1 #include "util.h" 2 #include "build-id.h" 3 #include "hist.h" 4 #include "session.h" 5 #include "sort.h" 6 #include "evlist.h" 7 #include "evsel.h" 8 #include "annotate.h" 9 #include "ui/progress.h" 10 #include <math.h> 11 12 static bool hists__filter_entry_by_dso(struct hists *hists, 13 struct hist_entry *he); 14 static bool hists__filter_entry_by_thread(struct hists *hists, 15 struct hist_entry *he); 16 static bool hists__filter_entry_by_symbol(struct hists *hists, 17 struct hist_entry *he); 18 static bool hists__filter_entry_by_socket(struct hists *hists, 19 struct hist_entry *he); 20 21 u16 hists__col_len(struct hists *hists, enum hist_column col) 22 { 23 return hists->col_len[col]; 24 } 25 26 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 27 { 28 hists->col_len[col] = len; 29 } 30 31 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 32 { 33 if (len > hists__col_len(hists, col)) { 34 hists__set_col_len(hists, col, len); 35 return true; 36 } 37 return false; 38 } 39 40 void hists__reset_col_len(struct hists *hists) 41 { 42 enum hist_column col; 43 44 for (col = 0; col < HISTC_NR_COLS; ++col) 45 hists__set_col_len(hists, col, 0); 46 } 47 48 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 49 { 50 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 51 52 if (hists__col_len(hists, dso) < unresolved_col_width && 53 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 54 !symbol_conf.dso_list) 55 hists__set_col_len(hists, dso, unresolved_col_width); 56 } 57 58 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 59 { 60 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 61 int symlen; 62 u16 len; 63 64 /* 65 * +4 accounts for '[x] ' priv level info 66 * +2 accounts for 0x prefix on raw addresses 67 * +3 accounts for ' y ' symtab origin info 68 */ 69 if (h->ms.sym) { 70 symlen = h->ms.sym->namelen + 4; 71 if (verbose) 72 symlen += BITS_PER_LONG / 4 + 2 + 3; 73 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 74 } else { 75 symlen = unresolved_col_width + 4 + 2; 76 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 77 hists__set_unres_dso_col_len(hists, HISTC_DSO); 78 } 79 80 len = thread__comm_len(h->thread); 81 if (hists__new_col_len(hists, HISTC_COMM, len)) 82 hists__set_col_len(hists, HISTC_THREAD, len + 8); 83 84 if (h->ms.map) { 85 len = dso__name_len(h->ms.map->dso); 86 hists__new_col_len(hists, HISTC_DSO, len); 87 } 88 89 if (h->parent) 90 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 91 92 if (h->branch_info) { 93 if (h->branch_info->from.sym) { 94 symlen = (int)h->branch_info->from.sym->namelen + 4; 95 if (verbose) 96 symlen += BITS_PER_LONG / 4 + 2 + 3; 97 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 98 99 symlen = dso__name_len(h->branch_info->from.map->dso); 100 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 101 } else { 102 symlen = unresolved_col_width + 4 + 2; 103 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 104 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 105 } 106 107 if (h->branch_info->to.sym) { 108 symlen = (int)h->branch_info->to.sym->namelen + 4; 109 if (verbose) 110 symlen += BITS_PER_LONG / 4 + 2 + 3; 111 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 112 113 symlen = dso__name_len(h->branch_info->to.map->dso); 114 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 115 } else { 116 symlen = unresolved_col_width + 4 + 2; 117 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 118 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 119 } 120 121 if (h->branch_info->srcline_from) 122 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 123 strlen(h->branch_info->srcline_from)); 124 if (h->branch_info->srcline_to) 125 hists__new_col_len(hists, HISTC_SRCLINE_TO, 126 strlen(h->branch_info->srcline_to)); 127 } 128 129 if (h->mem_info) { 130 if (h->mem_info->daddr.sym) { 131 symlen = (int)h->mem_info->daddr.sym->namelen + 4 132 + unresolved_col_width + 2; 133 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 134 symlen); 135 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 136 symlen + 1); 137 } else { 138 symlen = unresolved_col_width + 4 + 2; 139 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 140 symlen); 141 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 142 symlen); 143 } 144 145 if (h->mem_info->iaddr.sym) { 146 symlen = (int)h->mem_info->iaddr.sym->namelen + 4 147 + unresolved_col_width + 2; 148 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 149 symlen); 150 } else { 151 symlen = unresolved_col_width + 4 + 2; 152 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 153 symlen); 154 } 155 156 if (h->mem_info->daddr.map) { 157 symlen = dso__name_len(h->mem_info->daddr.map->dso); 158 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 159 symlen); 160 } else { 161 symlen = unresolved_col_width + 4 + 2; 162 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 163 } 164 } else { 165 symlen = unresolved_col_width + 4 + 2; 166 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 167 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 168 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 169 } 170 171 hists__new_col_len(hists, HISTC_CPU, 3); 172 hists__new_col_len(hists, HISTC_SOCKET, 6); 173 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 174 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 175 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 176 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3); 177 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 178 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 179 180 if (h->srcline) { 181 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header)); 182 hists__new_col_len(hists, HISTC_SRCLINE, len); 183 } 184 185 if (h->srcfile) 186 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 187 188 if (h->transaction) 189 hists__new_col_len(hists, HISTC_TRANSACTION, 190 hist_entry__transaction_len()); 191 192 if (h->trace_output) 193 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 194 } 195 196 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 197 { 198 struct rb_node *next = rb_first(&hists->entries); 199 struct hist_entry *n; 200 int row = 0; 201 202 hists__reset_col_len(hists); 203 204 while (next && row++ < max_rows) { 205 n = rb_entry(next, struct hist_entry, rb_node); 206 if (!n->filtered) 207 hists__calc_col_len(hists, n); 208 next = rb_next(&n->rb_node); 209 } 210 } 211 212 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 213 unsigned int cpumode, u64 period) 214 { 215 switch (cpumode) { 216 case PERF_RECORD_MISC_KERNEL: 217 he_stat->period_sys += period; 218 break; 219 case PERF_RECORD_MISC_USER: 220 he_stat->period_us += period; 221 break; 222 case PERF_RECORD_MISC_GUEST_KERNEL: 223 he_stat->period_guest_sys += period; 224 break; 225 case PERF_RECORD_MISC_GUEST_USER: 226 he_stat->period_guest_us += period; 227 break; 228 default: 229 break; 230 } 231 } 232 233 static void he_stat__add_period(struct he_stat *he_stat, u64 period, 234 u64 weight) 235 { 236 237 he_stat->period += period; 238 he_stat->weight += weight; 239 he_stat->nr_events += 1; 240 } 241 242 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 243 { 244 dest->period += src->period; 245 dest->period_sys += src->period_sys; 246 dest->period_us += src->period_us; 247 dest->period_guest_sys += src->period_guest_sys; 248 dest->period_guest_us += src->period_guest_us; 249 dest->nr_events += src->nr_events; 250 dest->weight += src->weight; 251 } 252 253 static void he_stat__decay(struct he_stat *he_stat) 254 { 255 he_stat->period = (he_stat->period * 7) / 8; 256 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 257 /* XXX need decay for weight too? */ 258 } 259 260 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 261 262 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 263 { 264 u64 prev_period = he->stat.period; 265 u64 diff; 266 267 if (prev_period == 0) 268 return true; 269 270 he_stat__decay(&he->stat); 271 if (symbol_conf.cumulate_callchain) 272 he_stat__decay(he->stat_acc); 273 decay_callchain(he->callchain); 274 275 diff = prev_period - he->stat.period; 276 277 if (!he->depth) { 278 hists->stats.total_period -= diff; 279 if (!he->filtered) 280 hists->stats.total_non_filtered_period -= diff; 281 } 282 283 if (!he->leaf) { 284 struct hist_entry *child; 285 struct rb_node *node = rb_first(&he->hroot_out); 286 while (node) { 287 child = rb_entry(node, struct hist_entry, rb_node); 288 node = rb_next(node); 289 290 if (hists__decay_entry(hists, child)) 291 hists__delete_entry(hists, child); 292 } 293 } 294 295 return he->stat.period == 0; 296 } 297 298 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 299 { 300 struct rb_root *root_in; 301 struct rb_root *root_out; 302 303 if (he->parent_he) { 304 root_in = &he->parent_he->hroot_in; 305 root_out = &he->parent_he->hroot_out; 306 } else { 307 if (hists__has(hists, need_collapse)) 308 root_in = &hists->entries_collapsed; 309 else 310 root_in = hists->entries_in; 311 root_out = &hists->entries; 312 } 313 314 rb_erase(&he->rb_node_in, root_in); 315 rb_erase(&he->rb_node, root_out); 316 317 --hists->nr_entries; 318 if (!he->filtered) 319 --hists->nr_non_filtered_entries; 320 321 hist_entry__delete(he); 322 } 323 324 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 325 { 326 struct rb_node *next = rb_first(&hists->entries); 327 struct hist_entry *n; 328 329 while (next) { 330 n = rb_entry(next, struct hist_entry, rb_node); 331 next = rb_next(&n->rb_node); 332 if (((zap_user && n->level == '.') || 333 (zap_kernel && n->level != '.') || 334 hists__decay_entry(hists, n))) { 335 hists__delete_entry(hists, n); 336 } 337 } 338 } 339 340 void hists__delete_entries(struct hists *hists) 341 { 342 struct rb_node *next = rb_first(&hists->entries); 343 struct hist_entry *n; 344 345 while (next) { 346 n = rb_entry(next, struct hist_entry, rb_node); 347 next = rb_next(&n->rb_node); 348 349 hists__delete_entry(hists, n); 350 } 351 } 352 353 /* 354 * histogram, sorted on item, collects periods 355 */ 356 357 static int hist_entry__init(struct hist_entry *he, 358 struct hist_entry *template, 359 bool sample_self) 360 { 361 *he = *template; 362 363 if (symbol_conf.cumulate_callchain) { 364 he->stat_acc = malloc(sizeof(he->stat)); 365 if (he->stat_acc == NULL) 366 return -ENOMEM; 367 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 368 if (!sample_self) 369 memset(&he->stat, 0, sizeof(he->stat)); 370 } 371 372 map__get(he->ms.map); 373 374 if (he->branch_info) { 375 /* 376 * This branch info is (a part of) allocated from 377 * sample__resolve_bstack() and will be freed after 378 * adding new entries. So we need to save a copy. 379 */ 380 he->branch_info = malloc(sizeof(*he->branch_info)); 381 if (he->branch_info == NULL) { 382 map__zput(he->ms.map); 383 free(he->stat_acc); 384 return -ENOMEM; 385 } 386 387 memcpy(he->branch_info, template->branch_info, 388 sizeof(*he->branch_info)); 389 390 map__get(he->branch_info->from.map); 391 map__get(he->branch_info->to.map); 392 } 393 394 if (he->mem_info) { 395 map__get(he->mem_info->iaddr.map); 396 map__get(he->mem_info->daddr.map); 397 } 398 399 if (symbol_conf.use_callchain) 400 callchain_init(he->callchain); 401 402 if (he->raw_data) { 403 he->raw_data = memdup(he->raw_data, he->raw_size); 404 405 if (he->raw_data == NULL) { 406 map__put(he->ms.map); 407 if (he->branch_info) { 408 map__put(he->branch_info->from.map); 409 map__put(he->branch_info->to.map); 410 free(he->branch_info); 411 } 412 if (he->mem_info) { 413 map__put(he->mem_info->iaddr.map); 414 map__put(he->mem_info->daddr.map); 415 } 416 free(he->stat_acc); 417 return -ENOMEM; 418 } 419 } 420 INIT_LIST_HEAD(&he->pairs.node); 421 thread__get(he->thread); 422 he->hroot_in = RB_ROOT; 423 he->hroot_out = RB_ROOT; 424 425 if (!symbol_conf.report_hierarchy) 426 he->leaf = true; 427 428 return 0; 429 } 430 431 static void *hist_entry__zalloc(size_t size) 432 { 433 return zalloc(size + sizeof(struct hist_entry)); 434 } 435 436 static void hist_entry__free(void *ptr) 437 { 438 free(ptr); 439 } 440 441 static struct hist_entry_ops default_ops = { 442 .new = hist_entry__zalloc, 443 .free = hist_entry__free, 444 }; 445 446 static struct hist_entry *hist_entry__new(struct hist_entry *template, 447 bool sample_self) 448 { 449 struct hist_entry_ops *ops = template->ops; 450 size_t callchain_size = 0; 451 struct hist_entry *he; 452 int err = 0; 453 454 if (!ops) 455 ops = template->ops = &default_ops; 456 457 if (symbol_conf.use_callchain) 458 callchain_size = sizeof(struct callchain_root); 459 460 he = ops->new(callchain_size); 461 if (he) { 462 err = hist_entry__init(he, template, sample_self); 463 if (err) { 464 ops->free(he); 465 he = NULL; 466 } 467 } 468 469 return he; 470 } 471 472 static u8 symbol__parent_filter(const struct symbol *parent) 473 { 474 if (symbol_conf.exclude_other && parent == NULL) 475 return 1 << HIST_FILTER__PARENT; 476 return 0; 477 } 478 479 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 480 { 481 if (!symbol_conf.use_callchain) 482 return; 483 484 he->hists->callchain_period += period; 485 if (!he->filtered) 486 he->hists->callchain_non_filtered_period += period; 487 } 488 489 static struct hist_entry *hists__findnew_entry(struct hists *hists, 490 struct hist_entry *entry, 491 struct addr_location *al, 492 bool sample_self) 493 { 494 struct rb_node **p; 495 struct rb_node *parent = NULL; 496 struct hist_entry *he; 497 int64_t cmp; 498 u64 period = entry->stat.period; 499 u64 weight = entry->stat.weight; 500 501 p = &hists->entries_in->rb_node; 502 503 while (*p != NULL) { 504 parent = *p; 505 he = rb_entry(parent, struct hist_entry, rb_node_in); 506 507 /* 508 * Make sure that it receives arguments in a same order as 509 * hist_entry__collapse() so that we can use an appropriate 510 * function when searching an entry regardless which sort 511 * keys were used. 512 */ 513 cmp = hist_entry__cmp(he, entry); 514 515 if (!cmp) { 516 if (sample_self) { 517 he_stat__add_period(&he->stat, period, weight); 518 hist_entry__add_callchain_period(he, period); 519 } 520 if (symbol_conf.cumulate_callchain) 521 he_stat__add_period(he->stat_acc, period, weight); 522 523 /* 524 * This mem info was allocated from sample__resolve_mem 525 * and will not be used anymore. 526 */ 527 zfree(&entry->mem_info); 528 529 /* If the map of an existing hist_entry has 530 * become out-of-date due to an exec() or 531 * similar, update it. Otherwise we will 532 * mis-adjust symbol addresses when computing 533 * the history counter to increment. 534 */ 535 if (he->ms.map != entry->ms.map) { 536 map__put(he->ms.map); 537 he->ms.map = map__get(entry->ms.map); 538 } 539 goto out; 540 } 541 542 if (cmp < 0) 543 p = &(*p)->rb_left; 544 else 545 p = &(*p)->rb_right; 546 } 547 548 he = hist_entry__new(entry, sample_self); 549 if (!he) 550 return NULL; 551 552 if (sample_self) 553 hist_entry__add_callchain_period(he, period); 554 hists->nr_entries++; 555 556 rb_link_node(&he->rb_node_in, parent, p); 557 rb_insert_color(&he->rb_node_in, hists->entries_in); 558 out: 559 if (sample_self) 560 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 561 if (symbol_conf.cumulate_callchain) 562 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 563 return he; 564 } 565 566 static struct hist_entry* 567 __hists__add_entry(struct hists *hists, 568 struct addr_location *al, 569 struct symbol *sym_parent, 570 struct branch_info *bi, 571 struct mem_info *mi, 572 struct perf_sample *sample, 573 bool sample_self, 574 struct hist_entry_ops *ops) 575 { 576 struct hist_entry entry = { 577 .thread = al->thread, 578 .comm = thread__comm(al->thread), 579 .ms = { 580 .map = al->map, 581 .sym = al->sym, 582 }, 583 .socket = al->socket, 584 .cpu = al->cpu, 585 .cpumode = al->cpumode, 586 .ip = al->addr, 587 .level = al->level, 588 .stat = { 589 .nr_events = 1, 590 .period = sample->period, 591 .weight = sample->weight, 592 }, 593 .parent = sym_parent, 594 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 595 .hists = hists, 596 .branch_info = bi, 597 .mem_info = mi, 598 .transaction = sample->transaction, 599 .raw_data = sample->raw_data, 600 .raw_size = sample->raw_size, 601 .ops = ops, 602 }; 603 604 return hists__findnew_entry(hists, &entry, al, sample_self); 605 } 606 607 struct hist_entry *hists__add_entry(struct hists *hists, 608 struct addr_location *al, 609 struct