = &root->rb_root.rb_node;
2473 
2474 	while (*p != NULL) {
2475 		parent = *p;
2476 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2477 
2478 		cmp = hist_entry__collapse(he, pair);
2479 
2480 		if (!cmp)
2481 			goto out;
2482 
2483 		if (cmp < 0)
2484 			p = &(*p)->rb_left;
2485 		else {
2486 			p = &(*p)->rb_right;
2487 			leftmost = false;
2488 		}
2489 	}
2490 
2491 	he = hist_entry__new(pair, true);
2492 	if (he) {
2493 		memset(&he->stat, 0, sizeof(he->stat));
2494 		he->hists = hists;
2495 		if (symbol_conf.cumulate_callchain)
2496 			memset(he->stat_acc, 0, sizeof(he->stat));
2497 		rb_link_node(&he->rb_node_in, parent, p);
2498 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2499 		hists__inc_stats(hists, he);
2500 		he->dummy = true;
2501 	}
2502 out:
2503 	return he;
2504 }
2505 
2506 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2507 						    struct rb_root_cached *root,
2508 						    struct hist_entry *pair)
2509 {
2510 	struct rb_node **p;
2511 	struct rb_node *parent = NULL;
2512 	struct hist_entry *he;
2513 	bool leftmost = true;
2514 
2515 	p = &root->rb_root.rb_node;
2516 	while (*p != NULL) {
2517 		int64_t cmp;
2518 
2519 		parent = *p;
2520 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2521 		cmp = hist_entry__collapse_hierarchy(he->hpp_list, he, pair);
2522 		if (!cmp)
2523 			goto out;
2524 
2525 		if (cmp < 0)
2526 			p = &parent->rb_left;
2527 		else {
2528 			p = &parent->rb_right;
2529 			leftmost = false;
2530 		}
2531 	}
2532 
2533 	he = hist_entry__new(pair, true);
2534 	if (he) {
2535 		rb_link_node(&he->rb_node_in, parent, p);
2536 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2537 
2538 		he->dummy = true;
2539 		he->hists = hists;
2540 		memset(&he->stat, 0, sizeof(he->stat));
2541 		hists__inc_stats(hists, he);
2542 	}
2543 out:
2544 	return he;
2545 }
2546 
2547 static struct hist_entry *hists__find_entry(struct hists *hists,
2548 					    struct hist_entry *he)
2549 {
2550 	struct rb_node *n;
2551 
2552 	if (hists__has(hists, need_collapse))
2553 		n = hists->entries_collapsed.rb_root.rb_node;
2554 	else
2555 		n = hists->entries_in->rb_root.rb_node;
2556 
2557 	while (n) {
2558 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2559 		int64_t cmp = hist_entry__collapse(iter, he);
2560 
2561 		if (cmp < 0)
2562 			n = n->rb_left;
2563 		else if (cmp > 0)
2564 			n = n->rb_right;
2565 		else
2566 			return iter;
2567 	}
2568 
2569 	return NULL;
2570 }
2571 
2572 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2573 						      struct hist_entry *he)
2574 {
2575 	struct rb_node *n = root->rb_root.rb_node;
2576 
2577 	while (n) {
2578 		struct hist_entry *iter;
2579 		int64_t cmp;
2580 
2581 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2582 		cmp = hist_entry__collapse_hierarchy(he->hpp_list, iter, he);
2583 		if (cmp < 0)
2584 			n = n->rb_left;
2585 		else if (cmp > 0)
2586 			n = n->rb_right;
2587 		else
2588 			return iter;
2589 	}
2590 
2591 	return NULL;
2592 }
2593 
2594 static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2595 				   struct rb_root_cached *other_root)
2596 {
2597 	struct rb_node *nd;
2598 	struct hist_entry *pos, *pair;
2599 
2600 	for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2601 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2602 		pair = hists__find_hierarchy_entry(other_root, pos);
2603 
2604 		if (pair) {
2605 			hist_entry__add_pair(pair, pos);
2606 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2607 		}
2608 	}
2609 }
2610 
2611 /*
2612  * Look for pairs to link to the leader buckets (hist_entries):
2613  */
2614 void hists__match(struct hists *leader, struct hists *other)
2615 {
2616 	struct rb_root_cached *root;
2617 	struct rb_node *nd;
2618 	struct hist_entry *pos, *pair;
2619 
2620 	if (symbol_conf.report_hierarchy) {
2621 		/* hierarchy report always collapses entries */
2622 		return hists__match_hierarchy(&leader->entries_collapsed,
2623 					      &other->entries_collapsed);
