1 // SPDX-License-Identifier: GPL-2.0 2 #include "callchain.h" 3 #include "debug.h" 4 #include "dso.h" 5 #include "build-id.h" 6 #include "hist.h" 7 #include "map.h" 8 #include "map_symbol.h" 9 #include "branch.h" 10 #include "mem-events.h" 11 #include "session.h" 12 #include "namespaces.h" 13 #include "cgroup.h" 14 #include "sort.h" 15 #include "units.h" 16 #include "evlist.h" 17 #include "evsel.h" 18 #include "annotate.h" 19 #include "srcline.h" 20 #include "symbol.h" 21 #include "thread.h" 22 #include "block-info.h" 23 #include "ui/progress.h" 24 #include <errno.h> 25 #include <math.h> 26 #include <inttypes.h> 27 #include <sys/param.h> 28 #include <linux/rbtree.h> 29 #include <linux/string.h> 30 #include <linux/time64.h> 31 #include <linux/zalloc.h> 32 33 static bool hists__filter_entry_by_dso(struct hists *hists, 34 struct hist_entry *he); 35 static bool hists__filter_entry_by_thread(struct hists *hists, 36 struct hist_entry *he); 37 static bool hists__filter_entry_by_symbol(struct hists *hists, 38 struct hist_entry *he); 39 static bool hists__filter_entry_by_socket(struct hists *hists, 40 struct hist_entry *he); 41 42 u16 hists__col_len(struct hists *hists, enum hist_column col) 43 { 44 return hists->col_len[col]; 45 } 46 47 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 48 { 49 hists->col_len[col] = len; 50 } 51 52 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 53 { 54 if (len > hists__col_len(hists, col)) { 55 hists__set_col_len(hists, col, len); 56 return true; 57 } 58 return false; 59 } 60 61 void hists__reset_col_len(struct hists *hists) 62 { 63 enum hist_column col; 64 65 for (col = 0; col < HISTC_NR_COLS; ++col) 66 hists__set_col_len(hists, col, 0); 67 } 68 69 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 70 { 71 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 72 73 if (hists__col_len(hists, dso) < unresolved_col_width && 74 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 75 !symbol_conf.dso_list) 76 hists__set_col_len(hists, dso, unresolved_col_width); 77 } 78 79 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 80 { 81 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 82 int symlen; 83 u16 len; 84 85 if (h->block_info) 86 return; 87 /* 88 * +4 accounts for '[x] ' priv level info 89 * +2 accounts for 0x prefix on raw addresses 90 * +3 accounts for ' y ' symtab origin info 91 */ 92 if (h->ms.sym) { 93 symlen = h->ms.sym->namelen + 4; 94 if (verbose > 0) 95 symlen += BITS_PER_LONG / 4 + 2 + 3; 96 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 97 } else { 98 symlen = unresolved_col_width + 4 + 2; 99 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 100 hists__set_unres_dso_col_len(hists, HISTC_DSO); 101 } 102 103 len = thread__comm_len(h->thread); 104 if (hists__new_col_len(hists, HISTC_COMM, len)) 105 hists__set_col_len(hists, HISTC_THREAD, len + 8); 106 107 if (h->ms.map) { 108 len = dso__name_len(h->ms.map->dso); 109 hists__new_col_len(hists, HISTC_DSO, len); 110 } 111 112 if (h->parent) 113 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 114 115 if (h->branch_info) { 116 if (h->branch_info->from.ms.sym) { 117 symlen = (int)h->branch_info->from.ms.sym->namelen + 4; 118 if (verbose > 0) 119 symlen += BITS_PER_LONG / 4 + 2 + 3; 120 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 121 122 symlen = dso__name_len(h->branch_info->from.ms.map->dso); 123 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 124 } else { 125 symlen = unresolved_col_width + 4 + 2; 126 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 127 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 128 } 129 130 if (h->branch_info->to.ms.sym) { 131 symlen = (int)h->branch_info->to.ms.sym->namelen + 4; 132 if (verbose > 0) 133 symlen += BITS_PER_LONG / 4 + 2 + 3; 134 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 135 136 symlen = dso__name_len(h->branch_info->to.ms.map->dso); 137 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 138 } else { 139 symlen = unresolved_col_width + 4 + 2; 140 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 141 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 142 } 143 144 if (h->branch_info->srcline_from) 145 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 146 strlen(h->branch_info->srcline_from)); 147 if (h->branch_info->srcline_to) 148 hists__new_col_len(hists, HISTC_SRCLINE_TO, 149 strlen(h->branch_info->srcline_to)); 150 } 151 152 if (h->mem_info) { 153 if (h->mem_info->daddr.ms.sym) { 154 symlen = (int)h->mem_info->daddr.ms.sym->namelen + 4 155 + unresolved_col_width + 2; 156 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 157 symlen); 158 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 159 symlen + 1); 160 } else { 161 symlen = unresolved_col_width + 4 + 2; 162 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 163 symlen); 164 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 165 symlen); 166 } 167 168 if (h->mem_info->iaddr.ms.sym) { 169 symlen = (int)h->mem_info->iaddr.ms.sym->namelen + 4 170 + unresolved_col_width + 2; 171 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 172 symlen); 173 } else { 174 symlen = unresolved_col_width + 4 + 2; 175 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 176 symlen); 177 } 178 179 if (h->mem_info->daddr.ms.map) { 180 symlen = dso__name_len(h->mem_info->daddr.ms.map->dso); 181 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 182 symlen); 183 } else { 184 symlen = unresolved_col_width + 4 + 2; 185 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 186 } 187 188 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR, 189 unresolved_col_width + 4 + 2); 190 191 hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE, 192 unresolved_col_width + 4 + 2); 193 194 } else { 195 symlen = unresolved_col_width + 4 + 2; 196 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 197 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 198 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 199 } 200 201 hists__new_col_len(hists, HISTC_CGROUP, 6); 202 hists__new_col_len(hists, HISTC_CGROUP_ID, 20); 203 hists__new_col_len(hists, HISTC_CPU, 3); 204 hists__new_col_len(hists, HISTC_SOCKET, 6); 205 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 206 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 207 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 208 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3); 209 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 210 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 211 if (symbol_conf.nanosecs) 212 hists__new_col_len(hists, HISTC_TIME, 16); 213 else 214 hists__new_col_len(hists, HISTC_TIME, 12); 215 216 if (h->srcline) { 217 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header)); 218 hists__new_col_len(hists, HISTC_SRCLINE, len); 219 } 220 221 if (h->srcfile) 222 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 223 224 if (h->transaction) 225 hists__new_col_len(hists, HISTC_TRANSACTION, 226 hist_entry__transaction_len()); 227 228 if (h->trace_output) 229 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 230 231 if (h->cgroup) { 232 const char *cgrp_name = "unknown"; 233 struct cgroup *cgrp = cgroup__find(h->ms.maps->machine->env, 234 h->cgroup); 235 if (cgrp != NULL) 236 cgrp_name = cgrp->name; 237 238 hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name)); 239 } 240 } 241 242 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 243 { 244 struct rb_node *next = rb_first_cached(&hists->entries); 245 struct hist_entry *n; 246 int row = 0; 247 248 hists__reset_col_len(hists); 249 250 while (next && row++ < max_rows) { 251 n = rb_entry(next, struct hist_entry, rb_node); 252 if (!n->filtered) 253 hists__calc_col_len(hists, n); 254 next = rb_next(&n->rb_node); 255 } 256 } 257 258 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 259 unsigned int cpumode, u64 period) 260 { 261 switch (cpumode) { 262 case PERF_RECORD_MISC_KERNEL: 263 he_stat->period_sys += period; 264 break; 265 case PERF_RECORD_MISC_USER: 266 he_stat->period_us += period; 267 break; 268 case PERF_RECORD_MISC_GUEST_KERNEL: 269 he_stat->period_guest_sys += period; 270 break; 271 case PERF_RECORD_MISC_GUEST_USER: 272 he_stat->period_guest_us += period; 273 break; 274 default: 275 break; 276 } 277 } 278 279 static long hist_time(unsigned long htime) 280 { 281 unsigned long time_quantum = symbol_conf.time_quantum; 282 if (time_quantum) 283 return (htime / time_quantum) * time_quantum; 284 return htime; 285 } 286 287 static void he_stat__add_period(struct he_stat *he_stat, u64 period, 288 u64 weight) 289 { 290 291 he_stat->period += period; 292 he_stat->weight += weight; 293 he_stat->nr_events += 1; 294 } 295 296 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 297 { 298 dest->period += src->period; 299 dest->period_sys += src->period_sys; 300 dest->period_us += src->period_us; 301 dest->period_guest_sys += src->period_guest_sys; 302 dest->period_guest_us += src->period_guest_us; 303 dest->nr_events += src->nr_events; 304 dest->weight += src->weight; 305 } 306 307 static void he_stat__decay(struct he_stat *he_stat) 308 { 309 he_stat->period = (he_stat->period * 7) / 8; 310 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 311 /* XXX need decay for weight too? */ 312 } 313 314 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 315 316 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 317 { 318 u64 prev_period = he->stat.period; 319 u64 diff; 320 321 if (prev_period == 0) 322 return true; 323 324 he_stat__decay(&he->stat); 325 if (symbol_conf.cumulate_callchain) 326 he_stat__decay(he->stat_acc); 327 decay_callchain(he->callchain); 328 329 diff = prev_period - he->stat.period; 330 331 if (!he->depth) { 332 hists->stats.total_period -= diff; 333 if (!he->filtered) 334 hists->stats.total_non_filtered_period -= diff; 335 } 336 337 if (!he->leaf) { 338 struct hist_entry *child; 339 struct rb_node *node = rb_first_cached(&he->hroot_out); 340 while (node) { 341 child = rb_entry(node, struct hist_entry, rb_node); 342 node = rb_next(node); 343 344 if (hists__decay_entry(hists, child)) 345 hists__delete_entry(hists, child); 346 } 347 } 348 349 return he->stat.period == 0; 350 } 351 352 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 353 { 354 struct rb_root_cached *root_in; 355 struct rb_root_cached *root_out; 356 357 if (he->parent_he) { 358 root_in = &he->parent_he->hroot_in; 359 root_out = &he->parent_he->hroot_out; 360 } else { 361 if (hists__has(hists, need_collapse)) 362 root_in = &hists->entries_collapsed; 363 else 364 root_in = hists->entries_in; 365 root_out = &hists->entries; 366 } 367 368 rb_erase_cached(&he->rb_node_in, root_in); 369 rb_erase_cached(&he->rb_node, root_out); 370 371 --hists->nr_entries; 372 if (!he->filtered) 373 --hists->nr_non_filtered_entries; 374 375 hist_entry__delete(he); 376 } 377 378 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 379 { 380 struct rb_node *next = rb_first_cached(&hists->entries); 381 struct hist_entry *n; 382 383 while (next) { 384 n = rb_entry(next, struct hist_entry, rb_node); 385 next = rb_next(&n->rb_node); 386 if (((zap_user && n->level == '.') || 387 (zap_kernel && n->level != '.') || 388 hists__decay_entry(hists, n))) { 389 hists__delete_entry(hists, n); 390 } 391 } 392 } 393 394 void hists__delete_entries(struct hists *hists) 395 { 396 struct rb_node *next = rb_first_cached(&hists->entries); 397 struct hist_entry *n; 398 399 while (next) { 400 n = rb_entry(next, struct hist_entry, rb_node); 401 next = rb_next(&n->rb_node); 402 403 hists__delete_entry(hists, n); 404 } 405 } 406 407 struct hist_entry *hists__get_entry(struct hists *hists, int idx) 408 { 409 struct rb_node *next = rb_first_cached(&hists->entries); 410 struct hist_entry *n; 411 int i = 0; 412 413 while (next) { 414 n = rb_entry(next, struct hist_entry, rb_node); 415 if (i == idx) 416 return n; 417 418 next = rb_next(&n->rb_node); 419 i++; 420 } 421 422 return NULL; 423 } 424 425 /* 426 * histogram, sorted on item, collects periods 427 */ 428 429 static int hist_entry__init(struct hist_entry *he, 430 struct hist_entry *template, 431 bool sample_self, 432 size_t callchain_size) 433 { 434 *he = *template; 435 he->callchain_size = callchain_size; 436 437 if (symbol_conf.cumulate_callchain) { 438 he->stat_acc = malloc(sizeof(he->stat)); 439 if (he->stat_acc == NULL) 440 return -ENOMEM; 441 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 442 if (!sample_self) 443 memset(&he->stat, 0, sizeof(he->stat)); 444 } 445 446 map__get(he->ms.map); 447 448 if (he->branch_info) { 449 /* 450 * This branch info is (a part of) allocated from 451 * sample__resolve_bstack() and will be freed after 452 * adding new entries. So we need to save a copy. 453 */ 454 he->branch_info = malloc(sizeof(*he->branch_info)); 455 if (he->branch_info == NULL) 456 goto err; 457 458 memcpy(he->branch_info, template->branch_info, 459 sizeof(*he->branch_info)); 460 461 map__get(he->branch_info->from.ms.map); 462 map__get(he->branch_info->to.ms.map); 463 } 464 465 if (he->mem_info) { 466 map__get(he->mem_info->iaddr.ms.map); 467 map__get(he->mem_info->daddr.ms.map); 468 } 469 470 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 471 callchain_init(he->callchain); 472 473 if (he->raw_data) { 474 he->raw_data = memdup(he->raw_data, he->raw_size); 475 if (he->raw_data == NULL) 476 goto err_infos; 477 } 478 479 if (he->srcline) { 480 he->srcline = strdup(he->srcline); 481 if (he->srcline == NULL) 482 goto err_rawdata; 483 } 484 485 if (symbol_conf.res_sample) { 486 he->res_samples = calloc(sizeof(struct res_sample), 487 symbol_conf.res_sample); 488 if (!he->res_samples) 489 goto err_srcline; 490 } 491 492 INIT_LIST_HEAD(&he->pairs.node); 493 thread__get(he->thread); 494 he->hroot_in = RB_ROOT_CACHED; 495 he->hroot_out = RB_ROOT_CACHED; 496 497 if (!symbol_conf.report_hierarchy) 498 he->leaf = true; 499 500 return 0; 501 502 err_srcline: 503 zfree(&he->srcline); 504 505 err_rawdata: 506 zfree(&he->raw_data); 507 508 err_infos: 509 if (he->branch_info) { 510 map__put(he->branch_info->from.ms.map); 511 map__put(he->branch_info->to.ms.map); 512 zfree(&he->branch_info); 513 } 514 if (he->mem_info) { 515 map__put(he->mem_info->iaddr.ms.map); 516 map__put(he->mem_info->daddr.ms.map); 517 } 518 err: 519 map__zput(he->ms.map); 520 zfree(&he->stat_acc); 521 return -ENOMEM; 522 } 523 524 static void *hist_entry__zalloc(size_t size) 525 { 526 return zalloc(size + sizeof(struct hist_entry)); 527 } 528 529 static void hist_entry__free(void *ptr) 530 { 531 free(ptr); 532 } 533 534 static struct hist_entry_ops default_ops = { 535 .new = hist_entry__zalloc, 536 .free = hist_entry__free, 537 }; 538 539 static struct hist_entry *hist_entry__new(struct hist_entry *template, 540 bool sample_self) 541 { 542 struct hist_entry_ops *ops = template->ops; 543 size_t callchain_size = 0; 544 struct hist_entry *he; 545 int err = 0; 546 547 if (!ops) 548 ops = template->ops = &default_ops; 549 550 if (symbol_conf.use_callchain) 551 callchain_size = sizeof(struct callchain_root); 552 553 he = ops->new(callchain_size); 554 if (he) { 555 err = hist_entry__init(he, template, sample_self, callchain_size); 556 if (err) { 557 ops->free(he); 558 he = NULL; 559 } 560 } 561 562 return he; 563 } 564 565 static u8 symbol__parent_filter(const struct symbol *parent) 566 { 567 if (symbol_conf.exclude_other && parent == NULL) 568 return 1 << HIST_FILTER__PARENT; 569 return 0; 570 } 571 572 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 573 { 574 if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain) 575 return; 576 577 he->hists->callchain_period += period; 578 if (!he->filtered) 579 he->hists->callchain_non_filtered_period += period; 580 } 581 582 static struct hist_entry *hists__findnew_entry(struct hists *hists, 583 struct hist_entry *entry, 584 struct addr_location *al, 585 bool sample_self) 586 { 587 struct rb_node **p; 588 struct rb_node *parent = NULL; 589 struct hist_entry *he; 590 int64_t cmp; 591 u64 period = entry->stat.period; 592 u64 weight = entry->stat.weight; 593 bool leftmost = true; 594 595 p = &hists->entries_in->rb_root.rb_node; 596 597 while (*p != NULL) { 598 parent = *p; 599 he = rb_entry(parent, struct hist_entry, rb_node_in); 600 601 /* 602 * Make sure that it receives arguments in a same order as 603 * hist_entry__collapse() so that we can use an appropriate 604 * function when searching an entry regardless which sort 605 * keys were used. 606 */ 607 cmp = hist_entry__cmp(he, entry); 608 609 if (!cmp) { 610 if (sample_self) { 611 he_stat__add_period(&he->stat, period, weight); 612 hist_entry__add_callchain_period(he, period); 613 } 614 if (symbol_conf.cumulate_callchain) 615 he_stat__add_period(he->stat_acc, period, weight); 616 617 /* 618 * This mem info was allocated from sample__resolve_mem 619 * and will not be used anymore. 620 */ 621 mem_info__zput(entry->mem_info); 622 623 block_info__zput(entry->block_info); 624 625 /* If the map of an existing hist_entry has 626 * become out-of-date due to an exec() or 627 * similar, update it. Otherwise we will 628 * mis-adjust symbol addresses when computing 629 * the history counter to increment. 630 */ 631 if (he->ms.map != entry->ms.map) { 632 map__put(he->ms.map); 633 he->ms.map = map__get(entry->ms.map); 634 } 635 goto out; 636 } 637 638 if (cmp < 0) 639 p = &(*p)->rb_left; 640 else { 641 p = &(*p)->rb_right; 642 leftmost = false; 643 } 644 } 645 646 he = hist_entry__new(entry, sample_self); 647 if (!he) 648 return NULL; 649 650 if (sample_self) 651 hist_entry__add_callchain_period(he, period); 652 hists->nr_entries++; 653 654 rb_link_node(&he->rb_node_in, parent, p); 655 rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost); 656 out: 657 if (sample_self) 658 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 659 if (symbol_conf.cumulate_callchain) 660 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 661 return he; 662 } 663 664 static unsigned random_max(unsigned high) 665 { 666 unsigned thresh = -high % high; 667 for (;;) { 668 unsigned r = random(); 669 if (r >= thresh) 670 return r % high; 671 } 672 } 673 674 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample) 675 { 676 struct res_sample *r; 677 int j; 678 679 if (he->num_res < symbol_conf.res_sample) { 680 j = he->num_res++; 681 } else { 682 j = random_max(symbol_conf.res_sample); 683 } 684 r = &he->res_samples[j]; 685 r->time = sample->time; 686 r->cpu = sample->cpu; 687 r->tid = sample->tid; 688 } 689 690 static struct hist_entry* 691 __hists__add_entry(struct hists *hists, 692 struct addr_location *al, 693 struct symbol *sym_parent, 694 struct branch_info *bi, 695 struct mem_info *mi, 696 struct block_info *block_info, 697 struct perf_sample *sample, 698 bool sample_self, 699 struct hist_entry_ops *ops) 700 { 701 struct namespaces *ns = thread__namespaces(al->thread); 702 struct hist_entry entry = { 703 .thread = al->thread, 704 .comm = thread__comm(al->thread), 705 .cgroup_id = { 706 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0, 707 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0, 708 }, 709 .cgroup = sample->cgroup, 710 .ms = { 711 .maps = al->maps, 712 .map = al->map, 713 .sym = al->sym, 714 }, 715 .srcline = (char *) al->srcline, 716 .socket = al->socket, 717 .cpu = al->cpu, 718 .cpumode = al->cpumode, 719 .ip = al->addr, 720 .level = al->level, 721 .stat = { 722 .nr_events = 1, 723 .period = sample->period, 724 .weight = sample->weight, 725 }, 726 .parent = sym_parent, 727 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 728 .hists = hists, 729 .branch_info = bi, 730 .mem_info = mi, 731 .block_info = block_info, 732 .transaction = sample->transaction, 733 .raw_data = sample->raw_data, 734 .raw_size = sample->raw_size, 735 .ops = ops, 736 .time = hist_time(sample->time), 737 }, *he = hists__findnew_entry(hists, &entry, al, sample_self); 738 739 if (!hists->has_callchains && he && he->callchain_size != 0) 740 hists->has_callchains = true; 741 if (he && symbol_conf.res_sample) 742 hists__res_sample(he, sample); 743 return he; 744 } 745 746 struct hist_entry *hists__add_entry(struct hists *hists, 747 struct addr_location *al, 748 struct symbol *sym_parent, 749 struct branch_info *bi, 750 struct mem_info *mi, 751 struct perf_sample *sample, 752 bool sample_self) 753 { 754 return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL, 755 sample, sample_self, NULL); 756 } 757 758 struct hist_entry *hists__add_entry_ops(struct hists *hists, 759 struct hist_entry_ops *ops, 760 struct addr_location *al, 761 struct symbol *sym_parent, 762 struct branch_info *bi, 763 struct mem_info *mi, 764 struct perf_sample *sample, 765 bool sample_self) 766 { 767 return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL, 768 sample, sample_self, ops); 769 } 770 771 struct hist_entry *hists__add_entry_block(struct hists *hists, 772 struct addr_location *al, 773 struct block_info *block_info) 774 { 775 struct hist_entry entry = { 776 .block_info = block_info, 777 .hists = hists, 778 .ms = { 779 .maps = al->maps, 780 .map = al->map, 781 .sym = al->sym, 782 }, 783 }, *he = hists__findnew_entry(hists, &entry, al, false); 784 785 return he; 786 } 787 788 static int 789 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 790 struct addr_location *al __maybe_unused) 791 { 792 return 0; 793 } 794 795 static int 796 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 797 struct addr_location *al __maybe_unused) 798 { 799 return 0; 800 } 801 802 static int 803 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 804 { 805 struct perf_sample *sample = iter->sample; 806 struct mem_info *mi; 807 808 mi = sample__resolve_mem(sample, al); 809 if (mi == NULL) 810 return -ENOMEM; 811 812 iter->priv = mi; 813 return 0; 814 } 815 816 static int 817 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 818 { 819 u64 cost; 820 struct mem_info *mi = iter->priv; 821 struct hists *hists = evsel__hists(iter->evsel); 822 struct perf_sample *sample = iter->sample; 823 struct hist_entry *he; 824 825 if (mi == NULL) 826 return -EINVAL; 827 828 cost = sample->weight; 829 if (!cost) 830 cost = 1; 831 832 /* 833 * must pass period=weight in order to get the correct 834 * sorting from hists__collapse_resort() which is solely 835 * based on periods. We want sorting be done on nr_events * weight 836 * and this is indirectly achieved by passing period=weight here 837 * and the he_stat__add_period() function. 838 */ 839 sample->period = cost; 840 841 he = hists__add_entry(hists, al, iter->parent, NULL, mi, 842 sample, true); 843 if (!he) 844 return -ENOMEM; 845 846 iter->he = he; 847 return 0; 848 } 849 850 static int 851 iter_finish_mem_entry(struct hist_entry_iter *iter, 852 struct addr_location *al __maybe_unused) 853 { 854 struct evsel *evsel = iter->evsel; 855 struct hists *hists = evsel__hists(evsel); 856 struct hist_entry *he = iter->he; 857 int err = -EINVAL; 858 859 if (he == NULL) 860 goto out; 861 862 hists__inc_nr_samples(hists, he->filtered); 863 864 err = hist_entry__append_callchain(he, iter->sample); 865 866 out: 867 /* 868 * We don't need to free iter->priv (mem_info) here since the mem info 869 * was either already freed in hists__findnew_entry() or passed to a 870 * new hist entry by hist_entry__new(). 871 */ 872 iter->priv = NULL; 873 874 iter->he = NULL; 875 return err; 876 } 877 878 static int 879 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 880 { 881 struct branch_info *bi; 882 struct perf_sample *sample = iter->sample; 883 884 bi = sample__resolve_bstack(sample, al); 885 if (!bi) 886 return -ENOMEM; 887 888 iter->curr = 0; 889 iter->total = sample->branch_stack->nr; 890 891 iter->priv = bi; 892 return 0; 893 } 894 895 static int 896 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused, 897 struct addr_location *al __maybe_unused) 898 { 899 return 0; 900 } 901 902 static int 903 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 904 { 905 struct branch_info *bi = iter->priv; 906 int i = iter->curr; 907 908 if (bi == NULL) 909 return 0; 910 911 if (iter->curr >= iter->total) 912 return 0; 913 914 al->maps = bi[i].to.ms.maps; 915 al->map = bi[i].to.ms.map; 916 al->sym = bi[i].to.ms.sym; 917 al->addr = bi[i].to.addr; 918 return 1; 919 } 920 921 static int 922 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 923 { 924 struct branch_info *bi; 925 struct evsel *evsel = iter->evsel; 926 struct hists *hists = evsel__hists(evsel); 927 struct perf_sample *sample = iter->sample; 928 struct hist_entry *he = NULL; 929 int i = iter->curr; 930 int err = 0; 931 932 bi = iter->priv; 933 934 if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym)) 935 goto out; 936 937 /* 938 * The report shows the percentage of total branches captured 939 * and not events sampled. Thus we use a pseudo period of 1. 940 */ 941 sample->period = 1; 942 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 943 944 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, 945 sample, true); 946 if (he == NULL) 947 return -ENOMEM; 948 949 hists__inc_nr_samples(hists, he->filtered); 950 951 out: 952 iter->he = he; 953 iter->curr++; 954 return err; 955 } 956 957 static int 958 iter_finish_branch_entry(struct hist_entry_iter *iter, 959 struct addr_location *al __maybe_unused) 960 { 961 zfree(&iter->priv); 962 iter->he = NULL; 963 964 return iter->curr >= iter->total ? 0 : -1; 965 } 966 967 static int 968 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 969 struct addr_location *al __maybe_unused) 970 { 971 return 0; 972 } 973 974 static int 975 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 976 { 977 struct evsel *evsel = iter->evsel; 978 struct perf_sample *sample = iter->sample; 979 struct hist_entry *he; 980 981 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 982 sample, true); 983 if (he == NULL) 984 return -ENOMEM; 985 986 iter->he = he; 987 return 0; 988 } 989 990 static int 991 iter_finish_normal_entry(struct hist_entry_iter *iter, 992 struct addr_location *al __maybe_unused) 993 { 994 struct hist_entry *he = iter->he; 995 struct evsel *evsel = iter->evsel; 996 struct perf_sample *sample = iter->sample; 997 998 if (he == NULL) 999 return 0; 1000 1001 iter->he = NULL; 1002 1003 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 1004 1005 return hist_entry__append_callchain(he, sample); 1006 } 1007 1008 static int 1009 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 1010 struct addr_location *al __maybe_unused) 1011 { 1012 struct hist_entry **he_cache; 1013 1014 callchain_cursor_commit(&callchain_cursor); 1015 1016 /* 1017 * This is for detecting cycles or recursions so that they're 1018 * cumulated only one time to prevent entries more than 100% 1019 * overhead. 1020 */ 1021 he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1)); 1022 if (he_cache == NULL) 1023 return -ENOMEM; 1024 1025 iter->priv = he_cache; 1026 iter->curr = 0; 1027 1028 return 0; 1029 } 1030 1031 static int 1032 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 1033 struct addr_location *al) 1034 { 1035 struct evsel *evsel = iter->evsel; 1036 struct hists *hists = evsel__hists(evsel); 1037 struct perf_sample *sample = iter->sample; 1038 struct hist_entry **he_cache = iter->priv; 1039 struct hist_entry *he; 1040 int err = 0; 1041 1042 he = hists__add_entry(hists, al, iter->parent, NULL, NULL, 1043 sample, true); 1044 if (he == NULL) 1045 return -ENOMEM; 1046 1047 iter->he = he; 1048 he_cache[iter->curr++] = he; 1049 1050 hist_entry__append_callchain(he, sample); 1051 1052 /* 1053 * We need to re-initialize the cursor since callchain_append() 1054 * advanced the cursor to the end. 1055 */ 1056 callchain_cursor_commit(&callchain_cursor); 1057 1058 hists__inc_nr_samples(hists, he->filtered); 1059 1060 return err; 1061 } 1062 1063 static int 1064 iter_next_cumulative_entry(struct hist_entry_iter *iter, 1065 struct addr_location *al) 1066 { 1067 struct callchain_cursor_node *node; 1068 1069 node = callchain_cursor_current(&callchain_cursor); 1070 if (node == NULL) 1071 return 0; 1072 1073 return fill_callchain_info(al, node, iter->hide_unresolved); 1074 } 1075 1076 static bool 1077 hist_entry__fast__sym_diff(struct hist_entry *left, 1078 struct hist_entry *right) 1079 { 1080 struct symbol *sym_l = left->ms.sym; 1081 struct symbol *sym_r = right->ms.sym; 1082 1083 if (!sym_l && !sym_r) 1084 return left->ip != right->ip; 1085 1086 return !!