symbol *sym_parent, 610 struct branch_info *bi, 611 struct mem_info *mi, 612 struct perf_sample *sample, 613 bool sample_self) 614 { 615 return __hists__add_entry(hists, al, sym_parent, bi, mi, 616 sample, sample_self, NULL); 617 } 618 619 struct hist_entry *hists__add_entry_ops(struct hists *hists, 620 struct hist_entry_ops *ops, 621 struct addr_location *al, 622 struct symbol *sym_parent, 623 struct branch_info *bi, 624 struct mem_info *mi, 625 struct perf_sample *sample, 626 bool sample_self) 627 { 628 return __hists__add_entry(hists, al, sym_parent, bi, mi, 629 sample, sample_self, ops); 630 } 631 632 static int 633 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 634 struct addr_location *al __maybe_unused) 635 { 636 return 0; 637 } 638 639 static int 640 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 641 struct addr_location *al __maybe_unused) 642 { 643 return 0; 644 } 645 646 static int 647 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 648 { 649 struct perf_sample *sample = iter->sample; 650 struct mem_info *mi; 651 652 mi = sample__resolve_mem(sample, al); 653 if (mi == NULL) 654 return -ENOMEM; 655 656 iter->priv = mi; 657 return 0; 658 } 659 660 static int 661 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 662 { 663 u64 cost; 664 struct mem_info *mi = iter->priv; 665 struct hists *hists = evsel__hists(iter->evsel); 666 struct perf_sample *sample = iter->sample; 667 struct hist_entry *he; 668 669 if (mi == NULL) 670 return -EINVAL; 671 672 cost = sample->weight; 673 if (!cost) 674 cost = 1; 675 676 /* 677 * must pass period=weight in order to get the correct 678 * sorting from hists__collapse_resort() which is solely 679 * based on periods. We want sorting be done on nr_events * weight 680 * and this is indirectly achieved by passing period=weight here 681 * and the he_stat__add_period() function. 682 */ 683 sample->period = cost; 684 685 he = hists__add_entry(hists, al, iter->parent, NULL, mi, 686 sample, true); 687 if (!he) 688 return -ENOMEM; 689 690 iter->he = he; 691 return 0; 692 } 693 694 static int 695 iter_finish_mem_entry(struct hist_entry_iter *iter, 696 struct addr_location *al __maybe_unused) 697 { 698 struct perf_evsel *evsel = iter->evsel; 699 struct hists *hists = evsel__hists(evsel); 700 struct hist_entry *he = iter->he; 701 int err = -EINVAL; 702 703 if (he == NULL) 704 goto out; 705 706 hists__inc_nr_samples(hists, he->filtered); 707 708 err = hist_entry__append_callchain(he, iter->sample); 709 710 out: 711 /* 712 * We don't need to free iter->priv (mem_info) here since the mem info 713 * was either already freed in hists__findnew_entry() or passed to a 714 * new hist entry by hist_entry__new(). 715 */ 716 iter->priv = NULL; 717 718 iter->he = NULL; 719 return err; 720 } 721 722 static int 723 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 724 { 725 struct branch_info *bi; 726 struct perf_sample *sample = iter->sample; 727 728 bi = sample__resolve_bstack(sample, al); 729 if (!bi) 730 return -ENOMEM; 731 732 iter->curr = 0; 733 iter->total = sample->branch_stack->nr; 734 735 iter->priv = bi; 736 return 0; 737 } 738 739 static int 740 iter_add_single_branch_entry(struct hist_entry_iter *iter, 741 struct addr_location *al __maybe_unused) 742 { 743 /* to avoid calling callback function */ 744 iter->he = NULL; 745 746 return 0; 747 } 748 749 static int 750 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 751 { 752 struct branch_info *bi = iter->priv; 753 int i = iter->curr; 754 755 if (bi == NULL) 756 return 0; 757 758 if (iter->curr >= iter->total) 759 return 0; 760 761 al->map = bi[i].to.map; 762 al->sym = bi[i].to.sym; 763 al->addr = bi[i].to.addr; 764 return 1; 765 } 766 767 static int 768 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 769 { 770 struct branch_info *bi; 771 struct perf_evsel *evsel = iter->evsel; 772 struct hists *hists = evsel__hists(evsel); 773 struct perf_sample *sample = iter->sample; 774 struct hist_entry *he = NULL; 775 int i = iter->curr; 776 int err = 0; 777 778 bi = iter->priv; 779 780 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym)) 781 goto out; 782 783 /* 784 * The report shows the percentage of total branches captured 785 * and not events sampled. Thus we use a pseudo period of 1. 786 */ 787 sample->period = 1; 788 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 789 790 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, 791 sample, true); 792 if (he == NULL) 793 return -ENOMEM; 794 795 hists__inc_nr_samples(hists, he->filtered); 796 797 out: 798 iter->he = he; 799 iter->curr++; 800 return err; 801 } 802 803 static int 804 iter_finish_branch_entry(struct hist_entry_iter *iter, 805 struct addr_location *al __maybe_unused) 806 { 807 zfree(&iter->priv); 808 iter->he = NULL; 809 810 return iter->curr >= iter->total ? 0 : -1; 811 } 812 813 static int 814 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 815 struct addr_location *al __maybe_unused) 816 { 817 return 0; 818 } 819 820 static int 821 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 822 { 823 struct perf_evsel *evsel = iter->evsel; 824 struct perf_sample *sample = iter->sample; 825 struct hist_entry *he; 826 827 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 828 sample, true); 829 if (he == NULL) 830 return -ENOMEM; 831 832 iter->he = he; 833 return 0; 834 } 835 836 static int 837 iter_finish_normal_entry(struct hist_entry_iter *iter, 838 struct addr_location *al __maybe_unused) 839 { 840 struct hist_entry *he = iter->he; 841 struct perf_evsel *evsel = iter->evsel; 842 struct perf_sample *sample = iter->sample; 843 844 if (he == NULL) 845 return 0; 846 847 iter->he = NULL; 848 849 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 850 851 return hist_entry__append_callchain(he, sample); 852 } 853 854 static int 855 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 856 struct addr_location *al __maybe_unused) 857 { 858 struct hist_entry **he_cache; 859 860 callchain_cursor_commit(&callchain_cursor); 861 862 /* 863 * This is for detecting cycles or recursions so that they're 864 * cumulated only one time to prevent entries more than 100% 865 * overhead. 866 */ 867 he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1)); 868 if (he_cache == NULL) 869 return -ENOMEM; 870 871 iter->priv = he_cache; 872 iter->curr = 0; 873 874 return 0; 875 } 876 877 static int 878 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 879 struct addr_location *al) 880 { 881 struct perf_evsel *evsel = iter->evsel; 882 struct hists *hists = evsel__hists(evsel); 883 struct perf_sample *sample = iter->sample; 884 struct hist_entry **he_cache = iter->priv; 885 struct hist_entry *he; 886 int err = 0; 887 888 he = hists__add_entry(hists, al, iter->parent, NULL, NULL, 889 sample, true); 890 if (he == NULL) 891 return -ENOMEM; 892 893 iter->he = he; 894 he_cache[iter->curr++] = he; 895 896 hist_entry__append_callchain(he, sample); 897 898 /* 899 * We need to re-initialize the cursor since callchain_append() 900 * advanced the cursor to the end. 901 */ 902 callchain_cursor_commit(&callchain_cursor); 903 904 hists__inc_nr_samples(hists, he->filtered); 905 906 return err; 907 } 908 909 static int 910 iter_next_cumulative_entry(struct hist_entry_iter *iter, 911 struct addr_location *al) 912 { 913 struct callchain_cursor_node *node; 914 915 node = callchain_cursor_current(&callchain_cursor); 916 if (node == NULL) 917 return 0; 918 919 return fill_callchain_info(al, node, iter->hide_unresolved); 920 } 921 922 static int 923 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 924 struct addr_location *al) 925 { 926 struct perf_evsel *evsel = iter->evsel; 927 struct perf_sample *sample = iter->sample; 928 struct hist_entry **he_cache = iter->priv; 929 struct hist_entry *he; 930 struct hist_entry he_tmp = { 931 .hists = evsel__hists(evsel), 932 .cpu = al->cpu, 933 .thread = al->thread, 934 .comm = thread__comm(al->thread), 935 .ip = al->addr, 936 .ms = { 937 .map = al->map, 938 .sym = al->sym, 939 }, 940 .parent = iter->parent, 941 .raw_data = sample->raw_data, 942 .raw_size = sample->raw_size, 943 }; 944 int i; 945 struct callchain_cursor cursor; 946 947 callchain_cursor_snapshot(&cursor, &callchain_cursor); 948 949 callchain_cursor_advance(&callchain_cursor); 950 951 /* 952 * Check if there's duplicate entries in the callchain. 