1 // SPDX-License-Identifier: GPL-2.0 2 #include "callchain.h" 3 #include "debug.h" 4 #include "dso.h" 5 #include "build-id.h" 6 #include "hist.h" 7 #include "kvm-stat.h" 8 #include "map.h" 9 #include "map_symbol.h" 10 #include "branch.h" 11 #include "mem-events.h" 12 #include "mem-info.h" 13 #include "session.h" 14 #include "namespaces.h" 15 #include "cgroup.h" 16 #include "sort.h" 17 #include "units.h" 18 #include "evlist.h" 19 #include "evsel.h" 20 #include "annotate.h" 21 #include "srcline.h" 22 #include "symbol.h" 23 #include "thread.h" 24 #include "block-info.h" 25 #include "ui/progress.h" 26 #include <errno.h> 27 #include <math.h> 28 #include <inttypes.h> 29 #include <sys/param.h> 30 #include <linux/rbtree.h> 31 #include <linux/string.h> 32 #include <linux/time64.h> 33 #include <linux/zalloc.h> 34 35 static int64_t hist_entry__cmp(struct hist_entry *left, struct hist_entry *right); 36 static int64_t hist_entry__collapse(struct hist_entry *left, struct hist_entry *right); 37 38 static bool hists__filter_entry_by_dso(struct hists *hists, 39 struct hist_entry *he); 40 static bool hists__filter_entry_by_thread(struct hists *hists, 41 struct hist_entry *he); 42 static bool hists__filter_entry_by_symbol(struct hists *hists, 43 struct hist_entry *he); 44 static bool hists__filter_entry_by_socket(struct hists *hists, 45 struct hist_entry *he); 46 static bool hists__filter_entry_by_parallelism(struct hists *hists, 47 struct hist_entry *he); 48 49 u16 hists__col_len(struct hists *hists, enum hist_column col) 50 { 51 return hists->col_len[col]; 52 } 53 54 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 55 { 56 hists->col_len[col] = len; 57 } 58 59 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 60 { 61 if (len > hists__col_len(hists, col)) { 62 hists__set_col_len(hists, col, len); 63 return true; 64 } 65 return false; 66 } 67 68 void hists__reset_col_len(struct hists *hists) 69 { 70 enum hist_column col; 71 72 for (col = 0; col < HISTC_NR_COLS; ++col) 73 hists__set_col_len(hists, col, 0); 74 } 75 76 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 77 { 78 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 79 80 if (hists__col_len(hists, dso) < unresolved_col_width && 81 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 82 !symbol_conf.dso_list) 83 hists__set_col_len(hists, dso, unresolved_col_width); 84 } 85 86 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 87 { 88 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 89 int symlen; 90 u16 len; 91 92 if (h->block_info) 93 return; 94 /* 95 * +4 accounts for '[x] ' priv level info 96 * +2 accounts for 0x prefix on raw addresses 97 * +3 accounts for ' y ' symtab origin info 98 */ 99 if (h->ms.sym) { 100 symlen = h->ms.sym->namelen + 4; 101 if (verbose > 0) 102 symlen += BITS_PER_LONG / 4 + 2 + 3; 103 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 104 } else { 105 symlen = unresolved_col_width + 4 + 2; 106 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 107 hists__set_unres_dso_col_len(hists, HISTC_DSO); 108 } 109 110 len = thread__comm_len(h->thread); 111 if (hists__new_col_len(hists, HISTC_COMM, len)) 112 hists__set_col_len(hists, HISTC_THREAD, len + 8); 113 114 if (h->ms.map) { 115 len = dso__name_len(map__dso(h->ms.map)); 116 hists__new_col_len(hists, HISTC_DSO, len); 117 } 118 119 if (h->parent) 120 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 121 122 if (h->branch_info) { 123 if (h->branch_info->from.ms.sym) { 124 symlen = (int)h->branch_info->from.ms.sym->namelen + 4; 125 if (verbose > 0) 126 symlen += BITS_PER_LONG / 4 + 2 + 3; 127 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 128 129 symlen = dso__name_len(map__dso(h->branch_info->from.ms.map)); 130 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 131 } else { 132 symlen = unresolved_col_width + 4 + 2; 133 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 134 hists__new_col_len(hists, HISTC_ADDR_FROM, symlen); 135 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 136 } 137 138 if (h->branch_info->to.ms.sym) { 139 symlen = (int)h->branch_info->to.ms.sym->namelen + 4; 140 if (verbose > 0) 141 symlen += BITS_PER_LONG / 4 + 2 + 3; 142 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 143 144 symlen = dso__name_len(map__dso(h->branch_info->to.ms.map)); 145 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 146 } else { 147 symlen = unresolved_col_width + 4 + 2; 148 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 149 hists__new_col_len(hists, HISTC_ADDR_TO, symlen); 150 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 151 } 152 153 if (h->branch_info->srcline_from) 154 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 155 strlen(h->branch_info->srcline_from)); 156 if (h->branch_info->srcline_to) 157 hists__new_col_len(hists, HISTC_SRCLINE_TO, 158 strlen(h->branch_info->srcline_to)); 159 } 160 161 if (h->mem_info) { 162 if (mem_info__daddr(h->mem_info)->ms.sym) { 163 symlen = (int)mem_info__daddr(h->mem_info)->ms.sym->namelen + 4 164 + unresolved_col_width + 2; 165 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 166 symlen); 167 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 168 symlen + 1); 169 } else { 170 symlen = unresolved_col_width + 4 + 2; 171 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 172 symlen); 173 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 174 symlen); 175 } 176 177 if (mem_info__iaddr(h->mem_info)->ms.sym) { 178 symlen = (int)mem_info__iaddr(h->mem_info)->ms.sym->namelen + 4 179 + unresolved_col_width + 2; 180 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 181 symlen); 182 } else { 183 symlen = unresolved_col_width + 4 + 2; 184 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 185 symlen); 186 } 187 188 if (mem_info__daddr(h->mem_info)->ms.map) { 189 symlen = dso__name_len(map__dso(mem_info__daddr(h->mem_info)->ms.map)); 190 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 191 symlen); 192 } else { 193 symlen = unresolved_col_width + 4 + 2; 194 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 195 } 196 197 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR, 198 unresolved_col_width + 4 + 2); 199 200 hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE, 201 unresolved_col_width + 4 + 2); 202 203 } else { 204 symlen = unresolved_col_width + 4 + 2; 205 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 206 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 207 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 208 } 209 210 hists__new_col_len(hists, HISTC_CGROUP, 6); 211 hists__new_col_len(hists, HISTC_CGROUP_ID, 20); 212 hists__new_col_len(hists, HISTC_PARALLELISM, 11); 213 hists__new_col_len(hists, HISTC_CPU, 3); 214 hists__new_col_len(hists, HISTC_SOCKET, 6); 215 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 216 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 217 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 218 hists__new_col_len(hists, HISTC_MEM_LVL, 36 + 3); 219 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 220 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 221 hists__new_col_len(hists, HISTC_MEM_BLOCKED, 10); 222 hists__new_col_len(hists, HISTC_LOCAL_INS_LAT, 13); 223 hists__new_col_len(hists, HISTC_GLOBAL_INS_LAT, 13); 224 hists__new_col_len(hists, HISTC_LOCAL_P_STAGE_CYC, 13); 225 hists__new_col_len(hists, HISTC_GLOBAL_P_STAGE_CYC, 13); 226 hists__new_col_len(hists, HISTC_ADDR, BITS_PER_LONG / 4 + 2); 227 hists__new_col_len(hists, HISTC_CALLCHAIN_BRANCH_PREDICTED, 9); 228 hists__new_col_len(hists, HISTC_CALLCHAIN_BRANCH_ABORT, 5); 229 hists__new_col_len(hists, HISTC_CALLCHAIN_BRANCH_CYCLES, 6); 230 231 if (symbol_conf.nanosecs) 232 hists__new_col_len(hists, HISTC_TIME, 16); 233 else 234 hists__new_col_len(hists, HISTC_TIME, 12); 235 hists__new_col_len(hists, HISTC_CODE_PAGE_SIZE, 6); 236 237 if (h->srcline) { 238 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header)); 239 hists__new_col_len(hists, HISTC_SRCLINE, len); 240 } 241 242 if (h->srcfile) 243 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 244 245 if (h->transaction) 246 hists__new_col_len(hists, HISTC_TRANSACTION, 247 hist_entry__transaction_len()); 248 249 if (h->trace_output) 250 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 251 252 if (h->cgroup) { 253 const char *cgrp_name = "unknown"; 254 struct cgroup *cgrp = cgroup__find(maps__machine(h->ms.maps)->env, 255 h->cgroup); 256 if (cgrp != NULL) 257 cgrp_name = cgrp->name; 258 259 hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name)); 260 } 261 } 262 263 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 264 { 265 struct rb_node *next = rb_first_cached(&hists->entries); 266 struct hist_entry *n; 267 int row = 0; 268 269 hists__reset_col_len(hists); 270 271 while (next && row++ < max_rows) { 272 n = rb_entry(next, struct hist_entry, rb_node); 273 if (!n->filtered) 274 hists__calc_col_len(hists, n); 275 next = rb_next(&n->rb_node); 276 } 277 } 278 279 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 280 unsigned int cpumode, u64 period) 281 { 282 switch (cpumode) { 283 case PERF_RECORD_MISC_KERNEL: 284 he_stat->period_sys += period; 285 break; 286 case PERF_RECORD_MISC_USER: 287 he_stat->period_us += period; 288 break; 289 case PERF_RECORD_MISC_GUEST_KERNEL: 290 he_stat->period_guest_sys += period; 291 break; 292 case PERF_RECORD_MISC_GUEST_USER: 293 he_stat->period_guest_us += period; 294 break; 295 default: 296 break; 297 } 298 } 299 300 static long hist_time(unsigned long htime) 301 { 302 unsigned long time_quantum = symbol_conf.time_quantum; 303 if (time_quantum) 304 return (htime / time_quantum) * time_quantum; 305 return htime; 306 } 307 308 static void he_stat__add_period(struct he_stat *he_stat, u64 period, u64 latency) 309 { 310 he_stat->period += period; 311 he_stat->latency += latency; 312 he_stat->nr_events += 1; 313 } 314 315 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 316 { 317 dest->period += src->period; 318 dest->period_sys += src->period_sys; 319 dest->period_us += src->period_us; 320 dest->period_guest_sys += src->period_guest_sys; 321 dest->period_guest_us += src->period_guest_us; 322 dest->weight1 += src->weight1; 323 dest->weight2 += src->weight2; 324 dest->weight3 += src->weight3; 325 dest->nr_events += src->nr_events; 326 dest->latency += src->latency; 327 } 328 329 static void he_stat__decay(struct he_stat *he_stat) 330 { 331 he_stat->period = (he_stat->period * 7) / 8; 332 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 333 he_stat->weight1 = (he_stat->weight1 * 7) / 8; 334 he_stat->weight2 = (he_stat->weight2 * 7) / 8; 335 he_stat->weight3 = (he_stat->weight3 * 7) / 8; 336 he_stat->latency = (he_stat->latency * 7) / 8; 337 } 338 339 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 340 341 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 342 { 343 u64 prev_period = he->stat.period; 344 u64 prev_latency = he->stat.latency; 345 346 if (prev_period == 0) 347 return true; 348 349 he_stat__decay(&he->stat); 350 if (symbol_conf.cumulate_callchain) 351 he_stat__decay(he->stat_acc); 352 decay_callchain(he->callchain); 353 354 if (!he->depth) { 355 u64 period_diff = prev_period - he->stat.period; 356 u64 latency_diff = prev_latency - he->stat.latency; 357 358 hists->stats.total_period -= period_diff; 359 hists->stats.total_latency -= latency_diff; 360 if (!he->filtered) { 361 hists->stats.total_non_filtered_period -= period_diff; 362 hists->stats.total_non_filtered_latency -= latency_diff; 363 } 364 } 365 366 if (!he->leaf) { 367 struct hist_entry *child; 368 struct rb_node *node = rb_first_cached(&he->hroot_out); 369 while (node) { 370 child = rb_entry(node, struct hist_entry, rb_node); 371 node = rb_next(node); 372 373 if (hists__decay_entry(hists, child)) 374 hists__delete_entry(hists, child); 375 } 376 } 377 378 return he->stat.period == 0 && he->stat.latency == 0; 379 } 380 381 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 382 { 383 struct rb_root_cached *root_in; 384 struct rb_root_cached *root_out; 385 386 if (he->parent_he) { 387 root_in = &he->parent_he->hroot_in; 388 root_out = &he->parent_he->hroot_out; 389 } else { 390 if (hists__has(hists, need_collapse)) 391 root_in = &hists->entries_collapsed; 392 else 393 root_in = hists->entries_in; 394 root_out = &hists->entries; 395 } 396 397 rb_erase_cached(&he->rb_node_in, root_in); 398 rb_erase_cached(&he->rb_node, root_out); 399 400 --hists->nr_entries; 401 if (!he->filtered) 402 --hists->nr_non_filtered_entries; 403 404 hist_entry__delete(he); 405 } 406 407 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 408 { 409 struct rb_node *next = rb_first_cached(&hists->entries); 410 struct hist_entry *n; 411 412 while (next) { 413 n = rb_entry(next, struct hist_entry, rb_node); 414 next = rb_next(&n->rb_node); 415 if (((zap_user && n->level == '.') || 416 (zap_kernel && n->level != '.') || 417 hists__decay_entry(hists, n))) { 418 hists__delete_entry(hists, n); 419 } 420 } 421 } 422 423 void hists__delete_entries(struct hists *hists) 424 { 425 struct rb_node *next = rb_first_cached(&hists->entries); 426 struct hist_entry *n; 427 428 while (next) { 429 n = rb_entry(next, struct hist_entry, rb_node); 430 next = rb_next(&n->rb_node); 431 432 hists__delete_entry(hists, n); 433 } 434 } 435 436 struct hist_entry *hists__get_entry(struct hists *hists, int idx) 437 { 438 struct rb_node *next = rb_first_cached(&hists->entries); 439 struct hist_entry *n; 440 int i = 0; 441 442 while (next) { 443 n = rb_entry(next, struct hist_entry, rb_node); 444 if (i == idx) 445 return n; 446 447 next = rb_next(&n->rb_node); 448 i++; 449 } 450 451 return NULL; 452 } 453 454 /* 455 * histogram, sorted on item, collects periods 456 */ 457 458 static int hist_entry__init(struct hist_entry *he, 459 struct hist_entry *template, 460 bool sample_self, 461 size_t callchain_size) 462 { 463 *he = *template; 464 he->callchain_size = callchain_size; 465 466 if (symbol_conf.cumulate_callchain) { 467 he->stat_acc = malloc(sizeof(he->stat)); 468 if (he->stat_acc == NULL) 469 return -ENOMEM; 470 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 471 if (!sample_self) 472 memset(&he->stat, 0, sizeof(he->stat)); 473 } 474 475 he->ms.maps = maps__get(he->ms.maps); 476 he->ms.map = map__get(he->ms.map); 477 478 if (he->branch_info) { 479 /* 480 * This branch info is (a part of) allocated from 481 * sample__resolve_bstack() and will be freed after 482 * adding new entries. So we need to save a copy. 483 */ 484 he->branch_info = malloc(sizeof(*he->branch_info)); 485 if (he->branch_info == NULL) 486 goto err; 487 488 memcpy(he->branch_info, template->branch_info, 489 sizeof(*he->branch_info)); 490 491 he->branch_info->from.ms.maps = maps__get(he->branch_info->from.ms.maps); 492 he->branch_info->from.ms.map = map__get(he->branch_info->from.ms.map); 493 he->branch_info->to.ms.maps = maps__get(he->branch_info->to.ms.maps); 494 he->branch_info->to.ms.map = map__get(he->branch_info->to.ms.map); 495 } 496 497 if (he->mem_info) { 498 he->mem_info = mem_info__clone(template->mem_info); 499 if (he->mem_info == NULL) 500 goto err_infos; 501 } 502 503 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 504 callchain_init(he->callchain); 505 506 if (he->raw_data) { 507 he->raw_data = memdup(he->raw_data, he->raw_size); 508 if (he->raw_data == NULL) 509 goto err_infos; 510 } 511 512 if (he->srcline && he->srcline != SRCLINE_UNKNOWN) { 513 he->srcline = strdup(he->srcline); 514 if (he->srcline == NULL) 515 goto err_rawdata; 516 } 517 518 if (symbol_conf.res_sample) { 519 he->res_samples = calloc(symbol_conf.res_sample, 520 sizeof(struct res_sample)); 521 if (!he->res_samples) 522 goto err_srcline; 523 } 524 525 INIT_LIST_HEAD(&he->pairs.node); 526 he->thread = thread__get(he->thread); 527 he->hroot_in = RB_ROOT_CACHED; 528 he->hroot_out = RB_ROOT_CACHED; 529 530 if (!symbol_conf.report_hierarchy) 531 he->leaf = true; 532 533 return 0; 534 535 err_srcline: 536 zfree(&he->srcline); 537 538 err_rawdata: 539 zfree(&he->raw_data); 540 541 err_infos: 542 if (he->branch_info) { 543 map_symbol__exit(&he->branch_info->from.ms); 544 map_symbol__exit(&he->branch_info->to.ms); 545 zfree(&he->branch_info); 546 } 547 if (he->mem_info) { 548 map_symbol__exit(&mem_info__iaddr(he->mem_info)->ms); 549 map_symbol__exit(&mem_info__daddr(he->mem_info)->ms); 550 } 551 err: 552 map_symbol__exit(&he->ms); 553 zfree(&he->stat_acc); 554 return -ENOMEM; 555 } 556 557 static void *hist_entry__zalloc(size_t size) 558 { 559 return zalloc(size + sizeof(struct hist_entry)); 560 } 561 562 static void hist_entry__free(void *ptr) 563 { 564 free(ptr); 565 } 566 567 static struct hist_entry_ops default_ops = { 568 .new = hist_entry__zalloc, 569 .free = hist_entry__free, 570 }; 571 572 static struct hist_entry *hist_entry__new(struct hist_entry *template, 573 bool sample_self) 574 { 575 struct hist_entry_ops *ops = template->ops; 576 size_t callchain_size = 0; 577 struct hist_entry *he; 578 int err = 0; 579 580 if (!ops) 581 ops = template->ops = &default_ops; 582 583 if (symbol_conf.use_callchain) 584 callchain_size = sizeof(struct callchain_root); 585 586 he = ops->new(callchain_size); 587 if (he) { 588 err = hist_entry__init(he, template, sample_self, callchain_size); 589 if (err) { 590 ops->free(he); 591 he = NULL; 592 } 593 } 594 return he; 595 } 596 597 static filter_mask_t symbol__parent_filter(const struct symbol *parent) 598 { 599 if (symbol_conf.exclude_other && parent == NULL) 600 return 1 << HIST_FILTER__PARENT; 601 return 0; 602 } 603 604 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period, u64 latency) 605 { 606 if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain) 607 return; 608 609 he->hists->callchain_period += period; 610 he->hists->callchain_latency += latency; 611 if (!he->filtered) { 612 he->hists->callchain_non_filtered_period += period; 613 he->hists->callchain_non_filtered_latency += latency; 614 } 615 } 616 617 static struct hist_entry *hists__findnew_entry(struct hists *hists, 618 struct hist_entry *entry, 619 const struct addr_location *al, 620 bool sample_self) 621 { 622 struct rb_node **p; 623 struct rb_node *parent = NULL; 624 struct hist_entry *he; 625 int64_t cmp; 626 u64 period = entry->stat.period; 627 u64 latency = entry->stat.latency; 628 bool leftmost = true; 629 630 p = &hists->entries_in->rb_root.rb_node; 631 632 while (*p != NULL) { 633 parent = *p; 634 he = rb_entry(parent, struct hist_entry, rb_node_in); 635 636 /* 637 * Make sure that it receives arguments in a same order as 638 * hist_entry__collapse() so that we can use an appropriate 639 * function when searching an entry regardless which sort 640 * keys were used. 641 */ 642 cmp = hist_entry__cmp(he, entry); 643 if (!cmp) { 644 if (sample_self) { 645 he_stat__add_stat(&he->stat, &entry->stat); 646 hist_entry__add_callchain_period(he, period, latency); 647 } 648 if (symbol_conf.cumulate_callchain) 649 he_stat__add_period(he->stat_acc, period, latency); 650 651 block_info__delete(entry->block_info); 652 653 kvm_info__zput(entry->kvm_info); 654 655 /* If the map of an existing hist_entry has 656 * become out-of-date due to an exec() or 657 * similar, update it. Otherwise we will 658 * mis-adjust symbol addresses when computing 659 * the history counter to increment. 