xref: /linux/tools/perf/util/hist.c (revision 8520a98dbab61e9e340cdfb72dd17ccc8a98961e)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "callchain.h"
3 #include "debug.h"
4 #include "build-id.h"
5 #include "hist.h"
6 #include "map.h"
7 #include "session.h"
8 #include "namespaces.h"
9 #include "sort.h"
10 #include "units.h"
11 #include "evlist.h"
12 #include "evsel.h"
13 #include "annotate.h"
14 #include "srcline.h"
15 #include "symbol.h"
16 #include "thread.h"
17 #include "ui/progress.h"
18 #include <errno.h>
19 #include <math.h>
20 #include <inttypes.h>
21 #include <sys/param.h>
22 #include <linux/string.h>
23 #include <linux/time64.h>
24 #include <linux/zalloc.h>
25 
26 static bool hists__filter_entry_by_dso(struct hists *hists,
27 				       struct hist_entry *he);
28 static bool hists__filter_entry_by_thread(struct hists *hists,
29 					  struct hist_entry *he);
30 static bool hists__filter_entry_by_symbol(struct hists *hists,
31 					  struct hist_entry *he);
32 static bool hists__filter_entry_by_socket(struct hists *hists,
33 					  struct hist_entry *he);
34 
35 u16 hists__col_len(struct hists *hists, enum hist_column col)
36 {
37 	return hists->col_len[col];
38 }
39 
40 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
41 {
42 	hists->col_len[col] = len;
43 }
44 
45 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
46 {
47 	if (len > hists__col_len(hists, col)) {
48 		hists__set_col_len(hists, col, len);
49 		return true;
50 	}
51 	return false;
52 }
53 
54 void hists__reset_col_len(struct hists *hists)
55 {
56 	enum hist_column col;
57 
58 	for (col = 0; col < HISTC_NR_COLS; ++col)
59 		hists__set_col_len(hists, col, 0);
60 }
61 
62 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
63 {
64 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
65 
66 	if (hists__col_len(hists, dso) < unresolved_col_width &&
67 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
68 	    !symbol_conf.dso_list)
69 		hists__set_col_len(hists, dso, unresolved_col_width);
70 }
71 
72 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
73 {
74 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
75 	int symlen;
76 	u16 len;
77 
78 	/*
79 	 * +4 accounts for '[x] ' priv level info
80 	 * +2 accounts for 0x prefix on raw addresses
81 	 * +3 accounts for ' y ' symtab origin info
82 	 */
83 	if (h->ms.sym) {
84 		symlen = h->ms.sym->namelen + 4;
85 		if (verbose > 0)
86 			symlen += BITS_PER_LONG / 4 + 2 + 3;
87 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
88 	} else {
89 		symlen = unresolved_col_width + 4 + 2;
90 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
91 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
92 	}
93 
94 	len = thread__comm_len(h->thread);
95 	if (hists__new_col_len(hists, HISTC_COMM, len))
96 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
97 
98 	if (h->ms.map) {
99 		len = dso__name_len(h->ms.map->dso);
100 		hists__new_col_len(hists, HISTC_DSO, len);
101 	}
102 
103 	if (h->parent)
104 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
105 
106 	if (h->branch_info) {
107 		if (h->branch_info->from.sym) {
108 			symlen = (int)h->branch_info->from.sym->namelen + 4;
109 			if (verbose > 0)
110 				symlen += BITS_PER_LONG / 4 + 2 + 3;
111 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
112 
113 			symlen = dso__name_len(h->branch_info->from.map->dso);
114 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
115 		} else {
116 			symlen = unresolved_col_width + 4 + 2;
117 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
118 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
119 		}
120 
121 		if (h->branch_info->to.sym) {
122 			symlen = (int)h->branch_info->to.sym->namelen + 4;
123 			if (verbose > 0)
124 				symlen += BITS_PER_LONG / 4 + 2 + 3;
125 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
126 
127 			symlen = dso__name_len(h->branch_info->to.map->dso);
128 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
129 		} else {
130 			symlen = unresolved_col_width + 4 + 2;
131 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
132 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
133 		}
134 
135 		if (h->branch_info->srcline_from)
136 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
137 					strlen(h->branch_info->srcline_from));
138 		if (h->branch_info->srcline_to)
139 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
140 					strlen(h->branch_info->srcline_to));
141 	}
142 
143 	if (h->mem_info) {
144 		if (h->mem_info->daddr.sym) {
145 			symlen = (int)h->mem_info->daddr.sym->namelen + 4
146 			       + unresolved_col_width + 2;
147 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
148 					   symlen);
149 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
150 					   symlen + 1);
151 		} else {
152 			symlen = unresolved_col_width + 4 + 2;
153 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
154 					   symlen);
155 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
156 					   symlen);
157 		}
158 
159 		if (h->mem_info->iaddr.sym) {
160 			symlen = (int)h->mem_info->iaddr.sym->namelen + 4
161 			       + unresolved_col_width + 2;
162 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
163 					   symlen);
164 		} else {
165 			symlen = unresolved_col_width + 4 + 2;
166 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
167 					   symlen);
168 		}
169 
170 		if (h->mem_info->daddr.map) {
171 			symlen = dso__name_len(h->mem_info->daddr.map->dso);
172 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
173 					   symlen);
174 		} else {
175 			symlen = unresolved_col_width + 4 + 2;
176 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
177 		}
178 
179 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
180 				   unresolved_col_width + 4 + 2);
181 
182 	} else {
183 		symlen = unresolved_col_width + 4 + 2;
184 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
185 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
186 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
187 	}
188 
189 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
190 	hists__new_col_len(hists, HISTC_CPU, 3);
191 	hists__new_col_len(hists, HISTC_SOCKET, 6);
192 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
193 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
194 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
195 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
196 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
197 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
198 	if (symbol_conf.nanosecs)
199 		hists__new_col_len(hists, HISTC_TIME, 16);
200 	else
201 		hists__new_col_len(hists, HISTC_TIME, 12);
202 
203 	if (h->srcline) {
204 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
205 		hists__new_col_len(hists, HISTC_SRCLINE, len);
206 	}
207 
208 	if (h->srcfile)
209 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
210 
211 	if (h->transaction)
212 		hists__new_col_len(hists, HISTC_TRANSACTION,
213 				   hist_entry__transaction_len());
214 
215 	if (h->trace_output)
216 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
217 }
218 
219 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
220 {
221 	struct rb_node *next = rb_first_cached(&hists->entries);
222 	struct hist_entry *n;
223 	int row = 0;
224 
225 	hists__reset_col_len(hists);
226 
227 	while (next && row++ < max_rows) {
228 		n = rb_entry(next, struct hist_entry, rb_node);
229 		if (!n->filtered)
230 			hists__calc_col_len(hists, n);
231 		next = rb_next(&n->rb_node);
232 	}
233 }
234 
235 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
236 					unsigned int cpumode, u64 period)
237 {
238 	switch (cpumode) {
239 	case PERF_RECORD_MISC_KERNEL:
240 		he_stat->period_sys += period;
241 		break;
242 	case PERF_RECORD_MISC_USER:
243 		he_stat->period_us += period;
244 		break;
245 	case PERF_RECORD_MISC_GUEST_KERNEL:
246 		he_stat->period_guest_sys += period;
247 		break;
248 	case PERF_RECORD_MISC_GUEST_USER:
249 		he_stat->period_guest_us += period;
250 		break;
251 	default:
252 		break;
253 	}
254 }
255 
256 static long hist_time(unsigned long htime)
257 {
258 	unsigned long time_quantum = symbol_conf.time_quantum;
259 	if (time_quantum)
260 		return (htime / time_quantum) * time_quantum;
261 	return htime;
262 }
263 
264 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
265 				u64 weight)
266 {
267 
268 	he_stat->period		+= period;
269 	he_stat->weight		+= weight;
270 	he_stat->nr_events	+= 1;
271 }
272 
273 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
274 {
275 	dest->period		+= src->period;
276 	dest->period_sys	+= src->period_sys;
277 	dest->period_us		+= src->period_us;
278 	dest->period_guest_sys	+= src->period_guest_sys;
279 	dest->period_guest_us	+= src->period_guest_us;
280 	dest->nr_events		+= src->nr_events;
281 	dest->weight		+= src->weight;
282 }
283 
284 static void he_stat__decay(struct he_stat *he_stat)
285 {
286 	he_stat->period = (he_stat->period * 7) / 8;
287 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
288 	/* XXX need decay for weight too? */
289 }
290 
291 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
292 
293 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
294 {
295 	u64 prev_period = he->stat.period;
296 	u64 diff;
297 
298 	if (prev_period == 0)
299 		return true;
300 
301 	he_stat__decay(&he->stat);
302 	if (symbol_conf.cumulate_callchain)
303 		he_stat__decay(he->stat_acc);
304 	decay_callchain(he->callchain);
305 
306 	diff = prev_period - he->stat.period;
307 
308 	if (!he->depth) {
309 		hists->stats.total_period -= diff;
310 		if (!he->filtered)
311 			hists->stats.total_non_filtered_period -= diff;
312 	}
313 
314 	if (!he->leaf) {
315 		struct hist_entry *child;
316 		struct rb_node *node = rb_first_cached(&he->hroot_out);
317 		while (node) {
318 			child = rb_entry(node, struct hist_entry, rb_node);
319 			node = rb_next(node);
320 
321 			if (hists__decay_entry(hists, child))
322 				hists__delete_entry(hists, child);
323 		}
324 	}
325 
326 	return he->stat.period == 0;
327 }
328 
329 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
330 {
331 	struct rb_root_cached *root_in;
332 	struct rb_root_cached *root_out;
333 
334 	if (he->parent_he) {
335 		root_in  = &he->parent_he->hroot_in;
336 		root_out = &he->parent_he->hroot_out;
337 	} else {
338 		if (hists__has(hists, need_collapse))
339 			root_in = &hists->entries_collapsed;
340 		else
341 			root_in = hists->entries_in;
342 		root_out = &hists->entries;
343 	}
344 
345 	rb_erase_cached(&he->rb_node_in, root_in);
346 	rb_erase_cached(&he->rb_node, root_out);
347 
348 	--hists->nr_entries;
349 	if (!he->filtered)
350 		--hists->nr_non_filtered_entries;
351 
352 	hist_entry__delete(he);
353 }
354 
355 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
356 {
357 	struct rb_node *next = rb_first_cached(&hists->entries);
358 	struct hist_entry *n;
359 
360 	while (next) {
361 		n = rb_entry(next, struct hist_entry, rb_node);
362 		next = rb_next(&n->rb_node);
363 		if (((zap_user && n->level == '.') ||
364 		     (zap_kernel && n->level != '.') ||
365 		     hists__decay_entry(hists, n))) {
366 			hists__delete_entry(hists, n);
367 		}
368 	}
369 }
370 
371 void hists__delete_entries(struct hists *hists)
372 {
373 	struct rb_node *next = rb_first_cached(&hists->entries);
374 	struct hist_entry *n;
375 
376 	while (next) {
377 		n = rb_entry(next, struct hist_entry, rb_node);
378 		next = rb_next(&n->rb_node);
379 
380 		hists__delete_entry(hists, n);
381 	}
382 }
383 
384 struct hist_entry *hists__get_entry(struct hists *hists, int idx)
385 {
386 	struct rb_node *next = rb_first_cached(&hists->entries);
387 	struct hist_entry *n;
388 	int i = 0;
389 
390 	while (next) {
391 		n = rb_entry(next, struct hist_entry, rb_node);
392 		if (i == idx)
393 			return n;
394 
395 		next = rb_next(&n->rb_node);
396 		i++;
397 	}
398 
399 	return NULL;
400 }
401 
402 /*
403  * histogram, sorted on item, collects periods
404  */
405 
406 static int hist_entry__init(struct hist_entry *he,
407 			    struct hist_entry *template,
408 			    bool sample_self,
409 			    size_t callchain_size)
410 {
411 	*he = *template;
412 	he->callchain_size = callchain_size;
413 
414 	if (symbol_conf.cumulate_callchain) {
415 		he->stat_acc = malloc(sizeof(he->stat));
416 		if (he->stat_acc == NULL)
417 			return -ENOMEM;
418 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
419 		if (!sample_self)
420 			memset(&he->stat, 0, sizeof(he->stat));
421 	}
422 
423 	map__get(he->ms.map);
424 
425 	if (he->branch_info) {
426 		/*
427 		 * This branch info is (a part of) allocated from
428 		 * sample__resolve_bstack() and will be freed after
429 		 * adding new entries.  So we need to save a copy.
