xref: /linux/tools/perf/util/hist.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "map.h"
5 #include "session.h"
6 #include "sort.h"
7 #include "evlist.h"
8 #include "evsel.h"
9 #include "annotate.h"
10 #include "ui/progress.h"
11 #include <math.h>
12 
13 static bool hists__filter_entry_by_dso(struct hists *hists,
14 				       struct hist_entry *he);
15 static bool hists__filter_entry_by_thread(struct hists *hists,
16 					  struct hist_entry *he);
17 static bool hists__filter_entry_by_symbol(struct hists *hists,
18 					  struct hist_entry *he);
19 static bool hists__filter_entry_by_socket(struct hists *hists,
20 					  struct hist_entry *he);
21 
22 u16 hists__col_len(struct hists *hists, enum hist_column col)
23 {
24 	return hists->col_len[col];
25 }
26 
27 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
28 {
29 	hists->col_len[col] = len;
30 }
31 
32 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
33 {
34 	if (len > hists__col_len(hists, col)) {
35 		hists__set_col_len(hists, col, len);
36 		return true;
37 	}
38 	return false;
39 }
40 
41 void hists__reset_col_len(struct hists *hists)
42 {
43 	enum hist_column col;
44 
45 	for (col = 0; col < HISTC_NR_COLS; ++col)
46 		hists__set_col_len(hists, col, 0);
47 }
48 
49 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
50 {
51 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
52 
53 	if (hists__col_len(hists, dso) < unresolved_col_width &&
54 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
55 	    !symbol_conf.dso_list)
56 		hists__set_col_len(hists, dso, unresolved_col_width);
57 }
58 
59 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
60 {
61 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
62 	int symlen;
63 	u16 len;
64 
65 	/*
66 	 * +4 accounts for '[x] ' priv level info
67 	 * +2 accounts for 0x prefix on raw addresses
68 	 * +3 accounts for ' y ' symtab origin info
69 	 */
70 	if (h->ms.sym) {
71 		symlen = h->ms.sym->namelen + 4;
72 		if (verbose > 0)
73 			symlen += BITS_PER_LONG / 4 + 2 + 3;
74 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
75 	} else {
76 		symlen = unresolved_col_width + 4 + 2;
77 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
78 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
79 	}
80 
81 	len = thread__comm_len(h->thread);
82 	if (hists__new_col_len(hists, HISTC_COMM, len))
83 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
84 
85 	if (h->ms.map) {
86 		len = dso__name_len(h->ms.map->dso);
87 		hists__new_col_len(hists, HISTC_DSO, len);
88 	}
89 
90 	if (h->parent)
91 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
92 
93 	if (h->branch_info) {
94 		if (h->branch_info->from.sym) {
95 			symlen = (int)h->branch_info->from.sym->namelen + 4;
96 			if (verbose > 0)
97 				symlen += BITS_PER_LONG / 4 + 2 + 3;
98 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
99 
100 			symlen = dso__name_len(h->branch_info->from.map->dso);
101 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
102 		} else {
103 			symlen = unresolved_col_width + 4 + 2;
104 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
105 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
106 		}
107 
108 		if (h->branch_info->to.sym) {
109 			symlen = (int)h->branch_info->to.sym->namelen + 4;
110 			if (verbose > 0)
111 				symlen += BITS_PER_LONG / 4 + 2 + 3;
112 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
113 
114 			symlen = dso__name_len(h->branch_info->to.map->dso);
115 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
116 		} else {
117 			symlen = unresolved_col_width + 4 + 2;
118 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
119 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
120 		}
121 
122 		if (h->branch_info->srcline_from)
123 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
124 					strlen(h->branch_info->srcline_from));
125 		if (h->branch_info->srcline_to)
126 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
127 					strlen(h->branch_info->srcline_to));
128 	}
129 
130 	if (h->mem_info) {
131 		if (h->mem_info->daddr.sym) {
132 			symlen = (int)h->mem_info->daddr.sym->namelen + 4
133 			       + unresolved_col_width + 2;
134 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
135 					   symlen);
136 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
137 					   symlen + 1);
138 		} else {
139 			symlen = unresolved_col_width + 4 + 2;
140 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
141 					   symlen);
142 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
143 					   symlen);
144 		}
145 
146 		if (h->mem_info->iaddr.sym) {
147 			symlen = (int)h->mem_info->iaddr.sym->namelen + 4
148 			       + unresolved_col_width + 2;
149 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
150 					   symlen);
151 		} else {
152 			symlen = unresolved_col_width + 4 + 2;
153 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
154 					   symlen);
155 		}
156 
157 		if (h->mem_info->daddr.map) {
158 			symlen = dso__name_len(h->mem_info->daddr.map->dso);
159 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
160 					   symlen);
161 		} else {
162 			symlen = unresolved_col_width + 4 + 2;
163 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
164 		}
165 	} else {
166 		symlen = unresolved_col_width + 4 + 2;
167 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
168 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
169 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
170 	}
171 
172 	hists__new_col_len(hists, HISTC_CPU, 3);
173 	hists__new_col_len(hists, HISTC_SOCKET, 6);
174 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
175 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
176 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
177 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
178 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
179 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
180 
181 	if (h->srcline) {
182 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
183 		hists__new_col_len(hists, HISTC_SRCLINE, len);
184 	}
185 
186 	if (h->srcfile)
187 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
188 
189 	if (h->transaction)
190 		hists__new_col_len(hists, HISTC_TRANSACTION,
191 				   hist_entry__transaction_len());
192 
193 	if (h->trace_output)
194 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
195 }
196 
197 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
198 {
199 	struct rb_node *next = rb_first(&hists->entries);
200 	struct hist_entry *n;
201 	int row = 0;
202 
203 	hists__reset_col_len(hists);
204 
205 	while (next && row++ < max_rows) {
206 		n = rb_entry(next, struct hist_entry, rb_node);
207 		if (!n->filtered)
208 			hists__calc_col_len(hists, n);
209 		next = rb_next(&n->rb_node);
210 	}
211 }
212 
213 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
214 					unsigned int cpumode, u64 period)
215 {
216 	switch (cpumode) {
217 	case PERF_RECORD_MISC_KERNEL:
218 		he_stat->period_sys += period;
219 		break;
220 	case PERF_RECORD_MISC_USER:
221 		he_stat->period_us += period;
222 		break;
223 	case PERF_RECORD_MISC_GUEST_KERNEL:
224 		he_stat->period_guest_sys += period;
225 		break;
226 	case PERF_RECORD_MISC_GUEST_USER:
227 		he_stat->period_guest_us += period;
228 		break;
229 	default:
230 		break;
231 	}
232 }
233 
234 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
235 				u64 weight)
236 {
237 
238 	he_stat->period		+= period;
239 	he_stat->weight		+= weight;
240 	he_stat->nr_events	+= 1;
241 }
242 
243 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
244 {
245 	dest->period		+= src->period;
246 	dest->period_sys	+= src->period_sys;
247 	dest->period_us		+= src->period_us;
248 	dest->period_guest_sys	+= src->period_guest_sys;
249 	dest->period_guest_us	+= src->period_guest_us;
250 	dest->nr_events		+= src->nr_events;
251 	dest->weight		+= src->weight;
252 }
253 
254 static void he_stat__decay(struct he_stat *he_stat)
255 {
256 	he_stat->period = (he_stat->period * 7) / 8;
257 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
258 	/* XXX need decay for weight too? */
259 }
260 
261 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
262 
263 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
264 {
265 	u64 prev_period = he->stat.period;
266 	u64 diff;
267 
268 	if (prev_period == 0)
269 		return true;
270 
271 	he_stat__decay(&he->stat);
272 	if (symbol_conf.cumulate_callchain)
273 		he_stat__decay(he->stat_acc);
274 	decay_callchain(he->callchain);
275 
276 	diff = prev_period - he->stat.period;
277 
278 	if (!he->depth) {
279 		hists->stats.total_period -= diff;
280 		if (!he->filtered)
281 			hists->stats.total_non_filtered_period -= diff;
282 	}
283 
284 	if (!he->leaf) {
285 		struct hist_entry *child;
286 		struct rb_node *node = rb_first(&he->hroot_out);
287 		while (node) {
288 			child = rb_entry(node, struct hist_entry, rb_node);
289 			node = rb_next(node);
290 
291 			if (hists__decay_entry(hists, child))
292 				hists__delete_entry(hists, child);
293 		}
294 	}
295 
296 	return he->stat.period == 0;
297 }
298 
299 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
300 {
301 	struct rb_root *root_in;
302 	struct rb_root *root_out;
303 
304 	if (he->parent_he) {
305 		root_in  = &he->parent_he->hroot_in;
306 		root_out = &he->parent_he->hroot_out;
307 	} else {
308 		if (hists__has(hists, need_collapse))
309 			root_in = &hists->entries_collapsed;
310 		else
311 			root_in = hists->entries_in;
312 		root_out = &hists->entries;
313 	}
314 
315 	rb_erase(&he->rb_node_in, root_in);
316 	rb_erase(&he->rb_node, root_out);
317 
318 	--hists->nr_entries;
319 	if (!he->filtered)
320 		--hists->nr_non_filtered_entries;
321 
322 	hist_entry__delete(he);
323 }
324 
325 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
326 {
327 	struct rb_node *next = rb_first(&hists->entries);
328 	struct hist_entry *n;
329 
330 	while (next) {
331 		n = rb_entry(next, struct hist_entry, rb_node);
332 		next = rb_next(&n->rb_node);
333 		if (((zap_user && n->level == '.') ||
334 		     (zap_kernel && n->level != '.') ||
335 		     hists__decay_entry(hists, n))) {
336 			hists__delete_entry(hists, n);
337 		}
338 	}
339 }
340 
341 void hists__delete_entries(struct hists *hists)
342 {
343 	struct rb_node *next = rb_first(&hists->entries);
344 	struct hist_entry *n;
345 
346 	while (next) {
347 		n = rb_entry(next, struct hist_entry, rb_node);
348 		next = rb_next(&n->rb_node);
349 
350 		hists__delete_entry(hists, n);
351 	}
352 }
353 
354 /*
355  * histogram, sorted on item, collects periods
356  */
357 
358 static int hist_entry__init(struct hist_entry *he,
359 			    struct hist_entry *template,
360 			    bool sample_self)
361 {
362 	*he = *template;
363 
364 	if (symbol_conf.cumulate_callchain) {
365 		he->stat_acc = malloc(sizeof(he->stat));
366 		if (he->stat_acc == NULL)
367 			return -ENOMEM;
368 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
369 		if (!sample_self)
370 			memset(&he->stat, 0, sizeof(he->stat));
371 	}
372 
373 	map__get(he->ms.map);
374 
375 	if (he->branch_info) {
376 		/*
377 		 * This branch info is (a part of) allocated from
378 		 * sample__resolve_bstack() and will be freed after
379 		 * adding new entries.  So we need to save a copy.
