1 #include "util.h" 2 #include "build-id.h" 3 #include "hist.h" 4 #include "map.h" 5 #include "session.h" 6 #include "sort.h" 7 #include "evlist.h" 8 #include "evsel.h" 9 #include "annotate.h" 10 #include "ui/progress.h" 11 #include <math.h> 12 13 static bool hists__filter_entry_by_dso(struct hists *hists, 14 struct hist_entry *he); 15 static bool hists__filter_entry_by_thread(struct hists *hists, 16 struct hist_entry *he); 17 static bool hists__filter_entry_by_symbol(struct hists *hists, 18 struct hist_entry *he); 19 static bool hists__filter_entry_by_socket(struct hists *hists, 20 struct hist_entry *he); 21 22 u16 hists__col_len(struct hists *hists, enum hist_column col) 23 { 24 return hists->col_len[col]; 25 } 26 27 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 28 { 29 hists->col_len[col] = len; 30 } 31 32 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 33 { 34 if (len > hists__col_len(hists, col)) { 35 hists__set_col_len(hists, col, len); 36 return true; 37 } 38 return false; 39 } 40 41 void hists__reset_col_len(struct hists *hists) 42 { 43 enum hist_column col; 44 45 for (col = 0; col < HISTC_NR_COLS; ++col) 46 hists__set_col_len(hists, col, 0); 47 } 48 49 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 50 { 51 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 52 53 if (hists__col_len(hists, dso) < unresolved_col_width && 54 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 55 !symbol_conf.dso_list) 56 hists__set_col_len(hists, dso, unresolved_col_width); 57 } 58 59 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 60 { 61 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 62 int symlen; 63 u16 len; 64 65 /* 66 * +4 accounts for '[x] ' priv level info 67 * +2 accounts for 0x prefix on raw addresses 68 * +3 accounts for ' y ' symtab origin info 69 */ 70 if (h->ms.sym) { 71 symlen = h->ms.sym->namelen + 4; 72 if (verbose > 0) 73 symlen += BITS_PER_LONG / 4 + 2 + 3; 74 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 75 } else { 76 symlen = unresolved_col_width + 4 + 2; 77 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 78 hists__set_unres_dso_col_len(hists, HISTC_DSO); 79 } 80 81 len = thread__comm_len(h->thread); 82 if (hists__new_col_len(hists, HISTC_COMM, len)) 83 hists__set_col_len(hists, HISTC_THREAD, len + 8); 84 85 if (h->ms.map) { 86 len = dso__name_len(h->ms.map->dso); 87 hists__new_col_len(hists, HISTC_DSO, len); 88 } 89 90 if (h->parent) 91 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 92 93 if (h->branch_info) { 94 if (h->branch_info->from.sym) { 95 symlen = (int)h->branch_info->from.sym->namelen + 4; 96 if (verbose > 0) 97 symlen += BITS_PER_LONG / 4 + 2 + 3; 98 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 99 100 symlen = dso__name_len(h->branch_info->from.map->dso); 101 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 102 } else { 103 symlen = unresolved_col_width + 4 + 2; 104 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 105 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 106 } 107 108 if (h->branch_info->to.sym) { 109 symlen = (int)h->branch_info->to.sym->namelen + 4; 110 if (verbose > 0) 111 symlen += BITS_PER_LONG / 4 + 2 + 3; 112 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 113 114 symlen = dso__name_len(h->branch_info->to.map->dso); 115 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 116 } else { 117 symlen = unresolved_col_width + 4 + 2; 118 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 119 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 120 } 121 122 if (h->branch_info->srcline_from) 123 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 124 strlen(h->branch_info->srcline_from)); 125 if (h->branch_info->srcline_to) 126 hists__new_col_len(hists, HISTC_SRCLINE_TO, 127 strlen(h->branch_info->srcline_to)); 128 } 129 130 if (h->mem_info) { 131 if (h->mem_info->daddr.sym) { 132 symlen = (int)h->mem_info->daddr.sym->namelen + 4 133 + unresolved_col_width + 2; 134 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 135 symlen); 136 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 137 symlen + 1); 138 } else { 139 symlen = unresolved_col_width + 4 + 2; 140 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 141 symlen); 142 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 143 symlen); 144 } 145 146 if (h->mem_info->iaddr.sym) { 147 symlen = (int)h->mem_info->iaddr.sym->namelen + 4 148 + unresolved_col_width + 2; 149 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 150 symlen); 151 } else { 152 symlen = unresolved_col_width + 4 + 2; 153 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 154 symlen); 155 } 156 157 if (h->mem_info->daddr.map) { 158 symlen = dso__name_len(h->mem_info->daddr.map->dso); 159 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 160 symlen); 161 } else { 162 symlen = unresolved_col_width + 4 + 2; 163 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 164 } 165 } else { 166 symlen = unresolved_col_width + 4 + 2; 167 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 168 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 169 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 170 } 171 172 hists__new_col_len(hists, HISTC_CPU, 3); 173 hists__new_col_len(hists, HISTC_SOCKET, 6); 174 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 175 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 176 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 177 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3); 178 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 179 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 180 181 if (h->srcline) { 182 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header)); 183 hists__new_col_len(hists, HISTC_SRCLINE, len); 184 } 185 186 if (h->srcfile) 187 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 188 189 if (h->transaction) 190 hists__new_col_len(hists, HISTC_TRANSACTION, 191 hist_entry__transaction_len()); 192 193 if (h->trace_output) 194 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 195 } 196 197 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 198 { 199 struct rb_node *next = rb_first(&hists->entries); 200 struct hist_entry *n; 201 int row = 0; 202 203 hists__reset_col_len(hists); 204 205 while (next && row++ < max_rows) { 206 n = rb_entry(next, struct hist_entry, rb_node); 207 if (!n->filtered) 208 hists__calc_col_len(hists, n); 209 next = rb_next(&n->rb_node); 210 } 211 } 212 213 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 214 unsigned int cpumode, u64 period) 215 { 216 switch (cpumode) { 217 case PERF_RECORD_MISC_KERNEL: 218 he_stat->period_sys += period; 219 break; 220 case PERF_RECORD_MISC_USER: 221 he_stat->period_us += period; 222 break; 223 case PERF_RECORD_MISC_GUEST_KERNEL: 224 he_stat->period_guest_sys += period; 225 break; 226 case PERF_RECORD_MISC_GUEST_USER: 227 he_stat->period_guest_us += period; 228 break; 229 default: 230 break; 231 } 232 } 233 234 static void he_stat__add_period(struct he_stat *he_stat, u64 period, 235 u64 weight) 236 { 237 238 he_stat->period += period; 239 he_stat->weight += weight; 240 he_stat->nr_events += 1; 241 } 242 243 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 244 { 245 dest->period += src->period; 246 dest->period_sys += src->period_sys; 247 dest->period_us += src->period_us; 248 dest->period_guest_sys += src->period_guest_sys; 249 dest->period_guest_us += src->period_guest_us; 250 dest->nr_events += src->nr_events; 251 dest->weight += src->weight; 252 } 253 254 static void he_stat__decay(struct he_stat *he_stat) 255 { 256 he_stat->period = (he_stat->period * 7) / 8; 257 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 258 /* XXX need decay for weight too? */ 259 } 260 261 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 262 263 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 264 { 265 u64 prev_period = he->stat.period; 266 u64 diff; 267 268 if (prev_period == 0) 269 return true; 270 271 he_stat__decay(&he->stat); 272 if (symbol_conf.cumulate_callchain) 273 he_stat__decay(he->stat_acc); 274 decay_callchain(he->callchain); 275 276 diff = prev_period - he->stat.period; 277 278 if (!he->depth) { 279 hists->stats.total_period -= diff; 280 if (!he->filtered) 281 hists->stats.total_non_filtered_period -= diff; 282 } 283 284 if (!he->leaf) { 285 struct hist_entry *child; 286 struct rb_node *node = rb_first(&he->hroot_out); 287 while (node) { 288 child = rb_entry(node, struct hist_entry, rb_node); 289 node = rb_next(node); 290 291 if (hists__decay_entry(hists, child)) 292 hists__delete_entry(hists, child); 293 } 294 } 295 296 return he->stat.period == 0; 297 } 298 299 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 300 { 301 struct rb_root *root_in; 302 struct rb_root *root_out; 303 304 if (he->parent_he) { 305 root_in = &he->parent_he->hroot_in; 306 root_out = &he->parent_he->hroot_out; 307 } else { 308 if (hists__has(hists, need_collapse)) 309 root_in = &hists->entries_collapsed; 310 else 311 root_in = hists->entries_in; 312 root_out = &hists->entries; 313 } 314 315 rb_erase(&he->rb_node_in, root_in); 316 rb_erase(&he->rb_node, root_out); 317 318 --hists->nr_entries; 319 if (!he->filtered) 320 --hists->nr_non_filtered_entries; 321 322 hist_entry__delete(he); 323 } 324 325 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 326 { 327 struct rb_node *next = rb_first(&hists->entries); 328 struct hist_entry *n; 329 330 while (next) { 331 n = rb_entry(next, struct hist_entry, rb_node); 332 next = rb_next(&n->rb_node); 333 if (((zap_user && n->level == '.') || 334 (zap_kernel && n->level != '.') || 335 hists__decay_entry(hists, n))) { 336 hists__delete_entry(hists, n); 337 } 338 } 339 } 340 341 void hists__delete_entries(struct hists *hists) 342 { 343 struct rb_node *next = rb_first(&hists->entries); 344 struct hist_entry *n; 345 346 while (next) { 347 n = rb_entry(next, struct hist_entry, rb_node); 348 next = rb_next(&n->rb_node); 349 350 hists__delete_entry(hists, n); 351 } 352 } 353 354 /* 355 * histogram, sorted on item, collects periods 356 */ 357 358 static int hist_entry__init(struct hist_entry *he, 359 struct hist_entry *template, 360 bool sample_self) 361 { 362 *he = *template; 363 364 if (symbol_conf.cumulate_callchain) { 365 he->stat_acc = malloc(sizeof(he->stat)); 366 if (he->stat_acc == NULL) 367 return -ENOMEM; 368 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 369 if (!sample_self) 370 memset(&he->stat, 0, sizeof(he->stat)); 371 } 372 373 map__get(he->ms.map); 374 375 if (he->branch_info) { 376 /* 377 * This branch info is (a part of) allocated from 378 * sample__resolve_bstack() and will be freed after 379 * adding new entries. So we need to save a copy. 380 */ 381 he->branch_info = malloc(sizeof(*he->branch_info)); 382 if (he->branch_info == NULL) { 383 map__zput(he->ms.map); 384 free(he->stat_acc); 385 return -ENOMEM; 386 } 387 388 memcpy(he->branch_info, template->branch_info, 389 sizeof(*he->branch_info)); 390 391 map__get(he->branch_info->from.map); 392 map__get(he->branch_info->to.map); 393 } 394 395 if (he->mem_info) { 396 map__get(he->mem_info->iaddr.map); 397 map__get(he->mem_info->daddr.map); 398 } 399 400 if (symbol_conf.use_callchain) 401 callchain_init(he->callchain); 402 403 if (he->raw_data) { 404 he->raw_data = memdup(he->raw_data, he->raw_size); 405 406 if (he->raw_data == NULL) { 407 map__put(he->ms.map); 408 if (he->branch_info) { 409 map__put(he->branch_info->from.map); 410 map__put(he->branch_info->to.map); 411 free(he->branch_info); 412 } 413 if (he->mem_info) { 414 map__put(he->mem_info->iaddr.map); 415 map__put(he->mem_info->daddr.map); 416 } 417 free(he->stat_acc); 418 return -ENOMEM; 419 } 420 } 421 INIT_LIST_HEAD(&he->pairs.node); 422 thread__get(he->thread); 423 he->hroot_in = RB_ROOT; 424 he->hroot_out = RB_ROOT; 425 426 if (!symbol_conf.report_hierarchy) 427 he->leaf = true; 428 429 return 0; 430 } 431 432 static void *hist_entry__zalloc(size_t size) 433 { 434 return zalloc(size + sizeof(struct hist_entry)); 435 } 436 437 static void hist_entry__free(void *ptr) 438 { 439 free(ptr); 440 } 441 442 static struct hist_entry_ops default_ops = { 443 .new = hist_entry__zalloc, 444 .free = hist_entry__free, 445 }; 446 447 static struct hist_entry *hist_entry__new(struct hist_entry *template, 448 bool sample_self) 449 { 450 struct hist_entry_ops *ops = template->ops; 451 size_t callchain_size = 0; 452 struct hist_entry *he; 453 int err = 0; 454 455 if (!ops) 456 ops = template->ops = &default_ops; 457 458 if (symbol_conf.use_callchain) 459 callchain_size = sizeof(struct callchain_root); 460 461 he = ops->new(callchain_size); 462 if (he) { 463 err = hist_entry__init(he, template, sample_self); 464 if (err) { 465 ops->free(he); 466 he = NULL; 467 } 468 } 469 470 return he; 471 } 472 473 static u8 symbol__parent_filter(const struct symbol *parent) 474 { 475 if (symbol_conf.exclude_other && parent == NULL) 476 return 1 << HIST_FILTER__PARENT; 477 return 0; 478 } 479 480 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 481 { 482 if (!symbol_conf.use_callchain) 483 return; 484 485 he->hists->callchain_period += period; 486 if (!he->filtered) 487 he->hists->callchain_non_filtered_period += period; 488 } 489 490 static struct hist_entry *hists__findnew_entry(struct hists *hists, 491 struct hist_entry *entry, 492 struct addr_location *al, 493 bool sample_self) 494 { 495 struct rb_node **p; 496 struct rb_node *parent = NULL; 497 struct hist_entry *he; 498 int64_t cmp; 499 u64 period = entry->stat.period; 500 u64 weight = entry->stat.weight; 501 502 p = &hists->entries_in->rb_node; 503 504 while (*p != NULL) { 505 parent = *p; 506 he = rb_entry(parent, struct hist_entry, rb_node_in); 507 508 /* 509 * Make sure that it receives arguments in a same order as 510 * hist_entry__collapse() so that we can use an appropriate 511 * function when searching an entry regardless which sort 512 * keys were used. 513 */ 514 cmp = hist_entry__cmp(he, entry); 515 516 if (!cmp) { 517 if (sample_self) { 518 he_stat__add_period(&he->stat, period, weight); 519 hist_entry__add_callchain_period(he, period); 520 } 521 if (symbol_conf.cumulate_callchain) 522 he_stat__add_period(he->stat_acc, period, weight); 523 524 /* 525 * This mem info was allocated from sample__resolve_mem 526 * and will not be used anymore. 527 */ 528 zfree(&entry->mem_info); 529 530 /* If the map of an existing hist_entry has 531 * become out-of-date due to an exec() or 532 * similar, update it. Otherwise we will 533 * mis-adjust symbol addresses when computing 534 * the history counter to increment. 535 */ 536 if (he->ms.map != entry->ms.map) { 537 map__put(he->ms.map); 538 he->ms.map = map__get(entry->ms.map); 539 } 540 goto out; 541 } 542 543 if (cmp < 0) 544 p = &(*p)->rb_left; 545 else 546 p = &(*p)->rb_right; 547 } 548 549 he = hist_entry__new(entry, sample_self); 550 if (!he) 551 return NULL; 552 553 if (sample_self) 554 hist_entry__add_callchain_period(he, period); 555 hists->nr_entries++; 556 557 rb_link_node(&he->rb_node_in, parent, p); 558 rb_insert_color(&he->rb_node_in, hists->entries_in); 559 out: 560 if (sample_self) 561 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 562 if (symbol_conf.cumulate_callchain) 563 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 564 return he; 565 } 566 567 static struct hist_entry* 568 __hists__add_entry(struct hists *hists, 569 struct addr_location *al, 570 struct symbol *sym_parent, 571 struct branch_info *bi, 572 struct mem_info *mi, 573 struct perf_sample *sample, 574 bool sample_self, 575 struct hist_entry_ops *ops) 576 { 577 struct hist_entry entry = { 578 .thread = al->thread, 579 .comm = thread__comm(al->thread), 580 .ms = { 581 .map = al->map, 582 .sym = al->sym, 583 }, 584 .socket = al->socket, 585 .cpu = al->cpu, 586 .cpumode = al->cpumode, 587 .ip = al->addr, 588 .level = al->level, 589 .stat = { 590 .nr_events = 1, 591 .period = sample->period, 592 .weight = sample->weight, 593 }, 594 .parent = sym_parent, 595 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 596 .hists = hists, 597 .branch_info = bi, 598 .mem_info = mi, 599 .transaction = sample->transaction, 600 .raw_data = sample->raw_data, 601 .raw_size = sample->raw_size, 602 .ops = ops, 603 }; 604 605 return hists__findnew_entry(hists, &entry, al, sample_self); 606 } 607 608 struct hist_entry *hists__add_entry(struct hists *hists, 609 struct addr_location *al, 610 struct symbol *sym_parent, 611 