1 // SPDX-License-Identifier: GPL-2.0 2 #include "util.h" 3 #include "build-id.h" 4 #include "hist.h" 5 #include "map.h" 6 #include "session.h" 7 #include "namespaces.h" 8 #include "sort.h" 9 #include "units.h" 10 #include "evlist.h" 11 #include "evsel.h" 12 #include "annotate.h" 13 #include "srcline.h" 14 #include "thread.h" 15 #include "ui/progress.h" 16 #include <errno.h> 17 #include <math.h> 18 #include <inttypes.h> 19 #include <sys/param.h> 20 21 static bool hists__filter_entry_by_dso(struct hists *hists, 22 struct hist_entry *he); 23 static bool hists__filter_entry_by_thread(struct hists *hists, 24 struct hist_entry *he); 25 static bool hists__filter_entry_by_symbol(struct hists *hists, 26 struct hist_entry *he); 27 static bool hists__filter_entry_by_socket(struct hists *hists, 28 struct hist_entry *he); 29 30 u16 hists__col_len(struct hists *hists, enum hist_column col) 31 { 32 return hists->col_len[col]; 33 } 34 35 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 36 { 37 hists->col_len[col] = len; 38 } 39 40 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 41 { 42 if (len > hists__col_len(hists, col)) { 43 hists__set_col_len(hists, col, len); 44 return true; 45 } 46 return false; 47 } 48 49 void hists__reset_col_len(struct hists *hists) 50 { 51 enum hist_column col; 52 53 for (col = 0; col < HISTC_NR_COLS; ++col) 54 hists__set_col_len(hists, col, 0); 55 } 56 57 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 58 { 59 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 60 61 if (hists__col_len(hists, dso) < unresolved_col_width && 62 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 63 !symbol_conf.dso_list) 64 hists__set_col_len(hists, dso, unresolved_col_width); 65 } 66 67 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 68 { 69 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 70 int symlen; 71 u16 len; 72 73 /* 74 * +4 accounts for '[x] ' priv level info 75 * +2 accounts for 0x prefix on raw addresses 76 * +3 accounts for ' y ' symtab origin info 77 */ 78 if (h->ms.sym) { 79 symlen = h->ms.sym->namelen + 4; 80 if (verbose > 0) 81 symlen += BITS_PER_LONG / 4 + 2 + 3; 82 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 83 } else { 84 symlen = unresolved_col_width + 4 + 2; 85 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 86 hists__set_unres_dso_col_len(hists, HISTC_DSO); 87 } 88 89 len = thread__comm_len(h->thread); 90 if (hists__new_col_len(hists, HISTC_COMM, len)) 91 hists__set_col_len(hists, HISTC_THREAD, len + 8); 92 93 if (h->ms.map) { 94 len = dso__name_len(h->ms.map->dso); 95 hists__new_col_len(hists, HISTC_DSO, len); 96 } 97 98 if (h->parent) 99 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 100 101 if (h->branch_info) { 102 if (h->branch_info->from.sym) { 103 symlen = (int)h->branch_info->from.sym->namelen + 4; 104 if (verbose > 0) 105 symlen += BITS_PER_LONG / 4 + 2 + 3; 106 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 107 108 symlen = dso__name_len(h->branch_info->from.map->dso); 109 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 110 } else { 111 symlen = unresolved_col_width + 4 + 2; 112 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 113 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 114 } 115 116 if (h->branch_info->to.sym) { 117 symlen = (int)h->branch_info->to.sym->namelen + 4; 118 if (verbose > 0) 119 symlen += BITS_PER_LONG / 4 + 2 + 3; 120 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 121 122 symlen = dso__name_len(h->branch_info->to.map->dso); 123 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 124 } else { 125 symlen = unresolved_col_width + 4 + 2; 126 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 127 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 128 } 129 130 if (h->branch_info->srcline_from) 131 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 132 strlen(h->branch_info->srcline_from)); 133 if (h->branch_info->srcline_to) 134 hists__new_col_len(hists, HISTC_SRCLINE_TO, 135 strlen(h->branch_info->srcline_to)); 136 } 137 138 if (h->mem_info) { 139 if (h->mem_info->daddr.sym) { 140 symlen = (int)h->mem_info->daddr.sym->namelen + 4 141 + unresolved_col_width + 2; 142 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 143 symlen); 144 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 145 symlen + 1); 146 } else { 147 symlen = unresolved_col_width + 4 + 2; 148 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 149 symlen); 150 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 151 symlen); 152 } 153 154 if (h->mem_info->iaddr.sym) { 155 symlen = (int)h->mem_info->iaddr.sym->namelen + 4 156 + unresolved_col_width + 2; 157 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 158 symlen); 159 } else { 160 symlen = unresolved_col_width + 4 + 2; 161 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 162 symlen); 163 } 164 165 if (h->mem_info->daddr.map) { 166 symlen = dso__name_len(h->mem_info->daddr.map->dso); 167 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 168 symlen); 169 } else { 170 symlen = unresolved_col_width + 4 + 2; 171 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 172 } 173 174 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR, 175 unresolved_col_width + 4 + 2); 176 177 } else { 178 symlen = unresolved_col_width + 4 + 2; 179 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 180 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 181 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 182 } 183 184 hists__new_col_len(hists, HISTC_CGROUP_ID, 20); 185 hists__new_col_len(hists, HISTC_CPU, 3); 186 hists__new_col_len(hists, HISTC_SOCKET, 6); 187 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 188 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 189 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 190 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3); 191 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 192 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 193 194 if (h->srcline) { 195 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header)); 196 hists__new_col_len(hists, HISTC_SRCLINE, len); 197 } 198 199 if (h->srcfile) 200 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 201 202 if (h->transaction) 203 hists__new_col_len(hists, HISTC_TRANSACTION, 204 hist_entry__transaction_len()); 205 206 if (h->trace_output) 207 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 208 } 209 210 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 211 { 212 struct rb_node *next = rb_first(&hists->entries); 213 struct hist_entry *n; 214 int row = 0; 215 216 hists__reset_col_len(hists); 217 218 while (next && row++ < max_rows) { 219 n = rb_entry(next, struct hist_entry, rb_node); 220 if (!n->filtered) 221 hists__calc_col_len(hists, n); 222 next = rb_next(&n->rb_node); 223 } 224 } 225 226 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 227 unsigned int cpumode, u64 period) 228 { 229 switch (cpumode) { 230 case PERF_RECORD_MISC_KERNEL: 231 he_stat->period_sys += period; 232 break; 233 case PERF_RECORD_MISC_USER: 234 he_stat->period_us += period; 235 break; 236 case PERF_RECORD_MISC_GUEST_KERNEL: 237 he_stat->period_guest_sys += period; 238 break; 239 case PERF_RECORD_MISC_GUEST_USER: 240 he_stat->period_guest_us += period; 241 break; 242 default: 243 break; 244 } 245 } 246 247 static void he_stat__add_period(struct he_stat *he_stat, u64 period, 248 u64 weight) 249 { 250 251 he_stat->period += period; 252 he_stat->weight += weight; 253 he_stat->nr_events += 1; 254 } 255 256 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 257 { 258 dest->period += src->period; 259 dest->period_sys += src->period_sys; 260 dest->period_us += src->period_us; 261 dest->period_guest_sys += src->period_guest_sys; 262 dest->period_guest_us += src->period_guest_us; 263 dest->nr_events += src->nr_events; 264 dest->weight += src->weight; 265 } 266 267 static void he_stat__decay(struct he_stat *he_stat) 268 { 269 he_stat->period = (he_stat->period * 7) / 8; 270 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 271 /* XXX need decay for weight too? */ 272 } 273 274 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 275 276 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 277 { 278 u64 prev_period = he->stat.period; 279 u64 diff; 280 281 if (prev_period == 0) 282 return true; 283 284 he_stat__decay(&he->stat); 285 if (symbol_conf.cumulate_callchain) 286 he_stat__decay(he->stat_acc); 287 decay_callchain(he->callchain); 288 289 diff = prev_period - he->stat.period; 290 291 if (!he->depth) { 292 hists->stats.total_period -= diff; 293 if (!he->filtered) 294 hists->stats.total_non_filtered_period -= diff; 295 } 296 297 if (!he->leaf) { 298 struct hist_entry *child; 299 struct rb_node *node = rb_first(&he->hroot_out); 300 while (node) { 301 child = rb_entry(node, struct hist_entry, rb_node); 302 node = rb_next(node); 303 304 if (hists__decay_entry(hists, child)) 305 hists__delete_entry(hists, child); 306 } 307 } 308 309 return he->stat.period == 0; 310 } 311 312 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 313 { 314 struct rb_root *root_in; 315 struct rb_root *root_out; 316 317 if (he->parent_he) { 318 root_in = &he->parent_he->hroot_in; 319 root_out = &he->parent_he->hroot_out; 320 } else { 321 if (hists__has(hists, need_collapse)) 322 root_in = &hists->entries_collapsed; 323 else 324 root_in = hists->entries_in; 325 root_out = &hists->entries; 326 } 327 328 rb_erase(&he->rb_node_in, root_in); 329 rb_erase(&he->rb_node, root_out); 330 331 --hists->nr_entries; 332 if (!he->filtered) 333 --hists->nr_non_filtered_entries; 334 335 hist_entry__delete(he); 336 } 337 338 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 339 { 340 struct rb_node *next = rb_first(&hists->entries); 341 struct hist_entry *n; 342 343 while (next) { 344 n = rb_entry(next, struct hist_entry, rb_node); 345 next = rb_next(&n->rb_node); 346 if (((zap_user && n->level == '.') || 347 (zap_kernel && n->level != '.') || 348 hists__decay_entry(hists, n))) { 349 hists__delete_entry(hists, n); 350 } 351 } 352 } 353 354 void hists__delete_entries(struct hists *hists) 355 { 356 struct rb_node *next = rb_first(&hists->entries); 357 struct hist_entry *n; 358 359 while (next) { 360 n = rb_entry(next, struct hist_entry, rb_node); 361 next = rb_next(&n->rb_node); 362 363 hists__delete_entry(hists, n); 364 } 365 } 366 367 /* 368 * histogram, sorted on item, collects periods 369 */ 370 371 static int hist_entry__init(struct hist_entry *he, 372 struct hist_entry *template, 373 bool sample_self) 374 { 375 *he = *template; 376 377 if (symbol_conf.cumulate_callchain) { 378 he->stat_acc = malloc(sizeof(he->stat)); 379 if (he->stat_acc == NULL) 380 return -ENOMEM; 381 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 382 if (!sample_self) 383 memset(&he->stat, 0, sizeof(he->stat)); 384 } 385 386 map__get(he->ms.map); 387 388 if (he->branch_info) { 389 /* 390 * This branch info is (a part of) allocated from 391 * sample__resolve_bstack() and will be freed after 392 * adding new entries. So we need to save a copy. 393 */ 394 he->branch_info = malloc(sizeof(*he->branch_info)); 395 if (he->branch_info == NULL) { 396 map__zput(he->ms.map); 397 free(he->stat_acc); 398 return -ENOMEM; 399 } 400 401 memcpy(he->branch_info, template->branch_info, 402 sizeof(*he->branch_info)); 403 404 map__get(he->branch_info->from.map); 405 map__get(he->branch_info->to.map); 406 } 407 408 if (he->mem_info) { 409 map__get(he->mem_info->iaddr.map); 410 map__get(he->mem_info->daddr.map); 411 } 412 413 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 414 callchain_init(he->callchain); 415 416 if (he->raw_data) { 417 he->raw_data = memdup(he->raw_data, he->raw_size); 418 419 if (he->raw_data == NULL) { 420 map__put(he->ms.map); 421 if (he->branch_info) { 422 map__put(he->branch_info->from.map); 423 map__put(he->branch_info->to.map); 424 free(he->branch_info); 425 } 426 if (he->mem_info) { 427 map__put(he->mem_info->iaddr.map); 428 map__put(he->mem_info->daddr.map); 429 } 430 free(he->stat_acc); 431 return -ENOMEM; 432 } 433 } 434 INIT_LIST_HEAD(&he->pairs.node); 435 thread__get(he->thread); 436 he->hroot_in = RB_ROOT; 437 he->hroot_out = RB_ROOT; 438 439 if (!symbol_conf.report_hierarchy) 440 he->leaf = true; 441 442 return 0; 443 } 444 445 static void *hist_entry__zalloc(size_t size) 446 { 447 return zalloc(size + sizeof(struct hist_entry)); 448 } 449 450 static void hist_entry__free(void *ptr) 451 { 452 free(ptr); 453 } 454 455 static struct hist_entry_ops default_ops = { 456 .new = hist_entry__zalloc, 457 .free = hist_entry__free, 458 }; 459 460 static struct hist_entry *hist_entry__new(struct hist_entry *template, 461 bool sample_self) 462 { 463 struct hist_entry_ops *ops = template->ops; 464 size_t callchain_size = 0; 465 struct hist_entry *he; 466 int err = 0; 467 468 if (!ops) 469 ops = template->ops = &default_ops; 470 471 if (symbol_conf.use_callchain) 472 callchain_size = sizeof(struct callchain_root); 473 474 he = ops->new(callchain_size); 475 if (he) { 476 err = hist_entry__init(he, template, sample_self); 477 if (err) { 478 ops->free(he); 479 he = NULL; 480 } 481 } 482 483 return he; 484 } 485 486 static u8 symbol__parent_filter(const struct symbol *parent) 487 { 488 if (symbol_conf.exclude_other && parent == NULL) 489 return 1 << HIST_FILTER__PARENT; 490 return 0; 491 } 492 493 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 494 { 495 if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain) 496 return; 497 498 he->hists->callchain_period += period; 499 if (!he->filtered) 500 he->hists->callchain_non_filtered_period += period; 501 } 502 503 static struct hist_entry *hists__findnew_entry(struct hists *hists, 504 struct hist_entry *entry, 505 struct addr_location *al, 506 bool sample_self) 507 { 508 struct rb_node **p; 509 struct rb_node *parent = NULL; 510 struct hist_entry *he; 511 int64_t cmp; 512 u64 period = entry->stat.period; 513 u64 weight = entry->stat.weight; 514 515 p = &hists->entries_in->rb_node; 516 517 while (*p != NULL) { 518 parent = *p; 519 he = rb_entry(parent, struct hist_entry, rb_node_in); 520 521 /* 522 * Make sure that it receives arguments in a same order as 523 * hist_entry__collapse() so that we can use an appropriate 524 * function when searching an entry regardless which sort 525 * keys were used. 526 */ 527 cmp = hist_entry__cmp(he, entry); 528 529 if (!cmp) { 530 if (sample_self) { 531 he_stat__add_period(&he->stat, period, weight); 532 hist_entry__add_callchain_period(he, period); 533 } 534 if (symbol_conf.cumulate_callchain) 535 he_stat__add_period(he->stat_acc, period, weight); 536 537 /* 538 * This mem info was allocated from sample__resolve_mem 539 * and will not be used anymore. 540 */ 541 mem_info__zput(entry->mem_info); 542 543 /* If the map of an existing hist_entry has 544 * become out-of-date due to an exec() or 545 * similar, update it. Otherwise we will 546 * mis-adjust symbol addresses when computing 547 * the history counter to increment. 548 */ 549 if (he->ms.map != entry->ms.map) { 550 map__put(he->ms.map); 551 he->ms.map = map__get(entry->ms.map); 552 } 553 goto out; 554 } 555 556 if (cmp < 0) 557 p = &(*p)->rb_left; 558 else 559 p = &(*p)->rb_right; 560 } 561 562 he = hist_entry__new(entry, sample_self); 563 if (!he) 564 return NULL; 565 566 if (sample_self) 567 hist_entry__add_callchain_period(he, period); 568 hists->nr_entries++; 569 570 rb_link_node(&he->rb_node_in, parent, p); 571 rb_insert_color(&he->rb_node_in, hists->entries_in); 572 out: 573 if (sample_self) 574 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 575 if (symbol_conf.cumulate_callchain) 576 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 577 return he; 578 } 579 580 static struct hist_entry* 581 __hists__add_entry(struct hists *hists, 582 struct addr_location *al, 583 struct symbol *sym_parent, 584 struct branch_info *bi, 585 struct mem_info *mi, 586 struct perf_sample *sample, 587 bool sample_self, 588 struct hist_entry_ops *ops) 589 { 590 struct namespaces *ns = thread__namespaces(al->thread); 591 struct hist_entry entry = { 592 .thread = al->thread, 593 .comm = thread__comm(al->thread), 594 .cgroup_id = { 595 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0, 596 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0, 597 }, 598 .ms = { 599 .map = al->map, 600 .sym = al->sym, 601 }, 602 .srcline = al->srcline ? strdup(al->srcline) : NULL, 603 .socket = al->socket, 604 .cpu = al->cpu, 605 .cpumode = al->cpumode, 606 .ip = al->addr, 607 .level = al->level, 608 .stat = { 609 .nr_events = 1, 610 .period = sample->period, 611 .weight = sample->weight, 612 }, 613 .parent = sym_parent, 614 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 615 .hists = hists, 616 .branch_info = bi, 617 .mem_info = mi, 618 .transaction = sample->transaction, 619 .raw_data = sample->raw_data, 620 .raw_size = sample->raw_size, 621 .ops = ops, 622 }; 623 624 return hists__findnew_entry(hists, &entry, al, sample_self); 625 } 626 627 struct hist_entry *hists__add_entry(struct hists *hists, 628 struct addr_location *al, 629 struct symbol *sym_parent, 630 struct branch_info *bi, 631 struct mem_info *mi, 632 struct perf_sample *sample, 633 bool sample_self) 634 { 635 return __hists__add_entry(hists, al, sym_parent, bi, mi, 