660 */ 661 if (hists__has(hists, sym) && he->ms.map != entry->ms.map) { 662 if (he->ms.sym) { 663 u64 addr = he->ms.sym->start; 664 he->ms.sym = map__find_symbol(entry->ms.map, addr); 665 } 666 667 map__put(he->ms.map); 668 he->ms.map = map__get(entry->ms.map); 669 } 670 goto out; 671 } 672 673 if (cmp < 0) 674 p = &(*p)->rb_left; 675 else { 676 p = &(*p)->rb_right; 677 leftmost = false; 678 } 679 } 680 681 he = hist_entry__new(entry, sample_self); 682 if (!he) 683 return NULL; 684 685 if (sample_self) 686 hist_entry__add_callchain_period(he, period, latency); 687 hists->nr_entries++; 688 689 rb_link_node(&he->rb_node_in, parent, p); 690 rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost); 691 out: 692 if (sample_self) 693 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 694 if (symbol_conf.cumulate_callchain) 695 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 696 return he; 697 } 698 699 static unsigned random_max(unsigned high) 700 { 701 unsigned thresh = -high % high; 702 for (;;) { 703 unsigned r = random(); 704 if (r >= thresh) 705 return r % high; 706 } 707 } 708 709 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample) 710 { 711 struct res_sample *r; 712 int j; 713 714 if (he->num_res < symbol_conf.res_sample) { 715 j = he->num_res++; 716 } else { 717 j = random_max(symbol_conf.res_sample); 718 } 719 r = &he->res_samples[j]; 720 r->time = sample->time; 721 r->cpu = sample->cpu; 722 r->tid = sample->tid; 723 } 724 725 static struct hist_entry* 726 __hists__add_entry(struct hists *hists, 727 struct addr_location *al, 728 struct symbol *sym_parent, 729 struct branch_info *bi, 730 struct mem_info *mi, 731 struct kvm_info *ki, 732 struct block_info *block_info, 733 struct perf_sample *sample, 734 bool sample_self, 735 struct hist_entry_ops *ops) 736 { 737 struct namespaces *ns = thread__namespaces(al->thread); 738 struct hist_entry entry = { 739 .thread = al->thread, 740 .comm = thread__comm(al->thread), 741 .cgroup_id = { 742 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0, 743 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0, 744 }, 745 .cgroup = sample->cgroup, 746 .ms = { 747 .maps = al->maps, 748 .map = al->map, 749 .sym = al->sym, 750 }, 751 .srcline = (char *) al->srcline, 752 .socket = al->socket, 753 .cpu = al->cpu, 754 .cpumode = al->cpumode, 755 .ip = al->addr, 756 .level = al->level, 757 .code_page_size = sample->code_page_size, 758 .parallelism = al->parallelism, 759 .stat = { 760 .nr_events = 1, 761 .period = sample->period, 762 .weight1 = sample->weight, 763 .weight2 = sample->ins_lat, 764 .weight3 = sample->p_stage_cyc, 765 .latency = al->latency, 766 }, 767 .parent = sym_parent, 768 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 769 .hists = hists, 770 .branch_info = bi, 771 .mem_info = mi, 772 .kvm_info = ki, 773 .block_info = block_info, 774 .transaction = sample->transaction, 775 .raw_data = sample->raw_data, 776 .raw_size = sample->raw_size, 777 .ops = ops, 778 .time = hist_time(sample->time), 779 .weight = sample->weight, 780 .ins_lat = sample->ins_lat, 781 .p_stage_cyc = sample->p_stage_cyc, 782 .simd_flags = sample->simd_flags, 783 }, *he = hists__findnew_entry(hists, &entry, al, sample_self); 784 785 if (!hists->has_callchains && he && he->callchain_size != 0) 786 hists->has_callchains = true; 787 if (he && symbol_conf.res_sample) 788 hists__res_sample(he, sample); 789 return he; 790 } 791 792 struct hist_entry *hists__add_entry(struct hists *hists, 793 struct addr_location *al, 794 struct symbol *sym_parent, 795 struct branch_info *bi, 796 struct mem_info *mi, 797 struct kvm_info *ki, 798 struct perf_sample *sample, 799 bool sample_self) 800 { 801 return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL, 802 sample, sample_self, NULL); 803 } 804 805 struct hist_entry *hists__add_entry_ops(struct hists *hists, 806 struct hist_entry_ops *ops, 807 struct addr_location *al, 808 struct symbol *sym_parent, 809 struct branch_info *bi, 810 struct mem_info *mi, 811 struct kvm_info *ki, 812 struct perf_sample *sample, 813 bool sample_self) 814 { 815 return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL, 816 sample, sample_self, ops); 817 } 818 819 struct hist_entry *hists__add_entry_block(struct hists *hists, 820 struct addr_location *al, 821 struct block_info *block_info) 822 { 823 struct hist_entry entry = { 824 .block_info = block_info, 825 .hists = hists, 826 .ms = { 827 .maps = al->maps, 828 .map = al->map, 829 .sym = al->sym, 830 }, 831 }, *he = hists__findnew_entry(hists, &entry, al, false); 832 833 return he; 834 } 835 836 static int 837 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 838 struct addr_location *al __maybe_unused) 839 { 840 return 0; 841 } 842 843 static int 844 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 845 struct addr_location *al __maybe_unused) 846 { 847 return 0; 848 } 849 850 static int 851 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 852 { 853 struct perf_sample *sample = iter->sample; 854 struct mem_info *mi; 855 856 mi = sample__resolve_mem(sample, al); 857 if (mi == NULL) 858 return -ENOMEM; 859 860 iter->mi = mi; 861 return 0; 862 } 863 864 static int 865 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 866 { 867 u64 cost; 868 struct mem_info *mi = iter->mi; 869 struct hists *hists = evsel__hists(iter->evsel); 870 struct perf_sample *sample = iter->sample; 871 struct hist_entry *he; 872 873 if (mi == NULL) 874 return -EINVAL; 875 876 cost = sample->weight; 877 if (!cost) 878 cost = 1; 879 880 /* 881 * must pass period=weight in order to get the correct 882 * sorting from hists__collapse_resort() which is solely 883 * based on periods. We want sorting be done on nr_events * weight 884 * and this is indirectly achieved by passing period=weight here 885 * and the he_stat__add_period() function. 886 */ 887 sample->period = cost; 888 889 he = hists__add_entry(hists, al, iter->parent, NULL, mi, NULL, 890 sample, true); 891 if (!he) 892 return -ENOMEM; 893 894 iter->he = he; 895 return 0; 896 } 897 898 static int 899 iter_finish_mem_entry(struct hist_entry_iter *iter, 900 struct addr_location *al __maybe_unused) 901 { 902 struct evsel *evsel = iter->evsel; 903 struct hists *hists = evsel__hists(evsel); 904 struct hist_entry *he = iter->he; 905 int err = -EINVAL; 906 907 if (he == NULL) 908 goto out; 909 910 hists__inc_nr_samples(hists, he->filtered); 911 912 err = hist_entry__append_callchain(he, iter->sample); 913 914 out: 915 mem_info__zput(iter->mi); 916 917 iter->he = NULL; 918 return err; 919 } 920 921 static int 922 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 923 { 924 struct branch_info *bi; 925 struct perf_sample *sample = iter->sample; 926 927 bi = sample__resolve_bstack(sample, al); 928 if (!bi) 929 return -ENOMEM; 930 931 iter->curr = 0; 932 iter->total = sample->branch_stack->nr; 933 934 iter->bi = bi; 935 return 0; 936 } 937 938 static int 939 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused, 940 struct addr_location *al __maybe_unused) 941 { 942 return 0; 943 } 944 945 static int 946 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 947 { 948 struct branch_info *bi = iter->bi; 949 int i = iter->curr; 950 951 if (bi == NULL) 952 return 0; 953 954 if (iter->curr >= iter->total) 955 return 0; 956 957 maps__put(al->maps); 958 al->maps = maps__get(bi[i].to.ms.maps); 959 map__put(al->map); 960 al->map = map__get(bi[i].to.ms.map); 961 al->sym = bi[i].to.ms.sym; 962 al->addr = bi[i].to.addr; 963 return 1; 964 } 965 966 static int 967 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 968 { 969 struct branch_info *bi; 970 struct evsel *evsel = iter->evsel; 971 struct hists *hists = evsel__hists(evsel); 972 struct perf_sample *sample = iter->sample; 973 struct hist_entry *he = NULL; 974 int i = iter->curr; 975 int err = 0; 976 977 bi = iter->bi; 978 979 if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym)) 980 goto out; 981 982 /* 983 * The report shows the percentage of total branches captured 984 * and not events sampled. Thus we use a pseudo period of 1. 985 */ 986 sample->period = 1; 987 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 988 989 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, NULL, 990 sample, true); 991 if (he == NULL) 992 return -ENOMEM; 993 994 out: 995 iter->he = he; 996 iter->curr++; 997 return err; 998 } 999 1000 static void branch_info__exit(struct branch_info *bi) 1001 { 1002 map_symbol__exit(&bi->from.ms); 1003 map_symbol__exit(&bi->to.ms); 1004 zfree_srcline(&bi->srcline_from); 1005 zfree_srcline(&bi->srcline_to); 1006 } 1007 1008 static int 1009 iter_finish_branch_entry(struct hist_entry_iter *iter, 1010 struct addr_location *al __maybe_unused) 1011 { 1012 struct evsel *evsel = iter->evsel; 1013 struct hists *hists = evsel__hists(evsel); 1014 1015 for (int i = 0; i < iter->total; i++) 1016 branch_info__exit(&iter->bi[i]); 1017 1018 if (iter->he) 1019 hists__inc_nr_samples(hists, iter->he->filtered); 1020 1021 zfree(&iter->bi); 1022 iter->he = NULL; 1023 1024 return iter->curr >= iter->total ? 0 : -1; 1025 } 1026 1027 static int 1028 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 1029 struct addr_location *al __maybe_unused) 1030 { 1031 return 0; 1032 } 1033 1034 static int 1035 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 1036 { 1037 struct evsel *evsel = iter->evsel; 1038 struct perf_sample *sample = iter->sample; 1039 struct hist_entry *he; 1040 1041 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 1042 NULL, sample, true); 1043 if (he == NULL) 1044 return -ENOMEM; 1045 1046 iter->he = he; 1047 return 0; 1048 } 1049 1050 static int 1051 iter_finish_normal_entry(struct hist_entry_iter *iter, 1052 struct addr_location *al __maybe_unused) 1053 { 1054 struct hist_entry *he = iter->he; 1055 struct evsel *evsel = iter->evsel; 1056 struct perf_sample *sample = iter->sample; 1057 1058 if (he == NULL) 1059 return 0; 1060 1061 iter->he = NULL; 1062 1063 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 1064 1065 return hist_entry__append_callchain(he, sample); 1066 } 1067 1068 static int 1069 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 1070 struct addr_location *al __maybe_unused) 1071 { 1072 struct hist_entry **he_cache; 1073 struct callchain_cursor *cursor = get_tls_callchain_cursor(); 1074 1075 if (cursor == NULL) 1076 return -ENOMEM; 1077 1078 callchain_cursor_commit(cursor); 1079 1080 /* 1081 * This is for detecting cycles or recursions so that they're 1082 * cumulated only one time to prevent entries more than 100% 1083 * overhead. 1084 */ 1085 he_cache = malloc(sizeof(*he_cache) * (cursor->nr + 1)); 1086 if (he_cache == NULL) 1087 return -ENOMEM; 1088 1089 iter->he_cache = he_cache; 1090 iter->curr = 0; 1091 1092 return 0; 1093 } 1094 1095 static int 1096 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 1097 struct addr_location *al) 1098 { 1099 struct evsel *evsel = iter->evsel; 1100 struct hists *hists = evsel__hists(evsel); 1101 struct perf_sample *sample = iter->sample; 1102 struct hist_entry **he_cache = iter->he_cache; 1103 struct hist_entry *he; 1104 int err = 0; 1105 1106 he = hists__add_entry(hists, al, iter->parent, NULL, NULL, NULL, 1107 sample, true); 1108 if (he == NULL) 1109 return -ENOMEM; 1110 1111 iter->he = he; 1112 he_cache[iter->curr++] = he; 1113 1114 hist_entry__append_callchain(he, sample); 1115 1116 /* 1117 * We need to re-initialize the cursor since callchain_append() 1118 * advanced the cursor to the end. 1119 */ 1120 callchain_cursor_commit(get_tls_callchain_cursor()); 1121 1122 hists__inc_nr_samples(hists, he->filtered); 1123 1124 return err; 1125 } 1126 1127 static int 1128 iter_next_cumulative_entry(struct hist_entry_iter *iter, 1129 struct addr_location *al) 1130 { 1131 struct callchain_cursor_node *node; 1132 1133 node = callchain_cursor_current(get_tls_callchain_cursor()); 1134 if (node == NULL) 1135 return 0; 1136 1137 return fill_callchain_info(al, node, iter->hide_unresolved); 1138 } 1139 1140 static bool 1141 hist_entry__fast__sym_diff(struct hist_entry *left, 1142 struct hist_entry *right) 1143 { 1144 struct symbol *sym_l = left->ms.sym; 1145 struct symbol *sym_r = right->ms.sym; 1146 1147 if (!sym_l && !sym_r) 1148 return left->ip != right->ip; 1149 1150 return !!