xref: /linux/tools/perf/util/hist.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "callchain.h"
3 #include "debug.h"
4 #include "dso.h"
5 #include "build-id.h"
6 #include "hist.h"
7 #include "kvm-stat.h"
8 #include "map.h"
9 #include "map_symbol.h"
10 #include "branch.h"
11 #include "mem-events.h"
12 #include "mem-info.h"
13 #include "session.h"
14 #include "namespaces.h"
15 #include "cgroup.h"
16 #include "sort.h"
17 #include "units.h"
18 #include "evlist.h"
19 #include "evsel.h"
20 #include "annotate.h"
21 #include "srcline.h"
22 #include "symbol.h"
23 #include "thread.h"
24 #include "block-info.h"
25 #include "ui/progress.h"
26 #include <errno.h>
27 #include <math.h>
28 #include <inttypes.h>
29 #include <sys/param.h>
30 #include <linux/rbtree.h>
31 #include <linux/string.h>
32 #include <linux/time64.h>
33 #include <linux/zalloc.h>
34 
35 static bool hists__filter_entry_by_dso(struct hists *hists,
36 				       struct hist_entry *he);
37 static bool hists__filter_entry_by_thread(struct hists *hists,
38 					  struct hist_entry *he);
39 static bool hists__filter_entry_by_symbol(struct hists *hists,
40 					  struct hist_entry *he);
41 static bool hists__filter_entry_by_socket(struct hists *hists,
42 					  struct hist_entry *he);
43 
44 u16 hists__col_len(struct hists *hists, enum hist_column col)
45 {
46 	return hists->col_len[col];
47 }
48 
49 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
50 {
51 	hists->col_len[col] = len;
52 }
53 
54 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
55 {
56 	if (len > hists__col_len(hists, col)) {
57 		hists__set_col_len(hists, col, len);
58 		return true;
59 	}
60 	return false;
61 }
62 
63 void hists__reset_col_len(struct hists *hists)
64 {
65 	enum hist_column col;
66 
67 	for (col = 0; col < HISTC_NR_COLS; ++col)
68 		hists__set_col_len(hists, col, 0);
69 }
70 
71 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
72 {
73 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
74 
75 	if (hists__col_len(hists, dso) < unresolved_col_width &&
76 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
77 	    !symbol_conf.dso_list)
78 		hists__set_col_len(hists, dso, unresolved_col_width);
79 }
80 
81 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
82 {
83 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
84 	int symlen;
85 	u16 len;
86 
87 	if (h->block_info)
88 		return;
89 	/*
90 	 * +4 accounts for '[x] ' priv level info
91 	 * +2 accounts for 0x prefix on raw addresses
92 	 * +3 accounts for ' y ' symtab origin info
93 	 */
94 	if (h->ms.sym) {
95 		symlen = h->ms.sym->namelen + 4;
96 		if (verbose > 0)
97 			symlen += BITS_PER_LONG / 4 + 2 + 3;
98 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
99 	} else {
100 		symlen = unresolved_col_width + 4 + 2;
101 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
102 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
103 	}
104 
105 	len = thread__comm_len(h->thread);
106 	if (hists__new_col_len(hists, HISTC_COMM, len))
107 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
108 
109 	if (h->ms.map) {
110 		len = dso__name_len(map__dso(h->ms.map));
111 		hists__new_col_len(hists, HISTC_DSO, len);
112 	}
113 
114 	if (h->parent)
115 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
116 
117 	if (h->branch_info) {
118 		if (h->branch_info->from.ms.sym) {
119 			symlen = (int)h->branch_info->from.ms.sym->namelen + 4;
120 			if (verbose > 0)
121 				symlen += BITS_PER_LONG / 4 + 2 + 3;
122 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
123 
124 			symlen = dso__name_len(map__dso(h->branch_info->from.ms.map));
125 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
126 		} else {
127 			symlen = unresolved_col_width + 4 + 2;
128 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
129 			hists__new_col_len(hists, HISTC_ADDR_FROM, symlen);
130 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
131 		}
132 
133 		if (h->branch_info->to.ms.sym) {
134 			symlen = (int)h->branch_info->to.ms.sym->namelen + 4;
135 			if (verbose > 0)
136 				symlen += BITS_PER_LONG / 4 + 2 + 3;
137 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
138 
139 			symlen = dso__name_len(map__dso(h->branch_info->to.ms.map));
140 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
141 		} else {
142 			symlen = unresolved_col_width + 4 + 2;
143 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
144 			hists__new_col_len(hists, HISTC_ADDR_TO, symlen);
145 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
146 		}
147 
148 		if (h->branch_info->srcline_from)
149 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
150 					strlen(h->branch_info->srcline_from));
151 		if (h->branch_info->srcline_to)
152 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
153 					strlen(h->branch_info->srcline_to));
154 	}
155 
156 	if (h->mem_info) {
157 		if (mem_info__daddr(h->mem_info)->ms.sym) {
158 			symlen = (int)mem_info__daddr(h->mem_info)->ms.sym->namelen + 4
159 			       + unresolved_col_width + 2;
160 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
161 					   symlen);
162 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
163 					   symlen + 1);
164 		} else {
165 			symlen = unresolved_col_width + 4 + 2;
166 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
167 					   symlen);
168 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
169 					   symlen);
170 		}
171 
172 		if (mem_info__iaddr(h->mem_info)->ms.sym) {
173 			symlen = (int)mem_info__iaddr(h->mem_info)->ms.sym->namelen + 4
174 			       + unresolved_col_width + 2;
175 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
176 					   symlen);
177 		} else {
178 			symlen = unresolved_col_width + 4 + 2;
179 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
180 					   symlen);
181 		}
182 
183 		if (mem_info__daddr(h->mem_info)->ms.map) {
184 			symlen = dso__name_len(map__dso(mem_info__daddr(h->mem_info)->ms.map));
185 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
186 					   symlen);
187 		} else {
188 			symlen = unresolved_col_width + 4 + 2;
189 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
190 		}
191 
192 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
193 				   unresolved_col_width + 4 + 2);
194 
195 		hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE,
196 				   unresolved_col_width + 4 + 2);
197 
198 	} else {
199 		symlen = unresolved_col_width + 4 + 2;
200 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
201 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
202 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
203 	}
204 
205 	hists__new_col_len(hists, HISTC_CGROUP, 6);
206 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
207 	hists__new_col_len(hists, HISTC_CPU, 3);
208 	hists__new_col_len(hists, HISTC_SOCKET, 6);
209 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
210 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
211 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
212 	hists__new_col_len(hists, HISTC_MEM_LVL, 36 + 3);
213 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
214 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
215 	hists__new_col_len(hists, HISTC_MEM_BLOCKED, 10);
216 	hists__new_col_len(hists, HISTC_LOCAL_INS_LAT, 13);
217 	hists__new_col_len(hists, HISTC_GLOBAL_INS_LAT, 13);
218 	hists__new_col_len(hists, HISTC_LOCAL_P_STAGE_CYC, 13);
219 	hists__new_col_len(hists, HISTC_GLOBAL_P_STAGE_CYC, 13);
220 	hists__new_col_len(hists, HISTC_ADDR, BITS_PER_LONG / 4 + 2);
221 
222 	if (symbol_conf.nanosecs)
223 		hists__new_col_len(hists, HISTC_TIME, 16);
224 	else
225 		hists__new_col_len(hists, HISTC_TIME, 12);
226 	hists__new_col_len(hists, HISTC_CODE_PAGE_SIZE, 6);
227 
228 	if (h->srcline) {
229 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
230 		hists__new_col_len(hists, HISTC_SRCLINE, len);
231 	}
232 
233 	if (h->srcfile)
234 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
235 
236 	if (h->transaction)
237 		hists__new_col_len(hists, HISTC_TRANSACTION,
238 				   hist_entry__transaction_len());
239 
240 	if (h->trace_output)
241 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
242 
243 	if (h->cgroup) {
244 		const char *cgrp_name = "unknown";
245 		struct cgroup *cgrp = cgroup__find(maps__machine(h->ms.maps)->env,
246 						   h->cgroup);
247 		if (cgrp != NULL)
248 			cgrp_name = cgrp->name;
249 
250 		hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name));
251 	}
252 }
253 
254 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
255 {
256 	struct rb_node *next = rb_first_cached(&hists->entries);
257 	struct hist_entry *n;
258 	int row = 0;
259 
260 	hists__reset_col_len(hists);
261 
262 	while (next && row++ < max_rows) {
263 		n = rb_entry(next, struct hist_entry, rb_node);
264 		if (!n->filtered)
265 			hists__calc_col_len(hists, n);
266 		next = rb_next(&n->rb_node);
267 	}
268 }
269 
270 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
271 					unsigned int cpumode, u64 period)
272 {
273 	switch (cpumode) {
274 	case PERF_RECORD_MISC_KERNEL:
275 		he_stat->period_sys += period;
276 		break;
277 	case PERF_RECORD_MISC_USER:
278 		he_stat->period_us += period;
279 		break;
280 	case PERF_RECORD_MISC_GUEST_KERNEL:
281 		he_stat->period_guest_sys += period;
282 		break;
283 	case PERF_RECORD_MISC_GUEST_USER:
284 		he_stat->period_guest_us += period;
285 		break;
286 	default:
287 		break;
288 	}
289 }
290 
291 static long hist_time(unsigned long htime)
292 {
293 	unsigned long time_quantum = symbol_conf.time_quantum;
294 	if (time_quantum)
295 		return (htime / time_quantum) * time_quantum;
296 	return htime;
297 }
298 
299 static void he_stat__add_period(struct he_stat *he_stat, u64 period)
300 {
301 	he_stat->period		+= period;
302 	he_stat->nr_events	+= 1;
303 }
304 
305 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
306 {
307 	dest->period		+= src->period;
308 	dest->period_sys	+= src->period_sys;
309 	dest->period_us		+= src->period_us;
310 	dest->period_guest_sys	+= src->period_guest_sys;
311 	dest->period_guest_us	+= src->period_guest_us;
312 	dest->weight1		+= src->weight1;
313 	dest->weight2		+= src->weight2;
314 	dest->weight3		+= src->weight3;
315 	dest->nr_events		+= src->nr_events;
316 }
317 
318 static void he_stat__decay(struct he_stat *he_stat)
319 {
320 	he_stat->period = (he_stat->period * 7) / 8;
321 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
322 	he_stat->weight1 = (he_stat->weight1 * 7) / 8;
323 	he_stat->weight2 = (he_stat->weight2 * 7) / 8;
324 	he_stat->weight3 = (he_stat->weight3 * 7) / 8;
325 }
326 
327 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
328 
329 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
330 {
331 	u64 prev_period = he->stat.period;
332 	u64 diff;
333 
334 	if (prev_period == 0)
335 		return true;
336 
337 	he_stat__decay(&he->stat);
338 	if (symbol_conf.cumulate_callchain)
339 		he_stat__decay(he->stat_acc);
340 	decay_callchain(he->callchain);
341 
342 	diff = prev_period - he->stat.period;
343 
344 	if (!he->depth) {
345 		hists->stats.total_period -= diff;
346 		if (!he->filtered)
347 			hists->stats.total_non_filtered_period -= diff;
348 	}
349 
350 	if (!he->leaf) {
351 		struct hist_entry *child;
352 		struct rb_node *node = rb_first_cached(&he->hroot_out);
353 		while (node) {
354 			child = rb_entry(node, struct hist_entry, rb_node);
355 			node = rb_next(node);
356 
357 			if (hists__decay_entry(hists, child))
358 				hists__delete_entry(hists, child);
359 		}
360 	}
361 
362 	return he->stat.period == 0;
363 }
364 
365 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
366 {
367 	struct rb_root_cached *root_in;
368 	struct rb_root_cached *root_out;
369 
370 	if (he->parent_he) {
371 		root_in  = &he->parent_he->hroot_in;
372 		root_out = &he->parent_he->hroot_out;
373 	} else {
374 		if (hists__has(hists, need_collapse))
375 			root_in = &hists->entries_collapsed;
376 		else
377 			root_in = hists->entries_in;
378 		root_out = &hists->entries;
379 	}
380 
381 	rb_erase_cached(&he->rb_node_in, root_in);
382 	rb_erase_cached(&he->rb_node, root_out);
383 
384 	--hists->nr_entries;
385 	if (!he->filtered)
386 		--hists->nr_non_filtered_entries;
387 
388 	hist_entry__delete(he);
389 }
390 
391 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
392 {
393 	struct rb_node *next = rb_first_cached(&hists->entries);
394 	struct hist_entry *n;
395 
396 	while (next) {
397 		n = rb_entry(next, struct hist_entry, rb_node);
398 		next = rb_next(&n->rb_node);
399 		if (((zap_user && n->level == '.') ||
400 		     (zap_kernel && n->level != '.') ||
401 		     hists__decay_entry(hists, n))) {
402 			hists__delete_entry(hists, n);
403 		}
404 	}
405 }
406 
407 void hists__delete_entries(struct hists *hists)
408 {
409 	struct rb_node *next = rb_first_cached(&hists->entries);
410 	struct hist_entry *n;
411 
412 	while (next) {
413 		n = rb_entry(next, struct hist_entry, rb_node);
414 		next = rb_next(&n->rb_node);
415 
416 		hists__delete_entry(hists, n);
417 	}
418 }
419 
420 struct hist_entry *hists__get_entry(struct hists *hists, int idx)
421 {
422 	struct rb_node *next = rb_first_cached(&hists->entries);
423 	struct hist_entry *n;
424 	int i = 0;
425 
426 	while (next) {
427 		n = rb_entry(next, struct hist_entry, rb_node);
428 		if (i == idx)
429 			return n;
430 
431 		next = rb_next(&n->rb_node);
432 		i++;
433 	}
434 
435 	return NULL;
436 }
437 
438 /*
439  * histogram, sorted on item, collects periods
440  */
441 
442 static int hist_entry__init(struct hist_entry *he,
443 			    struct hist_entry *template,
444 			    bool sample_self,
445 			    size_t callchain_size)
446 {
447 	*he = *template;
448 	he->callchain_size = callchain_size;
449 
450 	if (symbol_conf.cumulate_callchain) {
451 		he->stat_acc = malloc(sizeof(he->stat));
452 		if (he->stat_acc == NULL)
453 			return -ENOMEM;
454 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
455 		if (!sample_self)
456 			memset(&he->stat, 0, sizeof(he->stat));
457 	}
458 
459 	he->ms.maps = maps__get(he->ms.maps);
460 	he->ms.map = map__get(he->ms.map);
461 
462 	if (he->branch_info) {
463 		/*
464 		 * This branch info is (a part of) allocated from
465 		 * sample__resolve_bstack() and will be freed after
466 		 * adding new entries.  So we need to save a copy.