430 		 */
431 		he->branch_info = malloc(sizeof(*he->branch_info));
432 		if (he->branch_info == NULL)
433 			goto err;
434 
435 		memcpy(he->branch_info, template->branch_info,
436 		       sizeof(*he->branch_info));
437 
438 		map__get(he->branch_info->from.map);
439 		map__get(he->branch_info->to.map);
440 	}
441 
442 	if (he->mem_info) {
443 		map__get(he->mem_info->iaddr.map);
444 		map__get(he->mem_info->daddr.map);
445 	}
446 
447 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
448 		callchain_init(he->callchain);
449 
450 	if (he->raw_data) {
451 		he->raw_data = memdup(he->raw_data, he->raw_size);
452 		if (he->raw_data == NULL)
453 			goto err_infos;
454 	}
455 
456 	if (he->srcline) {
457 		he->srcline = strdup(he->srcline);
458 		if (he->srcline == NULL)
459 			goto err_rawdata;
460 	}
461 
462 	if (symbol_conf.res_sample) {
463 		he->res_samples = calloc(sizeof(struct res_sample),
464 					symbol_conf.res_sample);
465 		if (!he->res_samples)
466 			goto err_srcline;
467 	}
468 
469 	INIT_LIST_HEAD(&he->pairs.node);
470 	thread__get(he->thread);
471 	he->hroot_in  = RB_ROOT_CACHED;
472 	he->hroot_out = RB_ROOT_CACHED;
473 
474 	if (!symbol_conf.report_hierarchy)
475 		he->leaf = true;
476 
477 	return 0;
478 
479 err_srcline:
480 	zfree(&he->srcline);
481 
482 err_rawdata:
483 	zfree(&he->raw_data);
484 
485 err_infos:
486 	if (he->branch_info) {
487 		map__put(he->branch_info->from.map);
488 		map__put(he->branch_info->to.map);
489 		zfree(&he->branch_info);
490 	}
491 	if (he->mem_info) {
492 		map__put(he->mem_info->iaddr.map);
493 		map__put(he->mem_info->daddr.map);
494 	}
495 err:
496 	map__zput(he->ms.map);
497 	zfree(&he->stat_acc);
498 	return -ENOMEM;
499 }
500 
501 static void *hist_entry__zalloc(size_t size)
502 {
503 	return zalloc(size + sizeof(struct hist_entry));
504 }
505 
506 static void hist_entry__free(void *ptr)
507 {
508 	free(ptr);
509 }
510 
511 static struct hist_entry_ops default_ops = {
512 	.new	= hist_entry__zalloc,
513 	.free	= hist_entry__free,
514 };
515 
516 static struct hist_entry *hist_entry__new(struct hist_entry *template,
517 					  bool sample_self)
518 {
519 	struct hist_entry_ops *ops = template->ops;
520 	size_t callchain_size = 0;
521 	struct hist_entry *he;
522 	int err = 0;
523 
524 	if (!ops)
525 		ops = template->ops = &default_ops;
526 
527 	if (symbol_conf.use_callchain)
528 		callchain_size = sizeof(struct callchain_root);
529 
530 	he = ops->new(callchain_size);
531 	if (he) {
532 		err = hist_entry__init(he, template, sample_self, callchain_size);
533 		if (err) {
534 			ops->free(he);
535 			he = NULL;
536 		}
537 	}
538 
539 	return he;
540 }
541 
542 static u8 symbol__parent_filter(const struct symbol *parent)
543 {
544 	if (symbol_conf.exclude_other && parent == NULL)
545 		return 1 << HIST_FILTER__PARENT;
546 	return 0;
547 }
548 
549 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
550 {
551 	if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
552 		return;
553 
554 	he->hists->callchain_period += period;
555 	if (!he->filtered)
556 		he->hists->callchain_non_filtered_period += period;
557 }
558 
559 static struct hist_entry *hists__findnew_entry(struct hists *hists,
560 					       struct hist_entry *entry,
561 					       struct addr_location *al,
562 					       bool sample_self)
563 {
564 	struct rb_node **p;
565 	struct rb_node *parent = NULL;
566 	struct hist_entry *he;
567 	int64_t cmp;
568 	u64 period = entry->stat.period;
569 	u64 weight = entry->stat.weight;
570 	bool leftmost = true;
571 
572 	p = &hists->entries_in->rb_root.rb_node;
573 
574 	while (*p != NULL) {
575 		parent = *p;
576 		he = rb_entry(parent, struct hist_entry, rb_node_in);
577 
578 		/*
579 		 * Make sure that it receives arguments in a same order as
580 		 * hist_entry__collapse() so that we can use an appropriate
581 		 * function when searching an entry regardless which sort
582 		 * keys were used.
583 		 */
584 		cmp = hist_entry__cmp(he, entry);
585 
586 		if (!cmp) {
587 			if (sample_self) {
588 				he_stat__add_period(&he->stat, period, weight);
589 				hist_entry__add_callchain_period(he, period);
590 			}
591 			if (symbol_conf.cumulate_callchain)
592 				he_stat__add_period(he->stat_acc, period, weight);
593 
594 			/*
595 			 * This mem info was allocated from sample__resolve_mem
596 			 * and will not be used anymore.
597 			 */
598 			mem_info__zput(entry->mem_info);
599 
600 			block_info__zput(entry->block_info);
601 
602 			/* If the map of an existing hist_entry has
603 			 * become out-of-date due to an exec() or
604 			 * similar, update it.  Otherwise we will
605 			 * mis-adjust symbol addresses when computing
606 			 * the history counter to increment.