2624 	}
2625 
2626 	if (hists__has(leader, need_collapse))
2627 		root = &leader->entries_collapsed;
2628 	else
2629 		root = leader->entries_in;
2630 
2631 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2632 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2633 		pair = hists__find_entry(other, pos);
2634 
2635 		if (pair)
2636 			hist_entry__add_pair(pair, pos);
2637 	}
2638 }
2639 
2640 static int hists__link_hierarchy(struct hists *leader_hists,
2641 				 struct hist_entry *parent,
2642 				 struct rb_root_cached *leader_root,
2643 				 struct rb_root_cached *other_root)
2644 {
2645 	struct rb_node *nd;
2646 	struct hist_entry *pos, *leader;
2647 
2648 	for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2649 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2650 
2651 		if (hist_entry__has_pairs(pos)) {
2652 			bool found = false;
2653 
2654 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2655 				if (leader->hists == leader_hists) {
2656 					found = true;
2657 					break;
2658 				}
2659 			}
2660 			if (!found)
2661 				return -1;
2662 		} else {
2663 			leader = add_dummy_hierarchy_entry(leader_hists,
2664 							   leader_root, pos);
2665 			if (leader == NULL)
2666 				return -1;
2667 
2668 			/* do not point parent in the pos */
2669 			leader->parent_he = parent;
2670 
2671 			hist_entry__add_pair(pos, leader);
2672 		}
2673 
2674 		if (!pos->leaf) {
2675 			if (hists__link_hierarchy(leader_hists, leader,
2676 						  &leader->hroot_in,
2677 						  &pos->hroot_in) < 0)
2678 				return -1;
2679 		}
2680 	}
2681 	return 0;
2682 }
2683 
2684 /*
2685  * Look for entries in the other hists that are not present in the leader, if
2686  * we find them, just add a dummy entry on the leader hists, with period=0,
2687  * nr_events=0, to serve as the list header.
2688  */
2689 int hists__link(struct hists *leader, struct hists *other)
2690 {
2691 	struct rb_root_cached *root;
2692 	struct rb_node *nd;
2693 	struct hist_entry *pos, *pair;
2694 
2695 	if (symbol_conf.report_hierarchy) {
2696 		/* hierarchy report always collapses entries */
2697 		return hists__link_hierarchy(leader, NULL,
2698 					     &leader->entries_collapsed,
2699 					     &other->entries_collapsed);
2700 	}
2701 
2702 	if (hists__has(other, need_collapse))
2703 		root = &other->entries_collapsed;
2704 	else
2705 		root = other->entries_in;
2706 
2707 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2708 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2709 
2710 		if (!hist_entry__has_pairs(pos)) {
2711 			pair = hists__add_dummy_entry(leader, pos);
2712 			if (pair == NULL)
2713 				return -1;
2714 			hist_entry__add_pair(pos, pair);
2715 		}
2716 	}
2717 
2718 	return 0;
2719 }
2720 
2721 int hists__unlink(struct hists *hists)
2722 {
2723 	struct rb_root_cached *root;
2724 	struct rb_node *nd;
2725 	struct hist_entry *pos;
2726 
2727 	if (hists__has(hists, need_collapse))
2728 		root = &hists->entries_collapsed;
2729 	else
2730 		root = hists->entries_in;
2731 
2732 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2733 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2734 		list_del_init(&pos->pairs.node);
2735 	}
2736 
2737 	return 0;
2738 }
2739 
2740 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2741 			  struct perf_sample *sample, bool nonany_branch_mode,
2742 			  u64 *total_cycles, struct evsel *evsel)
2743 {
2744 	struct branch_info *bi;
2745 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2746 
2747 	/* If we have branch cycles always annotate them. */
2748 	if (bs && bs->nr && entries[0].flags.cycles) {
2749 		bi = sample__resolve_bstack(sample, al);
2750 		if (bi) {
2751 			struct addr_map_symbol *prev = NULL;
2752 
2753 			/*
2754 			 * Ignore errors, still want to process the
2755 			 * other entries.
2756 			 *
2757 			 * For non standard branch modes always
2758 			 * force no IPC (prev == NULL)
2759 			 *
2760 			 * Note that perf stores branches reversed from
2761 			 * program order!