467 		 */
468 		he->branch_info = malloc(sizeof(*he->branch_info));
469 		if (he->branch_info == NULL)
470 			goto err;
471 
472 		memcpy(he->branch_info, template->branch_info,
473 		       sizeof(*he->branch_info));
474 
475 		he->branch_info->from.ms.maps = maps__get(he->branch_info->from.ms.maps);
476 		he->branch_info->from.ms.map = map__get(he->branch_info->from.ms.map);
477 		he->branch_info->to.ms.maps = maps__get(he->branch_info->to.ms.maps);
478 		he->branch_info->to.ms.map = map__get(he->branch_info->to.ms.map);
479 	}
480 
481 	if (he->mem_info) {
482 		he->mem_info = mem_info__clone(template->mem_info);
483 		if (he->mem_info == NULL)
484 			goto err_infos;
485 	}
486 
487 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
488 		callchain_init(he->callchain);
489 
490 	if (he->raw_data) {
491 		he->raw_data = memdup(he->raw_data, he->raw_size);
492 		if (he->raw_data == NULL)
493 			goto err_infos;
494 	}
495 
496 	if (he->srcline && he->srcline != SRCLINE_UNKNOWN) {
497 		he->srcline = strdup(he->srcline);
498 		if (he->srcline == NULL)
499 			goto err_rawdata;
500 	}
501 
502 	if (symbol_conf.res_sample) {
503 		he->res_samples = calloc(symbol_conf.res_sample,
504 					sizeof(struct res_sample));
505 		if (!he->res_samples)
506 			goto err_srcline;
507 	}
508 
509 	INIT_LIST_HEAD(&he->pairs.node);
510 	he->thread = thread__get(he->thread);
511 	he->hroot_in  = RB_ROOT_CACHED;
512 	he->hroot_out = RB_ROOT_CACHED;
513 
514 	if (!symbol_conf.report_hierarchy)
515 		he->leaf = true;
516 
517 	return 0;
518 
519 err_srcline:
520 	zfree(&he->srcline);
521 
522 err_rawdata:
523 	zfree(&he->raw_data);
524 
525 err_infos:
526 	if (he->branch_info) {
527 		map_symbol__exit(&he->branch_info->from.ms);
528 		map_symbol__exit(&he->branch_info->to.ms);
529 		zfree(&he->branch_info);
530 	}
531 	if (he->mem_info) {
532 		map_symbol__exit(&mem_info__iaddr(he->mem_info)->ms);
533 		map_symbol__exit(&mem_info__daddr(he->mem_info)->ms);
534 	}
535 err:
536 	map_symbol__exit(&he->ms);
537 	zfree(&he->stat_acc);
538 	return -ENOMEM;
539 }
540 
541 static void *hist_entry__zalloc(size_t size)
542 {
543 	return zalloc(size + sizeof(struct hist_entry));
544 }
545 
546 static void hist_entry__free(void *ptr)
547 {
548 	free(ptr);
549 }
550 
551 static struct hist_entry_ops default_ops = {
552 	.new	= hist_entry__zalloc,
553 	.free	= hist_entry__free,
554 };
555 
556 static struct hist_entry *hist_entry__new(struct hist_entry *template,
557 					  bool sample_self)
558 {
559 	struct hist_entry_ops *ops = template->ops;
560 	size_t callchain_size = 0;
561 	struct hist_entry *he;
562 	int err = 0;
563 
564 	if (!ops)
565 		ops = template->ops = &default_ops;
566 
567 	if (symbol_conf.use_callchain)
568 		callchain_size = sizeof(struct callchain_root);
569 
570 	he = ops->new(callchain_size);
571 	if (he) {
572 		err = hist_entry__init(he, template, sample_self, callchain_size);
573 		if (err) {
574 			ops->free(he);
575 			he = NULL;
576 		}
577 	}
578 	return he;
579 }
580 
581 static u8 symbol__parent_filter(const struct symbol *parent)
582 {
583 	if (symbol_conf.exclude_other && parent == NULL)
584 		return 1 << HIST_FILTER__PARENT;
585 	return 0;
586 }
587 
588 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
589 {
590 	if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
591 		return;
592 
593 	he->hists->callchain_period += period;
594 	if (!he->filtered)
595 		he->hists->callchain_non_filtered_period += period;
596 }
597 
598 static struct hist_entry *hists__findnew_entry(struct hists *hists,
599 					       struct hist_entry *entry,
600 					       const struct addr_location *al,
601 					       bool sample_self)
602 {
603 	struct rb_node **p;
604 	struct rb_node *parent = NULL;
605 	struct hist_entry *he;
606 	int64_t cmp;
607 	u64 period = entry->stat.period;
608 	bool leftmost = true;
609 
610 	p = &hists->entries_in->rb_root.rb_node;
611 
612 	while (*p != NULL) {
613 		parent = *p;
614 		he = rb_entry(parent, struct hist_entry, rb_node_in);
615 
616 		/*
617 		 * Make sure that it receives arguments in a same order as
618 		 * hist_entry__collapse() so that we can use an appropriate
619 		 * function when searching an entry regardless which sort
620 		 * keys were used.
621 		 */
622 		cmp = hist_entry__cmp(he, entry);
623 		if (!cmp) {
624 			if (sample_self) {
625 				he_stat__add_stat(&he->stat, &entry->stat);
626 				hist_entry__add_callchain_period(he, period);
627 			}
628 			if (symbol_conf.cumulate_callchain)
629 				he_stat__add_period(he->stat_acc, period);
630 
631 			block_info__delete(entry->block_info);
632 
633 			kvm_info__zput(entry->kvm_info);
634 
635 			/* If the map of an existing hist_entry has
636 			 * become out-of-date due to an exec() or
637 			 * similar, update it.  Otherwise we will
638 			 * mis-adjust symbol addresses when computing
639 			 * the history counter to increment.