607 			 */
608 			if (he->ms.map != entry->ms.map) {
609 				map__put(he->ms.map);
610 				he->ms.map = map__get(entry->ms.map);
611 			}
612 			goto out;
613 		}
614 
615 		if (cmp < 0)
616 			p = &(*p)->rb_left;
617 		else {
618 			p = &(*p)->rb_right;
619 			leftmost = false;
620 		}
621 	}
622 
623 	he = hist_entry__new(entry, sample_self);
624 	if (!he)
625 		return NULL;
626 
627 	if (sample_self)
628 		hist_entry__add_callchain_period(he, period);
629 	hists->nr_entries++;
630 
631 	rb_link_node(&he->rb_node_in, parent, p);
632 	rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
633 out:
634 	if (sample_self)
635 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
636 	if (symbol_conf.cumulate_callchain)
637 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
638 	return he;
639 }
640 
641 static unsigned random_max(unsigned high)
642 {
643 	unsigned thresh = -high % high;
644 	for (;;) {
645 		unsigned r = random();
646 		if (r >= thresh)
647 			return r % high;
648 	}
649 }
650 
651 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
652 {
653 	struct res_sample *r;
654 	int j;
655 
656 	if (he->num_res < symbol_conf.res_sample) {
657 		j = he->num_res++;
658 	} else {
659 		j = random_max(symbol_conf.res_sample);
660 	}
661 	r = &he->res_samples[j];
662 	r->time = sample->time;
663 	r->cpu = sample->cpu;
664 	r->tid = sample->tid;
665 }
666 
667 static struct hist_entry*
668 __hists__add_entry(struct hists *hists,
669 		   struct addr_location *al,
670 		   struct symbol *sym_parent,
671 		   struct branch_info *bi,
672 		   struct mem_info *mi,
673 		   struct block_info *block_info,
674 		   struct perf_sample *sample,
675 		   bool sample_self,
676 		   struct hist_entry_ops *ops)
677 {
678 	struct namespaces *ns = thread__namespaces(al->thread);
679 	struct hist_entry entry = {
680 		.thread	= al->thread,
681 		.comm = thread__comm(al->thread),
682 		.cgroup_id = {
683 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
684 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
685 		},
686 		.ms = {
687 			.map	= al->map,
688 			.sym	= al->sym,
689 		},
690 		.srcline = (char *) al->srcline,
691 		.socket	 = al->socket,
692 		.cpu	 = al->cpu,
693 		.cpumode = al->cpumode,
694 		.ip	 = al->addr,
695 		.level	 = al->level,
696 		.stat = {
697 			.nr_events = 1,
698 			.period	= sample->period,
699 			.weight = sample->weight,
700 		},
701 		.parent = sym_parent,
702 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
703 		.hists	= hists,
704 		.branch_info = bi,
705 		.mem_info = mi,
706 		.block_info = block_info,
707 		.transaction = sample->transaction,
708 		.raw_data = sample->raw_data,
709 		.raw_size = sample->raw_size,
710 		.ops = ops,
711 		.time = hist_time(sample->time),
712 	}, *he = hists__findnew_entry(hists, &entry, al, sample_self);
713 
714 	if (!hists->has_callchains && he && he->callchain_size != 0)
715 		hists->has_callchains = true;
716 	if (he && symbol_conf.res_sample)
717 		hists__res_sample(he, sample);
718 	return he;
719 }
720 
721 struct hist_entry *hists__add_entry(struct hists *hists,
722 				    struct addr_location *al,
723 				    struct symbol *sym_parent,
724 				    struct branch_info *bi,
725 				    struct mem_info *mi,
726 				    struct perf_sample *sample,
727 				    bool sample_self)
728 {
729 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
730 				  sample, sample_self, NULL);
731 }
732 
733 struct hist_entry *hists__add_entry_ops(struct hists *hists,
734 					struct hist_entry_ops *ops,
735 					struct addr_location *al,
736 					struct symbol *sym_parent,
737 					struct branch_info *bi,
738 					struct mem_info *mi,
739 					struct perf_sample *sample,
740 					bool sample_self)
741 {
742 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
743 				  sample, sample_self, ops);
744 }
745 
746 struct hist_entry *hists__add_entry_block(struct hists *hists,
747 					  struct addr_location *al,
748 					  struct block_info *block_info)
749 {
750 	struct hist_entry entry = {
751 		.block_info = block_info,
752 		.hists = hists,
753 	}, *he = hists__findnew_entry(hists, &entry, al, false);
754 
755 	return he;
756 }
757 
758 static int
759 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
760 		    struct addr_location *al __maybe_unused)
761 {
762 	return 0;
763 }
764 
765 static int
766 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
767 			struct addr_location *al __maybe_unused)
768 {
769 	return 0;
770 }
771 
772 static int
773 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
774 {
775 	struct perf_sample *sample = iter->sample;
776 	struct mem_info *mi;
777 
778 	mi = sample__resolve_mem(sample, al);
779 	if (mi == NULL)
780 		return -ENOMEM;
781 
782 	iter->priv = mi;
783 	return 0;
784 }
785 
786 static int
787 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
788 {
789 	u64 cost;
790 	struct mem_info *mi = iter->priv;
791 	struct hists *hists = evsel__hists(iter->evsel);
792 	struct perf_sample *sample = iter->sample;
793 	struct hist_entry *he;
794 
795 	if (mi == NULL)
796 		return -EINVAL;
797 
798 	cost = sample->weight;
799 	if (!cost)
800 		cost = 1;
801 
802 	/*
803 	 * must pass period=weight in order to get the correct
804 	 * sorting from hists__collapse_resort() which is solely
805 	 * based on periods. We want sorting be done on nr_events * weight
806 	 * and this is indirectly achieved by passing period=weight here
807 	 * and the he_stat__add_period() function.
808 	 */
809 	sample->period = cost;
810 
811 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
812 			      sample, true);
813 	if (!he)
814 		return -ENOMEM;
815 
816 	iter->he = he;
817 	return 0;
818 }
819 
820 static int
821 iter_finish_mem_entry(struct hist_entry_iter *iter,
822 		      struct addr_location *al __maybe_unused)
823 {
824 	struct evsel *evsel = iter->evsel;
825 	struct hists *hists = evsel__hists(evsel);
826 	struct hist_entry *he = iter->he;
827 	int err = -EINVAL;
828 
829 	if (he == NULL)
830 		goto out;
831 
832 	hists__inc_nr_samples(hists, he->filtered);
833 
834 	err = hist_entry__append_callchain(he, iter->sample);
835 
836 out:
837 	/*
838 	 * We don't need to free iter->priv (mem_info) here since the mem info
839 	 * was either already freed in hists__findnew_entry() or passed to a
840 	 * new hist entry by hist_entry__new().
841 	 */
842 	iter->priv = NULL;
843 
844 	iter->he = NULL;
845 	return err;
846 }
847 
848 static int
849 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
850 {
851 	struct branch_info *bi;
852 	struct perf_sample *sample = iter->sample;
853 
854 	bi = sample__resolve_bstack(sample, al);
855 	if (!bi)
856 		return -ENOMEM;
857 
858 	iter->curr = 0;
859 	iter->total = sample->branch_stack->nr;
860 
861 	iter->priv = bi;
862 	return 0;
863 }
864 
865 static int
866 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
867 			     struct addr_location *al __maybe_unused)
868 {
869 	return 0;
870 }
871 
872 static int
873 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
874 {
875 	struct branch_info *bi = iter->priv;
876 	int i = iter->curr;
877 
878 	if (bi == NULL)
879 		return 0;
880 
881 	if (iter->curr >= iter->total)
882 		return 0;
883 
884 	al->map = bi[i].to.map;
885 	al->sym = bi[i].to.sym;
886 	al->addr = bi[i].to.addr;
887 	return 1;
888 }
889 
890 static int
891 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
892 {
893 	struct branch_info *bi;
894 	struct evsel *evsel = iter->evsel;
895 	struct hists *hists = evsel__hists(evsel);
896 	struct perf_sample *sample = iter->sample;
897 	struct hist_entry *he = NULL;
898 	int i = iter->curr;
899 	int err = 0;
900 
901 	bi = iter->priv;
902 
903 	if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
904 		goto out;
905 
906 	/*
907 	 * The report shows the percentage of total branches captured
908 	 * and not events sampled. Thus we use a pseudo period of 1.
909 	 */
910 	sample->period = 1;
911 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
912 
913 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
914 			      sample, true);
915 	if (he == NULL)
916 		return -ENOMEM;
917 
918 	hists__inc_nr_samples(hists, he->filtered);
919 
920 out:
921 	iter->he = he;
922 	iter->curr++;
923 	return err;
924 }
925 
926 static int
927 iter_finish_branch_entry(struct hist_entry_iter *iter,
928 			 struct addr_location *al __maybe_unused)
929 {
930 	zfree(&iter->priv);
931 	iter->he = NULL;
932 
933 	return iter->curr >= iter->total ? 0 : -1;
934 }
935 
936 static int
937 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
938 			  struct addr_location *al __maybe_unused)
939 {
940 	return 0;
941 }
942 
943 static int
944 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
945 {
946 	struct evsel *evsel = iter->evsel;
947 	struct perf_sample *sample = iter->sample;
948 	struct hist_entry *he;
949 
950 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
951 			      sample, true);
952 	if (he == NULL)
953 		return -ENOMEM;
954 
955 	iter->he = he;
956 	return 0;
957 }
958 
959 static int
960 iter_finish_normal_entry(struct hist_entry_iter *iter,
961 			 struct addr_location *al __maybe_unused)
962 {
963 	struct hist_entry *he = iter->he;
964 	struct evsel *evsel = iter->evsel;
965 	struct perf_sample *sample = iter->sample;
966 
967 	if (he == NULL)
968 		return 0;
969 
970 	iter->he = NULL;
971 
972 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
973 
974 	return hist_entry__append_callchain(he, sample);
975 }
976 
977 static int
978 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
979 			      struct addr_location *al __maybe_unused)
980 {
981 	struct hist_entry **he_cache;
982 
983 	callchain_cursor_commit(&callchain_cursor);
984 
985 	/*
986 	 * This is for detecting cycles or recursions so that they're
987 	 * cumulated only one time to prevent entries more than 100%
988 	 * overhead.
989 	 */
990 	he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
991 	if (he_cache == NULL)
992 		return -ENOMEM;
993 
994 	iter->priv = he_cache;
995 	iter->curr = 0;
996 
997 	return 0;
998 }
999 
1000 static int
1001 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1002 				 struct addr_location *al)
1003 {
1004 	struct evsel *evsel = iter->evsel;
1005 	struct hists *hists = evsel__hists(evsel);
1006 	struct perf_sample *sample = iter->sample;
1007 	struct hist_entry **he_cache = iter->priv;
1008 	struct hist_entry *he;
1009 	int err = 0;
1010 
1011 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
1012 			      sample, true);
1013 	if (he == NULL)
1014 		return -ENOMEM;
1015 
1016 	iter->he = he;
1017 	he_cache[iter->curr++] = he;
1018 
1019 	hist_entry__append_callchain(he, sample);
1020 
1021 	/*
1022 	 * We need to re-initialize the cursor since callchain_append()
1023 	 * advanced the cursor to the end.
1024 	 */
1025 	callchain_cursor_commit(&callchain_cursor);
1026 
1027 	hists__inc_nr_samples(hists, he->filtered);
1028 
1029 	return err;
1030 }
1031 
1032 static int
1033 iter_next_cumulative_entry(struct hist_entry_iter *iter,
1034 			   struct addr_location *al)
1035 {
1036 	struct callchain_cursor_node *node;
1037 
1038 	node = callchain_cursor_current(&callchain_cursor);
1039 	if (node == NULL)
1040 		return 0;
1041 
1042 	return fill_callchain_info(al, node, iter->hide_unresolved);
1043 }
1044 
1045 static int
1046 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1047 			       struct addr_location *al)
1048 {
1049 	struct evsel *evsel = iter->evsel;
1050 	struct perf_sample *sample = iter->sample;
1051 	struct hist_entry **he_cache = iter->priv;
1052 	struct hist_entry *he;
1053 	struct hist_entry he_tmp = {
1054 		.hists = evsel__hists(evsel),
1055 		.cpu = al->cpu,
1056 		.thread = al->thread,
1057 		.comm = thread__comm(al->thread),
1058 		.ip = al->addr,
1059 		.ms = {
1060 			.map = al->map,
1061 			.sym = al->sym,
1062 		},
1063 		.srcline = (char *) al->srcline,
1064 		.parent = iter->parent,
1065 		.raw_data = sample->raw_data,
1066 		.raw_size = sample->raw_size,
1067 	};
1068 	int i;
1069 	struct callchain_cursor cursor;
1070 
1071 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
1072 
1073 	callchain_cursor_advance(&callchain_cursor);
1074 
1075 	/*
1076 	 * Check if there's duplicate entries in the callchain.
1077 	 * It's possible that it has cycles or recursive calls.
