xref: /linux/tools/perf/util/hist.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "callchain.h"
3 #include "debug.h"
4 #include "dso.h"
5 #include "build-id.h"
6 #include "hist.h"
7 #include "map.h"
8 #include "map_symbol.h"
9 #include "branch.h"
10 #include "mem-events.h"
11 #include "session.h"
12 #include "namespaces.h"
13 #include "cgroup.h"
14 #include "sort.h"
15 #include "units.h"
16 #include "evlist.h"
17 #include "evsel.h"
18 #include "annotate.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "thread.h"
22 #include "block-info.h"
23 #include "ui/progress.h"
24 #include <errno.h>
25 #include <math.h>
26 #include <inttypes.h>
27 #include <sys/param.h>
28 #include <linux/rbtree.h>
29 #include <linux/string.h>
30 #include <linux/time64.h>
31 #include <linux/zalloc.h>
32 
33 static bool hists__filter_entry_by_dso(struct hists *hists,
34 				       struct hist_entry *he);
35 static bool hists__filter_entry_by_thread(struct hists *hists,
36 					  struct hist_entry *he);
37 static bool hists__filter_entry_by_symbol(struct hists *hists,
38 					  struct hist_entry *he);
39 static bool hists__filter_entry_by_socket(struct hists *hists,
40 					  struct hist_entry *he);
41 
42 u16 hists__col_len(struct hists *hists, enum hist_column col)
43 {
44 	return hists->col_len[col];
45 }
46 
47 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
48 {
49 	hists->col_len[col] = len;
50 }
51 
52 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
53 {
54 	if (len > hists__col_len(hists, col)) {
55 		hists__set_col_len(hists, col, len);
56 		return true;
57 	}
58 	return false;
59 }
60 
61 void hists__reset_col_len(struct hists *hists)
62 {
63 	enum hist_column col;
64 
65 	for (col = 0; col < HISTC_NR_COLS; ++col)
66 		hists__set_col_len(hists, col, 0);
67 }
68 
69 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
70 {
71 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
72 
73 	if (hists__col_len(hists, dso) < unresolved_col_width &&
74 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
75 	    !symbol_conf.dso_list)
76 		hists__set_col_len(hists, dso, unresolved_col_width);
77 }
78 
79 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
80 {
81 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
82 	int symlen;
83 	u16 len;
84 
85 	if (h->block_info)
86 		return;
87 	/*
88 	 * +4 accounts for '[x] ' priv level info
89 	 * +2 accounts for 0x prefix on raw addresses
90 	 * +3 accounts for ' y ' symtab origin info
91 	 */
92 	if (h->ms.sym) {
93 		symlen = h->ms.sym->namelen + 4;
94 		if (verbose > 0)
95 			symlen += BITS_PER_LONG / 4 + 2 + 3;
96 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
97 	} else {
98 		symlen = unresolved_col_width + 4 + 2;
99 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
100 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
101 	}
102 
103 	len = thread__comm_len(h->thread);
104 	if (hists__new_col_len(hists, HISTC_COMM, len))
105 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
106 
107 	if (h->ms.map) {
108 		len = dso__name_len(h->ms.map->dso);
109 		hists__new_col_len(hists, HISTC_DSO, len);
110 	}
111 
112 	if (h->parent)
113 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
114 
115 	if (h->branch_info) {
116 		if (h->branch_info->from.ms.sym) {
117 			symlen = (int)h->branch_info->from.ms.sym->namelen + 4;
118 			if (verbose > 0)
119 				symlen += BITS_PER_LONG / 4 + 2 + 3;
120 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
121 
122 			symlen = dso__name_len(h->branch_info->from.ms.map->dso);
123 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
124 		} else {
125 			symlen = unresolved_col_width + 4 + 2;
126 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
127 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
128 		}
129 
130 		if (h->branch_info->to.ms.sym) {
131 			symlen = (int)h->branch_info->to.ms.sym->namelen + 4;
132 			if (verbose > 0)
133 				symlen += BITS_PER_LONG / 4 + 2 + 3;
134 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
135 
136 			symlen = dso__name_len(h->branch_info->to.ms.map->dso);
137 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
138 		} else {
139 			symlen = unresolved_col_width + 4 + 2;
140 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
141 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
142 		}
143 
144 		if (h->branch_info->srcline_from)
145 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
146 					strlen(h->branch_info->srcline_from));
147 		if (h->branch_info->srcline_to)
148 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
149 					strlen(h->branch_info->srcline_to));
150 	}
151 
152 	if (h->mem_info) {
153 		if (h->mem_info->daddr.ms.sym) {
154 			symlen = (int)h->mem_info->daddr.ms.sym->namelen + 4
155 			       + unresolved_col_width + 2;
156 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
157 					   symlen);
158 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
159 					   symlen + 1);
160 		} else {
161 			symlen = unresolved_col_width + 4 + 2;
162 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
163 					   symlen);
164 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
165 					   symlen);
166 		}
167 
168 		if (h->mem_info->iaddr.ms.sym) {
169 			symlen = (int)h->mem_info->iaddr.ms.sym->namelen + 4
170 			       + unresolved_col_width + 2;
171 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
172 					   symlen);
173 		} else {
174 			symlen = unresolved_col_width + 4 + 2;
175 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
176 					   symlen);
177 		}
178 
179 		if (h->mem_info->daddr.ms.map) {
180 			symlen = dso__name_len(h->mem_info->daddr.ms.map->dso);
181 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
182 					   symlen);
183 		} else {
184 			symlen = unresolved_col_width + 4 + 2;
185 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
186 		}
187 
188 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
189 				   unresolved_col_width + 4 + 2);
190 
191 		hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE,
192 				   unresolved_col_width + 4 + 2);
193 
194 	} else {
195 		symlen = unresolved_col_width + 4 + 2;
196 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
197 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
198 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
199 	}
200 
201 	hists__new_col_len(hists, HISTC_CGROUP, 6);
202 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
203 	hists__new_col_len(hists, HISTC_CPU, 3);
204 	hists__new_col_len(hists, HISTC_SOCKET, 6);
205 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
206 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
207 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
208 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
209 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
210 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
211 	if (symbol_conf.nanosecs)
212 		hists__new_col_len(hists, HISTC_TIME, 16);
213 	else
214 		hists__new_col_len(hists, HISTC_TIME, 12);
215 
216 	if (h->srcline) {
217 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
218 		hists__new_col_len(hists, HISTC_SRCLINE, len);
219 	}
220 
221 	if (h->srcfile)
222 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
223 
224 	if (h->transaction)
225 		hists__new_col_len(hists, HISTC_TRANSACTION,
226 				   hist_entry__transaction_len());
227 
228 	if (h->trace_output)
229 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
230 
231 	if (h->cgroup) {
232 		const char *cgrp_name = "unknown";
233 		struct cgroup *cgrp = cgroup__find(h->ms.maps->machine->env,
234 						   h->cgroup);
235 		if (cgrp != NULL)
236 			cgrp_name = cgrp->name;
237 
238 		hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name));
239 	}
240 }
241 
242 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
243 {
244 	struct rb_node *next = rb_first_cached(&hists->entries);
245 	struct hist_entry *n;
246 	int row = 0;
247 
248 	hists__reset_col_len(hists);
249 
250 	while (next && row++ < max_rows) {
251 		n = rb_entry(next, struct hist_entry, rb_node);
252 		if (!n->filtered)
253 			hists__calc_col_len(hists, n);
254 		next = rb_next(&n->rb_node);
255 	}
256 }
257 
258 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
259 					unsigned int cpumode, u64 period)
260 {
261 	switch (cpumode) {
262 	case PERF_RECORD_MISC_KERNEL:
263 		he_stat->period_sys += period;
264 		break;
265 	case PERF_RECORD_MISC_USER:
266 		he_stat->period_us += period;
267 		break;
268 	case PERF_RECORD_MISC_GUEST_KERNEL:
269 		he_stat->period_guest_sys += period;
270 		break;
271 	case PERF_RECORD_MISC_GUEST_USER:
272 		he_stat->period_guest_us += period;
273 		break;
274 	default:
275 		break;
276 	}
277 }
278 
279 static long hist_time(unsigned long htime)
280 {
281 	unsigned long time_quantum = symbol_conf.time_quantum;
282 	if (time_quantum)
283 		return (htime / time_quantum) * time_quantum;
284 	return htime;
285 }
286 
287 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
288 				u64 weight)
289 {
290 
291 	he_stat->period		+= period;
292 	he_stat->weight		+= weight;
293 	he_stat->nr_events	+= 1;
294 }
295 
296 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
297 {
298 	dest->period		+= src->period;
299 	dest->period_sys	+= src->period_sys;
300 	dest->period_us		+= src->period_us;
301 	dest->period_guest_sys	+= src->period_guest_sys;
302 	dest->period_guest_us	+= src->period_guest_us;
303 	dest->nr_events		+= src->nr_events;
304 	dest->weight		+= src->weight;
305 }
306 
307 static void he_stat__decay(struct he_stat *he_stat)
308 {
309 	he_stat->period = (he_stat->period * 7) / 8;
310 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
311 	/* XXX need decay for weight too? */
312 }
313 
314 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
315 
316 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
317 {
318 	u64 prev_period = he->stat.period;
319 	u64 diff;
320 
321 	if (prev_period == 0)
322 		return true;
323 
324 	he_stat__decay(&he->stat);
325 	if (symbol_conf.cumulate_callchain)
326 		he_stat__decay(he->stat_acc);
327 	decay_callchain(he->callchain);
328 
329 	diff = prev_period - he->stat.period;
330 
331 	if (!he->depth) {
332 		hists->stats.total_period -= diff;
333 		if (!he->filtered)
334 			hists->stats.total_non_filtered_period -= diff;
335 	}
336 
337 	if (!he->leaf) {
338 		struct hist_entry *child;
339 		struct rb_node *node = rb_first_cached(&he->hroot_out);
340 		while (node) {
341 			child = rb_entry(node, struct hist_entry, rb_node);
342 			node = rb_next(node);
343 
344 			if (hists__decay_entry(hists, child))
345 				hists__delete_entry(hists, child);
346 		}
347 	}
348 
349 	return he->stat.period == 0;
350 }
351 
352 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
353 {
354 	struct rb_root_cached *root_in;
355 	struct rb_root_cached *root_out;
356 
357 	if (he->parent_he) {
358 		root_in  = &he->parent_he->hroot_in;
359 		root_out = &he->parent_he->hroot_out;
360 	} else {
361 		if (hists__has(hists, need_collapse))
362 			root_in = &hists->entries_collapsed;
363 		else
364 			root_in = hists->entries_in;
365 		root_out = &hists->entries;
366 	}
367 
368 	rb_erase_cached(&he->rb_node_in, root_in);
369 	rb_erase_cached(&he->rb_node, root_out);
370 
371 	--hists->nr_entries;
372 	if (!he->filtered)
373 		--hists->nr_non_filtered_entries;
374 
375 	hist_entry__delete(he);
376 }
377 
378 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
379 {
380 	struct rb_node *next = rb_first_cached(&hists->entries);
381 	struct hist_entry *n;
382 
383 	while (next) {
384 		n = rb_entry(next, struct hist_entry, rb_node);
385 		next = rb_next(&n->rb_node);
386 		if (((zap_user && n->level == '.') ||
387 		     (zap_kernel && n->level != '.') ||
388 		     hists__decay_entry(hists, n))) {
389 			hists__delete_entry(hists, n);
390 		}
391 	}
392 }
393 
394 void hists__delete_entries(struct hists *hists)
395 {
396 	struct rb_node *next = rb_first_cached(&hists->entries);
397 	struct hist_entry *n;
398 
399 	while (next) {
400 		n = rb_entry(next, struct hist_entry, rb_node);
401 		next = rb_next(&n->rb_node);
402 
403 		hists__delete_entry(hists, n);
404 	}
405 }
406 
407 struct hist_entry *hists__get_entry(struct hists *hists, int idx)
408 {
409 	struct rb_node *next = rb_first_cached(&hists->entries);
410 	struct hist_entry *n;
411 	int i = 0;
412 
413 	while (next) {
414 		n = rb_entry(next, struct hist_entry, rb_node);
415 		if (i == idx)
416 			return n;
417 
418 		next = rb_next(&n->rb_node);
419 		i++;
420 	}
421 
422 	return NULL;
423 }
424 
425 /*
426  * histogram, sorted on item, collects periods
427  */
428 
429 static int hist_entry__init(struct hist_entry *he,
430 			    struct hist_entry *template,
431 			    bool sample_self,
432 			    size_t callchain_size)
433 {
434 	*he = *template;
435 	he->callchain_size = callchain_size;
436 
437 	if (symbol_conf.cumulate_callchain) {
438 		he->stat_acc = malloc(sizeof(he->stat));
439 		if (he->stat_acc == NULL)
440 			return -ENOMEM;
441 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
442 		if (!sample_self)
443 			memset(&he->stat, 0, sizeof(he->stat));
444 	}
445 
446 	map__get(he->ms.map);
447 
448 	if (he->branch_info) {
449 		/*
450 		 * This branch info is (a part of) allocated from
451 		 * sample__resolve_bstack() and will be freed after
452 		 * adding new entries.  So we need to save a copy.