640 			 */
641 			if (hists__has(hists, sym) && he->ms.map != entry->ms.map) {
642 				if (he->ms.sym) {
643 					u64 addr = he->ms.sym->start;
644 					he->ms.sym = map__find_symbol(entry->ms.map, addr);
645 				}
646 
647 				map__put(he->ms.map);
648 				he->ms.map = map__get(entry->ms.map);
649 			}
650 			goto out;
651 		}
652 
653 		if (cmp < 0)
654 			p = &(*p)->rb_left;
655 		else {
656 			p = &(*p)->rb_right;
657 			leftmost = false;
658 		}
659 	}
660 
661 	he = hist_entry__new(entry, sample_self);
662 	if (!he)
663 		return NULL;
664 
665 	if (sample_self)
666 		hist_entry__add_callchain_period(he, period);
667 	hists->nr_entries++;
668 
669 	rb_link_node(&he->rb_node_in, parent, p);
670 	rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
671 out:
672 	if (sample_self)
673 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
674 	if (symbol_conf.cumulate_callchain)
675 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
676 	return he;
677 }
678 
679 static unsigned random_max(unsigned high)
680 {
681 	unsigned thresh = -high % high;
682 	for (;;) {
683 		unsigned r = random();
684 		if (r >= thresh)
685 			return r % high;
686 	}
687 }
688 
689 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
690 {
691 	struct res_sample *r;
692 	int j;
693 
694 	if (he->num_res < symbol_conf.res_sample) {
695 		j = he->num_res++;
696 	} else {
697 		j = random_max(symbol_conf.res_sample);
698 	}
699 	r = &he->res_samples[j];
700 	r->time = sample->time;
701 	r->cpu = sample->cpu;
702 	r->tid = sample->tid;
703 }
704 
705 static struct hist_entry*
706 __hists__add_entry(struct hists *hists,
707 		   struct addr_location *al,
708 		   struct symbol *sym_parent,
709 		   struct branch_info *bi,
710 		   struct mem_info *mi,
711 		   struct kvm_info *ki,
712 		   struct block_info *block_info,
713 		   struct perf_sample *sample,
714 		   bool sample_self,
715 		   struct hist_entry_ops *ops)
716 {
717 	struct namespaces *ns = thread__namespaces(al->thread);
718 	struct hist_entry entry = {
719 		.thread	= al->thread,
720 		.comm = thread__comm(al->thread),
721 		.cgroup_id = {
722 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
723 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
724 		},
725 		.cgroup = sample->cgroup,
726 		.ms = {
727 			.maps	= al->maps,
728 			.map	= al->map,
729 			.sym	= al->sym,
730 		},
731 		.srcline = (char *) al->srcline,
732 		.socket	 = al->socket,
733 		.cpu	 = al->cpu,
734 		.cpumode = al->cpumode,
735 		.ip	 = al->addr,
736 		.level	 = al->level,
737 		.code_page_size = sample->code_page_size,
738 		.stat = {
739 			.nr_events = 1,
740 			.period	= sample->period,
741 			.weight1 = sample->weight,
742 			.weight2 = sample->ins_lat,
743 			.weight3 = sample->p_stage_cyc,
744 		},
745 		.parent = sym_parent,
746 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
747 		.hists	= hists,
748 		.branch_info = bi,
749 		.mem_info = mi,
750 		.kvm_info = ki,
751 		.block_info = block_info,
752 		.transaction = sample->transaction,
753 		.raw_data = sample->raw_data,
754 		.raw_size = sample->raw_size,
755 		.ops = ops,
756 		.time = hist_time(sample->time),
757 		.weight = sample->weight,
758 		.ins_lat = sample->ins_lat,
759 		.p_stage_cyc = sample->p_stage_cyc,
760 		.simd_flags = sample->simd_flags,
761 	}, *he = hists__findnew_entry(hists, &entry, al, sample_self);
762 
763 	if (!hists->has_callchains && he && he->callchain_size != 0)
764 		hists->has_callchains = true;
765 	if (he && symbol_conf.res_sample)
766 		hists__res_sample(he, sample);
767 	return he;
768 }
769 
770 struct hist_entry *hists__add_entry(struct hists *hists,
771 				    struct addr_location *al,
772 				    struct symbol *sym_parent,
773 				    struct branch_info *bi,
774 				    struct mem_info *mi,
775 				    struct kvm_info *ki,
776 				    struct perf_sample *sample,
777 				    bool sample_self)
778 {
779 	return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL,
780 				  sample, sample_self, NULL);
781 }
782 
783 struct hist_entry *hists__add_entry_ops(struct hists *hists,
784 					struct hist_entry_ops *ops,
785 					struct addr_location *al,
786 					struct symbol *sym_parent,
787 					struct branch_info *bi,
788 					struct mem_info *mi,
789 					struct kvm_info *ki,
790 					struct perf_sample *sample,
791 					bool sample_self)
792 {
793 	return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL,
794 				  sample, sample_self, ops);
795 }
796 
797 struct hist_entry *hists__add_entry_block(struct hists *hists,
798 					  struct addr_location *al,
799 					  struct block_info *block_info)
800 {
801 	struct hist_entry entry = {
802 		.block_info = block_info,
803 		.hists = hists,
804 		.ms = {
805 			.maps = al->maps,
806 			.map = al->map,
807 			.sym = al->sym,
808 		},
809 	}, *he = hists__findnew_entry(hists, &entry, al, false);
810 
811 	return he;
812 }
813 
814 static int
815 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
816 		    struct addr_location *al __maybe_unused)
817 {
818 	return 0;
819 }
820 
821 static int
822 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
823 			struct addr_location *al __maybe_unused)
824 {
825 	return 0;
826 }
827 
828 static int
829 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
830 {
831 	struct perf_sample *sample = iter->sample;
832 	struct mem_info *mi;
833 
834 	mi = sample__resolve_mem(sample, al);
835 	if (mi == NULL)
836 		return -ENOMEM;
837 
838 	iter->mi = mi;
839 	return 0;
840 }
841 
842 static int
843 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
844 {
845 	u64 cost;
846 	struct mem_info *mi = iter->mi;
847 	struct hists *hists = evsel__hists(iter->evsel);
848 	struct perf_sample *sample = iter->sample;
849 	struct hist_entry *he;
850 
851 	if (mi == NULL)
852 		return -EINVAL;
853 
854 	cost = sample->weight;
855 	if (!cost)
856 		cost = 1;
857 
858 	/*
859 	 * must pass period=weight in order to get the correct
860 	 * sorting from hists__collapse_resort() which is solely
861 	 * based on periods. We want sorting be done on nr_events * weight
862 	 * and this is indirectly achieved by passing period=weight here
863 	 * and the he_stat__add_period() function.
864 	 */
865 	sample->period = cost;
866 
867 	he = hists__add_entry(hists, al, iter->parent, NULL, mi, NULL,
868 			      sample, true);
869 	if (!he)
870 		return -ENOMEM;
871 
872 	iter->he = he;
873 	return 0;
874 }
875 
876 static int
877 iter_finish_mem_entry(struct hist_entry_iter *iter,
878 		      struct addr_location *al __maybe_unused)
879 {
880 	struct evsel *evsel = iter->evsel;
881 	struct hists *hists = evsel__hists(evsel);
882 	struct hist_entry *he = iter->he;
883 	int err = -EINVAL;
884 
885 	if (he == NULL)
886 		goto out;
887 
888 	hists__inc_nr_samples(hists, he->filtered);
889 
890 	err = hist_entry__append_callchain(he, iter->sample);
891 
892 out:
893 	mem_info__zput(iter->mi);
894 
895 	iter->he = NULL;
896 	return err;
897 }
898 
899 static int
900 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
901 {
902 	struct branch_info *bi;
903 	struct perf_sample *sample = iter->sample;
904 
905 	bi = sample__resolve_bstack(sample, al);
906 	if (!bi)
907 		return -ENOMEM;
908 
909 	iter->curr = 0;
910 	iter->total = sample->branch_stack->nr;
911 
912 	iter->bi = bi;
913 	return 0;
914 }
915 
916 static int
917 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
918 			     struct addr_location *al __maybe_unused)
919 {
920 	return 0;
921 }
922 
923 static int
924 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
925 {
926 	struct branch_info *bi = iter->bi;
927 	int i = iter->curr;
928 
929 	if (bi == NULL)
930 		return 0;
931 
932 	if (iter->curr >= iter->total)
933 		return 0;
934 
935 	maps__put(al->maps);
936 	al->maps = maps__get(bi[i].to.ms.maps);
937 	map__put(al->map);
938 	al->map = map__get(bi[i].to.ms.map);
939 	al->sym = bi[i].to.ms.sym;
940 	al->addr = bi[i].to.addr;
941 	return 1;
942 }
943 
944 static int
945 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
946 {
947 	struct branch_info *bi;
948 	struct evsel *evsel = iter->evsel;
949 	struct hists *hists = evsel__hists(evsel);
950 	struct perf_sample *sample = iter->sample;
951 	struct hist_entry *he = NULL;
952 	int i = iter->curr;
953 	int err = 0;
954 
955 	bi = iter->bi;
956 
957 	if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym))
958 		goto out;
959 
960 	/*
961 	 * The report shows the percentage of total branches captured
962 	 * and not events sampled. Thus we use a pseudo period of 1.
963 	 */
964 	sample->period = 1;
965 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
966 
967 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, NULL,
968 			      sample, true);
969 	if (he == NULL)
970 		return -ENOMEM;
971 
972 	hists__inc_nr_samples(hists, he->filtered);
973 
974 out:
975 	iter->he = he;
976 	iter->curr++;
977 	return err;
978 }
979 
980 static void branch_info__exit(struct branch_info *bi)
981 {
982 	map_symbol__exit(&bi->from.ms);
983 	map_symbol__exit(&bi->to.ms);
984 	zfree_srcline(&bi->srcline_from);
985 	zfree_srcline(&bi->srcline_to);
986 }
987 
988 static int
989 iter_finish_branch_entry(struct hist_entry_iter *iter,
990 			 struct addr_location *al __maybe_unused)
991 {
992 	for (int i = 0; i < iter->total; i++)
993 		branch_info__exit(&iter->bi[i]);
994 
995 	zfree(&iter->bi);
996 	iter->he = NULL;
997 
998 	return iter->curr >= iter->total ? 0 : -1;
999 }
1000 
1001 static int
1002 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
1003 			  struct addr_location *al __maybe_unused)
1004 {
1005 	return 0;
1006 }
1007 
1008 static int
1009 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
1010 {
1011 	struct evsel *evsel = iter->evsel;
1012 	struct perf_sample *sample = iter->sample;
1013 	struct hist_entry *he;
1014 
1015 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1016 			      NULL, sample, true);
1017 	if (he == NULL)
1018 		return -ENOMEM;
1019 
1020 	iter->he = he;
1021 	return 0;
1022 }
1023 
1024 static int
1025 iter_finish_normal_entry(struct hist_entry_iter *iter,
1026 			 struct addr_location *al __maybe_unused)
1027 {
1028 	struct hist_entry *he = iter->he;
1029 	struct evsel *evsel = iter->evsel;
1030 	struct perf_sample *sample = iter->sample;
1031 
1032 	if (he == NULL)
1033 		return 0;
1034 
1035 	iter->he = NULL;
1036 
1037 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
1038 
1039 	return hist_entry__append_callchain(he, sample);
1040 }
1041 
1042 static int
1043 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
1044 			      struct addr_location *al __maybe_unused)
1045 {
1046 	struct hist_entry **he_cache;
1047 	struct callchain_cursor *cursor = get_tls_callchain_cursor();
1048 
1049 	if (cursor == NULL)
1050 		return -ENOMEM;
1051 
1052 	callchain_cursor_commit(cursor);
1053 
1054 	/*
1055 	 * This is for detecting cycles or recursions so that they're
1056 	 * cumulated only one time to prevent entries more than 100%
1057 	 * overhead.
1058 	 */
1059 	he_cache = malloc(sizeof(*he_cache) * (cursor->nr + 1));
1060 	if (he_cache == NULL)
1061 		return -ENOMEM;
1062 
1063 	iter->he_cache = he_cache;
1064 	iter->curr = 0;
1065 
1066 	return 0;
1067 }
1068 
1069 static int
1070 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1071 				 struct addr_location *al)
1072 {
1073 	struct evsel *evsel = iter->evsel;
1074 	struct hists *hists = evsel__hists(evsel);
1075 	struct perf_sample *sample = iter->sample;
1076 	struct hist_entry **he_cache = iter->he_cache;
1077 	struct hist_entry *he;
1078 	int err = 0;
1079 
1080 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL, NULL,
1081 			      sample, true);
1082 	if (he == NULL)
1083 		return -ENOMEM;
1084 
1085 	iter->he = he;
1086 	he_cache[iter->curr++] = he;
1087 
1088 	hist_entry__append_callchain(he, sample);
1089 
1090 	/*
1091 	 * We need to re-initialize the cursor since callchain_append()
1092 	 * advanced the cursor to the end.