_sort__sym_cmp(sym_l, sym_r); 1151 } 1152 1153 1154 static int 1155 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 1156 struct addr_location *al) 1157 { 1158 struct evsel *evsel = iter->evsel; 1159 struct perf_sample *sample = iter->sample; 1160 struct hist_entry **he_cache = iter->he_cache; 1161 struct hist_entry *he; 1162 struct hist_entry he_tmp = { 1163 .hists = evsel__hists(evsel), 1164 .cpu = al->cpu, 1165 .thread = al->thread, 1166 .comm = thread__comm(al->thread), 1167 .ip = al->addr, 1168 .ms = { 1169 .maps = al->maps, 1170 .map = al->map, 1171 .sym = al->sym, 1172 }, 1173 .srcline = (char *) al->srcline, 1174 .parent = iter->parent, 1175 .raw_data = sample->raw_data, 1176 .raw_size = sample->raw_size, 1177 }; 1178 int i; 1179 struct callchain_cursor cursor, *tls_cursor = get_tls_callchain_cursor(); 1180 bool fast = hists__has(he_tmp.hists, sym); 1181 1182 if (tls_cursor == NULL) 1183 return -ENOMEM; 1184 1185 callchain_cursor_snapshot(&cursor, tls_cursor); 1186 1187 callchain_cursor_advance(tls_cursor); 1188 1189 /* 1190 * Check if there's duplicate entries in the callchain. 1191 * It's possible that it has cycles or recursive calls. 1192 */ 1193 for (i = 0; i < iter->curr; i++) { 1194 /* 1195 * For most cases, there are no duplicate entries in callchain. 1196 * The symbols are usually different. Do a quick check for 1197 * symbols first. 1198 */ 1199 if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp)) 1200 continue; 1201 1202 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 1203 /* to avoid calling callback function */ 1204 iter->he = NULL; 1205 return 0; 1206 } 1207 } 1208 1209 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 1210 NULL, sample, false); 1211 if (he == NULL) 1212 return -ENOMEM; 1213 1214 iter->he = he; 1215 he_cache[iter->curr++] = he; 1216 1217 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 1218 callchain_append(he->callchain, &cursor, sample->period); 1219 return 0; 1220 } 1221 1222 static int 1223 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 1224 struct addr_location *al __maybe_unused) 1225 { 1226 mem_info__zput(iter->mi); 1227 zfree(&iter->bi); 1228 zfree(&iter->he_cache); 1229 iter->he = NULL; 1230 1231 return 0; 1232 } 1233 1234 const struct hist_iter_ops hist_iter_mem = { 1235 .prepare_entry = iter_prepare_mem_entry, 1236 .add_single_entry = iter_add_single_mem_entry, 1237 .next_entry = iter_next_nop_entry, 1238 .add_next_entry = iter_add_next_nop_entry, 1239 .finish_entry = iter_finish_mem_entry, 1240 }; 1241 1242 const struct hist_iter_ops hist_iter_branch = { 1243 .prepare_entry = iter_prepare_branch_entry, 1244 .add_single_entry = iter_add_single_branch_entry, 1245 .next_entry = iter_next_branch_entry, 1246 .add_next_entry = iter_add_next_branch_entry, 1247 .finish_entry = iter_finish_branch_entry, 1248 }; 1249 1250 const struct hist_iter_ops hist_iter_normal = { 1251 .prepare_entry = iter_prepare_normal_entry, 1252 .add_single_entry = iter_add_single_normal_entry, 1253 .next_entry = iter_next_nop_entry, 1254 .add_next_entry = iter_add_next_nop_entry, 1255 .finish_entry = iter_finish_normal_entry, 1256 }; 1257 1258 const struct hist_iter_ops hist_iter_cumulative = { 1259 .prepare_entry = iter_prepare_cumulative_entry, 1260 .add_single_entry = iter_add_single_cumulative_entry, 1261 .next_entry = iter_next_cumulative_entry, 1262 .add_next_entry = iter_add_next_cumulative_entry, 1263 .finish_entry = iter_finish_cumulative_entry, 1264 }; 1265 1266 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1267 int max_stack_depth, void *arg) 1268 { 1269 int err, err2; 1270 struct map *alm = NULL; 1271 1272 if (al) 1273 alm = map__get(al->map); 1274 1275 err = sample__resolve_callchain(iter->sample, get_tls_callchain_cursor(), &iter->parent, 1276 iter->evsel, al, max_stack_depth); 1277 if (err) { 1278 map__put(alm); 1279 return err; 1280 } 1281 1282 err = iter->ops->prepare_entry(iter, al); 1283 if (err) 1284 goto out; 1285 1286 err = iter->ops->add_single_entry(iter, al); 1287 if (err) 1288 goto out; 1289 1290 if (iter->he && iter->add_entry_cb) { 1291 err = iter->add_entry_cb(iter, al, true, arg); 1292 if (err) 1293 goto out; 1294 } 1295 1296 while (iter->ops->next_entry(iter, al)) { 1297 err = iter->ops->add_next_entry(iter, al); 1298 if (err) 1299 break; 1300 1301 if (iter->he && iter->add_entry_cb) { 1302 err = iter->add_entry_cb(iter, al, false, arg); 1303 if (err) 1304 goto out; 1305 } 1306 } 1307 1308 out: 1309 err2 = iter->ops->finish_entry(iter, al); 1310 if (!err) 1311 err = err2; 1312 1313 map__put(alm); 1314 1315 return err; 1316 } 1317 1318 static int64_t 1319 hist_entry__cmp_impl(struct perf_hpp_list *hpp_list, struct hist_entry *left, 1320 struct hist_entry *right, unsigned long fn_offset, 1321 bool ignore_dynamic, bool ignore_skipped) 1322 { 1323 struct hists *hists = left->hists; 1324 struct perf_hpp_fmt *fmt; 1325 perf_hpp_fmt_cmp_t *fn; 1326 int64_t cmp; 1327 1328 /* 1329 * Never collapse filtered and non-filtered entries. 1330 * Note this is not the same as having an extra (invisible) fmt 1331 * that corresponds to the filtered status. 1332 */ 1333 cmp = (int64_t)!!left->filtered - (int64_t)!!right->filtered; 1334 if (cmp) 1335 return cmp; 1336 1337 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1338 if (ignore_dynamic && perf_hpp__is_dynamic_entry(fmt) && 1339 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1340 continue; 1341 1342 if (ignore_skipped && perf_hpp__should_skip(fmt, hists)) 1343 continue; 1344 1345 fn = (void *)fmt + fn_offset; 1346 cmp = (*fn)(fmt, left, right); 1347 if (cmp) 1348 break; 1349 } 1350 1351 return cmp; 1352 } 1353 1354 int64_t 1355 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1356 { 1357 return hist_entry__cmp_impl(left->hists->hpp_list, left, right, 1358 offsetof(struct perf_hpp_fmt, cmp), true, false); 1359 } 1360 1361 static int64_t 1362 hist_entry__sort(struct hist_entry *left, struct hist_entry *right) 1363 { 1364 return hist_entry__cmp_impl(left->hists->hpp_list, left, right, 1365 offsetof(struct perf_hpp_fmt, sort), false, true); 1366 } 1367 1368 int64_t 1369 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1370 { 1371 return hist_entry__cmp_impl(left->hists->hpp_list, left, right, 1372 offsetof(struct perf_hpp_fmt, collapse), true, false); 1373 } 1374 1375 static int64_t 1376 hist_entry__collapse_hierarchy(struct perf_hpp_list *hpp_list, 1377 struct hist_entry *left, 1378 struct hist_entry *right) 1379 { 1380 return hist_entry__cmp_impl(hpp_list, left, right, 1381 offsetof(struct perf_hpp_fmt, collapse), false, false); 1382 } 1383 1384 void hist_entry__delete(struct hist_entry *he) 1385 { 1386 struct hist_entry_ops *ops = he->ops; 1387 1388 if (symbol_conf.report_hierarchy) { 1389 struct rb_root *root = &he->hroot_out.rb_root; 1390 struct hist_entry *child, *tmp; 1391 1392 rbtree_postorder_for_each_entry_safe(child, tmp, root, rb_node) 1393 hist_entry__delete(child); 1394 1395 *root = RB_ROOT; 1396 } 1397 1398 thread__zput(he->thread); 1399 map_symbol__exit(&he->ms); 1400 1401 if (he->branch_info) { 1402 branch_info__exit(he->branch_info); 1403 zfree(&he->branch_info); 1404 } 1405 1406 if (he->mem_info) { 1407 map_symbol__exit(&mem_info__iaddr(he->mem_info)->ms); 1408 map_symbol__exit(&mem_info__daddr(he->mem_info)->ms); 1409 mem_info__zput(he->mem_info); 1410 } 1411 1412 if (he->block_info) 1413 block_info__delete(he->block_info); 1414 1415 if (he->kvm_info) 1416 kvm_info__zput(he->kvm_info); 1417 1418 zfree(&he->res_samples); 1419 zfree(&he->stat_acc); 1420 zfree_srcline(&he->srcline); 1421 if (he->srcfile && he->srcfile[0]) 1422 zfree(&he->srcfile); 1423 free_callchain(he->callchain); 1424 zfree(&he->trace_output); 1425 zfree(&he->raw_data); 1426 ops->free(he); 1427 } 1428 1429 /* 1430 * If this is not the last column, then we need to pad it according to the 1431 * pre-calculated max length for this column, otherwise don't bother adding 1432 * spaces because that would break viewing this with, for instance, 'less', 1433 * that would show tons of trailing spaces when a long C++ demangled method 1434 * names is sampled. 1435 */ 1436 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1437 struct perf_hpp_fmt *fmt, int printed) 1438 { 1439 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1440 const int width = fmt->width(fmt, hpp, he->hists); 1441 if (printed < width) { 1442 advance_hpp(hpp, printed); 1443 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1444 } 1445 } 1446 1447 return printed; 1448 } 1449 1450 /* 1451 * collapse the histogram 1452 */ 1453 1454 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1455 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1456 enum hist_filter type); 1457 1458 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1459 1460 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1461 { 1462 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1463 } 1464 1465 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1466 enum hist_filter type, 1467 fmt_chk_fn check) 1468 { 1469 struct perf_hpp_fmt *fmt; 1470 bool type_match = false; 1471 struct hist_entry *parent = he->parent_he; 1472 1473 switch (type) { 1474 case HIST_FILTER__THREAD: 1475 if (symbol_conf.comm_list == NULL && 1476 symbol_conf.pid_list == NULL && 1477 symbol_conf.tid_list == NULL) 1478 return; 1479 break; 1480 case HIST_FILTER__DSO: 1481 if (symbol_conf.dso_list == NULL) 1482 return; 1483 break; 1484 case HIST_FILTER__SYMBOL: 1485 if (symbol_conf.sym_list == NULL) 1486 return; 1487 break; 1488 case HIST_FILTER__PARALLELISM: 1489 if (__bitmap_weight(symbol_conf.parallelism_filter, MAX_NR_CPUS + 1) == 0) 1490 return; 1491 break; 1492 case HIST_FILTER__PARENT: 1493 case HIST_FILTER__GUEST: 1494 case HIST_FILTER__HOST: 1495 case HIST_FILTER__SOCKET: 1496 case HIST_FILTER__C2C: 1497 default: 1498 return; 1499 } 1500 1501 /* if it's filtered by own fmt, it has to have filter bits */ 1502 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1503 if (check(fmt)) { 1504 type_match = true; 1505 break; 1506 } 1507 } 1508 1509 if (type_match) { 1510 /* 1511 * If the filter is for current level entry, propagate 1512 * filter marker to parents. The marker bit was 1513 * already set by default so it only needs to clear 1514 * non-filtered entries. 