636 sample, sample_self, NULL); 637 } 638 639 struct hist_entry *hists__add_entry_ops(struct hists *hists, 640 struct hist_entry_ops *ops, 641 struct addr_location *al, 642 struct symbol *sym_parent, 643 struct branch_info *bi, 644 struct mem_info *mi, 645 struct perf_sample *sample, 646 bool sample_self) 647 { 648 return __hists__add_entry(hists, al, sym_parent, bi, mi, 649 sample, sample_self, ops); 650 } 651 652 static int 653 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 654 struct addr_location *al __maybe_unused) 655 { 656 return 0; 657 } 658 659 static int 660 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 661 struct addr_location *al __maybe_unused) 662 { 663 return 0; 664 } 665 666 static int 667 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 668 { 669 struct perf_sample *sample = iter->sample; 670 struct mem_info *mi; 671 672 mi = sample__resolve_mem(sample, al); 673 if (mi == NULL) 674 return -ENOMEM; 675 676 iter->priv = mi; 677 return 0; 678 } 679 680 static int 681 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 682 { 683 u64 cost; 684 struct mem_info *mi = iter->priv; 685 struct hists *hists = evsel__hists(iter->evsel); 686 struct perf_sample *sample = iter->sample; 687 struct hist_entry *he; 688 689 if (mi == NULL) 690 return -EINVAL; 691 692 cost = sample->weight; 693 if (!cost) 694 cost = 1; 695 696 /* 697 * must pass period=weight in order to get the correct 698 * sorting from hists__collapse_resort() which is solely 699 * based on periods. We want sorting be done on nr_events * weight 700 * and this is indirectly achieved by passing period=weight here 701 * and the he_stat__add_period() function. 702 */ 703 sample->period = cost; 704 705 he = hists__add_entry(hists, al, iter->parent, NULL, mi, 706 sample, true); 707 if (!he) 708 return -ENOMEM; 709 710 iter->he = he; 711 return 0; 712 } 713 714 static int 715 iter_finish_mem_entry(struct hist_entry_iter *iter, 716 struct addr_location *al __maybe_unused) 717 { 718 struct perf_evsel *evsel = iter->evsel; 719 struct hists *hists = evsel__hists(evsel); 720 struct hist_entry *he = iter->he; 721 int err = -EINVAL; 722 723 if (he == NULL) 724 goto out; 725 726 hists__inc_nr_samples(hists, he->filtered); 727 728 err = hist_entry__append_callchain(he, iter->sample); 729 730 out: 731 /* 732 * We don't need to free iter->priv (mem_info) here since the mem info 733 * was either already freed in hists__findnew_entry() or passed to a 734 * new hist entry by hist_entry__new(). 735 */ 736 iter->priv = NULL; 737 738 iter->he = NULL; 739 return err; 740 } 741 742 static int 743 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 744 { 745 struct branch_info *bi; 746 struct perf_sample *sample = iter->sample; 747 748 bi = sample__resolve_bstack(sample, al); 749 if (!bi) 750 return -ENOMEM; 751 752 iter->curr = 0; 753 iter->total = sample->branch_stack->nr; 754 755 iter->priv = bi; 756 return 0; 757 } 758 759 static int 760 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused, 761 struct addr_location *al __maybe_unused) 762 { 763 return 0; 764 } 765 766 static int 767 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 768 { 769 struct branch_info *bi = iter->priv; 770 int i = iter->curr; 771 772 if (bi == NULL) 773 return 0; 774 775 if (iter->curr >= iter->total) 776 return 0; 777 778 al->map = bi[i].to.map; 779 al->sym = bi[i].to.sym; 780 al->addr = bi[i].to.addr; 781 return 1; 782 } 783 784 static int 785 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 786 { 787 struct branch_info *bi; 788 struct perf_evsel *evsel = iter->evsel; 789 struct hists *hists = evsel__hists(evsel); 790 struct perf_sample *sample = iter->sample; 791 struct hist_entry *he = NULL; 792 int i = iter->curr; 793 int err = 0; 794 795 bi = iter->priv; 796 797 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym)) 798 goto out; 799 800 /* 801 * The report shows the percentage of total branches captured 802 * and not events sampled. Thus we use a pseudo period of 1. 803 */ 804 sample->period = 1; 805 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 806 807 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, 808 sample, true); 809 if (he == NULL) 810 return -ENOMEM; 811 812 hists__inc_nr_samples(hists, he->filtered); 813 814 out: 815 iter->he = he; 816 iter->curr++; 817 return err; 818 } 819 820 static int 821 iter_finish_branch_entry(struct hist_entry_iter *iter, 822 struct addr_location *al __maybe_unused) 823 { 824 zfree(&iter->priv); 825 iter->he = NULL; 826 827 return iter->curr >= iter->total ? 0 : -1; 828 } 829 830 static int 831 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 832 struct addr_location *al __maybe_unused) 833 { 834 return 0; 835 } 836 837 static int 838 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 839 { 840 struct perf_evsel *evsel = iter->evsel; 841 struct perf_sample *sample = iter->sample; 842 struct hist_entry *he; 843 844 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 845 sample, true); 846 if (he == NULL) 847 return -ENOMEM; 848 849 iter->he = he; 850 return 0; 851 } 852 853 static int 854 iter_finish_normal_entry(struct hist_entry_iter *iter, 855 struct addr_location *al __maybe_unused) 856 { 857 struct hist_entry *he = iter->he; 858 struct perf_evsel *evsel = iter->evsel; 859 struct perf_sample *sample = iter->sample; 860 861 if (he == NULL) 862 return 0; 863 864 iter->he = NULL; 865 866 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 867 868 return hist_entry__append_callchain(he, sample); 869 } 870 871 static int 872 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 873 struct addr_location *al __maybe_unused) 874 { 875 struct hist_entry **he_cache; 876 877 callchain_cursor_commit(&callchain_cursor); 878 879 /* 880 * This is for detecting cycles or recursions so that they're 881 * cumulated only one time to prevent entries more than 100% 882 * overhead. 883 */ 884 he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1)); 885 if (he_cache == NULL) 886 return -ENOMEM; 887 888 iter->priv = he_cache; 889 iter->curr = 0; 890 891 return 0; 892 } 893 894 static int 895 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 896 struct addr_location *al) 897 { 898 struct perf_evsel *evsel = iter->evsel; 899 struct hists *hists = evsel__hists(evsel); 900 struct perf_sample *sample = iter->sample; 901 struct hist_entry **he_cache = iter->priv; 902 struct hist_entry *he; 903 int err = 0; 904 905 he = hists__add_entry(hists, al, iter->parent, NULL, NULL, 906 sample, true); 907 if (he == NULL) 908 return -ENOMEM; 909 910 iter->he = he; 911 he_cache[iter->curr++] = he; 912 913 hist_entry__append_callchain(he, sample); 914 915 /* 916 * We need to re-initialize the cursor since callchain_append() 917 * advanced the cursor to the end. 918 */ 919 callchain_cursor_commit(&callchain_cursor); 920 921 hists__inc_nr_samples(hists, he->filtered); 922 923 return err; 924 } 925 926 static int 927 iter_next_cumulative_entry(struct hist_entry_iter *iter, 928 struct addr_location *al) 929 { 930 struct callchain_cursor_node *node; 931 932 node = callchain_cursor_current(&callchain_cursor); 933 if (node == NULL) 934 return 0; 935 936 return fill_callchain_info(al, node, iter->hide_unresolved); 937 } 938 939 static int 940 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 941 struct addr_location *al) 942 { 943 struct perf_evsel *evsel = iter->evsel; 944 struct perf_sample *sample = iter->sample; 945 struct hist_entry **he_cache = iter->priv; 946 struct hist_entry *he; 947 struct hist_entry he_tmp = { 948 .hists = evsel__hists(evsel), 949 .cpu = al->cpu, 950 .thread = al->thread, 951 .comm = thread__comm(al->thread), 952 .ip = al->addr, 953 .ms = { 954 .map = al->map, 955 .sym = al->sym, 956 }, 957 .srcline = al->srcline ? strdup(al->srcline) : NULL, 958 .parent = iter->parent, 959 .raw_data = sample->raw_data, 960 .raw_size = sample->raw_size, 961 }; 962 int i; 963 struct callchain_cursor cursor; 964 965 callchain_cursor_snapshot(&cursor, &callchain_cursor); 966 967 callchain_cursor_advance(&callchain_cursor); 968 969 /* 970 * Check if there's duplicate entries in the callchain. 971 * It's possible that it has cycles or recursive calls. 