453 		 */
454 		he->branch_info = malloc(sizeof(*he->branch_info));
455 		if (he->branch_info == NULL)
456 			goto err;
457 
458 		memcpy(he->branch_info, template->branch_info,
459 		       sizeof(*he->branch_info));
460 
461 		map__get(he->branch_info->from.ms.map);
462 		map__get(he->branch_info->to.ms.map);
463 	}
464 
465 	if (he->mem_info) {
466 		map__get(he->mem_info->iaddr.ms.map);
467 		map__get(he->mem_info->daddr.ms.map);
468 	}
469 
470 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
471 		callchain_init(he->callchain);
472 
473 	if (he->raw_data) {
474 		he->raw_data = memdup(he->raw_data, he->raw_size);
475 		if (he->raw_data == NULL)
476 			goto err_infos;
477 	}
478 
479 	if (he->srcline) {
480 		he->srcline = strdup(he->srcline);
481 		if (he->srcline == NULL)
482 			goto err_rawdata;
483 	}
484 
485 	if (symbol_conf.res_sample) {
486 		he->res_samples = calloc(sizeof(struct res_sample),
487 					symbol_conf.res_sample);
488 		if (!he->res_samples)
489 			goto err_srcline;
490 	}
491 
492 	INIT_LIST_HEAD(&he->pairs.node);
493 	thread__get(he->thread);
494 	he->hroot_in  = RB_ROOT_CACHED;
495 	he->hroot_out = RB_ROOT_CACHED;
496 
497 	if (!symbol_conf.report_hierarchy)
498 		he->leaf = true;
499 
500 	return 0;
501 
502 err_srcline:
503 	zfree(&he->srcline);
504 
505 err_rawdata:
506 	zfree(&he->raw_data);
507 
508 err_infos:
509 	if (he->branch_info) {
510 		map__put(he->branch_info->from.ms.map);
511 		map__put(he->branch_info->to.ms.map);
512 		zfree(&he->branch_info);
513 	}
514 	if (he->mem_info) {
515 		map__put(he->mem_info->iaddr.ms.map);
516 		map__put(he->mem_info->daddr.ms.map);
517 	}
518 err:
519 	map__zput(he->ms.map);
520 	zfree(&he->stat_acc);
521 	return -ENOMEM;
522 }
523 
524 static void *hist_entry__zalloc(size_t size)
525 {
526 	return zalloc(size + sizeof(struct hist_entry));
527 }
528 
529 static void hist_entry__free(void *ptr)
530 {
531 	free(ptr);
532 }
533 
534 static struct hist_entry_ops default_ops = {
535 	.new	= hist_entry__zalloc,
536 	.free	= hist_entry__free,
537 };
538 
539 static struct hist_entry *hist_entry__new(struct hist_entry *template,
540 					  bool sample_self)
541 {
542 	struct hist_entry_ops *ops = template->ops;
543 	size_t callchain_size = 0;
544 	struct hist_entry *he;
545 	int err = 0;
546 
547 	if (!ops)
548 		ops = template->ops = &default_ops;
549 
550 	if (symbol_conf.use_callchain)
551 		callchain_size = sizeof(struct callchain_root);
552 
553 	he = ops->new(callchain_size);
554 	if (he) {
555 		err = hist_entry__init(he, template, sample_self, callchain_size);
556 		if (err) {
557 			ops->free(he);
558 			he = NULL;
559 		}
560 	}
561 
562 	return he;
563 }
564 
565 static u8 symbol__parent_filter(const struct symbol *parent)
566 {
567 	if (symbol_conf.exclude_other && parent == NULL)
568 		return 1 << HIST_FILTER__PARENT;
569 	return 0;
570 }
571 
572 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
573 {
574 	if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
575 		return;
576 
577 	he->hists->callchain_period += period;
578 	if (!he->filtered)
579 		he->hists->callchain_non_filtered_period += period;
580 }
581 
582 static struct hist_entry *hists__findnew_entry(struct hists *hists,
583 					       struct hist_entry *entry,
584 					       struct addr_location *al,
585 					       bool sample_self)
586 {
587 	struct rb_node **p;
588 	struct rb_node *parent = NULL;
589 	struct hist_entry *he;
590 	int64_t cmp;
591 	u64 period = entry->stat.period;
592 	u64 weight = entry->stat.weight;
593 	bool leftmost = true;
594 
595 	p = &hists->entries_in->rb_root.rb_node;
596 
597 	while (*p != NULL) {
598 		parent = *p;
599 		he = rb_entry(parent, struct hist_entry, rb_node_in);
600 
601 		/*
602 		 * Make sure that it receives arguments in a same order as
603 		 * hist_entry__collapse() so that we can use an appropriate
604 		 * function when searching an entry regardless which sort
605 		 * keys were used.
606 		 */
607 		cmp = hist_entry__cmp(he, entry);
608 
609 		if (!cmp) {
610 			if (sample_self) {
611 				he_stat__add_period(&he->stat, period, weight);
612 				hist_entry__add_callchain_period(he, period);
613 			}
614 			if (symbol_conf.cumulate_callchain)
615 				he_stat__add_period(he->stat_acc, period, weight);
616 
617 			/*
618 			 * This mem info was allocated from sample__resolve_mem
619 			 * and will not be used anymore.
620 			 */
621 			mem_info__zput(entry->mem_info);
622 
623 			block_info__zput(entry->block_info);
624 
625 			/* If the map of an existing hist_entry has
626 			 * become out-of-date due to an exec() or
627 			 * similar, update it.  Otherwise we will
628 			 * mis-adjust symbol addresses when computing
629 			 * the history counter to increment.