380 		 */
381 		he->branch_info = malloc(sizeof(*he->branch_info));
382 		if (he->branch_info == NULL) {
383 			map__zput(he->ms.map);
384 			free(he->stat_acc);
385 			return -ENOMEM;
386 		}
387 
388 		memcpy(he->branch_info, template->branch_info,
389 		       sizeof(*he->branch_info));
390 
391 		map__get(he->branch_info->from.map);
392 		map__get(he->branch_info->to.map);
393 	}
394 
395 	if (he->mem_info) {
396 		map__get(he->mem_info->iaddr.map);
397 		map__get(he->mem_info->daddr.map);
398 	}
399 
400 	if (symbol_conf.use_callchain)
401 		callchain_init(he->callchain);
402 
403 	if (he->raw_data) {
404 		he->raw_data = memdup(he->raw_data, he->raw_size);
405 
406 		if (he->raw_data == NULL) {
407 			map__put(he->ms.map);
408 			if (he->branch_info) {
409 				map__put(he->branch_info->from.map);
410 				map__put(he->branch_info->to.map);
411 				free(he->branch_info);
412 			}
413 			if (he->mem_info) {
414 				map__put(he->mem_info->iaddr.map);
415 				map__put(he->mem_info->daddr.map);
416 			}
417 			free(he->stat_acc);
418 			return -ENOMEM;
419 		}
420 	}
421 	INIT_LIST_HEAD(&he->pairs.node);
422 	thread__get(he->thread);
423 	he->hroot_in  = RB_ROOT;
424 	he->hroot_out = RB_ROOT;
425 
426 	if (!symbol_conf.report_hierarchy)
427 		he->leaf = true;
428 
429 	return 0;
430 }
431 
432 static void *hist_entry__zalloc(size_t size)
433 {
434 	return zalloc(size + sizeof(struct hist_entry));
435 }
436 
437 static void hist_entry__free(void *ptr)
438 {
439 	free(ptr);
440 }
441 
442 static struct hist_entry_ops default_ops = {
443 	.new	= hist_entry__zalloc,
444 	.free	= hist_entry__free,
445 };
446 
447 static struct hist_entry *hist_entry__new(struct hist_entry *template,
448 					  bool sample_self)
449 {
450 	struct hist_entry_ops *ops = template->ops;
451 	size_t callchain_size = 0;
452 	struct hist_entry *he;
453 	int err = 0;
454 
455 	if (!ops)
456 		ops = template->ops = &default_ops;
457 
458 	if (symbol_conf.use_callchain)
459 		callchain_size = sizeof(struct callchain_root);
460 
461 	he = ops->new(callchain_size);
462 	if (he) {
463 		err = hist_entry__init(he, template, sample_self);
464 		if (err) {
465 			ops->free(he);
466 			he = NULL;
467 		}
468 	}
469 
470 	return he;
471 }
472 
473 static u8 symbol__parent_filter(const struct symbol *parent)
474 {
475 	if (symbol_conf.exclude_other && parent == NULL)
476 		return 1 << HIST_FILTER__PARENT;
477 	return 0;
478 }
479 
480 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
481 {
482 	if (!symbol_conf.use_callchain)
483 		return;
484 
485 	he->hists->callchain_period += period;
486 	if (!he->filtered)
487 		he->hists->callchain_non_filtered_period += period;
488 }
489 
490 static struct hist_entry *hists__findnew_entry(struct hists *hists,
491 					       struct hist_entry *entry,
492 					       struct addr_location *al,
493 					       bool sample_self)
494 {
495 	struct rb_node **p;
496 	struct rb_node *parent = NULL;
497 	struct hist_entry *he;
498 	int64_t cmp;
499 	u64 period = entry->stat.period;
500 	u64 weight = entry->stat.weight;
501 
502 	p = &hists->entries_in->rb_node;
503 
504 	while (*p != NULL) {
505 		parent = *p;
506 		he = rb_entry(parent, struct hist_entry, rb_node_in);
507 
508 		/*
509 		 * Make sure that it receives arguments in a same order as
510 		 * hist_entry__collapse() so that we can use an appropriate
511 		 * function when searching an entry regardless which sort
512 		 * keys were used.
513 		 */
514 		cmp = hist_entry__cmp(he, entry);
515 
516 		if (!cmp) {
517 			if (sample_self) {
518 				he_stat__add_period(&he->stat, period, weight);
519 				hist_entry__add_callchain_period(he, period);
520 			}
521 			if (symbol_conf.cumulate_callchain)
522 				he_stat__add_period(he->stat_acc, period, weight);
523 
524 			/*
525 			 * This mem info was allocated from sample__resolve_mem
526 			 * and will not be used anymore.
527 			 */
528 			zfree(&entry->mem_info);
529 
530 			/* If the map of an existing hist_entry has
531 			 * become out-of-date due to an exec() or
532 			 * similar, update it.  Otherwise we will
533 			 * mis-adjust symbol addresses when computing
534 			 * the history counter to increment.
535 			 */
536 			if (he->ms.map != entry->ms.map) {
537 				map__put(he->ms.map);
538 				he->ms.map = map__get(entry->ms.map);
539 			}
540 			goto out;
541 		}
542 
543 		if (cmp < 0)
544 			p = &(*p)->rb_left;
545 		else
546 			p = &(*p)->rb_right;
547 	}
548 
549 	he = hist_entry__new(entry, sample_self);
550 	if (!he)
551 		return NULL;
552 
553 	if (sample_self)
554 		hist_entry__add_callchain_period(he, period);
555 	hists->nr_entries++;
556 
557 	rb_link_node(&he->rb_node_in, parent, p);
558 	rb_insert_color(&he->rb_node_in, hists->entries_in);
559 out:
560 	if (sample_self)
561 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
562 	if (symbol_conf.cumulate_callchain)
563 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
564 	return he;
565 }
566 
567 static struct hist_entry*
568 __hists__add_entry(struct hists *hists,
569 		   struct addr_location *al,
570 		   struct symbol *sym_parent,
571 		   struct branch_info *bi,
572 		   struct mem_info *mi,
573 		   struct perf_sample *sample,
574 		   bool sample_self,
575 		   struct hist_entry_ops *ops)
576 {
577 	struct hist_entry entry = {
578 		.thread	= al->thread,
579 		.comm = thread__comm(al->thread),
580 		.ms = {
581 			.map	= al->map,
582 			.sym	= al->sym,
583 		},
584 		.socket	 = al->socket,
585 		.cpu	 = al->cpu,
586 		.cpumode = al->cpumode,
587 		.ip	 = al->addr,
588 		.level	 = al->level,
589 		.stat = {
590 			.nr_events = 1,
591 			.period	= sample->period,
592 			.weight = sample->weight,
593 		},
594 		.parent = sym_parent,
595 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
596 		.hists	= hists,
597 		.branch_info = bi,
598 		.mem_info = mi,
599 		.transaction = sample->transaction,
600 		.raw_data = sample->raw_data,
601 		.raw_size = sample->raw_size,
602 		.ops = ops,
603 	};
604 
605 	return hists__findnew_entry(hists, &entry, al, sample_self);
606 }
607 
608 struct hist_entry *hists__add_entry(struct hists *hists,
609 				    struct addr_location *al,
610 				    struct symbol *sym_parent,
611 				    struct branch_info *bi,
612 				    struct mem_info *mi,
613 				    struct perf_sample *sample,
614 				    bool sample_self)
615 {
616 	return __hists__add_entry(hists, al, sym_parent, bi, mi,
617 				  sample, sample_self, NULL);
618 }
619 
620 struct hist_entry *hists__add_entry_ops(struct hists *hists,
621 					struct hist_entry_ops *ops,
622 					struct addr_location *al,
623 					struct symbol *sym_parent,
624 					struct branch_info *bi,
625 					struct mem_info *mi,
626 					struct perf_sample *sample,
627 					bool sample_self)
628 {
629 	return __hists__add_entry(hists, al, sym_parent, bi, mi,
630 				  sample, sample_self, ops);
631 }
632 
633 static int
634 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
635 		    struct addr_location *al __maybe_unused)
636 {
637 	return 0;
638 }
639 
640 static int
641 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
642 			struct addr_location *al __maybe_unused)
643 {
644 	return 0;
645 }
646 
647 static int
648 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
649 {
650 	struct perf_sample *sample = iter->sample;
651 	struct mem_info *mi;
652 
653 	mi = sample__resolve_mem(sample, al);
654 	if (mi == NULL)
655 		return -ENOMEM;
656 
657 	iter->priv = mi;
658 	return 0;
659 }
660 
661 static int
662 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
663 {
664 	u64 cost;
665 	struct mem_info *mi = iter->priv;
666 	struct hists *hists = evsel__hists(iter->evsel);
667 	struct perf_sample *sample = iter->sample;
668 	struct hist_entry *he;
669 
670 	if (mi == NULL)
671 		return -EINVAL;
672 
673 	cost = sample->weight;
674 	if (!cost)
675 		cost = 1;
676 
677 	/*
678 	 * must pass period=weight in order to get the correct
679 	 * sorting from hists__collapse_resort() which is solely
680 	 * based on periods. We want sorting be done on nr_events * weight
681 	 * and this is indirectly achieved by passing period=weight here
682 	 * and the he_stat__add_period() function.