972 */ 973 for (i = 0; i < iter->curr; i++) { 974 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 975 /* to avoid calling callback function */ 976 iter->he = NULL; 977 return 0; 978 } 979 } 980 981 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 982 sample, false); 983 if (he == NULL) 984 return -ENOMEM; 985 986 iter->he = he; 987 he_cache[iter->curr++] = he; 988 989 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 990 callchain_append(he->callchain, &cursor, sample->period); 991 return 0; 992 } 993 994 static int 995 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 996 struct addr_location *al __maybe_unused) 997 { 998 zfree(&iter->priv); 999 iter->he = NULL; 1000 1001 return 0; 1002 } 1003 1004 const struct hist_iter_ops hist_iter_mem = { 1005 .prepare_entry = iter_prepare_mem_entry, 1006 .add_single_entry = iter_add_single_mem_entry, 1007 .next_entry = iter_next_nop_entry, 1008 .add_next_entry = iter_add_next_nop_entry, 1009 .finish_entry = iter_finish_mem_entry, 1010 }; 1011 1012 const struct hist_iter_ops hist_iter_branch = { 1013 .prepare_entry = iter_prepare_branch_entry, 1014 .add_single_entry = iter_add_single_branch_entry, 1015 .next_entry = iter_next_branch_entry, 1016 .add_next_entry = iter_add_next_branch_entry, 1017 .finish_entry = iter_finish_branch_entry, 1018 }; 1019 1020 const struct hist_iter_ops hist_iter_normal = { 1021 .prepare_entry = iter_prepare_normal_entry, 1022 .add_single_entry = iter_add_single_normal_entry, 1023 .next_entry = iter_next_nop_entry, 1024 .add_next_entry = iter_add_next_nop_entry, 1025 .finish_entry = iter_finish_normal_entry, 1026 }; 1027 1028 const struct hist_iter_ops hist_iter_cumulative = { 1029 .prepare_entry = iter_prepare_cumulative_entry, 1030 .add_single_entry = iter_add_single_cumulative_entry, 1031 .next_entry = iter_next_cumulative_entry, 1032 .add_next_entry = iter_add_next_cumulative_entry, 1033 .finish_entry = iter_finish_cumulative_entry, 1034 }; 1035 1036 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1037 int max_stack_depth, void *arg) 1038 { 1039 int err, err2; 1040 struct map *alm = NULL; 1041 1042 if (al) 1043 alm = map__get(al->map); 1044 1045 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, 1046 iter->evsel, al, max_stack_depth); 1047 if (err) 1048 return err; 1049 1050 err = iter->ops->prepare_entry(iter, al); 1051 if (err) 1052 goto out; 1053 1054 err = iter->ops->add_single_entry(iter, al); 1055 if (err) 1056 goto out; 1057 1058 if (iter->he && iter->add_entry_cb) { 1059 err = iter->add_entry_cb(iter, al, true, arg); 1060 if (err) 1061 goto out; 1062 } 1063 1064 while (iter->ops->next_entry(iter, al)) { 1065 err = iter->ops->add_next_entry(iter, al); 1066 if (err) 1067 break; 1068 1069 if (iter->he && iter->add_entry_cb) { 1070 err = iter->add_entry_cb(iter, al, false, arg); 1071 if (err) 1072 goto out; 1073 } 1074 } 1075 1076 out: 1077 err2 = iter->ops->finish_entry(iter, al); 1078 if (!err) 1079 err = err2; 1080 1081 map__put(alm); 1082 1083 return err; 1084 } 1085 1086 int64_t 1087 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1088 { 1089 struct hists *hists = left->hists; 1090 struct perf_hpp_fmt *fmt; 1091 int64_t cmp = 0; 1092 1093 hists__for_each_sort_list(hists, fmt) { 1094 if (perf_hpp__is_dynamic_entry(fmt) && 1095 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1096 continue; 1097 1098 cmp = fmt->cmp(fmt, left, right); 1099 if (cmp) 1100 break; 1101 } 1102 1103 return cmp; 1104 } 1105 1106 int64_t 1107 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1108 { 1109 struct hists *hists = left->hists; 1110 struct perf_hpp_fmt *fmt; 1111 int64_t cmp = 0; 1112 1113 hists__for_each_sort_list(hists, fmt) { 1114 if (perf_hpp__is_dynamic_entry(fmt) && 1115 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1116 continue; 1117 1118 cmp = fmt->collapse(fmt, left, right); 1119 if (cmp) 1120 break; 1121 } 1122 1123 return cmp; 1124 } 1125 1126 void hist_entry__delete(struct hist_entry *he) 1127 { 1128 struct hist_entry_ops *ops = he->ops; 1129 1130 thread__zput(he->thread); 1131 map__zput(he->ms.map); 1132 1133 if (he->branch_info) { 1134 map__zput(he->branch_info->from.map); 1135 map__zput(he->branch_info->to.map); 1136 free_srcline(he->branch_info->srcline_from); 1137 free_srcline(he->branch_info->srcline_to); 1138 zfree(&he->branch_info); 1139 } 1140 1141 if (he->mem_info) { 1142 map__zput(he->mem_info->iaddr.map); 1143 map__zput(he->mem_info->daddr.map); 1144 mem_info__zput(he->mem_info); 1145 } 1146 1147 zfree(&he->stat_acc); 1148 free_srcline(he->srcline); 1149 if (he->srcfile && he->srcfile[0]) 1150 free(he->srcfile); 1151 free_callchain(he->callchain); 1152 free(he->trace_output); 1153 free(he->raw_data); 1154 ops->free(he); 1155 } 1156 1157 /* 1158 * If this is not the last column, then we need to pad it according to the 1159 * pre-calculated max lenght for this column, otherwise don't bother adding 1160 * spaces because that would break viewing this with, for instance, 'less', 1161 * that would show tons of trailing spaces when a long C++ demangled method 1162 * names is sampled. 1163 */ 1164 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1165 struct perf_hpp_fmt *fmt, int printed) 1166 { 1167 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1168 const int width = fmt->width(fmt, hpp, he->hists); 1169 if (printed < width) { 1170 advance_hpp(hpp, printed); 1171 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1172 } 1173 } 1174 1175 return printed; 1176 } 1177 1178 /* 1179 * collapse the histogram 1180 */ 1181 1182 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1183 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1184 enum hist_filter type); 1185 1186 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1187 1188 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1189 { 1190 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1191 } 1192 1193 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1194 enum hist_filter type, 1195 fmt_chk_fn check) 1196 { 1197 struct perf_hpp_fmt *fmt; 1198 bool type_match = false; 1199 struct hist_entry *parent = he->parent_he; 1200 1201 switch (type) { 1202 case HIST_FILTER__THREAD: 1203 if (symbol_conf.comm_list == NULL && 1204 symbol_conf.pid_list == NULL && 1205 symbol_conf.tid_list == NULL) 1206 return; 1207 break; 1208 case HIST_FILTER__DSO: 1209 if (symbol_conf.dso_list == NULL) 1210 return; 1211 break; 1212 case HIST_FILTER__SYMBOL: 1213 if (symbol_conf.sym_list == NULL) 1214 return; 1215 break; 1216 case HIST_FILTER__PARENT: 1217 case HIST_FILTER__GUEST: 1218 case HIST_FILTER__HOST: 1219 case HIST_FILTER__SOCKET: 1220 case HIST_FILTER__C2C: 1221 default: 1222 return; 1223 } 1224 1225 /* if it's filtered by own fmt, it has to have filter bits */ 1226 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1227 if (check(fmt)) { 1228 type_match = true; 1229 break; 1230 } 1231 } 1232 1233 if (type_match) { 1234 /* 1235 * If the filter is for current level entry, propagate 1236 * filter marker to parents. The marker bit was 1237 * already set by default so it only needs to clear 1238 * non-filtered entries. 1239 */ 1240 if (!(he->filtered & (1 << type))) { 1241 while (parent) { 1242 parent->filtered &= ~(1 << type); 1243 parent = parent->parent_he; 1244 } 1245 } 1246 } else { 1247 /* 1248 * If current entry doesn't have matching formats, set 1249 * filter marker for upper level entries. it will be 1250 * cleared if its lower level entries is not filtered. 1251 * 1252 * For lower-level entries, it inherits parent's 1253 * filter bit so that lower level entries of a 1254 * non-filtered entry won't set the filter marker. 1255 */ 1256 if (parent == NULL) 1257 he->filtered |= (1 << type); 1258 else 1259 he->filtered |= (parent->filtered & (1 << type)); 1260 } 1261 } 1262 1263 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1264 { 1265 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1266 check_thread_entry); 1267 1268 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1269 perf_hpp__is_dso_entry); 1270 1271 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1272 perf_hpp__is_sym_entry); 1273 1274 hists__apply_filters(he->hists, he); 1275 } 1276 1277 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1278 struct rb_root *root, 1279 struct hist_entry *he, 1280 struct hist_entry *parent_he, 1281 struct perf_hpp_list *hpp_list) 1282 { 1283 struct rb_node **p = &root->rb_node; 1284 struct rb_node *parent = NULL; 1285 struct hist_entry *iter, *new; 1286 struct perf_hpp_fmt *fmt; 1287 int64_t cmp; 1288 1289 while (*p != NULL) { 1290 parent = *p; 1291 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1292 1293 cmp = 0; 1294 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1295 cmp = fmt->collapse(fmt, iter, he); 1296 if (cmp) 1297 break; 1298 } 1299 1300 if (!cmp) { 1301 he_stat__add_stat(&iter->stat, &he->stat); 1302 return iter; 1303 } 1304 1305 if (cmp < 0) 1306 p = &parent->rb_left; 1307 else 1308 p = &parent->rb_right; 1309 } 1310 1311 new = hist_entry__new(he, true); 1312 if (new == NULL) 1313 return NULL; 1314 1315 hists->nr_entries++; 