630 			 */
631 			if (he->ms.map != entry->ms.map) {
632 				map__put(he->ms.map);
633 				he->ms.map = map__get(entry->ms.map);
634 			}
635 			goto out;
636 		}
637 
638 		if (cmp < 0)
639 			p = &(*p)->rb_left;
640 		else {
641 			p = &(*p)->rb_right;
642 			leftmost = false;
643 		}
644 	}
645 
646 	he = hist_entry__new(entry, sample_self);
647 	if (!he)
648 		return NULL;
649 
650 	if (sample_self)
651 		hist_entry__add_callchain_period(he, period);
652 	hists->nr_entries++;
653 
654 	rb_link_node(&he->rb_node_in, parent, p);
655 	rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
656 out:
657 	if (sample_self)
658 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
659 	if (symbol_conf.cumulate_callchain)
660 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
661 	return he;
662 }
663 
664 static unsigned random_max(unsigned high)
665 {
666 	unsigned thresh = -high % high;
667 	for (;;) {
668 		unsigned r = random();
669 		if (r >= thresh)
670 			return r % high;
671 	}
672 }
673 
674 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
675 {
676 	struct res_sample *r;
677 	int j;
678 
679 	if (he->num_res < symbol_conf.res_sample) {
680 		j = he->num_res++;
681 	} else {
682 		j = random_max(symbol_conf.res_sample);
683 	}
684 	r = &he->res_samples[j];
685 	r->time = sample->time;
686 	r->cpu = sample->cpu;
687 	r->tid = sample->tid;
688 }
689 
690 static struct hist_entry*
691 __hists__add_entry(struct hists *hists,
692 		   struct addr_location *al,
693 		   struct symbol *sym_parent,
694 		   struct branch_info *bi,
695 		   struct mem_info *mi,
696 		   struct block_info *block_info,
697 		   struct perf_sample *sample,
698 		   bool sample_self,
699 		   struct hist_entry_ops *ops)
700 {
701 	struct namespaces *ns = thread__namespaces(al->thread);
702 	struct hist_entry entry = {
703 		.thread	= al->thread,
704 		.comm = thread__comm(al->thread),
705 		.cgroup_id = {
706 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
707 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
708 		},
709 		.cgroup = sample->cgroup,
710 		.ms = {
711 			.maps	= al->maps,
712 			.map	= al->map,
713 			.sym	= al->sym,
714 		},
715 		.srcline = (char *) al->srcline,
716 		.socket	 = al->socket,
717 		.cpu	 = al->cpu,
718 		.cpumode = al->cpumode,
719 		.ip	 = al->addr,
720 		.level	 = al->level,
721 		.stat = {
722 			.nr_events = 1,
723 			.period	= sample->period,
724 			.weight = sample->weight,
725 		},
726 		.parent = sym_parent,
727 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
728 		.hists	= hists,
729 		.branch_info = bi,
730 		.mem_info = mi,
731 		.block_info = block_info,
732 		.transaction = sample->transaction,
733 		.raw_data = sample->raw_data,
734 		.raw_size = sample->raw_size,
735 		.ops = ops,
736 		.time = hist_time(sample->time),
737 	}, *he = hists__findnew_entry(hists, &entry, al, sample_self);
738 
739 	if (!hists->has_callchains && he && he->callchain_size != 0)
740 		hists->has_callchains = true;
741 	if (he && symbol_conf.res_sample)
742 		hists__res_sample(he, sample);
743 	return he;
744 }
745 
746 struct hist_entry *hists__add_entry(struct hists *hists,
747 				    struct addr_location *al,
748 				    struct symbol *sym_parent,
749 				    struct branch_info *bi,
750 				    struct mem_info *mi,
751 				    struct perf_sample *sample,
752 				    bool sample_self)
753 {
754 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
755 				  sample, sample_self, NULL);
756 }
757 
758 struct hist_entry *hists__add_entry_ops(struct hists *hists,
759 					struct hist_entry_ops *ops,
760 					struct addr_location *al,
761 					struct symbol *sym_parent,
762 					struct branch_info *bi,
763 					struct mem_info *mi,
764 					struct perf_sample *sample,
765 					bool sample_self)
766 {
767 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
768 				  sample, sample_self, ops);
769 }
770 
771 struct hist_entry *hists__add_entry_block(struct hists *hists,
772 					  struct addr_location *al,
773 					  struct block_info *block_info)
774 {
775 	struct hist_entry entry = {
776 		.block_info = block_info,
777 		.hists = hists,
778 		.ms = {
779 			.maps = al->maps,
780 			.map = al->map,
781 			.sym = al->sym,
782 		},
783 	}, *he = hists__findnew_entry(hists, &entry, al, false);
784 
785 	return he;
786 }
787 
788 static int
789 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
790 		    struct addr_location *al __maybe_unused)
791 {
792 	return 0;
793 }
794 
795 static int
796 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
797 			struct addr_location *al __maybe_unused)
798 {
799 	return 0;
800 }
801 
802 static int
803 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
804 {
805 	struct perf_sample *sample = iter->sample;
806 	struct mem_info *mi;
807 
808 	mi = sample__resolve_mem(sample, al);
809 	if (mi == NULL)
810 		return -ENOMEM;
811 
812 	iter->priv = mi;
813 	return 0;
814 }
815 
816 static int
817 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
818 {
819 	u64 cost;
820 	struct mem_info *mi = iter->priv;
821 	struct hists *hists = evsel__hists(iter->evsel);
822 	struct perf_sample *sample = iter->sample;
823 	struct hist_entry *he;
824 
825 	if (mi == NULL)
826 		return -EINVAL;
827 
828 	cost = sample->weight;
829 	if (!cost)
830 		cost = 1;
831 
832 	/*
833 	 * must pass period=weight in order to get the correct
834 	 * sorting from hists__collapse_resort() which is solely
835 	 * based on periods. We want sorting be done on nr_events * weight
836 	 * and this is indirectly achieved by passing period=weight here
837 	 * and the he_stat__add_period() function.
838 	 */
839 	sample->period = cost;
840 
841 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
842 			      sample, true);
843 	if (!he)
844 		return -ENOMEM;
845 
846 	iter->he = he;
847 	return 0;
848 }
849 
850 static int
851 iter_finish_mem_entry(struct hist_entry_iter *iter,
852 		      struct addr_location *al __maybe_unused)
853 {
854 	struct evsel *evsel = iter->evsel;
855 	struct hists *hists = evsel__hists(evsel);
856 	struct hist_entry *he = iter->he;
857 	int err = -EINVAL;
858 
859 	if (he == NULL)
860 		goto out;
861 
862 	hists__inc_nr_samples(hists, he->filtered);
863 
864 	err = hist_entry__append_callchain(he, iter->sample);
865 
866 out:
867 	/*
868 	 * We don't need to free iter->priv (mem_info) here since the mem info
869 	 * was either already freed in hists__findnew_entry() or passed to a
870 	 * new hist entry by hist_entry__new().
871 	 */
872 	iter->priv = NULL;
873 
874 	iter->he = NULL;
875 	return err;
876 }
877 
878 static int
879 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
880 {
881 	struct branch_info *bi;
882 	struct perf_sample *sample = iter->sample;
883 
884 	bi = sample__resolve_bstack(sample, al);
885 	if (!bi)
886 		return -ENOMEM;
887 
888 	iter->curr = 0;
889 	iter->total = sample->branch_stack->nr;
890 
891 	iter->priv = bi;
892 	return 0;
893 }
894 
895 static int
896 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
897 			     struct addr_location *al __maybe_unused)
898 {
899 	return 0;
900 }
901 
902 static int
903 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
904 {
905 	struct branch_info *bi = iter->priv;
906 	int i = iter->curr;
907 
908 	if (bi == NULL)
909 		return 0;
910 
911 	if (iter->curr >= iter->total)
912 		return 0;
913 
914 	al->maps = bi[i].to.ms.maps;
915 	al->map = bi[i].to.ms.map;
916 	al->sym = bi[i].to.ms.sym;
917 	al->addr = bi[i].to.addr;
918 	return 1;
919 }
920 
921 static int
922 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
923 {
924 	struct branch_info *bi;
925 	struct evsel *evsel = iter->evsel;
926 	struct hists *hists = evsel__hists(evsel);
927 	struct perf_sample *sample = iter->sample;
928 	struct hist_entry *he = NULL;
929 	int i = iter->curr;
930 	int err = 0;
931 
932 	bi = iter->priv;
933 
934 	if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym))
935 		goto out;
936 
937 	/*
938 	 * The report shows the percentage of total branches captured
939 	 * and not events sampled. Thus we use a pseudo period of 1.
940 	 */
941 	sample->period = 1;
942 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
943 
944 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
945 			      sample, true);
946 	if (he == NULL)
947 		return -ENOMEM;
948 
949 	hists__inc_nr_samples(hists, he->filtered);
950 
951 out:
952 	iter->he = he;
953 	iter->curr++;
954 	return err;
955 }
956 
957 static int
958 iter_finish_branch_entry(struct hist_entry_iter *iter,
959 			 struct addr_location *al __maybe_unused)
960 {
961 	zfree(&iter->priv);
962 	iter->he = NULL;
963 
964 	return iter->curr >= iter->total ? 0 : -1;
965 }
966 
967 static int
968 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
969 			  struct addr_location *al __maybe_unused)
970 {
971 	return 0;
972 }
973 
974 static int
975 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
976 {
977 	struct evsel *evsel = iter->evsel;
978 	struct perf_sample *sample = iter->sample;
979 	struct hist_entry *he;
980 
981 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
982 			      sample, true);
983 	if (he == NULL)
984 		return -ENOMEM;
985 
986 	iter->he = he;
987 	return 0;
988 }
989 
990 static int
991 iter_finish_normal_entry(struct hist_entry_iter *iter,
992 			 struct addr_location *al __maybe_unused)
993 {
994 	struct hist_entry *he = iter->he;
995 	struct evsel *evsel = iter->evsel;
996 	struct perf_sample *sample = iter->sample;
997 
998 	if (he == NULL)
999 		return 0;
1000 
1001 	iter->he = NULL;
1002 
1003 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
1004 
1005 	return hist_entry__append_callchain(he, sample);
1006 }
1007 
1008 static int
1009 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
1010 			      struct addr_location *al __maybe_unused)
1011 {
1012 	struct hist_entry **he_cache;
1013 
1014 	callchain_cursor_commit(&callchain_cursor);
1015 
1016 	/*
1017 	 * This is for detecting cycles or recursions so that they're
1018 	 * cumulated only one time to prevent entries more than 100%
1019 	 * overhead.
1020 	 */
1021 	he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
1022 	if (he_cache == NULL)
1023 		return -ENOMEM;
1024 
1025 	iter->priv = he_cache;
1026 	iter->curr = 0;
1027 
1028 	return 0;
1029 }
1030 
1031 static int
1032 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1033 				 struct addr_location *al)
1034 {
1035 	struct evsel *evsel = iter->evsel;
1036 	struct hists *hists = evsel__hists(evsel);
1037 	struct perf_sample *sample = iter->sample;
1038 	struct hist_entry **he_cache = iter->priv;
1039 	struct hist_entry *he;
1040 	int err = 0;
1041 
1042 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
1043 			      sample, true);
1044 	if (he == NULL)
1045 		return -ENOMEM;
1046 
1047 	iter->he = he;
1048 	he_cache[iter->curr++] = he;
1049 
1050 	hist_entry__append_callchain(he, sample);
1051 
1052 	/*
1053 	 * We need to re-initialize the cursor since callchain_append()
1054 	 * advanced the cursor to the end.
1055 	 */
1056 	callchain_cursor_commit(&callchain_cursor);
1057 
1058 	hists__inc_nr_samples(hists, he->filtered);
1059 
1060 	return err;
1061 }
1062 
1063 static int
1064 iter_next_cumulative_entry(struct hist_entry_iter *iter,
1065 			   struct addr_location *al)
1066 {
1067 	struct callchain_cursor_node *node;
1068 
1069 	node = callchain_cursor_current(&callchain_cursor);
1070 	if (node == NULL)
1071 		return 0;
1072 
1073 	return fill_callchain_info(al, node, iter->hide_unresolved);
1074 }
1075 
1076 static bool
1077 hist_entry__fast__sym_diff(struct hist_entry *left,
1078 			   struct hist_entry *right)
1079 {
1080 	struct symbol *sym_l = left->ms.sym;
1081 	struct symbol *sym_r = right->ms.sym;
1082 
1083 	if (!sym_l && !sym_r)
1084 		return left->ip != right->ip;
1085 
1086 	return !!_sort__sym_cmp(sym_l, sym_r);
1087 }
1088 
1089 
1090 static int
1091 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1092 			       struct addr_location *al)
1093 {
1094 	struct evsel *evsel = iter->evsel;
1095 	struct perf_sample *sample = iter->sample;
1096 	struct hist_entry **he_cache = iter->priv;
1097 	struct hist_entry *he;
1098 	struct hist_entry he_tmp = {
1099 		.hists = evsel__hists(evsel),
1100 		.cpu = al->cpu,
1101 		.thread = al->thread,
1102 		.comm = thread__comm(al->thread),
1103 		.ip = al->addr,
1104 		.ms = {
1105 			.maps = al->maps,
1106 			.map = al->map,
1107 			.sym = al->sym,
1108 		},
1109 		.srcline = (char *) al->srcline,
1110 		.parent = iter->parent,
1111 		.raw_data = sample->raw_data,
1112 		.raw_size = sample->raw_size,
1113 	};
1114 	int i;
1115 	struct callchain_cursor cursor;
1116 	bool fast = hists__has(he_tmp.hists, sym);
1117 
1118 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
1119 
1120 	callchain_cursor_advance(&callchain_cursor);
1121 
1122 	/*
1123 	 * Check if there's duplicate entries in the callchain.