1093 	 */
1094 	callchain_cursor_commit(get_tls_callchain_cursor());
1095 
1096 	hists__inc_nr_samples(hists, he->filtered);
1097 
1098 	return err;
1099 }
1100 
1101 static int
1102 iter_next_cumulative_entry(struct hist_entry_iter *iter,
1103 			   struct addr_location *al)
1104 {
1105 	struct callchain_cursor_node *node;
1106 
1107 	node = callchain_cursor_current(get_tls_callchain_cursor());
1108 	if (node == NULL)
1109 		return 0;
1110 
1111 	return fill_callchain_info(al, node, iter->hide_unresolved);
1112 }
1113 
1114 static bool
1115 hist_entry__fast__sym_diff(struct hist_entry *left,
1116 			   struct hist_entry *right)
1117 {
1118 	struct symbol *sym_l = left->ms.sym;
1119 	struct symbol *sym_r = right->ms.sym;
1120 
1121 	if (!sym_l && !sym_r)
1122 		return left->ip != right->ip;
1123 
1124 	return !!_sort__sym_cmp(sym_l, sym_r);
1125 }
1126 
1127 
1128 static int
1129 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1130 			       struct addr_location *al)
1131 {
1132 	struct evsel *evsel = iter->evsel;
1133 	struct perf_sample *sample = iter->sample;
1134 	struct hist_entry **he_cache = iter->he_cache;
1135 	struct hist_entry *he;
1136 	struct hist_entry he_tmp = {
1137 		.hists = evsel__hists(evsel),
1138 		.cpu = al->cpu,
1139 		.thread = al->thread,
1140 		.comm = thread__comm(al->thread),
1141 		.ip = al->addr,
1142 		.ms = {
1143 			.maps = al->maps,
1144 			.map = al->map,
1145 			.sym = al->sym,
1146 		},
1147 		.srcline = (char *) al->srcline,
1148 		.parent = iter->parent,
1149 		.raw_data = sample->raw_data,
1150 		.raw_size = sample->raw_size,
1151 	};
1152 	int i;
1153 	struct callchain_cursor cursor, *tls_cursor = get_tls_callchain_cursor();
1154 	bool fast = hists__has(he_tmp.hists, sym);
1155 
1156 	if (tls_cursor == NULL)
1157 		return -ENOMEM;
1158 
1159 	callchain_cursor_snapshot(&cursor, tls_cursor);
1160 
1161 	callchain_cursor_advance(tls_cursor);
1162 
1163 	/*
1164 	 * Check if there's duplicate entries in the callchain.
1165 	 * It's possible that it has cycles or recursive calls.
1166 	 */
1167 	for (i = 0; i < iter->curr; i++) {
1168 		/*
1169 		 * For most cases, there are no duplicate entries in callchain.
1170 		 * The symbols are usually different. Do a quick check for
1171 		 * symbols first.
1172 		 */
1173 		if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp))
1174 			continue;
1175 
1176 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1177 			/* to avoid calling callback function */
1178 			iter->he = NULL;
1179 			return 0;
1180 		}
1181 	}
1182 
1183 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1184 			      NULL, sample, false);
1185 	if (he == NULL)
1186 		return -ENOMEM;
1187 
1188 	iter->he = he;
1189 	he_cache[iter->curr++] = he;
1190 
1191 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1192 		callchain_append(he->callchain, &cursor, sample->period);
1193 	return 0;
1194 }
1195 
1196 static int
1197 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1198 			     struct addr_location *al __maybe_unused)
1199 {
1200 	mem_info__zput(iter->mi);
1201 	zfree(&iter->bi);
1202 	zfree(&iter->he_cache);
1203 	iter->he = NULL;
1204 
1205 	return 0;
1206 }
1207 
1208 const struct hist_iter_ops hist_iter_mem = {
1209 	.prepare_entry 		= iter_prepare_mem_entry,
1210 	.add_single_entry 	= iter_add_single_mem_entry,
1211 	.next_entry 		= iter_next_nop_entry,
1212 	.add_next_entry 	= iter_add_next_nop_entry,
1213 	.finish_entry 		= iter_finish_mem_entry,
1214 };
1215 
1216 const struct hist_iter_ops hist_iter_branch = {
1217 	.prepare_entry 		= iter_prepare_branch_entry,
1218 	.add_single_entry 	= iter_add_single_branch_entry,
1219 	.next_entry 		= iter_next_branch_entry,
1220 	.add_next_entry 	= iter_add_next_branch_entry,
1221 	.finish_entry 		= iter_finish_branch_entry,
1222 };
1223 
1224 const struct hist_iter_ops hist_iter_normal = {
1225 	.prepare_entry 		= iter_prepare_normal_entry,
1226 	.add_single_entry 	= iter_add_single_normal_entry,
1227 	.next_entry 		= iter_next_nop_entry,
1228 	.add_next_entry 	= iter_add_next_nop_entry,
1229 	.finish_entry 		= iter_finish_normal_entry,
1230 };
1231 
1232 const struct hist_iter_ops hist_iter_cumulative = {
1233 	.prepare_entry 		= iter_prepare_cumulative_entry,
1234 	.add_single_entry 	= iter_add_single_cumulative_entry,
1235 	.next_entry 		= iter_next_cumulative_entry,
1236 	.add_next_entry 	= iter_add_next_cumulative_entry,
1237 	.finish_entry 		= iter_finish_cumulative_entry,
1238 };
1239 
1240 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1241 			 int max_stack_depth, void *arg)
1242 {
1243 	int err, err2;
1244 	struct map *alm = NULL;
1245 
1246 	if (al)
1247 		alm = map__get(al->map);
1248 
1249 	err = sample__resolve_callchain(iter->sample, get_tls_callchain_cursor(), &iter->parent,
1250 					iter->evsel, al, max_stack_depth);
1251 	if (err) {
1252 		map__put(alm);
1253 		return err;
1254 	}
1255 
1256 	err = iter->ops->prepare_entry(iter, al);
1257 	if (err)
1258 		goto out;
1259 
1260 	err = iter->ops->add_single_entry(iter, al);
1261 	if (err)
1262 		goto out;
1263 
1264 	if (iter->he && iter->add_entry_cb) {
1265 		err = iter->add_entry_cb(iter, al, true, arg);
1266 		if (err)
1267 			goto out;
1268 	}
1269 
1270 	while (iter->ops->next_entry(iter, al)) {
1271 		err = iter->ops->add_next_entry(iter, al);
1272 		if (err)
1273 			break;
1274 
1275 		if (iter->he && iter->add_entry_cb) {
1276 			err = iter->add_entry_cb(iter, al, false, arg);
1277 			if (err)
1278 				goto out;
1279 		}
1280 	}
1281 
1282 out:
1283 	err2 = iter->ops->finish_entry(iter, al);
1284 	if (!err)
1285 		err = err2;
1286 
1287 	map__put(alm);
1288 
1289 	return err;
1290 }
1291 
1292 int64_t
1293 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1294 {
1295 	struct hists *hists = left->hists;
1296 	struct perf_hpp_fmt *fmt;
1297 	int64_t cmp = 0;
1298 
1299 	hists__for_each_sort_list(hists, fmt) {
1300 		if (perf_hpp__is_dynamic_entry(fmt) &&
1301 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1302 			continue;
1303 
1304 		cmp = fmt->cmp(fmt, left, right);
1305 		if (cmp)
1306 			break;
1307 	}
1308 
1309 	return cmp;
1310 }
1311 
1312 int64_t
1313 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1314 {
1315 	struct hists *hists = left->hists;
1316 	struct perf_hpp_fmt *fmt;
1317 	int64_t cmp = 0;
1318 
1319 	hists__for_each_sort_list(hists, fmt) {
1320 		if (perf_hpp__is_dynamic_entry(fmt) &&
1321 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1322 			continue;
1323 
1324 		cmp = fmt->collapse(fmt, left, right);
1325 		if (cmp)
1326 			break;
1327 	}
1328 
1329 	return cmp;
1330 }
1331 
1332 void hist_entry__delete(struct hist_entry *he)
1333 {
1334 	struct hist_entry_ops *ops = he->ops;
1335 
1336 	thread__zput(he->thread);
1337 	map_symbol__exit(&he->ms);
1338 
1339 	if (he->branch_info) {
1340 		branch_info__exit(he->branch_info);
1341 		zfree(&he->branch_info);
1342 	}
1343 
1344 	if (he->mem_info) {
1345 		map_symbol__exit(&mem_info__iaddr(he->mem_info)->ms);
1346 		map_symbol__exit(&mem_info__daddr(he->mem_info)->ms);
1347 		mem_info__zput(he->mem_info);
1348 	}
1349 
1350 	if (he->block_info)
1351 		block_info__delete(he->block_info);
1352 
1353 	if (he->kvm_info)
1354 		kvm_info__zput(he->kvm_info);
1355 
1356 	zfree(&he->res_samples);
1357 	zfree(&he->stat_acc);
1358 	zfree_srcline(&he->srcline);
1359 	if (he->srcfile && he->srcfile[0])
1360 		zfree(&he->srcfile);
1361 	free_callchain(he->callchain);
1362 	zfree(&he->trace_output);
1363 	zfree(&he->raw_data);
1364 	ops->free(he);
1365 }
1366 
1367 /*
1368  * If this is not the last column, then we need to pad it according to the
1369  * pre-calculated max length for this column, otherwise don't bother adding
1370  * spaces because that would break viewing this with, for instance, 'less',
1371  * that would show tons of trailing spaces when a long C++ demangled method
1372  * names is sampled.
1373 */
1374 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1375 				   struct perf_hpp_fmt *fmt, int printed)
1376 {
1377 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1378 		const int width = fmt->width(fmt, hpp, he->hists);
1379 		if (printed < width) {
1380 			advance_hpp(hpp, printed);
1381 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1382 		}
1383 	}
1384 
1385 	return printed;
1386 }
1387 
1388 /*
1389  * collapse the histogram
1390  */
1391 
1392 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1393 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1394 				       enum hist_filter type);
1395 
1396 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1397 
1398 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1399 {
1400 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1401 }
1402 
1403 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1404 						enum hist_filter type,
1405 						fmt_chk_fn check)
1406 {
1407 	struct perf_hpp_fmt *fmt;
1408 	bool type_match = false;
1409 	struct hist_entry *parent = he->parent_he;
1410 
1411 	switch (type) {
1412 	case HIST_FILTER__THREAD:
1413 		if (symbol_conf.comm_list == NULL &&
1414 		    symbol_conf.pid_list == NULL &&
1415 		    symbol_conf.tid_list == NULL)
1416 			return;
1417 		break;
1418 	case HIST_FILTER__DSO:
1419 		if (symbol_conf.dso_list == NULL)
1420 			return;
1421 		break;
1422 	case HIST_FILTER__SYMBOL:
1423 		if (symbol_conf.sym_list == NULL)
1424 			return;
1425 		break;
1426 	case HIST_FILTER__PARENT:
1427 	case HIST_FILTER__GUEST:
1428 	case HIST_FILTER__HOST:
1429 	case HIST_FILTER__SOCKET:
1430 	case HIST_FILTER__C2C:
1431 	default:
1432 		return;
1433 	}
1434 
1435 	/* if it's filtered by own fmt, it has to have filter bits */
1436 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1437 		if (check(fmt)) {
1438 			type_match = true;
1439 			break;
1440 		}
1441 	}
1442 
1443 	if (type_match) {
1444 		/*
1445 		 * If the filter is for current level entry, propagate
1446 		 * filter marker to parents.  The marker bit was
1447 		 * already set by default so it only needs to clear
1448 		 * non-filtered entries.
1449 		 */
1450 		if (!(he->filtered & (1 << type))) {
1451 			while (parent) {
1452 				parent->filtered &= ~(1 << type);
1453 				parent = parent->parent_he;
1454 			}
1455 		}
1456 	} else {
1457 		/*
1458 		 * If current entry doesn't have matching formats, set
1459 		 * filter marker for upper level entries.  it will be
1460 		 * cleared if its lower level entries is not filtered.