struct branch_info *bi, 612 struct mem_info *mi, 613 struct perf_sample *sample, 614 bool sample_self) 615 { 616 return __hists__add_entry(hists, al, sym_parent, bi, mi, 617 sample, sample_self, NULL); 618 } 619 620 struct hist_entry *hists__add_entry_ops(struct hists *hists, 621 struct hist_entry_ops *ops, 622 struct addr_location *al, 623 struct symbol *sym_parent, 624 struct branch_info *bi, 625 struct mem_info *mi, 626 struct perf_sample *sample, 627 bool sample_self) 628 { 629 return __hists__add_entry(hists, al, sym_parent, bi, mi, 630 sample, sample_self, ops); 631 } 632 633 static int 634 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 635 struct addr_location *al __maybe_unused) 636 { 637 return 0; 638 } 639 640 static int 641 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 642 struct addr_location *al __maybe_unused) 643 { 644 return 0; 645 } 646 647 static int 648 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 649 { 650 struct perf_sample *sample = iter->sample; 651 struct mem_info *mi; 652 653 mi = sample__resolve_mem(sample, al); 654 if (mi == NULL) 655 return -ENOMEM; 656 657 iter->priv = mi; 658 return 0; 659 } 660 661 static int 662 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 663 { 664 u64 cost; 665 struct mem_info *mi = iter->priv; 666 struct hists *hists = evsel__hists(iter->evsel); 667 struct perf_sample *sample = iter->sample; 668 struct hist_entry *he; 669 670 if (mi == NULL) 671 return -EINVAL; 672 673 cost = sample->weight; 674 if (!cost) 675 cost = 1; 676 677 /* 678 * must pass period=weight in order to get the correct 679 * sorting from hists__collapse_resort() which is solely 680 * based on periods. We want sorting be done on nr_events * weight 681 * and this is indirectly achieved by passing period=weight here 682 * and the he_stat__add_period() function. 683 */ 684 sample->period = cost; 685 686 he = hists__add_entry(hists, al, iter->parent, NULL, mi, 687 sample, true); 688 if (!he) 689 return -ENOMEM; 690 691 iter->he = he; 692 return 0; 693 } 694 695 static int 696 iter_finish_mem_entry(struct hist_entry_iter *iter, 697 struct addr_location *al __maybe_unused) 698 { 699 struct perf_evsel *evsel = iter->evsel; 700 struct hists *hists = evsel__hists(evsel); 701 struct hist_entry *he = iter->he; 702 int err = -EINVAL; 703 704 if (he == NULL) 705 goto out; 706 707 hists__inc_nr_samples(hists, he->filtered); 708 709 err = hist_entry__append_callchain(he, iter->sample); 710 711 out: 712 /* 713 * We don't need to free iter->priv (mem_info) here since the mem info 714 * was either already freed in hists__findnew_entry() or passed to a 715 * new hist entry by hist_entry__new(). 716 */ 717 iter->priv = NULL; 718 719 iter->he = NULL; 720 return err; 721 } 722 723 static int 724 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 725 { 726 struct branch_info *bi; 727 struct perf_sample *sample = iter->sample; 728 729 bi = sample__resolve_bstack(sample, al); 730 if (!bi) 731 return -ENOMEM; 732 733 iter->curr = 0; 734 iter->total = sample->branch_stack->nr; 735 736 iter->priv = bi; 737 return 0; 738 } 739 740 static int 741 iter_add_single_branch_entry(struct hist_entry_iter *iter, 742 struct addr_location *al __maybe_unused) 743 { 744 /* to avoid calling callback function */ 745 iter->he = NULL; 746 747 return 0; 748 } 749 750 static int 751 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 752 { 753 struct branch_info *bi = iter->priv; 754 int i = iter->curr; 755 756 if (bi == NULL) 757 return 0; 758 759 if (iter->curr >= iter->total) 760 return 0; 761 762 al->map = bi[i].to.map; 763 al->sym = bi[i].to.sym; 764 al->addr = bi[i].to.addr; 765 return 1; 766 } 767 768 static int 769 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 770 { 771 struct branch_info *bi; 772 struct perf_evsel *evsel = iter->evsel; 773 struct hists *hists = evsel__hists(evsel); 774 struct perf_sample *sample = iter->sample; 775 struct hist_entry *he = NULL; 776 int i = iter->curr; 777 int err = 0; 778 779 bi = iter->priv; 780 781 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym)) 782 goto out; 783 784 /* 785 * The report shows the percentage of total branches captured 786 * and not events sampled. Thus we use a pseudo period of 1. 787 */ 788 sample->period = 1; 789 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 790 791 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, 792 sample, true); 793 if (he == NULL) 794 return -ENOMEM; 795 796 hists__inc_nr_samples(hists, he->filtered); 797 798 out: 799 iter->he = he; 800 iter->curr++; 801 return err; 802 } 803 804 static int 805 iter_finish_branch_entry(struct hist_entry_iter *iter, 806 struct addr_location *al __maybe_unused) 807 { 808 zfree(&iter->priv); 809 iter->he = NULL; 810 811 return iter->curr >= iter->total ? 0 : -1; 812 } 813 814 static int 815 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 816 struct addr_location *al __maybe_unused) 817 { 818 return 0; 819 } 820 821 static int 822 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 823 { 824 struct perf_evsel *evsel = iter->evsel; 825 struct perf_sample *sample = iter->sample; 826 struct hist_entry *he; 827 828 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 829 sample, true); 830 if (he == NULL) 831 return -ENOMEM; 832 833 iter->he = he; 834 return 0; 835 } 836 837 static int 838 iter_finish_normal_entry(struct hist_entry_iter *iter, 839 struct addr_location *al __maybe_unused) 840 { 841 struct hist_entry *he = iter->he; 842 struct perf_evsel *evsel = iter->evsel; 843 struct perf_sample *sample = iter->sample; 844 845 if (he == NULL) 846 return 0; 847 848 iter->he = NULL; 849 850 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 851 852 return hist_entry__append_callchain(he, sample); 853 } 854 855 static int 856 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 857 struct addr_location *al __maybe_unused) 858 { 859 struct hist_entry **he_cache; 860 861 callchain_cursor_commit(&callchain_cursor); 862 863 /* 864 * This is for detecting cycles or recursions so that they're 865 * cumulated only one time to prevent entries more than 100% 866 * overhead. 867 */ 868 he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1)); 869 if (he_cache == NULL) 870 return -ENOMEM; 871 872 iter->priv = he_cache; 873 iter->curr = 0; 874 875 return 0; 876 } 877 878 static int 879 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 880 struct addr_location *al) 881 { 882 struct perf_evsel *evsel = iter->evsel; 883 struct hists *hists = evsel__hists(evsel); 884 struct perf_sample *sample = iter->sample; 885 struct hist_entry **he_cache = iter->priv; 886 struct hist_entry *he; 887 int err = 0; 888 889 he = hists__add_entry(hists, al, iter->parent, NULL, NULL, 890 sample, true); 891 if (he == NULL) 892 return -ENOMEM; 893 894 iter->he = he; 895 he_cache[iter->curr++] = he; 896 897 hist_entry__append_callchain(he, sample); 898 899 /* 900 * We need to re-initialize the cursor since callchain_append() 901 * advanced the cursor to the end. 902 */ 903 callchain_cursor_commit(&callchain_cursor); 904 905 hists__inc_nr_samples(hists, he->filtered); 906 907 return err; 908 } 909 910 static int 911 iter_next_cumulative_entry(struct hist_entry_iter *iter, 912 struct addr_location *al) 913 { 914 struct callchain_cursor_node *node; 915 916 node = callchain_cursor_current(&callchain_cursor); 917 if (node == NULL) 918 return 0; 919 920 return fill_callchain_info(al, node, iter->hide_unresolved); 921 } 922 923 static int 924 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 925 struct addr_location *al) 926 { 927 struct perf_evsel *evsel = iter->evsel; 928 struct perf_sample *sample = iter->sample; 929 struct hist_entry **he_cache = iter->priv; 930 struct hist_entry *he; 931 struct hist_entry he_tmp = { 932 .hists = evsel__hists(evsel), 933 .cpu = al->cpu, 934 .thread = al->thread, 935 .comm = thread__comm(al->thread), 936 .ip = al->addr, 937 .ms = { 938 .map = al->map, 939 .sym = al->sym, 940 }, 941 .parent = iter->parent, 942 .raw_data = sample->raw_data, 943 .raw_size = sample->raw_size, 944 }; 945 int i; 946 struct callchain_cursor cursor; 947 948 callchain_cursor_snapshot(&cursor, &callchain_cursor); 949 950 callchain_cursor_advance(&callchain_cursor); 951 952 /* 953 * Check if there's duplicate entries in the callchain. 