1124 	 * It's possible that it has cycles or recursive calls.
1125 	 */
1126 	for (i = 0; i < iter->curr; i++) {
1127 		/*
1128 		 * For most cases, there are no duplicate entries in callchain.
1129 		 * The symbols are usually different. Do a quick check for
1130 		 * symbols first.
1131 		 */
1132 		if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp))
1133 			continue;
1134 
1135 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1136 			/* to avoid calling callback function */
1137 			iter->he = NULL;
1138 			return 0;
1139 		}
1140 	}
1141 
1142 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1143 			      sample, false);
1144 	if (he == NULL)
1145 		return -ENOMEM;
1146 
1147 	iter->he = he;
1148 	he_cache[iter->curr++] = he;
1149 
1150 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1151 		callchain_append(he->callchain, &cursor, sample->period);
1152 	return 0;
1153 }
1154 
1155 static int
1156 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1157 			     struct addr_location *al __maybe_unused)
1158 {
1159 	zfree(&iter->priv);
1160 	iter->he = NULL;
1161 
1162 	return 0;
1163 }
1164 
1165 const struct hist_iter_ops hist_iter_mem = {
1166 	.prepare_entry 		= iter_prepare_mem_entry,
1167 	.add_single_entry 	= iter_add_single_mem_entry,
1168 	.next_entry 		= iter_next_nop_entry,
1169 	.add_next_entry 	= iter_add_next_nop_entry,
1170 	.finish_entry 		= iter_finish_mem_entry,
1171 };
1172 
1173 const struct hist_iter_ops hist_iter_branch = {
1174 	.prepare_entry 		= iter_prepare_branch_entry,
1175 	.add_single_entry 	= iter_add_single_branch_entry,
1176 	.next_entry 		= iter_next_branch_entry,
1177 	.add_next_entry 	= iter_add_next_branch_entry,
1178 	.finish_entry 		= iter_finish_branch_entry,
1179 };
1180 
1181 const struct hist_iter_ops hist_iter_normal = {
1182 	.prepare_entry 		= iter_prepare_normal_entry,
1183 	.add_single_entry 	= iter_add_single_normal_entry,
1184 	.next_entry 		= iter_next_nop_entry,
1185 	.add_next_entry 	= iter_add_next_nop_entry,
1186 	.finish_entry 		= iter_finish_normal_entry,
1187 };
1188 
1189 const struct hist_iter_ops hist_iter_cumulative = {
1190 	.prepare_entry 		= iter_prepare_cumulative_entry,
1191 	.add_single_entry 	= iter_add_single_cumulative_entry,
1192 	.next_entry 		= iter_next_cumulative_entry,
1193 	.add_next_entry 	= iter_add_next_cumulative_entry,
1194 	.finish_entry 		= iter_finish_cumulative_entry,
1195 };
1196 
1197 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1198 			 int max_stack_depth, void *arg)
1199 {
1200 	int err, err2;
1201 	struct map *alm = NULL;
1202 
1203 	if (al)
1204 		alm = map__get(al->map);
1205 
1206 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1207 					iter->evsel, al, max_stack_depth);
1208 	if (err) {
1209 		map__put(alm);
1210 		return err;
1211 	}
1212 
1213 	err = iter->ops->prepare_entry(iter, al);
1214 	if (err)
1215 		goto out;
1216 
1217 	err = iter->ops->add_single_entry(iter, al);
1218 	if (err)
1219 		goto out;
1220 
1221 	if (iter->he && iter->add_entry_cb) {
1222 		err = iter->add_entry_cb(iter, al, true, arg);
1223 		if (err)
1224 			goto out;
1225 	}
1226 
1227 	while (iter->ops->next_entry(iter, al)) {
1228 		err = iter->ops->add_next_entry(iter, al);
1229 		if (err)
1230 			break;
1231 
1232 		if (iter->he && iter->add_entry_cb) {
1233 			err = iter->add_entry_cb(iter, al, false, arg);
1234 			if (err)
1235 				goto out;
1236 		}
1237 	}
1238 
1239 out:
1240 	err2 = iter->ops->finish_entry(iter, al);
1241 	if (!err)
1242 		err = err2;
1243 
1244 	map__put(alm);
1245 
1246 	return err;
1247 }
1248 
1249 int64_t
1250 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1251 {
1252 	struct hists *hists = left->hists;
1253 	struct perf_hpp_fmt *fmt;
1254 	int64_t cmp = 0;
1255 
1256 	hists__for_each_sort_list(hists, fmt) {
1257 		if (perf_hpp__is_dynamic_entry(fmt) &&
1258 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1259 			continue;
1260 
1261 		cmp = fmt->cmp(fmt, left, right);
1262 		if (cmp)
1263 			break;
1264 	}
1265 
1266 	return cmp;
1267 }
1268 
1269 int64_t
1270 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1271 {
1272 	struct hists *hists = left->hists;
1273 	struct perf_hpp_fmt *fmt;
1274 	int64_t cmp = 0;
1275 
1276 	hists__for_each_sort_list(hists, fmt) {
1277 		if (perf_hpp__is_dynamic_entry(fmt) &&
1278 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1279 			continue;
1280 
1281 		cmp = fmt->collapse(fmt, left, right);
1282 		if (cmp)
1283 			break;
1284 	}
1285 
1286 	return cmp;
1287 }
1288 
1289 void hist_entry__delete(struct hist_entry *he)
1290 {
1291 	struct hist_entry_ops *ops = he->ops;
1292 
1293 	thread__zput(he->thread);
1294 	map__zput(he->ms.map);
1295 
1296 	if (he->branch_info) {
1297 		map__zput(he->branch_info->from.ms.map);
1298 		map__zput(he->branch_info->to.ms.map);
1299 		free_srcline(he->branch_info->srcline_from);
1300 		free_srcline(he->branch_info->srcline_to);
1301 		zfree(&he->branch_info);
1302 	}
1303 
1304 	if (he->mem_info) {
1305 		map__zput(he->mem_info->iaddr.ms.map);
1306 		map__zput(he->mem_info->daddr.ms.map);
1307 		mem_info__zput(he->mem_info);
1308 	}
1309 
1310 	if (he->block_info)
1311 		block_info__zput(he->block_info);
1312 
1313 	zfree(&he->res_samples);
1314 	zfree(&he->stat_acc);
1315 	free_srcline(he->srcline);
1316 	if (he->srcfile && he->srcfile[0])
1317 		zfree(&he->srcfile);
1318 	free_callchain(he->callchain);
1319 	zfree(&he->trace_output);
1320 	zfree(&he->raw_data);
1321 	ops->free(he);
1322 }
1323 
1324 /*
1325  * If this is not the last column, then we need to pad it according to the
1326  * pre-calculated max length for this column, otherwise don't bother adding
1327  * spaces because that would break viewing this with, for instance, 'less',
1328  * that would show tons of trailing spaces when a long C++ demangled method
1329  * names is sampled.
1330 */
1331 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1332 				   struct perf_hpp_fmt *fmt, int printed)
1333 {
1334 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1335 		const int width = fmt->width(fmt, hpp, he->hists);
1336 		if (printed < width) {
1337 			advance_hpp(hpp, printed);
1338 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1339 		}
1340 	}
1341 
1342 	return printed;
1343 }
1344 
1345 /*
1346  * collapse the histogram
1347  */
1348 
1349 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1350 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1351 				       enum hist_filter type);
1352 
1353 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1354 
1355 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1356 {
1357 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1358 }
1359 
1360 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1361 						enum hist_filter type,
1362 						fmt_chk_fn check)
1363 {
1364 	struct perf_hpp_fmt *fmt;
1365 	bool type_match = false;
1366 	struct hist_entry *parent = he->parent_he;
1367 
1368 	switch (type) {
1369 	case HIST_FILTER__THREAD:
1370 		if (symbol_conf.comm_list == NULL &&
1371 		    symbol_conf.pid_list == NULL &&
1372 		    symbol_conf.tid_list == NULL)
1373 			return;
1374 		break;
1375 	case HIST_FILTER__DSO:
1376 		if (symbol_conf.dso_list == NULL)
1377 			return;
1378 		break;
1379 	case HIST_FILTER__SYMBOL:
1380 		if (symbol_conf.sym_list == NULL)
1381 			return;
1382 		break;
1383 	case HIST_FILTER__PARENT:
1384 	case HIST_FILTER__GUEST:
1385 	case HIST_FILTER__HOST:
1386 	case HIST_FILTER__SOCKET:
1387 	case HIST_FILTER__C2C:
1388 	default:
1389 		return;
1390 	}
1391 
1392 	/* if it's filtered by own fmt, it has to have filter bits */
1393 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1394 		if (check(fmt)) {
1395 			type_match = true;
1396 			break;
1397 		}
1398 	}
1399 
1400 	if (type_match) {
1401 		/*
1402 		 * If the filter is for current level entry, propagate
1403 		 * filter marker to parents.  The marker bit was
1404 		 * already set by default so it only needs to clear
1405 		 * non-filtered entries.
1406 		 */
1407 		if (!(he->filtered & (1 << type))) {
1408 			while (parent) {
1409 				parent->filtered &= ~(1 << type);
1410 				parent = parent->parent_he;
1411 			}
1412 		}
1413 	} else {
1414 		/*
1415 		 * If current entry doesn't have matching formats, set
1416 		 * filter marker for upper level entries.  it will be
1417 		 * cleared if its lower level entries is not filtered.
1418 		 *
1419 		 * For lower-level entries, it inherits parent's
1420 		 * filter bit so that lower level entries of a
1421 		 * non-filtered entry won't set the filter marker.