1461 		 *
1462 		 * For lower-level entries, it inherits parent's
1463 		 * filter bit so that lower level entries of a
1464 		 * non-filtered entry won't set the filter marker.
1465 		 */
1466 		if (parent == NULL)
1467 			he->filtered |= (1 << type);
1468 		else
1469 			he->filtered |= (parent->filtered & (1 << type));
1470 	}
1471 }
1472 
1473 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1474 {
1475 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1476 					    check_thread_entry);
1477 
1478 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1479 					    perf_hpp__is_dso_entry);
1480 
1481 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1482 					    perf_hpp__is_sym_entry);
1483 
1484 	hists__apply_filters(he->hists, he);
1485 }
1486 
1487 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1488 						 struct rb_root_cached *root,
1489 						 struct hist_entry *he,
1490 						 struct hist_entry *parent_he,
1491 						 struct perf_hpp_list *hpp_list)
1492 {
1493 	struct rb_node **p = &root->rb_root.rb_node;
1494 	struct rb_node *parent = NULL;
1495 	struct hist_entry *iter, *new;
1496 	struct perf_hpp_fmt *fmt;
1497 	int64_t cmp;
1498 	bool leftmost = true;
1499 
1500 	while (*p != NULL) {
1501 		parent = *p;
1502 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1503 
1504 		cmp = 0;
1505 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1506 			cmp = fmt->collapse(fmt, iter, he);
1507 			if (cmp)
1508 				break;
1509 		}
1510 
1511 		if (!cmp) {
1512 			he_stat__add_stat(&iter->stat, &he->stat);
1513 			return iter;
1514 		}
1515 
1516 		if (cmp < 0)
1517 			p = &parent->rb_left;
1518 		else {
1519 			p = &parent->rb_right;
1520 			leftmost = false;
1521 		}
1522 	}
1523 
1524 	new = hist_entry__new(he, true);
1525 	if (new == NULL)
1526 		return NULL;
1527 
1528 	hists->nr_entries++;
1529 
1530 	/* save related format list for output */
1531 	new->hpp_list = hpp_list;
1532 	new->parent_he = parent_he;
1533 
1534 	hist_entry__apply_hierarchy_filters(new);
1535 
1536 	/* some fields are now passed to 'new' */
1537 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1538 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1539 			he->trace_output = NULL;
1540 		else
1541 			new->trace_output = NULL;
1542 
1543 		if (perf_hpp__is_srcline_entry(fmt))
1544 			he->srcline = NULL;
1545 		else
1546 			new->srcline = NULL;
1547 
1548 		if (perf_hpp__is_srcfile_entry(fmt))
1549 			he->srcfile = NULL;
1550 		else
1551 			new->srcfile = NULL;
1552 	}
1553 
1554 	rb_link_node(&new->rb_node_in, parent, p);
1555 	rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1556 	return new;
1557 }
1558 
1559 static int hists__hierarchy_insert_entry(struct hists *hists,
1560 					 struct rb_root_cached *root,
1561 					 struct hist_entry *he)
1562 {
1563 	struct perf_hpp_list_node *node;
1564 	struct hist_entry *new_he = NULL;
1565 	struct hist_entry *parent = NULL;
1566 	int depth = 0;
1567 	int ret = 0;
1568 
1569 	list_for_each_entry(node, &hists->hpp_formats, list) {
1570 		/* skip period (overhead) and elided columns */
1571 		if (node->level == 0 || node->skip)
1572 			continue;
1573 
1574 		/* insert copy of 'he' for each fmt into the hierarchy */
1575 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1576 		if (new_he == NULL) {
1577 			ret = -1;
1578 			break;
1579 		}
1580 
1581 		root = &new_he->hroot_in;
1582 		new_he->depth = depth++;
1583 		parent = new_he;
1584 	}
1585 
1586 	if (new_he) {
1587 		new_he->leaf = true;
1588 
1589 		if (hist_entry__has_callchains(new_he) &&
1590 		    symbol_conf.use_callchain) {
1591 			struct callchain_cursor *cursor = get_tls_callchain_cursor();
1592 
1593 			if (cursor == NULL)
1594 				return -1;
1595 
1596 			callchain_cursor_reset(cursor);
1597 			if (callchain_merge(cursor,
1598 					    new_he->callchain,
1599 					    he->callchain) < 0)
1600 				ret = -1;
1601 		}
1602 	}
1603 
1604 	/* 'he' is no longer used */
1605 	hist_entry__delete(he);
1606 
1607 	/* return 0 (or -1) since it already applied filters */
1608 	return ret;
1609 }
1610 
1611 static int hists__collapse_insert_entry(struct hists *hists,
1612 					struct rb_root_cached *root,
1613 					struct hist_entry *he)
1614 {
1615 	struct rb_node **p = &root->rb_root.rb_node;
1616 	struct rb_node *parent = NULL;
1617 	struct hist_entry *iter;
1618 	int64_t cmp;
1619 	bool leftmost = true;
1620 
1621 	if (symbol_conf.report_hierarchy)
1622 		return hists__hierarchy_insert_entry(hists, root, he);
1623 
1624 	while (*p != NULL) {
1625 		parent = *p;
1626 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1627 
1628 		cmp = hist_entry__collapse(iter, he);
1629 
1630 		if (!cmp) {
1631 			int ret = 0;
1632 
1633 			he_stat__add_stat(&iter->stat, &he->stat);
1634 			if (symbol_conf.cumulate_callchain)
1635 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1636 
1637 			if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1638 				struct callchain_cursor *cursor = get_tls_callchain_cursor();
1639 
1640 				if (cursor != NULL) {
1641 					callchain_cursor_reset(cursor);
1642 					if (callchain_merge(cursor, iter->callchain, he->callchain) < 0)
1643 						ret = -1;
1644 				} else {
1645 					ret = 0;
1646 				}
1647 			}
1648 			hist_entry__delete(he);
1649 			return ret;
1650 		}
1651 
1652 		if (cmp < 0)
1653 			p = &(*p)->rb_left;
1654 		else {
1655 			p = &(*p)->rb_right;
1656 			leftmost = false;
1657 		}
1658 	}
1659 	hists->nr_entries++;
1660 
1661 	rb_link_node(&he->rb_node_in, parent, p);
1662 	rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1663 	return 1;
1664 }
1665 
1666 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1667 {
1668 	struct rb_root_cached *root;
1669 
1670 	mutex_lock(&hists->lock);
1671 
1672 	root = hists->entries_in;
1673 	if (++hists->entries_in > &hists->entries_in_array[1])
1674 		hists->entries_in = &hists->entries_in_array[0];
1675 
1676 	mutex_unlock(&hists->lock);
1677 
1678 	return root;
1679 }
1680 
1681 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1682 {
1683 	hists__filter_entry_by_dso(hists, he);
1684 	hists__filter_entry_by_thread(hists, he);
1685 	hists__filter_entry_by_symbol(hists, he);
1686 	hists__filter_entry_by_socket(hists, he);
1687 }
1688 
1689 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1690 {
1691 	struct rb_root_cached *root;
1692 	struct rb_node *next;
1693 	struct hist_entry *n;
1694 	int ret;
1695 
1696 	if (!hists__has(hists, need_collapse))
1697 		return 0;
1698 
1699 	hists->nr_entries = 0;
1700 
1701 	root = hists__get_rotate_entries_in(hists);
1702 
1703 	next = rb_first_cached(root);
1704 
1705 	while (next) {
1706 		if (session_done())
1707 			break;
1708 		n = rb_entry(next, struct hist_entry, rb_node_in);
1709 		next = rb_next(&n->rb_node_in);
1710 
1711 		rb_erase_cached(&n->rb_node_in, root);
1712 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1713 		if (ret < 0)
1714 			return -1;
1715 
1716 		if (ret) {
1717 			/*
1718 			 * If it wasn't combined with one of the entries already
1719 			 * collapsed, we need to apply the filters that may have
1720 			 * been set by, say, the hist_browser.
1721 			 */
1722 			hists__apply_filters(hists, n);
1723 		}
1724 		if (prog)
1725 			ui_progress__update(prog, 1);
1726 	}
1727 	return 0;
1728 }
1729 
1730 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1731 {
1732 	struct hists *hists = a->hists;
1733 	struct perf_hpp_fmt *fmt;
1734 	int64_t cmp = 0;
1735 
1736 	hists__for_each_sort_list(hists, fmt) {
1737 		if (perf_hpp__should_skip(fmt, a->hists))
1738 			continue;
1739 
1740 		cmp = fmt->sort(fmt, a, b);
1741 		if (cmp)
1742 			break;
1743 	}
1744 
1745 	return cmp;
1746 }
1747 
1748 static void hists__reset_filter_stats(struct hists *hists)
1749 {
1750 	hists->nr_non_filtered_entries = 0;
1751 	hists->stats.total_non_filtered_period = 0;
1752 }
1753 
1754 void hists__reset_stats(struct hists *hists)
1755 {
1756 	hists->nr_entries = 0;
1757 	hists->stats.total_period = 0;
1758 
1759 	hists__reset_filter_stats(hists);
1760 }
1761 
1762 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1763 {
1764 	hists->nr_non_filtered_entries++;
1765 	hists->stats.total_non_filtered_period += h->stat.period;
1766 }
1767 
1768 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1769 {
1770 	if (!h->filtered)
1771 		hists__inc_filter_stats(hists, h);
1772 
1773 	hists->nr_entries++;
1774 	hists->stats.total_period += h->stat.period;
1775 }
1776 
1777 static void hierarchy_recalc_total_periods(struct hists *hists)
1778 {
1779 	struct rb_node *node;
1780 	struct hist_entry *he;
1781 
1782 	node = rb_first_cached(&hists->entries);
1783 
1784 	hists->stats.total_period = 0;
1785 	hists->stats.total_non_filtered_period = 0;
1786 
1787 	/*
1788 	 * recalculate total period using top-level entries only
1789 	 * since lower level entries only see non-filtered entries
1790 	 * but upper level entries have sum of both entries.