1078 	 */
1079 	for (i = 0; i < iter->curr; i++) {
1080 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1081 			/* to avoid calling callback function */
1082 			iter->he = NULL;
1083 			return 0;
1084 		}
1085 	}
1086 
1087 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1088 			      sample, false);
1089 	if (he == NULL)
1090 		return -ENOMEM;
1091 
1092 	iter->he = he;
1093 	he_cache[iter->curr++] = he;
1094 
1095 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1096 		callchain_append(he->callchain, &cursor, sample->period);
1097 	return 0;
1098 }
1099 
1100 static int
1101 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1102 			     struct addr_location *al __maybe_unused)
1103 {
1104 	zfree(&iter->priv);
1105 	iter->he = NULL;
1106 
1107 	return 0;
1108 }
1109 
1110 const struct hist_iter_ops hist_iter_mem = {
1111 	.prepare_entry 		= iter_prepare_mem_entry,
1112 	.add_single_entry 	= iter_add_single_mem_entry,
1113 	.next_entry 		= iter_next_nop_entry,
1114 	.add_next_entry 	= iter_add_next_nop_entry,
1115 	.finish_entry 		= iter_finish_mem_entry,
1116 };
1117 
1118 const struct hist_iter_ops hist_iter_branch = {
1119 	.prepare_entry 		= iter_prepare_branch_entry,
1120 	.add_single_entry 	= iter_add_single_branch_entry,
1121 	.next_entry 		= iter_next_branch_entry,
1122 	.add_next_entry 	= iter_add_next_branch_entry,
1123 	.finish_entry 		= iter_finish_branch_entry,
1124 };
1125 
1126 const struct hist_iter_ops hist_iter_normal = {
1127 	.prepare_entry 		= iter_prepare_normal_entry,
1128 	.add_single_entry 	= iter_add_single_normal_entry,
1129 	.next_entry 		= iter_next_nop_entry,
1130 	.add_next_entry 	= iter_add_next_nop_entry,
1131 	.finish_entry 		= iter_finish_normal_entry,
1132 };
1133 
1134 const struct hist_iter_ops hist_iter_cumulative = {
1135 	.prepare_entry 		= iter_prepare_cumulative_entry,
1136 	.add_single_entry 	= iter_add_single_cumulative_entry,
1137 	.next_entry 		= iter_next_cumulative_entry,
1138 	.add_next_entry 	= iter_add_next_cumulative_entry,
1139 	.finish_entry 		= iter_finish_cumulative_entry,
1140 };
1141 
1142 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1143 			 int max_stack_depth, void *arg)
1144 {
1145 	int err, err2;
1146 	struct map *alm = NULL;
1147 
1148 	if (al)
1149 		alm = map__get(al->map);
1150 
1151 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1152 					iter->evsel, al, max_stack_depth);
1153 	if (err) {
1154 		map__put(alm);
1155 		return err;
1156 	}
1157 
1158 	err = iter->ops->prepare_entry(iter, al);
1159 	if (err)
1160 		goto out;
1161 
1162 	err = iter->ops->add_single_entry(iter, al);
1163 	if (err)
1164 		goto out;
1165 
1166 	if (iter->he && iter->add_entry_cb) {
1167 		err = iter->add_entry_cb(iter, al, true, arg);
1168 		if (err)
1169 			goto out;
1170 	}
1171 
1172 	while (iter->ops->next_entry(iter, al)) {
1173 		err = iter->ops->add_next_entry(iter, al);
1174 		if (err)
1175 			break;
1176 
1177 		if (iter->he && iter->add_entry_cb) {
1178 			err = iter->add_entry_cb(iter, al, false, arg);
1179 			if (err)
1180 				goto out;
1181 		}
1182 	}
1183 
1184 out:
1185 	err2 = iter->ops->finish_entry(iter, al);
1186 	if (!err)
1187 		err = err2;
1188 
1189 	map__put(alm);
1190 
1191 	return err;
1192 }
1193 
1194 int64_t
1195 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1196 {
1197 	struct hists *hists = left->hists;
1198 	struct perf_hpp_fmt *fmt;
1199 	int64_t cmp = 0;
1200 
1201 	hists__for_each_sort_list(hists, fmt) {
1202 		if (perf_hpp__is_dynamic_entry(fmt) &&
1203 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1204 			continue;
1205 
1206 		cmp = fmt->cmp(fmt, left, right);
1207 		if (cmp)
1208 			break;
1209 	}
1210 
1211 	return cmp;
1212 }
1213 
1214 int64_t
1215 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1216 {
1217 	struct hists *hists = left->hists;
1218 	struct perf_hpp_fmt *fmt;
1219 	int64_t cmp = 0;
1220 
1221 	hists__for_each_sort_list(hists, fmt) {
1222 		if (perf_hpp__is_dynamic_entry(fmt) &&
1223 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1224 			continue;
1225 
1226 		cmp = fmt->collapse(fmt, left, right);
1227 		if (cmp)
1228 			break;
1229 	}
1230 
1231 	return cmp;
1232 }
1233 
1234 void hist_entry__delete(struct hist_entry *he)
1235 {
1236 	struct hist_entry_ops *ops = he->ops;
1237 
1238 	thread__zput(he->thread);
1239 	map__zput(he->ms.map);
1240 
1241 	if (he->branch_info) {
1242 		map__zput(he->branch_info->from.map);
1243 		map__zput(he->branch_info->to.map);
1244 		free_srcline(he->branch_info->srcline_from);
1245 		free_srcline(he->branch_info->srcline_to);
1246 		zfree(&he->branch_info);
1247 	}
1248 
1249 	if (he->mem_info) {
1250 		map__zput(he->mem_info->iaddr.map);
1251 		map__zput(he->mem_info->daddr.map);
1252 		mem_info__zput(he->mem_info);
1253 	}
1254 
1255 	if (he->block_info)
1256 		block_info__zput(he->block_info);
1257 
1258 	zfree(&he->res_samples);
1259 	zfree(&he->stat_acc);
1260 	free_srcline(he->srcline);
1261 	if (he->srcfile && he->srcfile[0])
1262 		zfree(&he->srcfile);
1263 	free_callchain(he->callchain);
1264 	zfree(&he->trace_output);
1265 	zfree(&he->raw_data);
1266 	ops->free(he);
1267 }
1268 
1269 /*
1270  * If this is not the last column, then we need to pad it according to the
1271  * pre-calculated max length for this column, otherwise don't bother adding
1272  * spaces because that would break viewing this with, for instance, 'less',
1273  * that would show tons of trailing spaces when a long C++ demangled method
1274  * names is sampled.
1275 */
1276 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1277 				   struct perf_hpp_fmt *fmt, int printed)
1278 {
1279 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1280 		const int width = fmt->width(fmt, hpp, he->hists);
1281 		if (printed < width) {
1282 			advance_hpp(hpp, printed);
1283 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1284 		}
1285 	}
1286 
1287 	return printed;
1288 }
1289 
1290 /*
1291  * collapse the histogram
1292  */
1293 
1294 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1295 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1296 				       enum hist_filter type);
1297 
1298 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1299 
1300 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1301 {
1302 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1303 }
1304 
1305 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1306 						enum hist_filter type,
1307 						fmt_chk_fn check)
1308 {
1309 	struct perf_hpp_fmt *fmt;
1310 	bool type_match = false;
1311 	struct hist_entry *parent = he->parent_he;
1312 
1313 	switch (type) {
1314 	case HIST_FILTER__THREAD:
1315 		if (symbol_conf.comm_list == NULL &&
1316 		    symbol_conf.pid_list == NULL &&
1317 		    symbol_conf.tid_list == NULL)
1318 			return;
1319 		break;
1320 	case HIST_FILTER__DSO:
1321 		if (symbol_conf.dso_list == NULL)
1322 			return;
1323 		break;
1324 	case HIST_FILTER__SYMBOL:
1325 		if (symbol_conf.sym_list == NULL)
1326 			return;
1327 		break;
1328 	case HIST_FILTER__PARENT:
1329 	case HIST_FILTER__GUEST:
1330 	case HIST_FILTER__HOST:
1331 	case HIST_FILTER__SOCKET:
1332 	case HIST_FILTER__C2C:
1333 	default:
1334 		return;
1335 	}
1336 
1337 	/* if it's filtered by own fmt, it has to have filter bits */
1338 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1339 		if (check(fmt)) {
1340 			type_match = true;
1341 			break;
1342 		}
1343 	}
1344 
1345 	if (type_match) {
1346 		/*
1347 		 * If the filter is for current level entry, propagate
1348 		 * filter marker to parents.  The marker bit was
1349 		 * already set by default so it only needs to clear
1350 		 * non-filtered entries.
1351 		 */
1352 		if (!(he->filtered & (1 << type))) {
1353 			while (parent) {
1354 				parent->filtered &= ~(1 << type);
1355 				parent = parent->parent_he;
1356 			}
1357 		}
1358 	} else {
1359 		/*
1360 		 * If current entry doesn't have matching formats, set
1361 		 * filter marker for upper level entries.  it will be
1362 		 * cleared if its lower level entries is not filtered.
1363 		 *
1364 		 * For lower-level entries, it inherits parent's
1365 		 * filter bit so that lower level entries of a
1366 		 * non-filtered entry won't set the filter marker.