_sort__sym_cmp(sym_l, sym_r); 1087 } 1088 1089 1090 static int 1091 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 1092 struct addr_location *al) 1093 { 1094 struct evsel *evsel = iter->evsel; 1095 struct perf_sample *sample = iter->sample; 1096 struct hist_entry **he_cache = iter->priv; 1097 struct hist_entry *he; 1098 struct hist_entry he_tmp = { 1099 .hists = evsel__hists(evsel), 1100 .cpu = al->cpu, 1101 .thread = al->thread, 1102 .comm = thread__comm(al->thread), 1103 .ip = al->addr, 1104 .ms = { 1105 .maps = al->maps, 1106 .map = al->map, 1107 .sym = al->sym, 1108 }, 1109 .srcline = (char *) al->srcline, 1110 .parent = iter->parent, 1111 .raw_data = sample->raw_data, 1112 .raw_size = sample->raw_size, 1113 }; 1114 int i; 1115 struct callchain_cursor cursor; 1116 bool fast = hists__has(he_tmp.hists, sym); 1117 1118 callchain_cursor_snapshot(&cursor, &callchain_cursor); 1119 1120 callchain_cursor_advance(&callchain_cursor); 1121 1122 /* 1123 * Check if there's duplicate entries in the callchain. 1124 * It's possible that it has cycles or recursive calls. 1125 */ 1126 for (i = 0; i < iter->curr; i++) { 1127 /* 1128 * For most cases, there are no duplicate entries in callchain. 1129 * The symbols are usually different. Do a quick check for 1130 * symbols first. 1131 */ 1132 if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp)) 1133 continue; 1134 1135 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 1136 /* to avoid calling callback function */ 1137 iter->he = NULL; 1138 return 0; 1139 } 1140 } 1141 1142 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 1143 sample, false); 1144 if (he == NULL) 1145 return -ENOMEM; 1146 1147 iter->he = he; 1148 he_cache[iter->curr++] = he; 1149 1150 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 1151 callchain_append(he->callchain, &cursor, sample->period); 1152 return 0; 1153 } 1154 1155 static int 1156 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 1157 struct addr_location *al __maybe_unused) 1158 { 1159 zfree(&iter->priv); 1160 iter->he = NULL; 1161 1162 return 0; 1163 } 1164 1165 const struct hist_iter_ops hist_iter_mem = { 1166 .prepare_entry = iter_prepare_mem_entry, 1167 .add_single_entry = iter_add_single_mem_entry, 1168 .next_entry = iter_next_nop_entry, 1169 .add_next_entry = iter_add_next_nop_entry, 1170 .finish_entry = iter_finish_mem_entry, 1171 }; 1172 1173 const struct hist_iter_ops hist_iter_branch = { 1174 .prepare_entry = iter_prepare_branch_entry, 1175 .add_single_entry = iter_add_single_branch_entry, 1176 .next_entry = iter_next_branch_entry, 1177 .add_next_entry = iter_add_next_branch_entry, 1178 .finish_entry = iter_finish_branch_entry, 1179 }; 1180 1181 const struct hist_iter_ops hist_iter_normal = { 1182 .prepare_entry = iter_prepare_normal_entry, 1183 .add_single_entry = iter_add_single_normal_entry, 1184 .next_entry = iter_next_nop_entry, 1185 .add_next_entry = iter_add_next_nop_entry, 1186 .finish_entry = iter_finish_normal_entry, 1187 }; 1188 1189 const struct hist_iter_ops hist_iter_cumulative = { 1190 .prepare_entry = iter_prepare_cumulative_entry, 1191 .add_single_entry = iter_add_single_cumulative_entry, 1192 .next_entry = iter_next_cumulative_entry, 1193 .add_next_entry = iter_add_next_cumulative_entry, 1194 .finish_entry = iter_finish_cumulative_entry, 1195 }; 1196 1197 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1198 int max_stack_depth, void *arg) 1199 { 1200 int err, err2; 1201 struct map *alm = NULL; 1202 1203 if (al) 1204 alm = map__get(al->map); 1205 1206 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, 1207 iter->evsel, al, max_stack_depth); 1208 if (err) { 1209 map__put(alm); 1210 return err; 1211 } 1212 1213 err = iter->ops->prepare_entry(iter, al); 1214 if (err) 1215 goto out; 1216 1217 err = iter->ops->add_single_entry(iter, al); 1218 if (err) 1219 goto out; 1220 1221 if (iter->he && iter->add_entry_cb) { 1222 err = iter->add_entry_cb(iter, al, true, arg); 1223 if (err) 1224 goto out; 1225 } 1226 1227 while (iter->ops->next_entry(iter, al)) { 1228 err = iter->ops->add_next_entry(iter, al); 1229 if (err) 1230 break; 1231 1232 if (iter->he && iter->add_entry_cb) { 1233 err = iter->add_entry_cb(iter, al, false, arg); 1234 if (err) 1235 goto out; 1236 } 1237 } 1238 1239 out: 1240 err2 = iter->ops->finish_entry(iter, al); 1241 if (!err) 1242 err = err2; 1243 1244 map__put(alm); 1245 1246 return err; 1247 } 1248 1249 int64_t 1250 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1251 { 1252 struct hists *hists = left->hists; 1253 struct perf_hpp_fmt *fmt; 1254 int64_t cmp = 0; 1255 1256 hists__for_each_sort_list(hists, fmt) { 1257 if (perf_hpp__is_dynamic_entry(fmt) && 1258 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1259 continue; 1260 1261 cmp = fmt->cmp(fmt, left, right); 1262 if (cmp) 1263 break; 1264 } 1265 1266 return cmp; 1267 } 1268 1269 int64_t 1270 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1271 { 1272 struct hists *hists = left->hists; 1273 struct perf_hpp_fmt *fmt; 1274 int64_t cmp = 0; 1275 1276 hists__for_each_sort_list(hists, fmt) { 1277 if (perf_hpp__is_dynamic_entry(fmt) && 1278 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1279 continue; 1280 1281 cmp = fmt->collapse(fmt, left, right); 1282 if (cmp) 1283 break; 1284 } 1285 1286 return cmp; 1287 } 1288 1289 void hist_entry__delete(struct hist_entry *he) 1290 { 1291 struct hist_entry_ops *ops = he->ops; 1292 1293 thread__zput(he->thread); 1294 map__zput(he->ms.map); 1295 1296 if (he->branch_info) { 1297 map__zput(he->branch_info->from.ms.map); 1298 map__zput(he->branch_info->to.ms.map); 1299 free_srcline(he->branch_info->srcline_from); 1300 free_srcline(he->branch_info->srcline_to); 1301 zfree(&he->branch_info); 1302 } 1303 1304 if (he->mem_info) { 1305 map__zput(he->mem_info->iaddr.ms.map); 1306 map__zput(he->mem_info->daddr.ms.map); 1307 mem_info__zput(he->mem_info); 1308 } 1309 1310 if (he->block_info) 1311 block_info__zput(he->block_info); 1312 1313 zfree(&he->res_samples); 1314 zfree(&he->stat_acc); 1315 free_srcline(he->srcline); 1316 if (he->srcfile && he->srcfile[0]) 1317 zfree(&he->srcfile); 1318 free_callchain(he->callchain); 1319 zfree(&he->trace_output); 1320 zfree(&he->raw_data); 1321 ops->free(he); 1322 } 1323 1324 /* 1325 * If this is not the last column, then we need to pad it according to the 1326 * pre-calculated max length for this column, otherwise don't bother adding 1327 * spaces because that would break viewing this with, for instance, 'less', 1328 * that would show tons of trailing spaces when a long C++ demangled method 1329 * names is sampled. 1330 */ 1331 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1332 struct perf_hpp_fmt *fmt, int printed) 1333 { 1334 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1335 const int width = fmt->width(fmt, hpp, he->hists); 1336 if (printed < width) { 1337 advance_hpp(hpp, printed); 1338 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1339 } 1340 } 1341 1342 return printed; 1343 } 1344 1345 /* 1346 * collapse the histogram 1347 */ 1348 1349 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1350 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1351 enum hist_filter type); 1352 1353 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1354 1355 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1356 { 1357 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1358 } 1359 1360 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1361 enum hist_filter type, 1362 fmt_chk_fn check) 1363 { 1364 struct perf_hpp_fmt *fmt; 1365 bool type_match = false; 1366 struct hist_entry *parent = he->parent_he; 1367 1368 switch (type) { 1369 case HIST_FILTER__THREAD: 1370 if (symbol_conf.comm_list == NULL && 1371 symbol_conf.pid_list == NULL && 1372 symbol_conf.tid_list == NULL) 1373 return; 1374 break; 1375 case HIST_FILTER__DSO: 1376 if (symbol_conf.dso_list == NULL) 1377 return; 1378 break; 1379 case HIST_FILTER__SYMBOL: 1380 if (symbol_conf.sym_list == NULL) 1381 return; 1382 break; 1383 case HIST_FILTER__PARENT: 1384 case HIST_FILTER__GUEST: 1385 case HIST_FILTER__HOST: 1386 case HIST_FILTER__SOCKET: 1387 case HIST_FILTER__C2C: 1388 default: 1389 return; 1390 } 1391 1392 /* if it's filtered by own fmt, it has to have filter bits */ 1393 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1394 if (check(fmt)) { 1395 type_match = true; 1396 break; 1397 } 1398 } 1399 1400 if (type_match) { 1401 /* 1402 * If the filter is for current level entry, propagate 1403 * filter marker to parents. The marker bit was 1404 * already set by default so it only needs to clear 1405 * non-filtered entries. 1406 */ 1407 if (!(he->filtered & (1 << type))) { 1408 while (parent) { 1409 parent->filtered &= ~(1 << type); 1410 parent = parent->parent_he; 1411 } 1412 } 1413 } else { 1414 /* 1415 * If current entry doesn't have matching formats, set 1416 * filter marker for upper level entries. it will be 1417 * cleared if its lower level entries is not filtered. 1418 * 1419 * For lower-level entries, it inherits parent's 1420 * filter bit so that lower level entries of a 1421 * non-filtered entry won't set the filter marker. 