1791 	 */
1792 	while (node) {
1793 		he = rb_entry(node, struct hist_entry, rb_node);
1794 		node = rb_next(node);
1795 
1796 		hists->stats.total_period += he->stat.period;
1797 		if (!he->filtered)
1798 			hists->stats.total_non_filtered_period += he->stat.period;
1799 	}
1800 }
1801 
1802 static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1803 					  struct hist_entry *he)
1804 {
1805 	struct rb_node **p = &root->rb_root.rb_node;
1806 	struct rb_node *parent = NULL;
1807 	struct hist_entry *iter;
1808 	struct perf_hpp_fmt *fmt;
1809 	bool leftmost = true;
1810 
1811 	while (*p != NULL) {
1812 		parent = *p;
1813 		iter = rb_entry(parent, struct hist_entry, rb_node);
1814 
1815 		if (hist_entry__sort(he, iter) > 0)
1816 			p = &parent->rb_left;
1817 		else {
1818 			p = &parent->rb_right;
1819 			leftmost = false;
1820 		}
1821 	}
1822 
1823 	rb_link_node(&he->rb_node, parent, p);
1824 	rb_insert_color_cached(&he->rb_node, root, leftmost);
1825 
1826 	/* update column width of dynamic entry */
1827 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1828 		if (fmt->init)
1829 			fmt->init(fmt, he);
1830 	}
1831 }
1832 
1833 static void hists__hierarchy_output_resort(struct hists *hists,
1834 					   struct ui_progress *prog,
1835 					   struct rb_root_cached *root_in,
1836 					   struct rb_root_cached *root_out,
1837 					   u64 min_callchain_hits,
1838 					   bool use_callchain)
1839 {
1840 	struct rb_node *node;
1841 	struct hist_entry *he;
1842 
1843 	*root_out = RB_ROOT_CACHED;
1844 	node = rb_first_cached(root_in);
1845 
1846 	while (node) {
1847 		he = rb_entry(node, struct hist_entry, rb_node_in);
1848 		node = rb_next(node);
1849 
1850 		hierarchy_insert_output_entry(root_out, he);
1851 
1852 		if (prog)
1853 			ui_progress__update(prog, 1);
1854 
1855 		hists->nr_entries++;
1856 		if (!he->filtered) {
1857 			hists->nr_non_filtered_entries++;
1858 			hists__calc_col_len(hists, he);
1859 		}
1860 
1861 		if (!he->leaf) {
1862 			hists__hierarchy_output_resort(hists, prog,
1863 						       &he->hroot_in,
1864 						       &he->hroot_out,
1865 						       min_callchain_hits,
1866 						       use_callchain);
1867 			continue;
1868 		}
1869 
1870 		if (!use_callchain)
1871 			continue;
1872 
1873 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1874 			u64 total = he->stat.period;
1875 
1876 			if (symbol_conf.cumulate_callchain)
1877 				total = he->stat_acc->period;
1878 
1879 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1880 		}
1881 
1882 		callchain_param.sort(&he->sorted_chain, he->callchain,
1883 				     min_callchain_hits, &callchain_param);
1884 	}
1885 }
1886 
1887 static void __hists__insert_output_entry(struct rb_root_cached *entries,
1888 					 struct hist_entry *he,
1889 					 u64 min_callchain_hits,
1890 					 bool use_callchain)
1891 {
1892 	struct rb_node **p = &entries->rb_root.rb_node;
1893 	struct rb_node *parent = NULL;
1894 	struct hist_entry *iter;
1895 	struct perf_hpp_fmt *fmt;
1896 	bool leftmost = true;
1897 
1898 	if (use_callchain) {
1899 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1900 			u64 total = he->stat.period;
1901 
1902 			if (symbol_conf.cumulate_callchain)
1903 				total = he->stat_acc->period;
1904 
1905 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1906 		}
1907 		callchain_param.sort(&he->sorted_chain, he->callchain,
1908 				      min_callchain_hits, &callchain_param);
1909 	}
1910 
1911 	while (*p != NULL) {
1912 		parent = *p;
1913 		iter = rb_entry(parent, struct hist_entry, rb_node);
1914 
1915 		if (hist_entry__sort(he, iter) > 0)
1916 			p = &(*p)->rb_left;
1917 		else {
1918 			p = &(*p)->rb_right;
1919 			leftmost = false;
1920 		}
1921 	}
1922 
1923 	rb_link_node(&he->rb_node, parent, p);
1924 	rb_insert_color_cached(&he->rb_node, entries, leftmost);
1925 
1926 	/* update column width of dynamic entries */
1927 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1928 		if (fmt->init)
1929 			fmt->init(fmt, he);
1930 	}
1931 }
1932 
1933 static void output_resort(struct hists *hists, struct ui_progress *prog,
1934 			  bool use_callchain, hists__resort_cb_t cb,
1935 			  void *cb_arg)
1936 {
1937 	struct rb_root_cached *root;
1938 	struct rb_node *next;
1939 	struct hist_entry *n;
1940 	u64 callchain_total;
1941 	u64 min_callchain_hits;
1942 
1943 	callchain_total = hists->callchain_period;
1944 	if (symbol_conf.filter_relative)
1945 		callchain_total = hists->callchain_non_filtered_period;
1946 
1947 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1948 
1949 	hists__reset_stats(hists);
1950 	hists__reset_col_len(hists);
1951 
1952 	if (symbol_conf.report_hierarchy) {
1953 		hists__hierarchy_output_resort(hists, prog,
1954 					       &hists->entries_collapsed,
1955 					       &hists->entries,
1956 					       min_callchain_hits,
1957 					       use_callchain);
1958 		hierarchy_recalc_total_periods(hists);
1959 		return;
1960 	}
1961 
1962 	if (hists__has(hists, need_collapse))
1963 		root = &hists->entries_collapsed;
1964 	else
1965 		root = hists->entries_in;
1966 
1967 	next = rb_first_cached(root);
1968 	hists->entries = RB_ROOT_CACHED;
1969 
1970 	while (next) {
1971 		n = rb_entry(next, struct hist_entry, rb_node_in);
1972 		next = rb_next(&n->rb_node_in);
1973 
1974 		if (cb && cb(n, cb_arg))
1975 			continue;
1976 
1977 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1978 		hists__inc_stats(hists, n);
1979 
1980 		if (!n->filtered)
1981 			hists__calc_col_len(hists, n);
1982 
1983 		if (prog)
1984 			ui_progress__update(prog, 1);
1985 	}
1986 }
1987 
1988 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
1989 			     hists__resort_cb_t cb, void *cb_arg)
1990 {
1991 	bool use_callchain;
1992 
1993 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1994 		use_callchain = evsel__has_callchain(evsel);
1995 	else
1996 		use_callchain = symbol_conf.use_callchain;
1997 
1998 	use_callchain |= symbol_conf.show_branchflag_count;
1999 
2000 	output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
2001 }
2002 
2003 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
2004 {
2005 	return evsel__output_resort_cb(evsel, prog, NULL, NULL);
2006 }
2007 
2008 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
2009 {
2010 	output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
2011 }
2012 
2013 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
2014 			     hists__resort_cb_t cb)
2015 {
2016 	output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
2017 }
2018 
2019 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
2020 {
2021 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
2022 		return false;
2023 
2024 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
2025 		return true;
2026 
2027 	return false;
2028 }
2029 
2030 struct rb_node *rb_hierarchy_last(struct rb_node *node)
2031 {
2032 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2033 
2034 	while (can_goto_child(he, HMD_NORMAL)) {
2035 		node = rb_last(&he->hroot_out.rb_root);
2036 		he = rb_entry(node, struct hist_entry, rb_node);
2037 	}
2038 	return node;
2039 }
2040 
2041 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
2042 {
2043 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2044 
2045 	if (can_goto_child(he, hmd))
2046 		node = rb_first_cached(&he->hroot_out);
2047 	else
2048 		node = rb_next(node);
2049 
2050 	while (node == NULL) {
2051 		he = he->parent_he;
2052 		if (he == NULL)
2053 			break;
2054 
2055 		node = rb_next(&he->rb_node);
2056 	}
2057 	return node;
2058 }
2059 
2060 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
2061 {
2062 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2063 
2064 	node = rb_prev(node);
2065 	if (node)
2066 		return rb_hierarchy_last(node);
2067 
2068 	he = he->parent_he;
2069 	if (he == NULL)
2070 		return NULL;
2071 
2072 	return &he->rb_node;
2073 }
2074 
2075 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
2076 {
2077 	struct rb_node *node;
2078 	struct hist_entry *child;
2079 	float percent;
2080 
2081 	if (he->leaf)
2082 		return false;
2083 
2084 	node = rb_first_cached(&he->hroot_out);
2085 	child = rb_entry(node, struct hist_entry, rb_node);
2086 
2087 	while (node && child->filtered) {
2088 		node = rb_next(node);
2089 		child = rb_entry(node, struct hist_entry, rb_node);
2090 	}
2091 
2092 	if (node)
2093 		percent = hist_entry__get_percent_limit(child);
2094 	else
2095 		percent = 0;
2096 
2097 	return node && percent >= limit;
2098 }
2099 
2100 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
2101 				       enum hist_filter filter)
2102 {
2103 	h->filtered &= ~(1 << filter);
2104 
2105 	if (symbol_conf.report_hierarchy) {
2106 		struct hist_entry *parent = h->parent_he;
2107 
2108 		while (parent) {
2109 			he_stat__add_stat(&parent->stat, &h->stat);
2110 
2111 			parent->filtered &= ~(1 << filter);
2112 
2113 			if (parent->filtered)
2114 				goto next;
2115 
2116 			/* force fold unfiltered entry for simplicity */
2117 			parent->unfolded = false;
2118 			parent->has_no_entry = false;
2119 			parent->row_offset = 0;
2120 			parent->nr_rows = 0;
2121 next:
2122 			parent = parent->parent_he;
2123 		}
2124 	}
2125 
2126 	if (h->filtered)
2127 		return;
2128 
2129 	/* force fold unfiltered entry for simplicity */
2130 	h->unfolded = false;
2131 	h->has_no_entry = false;
2132 	h->row_offset = 0;
2133 	h->nr_rows = 0;
2134 
2135 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2136 
2137 	hists__inc_filter_stats(hists, h);
2138 	hists__calc_col_len(hists, h);
2139 }
2140 
2141 
2142 static bool hists__filter_entry_by_dso(struct hists *hists,
2143 				       struct hist_entry *he)
2144 {
2145 	if (hists->dso_filter != NULL &&
2146 	    (he->ms.map == NULL || !RC_CHK_EQUAL(map__dso(he->ms.map), hists->dso_filter))) {
2147 		he->filtered |= (1 << HIST_FILTER__DSO);
2148 		return true;
2149 	}
2150 
2151 	return false;
2152 }
2153 
2154 static bool hists__filter_entry_by_thread(struct hists *hists,
2155 					  struct hist_entry *he)
2156 {
2157 	if (hists->thread_filter != NULL &&
2158 	    !RC_CHK_EQUAL(he->thread, hists->thread_filter)) {
2159 		he->filtered |= (1 << HIST_FILTER__THREAD);
2160 		return true;
2161 	}
2162 
2163 	return false;
2164 }
2165 
2166 static bool hists__filter_entry_by_symbol(struct hists *hists,
2167 					  struct hist_entry *he)
2168 {
2169 	if (hists->symbol_filter_str != NULL &&
2170 	    (!he->ms.sym || strstr(he->ms.sym->name,
2171 				   hists->symbol_filter_str) == NULL)) {
2172 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
2173 		return true;
2174 	}
2175 
2176 	return false;
2177 }
2178 
2179 static bool hists__filter_entry_by_socket(struct hists *hists,
2180 					  struct hist_entry *he)
2181 {
2182 	if ((hists->socket_filter > -1) &&
2183 	    (he->socket != hists->socket_filter)) {
2184 		he->filtered |= (1 << HIST_FILTER__SOCKET);
2185 		return true;
2186 	}
2187 
2188 	return false;
2189 }
2190 
2191 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2192 
2193 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2194 {
2195 	struct rb_node *nd;
2196 
2197 	hists->stats.nr_non_filtered_samples = 0;
2198 
2199 	hists__reset_filter_stats(hists);
2200 	hists__reset_col_len(hists);
2201 
2202 	for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2203 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2204 
2205 		if (filter(hists, h))
2206 			continue;
2207 
2208 		hists__remove_entry_filter(hists, h, type);
2209 	}
2210 }
2211 
2212 static void resort_filtered_entry(struct rb_root_cached *root,
2213 				  struct hist_entry *he)
2214 {
2215 	struct rb_node **p = &root->rb_root.rb_node;
2216 	struct rb_node *parent = NULL;
2217 	struct hist_entry *iter;
2218 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2219 	struct rb_node *nd;
2220 	bool leftmost = true;
2221 
2222 	while (*p != NULL) {
2223 		parent = *p;
2224 		iter = rb_entry(parent, struct hist_entry, rb_node);
2225 
2226 		if (hist_entry__sort(he, iter) > 0)
2227 			p = &(*p)->rb_left;
2228 		else {
2229 			p = &(*p)->rb_right;
2230 			leftmost = false;
2231 		}
2232 	}
2233 
2234 	rb_link_node(&he->rb_node, parent, p);
2235 	rb_insert_color_cached(&he->rb_node, root, leftmost);
2236 
2237 	if (he->leaf || he->filtered)
2238 		return;
2239 
2240 	nd = rb_first_cached(&he->hroot_out);
2241 	while (nd) {
2242 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2243 
2244 		nd = rb_next(nd);
2245 		rb_erase_cached(&h->rb_node, &he->hroot_out);
2246 
2247 		resort_filtered_entry(&new_root, h);
2248 	}
2249 
2250 	he->hroot_out = new_root;
2251 }
2252 
2253 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2254 {
2255 	struct rb_node *nd;
2256 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2257 
2258 	hists->stats.nr_non_filtered_samples = 0;
2259 
2260 	hists__reset_filter_stats(hists);
2261 	hists__reset_col_len(hists);
2262 
2263 	nd = rb_first_cached(&hists->entries);
2264 	while (nd) {
2265 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2266 		int ret;
2267 
2268 		ret = hist_entry__filter(h, type, arg);
2269 
2270 		/*
2271 		 * case 1. non-matching type
2272 		 * zero out the period, set filter marker and move to child
2273 		 */
2274 		if (ret < 0) {
2275 			memset(&h->stat, 0, sizeof(h->stat));
2276 			h->filtered |= (1 << type);
2277 
2278 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2279 		}
2280 		/*
2281 		 * case 2. matched type (filter out)
2282 		 * set filter marker and move to next
2283 		 */
2284 		else if (ret == 1) {
2285 			h->filtered |= (1 << type);
2286 
2287 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2288 		}
2289 		/*
2290 		 * case 3. ok (not filtered)
2291 		 * add period to hists and parents, erase the filter marker
2292 		 * and move to next sibling
2293 		 */
2294 		else {
2295 			hists__remove_entry_filter(hists, h, type);
2296 
2297 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2298 		}
2299 	}
2300 
2301 	hierarchy_recalc_total_periods(hists);
2302 
2303 	/*
2304 	 * resort output after applying a new filter since filter in a lower
2305 	 * hierarchy can change periods in a upper hierarchy.