953 * It's possible that it has cycles or recursive calls. 954 */ 955 for (i = 0; i < iter->curr; i++) { 956 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 957 /* to avoid calling callback function */ 958 iter->he = NULL; 959 return 0; 960 } 961 } 962 963 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 964 sample, false); 965 if (he == NULL) 966 return -ENOMEM; 967 968 iter->he = he; 969 he_cache[iter->curr++] = he; 970 971 if (symbol_conf.use_callchain) 972 callchain_append(he->callchain, &cursor, sample->period); 973 return 0; 974 } 975 976 static int 977 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 978 struct addr_location *al __maybe_unused) 979 { 980 zfree(&iter->priv); 981 iter->he = NULL; 982 983 return 0; 984 } 985 986 const struct hist_iter_ops hist_iter_mem = { 987 .prepare_entry = iter_prepare_mem_entry, 988 .add_single_entry = iter_add_single_mem_entry, 989 .next_entry = iter_next_nop_entry, 990 .add_next_entry = iter_add_next_nop_entry, 991 .finish_entry = iter_finish_mem_entry, 992 }; 993 994 const struct hist_iter_ops hist_iter_branch = { 995 .prepare_entry = iter_prepare_branch_entry, 996 .add_single_entry = iter_add_single_branch_entry, 997 .next_entry = iter_next_branch_entry, 998 .add_next_entry = iter_add_next_branch_entry, 999 .finish_entry = iter_finish_branch_entry, 1000 }; 1001 1002 const struct hist_iter_ops hist_iter_normal = { 1003 .prepare_entry = iter_prepare_normal_entry, 1004 .add_single_entry = iter_add_single_normal_entry, 1005 .next_entry = iter_next_nop_entry, 1006 .add_next_entry = iter_add_next_nop_entry, 1007 .finish_entry = iter_finish_normal_entry, 1008 }; 1009 1010 const struct hist_iter_ops hist_iter_cumulative = { 1011 .prepare_entry = iter_prepare_cumulative_entry, 1012 .add_single_entry = iter_add_single_cumulative_entry, 1013 .next_entry = iter_next_cumulative_entry, 1014 .add_next_entry = iter_add_next_cumulative_entry, 1015 .finish_entry = iter_finish_cumulative_entry, 1016 }; 1017 1018 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1019 int max_stack_depth, void *arg) 1020 { 1021 int err, err2; 1022 1023 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, 1024 iter->evsel, al, max_stack_depth); 1025 if (err) 1026 return err; 1027 1028 iter->max_stack = max_stack_depth; 1029 1030 err = iter->ops->prepare_entry(iter, al); 1031 if (err) 1032 goto out; 1033 1034 err = iter->ops->add_single_entry(iter, al); 1035 if (err) 1036 goto out; 1037 1038 if (iter->he && iter->add_entry_cb) { 1039 err = iter->add_entry_cb(iter, al, true, arg); 1040 if (err) 1041 goto out; 1042 } 1043 1044 while (iter->ops->next_entry(iter, al)) { 1045 err = iter->ops->add_next_entry(iter, al); 1046 if (err) 1047 break; 1048 1049 if (iter->he && iter->add_entry_cb) { 1050 err = iter->add_entry_cb(iter, al, false, arg); 1051 if (err) 1052 goto out; 1053 } 1054 } 1055 1056 out: 1057 err2 = iter->ops->finish_entry(iter, al); 1058 if (!err) 1059 err = err2; 1060 1061 return err; 1062 } 1063 1064 int64_t 1065 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1066 { 1067 struct hists *hists = left->hists; 1068 struct perf_hpp_fmt *fmt; 1069 int64_t cmp = 0; 1070 1071 hists__for_each_sort_list(hists, fmt) { 1072 if (perf_hpp__is_dynamic_entry(fmt) && 1073 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1074 continue; 1075 1076 cmp = fmt->cmp(fmt, left, right); 1077 if (cmp) 1078 break; 1079 } 1080 1081 return cmp; 1082 } 1083 1084 int64_t 1085 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1086 { 1087 struct hists *hists = left->hists; 1088 struct perf_hpp_fmt *fmt; 1089 int64_t cmp = 0; 1090 1091 hists__for_each_sort_list(hists, fmt) { 1092 if (perf_hpp__is_dynamic_entry(fmt) && 1093 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1094 continue; 1095 1096 cmp = fmt->collapse(fmt, left, right); 1097 if (cmp) 1098 break; 1099 } 1100 1101 return cmp; 1102 } 1103 1104 void hist_entry__delete(struct hist_entry *he) 1105 { 1106 struct hist_entry_ops *ops = he->ops; 1107 1108 thread__zput(he->thread); 1109 map__zput(he->ms.map); 1110 1111 if (he->branch_info) { 1112 map__zput(he->branch_info->from.map); 1113 map__zput(he->branch_info->to.map); 1114 free_srcline(he->branch_info->srcline_from); 1115 free_srcline(he->branch_info->srcline_to); 1116 zfree(&he->branch_info); 1117 } 1118 1119 if (he->mem_info) { 1120 map__zput(he->mem_info->iaddr.map); 1121 map__zput(he->mem_info->daddr.map); 1122 zfree(&he->mem_info); 1123 } 1124 1125 zfree(&he->stat_acc); 1126 free_srcline(he->srcline); 1127 if (he->srcfile && he->srcfile[0]) 1128 free(he->srcfile); 1129 free_callchain(he->callchain); 1130 free(he->trace_output); 1131 free(he->raw_data); 1132 ops->free(he); 1133 } 1134 1135 /* 1136 * If this is not the last column, then we need to pad it according to the 1137 * pre-calculated max lenght for this column, otherwise don't bother adding 1138 * spaces because that would break viewing this with, for instance, 'less', 1139 * that would show tons of trailing spaces when a long C++ demangled method 1140 * names is sampled. 1141 */ 1142 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1143 struct perf_hpp_fmt *fmt, int printed) 1144 { 1145 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1146 const int width = fmt->width(fmt, hpp, he->hists); 1147 if (printed < width) { 1148 advance_hpp(hpp, printed); 1149 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1150 } 1151 } 1152 1153 return printed; 1154 } 1155 1156 /* 1157 * collapse the histogram 1158 */ 1159 1160 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1161 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1162 enum hist_filter type); 1163 1164 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1165 1166 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1167 { 1168 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1169 } 1170 1171 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1172 enum hist_filter type, 1173 fmt_chk_fn check) 1174 { 1175 struct perf_hpp_fmt *fmt; 1176 bool type_match = false; 1177 struct hist_entry *parent = he->parent_he; 1178 1179 switch (type) { 1180 case HIST_FILTER__THREAD: 1181 if (symbol_conf.comm_list == NULL && 1182 symbol_conf.pid_list == NULL && 1183 symbol_conf.tid_list == NULL) 1184 return; 1185 break; 1186 case HIST_FILTER__DSO: 1187 if (symbol_conf.dso_list == NULL) 1188 return; 1189 break; 1190 case HIST_FILTER__SYMBOL: 1191 if (symbol_conf.sym_list == NULL) 1192 return; 1193 break; 1194 case HIST_FILTER__PARENT: 1195 case HIST_FILTER__GUEST: 1196 case HIST_FILTER__HOST: 1197 case HIST_FILTER__SOCKET: 1198 default: 1199 return; 1200 } 1201 1202 /* if it's filtered by own fmt, it has to have filter bits */ 1203 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1204 if (check(fmt)) { 1205 type_match = true; 1206 break; 1207 } 1208 } 1209 1210 if (type_match) { 1211 /* 1212 * If the filter is for current level entry, propagate 1213 * filter marker to parents. The marker bit was 1214 * already set by default so it only needs to clear 1215 * non-filtered entries. 1216 */ 1217 if (!(he->filtered & (1 << type))) { 1218 while (parent) { 1219 parent->filtered &= ~(1 << type); 1220 parent = parent->parent_he; 1221 } 1222 } 1223 } else { 1224 /* 1225 * If current entry doesn't have matching formats, set 1226 * filter marker for upper level entries. it will be 1227 * cleared if its lower level entries is not filtered. 1228 * 1229 * For lower-level entries, it inherits parent's 1230 * filter bit so that lower level entries of a 1231 * non-filtered entry won't set the filter marker. 