1422 */ 1423 if (parent == NULL) 1424 he->filtered |= (1 << type); 1425 else 1426 he->filtered |= (parent->filtered & (1 << type)); 1427 } 1428 } 1429 1430 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1431 { 1432 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1433 check_thread_entry); 1434 1435 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1436 perf_hpp__is_dso_entry); 1437 1438 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1439 perf_hpp__is_sym_entry); 1440 1441 hists__apply_filters(he->hists, he); 1442 } 1443 1444 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1445 struct rb_root_cached *root, 1446 struct hist_entry *he, 1447 struct hist_entry *parent_he, 1448 struct perf_hpp_list *hpp_list) 1449 { 1450 struct rb_node **p = &root->rb_root.rb_node; 1451 struct rb_node *parent = NULL; 1452 struct hist_entry *iter, *new; 1453 struct perf_hpp_fmt *fmt; 1454 int64_t cmp; 1455 bool leftmost = true; 1456 1457 while (*p != NULL) { 1458 parent = *p; 1459 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1460 1461 cmp = 0; 1462 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1463 cmp = fmt->collapse(fmt, iter, he); 1464 if (cmp) 1465 break; 1466 } 1467 1468 if (!cmp) { 1469 he_stat__add_stat(&iter->stat, &he->stat); 1470 return iter; 1471 } 1472 1473 if (cmp < 0) 1474 p = &parent->rb_left; 1475 else { 1476 p = &parent->rb_right; 1477 leftmost = false; 1478 } 1479 } 1480 1481 new = hist_entry__new(he, true); 1482 if (new == NULL) 1483 return NULL; 1484 1485 hists->nr_entries++; 1486 1487 /* save related format list for output */ 1488 new->hpp_list = hpp_list; 1489 new->parent_he = parent_he; 1490 1491 hist_entry__apply_hierarchy_filters(new); 1492 1493 /* some fields are now passed to 'new' */ 1494 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1495 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1496 he->trace_output = NULL; 1497 else 1498 new->trace_output = NULL; 1499 1500 if (perf_hpp__is_srcline_entry(fmt)) 1501 he->srcline = NULL; 1502 else 1503 new->srcline = NULL; 1504 1505 if (perf_hpp__is_srcfile_entry(fmt)) 1506 he->srcfile = NULL; 1507 else 1508 new->srcfile = NULL; 1509 } 1510 1511 rb_link_node(&new->rb_node_in, parent, p); 1512 rb_insert_color_cached(&new->rb_node_in, root, leftmost); 1513 return new; 1514 } 1515 1516 static int hists__hierarchy_insert_entry(struct hists *hists, 1517 struct rb_root_cached *root, 1518 struct hist_entry *he) 1519 { 1520 struct perf_hpp_list_node *node; 1521 struct hist_entry *new_he = NULL; 1522 struct hist_entry *parent = NULL; 1523 int depth = 0; 1524 int ret = 0; 1525 1526 list_for_each_entry(node, &hists->hpp_formats, list) { 1527 /* skip period (overhead) and elided columns */ 1528 if (node->level == 0 || node->skip) 1529 continue; 1530 1531 /* insert copy of 'he' for each fmt into the hierarchy */ 1532 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1533 if (new_he == NULL) { 1534 ret = -1; 1535 break; 1536 } 1537 1538 root = &new_he->hroot_in; 1539 new_he->depth = depth++; 1540 parent = new_he; 1541 } 1542 1543 if (new_he) { 1544 new_he->leaf = true; 1545 1546 if (hist_entry__has_callchains(new_he) && 1547 symbol_conf.use_callchain) { 1548 callchain_cursor_reset(&callchain_cursor); 1549 if (callchain_merge(&callchain_cursor, 1550 new_he->callchain, 1551 he->callchain) < 0) 1552 ret = -1; 1553 } 1554 } 1555 1556 /* 'he' is no longer used */ 1557 hist_entry__delete(he); 1558 1559 /* return 0 (or -1) since it already applied filters */ 1560 return ret; 1561 } 1562 1563 static int hists__collapse_insert_entry(struct hists *hists, 1564 struct rb_root_cached *root, 1565 struct hist_entry *he) 1566 { 1567 struct rb_node **p = &root->rb_root.rb_node; 1568 struct rb_node *parent = NULL; 1569 struct hist_entry *iter; 1570 int64_t cmp; 1571 bool leftmost = true; 1572 1573 if (symbol_conf.report_hierarchy) 1574 return hists__hierarchy_insert_entry(hists, root, he); 1575 1576 while (*p != NULL) { 1577 parent = *p; 1578 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1579 1580 cmp = hist_entry__collapse(iter, he); 1581 1582 if (!cmp) { 1583 int ret = 0; 1584 1585 he_stat__add_stat(&iter->stat, &he->stat); 1586 if (symbol_conf.cumulate_callchain) 1587 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1588 1589 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) { 1590 callchain_cursor_reset(&callchain_cursor); 1591 if (callchain_merge(&callchain_cursor, 1592 iter->callchain, 1593 he->callchain) < 0) 1594 ret = -1; 1595 } 1596 hist_entry__delete(he); 1597 return ret; 1598 } 1599 1600 if (cmp < 0) 1601 p = &(*p)->rb_left; 1602 else { 1603 p = &(*p)->rb_right; 1604 leftmost = false; 1605 } 1606 } 1607 hists->nr_entries++; 1608 1609 rb_link_node(&he->rb_node_in, parent, p); 1610 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 1611 return 1; 1612 } 1613 1614 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists) 1615 { 1616 struct rb_root_cached *root; 1617 1618 pthread_mutex_lock(&hists->lock); 1619 1620 root = hists->entries_in; 1621 if (++hists->entries_in > &hists->entries_in_array[1]) 1622 hists->entries_in = &hists->entries_in_array[0]; 1623 1624 pthread_mutex_unlock(&hists->lock); 1625 1626 return root; 1627 } 1628 1629 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1630 { 1631 hists__filter_entry_by_dso(hists, he); 1632 hists__filter_entry_by_thread(hists, he); 1633 hists__filter_entry_by_symbol(hists, he); 1634 hists__filter_entry_by_socket(hists, he); 1635 } 1636 1637 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1638 { 1639 struct rb_root_cached *root; 1640 struct rb_node *next; 1641 struct hist_entry *n; 1642 int ret; 1643 1644 if (!hists__has(hists, need_collapse)) 1645 return 0; 1646 1647 hists->nr_entries = 0; 1648 1649 root = hists__get_rotate_entries_in(hists); 1650 1651 next = rb_first_cached(root); 1652 1653 while (next) { 1654 if (session_done()) 1655 break; 1656 n = rb_entry(next, struct hist_entry, rb_node_in); 1657 next = rb_next(&n->rb_node_in); 1658 1659 rb_erase_cached(&n->rb_node_in, root); 1660 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1661 if (ret < 0) 1662 return -1; 1663 1664 if (ret) { 1665 /* 1666 * If it wasn't combined with one of the entries already 1667 * collapsed, we need to apply the filters that may have 1668 * been set by, say, the hist_browser. 1669 */ 1670 hists__apply_filters(hists, n); 1671 } 1672 if (prog) 1673 ui_progress__update(prog, 1); 1674 } 1675 return 0; 1676 } 1677 1678 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1679 { 1680 struct hists *hists = a->hists; 1681 struct perf_hpp_fmt *fmt; 1682 int64_t cmp = 0; 1683 1684 hists__for_each_sort_list(hists, fmt) { 1685 if (perf_hpp__should_skip(fmt, a->hists)) 1686 continue; 1687 1688 cmp = fmt->sort(fmt, a, b); 1689 if (cmp) 1690 break; 1691 } 1692 1693 return cmp; 1694 } 1695 1696 static void hists__reset_filter_stats(struct hists *hists) 1697 { 1698 hists->nr_non_filtered_entries = 0; 1699 hists->stats.total_non_filtered_period = 0; 1700 } 1701 1702 void hists__reset_stats(struct hists *hists) 1703 { 1704 hists->nr_entries = 0; 1705 hists->stats.total_period = 0; 1706 1707 hists__reset_filter_stats(hists); 1708 } 1709 1710 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1711 { 1712 hists->nr_non_filtered_entries++; 1713 hists->stats.total_non_filtered_period += h->stat.period; 1714 } 1715 1716 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1717 { 1718 if (!h->filtered) 1719 hists__inc_filter_stats(hists, h); 1720 1721 hists->nr_entries++; 1722 hists->stats.total_period += h->stat.period; 1723 } 1724 1725 static void hierarchy_recalc_total_periods(struct hists *hists) 1726 { 1727 struct rb_node *node; 1728 struct hist_entry *he; 1729 1730 node = rb_first_cached(&hists->entries); 1731 1732 hists->stats.total_period = 0; 1733 hists->stats.total_non_filtered_period = 0; 1734 1735 /* 1736 * recalculate total period using top-level entries only 1737 * since lower level entries only see non-filtered entries 1738 * but upper level entries have sum of both entries. 1739 */ 1740 while (node) { 1741 he = rb_entry(node, struct hist_entry, rb_node); 1742 node = rb_next(node); 1743 1744 hists->stats.total_period += he->stat.period; 1745 if (!he->filtered) 1746 hists->stats.total_non_filtered_period += he->stat.period; 1747 } 1748 } 1749 1750 static void hierarchy_insert_output_entry(struct rb_root_cached *root, 1751 struct hist_entry *he) 1752 { 1753 struct rb_node **p = &root->rb_root.rb_node; 1754 struct rb_node *parent = NULL; 1755 struct hist_entry *iter; 1756 struct perf_hpp_fmt *fmt; 1757 bool leftmost = true; 1758 1759 while (*p != NULL) { 1760 parent = *p; 1761 iter = rb_entry(parent, struct hist_entry, rb_node); 1762 1763 if (hist_entry__sort(he, iter) > 0) 1764 p = &parent->rb_left; 1765 else { 1766 p = &parent->rb_right; 1767 leftmost = false; 1768 } 1769 } 1770 1771 rb_link_node(&he->rb_node, parent, p); 1772 rb_insert_color_cached(&he->rb_node, root, leftmost); 1773 1774 /* update column width of dynamic entry */ 1775 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1776 if (perf_hpp__is_dynamic_entry(fmt)) 1777 fmt->sort(fmt, he, NULL); 1778 } 1779 } 1780 1781 static void hists__hierarchy_output_resort(struct hists *hists, 1782 struct ui_progress *prog, 1783 struct rb_root_cached *root_in, 1784 struct rb_root_cached *root_out, 1785 u64 min_callchain_hits, 1786 bool use_callchain) 1787 { 1788 struct rb_node *node; 1789 struct hist_entry *he; 1790 1791 *root_out = RB_ROOT_CACHED; 1792 node = rb_first_cached(root_in); 