683 	 */
684 	sample->period = cost;
685 
686 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
687 			      sample, true);
688 	if (!he)
689 		return -ENOMEM;
690 
691 	iter->he = he;
692 	return 0;
693 }
694 
695 static int
696 iter_finish_mem_entry(struct hist_entry_iter *iter,
697 		      struct addr_location *al __maybe_unused)
698 {
699 	struct perf_evsel *evsel = iter->evsel;
700 	struct hists *hists = evsel__hists(evsel);
701 	struct hist_entry *he = iter->he;
702 	int err = -EINVAL;
703 
704 	if (he == NULL)
705 		goto out;
706 
707 	hists__inc_nr_samples(hists, he->filtered);
708 
709 	err = hist_entry__append_callchain(he, iter->sample);
710 
711 out:
712 	/*
713 	 * We don't need to free iter->priv (mem_info) here since the mem info
714 	 * was either already freed in hists__findnew_entry() or passed to a
715 	 * new hist entry by hist_entry__new().
716 	 */
717 	iter->priv = NULL;
718 
719 	iter->he = NULL;
720 	return err;
721 }
722 
723 static int
724 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
725 {
726 	struct branch_info *bi;
727 	struct perf_sample *sample = iter->sample;
728 
729 	bi = sample__resolve_bstack(sample, al);
730 	if (!bi)
731 		return -ENOMEM;
732 
733 	iter->curr = 0;
734 	iter->total = sample->branch_stack->nr;
735 
736 	iter->priv = bi;
737 	return 0;
738 }
739 
740 static int
741 iter_add_single_branch_entry(struct hist_entry_iter *iter,
742 			     struct addr_location *al __maybe_unused)
743 {
744 	/* to avoid calling callback function */
745 	iter->he = NULL;
746 
747 	return 0;
748 }
749 
750 static int
751 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
752 {
753 	struct branch_info *bi = iter->priv;
754 	int i = iter->curr;
755 
756 	if (bi == NULL)
757 		return 0;
758 
759 	if (iter->curr >= iter->total)
760 		return 0;
761 
762 	al->map = bi[i].to.map;
763 	al->sym = bi[i].to.sym;
764 	al->addr = bi[i].to.addr;
765 	return 1;
766 }
767 
768 static int
769 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
770 {
771 	struct branch_info *bi;
772 	struct perf_evsel *evsel = iter->evsel;
773 	struct hists *hists = evsel__hists(evsel);
774 	struct perf_sample *sample = iter->sample;
775 	struct hist_entry *he = NULL;
776 	int i = iter->curr;
777 	int err = 0;
778 
779 	bi = iter->priv;
780 
781 	if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
782 		goto out;
783 
784 	/*
785 	 * The report shows the percentage of total branches captured
786 	 * and not events sampled. Thus we use a pseudo period of 1.
787 	 */
788 	sample->period = 1;
789 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
790 
791 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
792 			      sample, true);
793 	if (he == NULL)
794 		return -ENOMEM;
795 
796 	hists__inc_nr_samples(hists, he->filtered);
797 
798 out:
799 	iter->he = he;
800 	iter->curr++;
801 	return err;
802 }
803 
804 static int
805 iter_finish_branch_entry(struct hist_entry_iter *iter,
806 			 struct addr_location *al __maybe_unused)
807 {
808 	zfree(&iter->priv);
809 	iter->he = NULL;
810 
811 	return iter->curr >= iter->total ? 0 : -1;
812 }
813 
814 static int
815 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
816 			  struct addr_location *al __maybe_unused)
817 {
818 	return 0;
819 }
820 
821 static int
822 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
823 {
824 	struct perf_evsel *evsel = iter->evsel;
825 	struct perf_sample *sample = iter->sample;
826 	struct hist_entry *he;
827 
828 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
829 			      sample, true);
830 	if (he == NULL)
831 		return -ENOMEM;
832 
833 	iter->he = he;
834 	return 0;
835 }
836 
837 static int
838 iter_finish_normal_entry(struct hist_entry_iter *iter,
839 			 struct addr_location *al __maybe_unused)
840 {
841 	struct hist_entry *he = iter->he;
842 	struct perf_evsel *evsel = iter->evsel;
843 	struct perf_sample *sample = iter->sample;
844 
845 	if (he == NULL)
846 		return 0;
847 
848 	iter->he = NULL;
849 
850 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
851 
852 	return hist_entry__append_callchain(he, sample);
853 }
854 
855 static int
856 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
857 			      struct addr_location *al __maybe_unused)
858 {
859 	struct hist_entry **he_cache;
860 
861 	callchain_cursor_commit(&callchain_cursor);
862 
863 	/*
864 	 * This is for detecting cycles or recursions so that they're
865 	 * cumulated only one time to prevent entries more than 100%
866 	 * overhead.
867 	 */
868 	he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
869 	if (he_cache == NULL)
870 		return -ENOMEM;
871 
872 	iter->priv = he_cache;
873 	iter->curr = 0;
874 
875 	return 0;
876 }
877 
878 static int
879 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
880 				 struct addr_location *al)
881 {
882 	struct perf_evsel *evsel = iter->evsel;
883 	struct hists *hists = evsel__hists(evsel);
884 	struct perf_sample *sample = iter->sample;
885 	struct hist_entry **he_cache = iter->priv;
886 	struct hist_entry *he;
887 	int err = 0;
888 
889 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
890 			      sample, true);
891 	if (he == NULL)
892 		return -ENOMEM;
893 
894 	iter->he = he;
895 	he_cache[iter->curr++] = he;
896 
897 	hist_entry__append_callchain(he, sample);
898 
899 	/*
900 	 * We need to re-initialize the cursor since callchain_append()
901 	 * advanced the cursor to the end.
902 	 */
903 	callchain_cursor_commit(&callchain_cursor);
904 
905 	hists__inc_nr_samples(hists, he->filtered);
906 
907 	return err;
908 }
909 
910 static int
911 iter_next_cumulative_entry(struct hist_entry_iter *iter,
912 			   struct addr_location *al)
913 {
914 	struct callchain_cursor_node *node;
915 
916 	node = callchain_cursor_current(&callchain_cursor);
917 	if (node == NULL)
918 		return 0;
919 
920 	return fill_callchain_info(al, node, iter->hide_unresolved);
921 }
922 
923 static int
924 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
925 			       struct addr_location *al)
926 {
927 	struct perf_evsel *evsel = iter->evsel;
928 	struct perf_sample *sample = iter->sample;
929 	struct hist_entry **he_cache = iter->priv;
930 	struct hist_entry *he;
931 	struct hist_entry he_tmp = {
932 		.hists = evsel__hists(evsel),
933 		.cpu = al->cpu,
934 		.thread = al->thread,
935 		.comm = thread__comm(al->thread),
936 		.ip = al->addr,
937 		.ms = {
938 			.map = al->map,
939 			.sym = al->sym,
940 		},
941 		.parent = iter->parent,
942 		.raw_data = sample->raw_data,
943 		.raw_size = sample->raw_size,
944 	};
945 	int i;
946 	struct callchain_cursor cursor;
947 
948 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
949 
950 	callchain_cursor_advance(&callchain_cursor);
951 
952 	/*
953 	 * Check if there's duplicate entries in the callchain.
954 	 * It's possible that it has cycles or recursive calls.