1367 		 */
1368 		if (parent == NULL)
1369 			he->filtered |= (1 << type);
1370 		else
1371 			he->filtered |= (parent->filtered & (1 << type));
1372 	}
1373 }
1374 
1375 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1376 {
1377 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1378 					    check_thread_entry);
1379 
1380 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1381 					    perf_hpp__is_dso_entry);
1382 
1383 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1384 					    perf_hpp__is_sym_entry);
1385 
1386 	hists__apply_filters(he->hists, he);
1387 }
1388 
1389 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1390 						 struct rb_root_cached *root,
1391 						 struct hist_entry *he,
1392 						 struct hist_entry *parent_he,
1393 						 struct perf_hpp_list *hpp_list)
1394 {
1395 	struct rb_node **p = &root->rb_root.rb_node;
1396 	struct rb_node *parent = NULL;
1397 	struct hist_entry *iter, *new;
1398 	struct perf_hpp_fmt *fmt;
1399 	int64_t cmp;
1400 	bool leftmost = true;
1401 
1402 	while (*p != NULL) {
1403 		parent = *p;
1404 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1405 
1406 		cmp = 0;
1407 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1408 			cmp = fmt->collapse(fmt, iter, he);
1409 			if (cmp)
1410 				break;
1411 		}
1412 
1413 		if (!cmp) {
1414 			he_stat__add_stat(&iter->stat, &he->stat);
1415 			return iter;
1416 		}
1417 
1418 		if (cmp < 0)
1419 			p = &parent->rb_left;
1420 		else {
1421 			p = &parent->rb_right;
1422 			leftmost = false;
1423 		}
1424 	}
1425 
1426 	new = hist_entry__new(he, true);
1427 	if (new == NULL)
1428 		return NULL;
1429 
1430 	hists->nr_entries++;
1431 
1432 	/* save related format list for output */
1433 	new->hpp_list = hpp_list;
1434 	new->parent_he = parent_he;
1435 
1436 	hist_entry__apply_hierarchy_filters(new);
1437 
1438 	/* some fields are now passed to 'new' */
1439 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1440 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1441 			he->trace_output = NULL;
1442 		else
1443 			new->trace_output = NULL;
1444 
1445 		if (perf_hpp__is_srcline_entry(fmt))
1446 			he->srcline = NULL;
1447 		else
1448 			new->srcline = NULL;
1449 
1450 		if (perf_hpp__is_srcfile_entry(fmt))
1451 			he->srcfile = NULL;
1452 		else
1453 			new->srcfile = NULL;
1454 	}
1455 
1456 	rb_link_node(&new->rb_node_in, parent, p);
1457 	rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1458 	return new;
1459 }
1460 
1461 static int hists__hierarchy_insert_entry(struct hists *hists,
1462 					 struct rb_root_cached *root,
1463 					 struct hist_entry *he)
1464 {
1465 	struct perf_hpp_list_node *node;
1466 	struct hist_entry *new_he = NULL;
1467 	struct hist_entry *parent = NULL;
1468 	int depth = 0;
1469 	int ret = 0;
1470 
1471 	list_for_each_entry(node, &hists->hpp_formats, list) {
1472 		/* skip period (overhead) and elided columns */
1473 		if (node->level == 0 || node->skip)
1474 			continue;
1475 
1476 		/* insert copy of 'he' for each fmt into the hierarchy */
1477 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1478 		if (new_he == NULL) {
1479 			ret = -1;
1480 			break;
1481 		}
1482 
1483 		root = &new_he->hroot_in;
1484 		new_he->depth = depth++;
1485 		parent = new_he;
1486 	}
1487 
1488 	if (new_he) {
1489 		new_he->leaf = true;
1490 
1491 		if (hist_entry__has_callchains(new_he) &&
1492 		    symbol_conf.use_callchain) {
1493 			callchain_cursor_reset(&callchain_cursor);
1494 			if (callchain_merge(&callchain_cursor,
1495 					    new_he->callchain,
1496 					    he->callchain) < 0)
1497 				ret = -1;
1498 		}
1499 	}
1500 
1501 	/* 'he' is no longer used */
1502 	hist_entry__delete(he);
1503 
1504 	/* return 0 (or -1) since it already applied filters */
1505 	return ret;
1506 }
1507 
1508 static int hists__collapse_insert_entry(struct hists *hists,
1509 					struct rb_root_cached *root,
1510 					struct hist_entry *he)
1511 {
1512 	struct rb_node **p = &root->rb_root.rb_node;
1513 	struct rb_node *parent = NULL;
1514 	struct hist_entry *iter;
1515 	int64_t cmp;
1516 	bool leftmost = true;
1517 
1518 	if (symbol_conf.report_hierarchy)
1519 		return hists__hierarchy_insert_entry(hists, root, he);
1520 
1521 	while (*p != NULL) {
1522 		parent = *p;
1523 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1524 
1525 		cmp = hist_entry__collapse(iter, he);
1526 
1527 		if (!cmp) {
1528 			int ret = 0;
1529 
1530 			he_stat__add_stat(&iter->stat, &he->stat);
1531 			if (symbol_conf.cumulate_callchain)
1532 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1533 
1534 			if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1535 				callchain_cursor_reset(&callchain_cursor);
1536 				if (callchain_merge(&callchain_cursor,
1537 						    iter->callchain,
1538 						    he->callchain) < 0)
1539 					ret = -1;
1540 			}
1541 			hist_entry__delete(he);
1542 			return ret;
1543 		}
1544 
1545 		if (cmp < 0)
1546 			p = &(*p)->rb_left;
1547 		else {
1548 			p = &(*p)->rb_right;
1549 			leftmost = false;
1550 		}
1551 	}
1552 	hists->nr_entries++;
1553 
1554 	rb_link_node(&he->rb_node_in, parent, p);
1555 	rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1556 	return 1;
1557 }
1558 
1559 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1560 {
1561 	struct rb_root_cached *root;
1562 
1563 	pthread_mutex_lock(&hists->lock);
1564 
1565 	root = hists->entries_in;
1566 	if (++hists->entries_in > &hists->entries_in_array[1])
1567 		hists->entries_in = &hists->entries_in_array[0];
1568 
1569 	pthread_mutex_unlock(&hists->lock);
1570 
1571 	return root;
1572 }
1573 
1574 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1575 {
1576 	hists__filter_entry_by_dso(hists, he);
1577 	hists__filter_entry_by_thread(hists, he);
1578 	hists__filter_entry_by_symbol(hists, he);
1579 	hists__filter_entry_by_socket(hists, he);
1580 }
1581 
1582 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1583 {
1584 	struct rb_root_cached *root;
1585 	struct rb_node *next;
1586 	struct hist_entry *n;
1587 	int ret;
1588 
1589 	if (!hists__has(hists, need_collapse))
1590 		return 0;
1591 
1592 	hists->nr_entries = 0;
1593 
1594 	root = hists__get_rotate_entries_in(hists);
1595 
1596 	next = rb_first_cached(root);
1597 
1598 	while (next) {
1599 		if (session_done())
1600 			break;
1601 		n = rb_entry(next, struct hist_entry, rb_node_in);
1602 		next = rb_next(&n->rb_node_in);
1603 
1604 		rb_erase_cached(&n->rb_node_in, root);
1605 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1606 		if (ret < 0)
1607 			return -1;
1608 
1609 		if (ret) {
1610 			/*
1611 			 * If it wasn't combined with one of the entries already
1612 			 * collapsed, we need to apply the filters that may have
1613 			 * been set by, say, the hist_browser.
1614 			 */
1615 			hists__apply_filters(hists, n);
1616 		}
1617 		if (prog)
1618 			ui_progress__update(prog, 1);
1619 	}
1620 	return 0;
1621 }
1622 
1623 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1624 {
1625 	struct hists *hists = a->hists;
1626 	struct perf_hpp_fmt *fmt;
1627 	int64_t cmp = 0;
1628 
1629 	hists__for_each_sort_list(hists, fmt) {
1630 		if (perf_hpp__should_skip(fmt, a->hists))
1631 			continue;
1632 
1633 		cmp = fmt->sort(fmt, a, b);
1634 		if (cmp)
1635 			break;
1636 	}
1637 
1638 	return cmp;
1639 }
1640 
1641 static void hists__reset_filter_stats(struct hists *hists)
1642 {
1643 	hists->nr_non_filtered_entries = 0;
1644 	hists->stats.total_non_filtered_period = 0;
1645 }
1646 
1647 void hists__reset_stats(struct hists *hists)
1648 {
1649 	hists->nr_entries = 0;
1650 	hists->stats.total_period = 0;
1651 
1652 	hists__reset_filter_stats(hists);
1653 }
1654 
1655 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1656 {
1657 	hists->nr_non_filtered_entries++;
1658 	hists->stats.total_non_filtered_period += h->stat.period;
1659 }
1660 
1661 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1662 {
1663 	if (!h->filtered)
1664 		hists__inc_filter_stats(hists, h);
1665 
1666 	hists->nr_entries++;
1667 	hists->stats.total_period += h->stat.period;
1668 }
1669 
1670 static void hierarchy_recalc_total_periods(struct hists *hists)
1671 {
1672 	struct rb_node *node;
1673 	struct hist_entry *he;
1674 
1675 	node = rb_first_cached(&hists->entries);
1676 
1677 	hists->stats.total_period = 0;
1678 	hists->stats.total_non_filtered_period = 0;
1679 
1680 	/*
1681 	 * recalculate total period using top-level entries only
1682 	 * since lower level entries only see non-filtered entries
1683 	 * but upper level entries have sum of both entries.