1422 		 */
1423 		if (parent == NULL)
1424 			he->filtered |= (1 << type);
1425 		else
1426 			he->filtered |= (parent->filtered & (1 << type));
1427 	}
1428 }
1429 
1430 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1431 {
1432 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1433 					    check_thread_entry);
1434 
1435 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1436 					    perf_hpp__is_dso_entry);
1437 
1438 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1439 					    perf_hpp__is_sym_entry);
1440 
1441 	hists__apply_filters(he->hists, he);
1442 }
1443 
1444 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1445 						 struct rb_root_cached *root,
1446 						 struct hist_entry *he,
1447 						 struct hist_entry *parent_he,
1448 						 struct perf_hpp_list *hpp_list)
1449 {
1450 	struct rb_node **p = &root->rb_root.rb_node;
1451 	struct rb_node *parent = NULL;
1452 	struct hist_entry *iter, *new;
1453 	struct perf_hpp_fmt *fmt;
1454 	int64_t cmp;
1455 	bool leftmost = true;
1456 
1457 	while (*p != NULL) {
1458 		parent = *p;
1459 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1460 
1461 		cmp = 0;
1462 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1463 			cmp = fmt->collapse(fmt, iter, he);
1464 			if (cmp)
1465 				break;
1466 		}
1467 
1468 		if (!cmp) {
1469 			he_stat__add_stat(&iter->stat, &he->stat);
1470 			return iter;
1471 		}
1472 
1473 		if (cmp < 0)
1474 			p = &parent->rb_left;
1475 		else {
1476 			p = &parent->rb_right;
1477 			leftmost = false;
1478 		}
1479 	}
1480 
1481 	new = hist_entry__new(he, true);
1482 	if (new == NULL)
1483 		return NULL;
1484 
1485 	hists->nr_entries++;
1486 
1487 	/* save related format list for output */
1488 	new->hpp_list = hpp_list;
1489 	new->parent_he = parent_he;
1490 
1491 	hist_entry__apply_hierarchy_filters(new);
1492 
1493 	/* some fields are now passed to 'new' */
1494 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1495 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1496 			he->trace_output = NULL;
1497 		else
1498 			new->trace_output = NULL;
1499 
1500 		if (perf_hpp__is_srcline_entry(fmt))
1501 			he->srcline = NULL;
1502 		else
1503 			new->srcline = NULL;
1504 
1505 		if (perf_hpp__is_srcfile_entry(fmt))
1506 			he->srcfile = NULL;
1507 		else
1508 			new->srcfile = NULL;
1509 	}
1510 
1511 	rb_link_node(&new->rb_node_in, parent, p);
1512 	rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1513 	return new;
1514 }
1515 
1516 static int hists__hierarchy_insert_entry(struct hists *hists,
1517 					 struct rb_root_cached *root,
1518 					 struct hist_entry *he)
1519 {
1520 	struct perf_hpp_list_node *node;
1521 	struct hist_entry *new_he = NULL;
1522 	struct hist_entry *parent = NULL;
1523 	int depth = 0;
1524 	int ret = 0;
1525 
1526 	list_for_each_entry(node, &hists->hpp_formats, list) {
1527 		/* skip period (overhead) and elided columns */
1528 		if (node->level == 0 || node->skip)
1529 			continue;
1530 
1531 		/* insert copy of 'he' for each fmt into the hierarchy */
1532 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1533 		if (new_he == NULL) {
1534 			ret = -1;
1535 			break;
1536 		}
1537 
1538 		root = &new_he->hroot_in;
1539 		new_he->depth = depth++;
1540 		parent = new_he;
1541 	}
1542 
1543 	if (new_he) {
1544 		new_he->leaf = true;
1545 
1546 		if (hist_entry__has_callchains(new_he) &&
1547 		    symbol_conf.use_callchain) {
1548 			callchain_cursor_reset(&callchain_cursor);
1549 			if (callchain_merge(&callchain_cursor,
1550 					    new_he->callchain,
1551 					    he->callchain) < 0)
1552 				ret = -1;
1553 		}
1554 	}
1555 
1556 	/* 'he' is no longer used */
1557 	hist_entry__delete(he);
1558 
1559 	/* return 0 (or -1) since it already applied filters */
1560 	return ret;
1561 }
1562 
1563 static int hists__collapse_insert_entry(struct hists *hists,
1564 					struct rb_root_cached *root,
1565 					struct hist_entry *he)
1566 {
1567 	struct rb_node **p = &root->rb_root.rb_node;
1568 	struct rb_node *parent = NULL;
1569 	struct hist_entry *iter;
1570 	int64_t cmp;
1571 	bool leftmost = true;
1572 
1573 	if (symbol_conf.report_hierarchy)
1574 		return hists__hierarchy_insert_entry(hists, root, he);
1575 
1576 	while (*p != NULL) {
1577 		parent = *p;
1578 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1579 
1580 		cmp = hist_entry__collapse(iter, he);
1581 
1582 		if (!cmp) {
1583 			int ret = 0;
1584 
1585 			he_stat__add_stat(&iter->stat, &he->stat);
1586 			if (symbol_conf.cumulate_callchain)
1587 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1588 
1589 			if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1590 				callchain_cursor_reset(&callchain_cursor);
1591 				if (callchain_merge(&callchain_cursor,
1592 						    iter->callchain,
1593 						    he->callchain) < 0)
1594 					ret = -1;
1595 			}
1596 			hist_entry__delete(he);
1597 			return ret;
1598 		}
1599 
1600 		if (cmp < 0)
1601 			p = &(*p)->rb_left;
1602 		else {
1603 			p = &(*p)->rb_right;
1604 			leftmost = false;
1605 		}
1606 	}
1607 	hists->nr_entries++;
1608 
1609 	rb_link_node(&he->rb_node_in, parent, p);
1610 	rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1611 	return 1;
1612 }
1613 
1614 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1615 {
1616 	struct rb_root_cached *root;
1617 
1618 	pthread_mutex_lock(&hists->lock);
1619 
1620 	root = hists->entries_in;
1621 	if (++hists->entries_in > &hists->entries_in_array[1])
1622 		hists->entries_in = &hists->entries_in_array[0];
1623 
1624 	pthread_mutex_unlock(&hists->lock);
1625 
1626 	return root;
1627 }
1628 
1629 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1630 {
1631 	hists__filter_entry_by_dso(hists, he);
1632 	hists__filter_entry_by_thread(hists, he);
1633 	hists__filter_entry_by_symbol(hists, he);
1634 	hists__filter_entry_by_socket(hists, he);
1635 }
1636 
1637 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1638 {
1639 	struct rb_root_cached *root;
1640 	struct rb_node *next;
1641 	struct hist_entry *n;
1642 	int ret;
1643 
1644 	if (!hists__has(hists, need_collapse))
1645 		return 0;
1646 
1647 	hists->nr_entries = 0;
1648 
1649 	root = hists__get_rotate_entries_in(hists);
1650 
1651 	next = rb_first_cached(root);
1652 
1653 	while (next) {
1654 		if (session_done())
1655 			break;
1656 		n = rb_entry(next, struct hist_entry, rb_node_in);
1657 		next = rb_next(&n->rb_node_in);
1658 
1659 		rb_erase_cached(&n->rb_node_in, root);
1660 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1661 		if (ret < 0)
1662 			return -1;
1663 
1664 		if (ret) {
1665 			/*
1666 			 * If it wasn't combined with one of the entries already
1667 			 * collapsed, we need to apply the filters that may have
1668 			 * been set by, say, the hist_browser.
1669 			 */
1670 			hists__apply_filters(hists, n);
1671 		}
1672 		if (prog)
1673 			ui_progress__update(prog, 1);
1674 	}
1675 	return 0;
1676 }
1677 
1678 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1679 {
1680 	struct hists *hists = a->hists;
1681 	struct perf_hpp_fmt *fmt;
1682 	int64_t cmp = 0;
1683 
1684 	hists__for_each_sort_list(hists, fmt) {
1685 		if (perf_hpp__should_skip(fmt, a->hists))
1686 			continue;
1687 
1688 		cmp = fmt->sort(fmt, a, b);
1689 		if (cmp)
1690 			break;
1691 	}
1692 
1693 	return cmp;
1694 }
1695 
1696 static void hists__reset_filter_stats(struct hists *hists)
1697 {
1698 	hists->nr_non_filtered_entries = 0;
1699 	hists->stats.total_non_filtered_period = 0;
1700 }
1701 
1702 void hists__reset_stats(struct hists *hists)
1703 {
1704 	hists->nr_entries = 0;
1705 	hists->stats.total_period = 0;
1706 
1707 	hists__reset_filter_stats(hists);
1708 }
1709 
1710 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1711 {
1712 	hists->nr_non_filtered_entries++;
1713 	hists->stats.total_non_filtered_period += h->stat.period;
1714 }
1715 
1716 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1717 {
1718 	if (!h->filtered)
1719 		hists__inc_filter_stats(hists, h);
1720 
1721 	hists->nr_entries++;
1722 	hists->stats.total_period += h->stat.period;
1723 }
1724 
1725 static void hierarchy_recalc_total_periods(struct hists *hists)
1726 {
1727 	struct rb_node *node;
1728 	struct hist_entry *he;
1729 
1730 	node = rb_first_cached(&hists->entries);
1731 
1732 	hists->stats.total_period = 0;
1733 	hists->stats.total_non_filtered_period = 0;
1734 
1735 	/*
1736 	 * recalculate total period using top-level entries only
1737 	 * since lower level entries only see non-filtered entries
1738 	 * but upper level entries have sum of both entries.