955 	 */
956 	for (i = 0; i < iter->curr; i++) {
957 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
958 			/* to avoid calling callback function */
959 			iter->he = NULL;
960 			return 0;
961 		}
962 	}
963 
964 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
965 			      sample, false);
966 	if (he == NULL)
967 		return -ENOMEM;
968 
969 	iter->he = he;
970 	he_cache[iter->curr++] = he;
971 
972 	if (symbol_conf.use_callchain)
973 		callchain_append(he->callchain, &cursor, sample->period);
974 	return 0;
975 }
976 
977 static int
978 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
979 			     struct addr_location *al __maybe_unused)
980 {
981 	zfree(&iter->priv);
982 	iter->he = NULL;
983 
984 	return 0;
985 }
986 
987 const struct hist_iter_ops hist_iter_mem = {
988 	.prepare_entry 		= iter_prepare_mem_entry,
989 	.add_single_entry 	= iter_add_single_mem_entry,
990 	.next_entry 		= iter_next_nop_entry,
991 	.add_next_entry 	= iter_add_next_nop_entry,
992 	.finish_entry 		= iter_finish_mem_entry,
993 };
994 
995 const struct hist_iter_ops hist_iter_branch = {
996 	.prepare_entry 		= iter_prepare_branch_entry,
997 	.add_single_entry 	= iter_add_single_branch_entry,
998 	.next_entry 		= iter_next_branch_entry,
999 	.add_next_entry 	= iter_add_next_branch_entry,
1000 	.finish_entry 		= iter_finish_branch_entry,
1001 };
1002 
1003 const struct hist_iter_ops hist_iter_normal = {
1004 	.prepare_entry 		= iter_prepare_normal_entry,
1005 	.add_single_entry 	= iter_add_single_normal_entry,
1006 	.next_entry 		= iter_next_nop_entry,
1007 	.add_next_entry 	= iter_add_next_nop_entry,
1008 	.finish_entry 		= iter_finish_normal_entry,
1009 };
1010 
1011 const struct hist_iter_ops hist_iter_cumulative = {
1012 	.prepare_entry 		= iter_prepare_cumulative_entry,
1013 	.add_single_entry 	= iter_add_single_cumulative_entry,
1014 	.next_entry 		= iter_next_cumulative_entry,
1015 	.add_next_entry 	= iter_add_next_cumulative_entry,
1016 	.finish_entry 		= iter_finish_cumulative_entry,
1017 };
1018 
1019 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1020 			 int max_stack_depth, void *arg)
1021 {
1022 	int err, err2;
1023 	struct map *alm = NULL;
1024 
1025 	if (al && al->map)
1026 		alm = map__get(al->map);
1027 
1028 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1029 					iter->evsel, al, max_stack_depth);
1030 	if (err)
1031 		return err;
1032 
1033 	iter->max_stack = max_stack_depth;
1034 
1035 	err = iter->ops->prepare_entry(iter, al);
1036 	if (err)
1037 		goto out;
1038 
1039 	err = iter->ops->add_single_entry(iter, al);
1040 	if (err)
1041 		goto out;
1042 
1043 	if (iter->he && iter->add_entry_cb) {
1044 		err = iter->add_entry_cb(iter, al, true, arg);
1045 		if (err)
1046 			goto out;
1047 	}
1048 
1049 	while (iter->ops->next_entry(iter, al)) {
1050 		err = iter->ops->add_next_entry(iter, al);
1051 		if (err)
1052 			break;
1053 
1054 		if (iter->he && iter->add_entry_cb) {
1055 			err = iter->add_entry_cb(iter, al, false, arg);
1056 			if (err)
1057 				goto out;
1058 		}
1059 	}
1060 
1061 out:
1062 	err2 = iter->ops->finish_entry(iter, al);
1063 	if (!err)
1064 		err = err2;
1065 
1066 	map__put(alm);
1067 
1068 	return err;
1069 }
1070 
1071 int64_t
1072 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1073 {
1074 	struct hists *hists = left->hists;
1075 	struct perf_hpp_fmt *fmt;
1076 	int64_t cmp = 0;
1077 
1078 	hists__for_each_sort_list(hists, fmt) {
1079 		if (perf_hpp__is_dynamic_entry(fmt) &&
1080 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1081 			continue;
1082 
1083 		cmp = fmt->cmp(fmt, left, right);
1084 		if (cmp)
1085 			break;
1086 	}
1087 
1088 	return cmp;
1089 }
1090 
1091 int64_t
1092 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1093 {
1094 	struct hists *hists = left->hists;
1095 	struct perf_hpp_fmt *fmt;
1096 	int64_t cmp = 0;
1097 
1098 	hists__for_each_sort_list(hists, fmt) {
1099 		if (perf_hpp__is_dynamic_entry(fmt) &&
1100 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1101 			continue;
1102 
1103 		cmp = fmt->collapse(fmt, left, right);
1104 		if (cmp)
1105 			break;
1106 	}
1107 
1108 	return cmp;
1109 }
1110 
1111 void hist_entry__delete(struct hist_entry *he)
1112 {
1113 	struct hist_entry_ops *ops = he->ops;
1114 
1115 	thread__zput(he->thread);
1116 	map__zput(he->ms.map);
1117 
1118 	if (he->branch_info) {
1119 		map__zput(he->branch_info->from.map);
1120 		map__zput(he->branch_info->to.map);
1121 		free_srcline(he->branch_info->srcline_from);
1122 		free_srcline(he->branch_info->srcline_to);
1123 		zfree(&he->branch_info);
1124 	}
1125 
1126 	if (he->mem_info) {
1127 		map__zput(he->mem_info->iaddr.map);
1128 		map__zput(he->mem_info->daddr.map);
1129 		zfree(&he->mem_info);
1130 	}
1131 
1132 	zfree(&he->stat_acc);
1133 	free_srcline(he->srcline);
1134 	if (he->srcfile && he->srcfile[0])
1135 		free(he->srcfile);
1136 	free_callchain(he->callchain);
1137 	free(he->trace_output);
1138 	free(he->raw_data);
1139 	ops->free(he);
1140 }
1141 
1142 /*
1143  * If this is not the last column, then we need to pad it according to the
1144  * pre-calculated max lenght for this column, otherwise don't bother adding
1145  * spaces because that would break viewing this with, for instance, 'less',
1146  * that would show tons of trailing spaces when a long C++ demangled method
1147  * names is sampled.
1148 */
1149 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1150 				   struct perf_hpp_fmt *fmt, int printed)
1151 {
1152 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1153 		const int width = fmt->width(fmt, hpp, he->hists);
1154 		if (printed < width) {
1155 			advance_hpp(hpp, printed);
1156 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1157 		}
1158 	}
1159 
1160 	return printed;
1161 }
1162 
1163 /*
1164  * collapse the histogram
1165  */
1166 
1167 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1168 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1169 				       enum hist_filter type);
1170 
1171 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1172 
1173 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1174 {
1175 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1176 }
1177 
1178 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1179 						enum hist_filter type,
1180 						fmt_chk_fn check)
1181 {
1182 	struct perf_hpp_fmt *fmt;
1183 	bool type_match = false;
1184 	struct hist_entry *parent = he->parent_he;
1185 
1186 	switch (type) {
1187 	case HIST_FILTER__THREAD:
1188 		if (symbol_conf.comm_list == NULL &&
1189 		    symbol_conf.pid_list == NULL &&
1190 		    symbol_conf.tid_list == NULL)
1191 			return;
1192 		break;
1193 	case HIST_FILTER__DSO:
1194 		if (symbol_conf.dso_list == NULL)
1195 			return;
1196 		break;
1197 	case HIST_FILTER__SYMBOL:
1198 		if (symbol_conf.sym_list == NULL)
1199 			return;
1200 		break;
1201 	case HIST_FILTER__PARENT:
1202 	case HIST_FILTER__GUEST:
1203 	case HIST_FILTER__HOST:
1204 	case HIST_FILTER__SOCKET:
1205 	case HIST_FILTER__C2C:
1206 	default:
1207 		return;
1208 	}
1209 
1210 	/* if it's filtered by own fmt, it has to have filter bits */
1211 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1212 		if (check(fmt)) {
1213 			type_match = true;
1214 			break;
1215 		}
1216 	}
1217 
1218 	if (type_match) {
1219 		/*
1220 		 * If the filter is for current level entry, propagate
1221 		 * filter marker to parents.  The marker bit was
1222 		 * already set by default so it only needs to clear
1223 		 * non-filtered entries.
1224 		 */
1225 		if (!(he->filtered & (1 << type))) {
1226 			while (parent) {
1227 				parent->filtered &= ~(1 << type);
1228 				parent = parent->parent_he;
1229 			}
1230 		}
1231 	} else {
1232 		/*
1233 		 * If current entry doesn't have matching formats, set
1234 		 * filter marker for upper level entries.  it will be
1235 		 * cleared if its lower level entries is not filtered.
1236 		 *
1237 		 * For lower-level entries, it inherits parent's
1238 		 * filter bit so that lower level entries of a
1239 		 * non-filtered entry won't set the filter marker.