1684 	 */
1685 	while (node) {
1686 		he = rb_entry(node, struct hist_entry, rb_node);
1687 		node = rb_next(node);
1688 
1689 		hists->stats.total_period += he->stat.period;
1690 		if (!he->filtered)
1691 			hists->stats.total_non_filtered_period += he->stat.period;
1692 	}
1693 }
1694 
1695 static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1696 					  struct hist_entry *he)
1697 {
1698 	struct rb_node **p = &root->rb_root.rb_node;
1699 	struct rb_node *parent = NULL;
1700 	struct hist_entry *iter;
1701 	struct perf_hpp_fmt *fmt;
1702 	bool leftmost = true;
1703 
1704 	while (*p != NULL) {
1705 		parent = *p;
1706 		iter = rb_entry(parent, struct hist_entry, rb_node);
1707 
1708 		if (hist_entry__sort(he, iter) > 0)
1709 			p = &parent->rb_left;
1710 		else {
1711 			p = &parent->rb_right;
1712 			leftmost = false;
1713 		}
1714 	}
1715 
1716 	rb_link_node(&he->rb_node, parent, p);
1717 	rb_insert_color_cached(&he->rb_node, root, leftmost);
1718 
1719 	/* update column width of dynamic entry */
1720 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1721 		if (perf_hpp__is_dynamic_entry(fmt))
1722 			fmt->sort(fmt, he, NULL);
1723 	}
1724 }
1725 
1726 static void hists__hierarchy_output_resort(struct hists *hists,
1727 					   struct ui_progress *prog,
1728 					   struct rb_root_cached *root_in,
1729 					   struct rb_root_cached *root_out,
1730 					   u64 min_callchain_hits,
1731 					   bool use_callchain)
1732 {
1733 	struct rb_node *node;
1734 	struct hist_entry *he;
1735 
1736 	*root_out = RB_ROOT_CACHED;
1737 	node = rb_first_cached(root_in);
1738 
1739 	while (node) {
1740 		he = rb_entry(node, struct hist_entry, rb_node_in);
1741 		node = rb_next(node);
1742 
1743 		hierarchy_insert_output_entry(root_out, he);
1744 
1745 		if (prog)
1746 			ui_progress__update(prog, 1);
1747 
1748 		hists->nr_entries++;
1749 		if (!he->filtered) {
1750 			hists->nr_non_filtered_entries++;
1751 			hists__calc_col_len(hists, he);
1752 		}
1753 
1754 		if (!he->leaf) {
1755 			hists__hierarchy_output_resort(hists, prog,
1756 						       &he->hroot_in,
1757 						       &he->hroot_out,
1758 						       min_callchain_hits,
1759 						       use_callchain);
1760 			continue;
1761 		}
1762 
1763 		if (!use_callchain)
1764 			continue;
1765 
1766 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1767 			u64 total = he->stat.period;
1768 
1769 			if (symbol_conf.cumulate_callchain)
1770 				total = he->stat_acc->period;
1771 
1772 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1773 		}
1774 
1775 		callchain_param.sort(&he->sorted_chain, he->callchain,
1776 				     min_callchain_hits, &callchain_param);
1777 	}
1778 }
1779 
1780 static void __hists__insert_output_entry(struct rb_root_cached *entries,
1781 					 struct hist_entry *he,
1782 					 u64 min_callchain_hits,
1783 					 bool use_callchain)
1784 {
1785 	struct rb_node **p = &entries->rb_root.rb_node;
1786 	struct rb_node *parent = NULL;
1787 	struct hist_entry *iter;
1788 	struct perf_hpp_fmt *fmt;
1789 	bool leftmost = true;
1790 
1791 	if (use_callchain) {
1792 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1793 			u64 total = he->stat.period;
1794 
1795 			if (symbol_conf.cumulate_callchain)
1796 				total = he->stat_acc->period;
1797 
1798 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1799 		}
1800 		callchain_param.sort(&he->sorted_chain, he->callchain,
1801 				      min_callchain_hits, &callchain_param);
1802 	}
1803 
1804 	while (*p != NULL) {
1805 		parent = *p;
1806 		iter = rb_entry(parent, struct hist_entry, rb_node);
1807 
1808 		if (hist_entry__sort(he, iter) > 0)
1809 			p = &(*p)->rb_left;
1810 		else {
1811 			p = &(*p)->rb_right;
1812 			leftmost = false;
1813 		}
1814 	}
1815 
1816 	rb_link_node(&he->rb_node, parent, p);
1817 	rb_insert_color_cached(&he->rb_node, entries, leftmost);
1818 
1819 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1820 		if (perf_hpp__is_dynamic_entry(fmt) &&
1821 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1822 			fmt->sort(fmt, he, NULL);  /* update column width */
1823 	}
1824 }
1825 
1826 static void output_resort(struct hists *hists, struct ui_progress *prog,
1827 			  bool use_callchain, hists__resort_cb_t cb,
1828 			  void *cb_arg)
1829 {
1830 	struct rb_root_cached *root;
1831 	struct rb_node *next;
1832 	struct hist_entry *n;
1833 	u64 callchain_total;
1834 	u64 min_callchain_hits;
1835 
1836 	callchain_total = hists->callchain_period;
1837 	if (symbol_conf.filter_relative)
1838 		callchain_total = hists->callchain_non_filtered_period;
1839 
1840 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1841 
1842 	hists__reset_stats(hists);
1843 	hists__reset_col_len(hists);
1844 
1845 	if (symbol_conf.report_hierarchy) {
1846 		hists__hierarchy_output_resort(hists, prog,
1847 					       &hists->entries_collapsed,
1848 					       &hists->entries,
1849 					       min_callchain_hits,
1850 					       use_callchain);
1851 		hierarchy_recalc_total_periods(hists);
1852 		return;
1853 	}
1854 
1855 	if (hists__has(hists, need_collapse))
1856 		root = &hists->entries_collapsed;
1857 	else
1858 		root = hists->entries_in;
1859 
1860 	next = rb_first_cached(root);
1861 	hists->entries = RB_ROOT_CACHED;
1862 
1863 	while (next) {
1864 		n = rb_entry(next, struct hist_entry, rb_node_in);
1865 		next = rb_next(&n->rb_node_in);
1866 
1867 		if (cb && cb(n, cb_arg))
1868 			continue;
1869 
1870 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1871 		hists__inc_stats(hists, n);
1872 
1873 		if (!n->filtered)
1874 			hists__calc_col_len(hists, n);
1875 
1876 		if (prog)
1877 			ui_progress__update(prog, 1);
1878 	}
1879 }
1880 
1881 void perf_evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
1882 				  hists__resort_cb_t cb, void *cb_arg)
1883 {
1884 	bool use_callchain;
1885 
1886 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1887 		use_callchain = evsel__has_callchain(evsel);
1888 	else
1889 		use_callchain = symbol_conf.use_callchain;
1890 
1891 	use_callchain |= symbol_conf.show_branchflag_count;
1892 
1893 	output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
1894 }
1895 
1896 void perf_evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
1897 {
1898 	return perf_evsel__output_resort_cb(evsel, prog, NULL, NULL);
1899 }
1900 
1901 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1902 {
1903 	output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
1904 }
1905 
1906 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1907 			     hists__resort_cb_t cb)
1908 {
1909 	output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
1910 }
1911 
1912 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1913 {
1914 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1915 		return false;
1916 
1917 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1918 		return true;
1919 
1920 	return false;
1921 }
1922 
1923 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1924 {
1925 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1926 
1927 	while (can_goto_child(he, HMD_NORMAL)) {
1928 		node = rb_last(&he->hroot_out.rb_root);
1929 		he = rb_entry(node, struct hist_entry, rb_node);
1930 	}
1931 	return node;
1932 }
1933 
1934 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1935 {
1936 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1937 
1938 	if (can_goto_child(he, hmd))
1939 		node = rb_first_cached(&he->hroot_out);
1940 	else
1941 		node = rb_next(node);
1942 
1943 	while (node == NULL) {
1944 		he = he->parent_he;
1945 		if (he == NULL)
1946 			break;
1947 
1948 		node = rb_next(&he->rb_node);
1949 	}
1950 	return node;
1951 }
1952 
1953 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1954 {
1955 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1956 
1957 	node = rb_prev(node);
1958 	if (node)
1959 		return rb_hierarchy_last(node);
1960 
1961 	he = he->parent_he;
1962 	if (he == NULL)
1963 		return NULL;
1964 
1965 	return &he->rb_node;
1966 }
1967 
1968 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1969 {
1970 	struct rb_node *node;
1971 	struct hist_entry *child;
1972 	float percent;
1973 
1974 	if (he->leaf)
1975 		return false;
1976 
1977 	node = rb_first_cached(&he->hroot_out);
1978 	child = rb_entry(node, struct hist_entry, rb_node);
1979 
1980 	while (node && child->filtered) {
1981 		node = rb_next(node);
1982 		child = rb_entry(node, struct hist_entry, rb_node);
1983 	}
1984 
1985 	if (node)
1986 		percent = hist_entry__get_percent_limit(child);
1987 	else
1988 		percent = 0;
1989 
1990 	return node && percent >= limit;
1991 }
1992 
1993 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1994 				       enum hist_filter filter)
1995 {
1996 	h->filtered &= ~(1 << filter);
1997 
1998 	if (symbol_conf.report_hierarchy) {
1999 		struct hist_entry *parent = h->parent_he;
2000 
2001 		while (parent) {
2002 			he_stat__add_stat(&parent->stat, &h->stat);
2003 
2004 			parent->filtered &= ~(1 << filter);
2005 
2006 			if (parent->filtered)
2007 				goto next;
2008 
2009 			/* force fold unfiltered entry for simplicity */
2010 			parent->unfolded = false;
2011 			parent->has_no_entry = false;
2012 			parent->row_offset = 0;
2013 			parent->nr_rows = 0;
2014 next:
2015 			parent = parent->parent_he;
2016 		}
2017 	}
2018 
2019 	if (h->filtered)
2020 		return;
2021 
2022 	/* force fold unfiltered entry for simplicity */
2023 	h->unfolded = false;
2024 	h->has_no_entry = false;
2025 	h->row_offset = 0;
2026 	h->nr_rows = 0;
2027 
2028 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2029 
2030 	hists__inc_filter_stats(hists, h);
2031 	hists__calc_col_len(hists, h);
2032 }
2033 
2034 
2035 static bool hists__filter_entry_by_dso(struct hists *hists,
2036 				       struct hist_entry *he)
2037 {
2038 	if (hists->dso_filter != NULL &&
2039 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
2040 		he->filtered |= (1 << HIST_FILTER__DSO);
2041 		return true;
2042 	}
2043 
2044 	return false;
2045 }
2046 
2047 static bool hists__filter_entry_by_thread(struct hists *hists,
2048 					  struct hist_entry *he)
2049 {
2050 	if (hists->thread_filter != NULL &&
2051 	    he->thread != hists->thread_filter) {
2052 		he->filtered |= (1 << HIST_FILTER__THREAD);
2053 		return true;
2054 	}
2055 
2056 	return false;
2057 }
2058 
2059 static bool hists__filter_entry_by_symbol(struct hists *hists,
2060 					  struct hist_entry *he)
2061 {
2062 	if (hists->symbol_filter_str != NULL &&
2063 	    (!he->ms.sym || strstr(he->ms.sym->name,
2064 				   hists->symbol_filter_str) == NULL)) {
2065 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
2066 		return true;
2067 	}
2068 
2069 	return false;
2070 }
2071 
2072 static bool hists__filter_entry_by_socket(struct hists *hists,
2073 					  struct hist_entry *he)
2074 {
2075 	if ((hists->socket_filter > -1) &&
2076 	    (he->socket != hists->socket_filter)) {
2077 		he->filtered |= (1 << HIST_FILTER__SOCKET);
2078 		return true;
2079 	}
2080 
2081 	return false;
2082 }
2083 
2084 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2085 
2086 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2087 {
2088 	struct rb_node *nd;
2089 
2090 	hists->stats.nr_non_filtered_samples = 0;
2091 
2092 	hists__reset_filter_stats(hists);
2093 	hists__reset_col_len(hists);
2094 
2095 	for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2096 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2097 
2098 		if (filter(hists, h))
2099 			continue;
2100 
2101 		hists__remove_entry_filter(hists, h, type);
2102 	}
2103 }
2104 
2105 static void resort_filtered_entry(struct rb_root_cached *root,
2106 				  struct hist_entry *he)
2107 {
2108 	struct rb_node **p = &root->rb_root.rb_node;
2109 	struct rb_node *parent = NULL;
2110 	struct hist_entry *iter;
2111 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2112 	struct rb_node *nd;
2113 	bool leftmost = true;
2114 
2115 	while (*p != NULL) {
2116 		parent = *p;
2117 		iter = rb_entry(parent, struct hist_entry, rb_node);
2118 
2119 		if (hist_entry__sort(he, iter) > 0)
2120 			p = &(*p)->rb_left;
2121 		else {
2122 			p = &(*p)->rb_right;
2123 			leftmost = false;
2124 		}
2125 	}
2126 
2127 	rb_link_node(&he->rb_node, parent, p);
2128 	rb_insert_color_cached(&he->rb_node, root, leftmost);
2129 
2130 	if (he->leaf || he->filtered)
2131 		return;
2132 
2133 	nd = rb_first_cached(&he->hroot_out);
2134 	while (nd) {
2135 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2136 
2137 		nd = rb_next(nd);
2138 		rb_erase_cached(&h->rb_node, &he->hroot_out);
2139 
2140 		resort_filtered_entry(&new_root, h);
2141 	}
2142 
2143 	he->hroot_out = new_root;
2144 }
2145 
2146 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2147 {
2148 	struct rb_node *nd;
2149 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2150 
2151 	hists->stats.nr_non_filtered_samples = 0;
2152 
2153 	hists__reset_filter_stats(hists);
2154 	hists__reset_col_len(hists);
2155 
2156 	nd = rb_first_cached(&hists->entries);
2157 	while (nd) {
2158 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2159 		int ret;
2160 
2161 		ret = hist_entry__filter(h, type, arg);
2162 
2163 		/*
2164 		 * case 1. non-matching type
2165 		 * zero out the period, set filter marker and move to child
2166 		 */
2167 		if (ret < 0) {
2168 			memset(&h->stat, 0, sizeof(h->stat));
2169 			h->filtered |= (1 << type);
2170 
2171 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2172 		}
2173 		/*
2174 		 * case 2. matched type (filter out)
2175 		 * set filter marker and move to next
2176 		 */
2177 		else if (ret == 1) {
2178 			h->filtered |= (1 << type);
2179 
2180 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2181 		}
2182 		/*
2183 		 * case 3. ok (not filtered)
2184 		 * add period to hists and parents, erase the filter marker
2185 		 * and move to next sibling
2186 		 */
2187 		else {
2188 			hists__remove_entry_filter(hists, h, type);
2189 
2190 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2191 		}
2192 	}
2193 
2194 	hierarchy_recalc_total_periods(hists);
2195 
2196 	/*
2197 	 * resort output after applying a new filter since filter in a lower
2198 	 * hierarchy can change periods in a upper hierarchy.