954 * It's possible that it has cycles or recursive calls. 955 */ 956 for (i = 0; i < iter->curr; i++) { 957 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 958 /* to avoid calling callback function */ 959 iter->he = NULL; 960 return 0; 961 } 962 } 963 964 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 965 sample, false); 966 if (he == NULL) 967 return -ENOMEM; 968 969 iter->he = he; 970 he_cache[iter->curr++] = he; 971 972 if (symbol_conf.use_callchain) 973 callchain_append(he->callchain, &cursor, sample->period); 974 return 0; 975 } 976 977 static int 978 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 979 struct addr_location *al __maybe_unused) 980 { 981 zfree(&iter->priv); 982 iter->he = NULL; 983 984 return 0; 985 } 986 987 const struct hist_iter_ops hist_iter_mem = { 988 .prepare_entry = iter_prepare_mem_entry, 989 .add_single_entry = iter_add_single_mem_entry, 990 .next_entry = iter_next_nop_entry, 991 .add_next_entry = iter_add_next_nop_entry, 992 .finish_entry = iter_finish_mem_entry, 993 }; 994 995 const struct hist_iter_ops hist_iter_branch = { 996 .prepare_entry = iter_prepare_branch_entry, 997 .add_single_entry = iter_add_single_branch_entry, 998 .next_entry = iter_next_branch_entry, 999 .add_next_entry = iter_add_next_branch_entry, 1000 .finish_entry = iter_finish_branch_entry, 1001 }; 1002 1003 const struct hist_iter_ops hist_iter_normal = { 1004 .prepare_entry = iter_prepare_normal_entry, 1005 .add_single_entry = iter_add_single_normal_entry, 1006 .next_entry = iter_next_nop_entry, 1007 .add_next_entry = iter_add_next_nop_entry, 1008 .finish_entry = iter_finish_normal_entry, 1009 }; 1010 1011 const struct hist_iter_ops hist_iter_cumulative = { 1012 .prepare_entry = iter_prepare_cumulative_entry, 1013 .add_single_entry = iter_add_single_cumulative_entry, 1014 .next_entry = iter_next_cumulative_entry, 1015 .add_next_entry = iter_add_next_cumulative_entry, 1016 .finish_entry = iter_finish_cumulative_entry, 1017 }; 1018 1019 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1020 int max_stack_depth, void *arg) 1021 { 1022 int err, err2; 1023 struct map *alm = NULL; 1024 1025 if (al && al->map) 1026 alm = map__get(al->map); 1027 1028 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, 1029 iter->evsel, al, max_stack_depth); 1030 if (err) 1031 return err; 1032 1033 iter->max_stack = max_stack_depth; 1034 1035 err = iter->ops->prepare_entry(iter, al); 1036 if (err) 1037 goto out; 1038 1039 err = iter->ops->add_single_entry(iter, al); 1040 if (err) 1041 goto out; 1042 1043 if (iter->he && iter->add_entry_cb) { 1044 err = iter->add_entry_cb(iter, al, true, arg); 1045 if (err) 1046 goto out; 1047 } 1048 1049 while (iter->ops->next_entry(iter, al)) { 1050 err = iter->ops->add_next_entry(iter, al); 1051 if (err) 1052 break; 1053 1054 if (iter->he && iter->add_entry_cb) { 1055 err = iter->add_entry_cb(iter, al, false, arg); 1056 if (err) 1057 goto out; 1058 } 1059 } 1060 1061 out: 1062 err2 = iter->ops->finish_entry(iter, al); 1063 if (!err) 1064 err = err2; 1065 1066 map__put(alm); 1067 1068 return err; 1069 } 1070 1071 int64_t 1072 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1073 { 1074 struct hists *hists = left->hists; 1075 struct perf_hpp_fmt *fmt; 1076 int64_t cmp = 0; 1077 1078 hists__for_each_sort_list(hists, fmt) { 1079 if (perf_hpp__is_dynamic_entry(fmt) && 1080 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1081 continue; 1082 1083 cmp = fmt->cmp(fmt, left, right); 1084 if (cmp) 1085 break; 1086 } 1087 1088 return cmp; 1089 } 1090 1091 int64_t 1092 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1093 { 1094 struct hists *hists = left->hists; 1095 struct perf_hpp_fmt *fmt; 1096 int64_t cmp = 0; 1097 1098 hists__for_each_sort_list(hists, fmt) { 1099 if (perf_hpp__is_dynamic_entry(fmt) && 1100 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1101 continue; 1102 1103 cmp = fmt->collapse(fmt, left, right); 1104 if (cmp) 1105 break; 1106 } 1107 1108 return cmp; 1109 } 1110 1111 void hist_entry__delete(struct hist_entry *he) 1112 { 1113 struct hist_entry_ops *ops = he->ops; 1114 1115 thread__zput(he->thread); 1116 map__zput(he->ms.map); 1117 1118 if (he->branch_info) { 1119 map__zput(he->branch_info->from.map); 1120 map__zput(he->branch_info->to.map); 1121 free_srcline(he->branch_info->srcline_from); 1122 free_srcline(he->branch_info->srcline_to); 1123 zfree(&he->branch_info); 1124 } 1125 1126 if (he->mem_info) { 1127 map__zput(he->mem_info->iaddr.map); 1128 map__zput(he->mem_info->daddr.map); 1129 zfree(&he->mem_info); 1130 } 1131 1132 zfree(&he->stat_acc); 1133 free_srcline(he->srcline); 1134 if (he->srcfile && he->srcfile[0]) 1135 free(he->srcfile); 1136 free_callchain(he->callchain); 1137 free(he->trace_output); 1138 free(he->raw_data); 1139 ops->free(he); 1140 } 1141 1142 /* 1143 * If this is not the last column, then we need to pad it according to the 1144 * pre-calculated max lenght for this column, otherwise don't bother adding 1145 * spaces because that would break viewing this with, for instance, 'less', 1146 * that would show tons of trailing spaces when a long C++ demangled method 1147 * names is sampled. 1148 */ 1149 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1150 struct perf_hpp_fmt *fmt, int printed) 1151 { 1152 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1153 const int width = fmt->width(fmt, hpp, he->hists); 1154 if (printed < width) { 1155 advance_hpp(hpp, printed); 1156 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1157 } 1158 } 1159 1160 return printed; 1161 } 1162 1163 /* 1164 * collapse the histogram 1165 */ 1166 1167 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1168 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1169 enum hist_filter type); 1170 1171 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1172 1173 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1174 { 1175 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1176 } 1177 1178 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1179 enum hist_filter type, 1180 fmt_chk_fn check) 1181 { 1182 struct perf_hpp_fmt *fmt; 1183 bool type_match = false; 1184 struct hist_entry *parent = he->parent_he; 1185 1186 switch (type) { 1187 case HIST_FILTER__THREAD: 1188 if (symbol_conf.comm_list == NULL && 1189 symbol_conf.pid_list == NULL && 1190 symbol_conf.tid_list == NULL) 1191 return; 1192 break; 1193 case HIST_FILTER__DSO: 1194 if (symbol_conf.dso_list == NULL) 1195 return; 1196 break; 1197 case HIST_FILTER__SYMBOL: 1198 if (symbol_conf.sym_list == NULL) 1199 return; 1200 break; 1201 case HIST_FILTER__PARENT: 1202 case HIST_FILTER__GUEST: 1203 case HIST_FILTER__HOST: 1204 case HIST_FILTER__SOCKET: 1205 case HIST_FILTER__C2C: 1206 default: 1207 return; 1208 } 1209 1210 /* if it's filtered by own fmt, it has to have filter bits */ 1211 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1212 if (check(fmt)) { 1213 type_match = true; 1214 break; 1215 } 1216 } 1217 1218 if (type_match) { 1219 /* 1220 * If the filter is for current level entry, propagate 1221 * filter marker to parents. The marker bit was 1222 * already set by default so it only needs to clear 1223 * non-filtered entries. 1224 */ 1225 if (!(he->filtered & (1 << type))) { 1226 while (parent) { 1227 parent->filtered &= ~(1 << type); 1228 parent = parent->parent_he; 1229 } 1230 } 1231 } else { 1232 /* 1233 * If current entry doesn't have matching formats, set 1234 * filter marker for upper level entries. it will be 1235 * cleared if its lower level entries is not filtered. 1236 * 1237 * For lower-level entries, it inherits parent's 1238 * filter bit so that lower level entries of a 1239 * non-filtered entry won't set the filter marker. 