1316 1317 /* save related format list for output */ 1318 new->hpp_list = hpp_list; 1319 new->parent_he = parent_he; 1320 1321 hist_entry__apply_hierarchy_filters(new); 1322 1323 /* some fields are now passed to 'new' */ 1324 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1325 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1326 he->trace_output = NULL; 1327 else 1328 new->trace_output = NULL; 1329 1330 if (perf_hpp__is_srcline_entry(fmt)) 1331 he->srcline = NULL; 1332 else 1333 new->srcline = NULL; 1334 1335 if (perf_hpp__is_srcfile_entry(fmt)) 1336 he->srcfile = NULL; 1337 else 1338 new->srcfile = NULL; 1339 } 1340 1341 rb_link_node(&new->rb_node_in, parent, p); 1342 rb_insert_color(&new->rb_node_in, root); 1343 return new; 1344 } 1345 1346 static int hists__hierarchy_insert_entry(struct hists *hists, 1347 struct rb_root *root, 1348 struct hist_entry *he) 1349 { 1350 struct perf_hpp_list_node *node; 1351 struct hist_entry *new_he = NULL; 1352 struct hist_entry *parent = NULL; 1353 int depth = 0; 1354 int ret = 0; 1355 1356 list_for_each_entry(node, &hists->hpp_formats, list) { 1357 /* skip period (overhead) and elided columns */ 1358 if (node->level == 0 || node->skip) 1359 continue; 1360 1361 /* insert copy of 'he' for each fmt into the hierarchy */ 1362 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1363 if (new_he == NULL) { 1364 ret = -1; 1365 break; 1366 } 1367 1368 root = &new_he->hroot_in; 1369 new_he->depth = depth++; 1370 parent = new_he; 1371 } 1372 1373 if (new_he) { 1374 new_he->leaf = true; 1375 1376 if (hist_entry__has_callchains(new_he) && 1377 symbol_conf.use_callchain) { 1378 callchain_cursor_reset(&callchain_cursor); 1379 if (callchain_merge(&callchain_cursor, 1380 new_he->callchain, 1381 he->callchain) < 0) 1382 ret = -1; 1383 } 1384 } 1385 1386 /* 'he' is no longer used */ 1387 hist_entry__delete(he); 1388 1389 /* return 0 (or -1) since it already applied filters */ 1390 return ret; 1391 } 1392 1393 static int hists__collapse_insert_entry(struct hists *hists, 1394 struct rb_root *root, 1395 struct hist_entry *he) 1396 { 1397 struct rb_node **p = &root->rb_node; 1398 struct rb_node *parent = NULL; 1399 struct hist_entry *iter; 1400 int64_t cmp; 1401 1402 if (symbol_conf.report_hierarchy) 1403 return hists__hierarchy_insert_entry(hists, root, he); 1404 1405 while (*p != NULL) { 1406 parent = *p; 1407 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1408 1409 cmp = hist_entry__collapse(iter, he); 1410 1411 if (!cmp) { 1412 int ret = 0; 1413 1414 he_stat__add_stat(&iter->stat, &he->stat); 1415 if (symbol_conf.cumulate_callchain) 1416 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1417 1418 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) { 1419 callchain_cursor_reset(&callchain_cursor); 1420 if (callchain_merge(&callchain_cursor, 1421 iter->callchain, 1422 he->callchain) < 0) 1423 ret = -1; 1424 } 1425 hist_entry__delete(he); 1426 return ret; 1427 } 1428 1429 if (cmp < 0) 1430 p = &(*p)->rb_left; 1431 else 1432 p = &(*p)->rb_right; 1433 } 1434 hists->nr_entries++; 1435 1436 rb_link_node(&he->rb_node_in, parent, p); 1437 rb_insert_color(&he->rb_node_in, root); 1438 return 1; 1439 } 1440 1441 struct rb_root *hists__get_rotate_entries_in(struct hists *hists) 1442 { 1443 struct rb_root *root; 1444 1445 pthread_mutex_lock(&hists->lock); 1446 1447 root = hists->entries_in; 1448 if (++hists->entries_in > &hists->entries_in_array[1]) 1449 hists->entries_in = &hists->entries_in_array[0]; 1450 1451 pthread_mutex_unlock(&hists->lock); 1452 1453 return root; 1454 } 1455 1456 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1457 { 1458 hists__filter_entry_by_dso(hists, he); 1459 hists__filter_entry_by_thread(hists, he); 1460 hists__filter_entry_by_symbol(hists, he); 1461 hists__filter_entry_by_socket(hists, he); 1462 } 1463 1464 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1465 { 1466 struct rb_root *root; 1467 struct rb_node *next; 1468 struct hist_entry *n; 1469 int ret; 1470 1471 if (!hists__has(hists, need_collapse)) 1472 return 0; 1473 1474 hists->nr_entries = 0; 1475 1476 root = hists__get_rotate_entries_in(hists); 1477 1478 next = rb_first(root); 1479 1480 while (next) { 1481 if (session_done()) 1482 break; 1483 n = rb_entry(next, struct hist_entry, rb_node_in); 1484 next = rb_next(&n->rb_node_in); 1485 1486 rb_erase(&n->rb_node_in, root); 1487 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1488 if (ret < 0) 1489 return -1; 1490 1491 if (ret) { 1492 /* 1493 * If it wasn't combined with one of the entries already 1494 * collapsed, we need to apply the filters that may have 1495 * been set by, say, the hist_browser. 1496 */ 1497 hists__apply_filters(hists, n); 1498 } 1499 if (prog) 1500 ui_progress__update(prog, 1); 1501 } 1502 return 0; 1503 } 1504 1505 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1506 { 1507 struct hists *hists = a->hists; 1508 struct perf_hpp_fmt *fmt; 1509 int64_t cmp = 0; 1510 1511 hists__for_each_sort_list(hists, fmt) { 1512 if (perf_hpp__should_skip(fmt, a->hists)) 1513 continue; 1514 1515 cmp = fmt->sort(fmt, a, b); 1516 if (cmp) 1517 break; 1518 } 1519 1520 return cmp; 1521 } 1522 1523 static void hists__reset_filter_stats(struct hists *hists) 1524 { 1525 hists->nr_non_filtered_entries = 0; 1526 hists->stats.total_non_filtered_period = 0; 1527 } 1528 1529 void hists__reset_stats(struct hists *hists) 1530 { 1531 hists->nr_entries = 0; 1532 hists->stats.total_period = 0; 1533 1534 hists__reset_filter_stats(hists); 1535 } 1536 1537 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1538 { 1539 hists->nr_non_filtered_entries++; 1540 hists->stats.total_non_filtered_period += h->stat.period; 1541 } 1542 1543 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1544 { 1545 if (!h->filtered) 1546 hists__inc_filter_stats(hists, h); 1547 1548 hists->nr_entries++; 1549 hists->stats.total_period += h->stat.period; 1550 } 1551 1552 static void hierarchy_recalc_total_periods(struct hists *hists) 1553 { 1554 struct rb_node *node; 1555 struct hist_entry *he; 1556 1557 node = rb_first(&hists->entries); 1558 1559 hists->stats.total_period = 0; 1560 hists->stats.total_non_filtered_period = 0; 1561 1562 /* 1563 * recalculate total period using top-level entries only 1564 * since lower level entries only see non-filtered entries 1565 * but upper level entries have sum of both entries. 1566 */ 1567 while (node) { 1568 he = rb_entry(node, struct hist_entry, rb_node); 1569 node = rb_next(node); 1570 1571 hists->stats.total_period += he->stat.period; 1572 if (!he->filtered) 1573 hists->stats.total_non_filtered_period += he->stat.period; 1574 } 1575 } 1576 1577 static void hierarchy_insert_output_entry(struct rb_root *root, 1578 struct hist_entry *he) 1579 { 1580 struct rb_node **p = &root->rb_node; 1581 struct rb_node *parent = NULL; 1582 struct hist_entry *iter; 1583 struct perf_hpp_fmt *fmt; 1584 1585 while (*p != NULL) { 1586 parent = *p; 1587 iter = rb_entry(parent, struct hist_entry, rb_node); 1588 1589 if (hist_entry__sort(he, iter) > 0) 1590 p = &parent->rb_left; 1591 else 1592 p = &parent->rb_right; 1593 } 1594 1595 rb_link_node(&he->rb_node, parent, p); 1596 rb_insert_color(&he->rb_node, root); 1597 1598 /* update column width of dynamic entry */ 1599 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1600 if (perf_hpp__is_dynamic_entry(fmt)) 1601 fmt->sort(fmt, he, NULL); 1602 } 1603 } 1604 1605 static void hists__hierarchy_output_resort(struct hists *hists, 1606 struct ui_progress *prog, 1607 struct rb_root *root_in, 1608 struct rb_root *root_out, 1609 u64 min_callchain_hits, 1610 bool use_callchain) 1611 { 1612 struct rb_node *node; 1613 struct hist_entry *he; 1614 1615 *root_out = RB_ROOT; 1616 node = rb_first(root_in); 1617 1618 while (node) { 1619 he = rb_entry(node, struct hist_entry, rb_node_in); 1620 node = rb_next(node); 1621 1622 hierarchy_insert_output_entry(root_out, he); 1623 1624 if (prog) 1625 ui_progress__update(prog, 1); 1626 1627 hists->nr_entries++; 1628 if (!he->filtered) { 1629 hists->nr_non_filtered_entries++; 1630 hists__calc_col_len(hists, he); 1631 } 1632 1633 if (!he->leaf) { 1634 hists__hierarchy_output_resort(hists, prog, 1635 &he->hroot_in, 1636 &he->hroot_out, 1637 min_callchain_hits, 1638 use_callchain); 1639 continue; 1640 } 1641 1642 if (!use_callchain) 1643 continue; 1644 1645 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1646 u64 total = he->stat.period; 1647 1648 if (symbol_conf.cumulate_callchain) 1649 total = he->stat_acc->period; 1650 1651 min_callchain_hits = total * (callchain_param.min_percent / 100); 1652 } 1653 1654 callchain_param.sort(&he->sorted_chain, he->callchain, 