2199 	 */
2200 	nd = rb_first_cached(&hists->entries);
2201 	while (nd) {
2202 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2203 
2204 		nd = rb_next(nd);
2205 		rb_erase_cached(&h->rb_node, &hists->entries);
2206 
2207 		resort_filtered_entry(&new_root, h);
2208 	}
2209 
2210 	hists->entries = new_root;
2211 }
2212 
2213 void hists__filter_by_thread(struct hists *hists)
2214 {
2215 	if (symbol_conf.report_hierarchy)
2216 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2217 					hists->thread_filter);
2218 	else
2219 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2220 				      hists__filter_entry_by_thread);
2221 }
2222 
2223 void hists__filter_by_dso(struct hists *hists)
2224 {
2225 	if (symbol_conf.report_hierarchy)
2226 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2227 					hists->dso_filter);
2228 	else
2229 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2230 				      hists__filter_entry_by_dso);
2231 }
2232 
2233 void hists__filter_by_symbol(struct hists *hists)
2234 {
2235 	if (symbol_conf.report_hierarchy)
2236 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2237 					hists->symbol_filter_str);
2238 	else
2239 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2240 				      hists__filter_entry_by_symbol);
2241 }
2242 
2243 void hists__filter_by_socket(struct hists *hists)
2244 {
2245 	if (symbol_conf.report_hierarchy)
2246 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2247 					&hists->socket_filter);
2248 	else
2249 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2250 				      hists__filter_entry_by_socket);
2251 }
2252 
2253 void events_stats__inc(struct events_stats *stats, u32 type)
2254 {
2255 	++stats->nr_events[0];
2256 	++stats->nr_events[type];
2257 }
2258 
2259 void hists__inc_nr_events(struct hists *hists, u32 type)
2260 {
2261 	events_stats__inc(&hists->stats, type);
2262 }
2263 
2264 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2265 {
2266 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2267 	if (!filtered)
2268 		hists->stats.nr_non_filtered_samples++;
2269 }
2270 
2271 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2272 						 struct hist_entry *pair)
2273 {
2274 	struct rb_root_cached *root;
2275 	struct rb_node **p;
2276 	struct rb_node *parent = NULL;
2277 	struct hist_entry *he;
2278 	int64_t cmp;
2279 	bool leftmost = true;
2280 
2281 	if (hists__has(hists, need_collapse))
2282 		root = &hists->entries_collapsed;
2283 	else
2284 		root = hists->entries_in;
2285 
2286 	p = &root->rb_root.rb_node;
2287 
2288 	while (*p != NULL) {
2289 		parent = *p;
2290 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2291 
2292 		cmp = hist_entry__collapse(he, pair);
2293 
2294 		if (!cmp)
2295 			goto out;
2296 
2297 		if (cmp < 0)
2298 			p = &(*p)->rb_left;
2299 		else {
2300 			p = &(*p)->rb_right;
2301 			leftmost = false;
2302 		}
2303 	}
2304 
2305 	he = hist_entry__new(pair, true);
2306 	if (he) {
2307 		memset(&he->stat, 0, sizeof(he->stat));
2308 		he->hists = hists;
2309 		if (symbol_conf.cumulate_callchain)
2310 			memset(he->stat_acc, 0, sizeof(he->stat));
2311 		rb_link_node(&he->rb_node_in, parent, p);
2312 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2313 		hists__inc_stats(hists, he);
2314 		he->dummy = true;
2315 	}
2316 out:
2317 	return he;
2318 }
2319 
2320 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2321 						    struct rb_root_cached *root,
2322 						    struct hist_entry *pair)
2323 {
2324 	struct rb_node **p;
2325 	struct rb_node *parent = NULL;
2326 	struct hist_entry *he;
2327 	struct perf_hpp_fmt *fmt;
2328 	bool leftmost = true;
2329 
2330 	p = &root->rb_root.rb_node;
2331 	while (*p != NULL) {
2332 		int64_t cmp = 0;
2333 
2334 		parent = *p;
2335 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2336 
2337 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2338 			cmp = fmt->collapse(fmt, he, pair);
2339 			if (cmp)
2340 				break;
2341 		}
2342 		if (!cmp)
2343 			goto out;
2344 
2345 		if (cmp < 0)
2346 			p = &parent->rb_left;
2347 		else {
2348 			p = &parent->rb_right;
2349 			leftmost = false;
2350 		}
2351 	}
2352 
2353 	he = hist_entry__new(pair, true);
2354 	if (he) {
2355 		rb_link_node(&he->rb_node_in, parent, p);
2356 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2357 
2358 		he->dummy = true;
2359 		he->hists = hists;
2360 		memset(&he->stat, 0, sizeof(he->stat));
2361 		hists__inc_stats(hists, he);
2362 	}
2363 out:
2364 	return he;
2365 }
2366 
2367 static struct hist_entry *hists__find_entry(struct hists *hists,
2368 					    struct hist_entry *he)
2369 {
2370 	struct rb_node *n;
2371 
2372 	if (hists__has(hists, need_collapse))
2373 		n = hists->entries_collapsed.rb_root.rb_node;
2374 	else
2375 		n = hists->entries_in->rb_root.rb_node;
2376 
2377 	while (n) {
2378 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2379 		int64_t cmp = hist_entry__collapse(iter, he);
2380 
2381 		if (cmp < 0)
2382 			n = n->rb_left;
2383 		else if (cmp > 0)
2384 			n = n->rb_right;
2385 		else
2386 			return iter;
2387 	}
2388 
2389 	return NULL;
2390 }
2391 
2392 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2393 						      struct hist_entry *he)
2394 {
2395 	struct rb_node *n = root->rb_root.rb_node;
2396 
2397 	while (n) {
2398 		struct hist_entry *iter;
2399 		struct perf_hpp_fmt *fmt;
2400 		int64_t cmp = 0;
2401 
2402 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2403 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2404 			cmp = fmt->collapse(fmt, iter, he);
2405 			if (cmp)
2406 				break;
2407 		}
2408 
2409 		if (cmp < 0)
2410 			n = n->rb_left;
2411 		else if (cmp > 0)
2412 			n = n->rb_right;
2413 		else
2414 			return iter;
2415 	}
2416 
2417 	return NULL;
2418 }
2419 
2420 static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2421 				   struct rb_root_cached *other_root)
2422 {
2423 	struct rb_node *nd;
2424 	struct hist_entry *pos, *pair;
2425 
2426 	for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2427 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2428 		pair = hists__find_hierarchy_entry(other_root, pos);
2429 
2430 		if (pair) {
2431 			hist_entry__add_pair(pair, pos);
2432 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2433 		}
2434 	}
2435 }
2436 
2437 /*
2438  * Look for pairs to link to the leader buckets (hist_entries):
2439  */
2440 void hists__match(struct hists *leader, struct hists *other)
2441 {
2442 	struct rb_root_cached *root;
2443 	struct rb_node *nd;
2444 	struct hist_entry *pos, *pair;
2445 
2446 	if (symbol_conf.report_hierarchy) {
2447 		/* hierarchy report always collapses entries */
2448 		return hists__match_hierarchy(&leader->entries_collapsed,
2449 					      &other->entries_collapsed);
2450 	}
2451 
2452 	if (hists__has(leader, need_collapse))
2453 		root = &leader->entries_collapsed;
2454 	else
2455 		root = leader->entries_in;
2456 
2457 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2458 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2459 		pair = hists__find_entry(other, pos);
2460 
2461 		if (pair)
2462 			hist_entry__add_pair(pair, pos);
2463 	}
2464 }
2465 
2466 static int hists__link_hierarchy(struct hists *leader_hists,
2467 				 struct hist_entry *parent,
2468 				 struct rb_root_cached *leader_root,
2469 				 struct rb_root_cached *other_root)
2470 {
2471 	struct rb_node *nd;
2472 	struct hist_entry *pos, *leader;
2473 
2474 	for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2475 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2476 
2477 		if (hist_entry__has_pairs(pos)) {
2478 			bool found = false;
2479 
2480 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2481 				if (leader->hists == leader_hists) {
2482 					found = true;
2483 					break;
2484 				}
2485 			}
2486 			if (!found)
2487 				return -1;
2488 		} else {
2489 			leader = add_dummy_hierarchy_entry(leader_hists,
2490 							   leader_root, pos);
2491 			if (leader == NULL)
2492 				return -1;
2493 
2494 			/* do not point parent in the pos */
2495 			leader->parent_he = parent;
2496 
2497 			hist_entry__add_pair(pos, leader);
2498 		}
2499 
2500 		if (!pos->leaf) {
2501 			if (hists__link_hierarchy(leader_hists, leader,
2502 						  &leader->hroot_in,
2503 						  &pos->hroot_in) < 0)
2504 				return -1;
2505 		}
2506 	}
2507 	return 0;
2508 }
2509 
2510 /*
2511  * Look for entries in the other hists that are not present in the leader, if
2512  * we find them, just add a dummy entry on the leader hists, with period=0,
2513  * nr_events=0, to serve as the list header.