2762 			 */
2763 			for (int i = bs->nr - 1; i >= 0; i--) {
2764 				addr_map_symbol__account_cycles(&bi[i].from,
2765 					nonany_branch_mode ? NULL : prev,
2766 					bi[i].flags.cycles, evsel,
2767 					bi[i].branch_stack_cntr);
2768 				prev = &bi[i].to;
2769 
2770 				if (total_cycles)
2771 					*total_cycles += bi[i].flags.cycles;
2772 			}
2773 			for (unsigned int i = 0; i < bs->nr; i++) {
2774 				map_symbol__exit(&bi[i].to.ms);
2775 				map_symbol__exit(&bi[i].from.ms);
2776 			}
2777 			free(bi);
2778 		}
2779 	}
2780 }
2781 
2782 size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp)
2783 {
2784 	struct evsel *pos;
2785 	size_t ret = 0;
2786 
2787 	evlist__for_each_entry(evlist, pos) {
2788 		struct hists *hists = evsel__hists(pos);
2789 		u64 total_samples = hists->stats.nr_samples;
2790 
2791 		total_samples += hists->stats.nr_lost_samples;
2792 		total_samples += hists->stats.nr_dropped_samples;
2793 
2794 		if (symbol_conf.skip_empty && total_samples == 0)
2795 			continue;
2796 
2797 		ret += fprintf(fp, "%s stats:\n", evsel__name(pos));
2798 		if (hists->stats.nr_samples)
2799 			ret += fprintf(fp, "%20s events: %10d\n",
2800 				       "SAMPLE", hists->stats.nr_samples);
2801 		if (hists->stats.nr_lost_samples)
2802 			ret += fprintf(fp, "%20s events: %10d\n",
2803 				       "LOST_SAMPLES", hists->stats.nr_lost_samples);
2804 		if (hists->stats.nr_dropped_samples)
2805 			ret += fprintf(fp, "%20s events: %10d\n",
2806 				       "LOST_SAMPLES (BPF)", hists->stats.nr_dropped_samples);
2807 	}
2808 
2809 	return ret;
2810 }
2811 
2812 
2813 u64 hists__total_period(struct hists *hists)
2814 {
2815 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2816 		hists->stats.total_period;
2817 }
2818 
2819 u64 hists__total_latency(struct hists *hists)
2820 {
2821 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_latency :
2822 		hists->stats.total_latency;
2823 }
2824 
2825 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2826 {
2827 	char unit;
2828 	int printed;
2829 	const struct dso *dso = hists->dso_filter;
2830 	struct thread *thread = hists->thread_filter;
2831 	int socket_id = hists->socket_filter;
2832 	unsigned long nr_samples = hists->stats.nr_samples;
2833 	u64 nr_events = hists->stats.total_period;
2834 	struct evsel *evsel = hists_to_evsel(hists);
2835 	const char *ev_name = evsel__name(evsel);
2836 	char buf[512], sample_freq_str[64] = "";
2837 	size_t buflen = sizeof(buf);
2838 	char ref[30] = " show reference callgraph, ";
2839 	bool enable_ref = false;
2840 
2841 	if (symbol_conf.filter_relative) {
2842 		nr_samples = hists->stats.nr_non_filtered_samples;
2843 		nr_events = hists->stats.total_non_filtered_period;
2844 	}
2845 
2846 	if (evsel__is_group_event(evsel)) {
2847 		struct evsel *pos;
2848 
2849 		evsel__group_desc(evsel, buf, buflen);
2850 		ev_name = buf;
2851 
2852 		for_each_group_member(pos, evsel) {
2853 			struct hists *pos_hists = evsel__hists(pos);
2854 
2855 			if (symbol_conf.filter_relative) {
2856 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2857 				nr_events += pos_hists->stats.total_non_filtered_period;
2858 			} else {
2859 				nr_samples += pos_hists->stats.nr_samples;
2860 				nr_events += pos_hists->stats.total_period;
2861 			}
2862 		}
2863 	}
2864 
2865 	if (symbol_conf.show_ref_callgraph &&
2866 	    strstr(ev_name, "call-graph=no"))
2867 		enable_ref = true;
2868 
2869 	if (show_freq)
2870 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2871 
2872 	nr_samples = convert_unit(nr_samples, &unit);
2873 	printed = scnprintf(bf, size,
2874 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2875 			   nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2876 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2877 
2878 
2879 	if (hists->uid_filter_str)
2880 		printed += snprintf(bf + printed, size - printed,