1655 min_callchain_hits, &callchain_param); 1656 } 1657 } 1658 1659 static void __hists__insert_output_entry(struct rb_root *entries, 1660 struct hist_entry *he, 1661 u64 min_callchain_hits, 1662 bool use_callchain) 1663 { 1664 struct rb_node **p = &entries->rb_node; 1665 struct rb_node *parent = NULL; 1666 struct hist_entry *iter; 1667 struct perf_hpp_fmt *fmt; 1668 1669 if (use_callchain) { 1670 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1671 u64 total = he->stat.period; 1672 1673 if (symbol_conf.cumulate_callchain) 1674 total = he->stat_acc->period; 1675 1676 min_callchain_hits = total * (callchain_param.min_percent / 100); 1677 } 1678 callchain_param.sort(&he->sorted_chain, he->callchain, 1679 min_callchain_hits, &callchain_param); 1680 } 1681 1682 while (*p != NULL) { 1683 parent = *p; 1684 iter = rb_entry(parent, struct hist_entry, rb_node); 1685 1686 if (hist_entry__sort(he, iter) > 0) 1687 p = &(*p)->rb_left; 1688 else 1689 p = &(*p)->rb_right; 1690 } 1691 1692 rb_link_node(&he->rb_node, parent, p); 1693 rb_insert_color(&he->rb_node, entries); 1694 1695 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1696 if (perf_hpp__is_dynamic_entry(fmt) && 1697 perf_hpp__defined_dynamic_entry(fmt, he->hists)) 1698 fmt->sort(fmt, he, NULL); /* update column width */ 1699 } 1700 } 1701 1702 static void output_resort(struct hists *hists, struct ui_progress *prog, 1703 bool use_callchain, hists__resort_cb_t cb) 1704 { 1705 struct rb_root *root; 1706 struct rb_node *next; 1707 struct hist_entry *n; 1708 u64 callchain_total; 1709 u64 min_callchain_hits; 1710 1711 callchain_total = hists->callchain_period; 1712 if (symbol_conf.filter_relative) 1713 callchain_total = hists->callchain_non_filtered_period; 1714 1715 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1716 1717 hists__reset_stats(hists); 1718 hists__reset_col_len(hists); 1719 1720 if (symbol_conf.report_hierarchy) { 1721 hists__hierarchy_output_resort(hists, prog, 1722 &hists->entries_collapsed, 1723 &hists->entries, 1724 min_callchain_hits, 1725 use_callchain); 1726 hierarchy_recalc_total_periods(hists); 1727 return; 1728 } 1729 1730 if (hists__has(hists, need_collapse)) 1731 root = &hists->entries_collapsed; 1732 else 1733 root = hists->entries_in; 1734 1735 next = rb_first(root); 1736 hists->entries = RB_ROOT; 1737 1738 while (next) { 1739 n = rb_entry(next, struct hist_entry, rb_node_in); 1740 next = rb_next(&n->rb_node_in); 1741 1742 if (cb && cb(n)) 1743 continue; 1744 1745 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1746 hists__inc_stats(hists, n); 1747 1748 if (!n->filtered) 1749 hists__calc_col_len(hists, n); 1750 1751 if (prog) 1752 ui_progress__update(prog, 1); 1753 } 1754 } 1755 1756 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog) 1757 { 1758 bool use_callchain; 1759 1760 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1761 use_callchain = evsel__has_callchain(evsel); 1762 else 1763 use_callchain = symbol_conf.use_callchain; 1764 1765 use_callchain |= symbol_conf.show_branchflag_count; 1766 1767 output_resort(evsel__hists(evsel), prog, use_callchain, NULL); 1768 } 1769 1770 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 1771 { 1772 output_resort(hists, prog, symbol_conf.use_callchain, NULL); 1773 } 1774 1775 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, 1776 hists__resort_cb_t cb) 1777 { 1778 output_resort(hists, prog, symbol_conf.use_callchain, cb); 1779 } 1780 1781 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 1782 { 1783 if (he->leaf || hmd == HMD_FORCE_SIBLING) 1784 return false; 1785 1786 if (he->unfolded || hmd == HMD_FORCE_CHILD) 1787 return true; 1788 1789 return false; 1790 } 1791 1792 struct rb_node *rb_hierarchy_last(struct rb_node *node) 1793 { 1794 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1795 1796 while (can_goto_child(he, HMD_NORMAL)) { 1797 node = rb_last(&he->hroot_out); 1798 he = rb_entry(node, struct hist_entry, rb_node); 1799 } 1800 return node; 1801 } 1802 1803 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 1804 { 1805 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1806 1807 if (can_goto_child(he, hmd)) 1808 node = rb_first(&he->hroot_out); 1809 else 1810 node = rb_next(node); 1811 1812 while (node == NULL) { 1813 he = he->parent_he; 1814 if (he == NULL) 1815 break; 1816 1817 node = rb_next(&he->rb_node); 1818 } 1819 return node; 1820 } 1821 1822 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 1823 { 1824 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1825 1826 node = rb_prev(node); 1827 if (node) 1828 return rb_hierarchy_last(node); 1829 1830 he = he->parent_he; 1831 if (he == NULL) 1832 return NULL; 1833 1834 return &he->rb_node; 1835 } 1836 1837 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 1838 { 1839 struct rb_node *node; 1840 struct hist_entry *child; 1841 float percent; 1842 1843 if (he->leaf) 1844 return false; 1845 1846 node = rb_first(&he->hroot_out); 1847 child = rb_entry(node, struct hist_entry, rb_node); 1848 1849 while (node && child->filtered) { 1850 node = rb_next(node); 1851 child = rb_entry(node, struct hist_entry, rb_node); 1852 } 1853 1854 if (node) 1855 percent = hist_entry__get_percent_limit(child); 1856 else 1857 percent = 0; 1858 1859 return node && percent >= limit; 1860 } 1861 1862 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 1863 enum hist_filter filter) 1864 { 1865 h->filtered &= ~(1 << filter); 1866 1867 if (symbol_conf.report_hierarchy) { 1868 struct hist_entry *parent = h->parent_he; 1869 1870 while (parent) { 1871 he_stat__add_stat(&parent->stat, &h->stat); 1872 1873 parent->filtered &= ~(1 << filter); 1874 1875 if (parent->filtered) 1876 goto next; 1877 1878 /* force fold unfiltered entry for simplicity */ 1879 parent->unfolded = false; 1880 parent->has_no_entry = false; 1881 parent->row_offset = 0; 1882 parent->nr_rows = 0; 1883 next: 1884 parent = parent->parent_he; 1885 } 1886 } 1887 1888 if (h->filtered) 1889 return; 1890 1891 /* force fold unfiltered entry for simplicity */ 1892 h->unfolded = false; 1893 h->has_no_entry = false; 1894 h->row_offset = 0; 1895 h->nr_rows = 0; 1896 1897 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 1898 1899 hists__inc_filter_stats(hists, h); 1900 hists__calc_col_len(hists, h); 1901 } 1902 1903 1904 static bool hists__filter_entry_by_dso(struct hists *hists, 1905 struct hist_entry *he) 1906 { 1907 if (hists->dso_filter != NULL && 1908 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) { 1909 he->filtered |= (1 << HIST_FILTER__DSO); 1910 return true; 1911 } 1912 1913 return false; 1914 } 1915 1916 static bool hists__filter_entry_by_thread(struct hists *hists, 1917 struct hist_entry *he) 1918 { 1919 if (hists->thread_filter != NULL && 1920 he->thread != hists->thread_filter) { 1921 he->filtered |= (1 << HIST_FILTER__THREAD); 1922 return true; 1923 } 1924 1925 return false; 1926 } 1927 1928 static bool hists__filter_entry_by_symbol(struct hists *hists, 1929 struct hist_entry *he) 1930 { 1931 if (hists->symbol_filter_str != NULL && 1932 (!he->ms.sym || strstr(he->ms.sym->name, 1933 hists->symbol_filter_str) == NULL)) { 1934 he->filtered |= (1 << HIST_FILTER__SYMBOL); 1935 return true; 1936 } 1937 1938 return false; 1939 } 1940 1941 static bool hists__filter_entry_by_socket(struct hists *hists, 1942 struct hist_entry *he) 1943 { 1944 if ((hists->socket_filter > -1) && 1945 (he->socket != hists->socket_filter)) { 1946 he->filtered |= (1 << HIST_FILTER__SOCKET); 1947 return true; 1948 } 1949 1950 return false; 1951 } 1952 1953 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 1954 1955 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 1956 { 1957 struct rb_node *nd; 1958 1959 hists->stats.nr_non_filtered_samples = 0; 1960 1961 hists__reset_filter_stats(hists); 1962 hists__reset_col_len(hists); 1963 1964 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) { 1965 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1966 1967 if (filter(hists, h)) 1968 continue; 1969 1970 hists__remove_entry_filter(hists, h, type); 1971 } 1972 } 1973 1974 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he) 1975 { 1976 struct rb_node **p = &root->rb_node; 1977 struct rb_node *parent = NULL; 1978 struct hist_entry *iter; 1979 struct rb_root new_root = RB_ROOT; 1980 struct rb_node *nd; 1981 1982 while (*p != NULL) { 1983 parent = *p; 1984 iter = rb_entry(parent, struct hist_entry, rb_node); 1985 1986 if (hist_entry__sort(he, iter) > 0) 1987 p = &(*p)->rb_left; 1988 else 1989 p = &(*p)->rb_right; 1990 } 1991 1992 rb_link_node(&he->rb_node, parent, p); 1993 rb_insert_color(&he->rb_node, root); 1994 1995 if (he->leaf || he->filtered) 1996 return; 1997 1998 nd = rb_first(&he->hroot_out); 1999 while (nd) { 2000 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2001 2002 nd = rb_next(nd); 2003 rb_erase(&h->rb_node, &he->hroot_out); 2004 2005 resort_filtered_entry(&new_root, h); 2006 } 2007 2008 he->hroot_out = new_root; 2009 } 2010 2011 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 2012 { 2013 struct rb_node *nd; 2014 struct rb_root new_root = RB_ROOT; 2015 2016 hists->stats.nr_non_filtered_samples = 0; 2017 2018 hists__reset_filter_stats(hists); 2019 hists__reset_col_len(hists); 2020 2021 nd = rb_first(&hists->entries); 2022 while (nd) { 2023 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2024 int ret; 2025 2026 ret = hist_entry__filter(h, type, arg); 2027 2028 /* 2029 * case 1. non-matching type 2030 * zero out the period, set filter marker and move to child 2031 */ 2032 if (ret < 0) { 2033 memset(&h->stat, 0, sizeof(h->stat)); 2034 h->filtered |= (1 << type); 2035 2036 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 2037 } 2038 /* 2039 * case 2. matched type (filter out) 2040 * set filter marker and move to next 2041 */ 2042 else if (ret == 1) { 2043 h->filtered |= (1 << type); 2044 2045 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2046 } 2047 /* 2048 * case 3. ok (not filtered) 2049 * add period to hists and parents, erase the filter marker 2050 * and move to next sibling 2051 */ 2052 else { 2053 hists__remove_entry_filter(hists, h, type); 2054 2055 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2056 } 2057 } 2058 2059 hierarchy_recalc_total_periods(hists); 2060 2061 /* 2062 * resort output after applying a new filter since filter in a lower 2063 * hierarchy can change periods in a upper hierarchy. 2064 */ 2065 nd = rb_first(&hists->entries); 2066 while (nd) { 2067 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2068 2069 nd = rb_next(nd); 2070 rb_erase(&h->rb_node, &hists->entries); 2071 2072 resort_filtered_entry(&new_root, h); 2073 } 2074 2075 hists->entries = new_root; 2076 } 2077 2078 void hists__filter_by_thread(struct hists *hists) 2079 { 2080 if (symbol_conf.report_hierarchy) 2081 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 2082 hists->thread_filter); 2083 else 2084 hists__filter_by_type(hists, HIST_FILTER__THREAD, 2085 hists__filter_entry_by_thread); 2086 } 2087 2088 void hists__filter_by_dso(struct hists *hists) 2089 { 2090 if (symbol_conf.report_hierarchy) 2091 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 2092 hists->dso_filter); 2093 else 2094 hists__filter_by_type(hists, HIST_FILTER__DSO, 2095 hists__filter_entry_by_dso); 2096 } 2097 2098 void hists__filter_by_symbol(struct hists *hists) 2099 { 2100 if (symbol_conf.report_hierarchy) 2101 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2102 hists->symbol_filter_str); 2103 else 2104 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2105 hists__filter_entry_by_symbol); 2106 } 2107 2108 void hists__filter_by_socket(struct hists *hists) 2109 { 2110 if (symbol_conf.report_hierarchy) 2111 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2112 &hists->socket_filter); 2113 else 2114 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2115 hists__filter_entry_by_socket); 2116 } 2117 2118 void events_stats__inc(struct events_stats *stats, u32 type) 2119 { 2120 ++stats->nr_events[0]; 2121 ++stats->nr_events[type]; 2122 } 2123 2124 void hists__inc_nr_events(struct hists *hists, u32 type) 2125 { 2126 events_stats__inc(&hists->stats, type); 2127 } 2128 2129 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2130 { 2131 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE); 2132 if (!filtered) 2133 hists->stats.nr_non_filtered_samples++; 2134 } 2135 2136 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2137 struct hist_entry *pair) 2138 { 2139 struct rb_root *root; 2140 struct rb_node **p; 2141 struct rb_node *parent = NULL; 2142 struct hist_entry *he; 2143 int64_t cmp; 2144 2145 if (hists__has(hists, need_collapse)) 2146 root = &hists->entries_collapsed; 2147 else 2148 root = hists->entries_in; 2149 2150 p = &root->rb_node; 2151 2152 while (*p != NULL) { 2153 parent = *p; 2154 he = rb_entry(parent, struct hist_entry, rb_node_in); 2155 2156 cmp = hist_entry__collapse(he, pair); 2157 2158 if (!cmp) 2159 goto out; 2160 2161 if (cmp < 0) 2162 p = &(*p)->rb_left; 2163 else 2164 p = &(*p)->rb_right; 2165 } 2166 2167 he = hist_entry__new(pair, true); 2168 if (he) { 2169 memset(&he->stat, 0, sizeof(he->stat)); 2170 he->hists = hists; 2171 if (symbol_conf.cumulate_callchain) 2172 memset(he->stat_acc, 0, sizeof(he->stat)); 2173 rb_link_node(&he->rb_node_in, parent, p); 2174 rb_insert_color(&he->rb_node_in, root); 2175 hists__inc_stats(hists, he); 2176 he->dummy = true; 2177 } 2178 out: 2179 return he; 2180 } 2181 2182 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, 2183 struct rb_root *root, 2184 struct hist_entry *pair) 2185 { 2186 struct rb_node **p; 2187 struct rb_node *parent = NULL; 2188 struct hist_entry *he; 2189 struct perf_hpp_fmt *fmt; 2190 2191 p = &root->rb_node; 2192 while (*p != NULL) { 2193 int64_t cmp = 0; 2194 2195 parent = *p; 2196 he = rb_entry(parent, struct hist_entry, rb_node_in); 2197 2198 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2199 cmp = fmt->collapse(fmt, he, pair); 2200 if (cmp) 2201 break; 2202 } 2203 if (!cmp) 2204 goto out; 2205 2206 if (cmp < 0) 2207 p = &parent->rb_left; 2208 else 2209 p = &parent->rb_right; 2210 } 2211 2212 he = hist_entry__new(pair, true); 2213 if (he) { 2214 rb_link_node(&he->rb_node_in, parent, p); 2215 rb_insert_color(&he->rb_node_in, root); 2216 2217 he->dummy = true; 2218 he->hists = hists; 2219 memset(&he->stat, 0, sizeof(he->stat)); 2220 hists__inc_stats(hists, he); 2221 } 2222 out: 2223 return he; 2224 } 2225 2226 static struct hist_entry *hists__find_entry(struct hists *hists, 2227 struct hist_entry *he) 2228 { 2229 struct rb_node *n; 2230 2231 if (hists__has(hists, need_collapse)) 2232 n = hists->entries_collapsed.rb_node; 2233 else 2234 n = hists->entries_in->rb_node; 2235 2236 while (n) { 2237 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2238 int64_t cmp = hist_entry__collapse(iter, he); 2239 2240 if (cmp < 0) 2241 n = n->rb_left; 2242 else if (cmp > 0) 2243 n = n->rb_right; 2244 else 2245 return iter; 2246 } 2247 2248 return NULL; 2249 } 2250 2251 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root, 2252 struct hist_entry *he) 2253 { 2254 struct rb_node *n = root->rb_node; 2255 2256 while (n) { 2257 struct hist_entry *iter; 2258 struct perf_hpp_fmt *fmt; 2259 int64_t cmp = 0; 2260 2261 iter = rb_entry(n, struct hist_entry, rb_node_in); 2262 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2263 cmp = fmt->collapse(fmt, iter, he); 2264 if (cmp) 2265 break; 2266 } 2267 2268 if (cmp < 0) 2269 n = n->rb_left; 2270 else if (cmp > 0) 2271 n = n->rb_right; 2272 else 2273 return iter; 2274 } 2275 2276 return NULL; 2277 } 2278 2279 static void hists__match_hierarchy(struct rb_root *leader_root, 2280 struct rb_root *other_root) 2281 { 2282 struct rb_node *nd; 2283 struct hist_entry *pos, *pair; 2284 2285 for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) { 2286 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2287 pair = hists__find_hierarchy_entry(other_root, pos); 2288 2289 if (pair) { 2290 hist_entry__add_pair(pair, pos); 2291 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); 2292 } 2293 } 2294 } 2295 2296 /* 2297 * Look for pairs to link to the leader buckets (hist_entries): 2298 */ 2299 void hists__match(struct hists *leader, struct hists *other) 2300 { 2301 struct rb_root *root; 2302 struct rb_node *nd; 2303 struct hist_entry *pos, *pair; 2304 2305 if (symbol_conf.report_hierarchy) { 2306 /* hierarchy report always collapses entries */ 2307 return hists__match_hierarchy(&leader->entries_collapsed, 2308 &other->entries_collapsed); 2309 } 2310 2311 if (hists__has(leader, need_collapse)) 2312 root = &leader->entries_collapsed; 2313 else 2314 root = leader->entries_in; 2315 2316 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2317 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2318 pair = hists__find_entry(other, pos); 2319 2320 if (pair) 2321 hist_entry__add_pair(pair, pos); 2322 } 2323 } 2324 2325 static int hists__link_hierarchy(struct hists *leader_hists, 2326 struct hist_entry *parent, 2327 struct rb_root *leader_root, 2328 struct rb_root *other_root) 2329 { 2330 struct rb_node *nd; 2331 struct hist_entry *pos, *leader; 2332 2333 for (nd = rb_first(other_root); nd; nd = rb_next(nd)) { 2334 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2335 2336 if (hist_entry__has_pairs(pos)) { 2337 bool found = false; 2338 2339 list_for_each_entry(leader, &pos->pairs.head, pairs.node) { 2340 if (leader->hists == leader_hists) { 2341 found = true; 2342 break; 2343 } 2344 } 2345 if (!found) 2346 return -1; 2347 } else { 2348 leader = add_dummy_hierarchy_entry(leader_hists, 2349 leader_root, pos); 2350 if (leader == NULL) 2351 return -1; 2352 2353 /* do not point parent in the pos */ 2354 leader->parent_he = parent; 2355 2356 hist_entry__add_pair(pos, leader); 2357 } 2358 2359 if (!pos->leaf) { 2360 if (hists__link_hierarchy(leader_hists, leader, 2361 &leader->hroot_in, 2362 &pos->hroot_in) < 0) 2363 return -1; 2364 } 2365 } 2366 return 0; 2367 } 2368 2369 /* 2370 * Look for entries in the other hists that are not present in the leader, if 2371 * we find them, just add a dummy entry on the leader hists, with period=0, 2372 * nr_events=0, to serve as the list header. 