1739 	 */
1740 	while (node) {
1741 		he = rb_entry(node, struct hist_entry, rb_node);
1742 		node = rb_next(node);
1743 
1744 		hists->stats.total_period += he->stat.period;
1745 		if (!he->filtered)
1746 			hists->stats.total_non_filtered_period += he->stat.period;
1747 	}
1748 }
1749 
1750 static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1751 					  struct hist_entry *he)
1752 {
1753 	struct rb_node **p = &root->rb_root.rb_node;
1754 	struct rb_node *parent = NULL;
1755 	struct hist_entry *iter;
1756 	struct perf_hpp_fmt *fmt;
1757 	bool leftmost = true;
1758 
1759 	while (*p != NULL) {
1760 		parent = *p;
1761 		iter = rb_entry(parent, struct hist_entry, rb_node);
1762 
1763 		if (hist_entry__sort(he, iter) > 0)
1764 			p = &parent->rb_left;
1765 		else {
1766 			p = &parent->rb_right;
1767 			leftmost = false;
1768 		}
1769 	}
1770 
1771 	rb_link_node(&he->rb_node, parent, p);
1772 	rb_insert_color_cached(&he->rb_node, root, leftmost);
1773 
1774 	/* update column width of dynamic entry */
1775 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1776 		if (perf_hpp__is_dynamic_entry(fmt))
1777 			fmt->sort(fmt, he, NULL);
1778 	}
1779 }
1780 
1781 static void hists__hierarchy_output_resort(struct hists *hists,
1782 					   struct ui_progress *prog,
1783 					   struct rb_root_cached *root_in,
1784 					   struct rb_root_cached *root_out,
1785 					   u64 min_callchain_hits,
1786 					   bool use_callchain)
1787 {
1788 	struct rb_node *node;
1789 	struct hist_entry *he;
1790 
1791 	*root_out = RB_ROOT_CACHED;
1792 	node = rb_first_cached(root_in);
1793 
1794 	while (node) {
1795 		he = rb_entry(node, struct hist_entry, rb_node_in);
1796 		node = rb_next(node);
1797 
1798 		hierarchy_insert_output_entry(root_out, he);
1799 
1800 		if (prog)
1801 			ui_progress__update(prog, 1);
1802 
1803 		hists->nr_entries++;
1804 		if (!he->filtered) {
1805 			hists->nr_non_filtered_entries++;
1806 			hists__calc_col_len(hists, he);
1807 		}
1808 
1809 		if (!he->leaf) {
1810 			hists__hierarchy_output_resort(hists, prog,
1811 						       &he->hroot_in,
1812 						       &he->hroot_out,
1813 						       min_callchain_hits,
1814 						       use_callchain);
1815 			continue;
1816 		}
1817 
1818 		if (!use_callchain)
1819 			continue;
1820 
1821 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1822 			u64 total = he->stat.period;
1823 
1824 			if (symbol_conf.cumulate_callchain)
1825 				total = he->stat_acc->period;
1826 
1827 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1828 		}
1829 
1830 		callchain_param.sort(&he->sorted_chain, he->callchain,
1831 				     min_callchain_hits, &callchain_param);
1832 	}
1833 }
1834 
1835 static void __hists__insert_output_entry(struct rb_root_cached *entries,
1836 					 struct hist_entry *he,
1837 					 u64 min_callchain_hits,
1838 					 bool use_callchain)
1839 {
1840 	struct rb_node **p = &entries->rb_root.rb_node;
1841 	struct rb_node *parent = NULL;
1842 	struct hist_entry *iter;
1843 	struct perf_hpp_fmt *fmt;
1844 	bool leftmost = true;
1845 
1846 	if (use_callchain) {
1847 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1848 			u64 total = he->stat.period;
1849 
1850 			if (symbol_conf.cumulate_callchain)
1851 				total = he->stat_acc->period;
1852 
1853 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1854 		}
1855 		callchain_param.sort(&he->sorted_chain, he->callchain,
1856 				      min_callchain_hits, &callchain_param);
1857 	}
1858 
1859 	while (*p != NULL) {
1860 		parent = *p;
1861 		iter = rb_entry(parent, struct hist_entry, rb_node);
1862 
1863 		if (hist_entry__sort(he, iter) > 0)
1864 			p = &(*p)->rb_left;
1865 		else {
1866 			p = &(*p)->rb_right;
1867 			leftmost = false;
1868 		}
1869 	}
1870 
1871 	rb_link_node(&he->rb_node, parent, p);
1872 	rb_insert_color_cached(&he->rb_node, entries, leftmost);
1873 
1874 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1875 		if (perf_hpp__is_dynamic_entry(fmt) &&
1876 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1877 			fmt->sort(fmt, he, NULL);  /* update column width */
1878 	}
1879 }
1880 
1881 static void output_resort(struct hists *hists, struct ui_progress *prog,
1882 			  bool use_callchain, hists__resort_cb_t cb,
1883 			  void *cb_arg)
1884 {
1885 	struct rb_root_cached *root;
1886 	struct rb_node *next;
1887 	struct hist_entry *n;
1888 	u64 callchain_total;
1889 	u64 min_callchain_hits;
1890 
1891 	callchain_total = hists->callchain_period;
1892 	if (symbol_conf.filter_relative)
1893 		callchain_total = hists->callchain_non_filtered_period;
1894 
1895 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1896 
1897 	hists__reset_stats(hists);
1898 	hists__reset_col_len(hists);
1899 
1900 	if (symbol_conf.report_hierarchy) {
1901 		hists__hierarchy_output_resort(hists, prog,
1902 					       &hists->entries_collapsed,
1903 					       &hists->entries,
1904 					       min_callchain_hits,
1905 					       use_callchain);
1906 		hierarchy_recalc_total_periods(hists);
1907 		return;
1908 	}
1909 
1910 	if (hists__has(hists, need_collapse))
1911 		root = &hists->entries_collapsed;
1912 	else
1913 		root = hists->entries_in;
1914 
1915 	next = rb_first_cached(root);
1916 	hists->entries = RB_ROOT_CACHED;
1917 
1918 	while (next) {
1919 		n = rb_entry(next, struct hist_entry, rb_node_in);
1920 		next = rb_next(&n->rb_node_in);
1921 
1922 		if (cb && cb(n, cb_arg))
1923 			continue;
1924 
1925 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1926 		hists__inc_stats(hists, n);
1927 
1928 		if (!n->filtered)
1929 			hists__calc_col_len(hists, n);
1930 
1931 		if (prog)
1932 			ui_progress__update(prog, 1);
1933 	}
1934 }
1935 
1936 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
1937 			     hists__resort_cb_t cb, void *cb_arg)
1938 {
1939 	bool use_callchain;
1940 
1941 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1942 		use_callchain = evsel__has_callchain(evsel);
1943 	else
1944 		use_callchain = symbol_conf.use_callchain;
1945 
1946 	use_callchain |= symbol_conf.show_branchflag_count;
1947 
1948 	output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
1949 }
1950 
1951 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
1952 {
1953 	return evsel__output_resort_cb(evsel, prog, NULL, NULL);
1954 }
1955 
1956 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1957 {
1958 	output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
1959 }
1960 
1961 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1962 			     hists__resort_cb_t cb)
1963 {
1964 	output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
1965 }
1966 
1967 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1968 {
1969 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1970 		return false;
1971 
1972 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1973 		return true;
1974 
1975 	return false;
1976 }
1977 
1978 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1979 {
1980 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1981 
1982 	while (can_goto_child(he, HMD_NORMAL)) {
1983 		node = rb_last(&he->hroot_out.rb_root);
1984 		he = rb_entry(node, struct hist_entry, rb_node);
1985 	}
1986 	return node;
1987 }
1988 
1989 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1990 {
1991 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1992 
1993 	if (can_goto_child(he, hmd))
1994 		node = rb_first_cached(&he->hroot_out);
1995 	else
1996 		node = rb_next(node);
1997 
1998 	while (node == NULL) {
1999 		he = he->parent_he;
2000 		if (he == NULL)
2001 			break;
2002 
2003 		node = rb_next(&he->rb_node);
2004 	}
2005 	return node;
2006 }
2007 
2008 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
2009 {
2010 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2011 
2012 	node = rb_prev(node);
2013 	if (node)
2014 		return rb_hierarchy_last(node);
2015 
2016 	he = he->parent_he;
2017 	if (he == NULL)
2018 		return NULL;
2019 
2020 	return &he->rb_node;
2021 }
2022 
2023 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
2024 {
2025 	struct rb_node *node;
2026 	struct hist_entry *child;
2027 	float percent;
2028 
2029 	if (he->leaf)
2030 		return false;
2031 
2032 	node = rb_first_cached(&he->hroot_out);
2033 	child = rb_entry(node, struct hist_entry, rb_node);
2034 
2035 	while (node && child->filtered) {
2036 		node = rb_next(node);
2037 		child = rb_entry(node, struct hist_entry, rb_node);
2038 	}
2039 
2040 	if (node)
2041 		percent = hist_entry__get_percent_limit(child);
2042 	else
2043 		percent = 0;
2044 
2045 	return node && percent >= limit;
2046 }
2047 
2048 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
2049 				       enum hist_filter filter)
2050 {
2051 	h->filtered &= ~(1 << filter);
2052 
2053 	if (symbol_conf.report_hierarchy) {
2054 		struct hist_entry *parent = h->parent_he;
2055 
2056 		while (parent) {
2057 			he_stat__add_stat(&parent->stat, &h->stat);
2058 
2059 			parent->filtered &= ~(1 << filter);
2060 
2061 			if (parent->filtered)
2062 				goto next;
2063 
2064 			/* force fold unfiltered entry for simplicity */
2065 			parent->unfolded = false;
2066 			parent->has_no_entry = false;
2067 			parent->row_offset = 0;
2068 			parent->nr_rows = 0;
2069 next:
2070 			parent = parent->parent_he;
2071 		}
2072 	}
2073 
2074 	if (h->filtered)
2075 		return;
2076 
2077 	/* force fold unfiltered entry for simplicity */
2078 	h->unfolded = false;
2079 	h->has_no_entry = false;
2080 	h->row_offset = 0;
2081 	h->nr_rows = 0;
2082 
2083 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2084 
2085 	hists__inc_filter_stats(hists, h);
2086 	hists__calc_col_len(hists, h);
2087 }
2088 
2089 
2090 static bool hists__filter_entry_by_dso(struct hists *hists,
2091 				       struct hist_entry *he)
2092 {
2093 	if (hists->dso_filter != NULL &&
2094 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
2095 		he->filtered |= (1 << HIST_FILTER__DSO);
2096 		return true;
2097 	}
2098 
2099 	return false;
2100 }
2101 
2102 static bool hists__filter_entry_by_thread(struct hists *hists,
2103 					  struct hist_entry *he)
2104 {
2105 	if (hists->thread_filter != NULL &&
2106 	    he->thread != hists->thread_filter) {
2107 		he->filtered |= (1 << HIST_FILTER__THREAD);
2108 		return true;
2109 	}
2110 
2111 	return false;
2112 }
2113 
2114 static bool hists__filter_entry_by_symbol(struct hists *hists,
2115 					  struct hist_entry *he)
2116 {
2117 	if (hists->symbol_filter_str != NULL &&
2118 	    (!he->ms.sym || strstr(he->ms.sym->name,
2119 				   hists->symbol_filter_str) == NULL)) {
2120 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
2121 		return true;
2122 	}
2123 
2124 	return false;
2125 }
2126 
2127 static bool hists__filter_entry_by_socket(struct hists *hists,
2128 					  struct hist_entry *he)
2129 {
2130 	if ((hists->socket_filter > -1) &&
2131 	    (he->socket != hists->socket_filter)) {
2132 		he->filtered |= (1 << HIST_FILTER__SOCKET);
2133 		return true;
2134 	}
2135 
2136 	return false;
2137 }
2138 
2139 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2140 
2141 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2142 {
2143 	struct rb_node *nd;
2144 
2145 	hists->stats.nr_non_filtered_samples = 0;
2146 
2147 	hists__reset_filter_stats(hists);
2148 	hists__reset_col_len(hists);
2149 
2150 	for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2151 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2152 
2153 		if (filter(hists, h))
2154 			continue;
2155 
2156 		hists__remove_entry_filter(hists, h, type);
2157 	}
2158 }
2159 
2160 static void resort_filtered_entry(struct rb_root_cached *root,
2161 				  struct hist_entry *he)
2162 {
2163 	struct rb_node **p = &root->rb_root.rb_node;
2164 	struct rb_node *parent = NULL;
2165 	struct hist_entry *iter;
2166 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2167 	struct rb_node *nd;
2168 	bool leftmost = true;
2169 
2170 	while (*p != NULL) {
2171 		parent = *p;
2172 		iter = rb_entry(parent, struct hist_entry, rb_node);
2173 
2174 		if (hist_entry__sort(he, iter) > 0)
2175 			p = &(*p)->rb_left;
2176 		else {
2177 			p = &(*p)->rb_right;
2178 			leftmost = false;
2179 		}
2180 	}
2181 
2182 	rb_link_node(&he->rb_node, parent, p);
2183 	rb_insert_color_cached(&he->rb_node, root, leftmost);
2184 
2185 	if (he->leaf || he->filtered)
2186 		return;
2187 
2188 	nd = rb_first_cached(&he->hroot_out);
2189 	while (nd) {
2190 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2191 
2192 		nd = rb_next(nd);
2193 		rb_erase_cached(&h->rb_node, &he->hroot_out);
2194 
2195 		resort_filtered_entry(&new_root, h);
2196 	}
2197 
2198 	he->hroot_out = new_root;
2199 }
2200 
2201 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2202 {
2203 	struct rb_node *nd;
2204 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2205 
2206 	hists->stats.nr_non_filtered_samples = 0;
2207 
2208 	hists__reset_filter_stats(hists);
2209 	hists__reset_col_len(hists);
2210 
2211 	nd = rb_first_cached(&hists->entries);
2212 	while (nd) {
2213 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2214 		int ret;
2215 
2216 		ret = hist_entry__filter(h, type, arg);
2217 
2218 		/*
2219 		 * case 1. non-matching type
2220 		 * zero out the period, set filter marker and move to child
2221 		 */
2222 		if (ret < 0) {
2223 			memset(&h->stat, 0, sizeof(h->stat));
2224 			h->filtered |= (1 << type);
2225 
2226 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2227 		}
2228 		/*
2229 		 * case 2. matched type (filter out)
2230 		 * set filter marker and move to next
2231 		 */
2232 		else if (ret == 1) {
2233 			h->filtered |= (1 << type);
2234 
2235 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2236 		}
2237 		/*
2238 		 * case 3. ok (not filtered)
2239 		 * add period to hists and parents, erase the filter marker
2240 		 * and move to next sibling
2241 		 */
2242 		else {
2243 			hists__remove_entry_filter(hists, h, type);
2244 
2245 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2246 		}
2247 	}
2248 
2249 	hierarchy_recalc_total_periods(hists);
2250 
2251 	/*
2252 	 * resort output after applying a new filter since filter in a lower
2253 	 * hierarchy can change periods in a upper hierarchy.