1515 */ 1516 if (!(he->filtered & (1 << type))) { 1517 while (parent) { 1518 parent->filtered &= ~(1 << type); 1519 parent = parent->parent_he; 1520 } 1521 } 1522 } else { 1523 /* 1524 * If current entry doesn't have matching formats, set 1525 * filter marker for upper level entries. it will be 1526 * cleared if its lower level entries is not filtered. 1527 * 1528 * For lower-level entries, it inherits parent's 1529 * filter bit so that lower level entries of a 1530 * non-filtered entry won't set the filter marker. 1531 */ 1532 if (parent == NULL) 1533 he->filtered |= (1 << type); 1534 else 1535 he->filtered |= (parent->filtered & (1 << type)); 1536 } 1537 } 1538 1539 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1540 { 1541 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1542 check_thread_entry); 1543 1544 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1545 perf_hpp__is_dso_entry); 1546 1547 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1548 perf_hpp__is_sym_entry); 1549 1550 hist_entry__check_and_remove_filter(he, HIST_FILTER__PARALLELISM, 1551 perf_hpp__is_parallelism_entry); 1552 1553 hists__apply_filters(he->hists, he); 1554 } 1555 1556 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1557 struct rb_root_cached *root, 1558 struct hist_entry *he, 1559 struct hist_entry *parent_he, 1560 struct perf_hpp_list *hpp_list) 1561 { 1562 struct rb_node **p = &root->rb_root.rb_node; 1563 struct rb_node *parent = NULL; 1564 struct hist_entry *iter, *new; 1565 struct perf_hpp_fmt *fmt; 1566 int64_t cmp; 1567 bool leftmost = true; 1568 1569 while (*p != NULL) { 1570 parent = *p; 1571 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1572 cmp = hist_entry__collapse_hierarchy(hpp_list, iter, he); 1573 if (!cmp) { 1574 he_stat__add_stat(&iter->stat, &he->stat); 1575 return iter; 1576 } 1577 1578 if (cmp < 0) 1579 p = &parent->rb_left; 1580 else { 1581 p = &parent->rb_right; 1582 leftmost = false; 1583 } 1584 } 1585 1586 new = hist_entry__new(he, true); 1587 if (new == NULL) 1588 return NULL; 1589 1590 hists->nr_entries++; 1591 1592 /* save related format list for output */ 1593 new->hpp_list = hpp_list; 1594 new->parent_he = parent_he; 1595 1596 hist_entry__apply_hierarchy_filters(new); 1597 1598 /* some fields are now passed to 'new' */ 1599 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1600 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1601 he->trace_output = NULL; 1602 else 1603 new->trace_output = NULL; 1604 1605 if (perf_hpp__is_srcline_entry(fmt)) 1606 he->srcline = NULL; 1607 else 1608 new->srcline = NULL; 1609 1610 if (perf_hpp__is_srcfile_entry(fmt)) 1611 he->srcfile = NULL; 1612 else 1613 new->srcfile = NULL; 1614 } 1615 1616 rb_link_node(&new->rb_node_in, parent, p); 1617 rb_insert_color_cached(&new->rb_node_in, root, leftmost); 1618 return new; 1619 } 1620 1621 static int hists__hierarchy_insert_entry(struct hists *hists, 1622 struct rb_root_cached *root, 1623 struct hist_entry *he) 1624 { 1625 struct perf_hpp_list_node *node; 1626 struct hist_entry *new_he = NULL; 1627 struct hist_entry *parent = NULL; 1628 int depth = 0; 1629 int ret = 0; 1630 1631 list_for_each_entry(node, &hists->hpp_formats, list) { 1632 /* skip period (overhead) and elided columns */ 1633 if (node->level == 0 || node->skip) 1634 continue; 1635 1636 /* insert copy of 'he' for each fmt into the hierarchy */ 1637 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1638 if (new_he == NULL) { 1639 ret = -1; 1640 break; 1641 } 1642 1643 root = &new_he->hroot_in; 1644 new_he->depth = depth++; 1645 parent = new_he; 1646 } 1647 1648 if (new_he) { 1649 new_he->leaf = true; 1650 1651 if (hist_entry__has_callchains(new_he) && 1652 symbol_conf.use_callchain) { 1653 struct callchain_cursor *cursor = get_tls_callchain_cursor(); 1654 1655 if (cursor == NULL) 1656 return -1; 1657 1658 callchain_cursor_reset(cursor); 1659 if (callchain_merge(cursor, 1660 new_he->callchain, 1661 he->callchain) < 0) 1662 ret = -1; 1663 } 1664 } 1665 1666 /* 'he' is no longer used */ 1667 hist_entry__delete(he); 1668 1669 /* return 0 (or -1) since it already applied filters */ 1670 return ret; 1671 } 1672 1673 static int hists__collapse_insert_entry(struct hists *hists, 1674 struct rb_root_cached *root, 1675 struct hist_entry *he) 1676 { 1677 struct rb_node **p = &root->rb_root.rb_node; 1678 struct rb_node *parent = NULL; 1679 struct hist_entry *iter; 1680 int64_t cmp; 1681 bool leftmost = true; 1682 1683 if (symbol_conf.report_hierarchy) 1684 return hists__hierarchy_insert_entry(hists, root, he); 1685 1686 while (*p != NULL) { 1687 parent = *p; 1688 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1689 1690 cmp = hist_entry__collapse(iter, he); 1691 1692 if (!cmp) { 1693 int ret = 0; 1694 1695 he_stat__add_stat(&iter->stat, &he->stat); 1696 if (symbol_conf.cumulate_callchain) 1697 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1698 1699 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) { 1700 struct callchain_cursor *cursor = get_tls_callchain_cursor(); 1701 1702 if (cursor != NULL) { 1703 callchain_cursor_reset(cursor); 1704 if (callchain_merge(cursor, iter->callchain, he->callchain) < 0) 1705 ret = -1; 1706 } else { 1707 ret = 0; 1708 } 1709 } 1710 hist_entry__delete(he); 1711 return ret; 1712 } 1713 1714 if (cmp < 0) 1715 p = &(*p)->rb_left; 1716 else { 1717 p = &(*p)->rb_right; 1718 leftmost = false; 1719 } 1720 } 1721 hists->nr_entries++; 1722 1723 rb_link_node(&he->rb_node_in, parent, p); 1724 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 1725 return 1; 1726 } 1727 1728 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists) 1729 { 1730 struct rb_root_cached *root; 1731 1732 mutex_lock(&hists->lock); 1733 1734 root = hists->entries_in; 1735 if (++hists->entries_in > &hists->entries_in_array[1]) 1736 hists->entries_in = &hists->entries_in_array[0]; 1737 1738 mutex_unlock(&hists->lock); 1739 1740 return root; 1741 } 1742 1743 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1744 { 1745 hists__filter_entry_by_dso(hists, he); 1746 hists__filter_entry_by_thread(hists, he); 1747 hists__filter_entry_by_symbol(hists, he); 1748 hists__filter_entry_by_socket(hists, he); 1749 hists__filter_entry_by_parallelism(hists, he); 1750 } 1751 1752 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1753 { 1754 struct rb_root_cached *root; 1755 struct rb_node *next; 1756 struct hist_entry *n; 1757 int ret; 1758 1759 if (!hists__has(hists, need_collapse)) 1760 return 0; 1761 1762 hists->nr_entries = 0; 1763 1764 root = hists__get_rotate_entries_in(hists); 1765 1766 next = rb_first_cached(root); 1767 1768 while (next) { 1769 if (session_done()) 1770 break; 1771 n = rb_entry(next, struct hist_entry, rb_node_in); 1772 next = rb_next(&n->rb_node_in); 1773 1774 rb_erase_cached(&n->rb_node_in, root); 1775 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1776 if (ret < 0) 1777 return -1; 1778 1779 if (ret) { 1780 /* 1781 * If it wasn't combined with one of the entries already 1782 * collapsed, we need to apply the filters that may have 1783 * been set by, say, the hist_browser. 1784 */ 1785 hists__apply_filters(hists, n); 1786 } 1787 if (prog) 1788 ui_progress__update(prog, 1); 1789 } 1790 return 0; 1791 } 1792 1793 static void hists__reset_filter_stats(struct hists *hists) 1794 { 1795 hists->nr_non_filtered_entries = 0; 1796 hists->stats.total_non_filtered_period = 0; 1797 hists->stats.total_non_filtered_latency = 0; 1798 } 1799 1800 void hists__reset_stats(struct hists *hists) 1801 { 1802 hists->nr_entries = 0; 1803 hists->stats.total_period = 0; 1804 hists->stats.total_latency = 0; 1805 1806 hists__reset_filter_stats(hists); 1807 } 1808 1809 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1810 { 1811 hists->nr_non_filtered_entries++; 1812 hists->stats.total_non_filtered_period += h->stat.period; 1813 hists->stats.total_non_filtered_latency += h->stat.latency; 1814 } 1815 1816 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1817 { 1818 if (!h->filtered) 1819 hists__inc_filter_stats(hists, h); 1820 1821 hists->nr_entries++; 1822 hists->stats.total_period += h->stat.period; 1823 hists->stats.total_latency += h->stat.latency; 1824 } 1825 1826 static void hierarchy_recalc_total_periods(struct hists *hists) 1827 { 1828 struct rb_node *node; 1829 struct hist_entry *he; 1830 1831 node = rb_first_cached(&hists->entries); 1832 1833 hists->stats.total_period = 0; 1834 hists->stats.total_non_filtered_period = 0; 1835 hists->stats.total_latency = 0; 1836 hists->stats.total_non_filtered_latency = 0; 1837 1838 /* 1839 * recalculate total period using top-level entries only 1840 * since lower level entries only see non-filtered entries 1841 * but upper level entries have sum of both entries. 