1793 1794 while (node) { 1795 he = rb_entry(node, struct hist_entry, rb_node_in); 1796 node = rb_next(node); 1797 1798 hierarchy_insert_output_entry(root_out, he); 1799 1800 if (prog) 1801 ui_progress__update(prog, 1); 1802 1803 hists->nr_entries++; 1804 if (!he->filtered) { 1805 hists->nr_non_filtered_entries++; 1806 hists__calc_col_len(hists, he); 1807 } 1808 1809 if (!he->leaf) { 1810 hists__hierarchy_output_resort(hists, prog, 1811 &he->hroot_in, 1812 &he->hroot_out, 1813 min_callchain_hits, 1814 use_callchain); 1815 continue; 1816 } 1817 1818 if (!use_callchain) 1819 continue; 1820 1821 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1822 u64 total = he->stat.period; 1823 1824 if (symbol_conf.cumulate_callchain) 1825 total = he->stat_acc->period; 1826 1827 min_callchain_hits = total * (callchain_param.min_percent / 100); 1828 } 1829 1830 callchain_param.sort(&he->sorted_chain, he->callchain, 1831 min_callchain_hits, &callchain_param); 1832 } 1833 } 1834 1835 static void __hists__insert_output_entry(struct rb_root_cached *entries, 1836 struct hist_entry *he, 1837 u64 min_callchain_hits, 1838 bool use_callchain) 1839 { 1840 struct rb_node **p = &entries->rb_root.rb_node; 1841 struct rb_node *parent = NULL; 1842 struct hist_entry *iter; 1843 struct perf_hpp_fmt *fmt; 1844 bool leftmost = true; 1845 1846 if (use_callchain) { 1847 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1848 u64 total = he->stat.period; 1849 1850 if (symbol_conf.cumulate_callchain) 1851 total = he->stat_acc->period; 1852 1853 min_callchain_hits = total * (callchain_param.min_percent / 100); 1854 } 1855 callchain_param.sort(&he->sorted_chain, he->callchain, 1856 min_callchain_hits, &callchain_param); 1857 } 1858 1859 while (*p != NULL) { 1860 parent = *p; 1861 iter = rb_entry(parent, struct hist_entry, rb_node); 1862 1863 if (hist_entry__sort(he, iter) > 0) 1864 p = &(*p)->rb_left; 1865 else { 1866 p = &(*p)->rb_right; 1867 leftmost = false; 1868 } 1869 } 1870 1871 rb_link_node(&he->rb_node, parent, p); 1872 rb_insert_color_cached(&he->rb_node, entries, leftmost); 1873 1874 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1875 if (perf_hpp__is_dynamic_entry(fmt) && 1876 perf_hpp__defined_dynamic_entry(fmt, he->hists)) 1877 fmt->sort(fmt, he, NULL); /* update column width */ 1878 } 1879 } 1880 1881 static void output_resort(struct hists *hists, struct ui_progress *prog, 1882 bool use_callchain, hists__resort_cb_t cb, 1883 void *cb_arg) 1884 { 1885 struct rb_root_cached *root; 1886 struct rb_node *next; 1887 struct hist_entry *n; 1888 u64 callchain_total; 1889 u64 min_callchain_hits; 1890 1891 callchain_total = hists->callchain_period; 1892 if (symbol_conf.filter_relative) 1893 callchain_total = hists->callchain_non_filtered_period; 1894 1895 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1896 1897 hists__reset_stats(hists); 1898 hists__reset_col_len(hists); 1899 1900 if (symbol_conf.report_hierarchy) { 1901 hists__hierarchy_output_resort(hists, prog, 1902 &hists->entries_collapsed, 1903 &hists->entries, 1904 min_callchain_hits, 1905 use_callchain); 1906 hierarchy_recalc_total_periods(hists); 1907 return; 1908 } 1909 1910 if (hists__has(hists, need_collapse)) 1911 root = &hists->entries_collapsed; 1912 else 1913 root = hists->entries_in; 1914 1915 next = rb_first_cached(root); 1916 hists->entries = RB_ROOT_CACHED; 1917 1918 while (next) { 1919 n = rb_entry(next, struct hist_entry, rb_node_in); 1920 next = rb_next(&n->rb_node_in); 1921 1922 if (cb && cb(n, cb_arg)) 1923 continue; 1924 1925 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1926 hists__inc_stats(hists, n); 1927 1928 if (!n->filtered) 1929 hists__calc_col_len(hists, n); 1930 1931 if (prog) 1932 ui_progress__update(prog, 1); 1933 } 1934 } 1935 1936 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog, 1937 hists__resort_cb_t cb, void *cb_arg) 1938 { 1939 bool use_callchain; 1940 1941 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1942 use_callchain = evsel__has_callchain(evsel); 1943 else 1944 use_callchain = symbol_conf.use_callchain; 1945 1946 use_callchain |= symbol_conf.show_branchflag_count; 1947 1948 output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg); 1949 } 1950 1951 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog) 1952 { 1953 return evsel__output_resort_cb(evsel, prog, NULL, NULL); 1954 } 1955 1956 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 1957 { 1958 output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL); 1959 } 1960 1961 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, 1962 hists__resort_cb_t cb) 1963 { 1964 output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL); 1965 } 1966 1967 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 1968 { 1969 if (he->leaf || hmd == HMD_FORCE_SIBLING) 1970 return false; 1971 1972 if (he->unfolded || hmd == HMD_FORCE_CHILD) 1973 return true; 1974 1975 return false; 1976 } 1977 1978 struct rb_node *rb_hierarchy_last(struct rb_node *node) 1979 { 1980 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1981 1982 while (can_goto_child(he, HMD_NORMAL)) { 1983 node = rb_last(&he->hroot_out.rb_root); 1984 he = rb_entry(node, struct hist_entry, rb_node); 1985 } 1986 return node; 1987 } 1988 1989 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 1990 { 1991 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1992 1993 if (can_goto_child(he, hmd)) 1994 node = rb_first_cached(&he->hroot_out); 1995 else 1996 node = rb_next(node); 1997 1998 while (node == NULL) { 1999 he = he->parent_he; 2000 if (he == NULL) 2001 break; 2002 2003 node = rb_next(&he->rb_node); 2004 } 2005 return node; 2006 } 2007 2008 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 2009 { 2010 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2011 2012 node = rb_prev(node); 2013 if (node) 2014 return rb_hierarchy_last(node); 2015 2016 he = he->parent_he; 2017 if (he == NULL) 2018 return NULL; 2019 2020 return &he->rb_node; 2021 } 2022 2023 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 2024 { 2025 struct rb_node *node; 2026 struct hist_entry *child; 2027 float percent; 2028 2029 if (he->leaf) 2030 return false; 2031 2032 node = rb_first_cached(&he->hroot_out); 2033 child = rb_entry(node, struct hist_entry, rb_node); 2034 2035 while (node && child->filtered) { 2036 node = rb_next(node); 2037 child = rb_entry(node, struct hist_entry, rb_node); 2038 } 2039 2040 if (node) 2041 percent = hist_entry__get_percent_limit(child); 2042 else 2043 percent = 0; 2044 2045 return node && percent >= limit; 2046 } 2047 2048 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 2049 enum hist_filter filter) 2050 { 2051 h->filtered &= ~(1 << filter); 2052 2053 if (symbol_conf.report_hierarchy) { 2054 struct hist_entry *parent = h->parent_he; 2055 2056 while (parent) { 2057 he_stat__add_stat(&parent->stat, &h->stat); 2058 2059 parent->filtered &= ~(1 << filter); 2060 2061 if (parent->filtered) 2062 goto next; 2063 2064 /* force fold unfiltered entry for simplicity */ 2065 parent->unfolded = false; 2066 parent->has_no_entry = false; 2067 parent->row_offset = 0; 2068 parent->nr_rows = 0; 2069 next: 2070 parent = parent->parent_he; 2071 } 2072 } 2073 2074 if (h->filtered) 2075 return; 2076 2077 /* force fold unfiltered entry for simplicity */ 2078 h->unfolded = false; 2079 h->has_no_entry = false; 2080 h->row_offset = 0; 2081 h->nr_rows = 0; 2082 2083 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 2084 2085 hists__inc_filter_stats(hists, h); 2086 hists__calc_col_len(hists, h); 2087 } 2088 2089 2090 static bool hists__filter_entry_by_dso(struct hists *hists, 2091 struct hist_entry *he) 2092 { 2093 if (hists->dso_filter != NULL && 2094 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) { 2095 he->filtered |= (1 << HIST_FILTER__DSO); 2096 return true; 2097 } 2098 2099 return false; 2100 } 2101 2102 static bool hists__filter_entry_by_thread(struct hists *hists, 2103 struct hist_entry *he) 2104 { 2105 if (hists->thread_filter != NULL && 2106 he->thread != hists->thread_filter) { 2107 he->filtered |= (1 << HIST_FILTER__THREAD); 2108 return true; 2109 } 2110 2111 return false; 2112 } 2113 2114 static bool hists__filter_entry_by_symbol(struct hists *hists, 2115 struct hist_entry *he) 2116 { 2117 if (hists->symbol_filter_str != NULL && 2118 (!he->ms.sym || strstr(he->ms.sym->name, 2119 hists->symbol_filter_str) == NULL)) { 2120 he->filtered |= (1 << HIST_FILTER__SYMBOL); 2121 return true; 2122 } 2123 2124 return false; 2125 } 2126 2127 static bool hists__filter_entry_by_socket(struct hists *hists, 2128 struct hist_entry *he) 2129 { 2130 if ((hists->socket_filter > -1) && 2131 (he->socket != hists->socket_filter)) { 2132 he->filtered |= (1 << HIST_FILTER__SOCKET); 2133 return true; 2134 } 2135 2136 return false; 2137 } 2138 2139 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 2140 2141 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 2142 { 2143 struct rb_node *nd; 2144 2145 hists->stats.nr_non_filtered_samples = 0; 2146 2147 hists__reset_filter_stats(hists); 2148 hists__reset_col_len(hists); 2149 2150 for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) { 2151 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2152 2153 if (filter(hists, h)) 2154 continue; 2155 2156 hists__remove_entry_filter(hists, h, type); 2157 } 2158 } 2159 2160 static void resort_filtered_entry(struct rb_root_cached *root, 2161 struct hist_entry *he) 2162 { 2163 struct rb_node **p = &root->rb_root.rb_node; 2164 struct rb_node *parent = NULL; 2165 struct hist_entry *iter; 2166 struct rb_root_cached new_root = RB_ROOT_CACHED; 2167 struct rb_node *nd; 2168 bool leftmost = true; 2169 2170 while (*p != NULL) { 2171 parent = *p; 2172 iter = rb_entry(parent, struct hist_entry, rb_node); 2173 2174 if (hist_entry__sort(he, iter) > 0) 2175 p = &(*p)->rb_left; 2176 else { 2177 p = &(*p)->rb_right; 2178 leftmost = false; 2179 } 2180 } 2181 2182 rb_link_node(&he->rb_node, parent, p); 2183 rb_insert_color_cached(&he->rb_node, root, leftmost); 2184 2185 if (he->leaf || he->filtered) 2186 return; 2187 2188 nd = rb_first_cached(&he->hroot_out); 2189 while (nd) { 2190 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2191 2192 nd = rb_next(nd); 2193 rb_erase_cached(&h->rb_node, &he->hroot_out); 2194 2195 resort_filtered_entry(&new_root, h); 2196 } 2197 2198 he->hroot_out = new_root; 2199 } 2200 2201 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 2202 { 2203 struct rb_node *nd; 2204 struct rb_root_cached new_root = RB_ROOT_CACHED; 2205 2206 hists->stats.nr_non_filtered_samples = 0; 2207 2208 hists__reset_filter_stats(hists); 2209 hists__reset_col_len(hists); 2210 2211 nd = rb_first_cached(&hists->entries); 2212 while (nd) { 2213 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2214 int ret; 2215 2216 ret = hist_entry__filter(h, type, arg); 2217 2218 /* 2219 * case 1. non-matching type 2220 * zero out the period, set filter marker and move to child 2221 */ 2222 if (ret < 0) { 2223 memset(&h->stat, 0, sizeof(h->stat)); 2224 h->filtered |= (1 << type); 2225 2226 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 2227 } 2228 /* 2229 * case 2. matched type (filter out) 2230 * set filter marker and move to next 2231 */ 2232 else if (ret == 1) { 2233 h->filtered |= (1 << type); 2234 2235 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2236 } 2237 /* 2238 * case 3. ok (not filtered) 2239 * add period to hists and parents, erase the filter marker 2240 * and move to next sibling 2241 */ 2242 else { 2243 hists__remove_entry_filter(hists, h, type); 2244 2245 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2246 } 2247 } 2248 2249 hierarchy_recalc_total_periods(hists); 2250 2251 /* 2252 * resort output after applying a new filter since filter in a lower 2253 * hierarchy can change periods in a upper hierarchy. 2254 */ 2255 nd = rb_first_cached(&hists->entries); 2256 while (nd) { 2257 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2258 2259 nd = rb_next(nd); 2260 rb_erase_cached(&h->rb_node, &hists->entries); 2261 2262 resort_filtered_entry(&new_root, h); 2263 } 2264 2265 hists->entries = new_root; 2266 } 2267 2268 void hists__filter_by_thread(struct hists *hists) 2269 { 2270 if (symbol_conf.report_hierarchy) 2271 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 2272 hists->thread_filter); 2273 else 2274 hists__filter_by_type(hists, HIST_FILTER__THREAD, 2275 hists__filter_entry_by_thread); 2276 } 2277 2278 void hists__filter_by_dso(struct hists *hists) 2279 { 2280 if (symbol_conf.report_hierarchy) 2281 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 2282 hists->dso_filter); 2283 else 2284 hists__filter_by_type(hists, HIST_FILTER__DSO, 2285 hists__filter_entry_by_dso); 2286 } 2287 2288 void hists__filter_by_symbol(struct hists *hists) 2289 { 2290 if (symbol_conf.report_hierarchy) 2291 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2292 hists->symbol_filter_str); 2293 else 2294 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2295 hists__filter_entry_by_symbol); 2296 } 2297 2298 void hists__filter_by_socket(struct hists *hists) 2299 { 2300 if (symbol_conf.report_hierarchy) 2301 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2302 &hists->socket_filter); 2303 else 2304 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2305 hists__filter_entry_by_socket); 2306 } 2307 2308 void events_stats__inc(struct events_stats *stats, u32 type) 2309 { 2310 ++stats->nr_events[0]; 2311 ++stats->nr_events[type]; 2312 } 2313 2314 void hists__inc_nr_events(struct hists *hists, u32 type) 2315 { 2316 events_stats__inc(&hists->stats, type); 2317 } 2318 2319 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2320 { 2321 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE); 2322 if (!filtered) 2323 hists->stats.nr_non_filtered_samples++; 2324 } 2325 2326 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2327 struct hist_entry *pair) 2328 { 2329 struct rb_root_cached *root; 2330 struct rb_node **p; 2331 struct rb_node *parent = NULL; 2332 struct hist_entry *he; 2333 int64_t cmp; 2334 bool leftmost = true; 2335 2336 if (hists__has(hists, need_collapse)) 2337 root = &hists->entries_collapsed; 2338 else 2339 root = hists->entries_in; 2340 2341 p = &root->rb_root.rb_node; 2342 2343 while (*p != NULL) { 2344 parent = *p; 2345 he = rb_entry(parent, struct hist_entry, rb_node_in); 2346 2347 cmp = hist_entry__collapse(he, pair); 2348 2349 if (!cmp) 2350 goto out; 2351 2352 if (cmp < 0) 2353 p = &(*p)->rb_left; 2354 else { 2355 p = &(*p)->rb_right; 2356 leftmost = false; 2357 } 2358 } 2359 2360 he = hist_entry__new(pair, true); 2361 if (he) { 2362 memset(&he->stat, 0, sizeof(he->stat)); 2363 he->hists = hists; 2364 if (symbol_conf.cumulate_callchain) 2365 memset(he->stat_acc, 0, sizeof(he->stat)); 2366 rb_link_node(&he->rb_node_in, parent, p); 2367 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2368 hists__inc_stats(hists, he); 2369 he->dummy = true; 2370 } 2371 out: 2372 return he; 2373 } 2374 2375 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, 2376 struct rb_root_cached *root, 2377 struct hist_entry *pair) 2378 { 2379 struct rb_node **p; 2380 struct rb_node *parent = NULL; 2381 struct hist_entry *he; 2382 struct perf_hpp_fmt *fmt; 2383 bool leftmost = true; 2384 2385 p = &root->rb_root.rb_node; 2386 while (*p != NULL) { 2387 int64_t cmp = 0; 2388 2389 parent = *p; 2390 he = rb_entry(parent, struct hist_entry, rb_node_in); 2391 2392 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2393 cmp = fmt->collapse(fmt, he, pair); 2394 if (cmp) 2395 break; 2396 } 2397 if (!cmp) 2398 goto out; 2399 2400 if (cmp < 0) 2401 p = &parent->rb_left; 2402 else { 2403 p = &parent->rb_right; 2404 leftmost = false; 2405 } 2406 } 2407 2408 he = hist_entry__new(pair, true); 2409 if (he) { 2410 rb_link_node(&he->rb_node_in, parent, p); 2411 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2412 2413 he->dummy = true; 2414 he->hists = hists; 2415 memset(&he->stat, 0, sizeof(he->stat)); 2416 hists__inc_stats(hists, he); 2417 } 2418 out: 2419 return he; 2420 } 2421 2422 static struct hist_entry *hists__find_entry(struct hists *hists, 2423 struct hist_entry *he) 2424 { 2425 struct rb_node *n; 2426 2427 if (hists__has(hists, need_collapse)) 2428 n = hists->entries_collapsed.rb_root.rb_node; 2429 else 2430 n = hists->entries_in->rb_root.rb_node; 2431 2432 while (n) { 2433 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2434 int64_t cmp = hist_entry__collapse(iter, he); 2435 2436 if (cmp < 0) 2437 n = n->rb_left; 2438 else if (cmp > 0) 2439 n = n->rb_right; 2440 else 2441 return iter; 2442 } 2443 2444 return NULL; 2445 } 2446 2447 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root, 2448 struct hist_entry *he) 2449 { 2450 struct rb_node *n = root->rb_root.rb_node; 2451 2452 while (n) { 2453 struct hist_entry *iter; 2454 struct perf_hpp_fmt *fmt; 2455 int64_t cmp = 0; 2456 2457 iter = rb_entry(n, struct hist_entry, rb_node_in); 2458 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2459 cmp = fmt->collapse(fmt, iter, he); 2460 if (cmp) 2461 break; 2462 } 2463 2464 if (cmp < 0) 2465 n = n->rb_left; 2466 else if (cmp > 0) 2467 n = n->rb_right; 2468 else 2469 return iter; 2470 } 2471 2472 return NULL; 2473 } 2474 2475 static void hists__match_hierarchy(struct rb_root_cached *leader_root, 2476 struct rb_root_cached *other_root) 2477 { 2478 struct rb_node *nd; 2479 struct hist_entry *pos, *pair; 2480 2481 for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) { 2482 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2483 pair = hists__find_hierarchy_entry(other_root, pos); 2484 2485 if (pair) { 2486 hist_entry__add_pair(pair, pos); 2487 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); 2488 } 2489 } 2490 } 2491 2492 /* 2493 * Look for pairs to link to the leader buckets (hist_entries): 2494 */ 2495 void hists__match(struct hists *leader, struct hists *other) 2496 { 2497 struct rb_root_cached *root; 2498 struct rb_node *nd; 2499 struct hist_entry *pos, *pair; 2500 2501 if (symbol_conf.report_hierarchy) { 2502 /* hierarchy report always collapses entries */ 2503 return hists__match_hierarchy(&leader->entries_collapsed, 2504 &other->entries_collapsed); 2505 } 2506 2507 if (hists__has(leader, need_collapse)) 2508 root = &leader->entries_collapsed; 2509 else 2510 root = leader->entries_in; 2511 2512 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2513 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2514 pair = hists__find_entry(other, pos); 2515 2516 if (pair) 2517 hist_entry__add_pair(pair, pos); 2518 } 2519 } 2520 2521 static int hists__link_hierarchy(struct hists *leader_hists, 2522 struct hist_entry *parent, 2523 struct rb_root_cached *leader_root, 2524 struct rb_root_cached *other_root) 2525 { 2526 struct rb_node *nd; 2527 struct hist_entry *pos, *leader; 2528 2529 for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) { 2530 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2531 2532 if (hist_entry__has_pairs(pos)) { 2533 bool found = false; 2534 2535 list_for_each_entry(leader, &pos->pairs.head, pairs.node) { 2536 if (leader->hists == leader_hists) { 2537 found = true; 2538 break; 2539 } 2540 } 2541 if (!found) 2542 return -1; 2543 } else { 2544 leader = add_dummy_hierarchy_entry(leader_hists, 2545 leader_root, pos); 2546 if (leader == NULL) 2547 return -1; 2548 2549 /* do not point parent in the pos */ 2550 leader->parent_he = parent; 2551 2552 hist_entry__add_pair(pos, leader); 2553 } 2554 2555 if (!pos->leaf) { 2556 if (hists__link_hierarchy(leader_hists, leader, 2557 &leader->hroot_in, 2558 &pos->hroot_in) < 0) 2559 return -1; 2560 } 2561 } 2562 return 0; 2563 } 2564 2565 /* 2566 * Look for entries in the other hists that are not present in the leader, if 2567 * we find them, just add a dummy entry on the leader hists, with period=0, 2568 * nr_events=0, to serve as the list header. 