2254 	 */
2255 	nd = rb_first_cached(&hists->entries);
2256 	while (nd) {
2257 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2258 
2259 		nd = rb_next(nd);
2260 		rb_erase_cached(&h->rb_node, &hists->entries);
2261 
2262 		resort_filtered_entry(&new_root, h);
2263 	}
2264 
2265 	hists->entries = new_root;
2266 }
2267 
2268 void hists__filter_by_thread(struct hists *hists)
2269 {
2270 	if (symbol_conf.report_hierarchy)
2271 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2272 					hists->thread_filter);
2273 	else
2274 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2275 				      hists__filter_entry_by_thread);
2276 }
2277 
2278 void hists__filter_by_dso(struct hists *hists)
2279 {
2280 	if (symbol_conf.report_hierarchy)
2281 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2282 					hists->dso_filter);
2283 	else
2284 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2285 				      hists__filter_entry_by_dso);
2286 }
2287 
2288 void hists__filter_by_symbol(struct hists *hists)
2289 {
2290 	if (symbol_conf.report_hierarchy)
2291 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2292 					hists->symbol_filter_str);
2293 	else
2294 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2295 				      hists__filter_entry_by_symbol);
2296 }
2297 
2298 void hists__filter_by_socket(struct hists *hists)
2299 {
2300 	if (symbol_conf.report_hierarchy)
2301 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2302 					&hists->socket_filter);
2303 	else
2304 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2305 				      hists__filter_entry_by_socket);
2306 }
2307 
2308 void events_stats__inc(struct events_stats *stats, u32 type)
2309 {
2310 	++stats->nr_events[0];
2311 	++stats->nr_events[type];
2312 }
2313 
2314 void hists__inc_nr_events(struct hists *hists, u32 type)
2315 {
2316 	events_stats__inc(&hists->stats, type);
2317 }
2318 
2319 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2320 {
2321 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2322 	if (!filtered)
2323 		hists->stats.nr_non_filtered_samples++;
2324 }
2325 
2326 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2327 						 struct hist_entry *pair)
2328 {
2329 	struct rb_root_cached *root;
2330 	struct rb_node **p;
2331 	struct rb_node *parent = NULL;
2332 	struct hist_entry *he;
2333 	int64_t cmp;
2334 	bool leftmost = true;
2335 
2336 	if (hists__has(hists, need_collapse))
2337 		root = &hists->entries_collapsed;
2338 	else
2339 		root = hists->entries_in;
2340 
2341 	p = &root->rb_root.rb_node;
2342 
2343 	while (*p != NULL) {
2344 		parent = *p;
2345 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2346 
2347 		cmp = hist_entry__collapse(he, pair);
2348 
2349 		if (!cmp)
2350 			goto out;
2351 
2352 		if (cmp < 0)
2353 			p = &(*p)->rb_left;
2354 		else {
2355 			p = &(*p)->rb_right;
2356 			leftmost = false;
2357 		}
2358 	}
2359 
2360 	he = hist_entry__new(pair, true);
2361 	if (he) {
2362 		memset(&he->stat, 0, sizeof(he->stat));
2363 		he->hists = hists;
2364 		if (symbol_conf.cumulate_callchain)
2365 			memset(he->stat_acc, 0, sizeof(he->stat));
2366 		rb_link_node(&he->rb_node_in, parent, p);
2367 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2368 		hists__inc_stats(hists, he);
2369 		he->dummy = true;
2370 	}
2371 out:
2372 	return he;
2373 }
2374 
2375 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2376 						    struct rb_root_cached *root,
2377 						    struct hist_entry *pair)
2378 {
2379 	struct rb_node **p;
2380 	struct rb_node *parent = NULL;
2381 	struct hist_entry *he;
2382 	struct perf_hpp_fmt *fmt;
2383 	bool leftmost = true;
2384 
2385 	p = &root->rb_root.rb_node;
2386 	while (*p != NULL) {
2387 		int64_t cmp = 0;
2388 
2389 		parent = *p;
2390 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2391 
2392 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2393 			cmp = fmt->collapse(fmt, he, pair);
2394 			if (cmp)
2395 				break;
2396 		}
2397 		if (!cmp)
2398 			goto out;
2399 
2400 		if (cmp < 0)
2401 			p = &parent->rb_left;
2402 		else {
2403 			p = &parent->rb_right;
2404 			leftmost = false;
2405 		}
2406 	}
2407 
2408 	he = hist_entry__new(pair, true);
2409 	if (he) {
2410 		rb_link_node(&he->rb_node_in, parent, p);
2411 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2412 
2413 		he->dummy = true;
2414 		he->hists = hists;
2415 		memset(&he->stat, 0, sizeof(he->stat));
2416 		hists__inc_stats(hists, he);
2417 	}
2418 out:
2419 	return he;
2420 }
2421 
2422 static struct hist_entry *hists__find_entry(struct hists *hists,
2423 					    struct hist_entry *he)
2424 {
2425 	struct rb_node *n;
2426 
2427 	if (hists__has(hists, need_collapse))
2428 		n = hists->entries_collapsed.rb_root.rb_node;
2429 	else
2430 		n = hists->entries_in->rb_root.rb_node;
2431 
2432 	while (n) {
2433 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2434 		int64_t cmp = hist_entry__collapse(iter, he);
2435 
2436 		if (cmp < 0)
2437 			n = n->rb_left;
2438 		else if (cmp > 0)
2439 			n = n->rb_right;
2440 		else
2441 			return iter;
2442 	}
2443 
2444 	return NULL;
2445 }
2446 
2447 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2448 						      struct hist_entry *he)
2449 {
2450 	struct rb_node *n = root->rb_root.rb_node;
2451 
2452 	while (n) {
2453 		struct hist_entry *iter;
2454 		struct perf_hpp_fmt *fmt;
2455 		int64_t cmp = 0;
2456 
2457 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2458 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2459 			cmp = fmt->collapse(fmt, iter, he);
2460 			if (cmp)
2461 				break;
2462 		}
2463 
2464 		if (cmp < 0)
2465 			n = n->rb_left;
2466 		else if (cmp > 0)
2467 			n = n->rb_right;
2468 		else
2469 			return iter;
2470 	}
2471 
2472 	return NULL;
2473 }
2474 
2475 static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2476 				   struct rb_root_cached *other_root)
2477 {
2478 	struct rb_node *nd;
2479 	struct hist_entry *pos, *pair;
2480 
2481 	for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2482 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2483 		pair = hists__find_hierarchy_entry(other_root, pos);
2484 
2485 		if (pair) {
2486 			hist_entry__add_pair(pair, pos);
2487 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2488 		}
2489 	}
2490 }
2491 
2492 /*
2493  * Look for pairs to link to the leader buckets (hist_entries):
2494  */
2495 void hists__match(struct hists *leader, struct hists *other)
2496 {
2497 	struct rb_root_cached *root;
2498 	struct rb_node *nd;
2499 	struct hist_entry *pos, *pair;
2500 
2501 	if (symbol_conf.report_hierarchy) {
2502 		/* hierarchy report always collapses entries */
2503 		return hists__match_hierarchy(&leader->entries_collapsed,
2504 					      &other->entries_collapsed);
2505 	}
2506 
2507 	if (hists__has(leader, need_collapse))
2508 		root = &leader->entries_collapsed;
2509 	else
2510 		root = leader->entries_in;
2511 
2512 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2513 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2514 		pair = hists__find_entry(other, pos);
2515 
2516 		if (pair)
2517 			hist_entry__add_pair(pair, pos);
2518 	}
2519 }
2520 
2521 static int hists__link_hierarchy(struct hists *leader_hists,
2522 				 struct hist_entry *parent,
2523 				 struct rb_root_cached *leader_root,
2524 				 struct rb_root_cached *other_root)
2525 {
2526 	struct rb_node *nd;
2527 	struct hist_entry *pos, *leader;
2528 
2529 	for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2530 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2531 
2532 		if (hist_entry__has_pairs(pos)) {
2533 			bool found = false;
2534 
2535 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2536 				if (leader->hists == leader_hists) {
2537 					found = true;
2538 					break;
2539 				}
2540 			}
2541 			if (!found)
2542 				return -1;
2543 		} else {
2544 			leader = add_dummy_hierarchy_entry(leader_hists,
2545 							   leader_root, pos);
2546 			if (leader == NULL)
2547 				return -1;
2548 
2549 			/* do not point parent in the pos */
2550 			leader->parent_he = parent;
2551 
2552 			hist_entry__add_pair(pos, leader);
2553 		}
2554 
2555 		if (!pos->leaf) {
2556 			if (hists__link_hierarchy(leader_hists, leader,
2557 						  &leader->hroot_in,
2558 						  &pos->hroot_in) < 0)
2559 				return -1;
2560 		}
2561 	}
2562 	return 0;
2563 }
2564 
2565 /*
2566  * Look for entries in the other hists that are not present in the leader, if
2567  * we find them, just add a dummy entry on the leader hists, with period=0,
2568  * nr_events=0, to serve as the list header.