1232 */ 1233 if (parent == NULL) 1234 he->filtered |= (1 << type); 1235 else 1236 he->filtered |= (parent->filtered & (1 << type)); 1237 } 1238 } 1239 1240 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1241 { 1242 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1243 check_thread_entry); 1244 1245 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1246 perf_hpp__is_dso_entry); 1247 1248 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1249 perf_hpp__is_sym_entry); 1250 1251 hists__apply_filters(he->hists, he); 1252 } 1253 1254 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1255 struct rb_root *root, 1256 struct hist_entry *he, 1257 struct hist_entry *parent_he, 1258 struct perf_hpp_list *hpp_list) 1259 { 1260 struct rb_node **p = &root->rb_node; 1261 struct rb_node *parent = NULL; 1262 struct hist_entry *iter, *new; 1263 struct perf_hpp_fmt *fmt; 1264 int64_t cmp; 1265 1266 while (*p != NULL) { 1267 parent = *p; 1268 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1269 1270 cmp = 0; 1271 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1272 cmp = fmt->collapse(fmt, iter, he); 1273 if (cmp) 1274 break; 1275 } 1276 1277 if (!cmp) { 1278 he_stat__add_stat(&iter->stat, &he->stat); 1279 return iter; 1280 } 1281 1282 if (cmp < 0) 1283 p = &parent->rb_left; 1284 else 1285 p = &parent->rb_right; 1286 } 1287 1288 new = hist_entry__new(he, true); 1289 if (new == NULL) 1290 return NULL; 1291 1292 hists->nr_entries++; 1293 1294 /* save related format list for output */ 1295 new->hpp_list = hpp_list; 1296 new->parent_he = parent_he; 1297 1298 hist_entry__apply_hierarchy_filters(new); 1299 1300 /* some fields are now passed to 'new' */ 1301 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1302 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1303 he->trace_output = NULL; 1304 else 1305 new->trace_output = NULL; 1306 1307 if (perf_hpp__is_srcline_entry(fmt)) 1308 he->srcline = NULL; 1309 else 1310 new->srcline = NULL; 1311 1312 if (perf_hpp__is_srcfile_entry(fmt)) 1313 he->srcfile = NULL; 1314 else 1315 new->srcfile = NULL; 1316 } 1317 1318 rb_link_node(&new->rb_node_in, parent, p); 1319 rb_insert_color(&new->rb_node_in, root); 1320 return new; 1321 } 1322 1323 static int hists__hierarchy_insert_entry(struct hists *hists, 1324 struct rb_root *root, 1325 struct hist_entry *he) 1326 { 1327 struct perf_hpp_list_node *node; 1328 struct hist_entry *new_he = NULL; 1329 struct hist_entry *parent = NULL; 1330 int depth = 0; 1331 int ret = 0; 1332 1333 list_for_each_entry(node, &hists->hpp_formats, list) { 1334 /* skip period (overhead) and elided columns */ 1335 if (node->level == 0 || node->skip) 1336 continue; 1337 1338 /* insert copy of 'he' for each fmt into the hierarchy */ 1339 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1340 if (new_he == NULL) { 1341 ret = -1; 1342 break; 1343 } 1344 1345 root = &new_he->hroot_in; 1346 new_he->depth = depth++; 1347 parent = new_he; 1348 } 1349 1350 if (new_he) { 1351 new_he->leaf = true; 1352 1353 if (symbol_conf.use_callchain) { 1354 callchain_cursor_reset(&callchain_cursor); 1355 if (callchain_merge(&callchain_cursor, 1356 new_he->callchain, 1357 he->callchain) < 0) 1358 ret = -1; 1359 } 1360 } 1361 1362 /* 'he' is no longer used */ 1363 hist_entry__delete(he); 1364 1365 /* return 0 (or -1) since it already applied filters */ 1366 return ret; 1367 } 1368 1369 static int hists__collapse_insert_entry(struct hists *hists, 1370 struct rb_root *root, 1371 struct hist_entry *he) 1372 { 1373 struct rb_node **p = &root->rb_node; 1374 struct rb_node *parent = NULL; 1375 struct hist_entry *iter; 1376 int64_t cmp; 1377 1378 if (symbol_conf.report_hierarchy) 1379 return hists__hierarchy_insert_entry(hists, root, he); 1380 1381 while (*p != NULL) { 1382 parent = *p; 1383 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1384 1385 cmp = hist_entry__collapse(iter, he); 1386 1387 if (!cmp) { 1388 int ret = 0; 1389 1390 he_stat__add_stat(&iter->stat, &he->stat); 1391 if (symbol_conf.cumulate_callchain) 1392 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1393 1394 if (symbol_conf.use_callchain) { 1395 callchain_cursor_reset(&callchain_cursor); 1396 if (callchain_merge(&callchain_cursor, 1397 iter->callchain, 1398 he->callchain) < 0) 1399 ret = -1; 1400 } 1401 hist_entry__delete(he); 1402 return ret; 1403 } 1404 1405 if (cmp < 0) 1406 p = &(*p)->rb_left; 1407 else 1408 p = &(*p)->rb_right; 1409 } 1410 hists->nr_entries++; 1411 1412 rb_link_node(&he->rb_node_in, parent, p); 1413 rb_insert_color(&he->rb_node_in, root); 1414 return 1; 1415 } 1416 1417 struct rb_root *hists__get_rotate_entries_in(struct hists *hists) 1418 { 1419 struct rb_root *root; 1420 1421 pthread_mutex_lock(&hists->lock); 1422 1423 root = hists->entries_in; 1424 if (++hists->entries_in > &hists->entries_in_array[1]) 1425 hists->entries_in = &hists->entries_in_array[0]; 1426 1427 pthread_mutex_unlock(&hists->lock); 1428 1429 return root; 1430 } 1431 1432 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1433 { 1434 hists__filter_entry_by_dso(hists, he); 1435 hists__filter_entry_by_thread(hists, he); 1436 hists__filter_entry_by_symbol(hists, he); 1437 hists__filter_entry_by_socket(hists, he); 1438 } 1439 1440 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1441 { 1442 struct rb_root *root; 1443 struct rb_node *next; 1444 struct hist_entry *n; 1445 int ret; 1446 1447 if (!hists__has(hists, need_collapse)) 1448 return 0; 1449 1450 hists->nr_entries = 0; 1451 1452 root = hists__get_rotate_entries_in(hists); 1453 1454 next = rb_first(root); 1455 1456 while (next) { 1457 if (session_done()) 1458 break; 1459 n = rb_entry(next, struct hist_entry, rb_node_in); 1460 next = rb_next(&n->rb_node_in); 1461 1462 rb_erase(&n->rb_node_in, root); 1463 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1464 if (ret < 0) 1465 return -1; 1466 1467 if (ret) { 1468 /* 1469 * If it wasn't combined with one of the entries already 1470 * collapsed, we need to apply the filters that may have 1471 * been set by, say, the hist_browser. 1472 */ 1473 hists__apply_filters(hists, n); 1474 } 1475 if (prog) 1476 ui_progress__update(prog, 1); 1477 } 1478 return 0; 1479 } 1480 1481 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1482 { 1483 struct hists *hists = a->hists; 1484 struct perf_hpp_fmt *fmt; 1485 int64_t cmp = 0; 1486 1487 hists__for_each_sort_list(hists, fmt) { 1488 if (perf_hpp__should_skip(fmt, a->hists)) 1489 continue; 1490 1491 cmp = fmt->sort(fmt, a, b); 1492 if (cmp) 1493 break; 1494 } 1495 1496 return cmp; 1497 } 1498 1499 static void hists__reset_filter_stats(struct hists *hists) 1500 { 1501 hists->nr_non_filtered_entries = 0; 1502 hists->stats.total_non_filtered_period = 0; 1503 } 1504 1505 void hists__reset_stats(struct hists *hists) 1506 { 1507 hists->nr_entries = 0; 1508 hists->stats.total_period = 0; 1509 1510 hists__reset_filter_stats(hists); 1511 } 1512 1513 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1514 { 1515 hists->nr_non_filtered_entries++; 1516 hists->stats.total_non_filtered_period += h->stat.period; 1517 } 1518 1519 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1520 { 1521 if (!h->filtered) 1522 hists__inc_filter_stats(hists, h); 1523 1524 hists->nr_entries++; 1525 hists->stats.total_period += h->stat.period; 1526 } 1527 1528 static void hierarchy_recalc_total_periods(struct hists *hists) 1529 { 1530 struct rb_node *node; 1531 struct hist_entry *he; 1532 1533 node = rb_first(&hists->entries); 1534 1535 hists->stats.total_period = 0; 1536 hists->stats.total_non_filtered_period = 0; 1537 1538 /* 1539 * recalculate total period using top-level entries only 1540 * since lower level entries only see non-filtered entries 1541 * but upper level entries have sum of both entries. 