2569 */ 2570 int hists__link(struct hists *leader, struct hists *other) 2571 { 2572 struct rb_root_cached *root; 2573 struct rb_node *nd; 2574 struct hist_entry *pos, *pair; 2575 2576 if (symbol_conf.report_hierarchy) { 2577 /* hierarchy report always collapses entries */ 2578 return hists__link_hierarchy(leader, NULL, 2579 &leader->entries_collapsed, 2580 &other->entries_collapsed); 2581 } 2582 2583 if (hists__has(other, need_collapse)) 2584 root = &other->entries_collapsed; 2585 else 2586 root = other->entries_in; 2587 2588 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2589 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2590 2591 if (!hist_entry__has_pairs(pos)) { 2592 pair = hists__add_dummy_entry(leader, pos); 2593 if (pair == NULL) 2594 return -1; 2595 hist_entry__add_pair(pos, pair); 2596 } 2597 } 2598 2599 return 0; 2600 } 2601 2602 int hists__unlink(struct hists *hists) 2603 { 2604 struct rb_root_cached *root; 2605 struct rb_node *nd; 2606 struct hist_entry *pos; 2607 2608 if (hists__has(hists, need_collapse)) 2609 root = &hists->entries_collapsed; 2610 else 2611 root = hists->entries_in; 2612 2613 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2614 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2615 list_del_init(&pos->pairs.node); 2616 } 2617 2618 return 0; 2619 } 2620 2621 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2622 struct perf_sample *sample, bool nonany_branch_mode, 2623 u64 *total_cycles) 2624 { 2625 struct branch_info *bi; 2626 struct branch_entry *entries = perf_sample__branch_entries(sample); 2627 2628 /* If we have branch cycles always annotate them. */ 2629 if (bs && bs->nr && entries[0].flags.cycles) { 2630 int i; 2631 2632 bi = sample__resolve_bstack(sample, al); 2633 if (bi) { 2634 struct addr_map_symbol *prev = NULL; 2635 2636 /* 2637 * Ignore errors, still want to process the 2638 * other entries. 2639 * 2640 * For non standard branch modes always 2641 * force no IPC (prev == NULL) 2642 * 2643 * Note that perf stores branches reversed from 2644 * program order! 2645 */ 2646 for (i = bs->nr - 1; i >= 0; i--) { 2647 addr_map_symbol__account_cycles(&bi[i].from, 2648 nonany_branch_mode ? NULL : prev, 2649 bi[i].flags.cycles); 2650 prev = &bi[i].to; 2651 2652 if (total_cycles) 2653 *total_cycles += bi[i].flags.cycles; 2654 } 2655 free(bi); 2656 } 2657 } 2658 } 2659 2660 size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp) 2661 { 2662 struct evsel *pos; 2663 size_t ret = 0; 2664 2665 evlist__for_each_entry(evlist, pos) { 2666 ret += fprintf(fp, "%s stats:\n", evsel__name(pos)); 2667 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp); 2668 } 2669 2670 return ret; 2671 } 2672 2673 2674 u64 hists__total_period(struct hists *hists) 2675 { 2676 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2677 hists->stats.total_period; 2678 } 2679 2680 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq) 2681 { 2682 char unit; 2683 int printed; 2684 const struct dso *dso = hists->dso_filter; 2685 struct thread *thread = hists->thread_filter; 2686 int socket_id = hists->socket_filter; 2687 unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE]; 2688 u64 nr_events = hists->stats.total_period; 2689 struct evsel *evsel = hists_to_evsel(hists); 2690 const char *ev_name = evsel__name(evsel); 2691 char buf[512], sample_freq_str[64] = ""; 2692 size_t buflen = sizeof(buf); 2693 char ref[30] = " show reference callgraph, "; 2694 bool enable_ref = false; 2695 2696 if (symbol_conf.filter_relative) { 2697 nr_samples = hists->stats.nr_non_filtered_samples; 2698 nr_events = hists->stats.total_non_filtered_period; 2699 } 2700 2701 if (evsel__is_group_event(evsel)) { 2702 struct evsel *pos; 2703 2704 evsel__group_desc(evsel, buf, buflen); 2705 ev_name = buf; 2706 2707 for_each_group_member(pos, evsel) { 2708 struct hists *pos_hists = evsel__hists(pos); 2709 2710 if (symbol_conf.filter_relative) { 2711 nr_samples += pos_hists->stats.nr_non_filtered_samples; 2712 nr_events += pos_hists->stats.total_non_filtered_period; 2713 } else { 2714 nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE]; 2715 nr_events += pos_hists->stats.total_period; 2716 } 2717 } 2718 } 2719 2720 if (symbol_conf.show_ref_callgraph && 2721 strstr(ev_name, "call-graph=no")) 2722 enable_ref = true; 2723 2724 if (show_freq) 2725 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq); 2726 2727 nr_samples = convert_unit(nr_samples, &unit); 2728 printed = scnprintf(bf, size, 2729 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64, 2730 nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "", 2731 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events); 2732 2733 2734 if (hists->uid_filter_str) 2735 printed += snprintf(bf + printed, size - printed, 2736 ", UID: %s", hists->uid_filter_str); 2737 if (thread) { 2738 if (hists__has(hists, thread)) { 2739 printed += scnprintf(bf + printed, size - printed, 2740 ", Thread: %s(%d)", 2741 (thread->comm_set ? thread__comm_str(thread) : ""), 2742 thread->tid); 2743 } else { 2744 printed += scnprintf(bf + printed, size - printed, 2745 ", Thread: %s", 2746 (thread->comm_set ? thread__comm_str(thread) : "")); 2747 } 2748 } 2749 if (dso) 2750 printed += scnprintf(bf + printed, size - printed, 2751 ", DSO: %s", dso->short_name); 2752 if (socket_id > -1) 2753 printed += scnprintf(bf + printed, size - printed, 2754 ", Processor Socket: %d", socket_id); 2755 2756 return printed; 2757 } 2758 2759 int parse_filter_percentage(const struct option *opt __maybe_unused, 2760 const char *arg, int unset __maybe_unused) 2761 { 2762 if (!strcmp(arg, "relative")) 2763 symbol_conf.filter_relative = true; 2764 else if (!strcmp(arg, "absolute")) 2765 symbol_conf.filter_relative = false; 2766 else { 2767 pr_debug("Invalid percentage: %s\n", arg); 2768 return -1; 2769 } 2770 2771 return 0; 2772 } 2773 2774 int perf_hist_config(const char *var, const char *value) 2775 { 2776 if (!strcmp(var, "hist.percentage")) 2777 return parse_filter_percentage(NULL, value, 0); 2778 2779 return 0; 2780 } 2781 2782 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2783 { 2784 memset(hists, 0, sizeof(*hists)); 2785 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED; 2786 hists->entries_in = &hists->entries_in_array[0]; 2787 hists->entries_collapsed = RB_ROOT_CACHED; 2788 hists->entries = RB_ROOT_CACHED; 2789 pthread_mutex_init(&hists->lock, NULL); 2790 hists->socket_filter = -1; 2791 hists->hpp_list = hpp_list; 2792 INIT_LIST_HEAD(&hists->hpp_formats); 2793 return 0; 2794 } 2795 2796 static void hists__delete_remaining_entries(struct rb_root_cached *root) 2797 { 2798 struct rb_node *node; 2799 struct hist_entry *he; 2800 2801 while (!RB_EMPTY_ROOT(&root->rb_root)) { 2802 node = rb_first_cached(root); 2803 rb_erase_cached(node, root); 2804 2805 he = rb_entry(node, struct hist_entry, rb_node_in); 2806 hist_entry__delete(he); 2807 } 2808 } 2809 2810 static void hists__delete_all_entries(struct hists *hists) 2811 { 2812 hists__delete_entries(hists); 2813 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2814 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2815 hists__delete_remaining_entries(&hists->entries_collapsed); 2816 } 2817 2818 static void hists_evsel__exit(struct evsel *evsel) 2819 { 2820 struct hists *hists = evsel__hists(evsel); 2821 struct perf_hpp_fmt *fmt, *pos; 2822 struct perf_hpp_list_node *node, *tmp; 2823 2824 hists__delete_all_entries(hists); 2825 2826 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2827 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2828 list_del_init(&fmt->list); 2829 free(fmt); 2830 } 2831 list_del_init(&node->list); 2832 free(node); 2833 } 2834 } 2835 2836 static int hists_evsel__init(struct evsel *evsel) 2837 { 2838 struct hists *hists = evsel__hists(evsel); 2839 2840 __hists__init(hists, &perf_hpp_list); 2841 return 0; 2842 } 2843 2844 /* 2845 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2846 * stored in the rbtree... 2847 */ 2848 2849 int hists__init(void) 2850 { 2851 int err = evsel__object_config(sizeof(struct hists_evsel), 2852 hists_evsel__init, hists_evsel__exit); 2853 if (err) 2854 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2855 2856 return err; 2857 } 2858 2859 void perf_hpp_list__init(struct perf_hpp_list *list) 2860 { 2861 INIT_LIST_HEAD(&list->fields); 2862 INIT_LIST_HEAD(&list->sorts); 2863 } 2864