1842 */ 1843 while (node) { 1844 he = rb_entry(node, struct hist_entry, rb_node); 1845 node = rb_next(node); 1846 1847 hists->stats.total_period += he->stat.period; 1848 hists->stats.total_latency += he->stat.latency; 1849 if (!he->filtered) { 1850 hists->stats.total_non_filtered_period += he->stat.period; 1851 hists->stats.total_non_filtered_latency += he->stat.latency; 1852 } 1853 } 1854 } 1855 1856 static void hierarchy_insert_output_entry(struct rb_root_cached *root, 1857 struct hist_entry *he) 1858 { 1859 struct rb_node **p = &root->rb_root.rb_node; 1860 struct rb_node *parent = NULL; 1861 struct hist_entry *iter; 1862 struct perf_hpp_fmt *fmt; 1863 bool leftmost = true; 1864 1865 while (*p != NULL) { 1866 parent = *p; 1867 iter = rb_entry(parent, struct hist_entry, rb_node); 1868 1869 if (hist_entry__sort(he, iter) > 0) 1870 p = &parent->rb_left; 1871 else { 1872 p = &parent->rb_right; 1873 leftmost = false; 1874 } 1875 } 1876 1877 rb_link_node(&he->rb_node, parent, p); 1878 rb_insert_color_cached(&he->rb_node, root, leftmost); 1879 1880 /* update column width of dynamic entry */ 1881 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1882 if (fmt->init) 1883 fmt->init(fmt, he); 1884 } 1885 } 1886 1887 static void hists__hierarchy_output_resort(struct hists *hists, 1888 struct ui_progress *prog, 1889 struct rb_root_cached *root_in, 1890 struct rb_root_cached *root_out, 1891 u64 min_callchain_hits, 1892 bool use_callchain) 1893 { 1894 struct rb_node *node; 1895 struct hist_entry *he; 1896 1897 *root_out = RB_ROOT_CACHED; 1898 node = rb_first_cached(root_in); 1899 1900 while (node) { 1901 he = rb_entry(node, struct hist_entry, rb_node_in); 1902 node = rb_next(node); 1903 1904 hierarchy_insert_output_entry(root_out, he); 1905 1906 if (prog) 1907 ui_progress__update(prog, 1); 1908 1909 hists->nr_entries++; 1910 if (!he->filtered) { 1911 hists->nr_non_filtered_entries++; 1912 hists__calc_col_len(hists, he); 1913 } 1914 1915 if (!he->leaf) { 1916 hists__hierarchy_output_resort(hists, prog, 1917 &he->hroot_in, 1918 &he->hroot_out, 1919 min_callchain_hits, 1920 use_callchain); 1921 continue; 1922 } 1923 1924 if (!use_callchain) 1925 continue; 1926 1927 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1928 u64 total = he->stat.period; 1929 1930 if (symbol_conf.cumulate_callchain) 1931 total = he->stat_acc->period; 1932 1933 min_callchain_hits = total * (callchain_param.min_percent / 100); 1934 } 1935 1936 callchain_param.sort(&he->sorted_chain, he->callchain, 1937 min_callchain_hits, &callchain_param); 1938 } 1939 } 1940 1941 static void __hists__insert_output_entry(struct rb_root_cached *entries, 1942 struct hist_entry *he, 1943 u64 min_callchain_hits, 1944 bool use_callchain) 1945 { 1946 struct rb_node **p = &entries->rb_root.rb_node; 1947 struct rb_node *parent = NULL; 1948 struct hist_entry *iter; 1949 struct perf_hpp_fmt *fmt; 1950 bool leftmost = true; 1951 1952 if (use_callchain) { 1953 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1954 u64 total = he->stat.period; 1955 1956 if (symbol_conf.cumulate_callchain) 1957 total = he->stat_acc->period; 1958 1959 min_callchain_hits = total * (callchain_param.min_percent / 100); 1960 } 1961 callchain_param.sort(&he->sorted_chain, he->callchain, 1962 min_callchain_hits, &callchain_param); 1963 } 1964 1965 while (*p != NULL) { 1966 parent = *p; 1967 iter = rb_entry(parent, struct hist_entry, rb_node); 1968 1969 if (hist_entry__sort(he, iter) > 0) 1970 p = &(*p)->rb_left; 1971 else { 1972 p = &(*p)->rb_right; 1973 leftmost = false; 1974 } 1975 } 1976 1977 rb_link_node(&he->rb_node, parent, p); 1978 rb_insert_color_cached(&he->rb_node, entries, leftmost); 1979 1980 /* update column width of dynamic entries */ 1981 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1982 if (fmt->init) 1983 fmt->init(fmt, he); 1984 } 1985 } 1986 1987 static void output_resort(struct hists *hists, struct ui_progress *prog, 1988 bool use_callchain, hists__resort_cb_t cb, 1989 void *cb_arg) 1990 { 1991 struct rb_root_cached *root; 1992 struct rb_node *next; 1993 struct hist_entry *n; 1994 u64 callchain_total; 1995 u64 min_callchain_hits; 1996 1997 callchain_total = hists->callchain_period; 1998 if (symbol_conf.filter_relative) 1999 callchain_total = hists->callchain_non_filtered_period; 2000 2001 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 2002 2003 hists__reset_stats(hists); 2004 hists__reset_col_len(hists); 2005 2006 if (symbol_conf.report_hierarchy) { 2007 hists__hierarchy_output_resort(hists, prog, 2008 &hists->entries_collapsed, 2009 &hists->entries, 2010 min_callchain_hits, 2011 use_callchain); 2012 hierarchy_recalc_total_periods(hists); 2013 return; 2014 } 2015 2016 if (hists__has(hists, need_collapse)) 2017 root = &hists->entries_collapsed; 2018 else 2019 root = hists->entries_in; 2020 2021 next = rb_first_cached(root); 2022 hists->entries = RB_ROOT_CACHED; 2023 2024 while (next) { 2025 n = rb_entry(next, struct hist_entry, rb_node_in); 2026 next = rb_next(&n->rb_node_in); 2027 2028 if (cb && cb(n, cb_arg)) 2029 continue; 2030 2031 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 2032 hists__inc_stats(hists, n); 2033 2034 if (!n->filtered) 2035 hists__calc_col_len(hists, n); 2036 2037 if (prog) 2038 ui_progress__update(prog, 1); 2039 } 2040 } 2041 2042 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog, 2043 hists__resort_cb_t cb, void *cb_arg) 2044 { 2045 bool use_callchain; 2046 2047 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 2048 use_callchain = evsel__has_callchain(evsel); 2049 else 2050 use_callchain = symbol_conf.use_callchain; 2051 2052 use_callchain |= symbol_conf.show_branchflag_count; 2053 2054 output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg); 2055 } 2056 2057 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog) 2058 { 2059 return evsel__output_resort_cb(evsel, prog, NULL, NULL); 2060 } 2061 2062 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 2063 { 2064 output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL); 2065 } 2066 2067 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, 2068 hists__resort_cb_t cb) 2069 { 2070 output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL); 2071 } 2072 2073 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 2074 { 2075 if (he->leaf || hmd == HMD_FORCE_SIBLING) 2076 return false; 2077 2078 if (he->unfolded || hmd == HMD_FORCE_CHILD) 2079 return true; 2080 2081 return false; 2082 } 2083 2084 struct rb_node *rb_hierarchy_last(struct rb_node *node) 2085 { 2086 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2087 2088 while (can_goto_child(he, HMD_NORMAL)) { 2089 node = rb_last(&he->hroot_out.rb_root); 2090 he = rb_entry(node, struct hist_entry, rb_node); 2091 } 2092 return node; 2093 } 2094 2095 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 2096 { 2097 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2098 2099 if (can_goto_child(he, hmd)) 2100 node = rb_first_cached(&he->hroot_out); 2101 else 2102 node = rb_next(node); 2103 2104 while (node == NULL) { 2105 he = he->parent_he; 2106 if (he == NULL) 2107 break; 2108 2109 node = rb_next(&he->rb_node); 2110 } 2111 return node; 2112 } 2113 2114 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 2115 { 2116 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2117 2118 node = rb_prev(node); 2119 if (node) 2120 return rb_hierarchy_last(node); 2121 2122 he = he->parent_he; 2123 if (he == NULL) 2124 return NULL; 2125 2126 return &he->rb_node; 2127 } 2128 2129 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 2130 { 2131 struct rb_node *node; 2132 struct hist_entry *child; 2133 float percent; 2134 2135 if (he->leaf) 2136 return false; 2137 2138 node = rb_first_cached(&he->hroot_out); 2139 child = rb_entry(node, struct hist_entry, rb_node); 2140 2141 while (node && child->filtered) { 2142 node = rb_next(node); 2143 child = rb_entry(node, struct hist_entry, rb_node); 2144 } 2145 2146 if (node) 2147 percent = hist_entry__get_percent_limit(child); 2148 else 2149 percent = 0; 2150 2151 return node && percent >= limit; 2152 } 2153 2154 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 2155 enum hist_filter filter) 2156 { 2157 h->filtered &= ~(1 << filter); 2158 2159 if (symbol_conf.report_hierarchy) { 2160 struct hist_entry *parent = h->parent_he; 2161 2162 while (parent) { 2163 he_stat__add_stat(&parent->stat, &h->stat); 2164 2165 parent->filtered &= ~(1 << filter); 2166 2167 if (parent->filtered) 2168 goto next; 2169 2170 /* force fold unfiltered entry for simplicity */ 2171 parent->unfolded = false; 2172 parent->has_no_entry = false; 2173 parent->row_offset = 0; 2174 parent->nr_rows = 0; 2175 next: 2176 parent = parent->parent_he; 2177 } 2178 } 2179 2180 if (h->filtered) 2181 return; 2182 2183 /* force fold unfiltered entry for simplicity */ 2184 h->unfolded = false; 2185 h->has_no_entry = false; 2186 h->row_offset = 0; 2187 h->nr_rows = 0; 2188 2189 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 2190 2191 hists__inc_filter_stats(hists, h); 2192 hists__calc_col_len(hists, h); 2193 } 2194 2195 2196 static bool hists__filter_entry_by_dso(struct hists *hists, 2197 struct hist_entry *he) 2198 { 2199 if (hists->dso_filter != NULL && 2200 (he->ms.map == NULL || !RC_CHK_EQUAL(map__dso(he->ms.map), hists->dso_filter))) { 2201 he->filtered |= (1 << HIST_FILTER__DSO); 2202 return true; 2203 } 2204 2205 return false; 2206 } 2207 2208 static bool hists__filter_entry_by_thread(struct hists *hists, 2209 struct hist_entry *he) 2210 { 2211 if (hists->thread_filter != NULL && 2212 !RC_CHK_EQUAL(he->thread, hists->thread_filter)) { 2213 he->filtered |= (1 << HIST_FILTER__THREAD); 2214 return true; 2215 } 2216 2217 return false; 2218 } 2219 2220 static bool hists__filter_entry_by_symbol(struct hists *hists, 2221 struct hist_entry *he) 2222 { 2223 if (hists->symbol_filter_str != NULL && 2224 (!he->ms.sym || strstr(he->ms.sym->name, 2225 hists->symbol_filter_str) == NULL)) { 2226 he->filtered |= (1 << HIST_FILTER__SYMBOL); 2227 return true; 2228 } 2229 2230 return false; 2231 } 2232 2233 static bool hists__filter_entry_by_socket(struct hists *hists, 2234 struct hist_entry *he) 2235 { 2236 if ((hists->socket_filter > -1) && 2237 (he->socket != hists->socket_filter)) { 2238 he->filtered |= (1 << HIST_FILTER__SOCKET); 2239 return true; 2240 } 2241 2242 return false; 2243 } 2244 2245 static bool hists__filter_entry_by_parallelism(struct hists *hists, 2246 struct hist_entry *he) 2247 { 2248 if (test_bit(he->parallelism, hists->parallelism_filter)) { 2249 he->filtered |= (1 << HIST_FILTER__PARALLELISM); 2250 return true; 2251 } 2252 return false; 2253 } 2254 2255 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 2256 2257 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 2258 { 2259 struct rb_node *nd; 2260 2261 hists->stats.nr_non_filtered_samples = 0; 2262 2263 hists__reset_filter_stats(hists); 2264 hists__reset_col_len(hists); 2265 2266 for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) { 2267 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2268 