1240 */ 1241 if (parent == NULL) 1242 he->filtered |= (1 << type); 1243 else 1244 he->filtered |= (parent->filtered & (1 << type)); 1245 } 1246 } 1247 1248 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1249 { 1250 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1251 check_thread_entry); 1252 1253 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1254 perf_hpp__is_dso_entry); 1255 1256 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1257 perf_hpp__is_sym_entry); 1258 1259 hists__apply_filters(he->hists, he); 1260 } 1261 1262 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1263 struct rb_root *root, 1264 struct hist_entry *he, 1265 struct hist_entry *parent_he, 1266 struct perf_hpp_list *hpp_list) 1267 { 1268 struct rb_node **p = &root->rb_node; 1269 struct rb_node *parent = NULL; 1270 struct hist_entry *iter, *new; 1271 struct perf_hpp_fmt *fmt; 1272 int64_t cmp; 1273 1274 while (*p != NULL) { 1275 parent = *p; 1276 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1277 1278 cmp = 0; 1279 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1280 cmp = fmt->collapse(fmt, iter, he); 1281 if (cmp) 1282 break; 1283 } 1284 1285 if (!cmp) { 1286 he_stat__add_stat(&iter->stat, &he->stat); 1287 return iter; 1288 } 1289 1290 if (cmp < 0) 1291 p = &parent->rb_left; 1292 else 1293 p = &parent->rb_right; 1294 } 1295 1296 new = hist_entry__new(he, true); 1297 if (new == NULL) 1298 return NULL; 1299 1300 hists->nr_entries++; 1301 1302 /* save related format list for output */ 1303 new->hpp_list = hpp_list; 1304 new->parent_he = parent_he; 1305 1306 hist_entry__apply_hierarchy_filters(new); 1307 1308 /* some fields are now passed to 'new' */ 1309 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1310 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1311 he->trace_output = NULL; 1312 else 1313 new->trace_output = NULL; 1314 1315 if (perf_hpp__is_srcline_entry(fmt)) 1316 he->srcline = NULL; 1317 else 1318 new->srcline = NULL; 1319 1320 if (perf_hpp__is_srcfile_entry(fmt)) 1321 he->srcfile = NULL; 1322 else 1323 new->srcfile = NULL; 1324 } 1325 1326 rb_link_node(&new->rb_node_in, parent, p); 1327 rb_insert_color(&new->rb_node_in, root); 1328 return new; 1329 } 1330 1331 static int hists__hierarchy_insert_entry(struct hists *hists, 1332 struct rb_root *root, 1333 struct hist_entry *he) 1334 { 1335 struct perf_hpp_list_node *node; 1336 struct hist_entry *new_he = NULL; 1337 struct hist_entry *parent = NULL; 1338 int depth = 0; 1339 int ret = 0; 1340 1341 list_for_each_entry(node, &hists->hpp_formats, list) { 1342 /* skip period (overhead) and elided columns */ 1343 if (node->level == 0 || node->skip) 1344 continue; 1345 1346 /* insert copy of 'he' for each fmt into the hierarchy */ 1347 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1348 if (new_he == NULL) { 1349 ret = -1; 1350 break; 1351 } 1352 1353 root = &new_he->hroot_in; 1354 new_he->depth = depth++; 1355 parent = new_he; 1356 } 1357 1358 if (new_he) { 1359 new_he->leaf = true; 1360 1361 if (symbol_conf.use_callchain) { 1362 callchain_cursor_reset(&callchain_cursor); 1363 if (callchain_merge(&callchain_cursor, 1364 new_he->callchain, 1365 he->callchain) < 0) 1366 ret = -1; 1367 } 1368 } 1369 1370 /* 'he' is no longer used */ 1371 hist_entry__delete(he); 1372 1373 /* return 0 (or -1) since it already applied filters */ 1374 return ret; 1375 } 1376 1377 static int hists__collapse_insert_entry(struct hists *hists, 1378 struct rb_root *root, 1379 struct hist_entry *he) 1380 { 1381 struct rb_node **p = &root->rb_node; 1382 struct rb_node *parent = NULL; 1383 struct hist_entry *iter; 1384 int64_t cmp; 1385 1386 if (symbol_conf.report_hierarchy) 1387 return hists__hierarchy_insert_entry(hists, root, he); 1388 1389 while (*p != NULL) { 1390 parent = *p; 1391 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1392 1393 cmp = hist_entry__collapse(iter, he); 1394 1395 if (!cmp) { 1396 int ret = 0; 1397 1398 he_stat__add_stat(&iter->stat, &he->stat); 1399 if (symbol_conf.cumulate_callchain) 1400 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1401 1402 if (symbol_conf.use_callchain) { 1403 callchain_cursor_reset(&callchain_cursor); 1404 if (callchain_merge(&callchain_cursor, 1405 iter->callchain, 1406 he->callchain) < 0) 1407 ret = -1; 1408 } 1409 hist_entry__delete(he); 1410 return ret; 1411 } 1412 1413 if (cmp < 0) 1414 p = &(*p)->rb_left; 1415 else 1416 p = &(*p)->rb_right; 1417 } 1418 hists->nr_entries++; 1419 1420 rb_link_node(&he->rb_node_in, parent, p); 1421 rb_insert_color(&he->rb_node_in, root); 1422 return 1; 1423 } 1424 1425 struct rb_root *hists__get_rotate_entries_in(struct hists *hists) 1426 { 1427 struct rb_root *root; 1428 1429 pthread_mutex_lock(&hists->lock); 1430 1431 root = hists->entries_in; 1432 if (++hists->entries_in > &hists->entries_in_array[1]) 1433 hists->entries_in = &hists->entries_in_array[0]; 1434 1435 pthread_mutex_unlock(&hists->lock); 1436 1437 return root; 1438 } 1439 1440 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1441 { 1442 hists__filter_entry_by_dso(hists, he); 1443 hists__filter_entry_by_thread(hists, he); 1444 hists__filter_entry_by_symbol(hists, he); 1445 hists__filter_entry_by_socket(hists, he); 1446 } 1447 1448 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1449 { 1450 struct rb_root *root; 1451 struct rb_node *next; 1452 struct hist_entry *n; 1453 int ret; 1454 1455 if (!hists__has(hists, need_collapse)) 1456 return 0; 1457 1458 hists->nr_entries = 0; 1459 1460 root = hists__get_rotate_entries_in(hists); 1461 1462 next = rb_first(root); 1463 1464 while (next) { 1465 if (session_done()) 1466 break; 1467 n = rb_entry(next, struct hist_entry, rb_node_in); 1468 next = rb_next(&n->rb_node_in); 1469 1470 rb_erase(&n->rb_node_in, root); 1471 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1472 if (ret < 0) 1473 return -1; 1474 1475 if (ret) { 1476 /* 1477 * If it wasn't combined with one of the entries already 1478 * collapsed, we need to apply the filters that may have 1479 * been set by, say, the hist_browser. 1480 */ 1481 hists__apply_filters(hists, n); 1482 } 1483 if (prog) 1484 ui_progress__update(prog, 1); 1485 } 1486 return 0; 1487 } 1488 1489 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1490 { 1491 struct hists *hists = a->hists; 1492 struct perf_hpp_fmt *fmt; 1493 int64_t cmp = 0; 1494 1495 hists__for_each_sort_list(hists, fmt) { 1496 if (perf_hpp__should_skip(fmt, a->hists)) 1497 continue; 1498 1499 cmp = fmt->sort(fmt, a, b); 1500 if (cmp) 1501 break; 1502 } 1503 1504 return cmp; 1505 } 1506 1507 static void hists__reset_filter_stats(struct hists *hists) 1508 { 1509 hists->nr_non_filtered_entries = 0; 1510 hists->stats.total_non_filtered_period = 0; 1511 } 1512 1513 void hists__reset_stats(struct hists *hists) 1514 { 1515 hists->nr_entries = 0; 1516 hists->stats.total_period = 0; 1517 1518 hists__reset_filter_stats(hists); 1519 } 1520 1521 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1522 { 1523 hists->nr_non_filtered_entries++; 1524 hists->stats.total_non_filtered_period += h->stat.period; 1525 } 1526 1527 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1528 { 1529 if (!h->filtered) 1530 hists__inc_filter_stats(hists, h); 1531 1532 hists->nr_entries++; 1533 hists->stats.total_period += h->stat.period; 1534 } 1535 1536 static void hierarchy_recalc_total_periods(struct hists *hists) 1537 { 1538 struct rb_node *node; 1539 struct hist_entry *he; 1540 1541 node = rb_first(&hists->entries); 1542 1543 hists->stats.total_period = 0; 1544 hists->stats.total_non_filtered_period = 0; 1545 1546 /* 1547 * recalculate total period using top-level entries only 1548 * since lower level entries only see non-filtered entries 1549 * but upper level entries have sum of both entries. 