2569  */
2570 int hists__link(struct hists *leader, struct hists *other)
2571 {
2572 	struct rb_root_cached *root;
2573 	struct rb_node *nd;
2574 	struct hist_entry *pos, *pair;
2575 
2576 	if (symbol_conf.report_hierarchy) {
2577 		/* hierarchy report always collapses entries */
2578 		return hists__link_hierarchy(leader, NULL,
2579 					     &leader->entries_collapsed,
2580 					     &other->entries_collapsed);
2581 	}
2582 
2583 	if (hists__has(other, need_collapse))
2584 		root = &other->entries_collapsed;
2585 	else
2586 		root = other->entries_in;
2587 
2588 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2589 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2590 
2591 		if (!hist_entry__has_pairs(pos)) {
2592 			pair = hists__add_dummy_entry(leader, pos);
2593 			if (pair == NULL)
2594 				return -1;
2595 			hist_entry__add_pair(pos, pair);
2596 		}
2597 	}
2598 
2599 	return 0;
2600 }
2601 
2602 int hists__unlink(struct hists *hists)
2603 {
2604 	struct rb_root_cached *root;
2605 	struct rb_node *nd;
2606 	struct hist_entry *pos;
2607 
2608 	if (hists__has(hists, need_collapse))
2609 		root = &hists->entries_collapsed;
2610 	else
2611 		root = hists->entries_in;
2612 
2613 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2614 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2615 		list_del_init(&pos->pairs.node);
2616 	}
2617 
2618 	return 0;
2619 }
2620 
2621 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2622 			  struct perf_sample *sample, bool nonany_branch_mode,
2623 			  u64 *total_cycles)
2624 {
2625 	struct branch_info *bi;
2626 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2627 
2628 	/* If we have branch cycles always annotate them. */
2629 	if (bs && bs->nr && entries[0].flags.cycles) {
2630 		int i;
2631 
2632 		bi = sample__resolve_bstack(sample, al);
2633 		if (bi) {
2634 			struct addr_map_symbol *prev = NULL;
2635 
2636 			/*
2637 			 * Ignore errors, still want to process the
2638 			 * other entries.
2639 			 *
2640 			 * For non standard branch modes always
2641 			 * force no IPC (prev == NULL)
2642 			 *
2643 			 * Note that perf stores branches reversed from
2644 			 * program order!
2645 			 */
2646 			for (i = bs->nr - 1; i >= 0; i--) {
2647 				addr_map_symbol__account_cycles(&bi[i].from,
2648 					nonany_branch_mode ? NULL : prev,
2649 					bi[i].flags.cycles);
2650 				prev = &bi[i].to;
2651 
2652 				if (total_cycles)
2653 					*total_cycles += bi[i].flags.cycles;
2654 			}
2655 			free(bi);
2656 		}
2657 	}
2658 }
2659 
2660 size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp)
2661 {
2662 	struct evsel *pos;
2663 	size_t ret = 0;
2664 
2665 	evlist__for_each_entry(evlist, pos) {
2666 		ret += fprintf(fp, "%s stats:\n", evsel__name(pos));
2667 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2668 	}
2669 
2670 	return ret;
2671 }
2672 
2673 
2674 u64 hists__total_period(struct hists *hists)
2675 {
2676 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2677 		hists->stats.total_period;
2678 }
2679 
2680 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2681 {
2682 	char unit;
2683 	int printed;
2684 	const struct dso *dso = hists->dso_filter;
2685 	struct thread *thread = hists->thread_filter;
2686 	int socket_id = hists->socket_filter;
2687 	unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
2688 	u64 nr_events = hists->stats.total_period;
2689 	struct evsel *evsel = hists_to_evsel(hists);
2690 	const char *ev_name = evsel__name(evsel);
2691 	char buf[512], sample_freq_str[64] = "";
2692 	size_t buflen = sizeof(buf);
2693 	char ref[30] = " show reference callgraph, ";
2694 	bool enable_ref = false;
2695 
2696 	if (symbol_conf.filter_relative) {
2697 		nr_samples = hists->stats.nr_non_filtered_samples;
2698 		nr_events = hists->stats.total_non_filtered_period;
2699 	}
2700 
2701 	if (evsel__is_group_event(evsel)) {
2702 		struct evsel *pos;
2703 
2704 		evsel__group_desc(evsel, buf, buflen);
2705 		ev_name = buf;
2706 
2707 		for_each_group_member(pos, evsel) {
2708 			struct hists *pos_hists = evsel__hists(pos);
2709 
2710 			if (symbol_conf.filter_relative) {
2711 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2712 				nr_events += pos_hists->stats.total_non_filtered_period;
2713 			} else {
2714 				nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
2715 				nr_events += pos_hists->stats.total_period;
2716 			}
2717 		}
2718 	}
2719 
2720 	if (symbol_conf.show_ref_callgraph &&
2721 	    strstr(ev_name, "call-graph=no"))
2722 		enable_ref = true;
2723 
2724 	if (show_freq)
2725 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2726 
2727 	nr_samples = convert_unit(nr_samples, &unit);
2728 	printed = scnprintf(bf, size,
2729 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2730 			   nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2731 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2732 
2733 
2734 	if (hists->uid_filter_str)
2735 		printed += snprintf(bf + printed, size - printed,
2736 				    ", UID: %s", hists->uid_filter_str);
2737 	if (thread) {
2738 		if (hists__has(hists, thread)) {
2739 			printed += scnprintf(bf + printed, size - printed,
2740 				    ", Thread: %s(%d)",
2741 				     (thread->comm_set ? thread__comm_str(thread) : ""),
2742 				    thread->tid);
2743 		} else {
2744 			printed += scnprintf(bf + printed, size - printed,
2745 				    ", Thread: %s",
2746 				     (thread->comm_set ? thread__comm_str(thread) : ""));
2747 		}
2748 	}
2749 	if (dso)
2750 		printed += scnprintf(bf + printed, size - printed,
2751 				    ", DSO: %s", dso->short_name);
2752 	if (socket_id > -1)
2753 		printed += scnprintf(bf + printed, size - printed,
2754 				    ", Processor Socket: %d", socket_id);
2755 
2756 	return printed;
2757 }
2758 
2759 int parse_filter_percentage(const struct option *opt __maybe_unused,
2760 			    const char *arg, int unset __maybe_unused)
2761 {
2762 	if (!strcmp(arg, "relative"))
2763 		symbol_conf.filter_relative = true;
2764 	else if (!strcmp(arg, "absolute"))
2765 		symbol_conf.filter_relative = false;
2766 	else {
2767 		pr_debug("Invalid percentage: %s\n", arg);
2768 		return -1;
2769 	}
2770 
2771 	return 0;
2772 }
2773 
2774 int perf_hist_config(const char *var, const char *value)
2775 {
2776 	if (!strcmp(var, "hist.percentage"))
2777 		return parse_filter_percentage(NULL, value, 0);
2778 
2779 	return 0;
2780 }
2781 
2782 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2783 {
2784 	memset(hists, 0, sizeof(*hists));
2785 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2786 	hists->entries_in = &hists->entries_in_array[0];
2787 	hists->entries_collapsed = RB_ROOT_CACHED;
2788 	hists->entries = RB_ROOT_CACHED;
2789 	pthread_mutex_init(&hists->lock, NULL);
2790 	hists->socket_filter = -1;
2791 	hists->hpp_list = hpp_list;
2792 	INIT_LIST_HEAD(&hists->hpp_formats);
2793 	return 0;
2794 }
2795 
2796 static void hists__delete_remaining_entries(struct rb_root_cached *root)
2797 {
2798 	struct rb_node *node;
2799 	struct hist_entry *he;
2800 
2801 	while (!RB_EMPTY_ROOT(&root->rb_root)) {
2802 		node = rb_first_cached(root);
2803 		rb_erase_cached(node, root);
2804 
2805 		he = rb_entry(node, struct hist_entry, rb_node_in);
2806 		hist_entry__delete(he);
2807 	}
2808 }
2809 
2810 static void hists__delete_all_entries(struct hists *hists)
2811 {
2812 	hists__delete_entries(hists);
2813 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2814 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2815 	hists__delete_remaining_entries(&hists->entries_collapsed);
2816 }
2817 
2818 static void hists_evsel__exit(struct evsel *evsel)
2819 {
2820 	struct hists *hists = evsel__hists(evsel);
2821 	struct perf_hpp_fmt *fmt, *pos;
2822 	struct perf_hpp_list_node *node, *tmp;
2823 
2824 	hists__delete_all_entries(hists);
2825 
2826 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2827 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2828 			list_del_init(&fmt->list);
2829 			free(fmt);
2830 		}
2831 		list_del_init(&node->list);
2832 		free(node);
2833 	}
2834 }
2835 
2836 static int hists_evsel__init(struct evsel *evsel)
2837 {
2838 	struct hists *hists = evsel__hists(evsel);
2839 
2840 	__hists__init(hists, &perf_hpp_list);
2841 	return 0;
2842 }
2843 
2844 /*
2845  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2846  * stored in the rbtree...
2847  */
2848 
2849 int hists__init(void)
2850 {
2851 	int err = evsel__object_config(sizeof(struct hists_evsel),
2852 				       hists_evsel__init, hists_evsel__exit);
2853 	if (err)
2854 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2855 
2856 	return err;
2857 }
2858 
2859 void perf_hpp_list__init(struct perf_hpp_list *list)
2860 {
2861 	INIT_LIST_HEAD(&list->fields);
2862 	INIT_LIST_HEAD(&list->sorts);
2863 }
2864