2269 if (filter(hists, h)) 2270 continue; 2271 2272 hists__remove_entry_filter(hists, h, type); 2273 } 2274 } 2275 2276 static void resort_filtered_entry(struct rb_root_cached *root, 2277 struct hist_entry *he) 2278 { 2279 struct rb_node **p = &root->rb_root.rb_node; 2280 struct rb_node *parent = NULL; 2281 struct hist_entry *iter; 2282 struct rb_root_cached new_root = RB_ROOT_CACHED; 2283 struct rb_node *nd; 2284 bool leftmost = true; 2285 2286 while (*p != NULL) { 2287 parent = *p; 2288 iter = rb_entry(parent, struct hist_entry, rb_node); 2289 2290 if (hist_entry__sort(he, iter) > 0) 2291 p = &(*p)->rb_left; 2292 else { 2293 p = &(*p)->rb_right; 2294 leftmost = false; 2295 } 2296 } 2297 2298 rb_link_node(&he->rb_node, parent, p); 2299 rb_insert_color_cached(&he->rb_node, root, leftmost); 2300 2301 if (he->leaf || he->filtered) 2302 return; 2303 2304 nd = rb_first_cached(&he->hroot_out); 2305 while (nd) { 2306 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2307 2308 nd = rb_next(nd); 2309 rb_erase_cached(&h->rb_node, &he->hroot_out); 2310 2311 resort_filtered_entry(&new_root, h); 2312 } 2313 2314 he->hroot_out = new_root; 2315 } 2316 2317 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 2318 { 2319 struct rb_node *nd; 2320 struct rb_root_cached new_root = RB_ROOT_CACHED; 2321 2322 hists->stats.nr_non_filtered_samples = 0; 2323 2324 hists__reset_filter_stats(hists); 2325 hists__reset_col_len(hists); 2326 2327 nd = rb_first_cached(&hists->entries); 2328 while (nd) { 2329 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2330 int ret; 2331 2332 ret = hist_entry__filter(h, type, arg); 2333 2334 /* 2335 * case 1. non-matching type 2336 * zero out the period, set filter marker and move to child 2337 */ 2338 if (ret < 0) { 2339 memset(&h->stat, 0, sizeof(h->stat)); 2340 h->filtered |= (1 << type); 2341 2342 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 2343 } 2344 /* 2345 * case 2. matched type (filter out) 2346 * set filter marker and move to next 2347 */ 2348 else if (ret == 1) { 2349 h->filtered |= (1 << type); 2350 2351 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2352 } 2353 /* 2354 * case 3. ok (not filtered) 2355 * add period to hists and parents, erase the filter marker 2356 * and move to next sibling 2357 */ 2358 else { 2359 hists__remove_entry_filter(hists, h, type); 2360 2361 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2362 } 2363 } 2364 2365 hierarchy_recalc_total_periods(hists); 2366 2367 /* 2368 * resort output after applying a new filter since filter in a lower 2369 * hierarchy can change periods in a upper hierarchy. 2370 */ 2371 nd = rb_first_cached(&hists->entries); 2372 while (nd) { 2373 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2374 2375 nd = rb_next(nd); 2376 rb_erase_cached(&h->rb_node, &hists->entries); 2377 2378 resort_filtered_entry(&new_root, h); 2379 } 2380 2381 hists->entries = new_root; 2382 } 2383 2384 void hists__filter_by_thread(struct hists *hists) 2385 { 2386 if (symbol_conf.report_hierarchy) 2387 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 2388 hists->thread_filter); 2389 else 2390 hists__filter_by_type(hists, HIST_FILTER__THREAD, 2391 hists__filter_entry_by_thread); 2392 } 2393 2394 void hists__filter_by_dso(struct hists *hists) 2395 { 2396 if (symbol_conf.report_hierarchy) 2397 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 2398 hists->dso_filter); 2399 else 2400 hists__filter_by_type(hists, HIST_FILTER__DSO, 2401 hists__filter_entry_by_dso); 2402 } 2403 2404 void hists__filter_by_symbol(struct hists *hists) 2405 { 2406 if (symbol_conf.report_hierarchy) 2407 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2408 hists->symbol_filter_str); 2409 else 2410 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2411 hists__filter_entry_by_symbol); 2412 } 2413 2414 void hists__filter_by_socket(struct hists *hists) 2415 { 2416 if (symbol_conf.report_hierarchy) 2417 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2418 &hists->socket_filter); 2419 else 2420 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2421 hists__filter_entry_by_socket); 2422 } 2423 2424 void hists__filter_by_parallelism(struct hists *hists) 2425 { 2426 if (symbol_conf.report_hierarchy) 2427 hists__filter_hierarchy(hists, HIST_FILTER__PARALLELISM, 2428 hists->parallelism_filter); 2429 else 2430 hists__filter_by_type(hists, HIST_FILTER__PARALLELISM, 2431 hists__filter_entry_by_parallelism); 2432 } 2433 2434 void events_stats__inc(struct events_stats *stats, u32 type) 2435 { 2436 ++stats->nr_events[0]; 2437 ++stats->nr_events[type]; 2438 } 2439 2440 static void hists_stats__inc(struct hists_stats *stats) 2441 { 2442 ++stats->nr_samples; 2443 } 2444 2445 void hists__inc_nr_events(struct hists *hists) 2446 { 2447 hists_stats__inc(&hists->stats); 2448 } 2449 2450 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2451 { 2452 hists_stats__inc(&hists->stats); 2453 if (!filtered) 2454 hists->stats.nr_non_filtered_samples++; 2455 } 2456 2457 void hists__inc_nr_lost_samples(struct hists *hists, u32 lost) 2458 { 2459 hists->stats.nr_lost_samples += lost; 2460 } 2461 2462 void hists__inc_nr_dropped_samples(struct hists *hists, u32 lost) 2463 { 2464 hists->stats.nr_dropped_samples += lost; 2465 } 2466 2467 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2468 struct hist_entry *pair) 2469 { 2470 struct rb_root_cached *root; 2471 struct rb_node **p; 2472 struct rb_node *parent = NULL; 2473 struct hist_entry *he; 2474 int64_t cmp; 2475 bool leftmost = true; 2476 2477 if (hists__has(hists, need_collapse)) 2478 root = &hists->entries_collapsed; 2479 else 2480 root = hists->entries_in; 2481 2482 p = &root->rb_root.rb_node; 2483 2484 while (*p != NULL) { 2485 parent = *p; 2486 he = rb_entry(parent, struct hist_entry, rb_node_in); 2487 2488 cmp = hist_entry__collapse(he, pair); 2489 2490 if (!cmp) 2491 goto out; 2492 2493 if (cmp < 0) 2494 p = &(*p)->rb_left; 2495 else { 2496 p = &(*p)->rb_right; 2497 leftmost = false; 2498 } 2499 } 2500 2501 he = hist_entry__new(pair, true); 2502 if (he) { 2503 memset(&he->stat, 0, sizeof(he->stat)); 2504 he->hists = hists; 2505 if (symbol_conf.cumulate_callchain) 2506 memset(he->stat_acc, 0, sizeof(he->stat)); 2507 rb_link_node(&he->rb_node_in, parent, p); 2508 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2509 hists__inc_stats(hists, he); 2510 he->dummy = true; 2511 } 2512 out: 2513 return he; 2514 } 2515 2516 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, 2517 struct rb_root_cached *root, 2518 struct hist_entry *pair) 2519 { 2520 struct rb_node **p; 2521 struct rb_node *parent = NULL; 2522 struct hist_entry *he; 2523 bool leftmost = true; 2524 2525 p = &root->rb_root.rb_node; 2526 while (*p != NULL) { 2527 int64_t cmp; 2528 2529 parent = *p; 2530 he = rb_entry(parent, struct hist_entry, rb_node_in); 2531 cmp = hist_entry__collapse_hierarchy(he->hpp_list, he, pair); 2532 if (!cmp) 2533 goto out; 2534 2535 if (cmp < 0) 2536 p = &parent->rb_left; 2537 else { 2538 p = &parent->rb_right; 2539 leftmost = false; 2540 } 2541 } 2542 2543 he = hist_entry__new(pair, true); 2544 if (he) { 2545 rb_link_node(&he->rb_node_in, parent, p); 2546 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2547 2548 he->dummy = true; 2549 he->hists = hists; 2550 memset(&he->stat, 0, sizeof(he->stat)); 2551 hists__inc_stats(hists, he); 2552 } 2553 out: 2554 return he; 2555 } 2556 2557 static struct hist_entry *hists__find_entry(struct hists *hists, 2558 struct hist_entry *he) 2559 { 2560 struct rb_node *n; 2561 2562 if (hists__has(hists, need_collapse)) 2563 n = hists->entries_collapsed.rb_root.rb_node; 2564 else 2565 n = hists->entries_in->rb_root.rb_node; 2566 2567 while (n) { 2568 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2569 int64_t cmp = hist_entry__collapse(iter, he); 2570 2571 if (cmp < 0) 2572 n = n->rb_left; 2573 else if (cmp > 0) 2574 n = n->rb_right; 2575 else 2576 return iter; 2577 } 2578 2579 return NULL; 2580 } 2581 2582 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root, 2583 struct hist_entry *he) 2584 { 2585 struct rb_node *n = root->rb_root.rb_node; 2586 2587 while (n) { 2588 struct hist_entry *iter; 2589 int64_t cmp; 2590 2591 iter = rb_entry(n, struct hist_entry, rb_node_in); 2592 cmp = hist_entry__collapse_hierarchy(he->hpp_list, iter, he); 2593 if (cmp < 0) 2594 n = n->rb_left; 2595 else if (cmp > 0) 2596 n = n->rb_right; 2597 else 2598 return iter; 2599 } 2600 2601 return NULL; 2602 } 2603 2604 static void hists__match_hierarchy(struct rb_root_cached *leader_root, 2605 struct rb_root_cached *other_root) 2606 { 2607 struct rb_node *nd; 2608 struct hist_entry *pos, *pair; 2609 2610 for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) { 2611 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2612 pair = hists__find_hierarchy_entry(other_root, pos); 2613 2614 if (pair) { 2615 hist_entry__add_pair(pair, pos); 2616 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); 2617 } 2618 } 2619 } 2620 2621 /* 2622 * Look for pairs to link to the leader buckets (hist_entries): 2623 */ 2624 void hists__match(struct hists *leader, struct hists *other) 2625 { 2626 struct rb_root_cached *root; 2627 struct rb_node *nd; 2628 struct hist_entry *pos, *pair; 2629 2630 if (symbol_conf.report_hierarchy) { 2631 /* hierarchy report always collapses entries */ 2632 return hists__match_hierarchy(&leader->entries_collapsed, 2633 &other->entries_collapsed); 2634 } 2635 2636 if (hists__has(leader, need_collapse)) 2637 root = &leader->entries_collapsed; 2638 else 2639 root = leader->entries_in; 2640 2641 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2642 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2643 pair = hists__find_entry(other, pos); 2644 2645 if (pair) 2646 hist_entry__add_pair(pair, pos); 2647 } 2648 } 2649 2650 static int hists__link_hierarchy(struct hists *leader_hists, 2651 struct hist_entry *parent, 2652 struct rb_root_cached *leader_root, 2653 struct rb_root_cached *other_root) 2654 { 2655 struct rb_node *nd; 2656 struct hist_entry *pos, *leader; 2657 2658 for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) { 2659 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2660 2661 if (hist_entry__has_pairs(pos)) { 2662 bool found = false; 2663 2664 list_for_each_entry(leader, &pos->pairs.head, pairs.node) { 2665 if (leader->hists == leader_hists) { 2666 found = true; 2667 break; 2668 } 2669 } 2670 if (!found) 2671 return -1; 2672 } else { 2673 leader = add_dummy_hierarchy_entry(leader_hists, 2674 leader_root, pos); 2675 if (leader == NULL) 2676 return -1; 2677 2678 /* do not point parent in the pos */ 2679 leader->parent_he = parent; 2680 2681 hist_entry__add_pair(pos, leader); 2682 } 2683 2684 if (!pos->leaf) { 2685 if (hists__link_hierarchy(leader_hists, leader, 2686 &leader->hroot_in, 2687 &pos->hroot_in) < 0) 2688 return -1; 2689 } 2690 } 2691 return 0; 2692 } 2693 2694 /* 2695 * Look for entries in the other hists that are not present in the leader, if 2696 * we find them, just add a dummy entry on the leader hists, with period=0, 2697 * nr_events=0, to serve as the list header. 