1550 */ 1551 while (node) { 1552 he = rb_entry(node, struct hist_entry, rb_node); 1553 node = rb_next(node); 1554 1555 hists->stats.total_period += he->stat.period; 1556 if (!he->filtered) 1557 hists->stats.total_non_filtered_period += he->stat.period; 1558 } 1559 } 1560 1561 static void hierarchy_insert_output_entry(struct rb_root *root, 1562 struct hist_entry *he) 1563 { 1564 struct rb_node **p = &root->rb_node; 1565 struct rb_node *parent = NULL; 1566 struct hist_entry *iter; 1567 struct perf_hpp_fmt *fmt; 1568 1569 while (*p != NULL) { 1570 parent = *p; 1571 iter = rb_entry(parent, struct hist_entry, rb_node); 1572 1573 if (hist_entry__sort(he, iter) > 0) 1574 p = &parent->rb_left; 1575 else 1576 p = &parent->rb_right; 1577 } 1578 1579 rb_link_node(&he->rb_node, parent, p); 1580 rb_insert_color(&he->rb_node, root); 1581 1582 /* update column width of dynamic entry */ 1583 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1584 if (perf_hpp__is_dynamic_entry(fmt)) 1585 fmt->sort(fmt, he, NULL); 1586 } 1587 } 1588 1589 static void hists__hierarchy_output_resort(struct hists *hists, 1590 struct ui_progress *prog, 1591 struct rb_root *root_in, 1592 struct rb_root *root_out, 1593 u64 min_callchain_hits, 1594 bool use_callchain) 1595 { 1596 struct rb_node *node; 1597 struct hist_entry *he; 1598 1599 *root_out = RB_ROOT; 1600 node = rb_first(root_in); 1601 1602 while (node) { 1603 he = rb_entry(node, struct hist_entry, rb_node_in); 1604 node = rb_next(node); 1605 1606 hierarchy_insert_output_entry(root_out, he); 1607 1608 if (prog) 1609 ui_progress__update(prog, 1); 1610 1611 hists->nr_entries++; 1612 if (!he->filtered) { 1613 hists->nr_non_filtered_entries++; 1614 hists__calc_col_len(hists, he); 1615 } 1616 1617 if (!he->leaf) { 1618 hists__hierarchy_output_resort(hists, prog, 1619 &he->hroot_in, 1620 &he->hroot_out, 1621 min_callchain_hits, 1622 use_callchain); 1623 continue; 1624 } 1625 1626 if (!use_callchain) 1627 continue; 1628 1629 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1630 u64 total = he->stat.period; 1631 1632 if (symbol_conf.cumulate_callchain) 1633 total = he->stat_acc->period; 1634 1635 min_callchain_hits = total * (callchain_param.min_percent / 100); 1636 } 1637 1638 callchain_param.sort(&he->sorted_chain, he->callchain, 1639 min_callchain_hits, &callchain_param); 1640 } 1641 } 1642 1643 static void __hists__insert_output_entry(struct rb_root *entries, 1644 struct hist_entry *he, 1645 u64 min_callchain_hits, 1646 bool use_callchain) 1647 { 1648 struct rb_node **p = &entries->rb_node; 1649 struct rb_node *parent = NULL; 1650 struct hist_entry *iter; 1651 struct perf_hpp_fmt *fmt; 1652 1653 if (use_callchain) { 1654 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1655 u64 total = he->stat.period; 1656 1657 if (symbol_conf.cumulate_callchain) 1658 total = he->stat_acc->period; 1659 1660 min_callchain_hits = total * (callchain_param.min_percent / 100); 1661 } 1662 callchain_param.sort(&he->sorted_chain, he->callchain, 1663 min_callchain_hits, &callchain_param); 1664 } 1665 1666 while (*p != NULL) { 1667 parent = *p; 1668 iter = rb_entry(parent, struct hist_entry, rb_node); 1669 1670 if (hist_entry__sort(he, iter) > 0) 1671 p = &(*p)->rb_left; 1672 else 1673 p = &(*p)->rb_right; 1674 } 1675 1676 rb_link_node(&he->rb_node, parent, p); 1677 rb_insert_color(&he->rb_node, entries); 1678 1679 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1680 if (perf_hpp__is_dynamic_entry(fmt) && 1681 perf_hpp__defined_dynamic_entry(fmt, he->hists)) 1682 fmt->sort(fmt, he, NULL); /* update column width */ 1683 } 1684 } 1685 1686 static void output_resort(struct hists *hists, struct ui_progress *prog, 1687 bool use_callchain, hists__resort_cb_t cb) 1688 { 1689 struct rb_root *root; 1690 struct rb_node *next; 1691 struct hist_entry *n; 1692 u64 callchain_total; 1693 u64 min_callchain_hits; 1694 1695 callchain_total = hists->callchain_period; 1696 if (symbol_conf.filter_relative) 1697 callchain_total = hists->callchain_non_filtered_period; 1698 1699 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1700 1701 hists__reset_stats(hists); 1702 hists__reset_col_len(hists); 1703 1704 if (symbol_conf.report_hierarchy) { 1705 hists__hierarchy_output_resort(hists, prog, 1706 &hists->entries_collapsed, 1707 &hists->entries, 1708 min_callchain_hits, 1709 use_callchain); 1710 hierarchy_recalc_total_periods(hists); 1711 return; 1712 } 1713 1714 if (hists__has(hists, need_collapse)) 1715 root = &hists->entries_collapsed; 1716 else 1717 root = hists->entries_in; 1718 1719 next = rb_first(root); 1720 hists->entries = RB_ROOT; 1721 1722 while (next) { 1723 n = rb_entry(next, struct hist_entry, rb_node_in); 1724 next = rb_next(&n->rb_node_in); 1725 1726 if (cb && cb(n)) 1727 continue; 1728 1729 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1730 hists__inc_stats(hists, n); 1731 1732 if (!n->filtered) 1733 hists__calc_col_len(hists, n); 1734 1735 if (prog) 1736 ui_progress__update(prog, 1); 1737 } 1738 } 1739 1740 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog) 1741 { 1742 bool use_callchain; 1743 1744 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1745 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN; 1746 else 1747 use_callchain = symbol_conf.use_callchain; 1748 1749 output_resort(evsel__hists(evsel), prog, use_callchain, NULL); 1750 } 1751 1752 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 1753 { 1754 output_resort(hists, prog, symbol_conf.use_callchain, NULL); 1755 } 1756 1757 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, 1758 hists__resort_cb_t cb) 1759 { 1760 output_resort(hists, prog, symbol_conf.use_callchain, cb); 1761 } 1762 1763 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 1764 { 1765 if (he->leaf || hmd == HMD_FORCE_SIBLING) 1766 return false; 1767 1768 if (he->unfolded || hmd == HMD_FORCE_CHILD) 1769 return true; 1770 1771 return false; 1772 } 1773 1774 struct rb_node *rb_hierarchy_last(struct rb_node *node) 1775 { 1776 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1777 1778 while (can_goto_child(he, HMD_NORMAL)) { 1779 node = rb_last(&he->hroot_out); 1780 he = rb_entry(node, struct hist_entry, rb_node); 1781 } 1782 return node; 1783 } 1784 1785 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 1786 { 1787 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1788 1789 if (can_goto_child(he, hmd)) 1790 node = rb_first(&he->hroot_out); 1791 else 1792 node = rb_next(node); 1793 1794 while (node == NULL) { 1795 he = he->parent_he; 1796 if (he == NULL) 1797 break; 1798 1799 node = rb_next(&he->rb_node); 1800 } 1801 return node; 1802 } 1803 1804 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 1805 { 1806 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1807 1808 node = rb_prev(node); 1809 if (node) 1810 return rb_hierarchy_last(node); 1811 1812 he = he->parent_he; 1813 if (he == NULL) 1814 return NULL; 1815 1816 return &he->rb_node; 1817 } 1818 1819 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 1820 { 1821 struct rb_node *node; 1822 struct hist_entry *child; 1823 float percent; 1824 1825 if (he->leaf) 1826 return false; 1827 1828 node = rb_first(&he->hroot_out); 1829 child = rb_entry(node, struct hist_entry, rb_node); 1830 1831 while (node && child->filtered) { 1832 node = rb_next(node); 1833 child = rb_entry(node, struct hist_entry, rb_node); 1834 } 1835 1836 if (node) 1837 percent = hist_entry__get_percent_limit(child); 1838 else 1839 percent = 0; 1840 1841 return node && percent >= limit; 1842 } 1843 1844 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 1845 enum hist_filter filter) 1846 { 1847 h->filtered &= ~(1 << filter); 1848 1849 if (symbol_conf.report_hierarchy) { 1850 struct hist_entry *parent = h->parent_he; 1851 1852 while (parent) { 1853 he_stat__add_stat(&parent->stat, &h->stat); 1854 1855 parent->filtered &= ~(1 << filter); 1856 1857 if (parent->filtered) 1858 goto next; 1859 1860 /* force fold unfiltered entry for simplicity */ 1861 parent->unfolded = false; 1862 parent->has_no_entry = false; 1863 parent->row_offset = 0; 1864 parent->nr_rows = 0; 1865 next: 1866 parent = parent->parent_he; 1867 } 1868 } 1869 1870 if (h->filtered) 1871 return; 1872 1873 /* force fold unfiltered entry for simplicity */ 1874 h->unfolded = false; 1875 h->has_no_entry = false; 1876 h->row_offset = 0; 1877 h->nr_rows = 0; 1878 1879 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 1880 1881 hists__inc_filter_stats(hists, h); 1882 hists__calc_col_len(hists, h); 1883 } 1884 1885 1886 static bool hists__filter_entry_by_dso(struct hists *hists, 1887 struct hist_entry *he) 1888 { 1889 if (hists->dso_filter != NULL && 1890 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) { 1891 he->filtered |= (1 << HIST_FILTER__DSO); 1892 return true; 1893 } 1894 1895 return false; 1896 } 1897 1898 static bool hists__filter_entry_by_thread(struct hists *hists, 1899 struct hist_entry *he) 1900 { 1901 if (hists->thread_filter != NULL && 1902 he->thread != hists->thread_filter) { 1903 he->filtered |= (1 << HIST_FILTER__THREAD); 1904 return true; 1905 } 1906 1907 