2306 	 */
2307 	nd = rb_first_cached(&hists->entries);
2308 	while (nd) {
2309 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2310 
2311 		nd = rb_next(nd);
2312 		rb_erase_cached(&h->rb_node, &hists->entries);
2313 
2314 		resort_filtered_entry(&new_root, h);
2315 	}
2316 
2317 	hists->entries = new_root;
2318 }
2319 
2320 void hists__filter_by_thread(struct hists *hists)
2321 {
2322 	if (symbol_conf.report_hierarchy)
2323 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2324 					hists->thread_filter);
2325 	else
2326 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2327 				      hists__filter_entry_by_thread);
2328 }
2329 
2330 void hists__filter_by_dso(struct hists *hists)
2331 {
2332 	if (symbol_conf.report_hierarchy)
2333 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2334 					hists->dso_filter);
2335 	else
2336 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2337 				      hists__filter_entry_by_dso);
2338 }
2339 
2340 void hists__filter_by_symbol(struct hists *hists)
2341 {
2342 	if (symbol_conf.report_hierarchy)
2343 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2344 					hists->symbol_filter_str);
2345 	else
2346 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2347 				      hists__filter_entry_by_symbol);
2348 }
2349 
2350 void hists__filter_by_socket(struct hists *hists)
2351 {
2352 	if (symbol_conf.report_hierarchy)
2353 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2354 					&hists->socket_filter);
2355 	else
2356 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2357 				      hists__filter_entry_by_socket);
2358 }
2359 
2360 void events_stats__inc(struct events_stats *stats, u32 type)
2361 {
2362 	++stats->nr_events[0];
2363 	++stats->nr_events[type];
2364 }
2365 
2366 static void hists_stats__inc(struct hists_stats *stats)
2367 {
2368 	++stats->nr_samples;
2369 }
2370 
2371 void hists__inc_nr_events(struct hists *hists)
2372 {
2373 	hists_stats__inc(&hists->stats);
2374 }
2375 
2376 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2377 {
2378 	hists_stats__inc(&hists->stats);
2379 	if (!filtered)
2380 		hists->stats.nr_non_filtered_samples++;
2381 }
2382 
2383 void hists__inc_nr_lost_samples(struct hists *hists, u32 lost)
2384 {
2385 	hists->stats.nr_lost_samples += lost;
2386 }
2387 
2388 void hists__inc_nr_dropped_samples(struct hists *hists, u32 lost)
2389 {
2390 	hists->stats.nr_dropped_samples += lost;
2391 }
2392 
2393 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2394 						 struct hist_entry *pair)
2395 {
2396 	struct rb_root_cached *root;
2397 	struct rb_node **p;
2398 	struct rb_node *parent = NULL;
2399 	struct hist_entry *he;
2400 	int64_t cmp;
2401 	bool leftmost = true;
2402 
2403 	if (hists__has(hists, need_collapse))
2404 		root = &hists->entries_collapsed;
2405 	else
2406 		root = hists->entries_in;
2407 
2408 	p = &root->rb_root.rb_node;
2409 
2410 	while (*p != NULL) {
2411 		parent = *p;
2412 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2413 
2414 		cmp = hist_entry__collapse(he, pair);
2415 
2416 		if (!cmp)
2417 			goto out;
2418 
2419 		if (cmp < 0)
2420 			p = &(*p)->rb_left;
2421 		else {
2422 			p = &(*p)->rb_right;
2423 			leftmost = false;
2424 		}
2425 	}
2426 
2427 	he = hist_entry__new(pair, true);
2428 	if (he) {
2429 		memset(&he->stat, 0, sizeof(he->stat));
2430 		he->hists = hists;
2431 		if (symbol_conf.cumulate_callchain)
2432 			memset(he->stat_acc, 0, sizeof(he->stat));
2433 		rb_link_node(&he->rb_node_in, parent, p);
2434 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2435 		hists__inc_stats(hists, he);
2436 		he->dummy = true;
2437 	}
2438 out:
2439 	return he;
2440 }
2441 
2442 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2443 						    struct rb_root_cached *root,
2444 						    struct hist_entry *pair)
2445 {
2446 	struct rb_node **p;
2447 	struct rb_node *parent = NULL;
2448 	struct hist_entry *he;
2449 	struct perf_hpp_fmt *fmt;
2450 	bool leftmost = true;
2451 
2452 	p = &root->rb_root.rb_node;
2453 	while (*p != NULL) {
2454 		int64_t cmp = 0;
2455 
2456 		parent = *p;
2457 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2458 
2459 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2460 			cmp = fmt->collapse(fmt, he, pair);
2461 			if (cmp)
2462 				break;
2463 		}
2464 		if (!cmp)
2465 			goto out;
2466 
2467 		if (cmp < 0)
2468 			p = &parent->rb_left;
2469 		else {
2470 			p = &parent->rb_right;
2471 			leftmost = false;
2472 		}
2473 	}
2474 
2475 	he = hist_entry__new(pair, true);
2476 	if (he) {
2477 		rb_link_node(&he->rb_node_in, parent, p);
2478 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2479 
2480 		he->dummy = true;
2481 		he->hists = hists;
2482 		memset(&he->stat, 0, sizeof(he->stat));
2483 		hists__inc_stats(hists, he);
2484 	}
2485 out:
2486 	return he;
2487 }
2488 
2489 static struct hist_entry *hists__find_entry(struct hists *hists,
2490 					    struct hist_entry *he)
2491 {
2492 	struct rb_node *n;
2493 
2494 	if (hists__has(hists, need_collapse))
2495 		n = hists->entries_collapsed.rb_root.rb_node;
2496 	else
2497 		n = hists->entries_in->rb_root.rb_node;
2498 
2499 	while (n) {
2500 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2501 		int64_t cmp = hist_entry__collapse(iter, he);
2502 
2503 		if (cmp < 0)
2504 			n = n->rb_left;
2505 		else if (cmp > 0)
2506 			n = n->rb_right;
2507 		else
2508 			return iter;
2509 	}
2510 
2511 	return NULL;
2512 }
2513 
2514 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2515 						      struct hist_entry *he)
2516 {
2517 	struct rb_node *n = root->rb_root.rb_node;
2518 
2519 	while (n) {
2520 		struct hist_entry *iter;
2521 		struct perf_hpp_fmt *fmt;
2522 		int64_t cmp = 0;
2523 
2524 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2525 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2526 			cmp = fmt->collapse(fmt, iter, he);
2527 			if (cmp)
2528 				break;
2529 		}
2530 
2531 		if (cmp < 0)
2532 			n = n->rb_left;
2533 		else if (cmp > 0)
2534 			n = n->rb_right;
2535 		else
2536 			return iter;
2537 	}
2538 
2539 	return NULL;
2540 }
2541 
2542 static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2543 				   struct rb_root_cached *other_root)
2544 {
2545 	struct rb_node *nd;
2546 	struct hist_entry *pos, *pair;
2547 
2548 	for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2549 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2550 		pair = hists__find_hierarchy_entry(other_root, pos);
2551 
2552 		if (pair) {
2553 			hist_entry__add_pair(pair, pos);
2554 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2555 		}
2556 	}
2557 }
2558 
2559 /*
2560  * Look for pairs to link to the leader buckets (hist_entries):
2561  */
2562 void hists__match(struct hists *leader, struct hists *other)
2563 {
2564 	struct rb_root_cached *root;
2565 	struct rb_node *nd;
2566 	struct hist_entry *pos, *pair;
2567 
2568 	if (symbol_conf.report_hierarchy) {
2569 		/* hierarchy report always collapses entries */
2570 		return hists__match_hierarchy(&leader->entries_collapsed,
2571 					      &other->entries_collapsed);
2572 	}
2573 
2574 	if (hists__has(leader, need_collapse))
2575 		root = &leader->entries_collapsed;
2576 	else
2577 		root = leader->entries_in;
2578 
2579 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2580 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2581 		pair = hists__find_entry(other, pos);
2582 
2583 		if (pair)
2584 			hist_entry__add_pair(pair, pos);
2585 	}
2586 }
2587 
2588 static int hists__link_hierarchy(struct hists *leader_hists,
2589 				 struct hist_entry *parent,
2590 				 struct rb_root_cached *leader_root,
2591 				 struct rb_root_cached *other_root)
2592 {
2593 	struct rb_node *nd;
2594 	struct hist_entry *pos, *leader;
2595 
2596 	for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2597 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2598 
2599 		if (hist_entry__has_pairs(pos)) {
2600 			bool found = false;
2601 
2602 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2603 				if (leader->hists == leader_hists) {
2604 					found = true;
2605 					break;
2606 				}
2607 			}
2608 			if (!found)
2609 				return -1;
2610 		} else {
2611 			leader = add_dummy_hierarchy_entry(leader_hists,
2612 							   leader_root, pos);
2613 			if (leader == NULL)
2614 				return -1;
2615 
2616 			/* do not point parent in the pos */
2617 			leader->parent_he = parent;
2618 
2619 			hist_entry__add_pair(pos, leader);
2620 		}
2621 
2622 		if (!pos->leaf) {
2623 			if (hists__link_hierarchy(leader_hists, leader,
2624 						  &leader->hroot_in,
2625 						  &pos->hroot_in) < 0)
2626 				return -1;
2627 		}
2628 	}
2629 	return 0;
2630 }
2631 
2632 /*
2633  * Look for entries in the other hists that are not present in the leader, if
2634  * we find them, just add a dummy entry on the leader hists, with period=0,
2635  * nr_events=0, to serve as the list header.