1542 */ 1543 while (node) { 1544 he = rb_entry(node, struct hist_entry, rb_node); 1545 node = rb_next(node); 1546 1547 hists->stats.total_period += he->stat.period; 1548 if (!he->filtered) 1549 hists->stats.total_non_filtered_period += he->stat.period; 1550 } 1551 } 1552 1553 static void hierarchy_insert_output_entry(struct rb_root *root, 1554 struct hist_entry *he) 1555 { 1556 struct rb_node **p = &root->rb_node; 1557 struct rb_node *parent = NULL; 1558 struct hist_entry *iter; 1559 struct perf_hpp_fmt *fmt; 1560 1561 while (*p != NULL) { 1562 parent = *p; 1563 iter = rb_entry(parent, struct hist_entry, rb_node); 1564 1565 if (hist_entry__sort(he, iter) > 0) 1566 p = &parent->rb_left; 1567 else 1568 p = &parent->rb_right; 1569 } 1570 1571 rb_link_node(&he->rb_node, parent, p); 1572 rb_insert_color(&he->rb_node, root); 1573 1574 /* update column width of dynamic entry */ 1575 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1576 if (perf_hpp__is_dynamic_entry(fmt)) 1577 fmt->sort(fmt, he, NULL); 1578 } 1579 } 1580 1581 static void hists__hierarchy_output_resort(struct hists *hists, 1582 struct ui_progress *prog, 1583 struct rb_root *root_in, 1584 struct rb_root *root_out, 1585 u64 min_callchain_hits, 1586 bool use_callchain) 1587 { 1588 struct rb_node *node; 1589 struct hist_entry *he; 1590 1591 *root_out = RB_ROOT; 1592 node = rb_first(root_in); 1593 1594 while (node) { 1595 he = rb_entry(node, struct hist_entry, rb_node_in); 1596 node = rb_next(node); 1597 1598 hierarchy_insert_output_entry(root_out, he); 1599 1600 if (prog) 1601 ui_progress__update(prog, 1); 1602 1603 if (!he->leaf) { 1604 hists__hierarchy_output_resort(hists, prog, 1605 &he->hroot_in, 1606 &he->hroot_out, 1607 min_callchain_hits, 1608 use_callchain); 1609 hists->nr_entries++; 1610 if (!he->filtered) { 1611 hists->nr_non_filtered_entries++; 1612 hists__calc_col_len(hists, he); 1613 } 1614 1615 continue; 1616 } 1617 1618 if (!use_callchain) 1619 continue; 1620 1621 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1622 u64 total = he->stat.period; 1623 1624 if (symbol_conf.cumulate_callchain) 1625 total = he->stat_acc->period; 1626 1627 min_callchain_hits = total * (callchain_param.min_percent / 100); 1628 } 1629 1630 callchain_param.sort(&he->sorted_chain, he->callchain, 1631 min_callchain_hits, &callchain_param); 1632 } 1633 } 1634 1635 static void __hists__insert_output_entry(struct rb_root *entries, 1636 struct hist_entry *he, 1637 u64 min_callchain_hits, 1638 bool use_callchain) 1639 { 1640 struct rb_node **p = &entries->rb_node; 1641 struct rb_node *parent = NULL; 1642 struct hist_entry *iter; 1643 struct perf_hpp_fmt *fmt; 1644 1645 if (use_callchain) { 1646 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1647 u64 total = he->stat.period; 1648 1649 if (symbol_conf.cumulate_callchain) 1650 total = he->stat_acc->period; 1651 1652 min_callchain_hits = total * (callchain_param.min_percent / 100); 1653 } 1654 callchain_param.sort(&he->sorted_chain, he->callchain, 1655 min_callchain_hits, &callchain_param); 1656 } 1657 1658 while (*p != NULL) { 1659 parent = *p; 1660 iter = rb_entry(parent, struct hist_entry, rb_node); 1661 1662 if (hist_entry__sort(he, iter) > 0) 1663 p = &(*p)->rb_left; 1664 else 1665 p = &(*p)->rb_right; 1666 } 1667 1668 rb_link_node(&he->rb_node, parent, p); 1669 rb_insert_color(&he->rb_node, entries); 1670 1671 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1672 if (perf_hpp__is_dynamic_entry(fmt) && 1673 perf_hpp__defined_dynamic_entry(fmt, he->hists)) 1674 fmt->sort(fmt, he, NULL); /* update column width */ 1675 } 1676 } 1677 1678 static void output_resort(struct hists *hists, struct ui_progress *prog, 1679 bool use_callchain, hists__resort_cb_t cb) 1680 { 1681 struct rb_root *root; 1682 struct rb_node *next; 1683 struct hist_entry *n; 1684 u64 callchain_total; 1685 u64 min_callchain_hits; 1686 1687 callchain_total = hists->callchain_period; 1688 if (symbol_conf.filter_relative) 1689 callchain_total = hists->callchain_non_filtered_period; 1690 1691 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1692 1693 hists__reset_stats(hists); 1694 hists__reset_col_len(hists); 1695 1696 if (symbol_conf.report_hierarchy) { 1697 hists__hierarchy_output_resort(hists, prog, 1698 &hists->entries_collapsed, 1699 &hists->entries, 1700 min_callchain_hits, 1701 use_callchain); 1702 hierarchy_recalc_total_periods(hists); 1703 return; 1704 } 1705 1706 if (hists__has(hists, need_collapse)) 1707 root = &hists->entries_collapsed; 1708 else 1709 root = hists->entries_in; 1710 1711 next = rb_first(root); 1712 hists->entries = RB_ROOT; 1713 1714 while (next) { 1715 n = rb_entry(next, struct hist_entry, rb_node_in); 1716 next = rb_next(&n->rb_node_in); 1717 1718 if (cb && cb(n)) 1719 continue; 1720 1721 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1722 hists__inc_stats(hists, n); 1723 1724 if (!n->filtered) 1725 hists__calc_col_len(hists, n); 1726 1727 if (prog) 1728 ui_progress__update(prog, 1); 1729 } 1730 } 1731 1732 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog) 1733 { 1734 bool use_callchain; 1735 1736 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1737 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN; 1738 else 1739 use_callchain = symbol_conf.use_callchain; 1740 1741 output_resort(evsel__hists(evsel), prog, use_callchain, NULL); 1742 } 1743 1744 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 1745 { 1746 output_resort(hists, prog, symbol_conf.use_callchain, NULL); 1747 } 1748 1749 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, 1750 hists__resort_cb_t cb) 1751 { 1752 output_resort(hists, prog, symbol_conf.use_callchain, cb); 1753 } 1754 1755 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 1756 { 1757 if (he->leaf || hmd == HMD_FORCE_SIBLING) 1758 return false; 1759 1760 if (he->unfolded || hmd == HMD_FORCE_CHILD) 1761 return true; 1762 1763 return false; 1764 } 1765 1766 struct rb_node *rb_hierarchy_last(struct rb_node *node) 1767 { 1768 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1769 1770 while (can_goto_child(he, HMD_NORMAL)) { 1771 node = rb_last(&he->hroot_out); 1772 he = rb_entry(node, struct hist_entry, rb_node); 1773 } 1774 return node; 1775 } 1776 1777 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 1778 { 1779 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1780 1781 if (can_goto_child(he, hmd)) 1782 node = rb_first(&he->hroot_out); 1783 else 1784 node = rb_next(node); 1785 1786 while (node == NULL) { 1787 he = he->parent_he; 1788 if (he == NULL) 1789 break; 1790 1791 node = rb_next(&he->rb_node); 1792 } 1793 return node; 1794 } 1795 1796 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 1797 { 1798 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1799 1800 node = rb_prev(node); 1801 if (node) 1802 return rb_hierarchy_last(node); 1803 1804 he = he->parent_he; 1805 if (he == NULL) 1806 return NULL; 1807 1808 return &he->rb_node; 1809 } 1810 1811 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 1812 { 1813 struct rb_node *node; 1814 struct hist_entry *child; 1815 float percent; 1816 1817 if (he->leaf) 1818 return false; 1819 1820 node = rb_first(&he->hroot_out); 1821 child = rb_entry(node, struct hist_entry, rb_node); 1822 1823 while (node && child->filtered) { 1824 node = rb_next(node); 1825 child = rb_entry(node, struct hist_entry, rb_node); 1826 } 1827 1828 if (node) 1829 percent = hist_entry__get_percent_limit(child); 1830 else 1831 percent = 0; 1832 1833 return node && percent >= limit; 1834 } 1835 1836 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 1837 enum hist_filter filter) 1838 { 1839 h->filtered &= ~(1 << filter); 1840 1841 if (symbol_conf.report_hierarchy) { 1842 struct hist_entry *parent = h->parent_he; 1843 1844 while (parent) { 1845 he_stat__add_stat(&parent->stat, &h->stat); 1846 1847 parent->filtered &= ~(1 << filter); 1848 1849 if (parent->filtered) 1850 goto next; 1851 1852 /* force fold unfiltered entry for simplicity */ 1853 parent->unfolded = false; 1854 parent->has_no_entry = false; 1855 parent->row_offset = 0; 1856 parent->nr_rows = 0; 1857 next: 1858 parent = parent->parent_he; 1859 } 1860 } 1861 1862 if (h->filtered) 1863 return; 1864 1865 /* force fold unfiltered entry for simplicity */ 1866 h->unfolded = false; 1867 h->has_no_entry = false; 1868 h->row_offset = 0; 1869 h->nr_rows = 0; 1870 1871 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 1872 1873 hists__inc_filter_stats(hists, h); 1874 hists__calc_col_len(hists, h); 1875 } 1876 1877 1878 static bool hists__filter_entry_by_dso(struct hists *hists, 1879 struct hist_entry *he) 1880 { 1881 if (hists->dso_filter != NULL && 1882 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) { 1883 he->filtered |= (1 << HIST_FILTER__DSO); 1884 return true; 1885 } 1886 1887 return false; 1888 } 1889 1890 static bool hists__filter_entry_by_thread(struct hists *hists, 1891 struct hist_entry *he) 1892 { 1893 if (hists->thread_filter != NULL && 1894 he->thread != hists->thread_filter) { 1895 he->filtered |= (1 << HIST_FILTER__THREAD); 1896 return true; 1897 } 1898 1899 