return false; 1908 } 1909 1910 static bool hists__filter_entry_by_symbol(struct hists *hists, 1911 struct hist_entry *he) 1912 { 1913 if (hists->symbol_filter_str != NULL && 1914 (!he->ms.sym || strstr(he->ms.sym->name, 1915 hists->symbol_filter_str) == NULL)) { 1916 he->filtered |= (1 << HIST_FILTER__SYMBOL); 1917 return true; 1918 } 1919 1920 return false; 1921 } 1922 1923 static bool hists__filter_entry_by_socket(struct hists *hists, 1924 struct hist_entry *he) 1925 { 1926 if ((hists->socket_filter > -1) && 1927 (he->socket != hists->socket_filter)) { 1928 he->filtered |= (1 << HIST_FILTER__SOCKET); 1929 return true; 1930 } 1931 1932 return false; 1933 } 1934 1935 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 1936 1937 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 1938 { 1939 struct rb_node *nd; 1940 1941 hists->stats.nr_non_filtered_samples = 0; 1942 1943 hists__reset_filter_stats(hists); 1944 hists__reset_col_len(hists); 1945 1946 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) { 1947 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1948 1949 if (filter(hists, h)) 1950 continue; 1951 1952 hists__remove_entry_filter(hists, h, type); 1953 } 1954 } 1955 1956 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he) 1957 { 1958 struct rb_node **p = &root->rb_node; 1959 struct rb_node *parent = NULL; 1960 struct hist_entry *iter; 1961 struct rb_root new_root = RB_ROOT; 1962 struct rb_node *nd; 1963 1964 while (*p != NULL) { 1965 parent = *p; 1966 iter = rb_entry(parent, struct hist_entry, rb_node); 1967 1968 if (hist_entry__sort(he, iter) > 0) 1969 p = &(*p)->rb_left; 1970 else 1971 p = &(*p)->rb_right; 1972 } 1973 1974 rb_link_node(&he->rb_node, parent, p); 1975 rb_insert_color(&he->rb_node, root); 1976 1977 if (he->leaf || he->filtered) 1978 return; 1979 1980 nd = rb_first(&he->hroot_out); 1981 while (nd) { 1982 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1983 1984 nd = rb_next(nd); 1985 rb_erase(&h->rb_node, &he->hroot_out); 1986 1987 resort_filtered_entry(&new_root, h); 1988 } 1989 1990 he->hroot_out = new_root; 1991 } 1992 1993 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 1994 { 1995 struct rb_node *nd; 1996 struct rb_root new_root = RB_ROOT; 1997 1998 hists->stats.nr_non_filtered_samples = 0; 1999 2000 hists__reset_filter_stats(hists); 2001 hists__reset_col_len(hists); 2002 2003 nd = rb_first(&hists->entries); 2004 while (nd) { 2005 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2006 int ret; 2007 2008 ret = hist_entry__filter(h, type, arg); 2009 2010 /* 2011 * case 1. non-matching type 2012 * zero out the period, set filter marker and move to child 2013 */ 2014 if (ret < 0) { 2015 memset(&h->stat, 0, sizeof(h->stat)); 2016 h->filtered |= (1 << type); 2017 2018 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 2019 } 2020 /* 2021 * case 2. matched type (filter out) 2022 * set filter marker and move to next 2023 */ 2024 else if (ret == 1) { 2025 h->filtered |= (1 << type); 2026 2027 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2028 } 2029 /* 2030 * case 3. ok (not filtered) 2031 * add period to hists and parents, erase the filter marker 2032 * and move to next sibling 2033 */ 2034 else { 2035 hists__remove_entry_filter(hists, h, type); 2036 2037 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2038 } 2039 } 2040 2041 hierarchy_recalc_total_periods(hists); 2042 2043 /* 2044 * resort output after applying a new filter since filter in a lower 2045 * hierarchy can change periods in a upper hierarchy. 2046 */ 2047 nd = rb_first(&hists->entries); 2048 while (nd) { 2049 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2050 2051 nd = rb_next(nd); 2052 rb_erase(&h->rb_node, &hists->entries); 2053 2054 resort_filtered_entry(&new_root, h); 2055 } 2056 2057 hists->entries = new_root; 2058 } 2059 2060 void hists__filter_by_thread(struct hists *hists) 2061 { 2062 if (symbol_conf.report_hierarchy) 2063 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 2064 hists->thread_filter); 2065 else 2066 hists__filter_by_type(hists, HIST_FILTER__THREAD, 2067 hists__filter_entry_by_thread); 2068 } 2069 2070 void hists__filter_by_dso(struct hists *hists) 2071 { 2072 if (symbol_conf.report_hierarchy) 2073 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 2074 hists->dso_filter); 2075 else 2076 hists__filter_by_type(hists, HIST_FILTER__DSO, 2077 hists__filter_entry_by_dso); 2078 } 2079 2080 void hists__filter_by_symbol(struct hists *hists) 2081 { 2082 if (symbol_conf.report_hierarchy) 2083 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2084 hists->symbol_filter_str); 2085 else 2086 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2087 hists__filter_entry_by_symbol); 2088 } 2089 2090 void hists__filter_by_socket(struct hists *hists) 2091 { 2092 if (symbol_conf.report_hierarchy) 2093 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2094 &hists->socket_filter); 2095 else 2096 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2097 hists__filter_entry_by_socket); 2098 } 2099 2100 void events_stats__inc(struct events_stats *stats, u32 type) 2101 { 2102 ++stats->nr_events[0]; 2103 ++stats->nr_events[type]; 2104 } 2105 2106 void hists__inc_nr_events(struct hists *hists, u32 type) 2107 { 2108 events_stats__inc(&hists->stats, type); 2109 } 2110 2111 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2112 { 2113 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE); 2114 if (!filtered) 2115 hists->stats.nr_non_filtered_samples++; 2116 } 2117 2118 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2119 struct hist_entry *pair) 2120 { 2121 struct rb_root *root; 2122 struct rb_node **p; 2123 struct rb_node *parent = NULL; 2124 struct hist_entry *he; 2125 int64_t cmp; 2126 2127 if (hists__has(hists, need_collapse)) 2128 root = &hists->entries_collapsed; 2129 else 2130 root = hists->entries_in; 2131 2132 p = &root->rb_node; 2133 2134 while (*p != NULL) { 2135 parent = *p; 2136 he = rb_entry(parent, struct hist_entry, rb_node_in); 2137 2138 cmp = hist_entry__collapse(he, pair); 2139 2140 if (!cmp) 2141 goto out; 2142 2143 if (cmp < 0) 2144 p = &(*p)->rb_left; 2145 else 2146 p = &(*p)->rb_right; 2147 } 2148 2149 he = hist_entry__new(pair, true); 2150 if (he) { 2151 memset(&he->stat, 0, sizeof(he->stat)); 2152 he->hists = hists; 2153 if (symbol_conf.cumulate_callchain) 2154 memset(he->stat_acc, 0, sizeof(he->stat)); 2155 rb_link_node(&he->rb_node_in, parent, p); 2156 rb_insert_color(&he->rb_node_in, root); 2157 hists__inc_stats(hists, he); 2158 he->dummy = true; 2159 } 2160 out: 2161 return he; 2162 } 2163 2164 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, 2165 struct rb_root *root, 2166 struct hist_entry *pair) 2167 { 2168 struct rb_node **p; 2169 struct rb_node *parent = NULL; 2170 struct hist_entry *he; 2171 struct perf_hpp_fmt *fmt; 2172 2173 p = &root->rb_node; 2174 while (*p != NULL) { 2175 int64_t cmp = 0; 2176 2177 parent = *p; 2178 he = rb_entry(parent, struct hist_entry, rb_node_in); 2179 2180 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2181 cmp = fmt->collapse(fmt, he, pair); 2182 if (cmp) 2183 break; 2184 } 2185 if (!cmp) 2186 goto out; 2187 2188 if (cmp < 0) 2189 p = &parent->rb_left; 2190 else 2191 p = &parent->rb_right; 2192 } 2193 2194 he = hist_entry__new(pair, true); 2195 if (he) { 2196 rb_link_node(&he->rb_node_in, parent, p); 2197 rb_insert_color(&he->rb_node_in, root); 2198 2199 he->dummy = true; 2200 he->hists = hists; 2201 memset(&he->stat, 0, sizeof(he->stat)); 2202 hists__inc_stats(hists, he); 2203 } 2204 out: 2205 return he; 2206 } 2207 2208 static struct hist_entry *hists__find_entry(struct hists *hists, 2209 struct hist_entry *he) 2210 { 2211 struct rb_node *n; 2212 2213 if (hists__has(hists, need_collapse)) 2214 n = hists->entries_collapsed.rb_node; 2215 else 2216 n = hists->entries_in->rb_node; 2217 2218 while (n) { 2219 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2220 int64_t cmp = hist_entry__collapse(iter, he); 2221 2222 if (cmp < 0) 2223 n = n->rb_left; 2224 else if (cmp > 0) 2225 n = n->rb_right; 2226 else 2227 return iter; 2228 } 2229 2230 return NULL; 2231 } 2232 2233 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root, 2234 struct hist_entry *he) 