2698 */ 2699 int hists__link(struct hists *leader, struct hists *other) 2700 { 2701 struct rb_root_cached *root; 2702 struct rb_node *nd; 2703 struct hist_entry *pos, *pair; 2704 2705 if (symbol_conf.report_hierarchy) { 2706 /* hierarchy report always collapses entries */ 2707 return hists__link_hierarchy(leader, NULL, 2708 &leader->entries_collapsed, 2709 &other->entries_collapsed); 2710 } 2711 2712 if (hists__has(other, need_collapse)) 2713 root = &other->entries_collapsed; 2714 else 2715 root = other->entries_in; 2716 2717 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2718 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2719 2720 if (!hist_entry__has_pairs(pos)) { 2721 pair = hists__add_dummy_entry(leader, pos); 2722 if (pair == NULL) 2723 return -1; 2724 hist_entry__add_pair(pos, pair); 2725 } 2726 } 2727 2728 return 0; 2729 } 2730 2731 int hists__unlink(struct hists *hists) 2732 { 2733 struct rb_root_cached *root; 2734 struct rb_node *nd; 2735 struct hist_entry *pos; 2736 2737 if (hists__has(hists, need_collapse)) 2738 root = &hists->entries_collapsed; 2739 else 2740 root = hists->entries_in; 2741 2742 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2743 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2744 list_del_init(&pos->pairs.node); 2745 } 2746 2747 return 0; 2748 } 2749 2750 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2751 struct perf_sample *sample, bool nonany_branch_mode, 2752 u64 *total_cycles, struct evsel *evsel) 2753 { 2754 struct branch_info *bi; 2755 struct branch_entry *entries = perf_sample__branch_entries(sample); 2756 2757 /* If we have branch cycles always annotate them. */ 2758 if (bs && bs->nr && entries[0].flags.cycles) { 2759 bi = sample__resolve_bstack(sample, al); 2760 if (bi) { 2761 struct addr_map_symbol *prev = NULL; 2762 2763 /* 2764 * Ignore errors, still want to process the 2765 * other entries. 2766 * 2767 * For non standard branch modes always 2768 * force no IPC (prev == NULL) 2769 * 2770 * Note that perf stores branches reversed from 2771 * program order! 2772 */ 2773 for (int i = bs->nr - 1; i >= 0; i--) { 2774 addr_map_symbol__account_cycles(&bi[i].from, 2775 nonany_branch_mode ? NULL : prev, 2776 bi[i].flags.cycles, evsel, 2777 bi[i].branch_stack_cntr); 2778 prev = &bi[i].to; 2779 2780 if (total_cycles) 2781 *total_cycles += bi[i].flags.cycles; 2782 } 2783 for (unsigned int i = 0; i < bs->nr; i++) { 2784 map_symbol__exit(&bi[i].to.ms); 2785 map_symbol__exit(&bi[i].from.ms); 2786 } 2787 free(bi); 2788 } 2789 } 2790 } 2791 2792 size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp) 2793 { 2794 struct evsel *pos; 2795 size_t ret = 0; 2796 2797 evlist__for_each_entry(evlist, pos) { 2798 struct hists *hists = evsel__hists(pos); 2799 u64 total_samples = hists->stats.nr_samples; 2800 2801 total_samples += hists->stats.nr_lost_samples; 2802 total_samples += hists->stats.nr_dropped_samples; 2803 2804 if (symbol_conf.skip_empty && total_samples == 0) 2805 continue; 2806 2807 ret += fprintf(fp, "%s stats:\n", evsel__name(pos)); 2808 if (hists->stats.nr_samples) 2809 ret += fprintf(fp, "%20s events: %10d\n", 2810 "SAMPLE", hists->stats.nr_samples); 2811 if (hists->stats.nr_lost_samples) 2812 ret += fprintf(fp, "%20s events: %10d\n", 2813 "LOST_SAMPLES", hists->stats.nr_lost_samples); 2814 if (hists->stats.nr_dropped_samples) 2815 ret += fprintf(fp, "%20s events: %10d\n", 2816 "LOST_SAMPLES (BPF)", hists->stats.nr_dropped_samples); 2817 } 2818 2819 return ret; 2820 } 2821 2822 2823 u64 hists__total_period(struct hists *hists) 2824 { 2825 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2826 hists->stats.total_period; 2827 } 2828 2829 u64 hists__total_latency(struct hists *hists) 2830 { 2831 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_latency : 2832 hists->stats.total_latency; 2833 } 2834 2835 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq) 2836 { 2837 char unit; 2838 int printed; 2839 const struct dso *dso = hists->dso_filter; 2840 struct thread *thread = hists->thread_filter; 2841 int socket_id = hists->socket_filter; 2842 unsigned long nr_samples = hists->stats.nr_samples; 2843 u64 nr_events = hists->stats.total_period; 2844 struct evsel *evsel = hists_to_evsel(hists); 2845 const char *ev_name = evsel__name(evsel); 2846 char buf[512], sample_freq_str[64] = ""; 2847 size_t buflen = sizeof(buf); 2848 char ref[30] = " show reference callgraph, "; 2849 bool enable_ref = false; 2850 2851 if (symbol_conf.filter_relative) { 2852 nr_samples = hists->stats.nr_non_filtered_samples; 2853 nr_events = hists->stats.total_non_filtered_period; 2854 } 2855 2856 if (evsel__is_group_event(evsel)) { 2857 struct evsel *pos; 2858 2859 evsel__group_desc(evsel, buf, buflen); 2860 ev_name = buf; 2861 2862 for_each_group_member(pos, evsel) { 2863 struct hists *pos_hists = evsel__hists(pos); 2864 2865 if (symbol_conf.filter_relative) { 2866 nr_samples += pos_hists->stats.nr_non_filtered_samples; 2867 nr_events += pos_hists->stats.total_non_filtered_period; 2868 } else { 2869 nr_samples += pos_hists->stats.nr_samples; 2870 nr_events += pos_hists->stats.total_period; 2871 } 2872 } 2873 } 2874 2875 if (symbol_conf.show_ref_callgraph && 2876 strstr(ev_name, "call-graph=no")) 2877 enable_ref = true; 2878 2879 if (show_freq) 2880 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq); 2881 2882 nr_samples = convert_unit(nr_samples, &unit); 2883 printed = scnprintf(bf, size, 2884 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64, 2885 nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "", 2886 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events); 2887 2888 2889 if (hists->uid_filter_str) 2890 printed += snprintf(bf + printed, size - printed, 2891 ", UID: %s", hists->uid_filter_str); 2892 if (thread) { 2893 if (hists__has(hists, thread)) { 2894 printed += scnprintf(bf + printed, size - printed, 2895 ", Thread: %s(%d)", 2896 (thread__comm_set(thread) ? thread__comm_str(thread) : ""), 2897 thread__tid(thread)); 2898 } else { 2899 printed += scnprintf(bf + printed, size - printed, 2900 ", Thread: %s", 2901 (thread__comm_set(thread) ? thread__comm_str(thread) : "")); 2902 } 2903 } 2904 if (dso) 2905 printed += scnprintf(bf + printed, size - printed, 2906 ", DSO: %s", dso__short_name(dso)); 2907 if (socket_id > -1) 2908 printed += scnprintf(bf + printed, size - printed, 2909 ", Processor Socket: %d", socket_id); 2910 2911 return printed; 2912 } 2913 2914 int parse_filter_percentage(const struct option *opt __maybe_unused, 2915 const char *arg, int unset __maybe_unused) 2916 { 2917 if (!strcmp(arg, "relative")) 2918 symbol_conf.filter_relative = true; 2919 else if (!strcmp(arg, "absolute")) 2920 symbol_conf.filter_relative = false; 2921 else { 2922 pr_debug("Invalid percentage: %s\n", arg); 2923 return -1; 2924 } 2925 2926 return 0; 2927 } 2928 2929 int perf_hist_config(const char *var, const char *value) 2930 { 2931 if (!strcmp(var, "hist.percentage")) 2932 return parse_filter_percentage(NULL, value, 0); 2933 2934 return 0; 2935 } 2936 2937 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2938 { 2939 memset(hists, 0, sizeof(*hists)); 2940 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED; 2941 hists->entries_in = &hists->entries_in_array[0]; 2942 hists->entries_collapsed = RB_ROOT_CACHED; 2943 hists->entries = RB_ROOT_CACHED; 2944 mutex_init(&hists->lock); 2945 hists->socket_filter = -1; 2946 hists->parallelism_filter = symbol_conf.parallelism_filter; 2947 hists->hpp_list = hpp_list; 2948 INIT_LIST_HEAD(&hists->hpp_formats); 2949 return 0; 2950 } 2951 2952 static void hists__delete_remaining_entries(struct rb_root_cached *root) 2953 { 2954 struct rb_node *node; 2955 struct hist_entry *he; 2956 2957 while (!RB_EMPTY_ROOT(&root->rb_root)) { 2958 node = rb_first_cached(root); 2959 rb_erase_cached(node, root); 2960 2961 he = rb_entry(node, struct hist_entry, rb_node_in); 2962 hist_entry__delete(he); 2963 } 2964 } 2965 2966 static void hists__delete_all_entries(struct hists *hists) 2967 { 2968 hists__delete_entries(hists); 2969 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2970 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2971 hists__delete_remaining_entries(&hists->entries_collapsed); 2972 } 2973 2974 static void hists_evsel__exit(struct evsel *evsel) 2975 { 2976 struct hists *hists = evsel__hists(evsel); 2977 struct perf_hpp_fmt *fmt, *pos; 2978 struct perf_hpp_list_node *node, *tmp; 2979 2980 hists__delete_all_entries(hists); 2981 2982 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2983 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2984 list_del_init(&fmt->list); 2985 free(fmt); 2986 } 2987 list_del_init(&node->list); 2988 free(node); 2989 } 2990 } 2991 2992 static int hists_evsel__init(struct evsel *evsel) 2993 { 2994 struct hists *hists = evsel__hists(evsel); 2995 2996 __hists__init(hists, &perf_hpp_list); 2997 return 0; 2998 } 2999 3000 /* 3001 * XXX We probably need a hists_evsel__exit() to free the hist_entries 3002 * stored in the rbtree... 3003 */ 3004 3005 int hists__init(void) 3006 { 3007 int err = evsel__object_config(sizeof(struct hists_evsel), 3008 hists_evsel__init, hists_evsel__exit); 3009 if (err) 3010 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 3011 3012 return err; 3013 } 3014 3015 void perf_hpp_list__init(struct perf_hpp_list *list) 3016 { 3017 INIT_LIST_HEAD(&list->fields); 3018 INIT_LIST_HEAD(&list->sorts); 3019 } 3020