2881 				    ", UID: %s", hists->uid_filter_str);
2882 	if (thread) {
2883 		if (hists__has(hists, thread)) {
2884 			printed += scnprintf(bf + printed, size - printed,
2885 				    ", Thread: %s(%d)",
2886 				    (thread__comm_set(thread) ? thread__comm_str(thread) : ""),
2887 					thread__tid(thread));
2888 		} else {
2889 			printed += scnprintf(bf + printed, size - printed,
2890 				    ", Thread: %s",
2891 				    (thread__comm_set(thread) ? thread__comm_str(thread) : ""));
2892 		}
2893 	}
2894 	if (dso)
2895 		printed += scnprintf(bf + printed, size - printed,
2896 				     ", DSO: %s", dso__short_name(dso));
2897 	if (socket_id > -1)
2898 		printed += scnprintf(bf + printed, size - printed,
2899 				    ", Processor Socket: %d", socket_id);
2900 
2901 	return printed;
2902 }
2903 
2904 int parse_filter_percentage(const struct option *opt __maybe_unused,
2905 			    const char *arg, int unset __maybe_unused)
2906 {
2907 	if (!strcmp(arg, "relative"))
2908 		symbol_conf.filter_relative = true;
2909 	else if (!strcmp(arg, "absolute"))
2910 		symbol_conf.filter_relative = false;
2911 	else {
2912 		pr_debug("Invalid percentage: %s\n", arg);
2913 		return -1;
2914 	}
2915 
2916 	return 0;
2917 }
2918 
2919 int perf_hist_config(const char *var, const char *value)
2920 {
2921 	if (!strcmp(var, "hist.percentage"))
2922 		return parse_filter_percentage(NULL, value, 0);
2923 
2924 	return 0;
2925 }
2926 
2927 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2928 {
2929 	memset(hists, 0, sizeof(*hists));
2930 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2931 	hists->entries_in = &hists->entries_in_array[0];
2932 	hists->entries_collapsed = RB_ROOT_CACHED;
2933 	hists->entries = RB_ROOT_CACHED;
2934 	mutex_init(&hists->lock);
2935 	hists->socket_filter = -1;
2936 	hists->parallelism_filter = symbol_conf.parallelism_filter;
2937 	hists->hpp_list = hpp_list;
2938 	INIT_LIST_HEAD(&hists->hpp_formats);
2939 	return 0;
2940 }
2941 
2942 static void hists__delete_remaining_entries(struct rb_root_cached *root)
2943 {
2944 	struct rb_node *node;
2945 	struct hist_entry *he;
2946 
2947 	while (!RB_EMPTY_ROOT(&root->rb_root)) {
2948 		node = rb_first_cached(root);
2949 		rb_erase_cached(node, root);
2950 
2951 		he = rb_entry(node, struct hist_entry, rb_node_in);
2952 		hist_entry__delete(he);
2953 	}
2954 }
2955 
2956 static void hists__delete_all_entries(struct hists *hists)
2957 {
2958 	hists__delete_entries(hists);
2959 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2960 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2961 	hists__delete_remaining_entries(&hists->entries_collapsed);
2962 }
2963 
2964 static void hists_evsel__exit(struct evsel *evsel)
2965 {
2966 	struct hists *hists = evsel__hists(evsel);
2967 	struct perf_hpp_fmt *fmt, *pos;
2968 	struct perf_hpp_list_node *node, *tmp;
2969 
2970 	hists__delete_all_entries(hists);
2971 
2972 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2973 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2974 			list_del_init(&fmt->list);
2975 			free(fmt);
2976 		}
2977 		list_del_init(&node->list);
2978 		free(node);
2979 	}
2980 }
2981 
2982 static int hists_evsel__init(struct evsel *evsel)
2983 {
2984 	struct hists *hists = evsel__hists(evsel);
2985 
2986 	__hists__init(hists, &perf_hpp_list);
2987 	return 0;
2988 }
2989 
2990 /*
2991  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2992  * stored in the rbtree...
2993  */
2994 
2995 int hists__init(void)
2996 {
2997 	int err = evsel__object_config(sizeof(struct hists_evsel),
2998 				       hists_evsel__init, hists_evsel__exit);
2999 	if (err)
3000 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
3001 
3002 	return err;
3003 }
3004 
3005 void perf_hpp_list__init(struct perf_hpp_list *list)
3006 {
3007 	INIT_LIST_HEAD(&list->fields);
3008 	INIT_LIST_HEAD(&list->sorts);
3009 }
3010