2514  */
2515 int hists__link(struct hists *leader, struct hists *other)
2516 {
2517 	struct rb_root_cached *root;
2518 	struct rb_node *nd;
2519 	struct hist_entry *pos, *pair;
2520 
2521 	if (symbol_conf.report_hierarchy) {
2522 		/* hierarchy report always collapses entries */
2523 		return hists__link_hierarchy(leader, NULL,
2524 					     &leader->entries_collapsed,
2525 					     &other->entries_collapsed);
2526 	}
2527 
2528 	if (hists__has(other, need_collapse))
2529 		root = &other->entries_collapsed;
2530 	else
2531 		root = other->entries_in;
2532 
2533 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2534 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2535 
2536 		if (!hist_entry__has_pairs(pos)) {
2537 			pair = hists__add_dummy_entry(leader, pos);
2538 			if (pair == NULL)
2539 				return -1;
2540 			hist_entry__add_pair(pos, pair);
2541 		}
2542 	}
2543 
2544 	return 0;
2545 }
2546 
2547 int hists__unlink(struct hists *hists)
2548 {
2549 	struct rb_root_cached *root;
2550 	struct rb_node *nd;
2551 	struct hist_entry *pos;
2552 
2553 	if (hists__has(hists, need_collapse))
2554 		root = &hists->entries_collapsed;
2555 	else
2556 		root = hists->entries_in;
2557 
2558 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2559 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2560 		list_del_init(&pos->pairs.node);
2561 	}
2562 
2563 	return 0;
2564 }
2565 
2566 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2567 			  struct perf_sample *sample, bool nonany_branch_mode)
2568 {
2569 	struct branch_info *bi;
2570 
2571 	/* If we have branch cycles always annotate them. */
2572 	if (bs && bs->nr && bs->entries[0].flags.cycles) {
2573 		int i;
2574 
2575 		bi = sample__resolve_bstack(sample, al);
2576 		if (bi) {
2577 			struct addr_map_symbol *prev = NULL;
2578 
2579 			/*
2580 			 * Ignore errors, still want to process the
2581 			 * other entries.
2582 			 *
2583 			 * For non standard branch modes always
2584 			 * force no IPC (prev == NULL)
2585 			 *
2586 			 * Note that perf stores branches reversed from
2587 			 * program order!
2588 			 */
2589 			for (i = bs->nr - 1; i >= 0; i--) {
2590 				addr_map_symbol__account_cycles(&bi[i].from,
2591 					nonany_branch_mode ? NULL : prev,
2592 					bi[i].flags.cycles);
2593 				prev = &bi[i].to;
2594 			}
2595 			free(bi);
2596 		}
2597 	}
2598 }
2599 
2600 size_t perf_evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp)
2601 {
2602 	struct evsel *pos;
2603 	size_t ret = 0;
2604 
2605 	evlist__for_each_entry(evlist, pos) {
2606 		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2607 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2608 	}
2609 
2610 	return ret;
2611 }
2612 
2613 
2614 u64 hists__total_period(struct hists *hists)
2615 {
2616 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2617 		hists->stats.total_period;
2618 }
2619 
2620 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2621 {
2622 	char unit;
2623 	int printed;
2624 	const struct dso *dso = hists->dso_filter;
2625 	struct thread *thread = hists->thread_filter;
2626 	int socket_id = hists->socket_filter;
2627 	unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
2628 	u64 nr_events = hists->stats.total_period;
2629 	struct evsel *evsel = hists_to_evsel(hists);
2630 	const char *ev_name = perf_evsel__name(evsel);
2631 	char buf[512], sample_freq_str[64] = "";
2632 	size_t buflen = sizeof(buf);
2633 	char ref[30] = " show reference callgraph, ";
2634 	bool enable_ref = false;
2635 
2636 	if (symbol_conf.filter_relative) {
2637 		nr_samples = hists->stats.nr_non_filtered_samples;
2638 		nr_events = hists->stats.total_non_filtered_period;
2639 	}
2640 
2641 	if (perf_evsel__is_group_event(evsel)) {
2642 		struct evsel *pos;
2643 
2644 		perf_evsel__group_desc(evsel, buf, buflen);
2645 		ev_name = buf;
2646 
2647 		for_each_group_member(pos, evsel) {
2648 			struct hists *pos_hists = evsel__hists(pos);
2649 
2650 			if (symbol_conf.filter_relative) {
2651 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2652 				nr_events += pos_hists->stats.total_non_filtered_period;
2653 			} else {
2654 				nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
2655 				nr_events += pos_hists->stats.total_period;
2656 			}
2657 		}
2658 	}
2659 
2660 	if (symbol_conf.show_ref_callgraph &&
2661 	    strstr(ev_name, "call-graph=no"))
2662 		enable_ref = true;
2663 
2664 	if (show_freq)
2665 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2666 
2667 	nr_samples = convert_unit(nr_samples, &unit);
2668 	printed = scnprintf(bf, size,
2669 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2670 			   nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2671 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2672 
2673 
2674 	if (hists->uid_filter_str)
2675 		printed += snprintf(bf + printed, size - printed,
2676 				    ", UID: %s", hists->uid_filter_str);
2677 	if (thread) {
2678 		if (hists__has(hists, thread)) {
2679 			printed += scnprintf(bf + printed, size - printed,
2680 				    ", Thread: %s(%d)",
2681 				     (thread->comm_set ? thread__comm_str(thread) : ""),
2682 				    thread->tid);
2683 		} else {
2684 			printed += scnprintf(bf + printed, size - printed,
2685 				    ", Thread: %s",
2686 				     (thread->comm_set ? thread__comm_str(thread) : ""));
2687 		}
2688 	}
2689 	if (dso)
2690 		printed += scnprintf(bf + printed, size - printed,
2691 				    ", DSO: %s", dso->short_name);
2692 	if (socket_id > -1)
2693 		printed += scnprintf(bf + printed, size - printed,
2694 				    ", Processor Socket: %d", socket_id);
2695 
2696 	return printed;
2697 }
2698 
2699 int parse_filter_percentage(const struct option *opt __maybe_unused,
2700 			    const char *arg, int unset __maybe_unused)
2701 {
2702 	if (!strcmp(arg, "relative"))
2703 		symbol_conf.filter_relative = true;
2704 	else if (!strcmp(arg, "absolute"))
2705 		symbol_conf.filter_relative = false;
2706 	else {
2707 		pr_debug("Invalid percentage: %s\n", arg);
2708 		return -1;
2709 	}
2710 
2711 	return 0;
2712 }
2713 
2714 int perf_hist_config(const char *var, const char *value)
2715 {
2716 	if (!strcmp(var, "hist.percentage"))
2717 		return parse_filter_percentage(NULL, value, 0);
2718 
2719 	return 0;
2720 }
2721 
2722 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2723 {
2724 	memset(hists, 0, sizeof(*hists));
2725 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2726 	hists->entries_in = &hists->entries_in_array[0];
2727 	hists->entries_collapsed = RB_ROOT_CACHED;
2728 	hists->entries = RB_ROOT_CACHED;
2729 	pthread_mutex_init(&hists->lock, NULL);
2730 	hists->socket_filter = -1;
2731 	hists->hpp_list = hpp_list;
2732 	INIT_LIST_HEAD(&hists->hpp_formats);
2733 	return 0;
2734 }
2735 
2736 static void hists__delete_remaining_entries(struct rb_root_cached *root)
2737 {
2738 	struct rb_node *node;
2739 	struct hist_entry *he;
2740 
2741 	while (!RB_EMPTY_ROOT(&root->rb_root)) {
2742 		node = rb_first_cached(root);
2743 		rb_erase_cached(node, root);
2744 
2745 		he = rb_entry(node, struct hist_entry, rb_node_in);
2746 		hist_entry__delete(he);
2747 	}
2748 }
2749 
2750 static void hists__delete_all_entries(struct hists *hists)
2751 {
2752 	hists__delete_entries(hists);
2753 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2754 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2755 	hists__delete_remaining_entries(&hists->entries_collapsed);
2756 }
2757 
2758 static void hists_evsel__exit(struct evsel *evsel)
2759 {
2760 	struct hists *hists = evsel__hists(evsel);
2761 	struct perf_hpp_fmt *fmt, *pos;
2762 	struct perf_hpp_list_node *node, *tmp;
2763 
2764 	hists__delete_all_entries(hists);
2765 
2766 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2767 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2768 			list_del_init(&fmt->list);
2769 			free(fmt);
2770 		}
2771 		list_del_init(&node->list);
2772 		free(node);
2773 	}
2774 }
2775 
2776 static int hists_evsel__init(struct evsel *evsel)
2777 {
2778 	struct hists *hists = evsel__hists(evsel);
2779 
2780 	__hists__init(hists, &perf_hpp_list);
2781 	return 0;
2782 }
2783 
2784 /*
2785  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2786  * stored in the rbtree...
2787  */
2788 
2789 int hists__init(void)
2790 {
2791 	int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2792 					    hists_evsel__init,
2793 					    hists_evsel__exit);
2794 	if (err)
2795 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2796 
2797 	return err;
2798 }
2799 
2800 void perf_hpp_list__init(struct perf_hpp_list *list)
2801 {
2802 	INIT_LIST_HEAD(&list->fields);
2803 	INIT_LIST_HEAD(&list->sorts);
2804 }
2805