1240 		 */
1241 		if (parent == NULL)
1242 			he->filtered |= (1 << type);
1243 		else
1244 			he->filtered |= (parent->filtered & (1 << type));
1245 	}
1246 }
1247 
1248 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1249 {
1250 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1251 					    check_thread_entry);
1252 
1253 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1254 					    perf_hpp__is_dso_entry);
1255 
1256 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1257 					    perf_hpp__is_sym_entry);
1258 
1259 	hists__apply_filters(he->hists, he);
1260 }
1261 
1262 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1263 						 struct rb_root *root,
1264 						 struct hist_entry *he,
1265 						 struct hist_entry *parent_he,
1266 						 struct perf_hpp_list *hpp_list)
1267 {
1268 	struct rb_node **p = &root->rb_node;
1269 	struct rb_node *parent = NULL;
1270 	struct hist_entry *iter, *new;
1271 	struct perf_hpp_fmt *fmt;
1272 	int64_t cmp;
1273 
1274 	while (*p != NULL) {
1275 		parent = *p;
1276 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1277 
1278 		cmp = 0;
1279 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1280 			cmp = fmt->collapse(fmt, iter, he);
1281 			if (cmp)
1282 				break;
1283 		}
1284 
1285 		if (!cmp) {
1286 			he_stat__add_stat(&iter->stat, &he->stat);
1287 			return iter;
1288 		}
1289 
1290 		if (cmp < 0)
1291 			p = &parent->rb_left;
1292 		else
1293 			p = &parent->rb_right;
1294 	}
1295 
1296 	new = hist_entry__new(he, true);
1297 	if (new == NULL)
1298 		return NULL;
1299 
1300 	hists->nr_entries++;
1301 
1302 	/* save related format list for output */
1303 	new->hpp_list = hpp_list;
1304 	new->parent_he = parent_he;
1305 
1306 	hist_entry__apply_hierarchy_filters(new);
1307 
1308 	/* some fields are now passed to 'new' */
1309 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1310 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1311 			he->trace_output = NULL;
1312 		else
1313 			new->trace_output = NULL;
1314 
1315 		if (perf_hpp__is_srcline_entry(fmt))
1316 			he->srcline = NULL;
1317 		else
1318 			new->srcline = NULL;
1319 
1320 		if (perf_hpp__is_srcfile_entry(fmt))
1321 			he->srcfile = NULL;
1322 		else
1323 			new->srcfile = NULL;
1324 	}
1325 
1326 	rb_link_node(&new->rb_node_in, parent, p);
1327 	rb_insert_color(&new->rb_node_in, root);
1328 	return new;
1329 }
1330 
1331 static int hists__hierarchy_insert_entry(struct hists *hists,
1332 					 struct rb_root *root,
1333 					 struct hist_entry *he)
1334 {
1335 	struct perf_hpp_list_node *node;
1336 	struct hist_entry *new_he = NULL;
1337 	struct hist_entry *parent = NULL;
1338 	int depth = 0;
1339 	int ret = 0;
1340 
1341 	list_for_each_entry(node, &hists->hpp_formats, list) {
1342 		/* skip period (overhead) and elided columns */
1343 		if (node->level == 0 || node->skip)
1344 			continue;
1345 
1346 		/* insert copy of 'he' for each fmt into the hierarchy */
1347 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1348 		if (new_he == NULL) {
1349 			ret = -1;
1350 			break;
1351 		}
1352 
1353 		root = &new_he->hroot_in;
1354 		new_he->depth = depth++;
1355 		parent = new_he;
1356 	}
1357 
1358 	if (new_he) {
1359 		new_he->leaf = true;
1360 
1361 		if (symbol_conf.use_callchain) {
1362 			callchain_cursor_reset(&callchain_cursor);
1363 			if (callchain_merge(&callchain_cursor,
1364 					    new_he->callchain,
1365 					    he->callchain) < 0)
1366 				ret = -1;
1367 		}
1368 	}
1369 
1370 	/* 'he' is no longer used */
1371 	hist_entry__delete(he);
1372 
1373 	/* return 0 (or -1) since it already applied filters */
1374 	return ret;
1375 }
1376 
1377 static int hists__collapse_insert_entry(struct hists *hists,
1378 					struct rb_root *root,
1379 					struct hist_entry *he)
1380 {
1381 	struct rb_node **p = &root->rb_node;
1382 	struct rb_node *parent = NULL;
1383 	struct hist_entry *iter;
1384 	int64_t cmp;
1385 
1386 	if (symbol_conf.report_hierarchy)
1387 		return hists__hierarchy_insert_entry(hists, root, he);
1388 
1389 	while (*p != NULL) {
1390 		parent = *p;
1391 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1392 
1393 		cmp = hist_entry__collapse(iter, he);
1394 
1395 		if (!cmp) {
1396 			int ret = 0;
1397 
1398 			he_stat__add_stat(&iter->stat, &he->stat);
1399 			if (symbol_conf.cumulate_callchain)
1400 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1401 
1402 			if (symbol_conf.use_callchain) {
1403 				callchain_cursor_reset(&callchain_cursor);
1404 				if (callchain_merge(&callchain_cursor,
1405 						    iter->callchain,
1406 						    he->callchain) < 0)
1407 					ret = -1;
1408 			}
1409 			hist_entry__delete(he);
1410 			return ret;
1411 		}
1412 
1413 		if (cmp < 0)
1414 			p = &(*p)->rb_left;
1415 		else
1416 			p = &(*p)->rb_right;
1417 	}
1418 	hists->nr_entries++;
1419 
1420 	rb_link_node(&he->rb_node_in, parent, p);
1421 	rb_insert_color(&he->rb_node_in, root);
1422 	return 1;
1423 }
1424 
1425 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1426 {
1427 	struct rb_root *root;
1428 
1429 	pthread_mutex_lock(&hists->lock);
1430 
1431 	root = hists->entries_in;
1432 	if (++hists->entries_in > &hists->entries_in_array[1])
1433 		hists->entries_in = &hists->entries_in_array[0];
1434 
1435 	pthread_mutex_unlock(&hists->lock);
1436 
1437 	return root;
1438 }
1439 
1440 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1441 {
1442 	hists__filter_entry_by_dso(hists, he);
1443 	hists__filter_entry_by_thread(hists, he);
1444 	hists__filter_entry_by_symbol(hists, he);
1445 	hists__filter_entry_by_socket(hists, he);
1446 }
1447 
1448 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1449 {
1450 	struct rb_root *root;
1451 	struct rb_node *next;
1452 	struct hist_entry *n;
1453 	int ret;
1454 
1455 	if (!hists__has(hists, need_collapse))
1456 		return 0;
1457 
1458 	hists->nr_entries = 0;
1459 
1460 	root = hists__get_rotate_entries_in(hists);
1461 
1462 	next = rb_first(root);
1463 
1464 	while (next) {
1465 		if (session_done())
1466 			break;
1467 		n = rb_entry(next, struct hist_entry, rb_node_in);
1468 		next = rb_next(&n->rb_node_in);
1469 
1470 		rb_erase(&n->rb_node_in, root);
1471 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1472 		if (ret < 0)
1473 			return -1;
1474 
1475 		if (ret) {
1476 			/*
1477 			 * If it wasn't combined with one of the entries already
1478 			 * collapsed, we need to apply the filters that may have
1479 			 * been set by, say, the hist_browser.
1480 			 */
1481 			hists__apply_filters(hists, n);
1482 		}
1483 		if (prog)
1484 			ui_progress__update(prog, 1);
1485 	}
1486 	return 0;
1487 }
1488 
1489 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1490 {
1491 	struct hists *hists = a->hists;
1492 	struct perf_hpp_fmt *fmt;
1493 	int64_t cmp = 0;
1494 
1495 	hists__for_each_sort_list(hists, fmt) {
1496 		if (perf_hpp__should_skip(fmt, a->hists))
1497 			continue;
1498 
1499 		cmp = fmt->sort(fmt, a, b);
1500 		if (cmp)
1501 			break;
1502 	}
1503 
1504 	return cmp;
1505 }
1506 
1507 static void hists__reset_filter_stats(struct hists *hists)
1508 {
1509 	hists->nr_non_filtered_entries = 0;
1510 	hists->stats.total_non_filtered_period = 0;
1511 }
1512 
1513 void hists__reset_stats(struct hists *hists)
1514 {
1515 	hists->nr_entries = 0;
1516 	hists->stats.total_period = 0;
1517 
1518 	hists__reset_filter_stats(hists);
1519 }
1520 
1521 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1522 {
1523 	hists->nr_non_filtered_entries++;
1524 	hists->stats.total_non_filtered_period += h->stat.period;
1525 }
1526 
1527 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1528 {
1529 	if (!h->filtered)
1530 		hists__inc_filter_stats(hists, h);
1531 
1532 	hists->nr_entries++;
1533 	hists->stats.total_period += h->stat.period;
1534 }
1535 
1536 static void hierarchy_recalc_total_periods(struct hists *hists)
1537 {
1538 	struct rb_node *node;
1539 	struct hist_entry *he;
1540 
1541 	node = rb_first(&hists->entries);
1542 
1543 	hists->stats.total_period = 0;
1544 	hists->stats.total_non_filtered_period = 0;
1545 
1546 	/*
1547 	 * recalculate total period using top-level entries only
1548 	 * since lower level entries only see non-filtered entries
1549 	 * but upper level entries have sum of both entries.