2235 { 2236 struct rb_node *n = root->rb_node; 2237 2238 while (n) { 2239 struct hist_entry *iter; 2240 struct perf_hpp_fmt *fmt; 2241 int64_t cmp = 0; 2242 2243 iter = rb_entry(n, struct hist_entry, rb_node_in); 2244 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2245 cmp = fmt->collapse(fmt, iter, he); 2246 if (cmp) 2247 break; 2248 } 2249 2250 if (cmp < 0) 2251 n = n->rb_left; 2252 else if (cmp > 0) 2253 n = n->rb_right; 2254 else 2255 return iter; 2256 } 2257 2258 return NULL; 2259 } 2260 2261 static void hists__match_hierarchy(struct rb_root *leader_root, 2262 struct rb_root *other_root) 2263 { 2264 struct rb_node *nd; 2265 struct hist_entry *pos, *pair; 2266 2267 for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) { 2268 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2269 pair = hists__find_hierarchy_entry(other_root, pos); 2270 2271 if (pair) { 2272 hist_entry__add_pair(pair, pos); 2273 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); 2274 } 2275 } 2276 } 2277 2278 /* 2279 * Look for pairs to link to the leader buckets (hist_entries): 2280 */ 2281 void hists__match(struct hists *leader, struct hists *other) 2282 { 2283 struct rb_root *root; 2284 struct rb_node *nd; 2285 struct hist_entry *pos, *pair; 2286 2287 if (symbol_conf.report_hierarchy) { 2288 /* hierarchy report always collapses entries */ 2289 return hists__match_hierarchy(&leader->entries_collapsed, 2290 &other->entries_collapsed); 2291 } 2292 2293 if (hists__has(leader, need_collapse)) 2294 root = &leader->entries_collapsed; 2295 else 2296 root = leader->entries_in; 2297 2298 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2299 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2300 pair = hists__find_entry(other, pos); 2301 2302 if (pair) 2303 hist_entry__add_pair(pair, pos); 2304 } 2305 } 2306 2307 static int hists__link_hierarchy(struct hists *leader_hists, 2308 struct hist_entry *parent, 2309 struct rb_root *leader_root, 2310 struct rb_root *other_root) 2311 { 2312 struct rb_node *nd; 2313 struct hist_entry *pos, *leader; 2314 2315 for (nd = rb_first(other_root); nd; nd = rb_next(nd)) { 2316 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2317 2318 if (hist_entry__has_pairs(pos)) { 2319 bool found = false; 2320 2321 list_for_each_entry(leader, &pos->pairs.head, pairs.node) { 2322 if (leader->hists == leader_hists) { 2323 found = true; 2324 break; 2325 } 2326 } 2327 if (!found) 2328 return -1; 2329 } else { 2330 leader = add_dummy_hierarchy_entry(leader_hists, 2331 leader_root, pos); 2332 if (leader == NULL) 2333 return -1; 2334 2335 /* do not point parent in the pos */ 2336 leader->parent_he = parent; 2337 2338 hist_entry__add_pair(pos, leader); 2339 } 2340 2341 if (!pos->leaf) { 2342 if (hists__link_hierarchy(leader_hists, leader, 2343 &leader->hroot_in, 2344 &pos->hroot_in) < 0) 2345 return -1; 2346 } 2347 } 2348 return 0; 2349 } 2350 2351 /* 2352 * Look for entries in the other hists that are not present in the leader, if 2353 * we find them, just add a dummy entry on the leader hists, with period=0, 2354 * nr_events=0, to serve as the list header. 2355 */ 2356 int hists__link(struct hists *leader, struct hists *other) 2357 { 2358 struct rb_root *root; 2359 struct rb_node *nd; 2360 struct hist_entry *pos, *pair; 2361 2362 if (symbol_conf.report_hierarchy) { 2363 /* hierarchy report always collapses entries */ 2364 return hists__link_hierarchy(leader, NULL, 2365 &leader->entries_collapsed, 2366 &other->entries_collapsed); 2367 } 2368 2369 if (hists__has(other, need_collapse)) 2370 root = &other->entries_collapsed; 2371 else 2372 root = other->entries_in; 2373 2374 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2375 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2376 2377 if (!hist_entry__has_pairs(pos)) { 2378 pair = hists__add_dummy_entry(leader, pos); 2379 if (pair == NULL) 2380 return -1; 2381 hist_entry__add_pair(pos, pair); 2382 } 2383 } 2384 2385 return 0; 2386 } 2387 2388 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2389 struct perf_sample *sample, bool nonany_branch_mode) 2390 { 2391 struct branch_info *bi; 2392 2393 /* If we have branch cycles always annotate them. */ 2394 if (bs && bs->nr && bs->entries[0].flags.cycles) { 2395 int i; 2396 2397 bi = sample__resolve_bstack(sample, al); 2398 if (bi) { 2399 struct addr_map_symbol *prev = NULL; 2400 2401 /* 2402 * Ignore errors, still want to process the 2403 * other entries. 2404 * 2405 * For non standard branch modes always 2406 * force no IPC (prev == NULL) 2407 * 2408 * Note that perf stores branches reversed from 2409 * program order! 2410 */ 2411 for (i = bs->nr - 1; i >= 0; i--) { 2412 addr_map_symbol__account_cycles(&bi[i].from, 2413 nonany_branch_mode ? NULL : prev, 2414 bi[i].flags.cycles); 2415 prev = &bi[i].to; 2416 } 2417 free(bi); 2418 } 2419 } 2420 } 2421 2422 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp) 2423 { 2424 struct perf_evsel *pos; 2425 size_t ret = 0; 2426 2427 evlist__for_each_entry(evlist, pos) { 2428 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos)); 2429 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp); 2430 } 2431 2432 return ret; 2433 } 2434 2435 2436 u64 hists__total_period(struct hists *hists) 2437 { 2438 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2439 hists->stats.total_period; 2440 } 2441 2442 int parse_filter_percentage(const struct option *opt __maybe_unused, 2443 const char *arg, int unset __maybe_unused) 2444 { 2445 if (!strcmp(arg, "relative")) 2446 symbol_conf.filter_relative = true; 2447 else if (!strcmp(arg, "absolute")) 2448 symbol_conf.filter_relative = false; 2449 else { 2450 pr_debug("Invalud percentage: %s\n", arg); 2451 return -1; 2452 } 2453 2454 return 0; 2455 } 2456 2457 int perf_hist_config(const char *var, const char *value) 2458 { 2459 if (!strcmp(var, "hist.percentage")) 2460 return parse_filter_percentage(NULL, value, 0); 2461 2462 return 0; 2463 } 2464 2465 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2466 { 2467 memset(hists, 0, sizeof(*hists)); 2468 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT; 2469 hists->entries_in = &hists->entries_in_array[0]; 2470 hists->entries_collapsed = RB_ROOT; 2471 hists->entries = RB_ROOT; 2472 pthread_mutex_init(&hists->lock, NULL); 2473 hists->socket_filter = -1; 2474 hists->hpp_list = hpp_list; 2475 INIT_LIST_HEAD(&hists->hpp_formats); 2476 return 0; 2477 } 2478 2479 static void hists__delete_remaining_entries(struct rb_root *root) 2480 { 2481 struct rb_node *node; 2482 struct hist_entry *he; 2483 2484 while (!RB_EMPTY_ROOT(root)) { 2485 node = rb_first(root); 2486 rb_erase(node, root); 2487 2488 he = rb_entry(node, struct hist_entry, rb_node_in); 2489 hist_entry__delete(he); 2490 } 2491 } 2492 2493 static void hists__delete_all_entries(struct hists *hists) 2494 { 2495 hists__delete_entries(hists); 2496 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2497 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2498 hists__delete_remaining_entries(&hists->entries_collapsed); 2499 } 2500 2501 static void hists_evsel__exit(struct perf_evsel *evsel) 2502 { 2503 struct hists *hists = evsel__hists(evsel); 2504 struct perf_hpp_fmt *fmt, *pos; 2505 struct perf_hpp_list_node *node, *tmp; 2506 2507 hists__delete_all_entries(hists); 2508 2509 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2510 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2511 list_del(&fmt->list); 2512 free(fmt); 2513 } 2514 list_del(&node->list); 2515 free(node); 2516 } 2517 } 2518 2519 static int hists_evsel__init(struct perf_evsel *evsel) 2520 { 2521 struct hists *hists = evsel__hists(evsel); 2522 2523 __hists__init(hists, &perf_hpp_list); 2524 return 0; 2525 } 2526 2527 /* 2528 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2529 * stored in the rbtree... 2530 */ 2531 2532 int hists__init(void) 2533 { 2534 int err = perf_evsel__object_config(sizeof(struct hists_evsel), 2535 hists_evsel__init, 2536 hists_evsel__exit); 2537 if (err) 2538 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2539 2540 return err; 2541 } 2542 2543 void perf_hpp_list__init(struct perf_hpp_list *list) 2544 { 2545 INIT_LIST_HEAD(&list->fields); 2546 INIT_LIST_HEAD(&list->sorts); 2547 } 2548