return false; 1900 } 1901 1902 static bool hists__filter_entry_by_symbol(struct hists *hists, 1903 struct hist_entry *he) 1904 { 1905 if (hists->symbol_filter_str != NULL && 1906 (!he->ms.sym || strstr(he->ms.sym->name, 1907 hists->symbol_filter_str) == NULL)) { 1908 he->filtered |= (1 << HIST_FILTER__SYMBOL); 1909 return true; 1910 } 1911 1912 return false; 1913 } 1914 1915 static bool hists__filter_entry_by_socket(struct hists *hists, 1916 struct hist_entry *he) 1917 { 1918 if ((hists->socket_filter > -1) && 1919 (he->socket != hists->socket_filter)) { 1920 he->filtered |= (1 << HIST_FILTER__SOCKET); 1921 return true; 1922 } 1923 1924 return false; 1925 } 1926 1927 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 1928 1929 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 1930 { 1931 struct rb_node *nd; 1932 1933 hists->stats.nr_non_filtered_samples = 0; 1934 1935 hists__reset_filter_stats(hists); 1936 hists__reset_col_len(hists); 1937 1938 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) { 1939 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1940 1941 if (filter(hists, h)) 1942 continue; 1943 1944 hists__remove_entry_filter(hists, h, type); 1945 } 1946 } 1947 1948 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he) 1949 { 1950 struct rb_node **p = &root->rb_node; 1951 struct rb_node *parent = NULL; 1952 struct hist_entry *iter; 1953 struct rb_root new_root = RB_ROOT; 1954 struct rb_node *nd; 1955 1956 while (*p != NULL) { 1957 parent = *p; 1958 iter = rb_entry(parent, struct hist_entry, rb_node); 1959 1960 if (hist_entry__sort(he, iter) > 0) 1961 p = &(*p)->rb_left; 1962 else 1963 p = &(*p)->rb_right; 1964 } 1965 1966 rb_link_node(&he->rb_node, parent, p); 1967 rb_insert_color(&he->rb_node, root); 1968 1969 if (he->leaf || he->filtered) 1970 return; 1971 1972 nd = rb_first(&he->hroot_out); 1973 while (nd) { 1974 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1975 1976 nd = rb_next(nd); 1977 rb_erase(&h->rb_node, &he->hroot_out); 1978 1979 resort_filtered_entry(&new_root, h); 1980 } 1981 1982 he->hroot_out = new_root; 1983 } 1984 1985 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 1986 { 1987 struct rb_node *nd; 1988 struct rb_root new_root = RB_ROOT; 1989 1990 hists->stats.nr_non_filtered_samples = 0; 1991 1992 hists__reset_filter_stats(hists); 1993 hists__reset_col_len(hists); 1994 1995 nd = rb_first(&hists->entries); 1996 while (nd) { 1997 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1998 int ret; 1999 2000 ret = hist_entry__filter(h, type, arg); 2001 2002 /* 2003 * case 1. non-matching type 2004 * zero out the period, set filter marker and move to child 2005 */ 2006 if (ret < 0) { 2007 memset(&h->stat, 0, sizeof(h->stat)); 2008 h->filtered |= (1 << type); 2009 2010 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 2011 } 2012 /* 2013 * case 2. matched type (filter out) 2014 * set filter marker and move to next 2015 */ 2016 else if (ret == 1) { 2017 h->filtered |= (1 << type); 2018 2019 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2020 } 2021 /* 2022 * case 3. ok (not filtered) 2023 * add period to hists and parents, erase the filter marker 2024 * and move to next sibling 2025 */ 2026 else { 2027 hists__remove_entry_filter(hists, h, type); 2028 2029 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2030 } 2031 } 2032 2033 hierarchy_recalc_total_periods(hists); 2034 2035 /* 2036 * resort output after applying a new filter since filter in a lower 2037 * hierarchy can change periods in a upper hierarchy. 2038 */ 2039 nd = rb_first(&hists->entries); 2040 while (nd) { 2041 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2042 2043 nd = rb_next(nd); 2044 rb_erase(&h->rb_node, &hists->entries); 2045 2046 resort_filtered_entry(&new_root, h); 2047 } 2048 2049 hists->entries = new_root; 2050 } 2051 2052 void hists__filter_by_thread(struct hists *hists) 2053 { 2054 if (symbol_conf.report_hierarchy) 2055 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 2056 hists->thread_filter); 2057 else 2058 hists__filter_by_type(hists, HIST_FILTER__THREAD, 2059 hists__filter_entry_by_thread); 2060 } 2061 2062 void hists__filter_by_dso(struct hists *hists) 2063 { 2064 if (symbol_conf.report_hierarchy) 2065 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 2066 hists->dso_filter); 2067 else 2068 hists__filter_by_type(hists, HIST_FILTER__DSO, 2069 hists__filter_entry_by_dso); 2070 } 2071 2072 void hists__filter_by_symbol(struct hists *hists) 2073 { 2074 if (symbol_conf.report_hierarchy) 2075 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2076 hists->symbol_filter_str); 2077 else 2078 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2079 hists__filter_entry_by_symbol); 2080 } 2081 2082 void hists__filter_by_socket(struct hists *hists) 2083 { 2084 if (symbol_conf.report_hierarchy) 2085 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2086 &hists->socket_filter); 2087 else 2088 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2089 hists__filter_entry_by_socket); 2090 } 2091 2092 void events_stats__inc(struct events_stats *stats, u32 type) 2093 { 2094 ++stats->nr_events[0]; 2095 ++stats->nr_events[type]; 2096 } 2097 2098 void hists__inc_nr_events(struct hists *hists, u32 type) 2099 { 2100 events_stats__inc(&hists->stats, type); 2101 } 2102 2103 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2104 { 2105 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE); 2106 if (!filtered) 2107 hists->stats.nr_non_filtered_samples++; 2108 } 2109 2110 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2111 struct hist_entry *pair) 2112 { 2113 struct rb_root *root; 2114 struct rb_node **p; 2115 struct rb_node *parent = NULL; 2116 struct hist_entry *he; 2117 int64_t cmp; 2118 2119 if (hists__has(hists, need_collapse)) 2120 root = &hists->entries_collapsed; 2121 else 2122 root = hists->entries_in; 2123 2124 p = &root->rb_node; 2125 2126 while (*p != NULL) { 2127 parent = *p; 2128 he = rb_entry(parent, struct hist_entry, rb_node_in); 2129 2130 cmp = hist_entry__collapse(he, pair); 2131 2132 if (!cmp) 2133 goto out; 2134 2135 if (cmp < 0) 2136 p = &(*p)->rb_left; 2137 else 2138 p = &(*p)->rb_right; 2139 } 2140 2141 he = hist_entry__new(pair, true); 2142 if (he) { 2143 memset(&he->stat, 0, sizeof(he->stat)); 2144 he->hists = hists; 2145 if (symbol_conf.cumulate_callchain) 2146 memset(he->stat_acc, 0, sizeof(he->stat)); 2147 rb_link_node(&he->rb_node_in, parent, p); 2148 rb_insert_color(&he->rb_node_in, root); 2149 hists__inc_stats(hists, he); 2150 he->dummy = true; 2151 } 2152 out: 2153 return he; 2154 } 2155 2156 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, 2157 struct rb_root *root, 2158 struct hist_entry *pair) 2159 { 2160 struct rb_node **p; 2161 struct rb_node *parent = NULL; 2162 struct hist_entry *he; 2163 struct perf_hpp_fmt *fmt; 2164 2165 p = &root->rb_node; 2166 while (*p != NULL) { 2167 int64_t cmp = 0; 2168 2169 parent = *p; 2170 he = rb_entry(parent, struct hist_entry, rb_node_in); 2171 2172 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2173 cmp = fmt->collapse(fmt, he, pair); 2174 if (cmp) 2175 break; 2176 } 2177 if (!cmp) 2178 goto out; 2179 2180 if (cmp < 0) 2181 p = &parent->rb_left; 2182 else 2183 p = &parent->rb_right; 2184 } 2185 2186 he = hist_entry__new(pair, true); 2187 if (he) { 2188 rb_link_node(&he->rb_node_in, parent, p); 2189 rb_insert_color(&he->rb_node_in, root); 2190 2191 he->dummy = true; 2192 he->hists = hists; 2193 memset(&he->stat, 0, sizeof(he->stat)); 2194 hists__inc_stats(hists, he); 2195 } 2196 out: 2197 return he; 2198 } 2199 2200 static struct hist_entry *hists__find_entry(struct hists *hists, 2201 struct hist_entry *he) 2202 { 2203 struct rb_node *n; 2204 2205 if (hists__has(hists, need_collapse)) 2206 n = hists->entries_collapsed.rb_node; 2207 else 2208 n = hists->entries_in->rb_node; 2209 2210 while (n) { 2211 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2212 int64_t cmp = hist_entry__collapse(iter, he); 2213 2214 if (cmp < 0) 2215 n = n->rb_left; 2216 else if (cmp > 0) 2217 n = n->rb_right; 2218 else 2219 return iter; 2220 } 2221 2222 return NULL; 2223 } 2224 2225 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root, 