1550 	 */
1551 	while (node) {
1552 		he = rb_entry(node, struct hist_entry, rb_node);
1553 		node = rb_next(node);
1554 
1555 		hists->stats.total_period += he->stat.period;
1556 		if (!he->filtered)
1557 			hists->stats.total_non_filtered_period += he->stat.period;
1558 	}
1559 }
1560 
1561 static void hierarchy_insert_output_entry(struct rb_root *root,
1562 					  struct hist_entry *he)
1563 {
1564 	struct rb_node **p = &root->rb_node;
1565 	struct rb_node *parent = NULL;
1566 	struct hist_entry *iter;
1567 	struct perf_hpp_fmt *fmt;
1568 
1569 	while (*p != NULL) {
1570 		parent = *p;
1571 		iter = rb_entry(parent, struct hist_entry, rb_node);
1572 
1573 		if (hist_entry__sort(he, iter) > 0)
1574 			p = &parent->rb_left;
1575 		else
1576 			p = &parent->rb_right;
1577 	}
1578 
1579 	rb_link_node(&he->rb_node, parent, p);
1580 	rb_insert_color(&he->rb_node, root);
1581 
1582 	/* update column width of dynamic entry */
1583 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1584 		if (perf_hpp__is_dynamic_entry(fmt))
1585 			fmt->sort(fmt, he, NULL);
1586 	}
1587 }
1588 
1589 static void hists__hierarchy_output_resort(struct hists *hists,
1590 					   struct ui_progress *prog,
1591 					   struct rb_root *root_in,
1592 					   struct rb_root *root_out,
1593 					   u64 min_callchain_hits,
1594 					   bool use_callchain)
1595 {
1596 	struct rb_node *node;
1597 	struct hist_entry *he;
1598 
1599 	*root_out = RB_ROOT;
1600 	node = rb_first(root_in);
1601 
1602 	while (node) {
1603 		he = rb_entry(node, struct hist_entry, rb_node_in);
1604 		node = rb_next(node);
1605 
1606 		hierarchy_insert_output_entry(root_out, he);
1607 
1608 		if (prog)
1609 			ui_progress__update(prog, 1);
1610 
1611 		hists->nr_entries++;
1612 		if (!he->filtered) {
1613 			hists->nr_non_filtered_entries++;
1614 			hists__calc_col_len(hists, he);
1615 		}
1616 
1617 		if (!he->leaf) {
1618 			hists__hierarchy_output_resort(hists, prog,
1619 						       &he->hroot_in,
1620 						       &he->hroot_out,
1621 						       min_callchain_hits,
1622 						       use_callchain);
1623 			continue;
1624 		}
1625 
1626 		if (!use_callchain)
1627 			continue;
1628 
1629 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1630 			u64 total = he->stat.period;
1631 
1632 			if (symbol_conf.cumulate_callchain)
1633 				total = he->stat_acc->period;
1634 
1635 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1636 		}
1637 
1638 		callchain_param.sort(&he->sorted_chain, he->callchain,
1639 				     min_callchain_hits, &callchain_param);
1640 	}
1641 }
1642 
1643 static void __hists__insert_output_entry(struct rb_root *entries,
1644 					 struct hist_entry *he,
1645 					 u64 min_callchain_hits,
1646 					 bool use_callchain)
1647 {
1648 	struct rb_node **p = &entries->rb_node;
1649 	struct rb_node *parent = NULL;
1650 	struct hist_entry *iter;
1651 	struct perf_hpp_fmt *fmt;
1652 
1653 	if (use_callchain) {
1654 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1655 			u64 total = he->stat.period;
1656 
1657 			if (symbol_conf.cumulate_callchain)
1658 				total = he->stat_acc->period;
1659 
1660 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1661 		}
1662 		callchain_param.sort(&he->sorted_chain, he->callchain,
1663 				      min_callchain_hits, &callchain_param);
1664 	}
1665 
1666 	while (*p != NULL) {
1667 		parent = *p;
1668 		iter = rb_entry(parent, struct hist_entry, rb_node);
1669 
1670 		if (hist_entry__sort(he, iter) > 0)
1671 			p = &(*p)->rb_left;
1672 		else
1673 			p = &(*p)->rb_right;
1674 	}
1675 
1676 	rb_link_node(&he->rb_node, parent, p);
1677 	rb_insert_color(&he->rb_node, entries);
1678 
1679 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1680 		if (perf_hpp__is_dynamic_entry(fmt) &&
1681 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1682 			fmt->sort(fmt, he, NULL);  /* update column width */
1683 	}
1684 }
1685 
1686 static void output_resort(struct hists *hists, struct ui_progress *prog,
1687 			  bool use_callchain, hists__resort_cb_t cb)
1688 {
1689 	struct rb_root *root;
1690 	struct rb_node *next;
1691 	struct hist_entry *n;
1692 	u64 callchain_total;
1693 	u64 min_callchain_hits;
1694 
1695 	callchain_total = hists->callchain_period;
1696 	if (symbol_conf.filter_relative)
1697 		callchain_total = hists->callchain_non_filtered_period;
1698 
1699 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1700 
1701 	hists__reset_stats(hists);
1702 	hists__reset_col_len(hists);
1703 
1704 	if (symbol_conf.report_hierarchy) {
1705 		hists__hierarchy_output_resort(hists, prog,
1706 					       &hists->entries_collapsed,
1707 					       &hists->entries,
1708 					       min_callchain_hits,
1709 					       use_callchain);
1710 		hierarchy_recalc_total_periods(hists);
1711 		return;
1712 	}
1713 
1714 	if (hists__has(hists, need_collapse))
1715 		root = &hists->entries_collapsed;
1716 	else
1717 		root = hists->entries_in;
1718 
1719 	next = rb_first(root);
1720 	hists->entries = RB_ROOT;
1721 
1722 	while (next) {
1723 		n = rb_entry(next, struct hist_entry, rb_node_in);
1724 		next = rb_next(&n->rb_node_in);
1725 
1726 		if (cb && cb(n))
1727 			continue;
1728 
1729 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1730 		hists__inc_stats(hists, n);
1731 
1732 		if (!n->filtered)
1733 			hists__calc_col_len(hists, n);
1734 
1735 		if (prog)
1736 			ui_progress__update(prog, 1);
1737 	}
1738 }
1739 
1740 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1741 {
1742 	bool use_callchain;
1743 
1744 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1745 		use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1746 	else
1747 		use_callchain = symbol_conf.use_callchain;
1748 
1749 	output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1750 }
1751 
1752 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1753 {
1754 	output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1755 }
1756 
1757 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1758 			     hists__resort_cb_t cb)
1759 {
1760 	output_resort(hists, prog, symbol_conf.use_callchain, cb);
1761 }
1762 
1763 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1764 {
1765 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1766 		return false;
1767 
1768 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1769 		return true;
1770 
1771 	return false;
1772 }
1773 
1774 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1775 {
1776 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1777 
1778 	while (can_goto_child(he, HMD_NORMAL)) {
1779 		node = rb_last(&he->hroot_out);
1780 		he = rb_entry(node, struct hist_entry, rb_node);
1781 	}
1782 	return node;
1783 }
1784 
1785 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1786 {
1787 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1788 
1789 	if (can_goto_child(he, hmd))
1790 		node = rb_first(&he->hroot_out);
1791 	else
1792 		node = rb_next(node);
1793 
1794 	while (node == NULL) {
1795 		he = he->parent_he;
1796 		if (he == NULL)
1797 			break;
1798 
1799 		node = rb_next(&he->rb_node);
1800 	}
1801 	return node;
1802 }
1803 
1804 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1805 {
1806 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1807 
1808 	node = rb_prev(node);
1809 	if (node)
1810 		return rb_hierarchy_last(node);
1811 
1812 	he = he->parent_he;
1813 	if (he == NULL)
1814 		return NULL;
1815 
1816 	return &he->rb_node;
1817 }
1818 
1819 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1820 {
1821 	struct rb_node *node;
1822 	struct hist_entry *child;
1823 	float percent;
1824 
1825 	if (he->leaf)
1826 		return false;
1827 
1828 	node = rb_first(&he->hroot_out);
1829 	child = rb_entry(node, struct hist_entry, rb_node);
1830 
1831 	while (node && child->filtered) {
1832 		node = rb_next(node);
1833 		child = rb_entry(node, struct hist_entry, rb_node);
1834 	}
1835 
1836 	if (node)
1837 		percent = hist_entry__get_percent_limit(child);
1838 	else
1839 		percent = 0;
1840 
1841 	return node && percent >= limit;
1842 }
1843 
1844 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1845 				       enum hist_filter filter)
1846 {
1847 	h->filtered &= ~(1 << filter);
1848 
1849 	if (symbol_conf.report_hierarchy) {
1850 		struct hist_entry *parent = h->parent_he;
1851 
1852 		while (parent) {
1853 			he_stat__add_stat(&parent->stat, &h->stat);
1854 
1855 			parent->filtered &= ~(1 << filter);
1856 
1857 			if (parent->filtered)
1858 				goto next;
1859 
1860 			/* force fold unfiltered entry for simplicity */
1861 			parent->unfolded = false;
1862 			parent->has_no_entry = false;
1863 			parent->row_offset = 0;
1864 			parent->nr_rows = 0;
1865 next:
1866 			parent = parent->parent_he;
1867 		}
1868 	}
1869 
1870 	if (h->filtered)
1871 		return;
1872 
1873 	/* force fold unfiltered entry for simplicity */
1874 	h->unfolded = false;
1875 	h->has_no_entry = false;
1876 	h->row_offset = 0;
1877 	h->nr_rows = 0;
1878 
1879 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1880 
1881 	hists__inc_filter_stats(hists, h);