2636  */
2637 int hists__link(struct hists *leader, struct hists *other)
2638 {
2639 	struct rb_root_cached *root;
2640 	struct rb_node *nd;
2641 	struct hist_entry *pos, *pair;
2642 
2643 	if (symbol_conf.report_hierarchy) {
2644 		/* hierarchy report always collapses entries */
2645 		return hists__link_hierarchy(leader, NULL,
2646 					     &leader->entries_collapsed,
2647 					     &other->entries_collapsed);
2648 	}
2649 
2650 	if (hists__has(other, need_collapse))
2651 		root = &other->entries_collapsed;
2652 	else
2653 		root = other->entries_in;
2654 
2655 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2656 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2657 
2658 		if (!hist_entry__has_pairs(pos)) {
2659 			pair = hists__add_dummy_entry(leader, pos);
2660 			if (pair == NULL)
2661 				return -1;
2662 			hist_entry__add_pair(pos, pair);
2663 		}
2664 	}
2665 
2666 	return 0;
2667 }
2668 
2669 int hists__unlink(struct hists *hists)
2670 {
2671 	struct rb_root_cached *root;
2672 	struct rb_node *nd;
2673 	struct hist_entry *pos;
2674 
2675 	if (hists__has(hists, need_collapse))
2676 		root = &hists->entries_collapsed;
2677 	else
2678 		root = hists->entries_in;
2679 
2680 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2681 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2682 		list_del_init(&pos->pairs.node);
2683 	}
2684 
2685 	return 0;
2686 }
2687 
2688 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2689 			  struct perf_sample *sample, bool nonany_branch_mode,
2690 			  u64 *total_cycles, struct evsel *evsel)
2691 {
2692 	struct branch_info *bi;
2693 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2694 
2695 	/* If we have branch cycles always annotate them. */
2696 	if (bs && bs->nr && entries[0].flags.cycles) {
2697 		bi = sample__resolve_bstack(sample, al);
2698 		if (bi) {
2699 			struct addr_map_symbol *prev = NULL;
2700 
2701 			/*
2702 			 * Ignore errors, still want to process the
2703 			 * other entries.
2704 			 *
2705 			 * For non standard branch modes always
2706 			 * force no IPC (prev == NULL)
2707 			 *
2708 			 * Note that perf stores branches reversed from
2709 			 * program order!
2710 			 */
2711 			for (int i = bs->nr - 1; i >= 0; i--) {
2712 				addr_map_symbol__account_cycles(&bi[i].from,
2713 					nonany_branch_mode ? NULL : prev,
2714 					bi[i].flags.cycles, evsel,
2715 					bi[i].branch_stack_cntr);
2716 				prev = &bi[i].to;
2717 
2718 				if (total_cycles)
2719 					*total_cycles += bi[i].flags.cycles;
2720 			}
2721 			for (unsigned int i = 0; i < bs->nr; i++) {
2722 				map_symbol__exit(&bi[i].to.ms);
2723 				map_symbol__exit(&bi[i].from.ms);
2724 			}
2725 			free(bi);
2726 		}
2727 	}
2728 }
2729 
2730 size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp)
2731 {
2732 	struct evsel *pos;
2733 	size_t ret = 0;
2734 
2735 	evlist__for_each_entry(evlist, pos) {
2736 		struct hists *hists = evsel__hists(pos);
2737 		u64 total_samples = hists->stats.nr_samples;
2738 
2739 		total_samples += hists->stats.nr_lost_samples;
2740 		total_samples += hists->stats.nr_dropped_samples;
2741 
2742 		if (symbol_conf.skip_empty && total_samples == 0)
2743 			continue;
2744 
2745 		ret += fprintf(fp, "%s stats:\n", evsel__name(pos));
2746 		if (hists->stats.nr_samples)
2747 			ret += fprintf(fp, "%20s events: %10d\n",
2748 				       "SAMPLE", hists->stats.nr_samples);
2749 		if (hists->stats.nr_lost_samples)
2750 			ret += fprintf(fp, "%20s events: %10d\n",
2751 				       "LOST_SAMPLES", hists->stats.nr_lost_samples);
2752 		if (hists->stats.nr_dropped_samples)
2753 			ret += fprintf(fp, "%20s events: %10d\n",
2754 				       "LOST_SAMPLES (BPF)", hists->stats.nr_dropped_samples);
2755 	}
2756 
2757 	return ret;
2758 }
2759 
2760 
2761 u64 hists__total_period(struct hists *hists)
2762 {
2763 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2764 		hists->stats.total_period;
2765 }
2766 
2767 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2768 {
2769 	char unit;
2770 	int printed;
2771 	const struct dso *dso = hists->dso_filter;
2772 	struct thread *thread = hists->thread_filter;
2773 	int socket_id = hists->socket_filter;
2774 	unsigned long nr_samples = hists->stats.nr_samples;
2775 	u64 nr_events = hists->stats.total_period;
2776 	struct evsel *evsel = hists_to_evsel(hists);
2777 	const char *ev_name = evsel__name(evsel);
2778 	char buf[512], sample_freq_str[64] = "";
2779 	size_t buflen = sizeof(buf);
2780 	char ref[30] = " show reference callgraph, ";
2781 	bool enable_ref = false;
2782 
2783 	if (symbol_conf.filter_relative) {
2784 		nr_samples = hists->stats.nr_non_filtered_samples;
2785 		nr_events = hists->stats.total_non_filtered_period;
2786 	}
2787 
2788 	if (evsel__is_group_event(evsel)) {
2789 		struct evsel *pos;
2790 
2791 		evsel__group_desc(evsel, buf, buflen);
2792 		ev_name = buf;
2793 
2794 		for_each_group_member(pos, evsel) {
2795 			struct hists *pos_hists = evsel__hists(pos);
2796 
2797 			if (symbol_conf.filter_relative) {
2798 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2799 				nr_events += pos_hists->stats.total_non_filtered_period;
2800 			} else {
2801 				nr_samples += pos_hists->stats.nr_samples;
2802 				nr_events += pos_hists->stats.total_period;
2803 			}
2804 		}
2805 	}
2806 
2807 	if (symbol_conf.show_ref_callgraph &&
2808 	    strstr(ev_name, "call-graph=no"))
2809 		enable_ref = true;
2810 
2811 	if (show_freq)
2812 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2813 
2814 	nr_samples = convert_unit(nr_samples, &unit);
2815 	printed = scnprintf(bf, size,
2816 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2817 			   nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2818 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2819 
2820 
2821 	if (hists->uid_filter_str)
2822 		printed += snprintf(bf + printed, size - printed,
2823 				    ", UID: %s", hists->uid_filter_str);
2824 	if (thread) {
2825 		if (hists__has(hists, thread)) {
2826 			printed += scnprintf(bf + printed, size - printed,
2827 				    ", Thread: %s(%d)",
2828 				    (thread__comm_set(thread) ? thread__comm_str(thread) : ""),
2829 					thread__tid(thread));
2830 		} else {
2831 			printed += scnprintf(bf + printed, size - printed,
2832 				    ", Thread: %s",
2833 				    (thread__comm_set(thread) ? thread__comm_str(thread) : ""));
2834 		}
2835 	}
2836 	if (dso)
2837 		printed += scnprintf(bf + printed, size - printed,
2838 				     ", DSO: %s", dso__short_name(dso));
2839 	if (socket_id > -1)
2840 		printed += scnprintf(bf + printed, size - printed,
2841 				    ", Processor Socket: %d", socket_id);
2842 
2843 	return printed;
2844 }
2845 
2846 int parse_filter_percentage(const struct option *opt __maybe_unused,
2847 			    const char *arg, int unset __maybe_unused)
2848 {
2849 	if (!strcmp(arg, "relative"))
2850 		symbol_conf.filter_relative = true;
2851 	else if (!strcmp(arg, "absolute"))
2852 		symbol_conf.filter_relative = false;
2853 	else {
2854 		pr_debug("Invalid percentage: %s\n", arg);
2855 		return -1;
2856 	}
2857 
2858 	return 0;
2859 }
2860 
2861 int perf_hist_config(const char *var, const char *value)
2862 {
2863 	if (!strcmp(var, "hist.percentage"))
2864 		return parse_filter_percentage(NULL, value, 0);
2865 
2866 	return 0;
2867 }
2868 
2869 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2870 {
2871 	memset(hists, 0, sizeof(*hists));
2872 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2873 	hists->entries_in = &hists->entries_in_array[0];
2874 	hists->entries_collapsed = RB_ROOT_CACHED;
2875 	hists->entries = RB_ROOT_CACHED;
2876 	mutex_init(&hists->lock);
2877 	hists->socket_filter = -1;
2878 	hists->hpp_list = hpp_list;
2879 	INIT_LIST_HEAD(&hists->hpp_formats);
2880 	return 0;
2881 }
2882 
2883 static void hists__delete_remaining_entries(struct rb_root_cached *root)
2884 {
2885 	struct rb_node *node;
2886 	struct hist_entry *he;
2887 
2888 	while (!RB_EMPTY_ROOT(&root->rb_root)) {
2889 		node = rb_first_cached(root);
2890 		rb_erase_cached(node, root);
2891 
2892 		he = rb_entry(node, struct hist_entry, rb_node_in);
2893 		hist_entry__delete(he);
2894 	}
2895 }
2896 
2897 static void hists__delete_all_entries(struct hists *hists)
2898 {
2899 	hists__delete_entries(hists);
2900 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2901 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2902 	hists__delete_remaining_entries(&hists->entries_collapsed);
2903 }
2904 
2905 static void hists_evsel__exit(struct evsel *evsel)
2906 {
2907 	struct hists *hists = evsel__hists(evsel);
2908 	struct perf_hpp_fmt *fmt, *pos;
2909 	struct perf_hpp_list_node *node, *tmp;
2910 
2911 	hists__delete_all_entries(hists);
2912 
2913 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2914 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2915 			list_del_init(&fmt->list);
2916 			free(fmt);
2917 		}
2918 		list_del_init(&node->list);
2919 		free(node);
2920 	}
2921 }
2922 
2923 static int hists_evsel__init(struct evsel *evsel)
2924 {
2925 	struct hists *hists = evsel__hists(evsel);
2926 
2927 	__hists__init(hists, &perf_hpp_list);
2928 	return 0;
2929 }
2930 
2931 /*
2932  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2933  * stored in the rbtree...
2934  */
2935 
2936 int hists__init(void)
2937 {
2938 	int err = evsel__object_config(sizeof(struct hists_evsel),
2939 				       hists_evsel__init, hists_evsel__exit);
2940 	if (err)
2941 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2942 
2943 	return err;
2944 }
2945 
2946 void perf_hpp_list__init(struct perf_hpp_list *list)
2947 {
2948 	INIT_LIST_HEAD(&list->fields);
2949 	INIT_LIST_HEAD(&list->sorts);
2950 }
2951