2373 */ 2374 int hists__link(struct hists *leader, struct hists *other) 2375 { 2376 struct rb_root *root; 2377 struct rb_node *nd; 2378 struct hist_entry *pos, *pair; 2379 2380 if (symbol_conf.report_hierarchy) { 2381 /* hierarchy report always collapses entries */ 2382 return hists__link_hierarchy(leader, NULL, 2383 &leader->entries_collapsed, 2384 &other->entries_collapsed); 2385 } 2386 2387 if (hists__has(other, need_collapse)) 2388 root = &other->entries_collapsed; 2389 else 2390 root = other->entries_in; 2391 2392 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2393 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2394 2395 if (!hist_entry__has_pairs(pos)) { 2396 pair = hists__add_dummy_entry(leader, pos); 2397 if (pair == NULL) 2398 return -1; 2399 hist_entry__add_pair(pos, pair); 2400 } 2401 } 2402 2403 return 0; 2404 } 2405 2406 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2407 struct perf_sample *sample, bool nonany_branch_mode) 2408 { 2409 struct branch_info *bi; 2410 2411 /* If we have branch cycles always annotate them. */ 2412 if (bs && bs->nr && bs->entries[0].flags.cycles) { 2413 int i; 2414 2415 bi = sample__resolve_bstack(sample, al); 2416 if (bi) { 2417 struct addr_map_symbol *prev = NULL; 2418 2419 /* 2420 * Ignore errors, still want to process the 2421 * other entries. 2422 * 2423 * For non standard branch modes always 2424 * force no IPC (prev == NULL) 2425 * 2426 * Note that perf stores branches reversed from 2427 * program order! 2428 */ 2429 for (i = bs->nr - 1; i >= 0; i--) { 2430 addr_map_symbol__account_cycles(&bi[i].from, 2431 nonany_branch_mode ? NULL : prev, 2432 bi[i].flags.cycles); 2433 prev = &bi[i].to; 2434 } 2435 free(bi); 2436 } 2437 } 2438 } 2439 2440 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp) 2441 { 2442 struct perf_evsel *pos; 2443 size_t ret = 0; 2444 2445 evlist__for_each_entry(evlist, pos) { 2446 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos)); 2447 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp); 2448 } 2449 2450 return ret; 2451 } 2452 2453 2454 u64 hists__total_period(struct hists *hists) 2455 { 2456 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2457 hists->stats.total_period; 2458 } 2459 2460 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq) 2461 { 2462 char unit; 2463 int printed; 2464 const struct dso *dso = hists->dso_filter; 2465 const struct thread *thread = hists->thread_filter; 2466 int socket_id = hists->socket_filter; 2467 unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE]; 2468 u64 nr_events = hists->stats.total_period; 2469 struct perf_evsel *evsel = hists_to_evsel(hists); 2470 const char *ev_name = perf_evsel__name(evsel); 2471 char buf[512], sample_freq_str[64] = ""; 2472 size_t buflen = sizeof(buf); 2473 char ref[30] = " show reference callgraph, "; 2474 bool enable_ref = false; 2475 2476 if (symbol_conf.filter_relative) { 2477 nr_samples = hists->stats.nr_non_filtered_samples; 2478 nr_events = hists->stats.total_non_filtered_period; 2479 } 2480 2481 if (perf_evsel__is_group_event(evsel)) { 2482 struct perf_evsel *pos; 2483 2484 perf_evsel__group_desc(evsel, buf, buflen); 2485 ev_name = buf; 2486 2487 for_each_group_member(pos, evsel) { 2488 struct hists *pos_hists = evsel__hists(pos); 2489 2490 if (symbol_conf.filter_relative) { 2491 nr_samples += pos_hists->stats.nr_non_filtered_samples; 2492 nr_events += pos_hists->stats.total_non_filtered_period; 2493 } else { 2494 nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE]; 2495 nr_events += pos_hists->stats.total_period; 2496 } 2497 } 2498 } 2499 2500 if (symbol_conf.show_ref_callgraph && 2501 strstr(ev_name, "call-graph=no")) 2502 enable_ref = true; 2503 2504 if (show_freq) 2505 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->attr.sample_freq); 2506 2507 nr_samples = convert_unit(nr_samples, &unit); 2508 printed = scnprintf(bf, size, 2509 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64, 2510 nr_samples, unit, evsel->nr_members > 1 ? "s" : "", 2511 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events); 2512 2513 2514 if (hists->uid_filter_str) 2515 printed += snprintf(bf + printed, size - printed, 2516 ", UID: %s", hists->uid_filter_str); 2517 if (thread) { 2518 if (hists__has(hists, thread)) { 2519 printed += scnprintf(bf + printed, size - printed, 2520 ", Thread: %s(%d)", 2521 (thread->comm_set ? thread__comm_str(thread) : ""), 2522 thread->tid); 2523 } else { 2524 printed += scnprintf(bf + printed, size - printed, 2525 ", Thread: %s", 2526 (thread->comm_set ? thread__comm_str(thread) : "")); 2527 } 2528 } 2529 if (dso) 2530 printed += scnprintf(bf + printed, size - printed, 2531 ", DSO: %s", dso->short_name); 2532 if (socket_id > -1) 2533 printed += scnprintf(bf + printed, size - printed, 2534 ", Processor Socket: %d", socket_id); 2535 2536 return printed; 2537 } 2538 2539 int parse_filter_percentage(const struct option *opt __maybe_unused, 2540 const char *arg, int unset __maybe_unused) 2541 { 2542 if (!strcmp(arg, "relative")) 2543 symbol_conf.filter_relative = true; 2544 else if (!strcmp(arg, "absolute")) 2545 symbol_conf.filter_relative = false; 2546 else { 2547 pr_debug("Invalid percentage: %s\n", arg); 2548 return -1; 2549 } 2550 2551 return 0; 2552 } 2553 2554 int perf_hist_config(const char *var, const char *value) 2555 { 2556 if (!strcmp(var, "hist.percentage")) 2557 return parse_filter_percentage(NULL, value, 0); 2558 2559 return 0; 2560 } 2561 2562 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2563 { 2564 memset(hists, 0, sizeof(*hists)); 2565 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT; 2566 hists->entries_in = &hists->entries_in_array[0]; 2567 hists->entries_collapsed = RB_ROOT; 2568 hists->entries = RB_ROOT; 2569 pthread_mutex_init(&hists->lock, NULL); 2570 hists->socket_filter = -1; 2571 hists->hpp_list = hpp_list; 2572 INIT_LIST_HEAD(&hists->hpp_formats); 2573 return 0; 2574 } 2575 2576 static void hists__delete_remaining_entries(struct rb_root *root) 2577 { 2578 struct rb_node *node; 2579 struct hist_entry *he; 2580 2581 while (!RB_EMPTY_ROOT(root)) { 2582 node = rb_first(root); 2583 rb_erase(node, root); 2584 2585 he = rb_entry(node, struct hist_entry, rb_node_in); 2586 hist_entry__delete(he); 2587 } 2588 } 2589 2590 static void hists__delete_all_entries(struct hists *hists) 2591 { 2592 hists__delete_entries(hists); 2593 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2594 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2595 hists__delete_remaining_entries(&hists->entries_collapsed); 2596 } 2597 2598 static void hists_evsel__exit(struct perf_evsel *evsel) 2599 { 2600 struct hists *hists = evsel__hists(evsel); 2601 struct perf_hpp_fmt *fmt, *pos; 2602 struct perf_hpp_list_node *node, *tmp; 2603 2604 hists__delete_all_entries(hists); 2605 2606 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2607 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2608 list_del(&fmt->list); 2609 free(fmt); 2610 } 2611 list_del(&node->list); 2612 free(node); 2613 } 2614 } 2615 2616 static int hists_evsel__init(struct perf_evsel *evsel) 2617 { 2618 struct hists *hists = evsel__hists(evsel); 2619 2620 __hists__init(hists, &perf_hpp_list); 2621 return 0; 2622 } 2623 2624 /* 2625 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2626 * stored in the rbtree... 2627 */ 2628 2629 int hists__init(void) 2630 { 2631 int err = perf_evsel__object_config(sizeof(struct hists_evsel), 2632 hists_evsel__init, 2633 hists_evsel__exit); 2634 if (err) 2635 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2636 2637 return err; 2638 } 2639 2640 void perf_hpp_list__init(struct perf_hpp_list *list) 2641 { 2642 INIT_LIST_HEAD(&list->fields); 2643 INIT_LIST_HEAD(&list->sorts); 2644 } 2645