1882 	hists__calc_col_len(hists, h);
1883 }
1884 
1885 
1886 static bool hists__filter_entry_by_dso(struct hists *hists,
1887 				       struct hist_entry *he)
1888 {
1889 	if (hists->dso_filter != NULL &&
1890 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1891 		he->filtered |= (1 << HIST_FILTER__DSO);
1892 		return true;
1893 	}
1894 
1895 	return false;
1896 }
1897 
1898 static bool hists__filter_entry_by_thread(struct hists *hists,
1899 					  struct hist_entry *he)
1900 {
1901 	if (hists->thread_filter != NULL &&
1902 	    he->thread != hists->thread_filter) {
1903 		he->filtered |= (1 << HIST_FILTER__THREAD);
1904 		return true;
1905 	}
1906 
1907 	return false;
1908 }
1909 
1910 static bool hists__filter_entry_by_symbol(struct hists *hists,
1911 					  struct hist_entry *he)
1912 {
1913 	if (hists->symbol_filter_str != NULL &&
1914 	    (!he->ms.sym || strstr(he->ms.sym->name,
1915 				   hists->symbol_filter_str) == NULL)) {
1916 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
1917 		return true;
1918 	}
1919 
1920 	return false;
1921 }
1922 
1923 static bool hists__filter_entry_by_socket(struct hists *hists,
1924 					  struct hist_entry *he)
1925 {
1926 	if ((hists->socket_filter > -1) &&
1927 	    (he->socket != hists->socket_filter)) {
1928 		he->filtered |= (1 << HIST_FILTER__SOCKET);
1929 		return true;
1930 	}
1931 
1932 	return false;
1933 }
1934 
1935 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1936 
1937 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1938 {
1939 	struct rb_node *nd;
1940 
1941 	hists->stats.nr_non_filtered_samples = 0;
1942 
1943 	hists__reset_filter_stats(hists);
1944 	hists__reset_col_len(hists);
1945 
1946 	for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1947 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1948 
1949 		if (filter(hists, h))
1950 			continue;
1951 
1952 		hists__remove_entry_filter(hists, h, type);
1953 	}
1954 }
1955 
1956 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1957 {
1958 	struct rb_node **p = &root->rb_node;
1959 	struct rb_node *parent = NULL;
1960 	struct hist_entry *iter;
1961 	struct rb_root new_root = RB_ROOT;
1962 	struct rb_node *nd;
1963 
1964 	while (*p != NULL) {
1965 		parent = *p;
1966 		iter = rb_entry(parent, struct hist_entry, rb_node);
1967 
1968 		if (hist_entry__sort(he, iter) > 0)
1969 			p = &(*p)->rb_left;
1970 		else
1971 			p = &(*p)->rb_right;
1972 	}
1973 
1974 	rb_link_node(&he->rb_node, parent, p);
1975 	rb_insert_color(&he->rb_node, root);
1976 
1977 	if (he->leaf || he->filtered)
1978 		return;
1979 
1980 	nd = rb_first(&he->hroot_out);
1981 	while (nd) {
1982 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1983 
1984 		nd = rb_next(nd);
1985 		rb_erase(&h->rb_node, &he->hroot_out);
1986 
1987 		resort_filtered_entry(&new_root, h);
1988 	}
1989 
1990 	he->hroot_out = new_root;
1991 }
1992 
1993 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
1994 {
1995 	struct rb_node *nd;
1996 	struct rb_root new_root = RB_ROOT;
1997 
1998 	hists->stats.nr_non_filtered_samples = 0;
1999 
2000 	hists__reset_filter_stats(hists);
2001 	hists__reset_col_len(hists);
2002 
2003 	nd = rb_first(&hists->entries);
2004 	while (nd) {
2005 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2006 		int ret;
2007 
2008 		ret = hist_entry__filter(h, type, arg);
2009 
2010 		/*
2011 		 * case 1. non-matching type
2012 		 * zero out the period, set filter marker and move to child
2013 		 */
2014 		if (ret < 0) {
2015 			memset(&h->stat, 0, sizeof(h->stat));
2016 			h->filtered |= (1 << type);
2017 
2018 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2019 		}
2020 		/*
2021 		 * case 2. matched type (filter out)
2022 		 * set filter marker and move to next
2023 		 */
2024 		else if (ret == 1) {
2025 			h->filtered |= (1 << type);
2026 
2027 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2028 		}
2029 		/*
2030 		 * case 3. ok (not filtered)
2031 		 * add period to hists and parents, erase the filter marker
2032 		 * and move to next sibling
2033 		 */
2034 		else {
2035 			hists__remove_entry_filter(hists, h, type);
2036 
2037 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2038 		}
2039 	}
2040 
2041 	hierarchy_recalc_total_periods(hists);
2042 
2043 	/*
2044 	 * resort output after applying a new filter since filter in a lower
2045 	 * hierarchy can change periods in a upper hierarchy.
2046 	 */
2047 	nd = rb_first(&hists->entries);
2048 	while (nd) {
2049 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2050 
2051 		nd = rb_next(nd);
2052 		rb_erase(&h->rb_node, &hists->entries);
2053 
2054 		resort_filtered_entry(&new_root, h);
2055 	}
2056 
2057 	hists->entries = new_root;
2058 }
2059 
2060 void hists__filter_by_thread(struct hists *hists)
2061 {
2062 	if (symbol_conf.report_hierarchy)
2063 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2064 					hists->thread_filter);
2065 	else
2066 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2067 				      hists__filter_entry_by_thread);
2068 }
2069 
2070 void hists__filter_by_dso(struct hists *hists)
2071 {
2072 	if (symbol_conf.report_hierarchy)
2073 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2074 					hists->dso_filter);
2075 	else
2076 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2077 				      hists__filter_entry_by_dso);
2078 }
2079 
2080 void hists__filter_by_symbol(struct hists *hists)
2081 {
2082 	if (symbol_conf.report_hierarchy)
2083 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2084 					hists->symbol_filter_str);
2085 	else
2086 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2087 				      hists__filter_entry_by_symbol);
2088 }
2089 
2090 void hists__filter_by_socket(struct hists *hists)
2091 {
2092 	if (symbol_conf.report_hierarchy)
2093 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2094 					&hists->socket_filter);
2095 	else
2096 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2097 				      hists__filter_entry_by_socket);
2098 }
2099 
2100 void events_stats__inc(struct events_stats *stats, u32 type)
2101 {
2102 	++stats->nr_events[0];
2103 	++stats->nr_events[type];
2104 }
2105 
2106 void hists__inc_nr_events(struct hists *hists, u32 type)
2107 {
2108 	events_stats__inc(&hists->stats, type);
2109 }
2110 
2111 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2112 {
2113 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2114 	if (!filtered)
2115 		hists->stats.nr_non_filtered_samples++;
2116 }
2117 
2118 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2119 						 struct hist_entry *pair)
2120 {
2121 	struct rb_root *root;
2122 	struct rb_node **p;
2123 	struct rb_node *parent = NULL;
2124 	struct hist_entry *he;
2125 	int64_t cmp;
2126 
2127 	if (hists__has(hists, need_collapse))
2128 		root = &hists->entries_collapsed;
2129 	else
2130 		root = hists->entries_in;
2131 
2132 	p = &root->rb_node;
2133 
2134 	while (*p != NULL) {
2135 		parent = *p;
2136 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2137 
2138 		cmp = hist_entry__collapse(he, pair);
2139 
2140 		if (!cmp)
2141 			goto out;
2142 
2143 		if (cmp < 0)
2144 			p = &(*p)->rb_left;
2145 		else
2146 			p = &(*p)->rb_right;
2147 	}
2148 
2149 	he = hist_entry__new(pair, true);
2150 	if (he) {
2151 		memset(&he->stat, 0, sizeof(he->stat));
2152 		he->hists = hists;
2153 		if (symbol_conf.cumulate_callchain)
2154 			memset(he->stat_acc, 0, sizeof(he->stat));
2155 		rb_link_node(&he->rb_node_in, parent, p);
2156 		rb_insert_color(&he->rb_node_in, root);
2157 		hists__inc_stats(hists, he);
2158 		he->dummy = true;
2159 	}
2160 out:
2161 	return he;
2162 }
2163 
2164 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2165 						    struct rb_root *root,
2166 						    struct hist_entry *pair)
2167 {
2168 	struct rb_node **p;
2169 	struct rb_node *parent = NULL;
2170 	struct hist_entry *he;
2171 	struct perf_hpp_fmt *fmt;
2172 
2173 	p = &root->rb_node;
2174 	while (*p != NULL) {
2175 		int64_t cmp = 0;
2176 
2177 		parent = *p;
2178 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2179 
2180 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2181 			cmp = fmt->collapse(fmt, he, pair);
2182 			if (cmp)
2183 				break;
2184 		}
2185 		if (!cmp)
2186 			goto out;
2187 
2188 		if (cmp < 0)
2189 			p = &parent->rb_left;
2190 		else
2191 			p = &parent->rb_right;
2192 	}
2193 
2194 	he = hist_entry__new(pair, true);
2195 	if (he) {
2196 		rb_link_node(&he->rb_node_in, parent, p);
2197 		rb_insert_color(&he->rb_node_in, root);
2198 
2199 		he->dummy = true;
2200 		he->hists = hists;
2201 		memset(&he->stat, 0, sizeof(he->stat));
2202 		hists__inc_stats(hists, he);
2203 	}
2204 out:
2205 	return he;
2206 }
2207 
2208 static struct hist_entry *hists__find_entry(struct hists *hists,
2209 					    struct hist_entry *he)
2210 {
2211 	struct rb_node *n;
2212 
2213 	if (hists__has(hists, need_collapse))
2214 		n = hists->entries_collapsed.rb_node;
2215 	else
2216 		n = hists->entries_in->rb_node;
2217 
2218 	while (n) {