2226 struct hist_entry *he) 2227 { 2228 struct rb_node *n = root->rb_node; 2229 2230 while (n) { 2231 struct hist_entry *iter; 2232 struct perf_hpp_fmt *fmt; 2233 int64_t cmp = 0; 2234 2235 iter = rb_entry(n, struct hist_entry, rb_node_in); 2236 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2237 cmp = fmt->collapse(fmt, iter, he); 2238 if (cmp) 2239 break; 2240 } 2241 2242 if (cmp < 0) 2243 n = n->rb_left; 2244 else if (cmp > 0) 2245 n = n->rb_right; 2246 else 2247 return iter; 2248 } 2249 2250 return NULL; 2251 } 2252 2253 static void hists__match_hierarchy(struct rb_root *leader_root, 2254 struct rb_root *other_root) 2255 { 2256 struct rb_node *nd; 2257 struct hist_entry *pos, *pair; 2258 2259 for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) { 2260 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2261 pair = hists__find_hierarchy_entry(other_root, pos); 2262 2263 if (pair) { 2264 hist_entry__add_pair(pair, pos); 2265 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); 2266 } 2267 } 2268 } 2269 2270 /* 2271 * Look for pairs to link to the leader buckets (hist_entries): 2272 */ 2273 void hists__match(struct hists *leader, struct hists *other) 2274 { 2275 struct rb_root *root; 2276 struct rb_node *nd; 2277 struct hist_entry *pos, *pair; 2278 2279 if (symbol_conf.report_hierarchy) { 2280 /* hierarchy report always collapses entries */ 2281 return hists__match_hierarchy(&leader->entries_collapsed, 2282 &other->entries_collapsed); 2283 } 2284 2285 if (hists__has(leader, need_collapse)) 2286 root = &leader->entries_collapsed; 2287 else 2288 root = leader->entries_in; 2289 2290 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2291 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2292 pair = hists__find_entry(other, pos); 2293 2294 if (pair) 2295 hist_entry__add_pair(pair, pos); 2296 } 2297 } 2298 2299 static int hists__link_hierarchy(struct hists *leader_hists, 2300 struct hist_entry *parent, 2301 struct rb_root *leader_root, 2302 struct rb_root *other_root) 2303 { 2304 struct rb_node *nd; 2305 struct hist_entry *pos, *leader; 2306 2307 for (nd = rb_first(other_root); nd; nd = rb_next(nd)) { 2308 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2309 2310 if (hist_entry__has_pairs(pos)) { 2311 bool found = false; 2312 2313 list_for_each_entry(leader, &pos->pairs.head, pairs.node) { 2314 if (leader->hists == leader_hists) { 2315 found = true; 2316 break; 2317 } 2318 } 2319 if (!found) 2320 return -1; 2321 } else { 2322 leader = add_dummy_hierarchy_entry(leader_hists, 2323 leader_root, pos); 2324 if (leader == NULL) 2325 return -1; 2326 2327 /* do not point parent in the pos */ 2328 leader->parent_he = parent; 2329 2330 hist_entry__add_pair(pos, leader); 2331 } 2332 2333 if (!pos->leaf) { 2334 if (hists__link_hierarchy(leader_hists, leader, 2335 &leader->hroot_in, 2336 &pos->hroot_in) < 0) 2337 return -1; 2338 } 2339 } 2340 return 0; 2341 } 2342 2343 /* 2344 * Look for entries in the other hists that are not present in the leader, if 2345 * we find them, just add a dummy entry on the leader hists, with period=0, 2346 * nr_events=0, to serve as the list header. 2347 */ 2348 int hists__link(struct hists *leader, struct hists *other) 2349 { 2350 struct rb_root *root; 2351 struct rb_node *nd; 2352 struct hist_entry *pos, *pair; 2353 2354 if (symbol_conf.report_hierarchy) { 2355 /* hierarchy report always collapses entries */ 2356 return hists__link_hierarchy(leader, NULL, 2357 &leader->entries_collapsed, 2358 &other->entries_collapsed); 2359 } 2360 2361 if (hists__has(other, need_collapse)) 2362 root = &other->entries_collapsed; 2363 else 2364 root = other->entries_in; 2365 2366 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2367 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2368 2369 if (!hist_entry__has_pairs(pos)) { 2370 pair = hists__add_dummy_entry(leader, pos); 2371 if (pair == NULL) 2372 return -1; 2373 hist_entry__add_pair(pos, pair); 2374 } 2375 } 2376 2377 return 0; 2378 } 2379 2380 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2381 struct perf_sample *sample, bool nonany_branch_mode) 2382 { 2383 struct branch_info *bi; 2384 2385 /* If we have branch cycles always annotate them. */ 2386 if (bs && bs->nr && bs->entries[0].flags.cycles) { 2387 int i; 2388 2389 bi = sample__resolve_bstack(sample, al); 2390 if (bi) { 2391 struct addr_map_symbol *prev = NULL; 2392 2393 /* 2394 * Ignore errors, still want to process the 2395 * other entries. 2396 * 2397 * For non standard branch modes always 2398 * force no IPC (prev == NULL) 2399 * 2400 * Note that perf stores branches reversed from 2401 * program order! 2402 */ 2403 for (i = bs->nr - 1; i >= 0; i--) { 2404 addr_map_symbol__account_cycles(&bi[i].from, 2405 nonany_branch_mode ? NULL : prev, 2406 bi[i].flags.cycles); 2407 prev = &bi[i].to; 2408 } 2409 free(bi); 2410 } 2411 } 2412 } 2413 2414 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp) 2415 { 2416 struct perf_evsel *pos; 2417 size_t ret = 0; 2418 2419 evlist__for_each_entry(evlist, pos) { 2420 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos)); 2421 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp); 2422 } 2423 2424 return ret; 2425 } 2426 2427 2428 u64 hists__total_period(struct hists *hists) 2429 { 2430 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2431 hists->stats.total_period; 2432 } 2433 2434 int parse_filter_percentage(const struct option *opt __maybe_unused, 2435 const char *arg, int unset __maybe_unused) 2436 { 2437 if (!strcmp(arg, "relative")) 2438 symbol_conf.filter_relative = true; 2439 else if (!strcmp(arg, "absolute")) 2440 symbol_conf.filter_relative = false; 2441 else 2442 return -1; 2443 2444 return 0; 2445 } 2446 2447 int perf_hist_config(const char *var, const char *value) 2448 { 2449 if (!strcmp(var, "hist.percentage")) 2450 return parse_filter_percentage(NULL, value, 0); 2451 2452 return 0; 2453 } 2454 2455 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2456 { 2457 memset(hists, 0, sizeof(*hists)); 2458 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT; 2459 hists->entries_in = &hists->entries_in_array[0]; 2460 hists->entries_collapsed = RB_ROOT; 2461 hists->entries = RB_ROOT; 2462 pthread_mutex_init(&hists->lock, NULL); 2463 hists->socket_filter = -1; 2464 hists->hpp_list = hpp_list; 2465 INIT_LIST_HEAD(&hists->hpp_formats); 2466 return 0; 2467 } 2468 2469 static void hists__delete_remaining_entries(struct rb_root *root) 2470 { 2471 struct rb_node *node; 2472 struct hist_entry *he; 2473 2474 while (!RB_EMPTY_ROOT(root)) { 2475 node = rb_first(root); 2476 rb_erase(node, root); 2477 2478 he = rb_entry(node, struct hist_entry, rb_node_in); 2479 hist_entry__delete(he); 2480 } 2481 } 2482 2483 static void hists__delete_all_entries(struct hists *hists) 2484 { 2485 hists__delete_entries(hists); 2486 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2487 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2488 hists__delete_remaining_entries(&hists->entries_collapsed); 2489 } 2490 2491 static void hists_evsel__exit(struct perf_evsel *evsel) 2492 { 2493 struct hists *hists = evsel__hists(evsel); 2494 struct perf_hpp_fmt *fmt, *pos; 2495 struct perf_hpp_list_node *node, *tmp; 2496 2497 hists__delete_all_entries(hists); 2498 2499 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2500 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2501 list_del(&fmt->list); 2502 free(fmt); 2503 } 2504 list_del(&node->list); 2505 free(node); 2506 } 2507 } 2508 2509 static int hists_evsel__init(struct perf_evsel *evsel) 2510 { 2511 struct hists *hists = evsel__hists(evsel); 2512 2513 __hists__init(hists, &perf_hpp_list); 2514 return 0; 2515 } 2516 2517 /* 2518 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2519 * stored in the rbtree... 2520 */ 2521 2522 int hists__init(void) 2523 { 2524 int err = perf_evsel__object_config(sizeof(struct hists_evsel), 2525 hists_evsel__init, 2526 hists_evsel__exit); 2527 if (err) 2528 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2529 2530 return err; 2531 } 2532 2533 void perf_hpp_list__init(struct perf_hpp_list *list) 2534 { 2535 INIT_LIST_HEAD(&list->fields); 2536 INIT_LIST_HEAD(&list->sorts); 2537 } 2538