2219 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2220 		int64_t cmp = hist_entry__collapse(iter, he);
2221 
2222 		if (cmp < 0)
2223 			n = n->rb_left;
2224 		else if (cmp > 0)
2225 			n = n->rb_right;
2226 		else
2227 			return iter;
2228 	}
2229 
2230 	return NULL;
2231 }
2232 
2233 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2234 						      struct hist_entry *he)
2235 {
2236 	struct rb_node *n = root->rb_node;
2237 
2238 	while (n) {
2239 		struct hist_entry *iter;
2240 		struct perf_hpp_fmt *fmt;
2241 		int64_t cmp = 0;
2242 
2243 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2244 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2245 			cmp = fmt->collapse(fmt, iter, he);
2246 			if (cmp)
2247 				break;
2248 		}
2249 
2250 		if (cmp < 0)
2251 			n = n->rb_left;
2252 		else if (cmp > 0)
2253 			n = n->rb_right;
2254 		else
2255 			return iter;
2256 	}
2257 
2258 	return NULL;
2259 }
2260 
2261 static void hists__match_hierarchy(struct rb_root *leader_root,
2262 				   struct rb_root *other_root)
2263 {
2264 	struct rb_node *nd;
2265 	struct hist_entry *pos, *pair;
2266 
2267 	for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2268 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2269 		pair = hists__find_hierarchy_entry(other_root, pos);
2270 
2271 		if (pair) {
2272 			hist_entry__add_pair(pair, pos);
2273 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2274 		}
2275 	}
2276 }
2277 
2278 /*
2279  * Look for pairs to link to the leader buckets (hist_entries):
2280  */
2281 void hists__match(struct hists *leader, struct hists *other)
2282 {
2283 	struct rb_root *root;
2284 	struct rb_node *nd;
2285 	struct hist_entry *pos, *pair;
2286 
2287 	if (symbol_conf.report_hierarchy) {
2288 		/* hierarchy report always collapses entries */
2289 		return hists__match_hierarchy(&leader->entries_collapsed,
2290 					      &other->entries_collapsed);
2291 	}
2292 
2293 	if (hists__has(leader, need_collapse))
2294 		root = &leader->entries_collapsed;
2295 	else
2296 		root = leader->entries_in;
2297 
2298 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2299 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2300 		pair = hists__find_entry(other, pos);
2301 
2302 		if (pair)
2303 			hist_entry__add_pair(pair, pos);
2304 	}
2305 }
2306 
2307 static int hists__link_hierarchy(struct hists *leader_hists,
2308 				 struct hist_entry *parent,
2309 				 struct rb_root *leader_root,
2310 				 struct rb_root *other_root)
2311 {
2312 	struct rb_node *nd;
2313 	struct hist_entry *pos, *leader;
2314 
2315 	for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2316 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2317 
2318 		if (hist_entry__has_pairs(pos)) {
2319 			bool found = false;
2320 
2321 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2322 				if (leader->hists == leader_hists) {
2323 					found = true;
2324 					break;
2325 				}
2326 			}
2327 			if (!found)
2328 				return -1;
2329 		} else {
2330 			leader = add_dummy_hierarchy_entry(leader_hists,
2331 							   leader_root, pos);
2332 			if (leader == NULL)
2333 				return -1;
2334 
2335 			/* do not point parent in the pos */
2336 			leader->parent_he = parent;
2337 
2338 			hist_entry__add_pair(pos, leader);
2339 		}
2340 
2341 		if (!pos->leaf) {
2342 			if (hists__link_hierarchy(leader_hists, leader,
2343 						  &leader->hroot_in,
2344 						  &pos->hroot_in) < 0)
2345 				return -1;
2346 		}
2347 	}
2348 	return 0;
2349 }
2350 
2351 /*
2352  * Look for entries in the other hists that are not present in the leader, if
2353  * we find them, just add a dummy entry on the leader hists, with period=0,
2354  * nr_events=0, to serve as the list header.
2355  */
2356 int hists__link(struct hists *leader, struct hists *other)
2357 {
2358 	struct rb_root *root;
2359 	struct rb_node *nd;
2360 	struct hist_entry *pos, *pair;
2361 
2362 	if (symbol_conf.report_hierarchy) {
2363 		/* hierarchy report always collapses entries */
2364 		return hists__link_hierarchy(leader, NULL,
2365 					     &leader->entries_collapsed,
2366 					     &other->entries_collapsed);
2367 	}
2368 
2369 	if (hists__has(other, need_collapse))
2370 		root = &other->entries_collapsed;
2371 	else
2372 		root = other->entries_in;
2373 
2374 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2375 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2376 
2377 		if (!hist_entry__has_pairs(pos)) {
2378 			pair = hists__add_dummy_entry(leader, pos);
2379 			if (pair == NULL)
2380 				return -1;
2381 			hist_entry__add_pair(pos, pair);
2382 		}
2383 	}
2384 
2385 	return 0;
2386 }
2387 
2388 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2389 			  struct perf_sample *sample, bool nonany_branch_mode)
2390 {
2391 	struct branch_info *bi;
2392 
2393 	/* If we have branch cycles always annotate them. */
2394 	if (bs && bs->nr && bs->entries[0].flags.cycles) {
2395 		int i;
2396 
2397 		bi = sample__resolve_bstack(sample, al);
2398 		if (bi) {
2399 			struct addr_map_symbol *prev = NULL;
2400 
2401 			/*
2402 			 * Ignore errors, still want to process the
2403 			 * other entries.
2404 			 *
2405 			 * For non standard branch modes always
2406 			 * force no IPC (prev == NULL)
2407 			 *
2408 			 * Note that perf stores branches reversed from
2409 			 * program order!
2410 			 */
2411 			for (i = bs->nr - 1; i >= 0; i--) {
2412 				addr_map_symbol__account_cycles(&bi[i].from,
2413 					nonany_branch_mode ? NULL : prev,
2414 					bi[i].flags.cycles);
2415 				prev = &bi[i].to;
2416 			}
2417 			free(bi);
2418 		}
2419 	}
2420 }
2421 
2422 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2423 {
2424 	struct perf_evsel *pos;
2425 	size_t ret = 0;
2426 
2427 	evlist__for_each_entry(evlist, pos) {
2428 		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2429 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2430 	}
2431 
2432 	return ret;
2433 }
2434 
2435 
2436 u64 hists__total_period(struct hists *hists)
2437 {
2438 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2439 		hists->stats.total_period;
2440 }
2441 
2442 int parse_filter_percentage(const struct option *opt __maybe_unused,
2443 			    const char *arg, int unset __maybe_unused)
2444 {
2445 	if (!strcmp(arg, "relative"))
2446 		symbol_conf.filter_relative = true;
2447 	else if (!strcmp(arg, "absolute"))
2448 		symbol_conf.filter_relative = false;
2449 	else {
2450 		pr_debug("Invalud percentage: %s\n", arg);
2451 		return -1;
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 int perf_hist_config(const char *var, const char *value)
2458 {
2459 	if (!strcmp(var, "hist.percentage"))
2460 		return parse_filter_percentage(NULL, value, 0);
2461 
2462 	return 0;
2463 }
2464 
2465 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2466 {
2467 	memset(hists, 0, sizeof(*hists));
2468 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2469 	hists->entries_in = &hists->entries_in_array[0];
2470 	hists->entries_collapsed = RB_ROOT;
2471 	hists->entries = RB_ROOT;
2472 	pthread_mutex_init(&hists->lock, NULL);
2473 	hists->socket_filter = -1;
2474 	hists->hpp_list = hpp_list;
2475 	INIT_LIST_HEAD(&hists->hpp_formats);
2476 	return 0;
2477 }
2478 
2479 static void hists__delete_remaining_entries(struct rb_root *root)
2480 {
2481 	struct rb_node *node;
2482 	struct hist_entry *he;
2483 
2484 	while (!RB_EMPTY_ROOT(root)) {
2485 		node = rb_first(root);
2486 		rb_erase(node, root);
2487 
2488 		he = rb_entry(node, struct hist_entry, rb_node_in);
2489 		hist_entry__delete(he);
2490 	}
2491 }
2492 
2493 static void hists__delete_all_entries(struct hists *hists)
2494 {
2495 	hists__delete_entries(hists);
2496 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2497 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2498 	hists__delete_remaining_entries(&hists->entries_collapsed);
2499 }
2500 
2501 static void hists_evsel__exit(struct perf_evsel *evsel)
2502 {
2503 	struct hists *hists = evsel__hists(evsel);
2504 	struct perf_hpp_fmt *fmt, *pos;
2505 	struct perf_hpp_list_node *node, *tmp;
2506 
2507 	hists__delete_all_entries(hists);
2508 
2509 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2510 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2511 			list_del(&fmt->list);
2512 			free(fmt);
2513 		}
2514 		list_del(&node->list);
2515 		free(node);
2516 	}
2517 }
2518 
2519 static int hists_evsel__init(struct perf_evsel *evsel)
2520 {
2521 	struct hists *hists = evsel__hists(evsel);
2522 
2523 	__hists__init(hists, &perf_hpp_list);
2524 	return 0;
2525 }
2526 
2527 /*
2528  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2529  * stored in the rbtree...
2530  */
2531 
2532 int hists__init(void)
2533 {
2534 	int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2535 					    hists_evsel__init,
2536 					    hists_evsel__exit);
2537 	if (err)
2538 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2539 
2540 	return err;
2541 }
2542 
2543 void perf_hpp_list__init(struct perf_hpp_list *list)
2544 {
2545 	INIT_LIST_HEAD(&list->fields);
2546 	INIT_LIST_HEAD(&list->sorts);
2547 }
2548