1 // SPDX-License-Identifier: GPL-2.0 2 #include "callchain.h" 3 #include "debug.h" 4 #include "dso.h" 5 #include "build-id.h" 6 #include "hist.h" 7 #include "kvm-stat.h" 8 #include "map.h" 9 #include "map_symbol.h" 10 #include "branch.h" 11 #include "mem-events.h" 12 #include "session.h" 13 #include "namespaces.h" 14 #include "cgroup.h" 15 #include "sort.h" 16 #include "units.h" 17 #include "evlist.h" 18 #include "evsel.h" 19 #include "annotate.h" 20 #include "srcline.h" 21 #include "symbol.h" 22 #include "thread.h" 23 #include "block-info.h" 24 #include "ui/progress.h" 25 #include <errno.h> 26 #include <math.h> 27 #include <inttypes.h> 28 #include <sys/param.h> 29 #include <linux/rbtree.h> 30 #include <linux/string.h> 31 #include <linux/time64.h> 32 #include <linux/zalloc.h> 33 34 static bool hists__filter_entry_by_dso(struct hists *hists, 35 struct hist_entry *he); 36 static bool hists__filter_entry_by_thread(struct hists *hists, 37 struct hist_entry *he); 38 static bool hists__filter_entry_by_symbol(struct hists *hists, 39 struct hist_entry *he); 40 static bool hists__filter_entry_by_socket(struct hists *hists, 41 struct hist_entry *he); 42 43 u16 hists__col_len(struct hists *hists, enum hist_column col) 44 { 45 return hists->col_len[col]; 46 } 47 48 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 49 { 50 hists->col_len[col] = len; 51 } 52 53 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 54 { 55 if (len > hists__col_len(hists, col)) { 56 hists__set_col_len(hists, col, len); 57 return true; 58 } 59 return false; 60 } 61 62 void hists__reset_col_len(struct hists *hists) 63 { 64 enum hist_column col; 65 66 for (col = 0; col < HISTC_NR_COLS; ++col) 67 hists__set_col_len(hists, col, 0); 68 } 69 70 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 71 { 72 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 73 74 if (hists__col_len(hists, dso) < unresolved_col_width && 75 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 76 !symbol_conf.dso_list) 77 hists__set_col_len(hists, dso, unresolved_col_width); 78 } 79 80 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 81 { 82 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 83 int symlen; 84 u16 len; 85 86 if (h->block_info) 87 return; 88 /* 89 * +4 accounts for '[x] ' priv level info 90 * +2 accounts for 0x prefix on raw addresses 91 * +3 accounts for ' y ' symtab origin info 92 */ 93 if (h->ms.sym) { 94 symlen = h->ms.sym->namelen + 4; 95 if (verbose > 0) 96 symlen += BITS_PER_LONG / 4 + 2 + 3; 97 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 98 } else { 99 symlen = unresolved_col_width + 4 + 2; 100 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 101 hists__set_unres_dso_col_len(hists, HISTC_DSO); 102 } 103 104 len = thread__comm_len(h->thread); 105 if (hists__new_col_len(hists, HISTC_COMM, len)) 106 hists__set_col_len(hists, HISTC_THREAD, len + 8); 107 108 if (h->ms.map) { 109 len = dso__name_len(map__dso(h->ms.map)); 110 hists__new_col_len(hists, HISTC_DSO, len); 111 } 112 113 if (h->parent) 114 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 115 116 if (h->branch_info) { 117 if (h->branch_info->from.ms.sym) { 118 symlen = (int)h->branch_info->from.ms.sym->namelen + 4; 119 if (verbose > 0) 120 symlen += BITS_PER_LONG / 4 + 2 + 3; 121 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 122 123 symlen = dso__name_len(map__dso(h->branch_info->from.ms.map)); 124 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 125 } else { 126 symlen = unresolved_col_width + 4 + 2; 127 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 128 hists__new_col_len(hists, HISTC_ADDR_FROM, symlen); 129 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 130 } 131 132 if (h->branch_info->to.ms.sym) { 133 symlen = (int)h->branch_info->to.ms.sym->namelen + 4; 134 if (verbose > 0) 135 symlen += BITS_PER_LONG / 4 + 2 + 3; 136 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 137 138 symlen = dso__name_len(map__dso(h->branch_info->to.ms.map)); 139 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 140 } else { 141 symlen = unresolved_col_width + 4 + 2; 142 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 143 hists__new_col_len(hists, HISTC_ADDR_TO, symlen); 144 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 145 } 146 147 if (h->branch_info->srcline_from) 148 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 149 strlen(h->branch_info->srcline_from)); 150 if (h->branch_info->srcline_to) 151 hists__new_col_len(hists, HISTC_SRCLINE_TO, 152 strlen(h->branch_info->srcline_to)); 153 } 154 155 if (h->mem_info) { 156 if (h->mem_info->daddr.ms.sym) { 157 symlen = (int)h->mem_info->daddr.ms.sym->namelen + 4 158 + unresolved_col_width + 2; 159 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 160 symlen); 161 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 162 symlen + 1); 163 } else { 164 symlen = unresolved_col_width + 4 + 2; 165 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 166 symlen); 167 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 168 symlen); 169 } 170 171 if (h->mem_info->iaddr.ms.sym) { 172 symlen = (int)h->mem_info->iaddr.ms.sym->namelen + 4 173 + unresolved_col_width + 2; 174 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 175 symlen); 176 } else { 177 symlen = unresolved_col_width + 4 + 2; 178 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 179 symlen); 180 } 181 182 if (h->mem_info->daddr.ms.map) { 183 symlen = dso__name_len(map__dso(h->mem_info->daddr.ms.map)); 184 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 185 symlen); 186 } else { 187 symlen = unresolved_col_width + 4 + 2; 188 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 189 } 190 191 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR, 192 unresolved_col_width + 4 + 2); 193 194 hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE, 195 unresolved_col_width + 4 + 2); 196 197 } else { 198 symlen = unresolved_col_width + 4 + 2; 199 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 200 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 201 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 202 } 203 204 hists__new_col_len(hists, HISTC_CGROUP, 6); 205 hists__new_col_len(hists, HISTC_CGROUP_ID, 20); 206 hists__new_col_len(hists, HISTC_CPU, 3); 207 hists__new_col_len(hists, HISTC_SOCKET, 6); 208 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 209 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 210 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 211 hists__new_col_len(hists, HISTC_MEM_LVL, 36 + 3); 212 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 213 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 214 hists__new_col_len(hists, HISTC_MEM_BLOCKED, 10); 215 hists__new_col_len(hists, HISTC_LOCAL_INS_LAT, 13); 216 hists__new_col_len(hists, HISTC_GLOBAL_INS_LAT, 13); 217 hists__new_col_len(hists, HISTC_LOCAL_P_STAGE_CYC, 13); 218 hists__new_col_len(hists, HISTC_GLOBAL_P_STAGE_CYC, 13); 219 hists__new_col_len(hists, HISTC_ADDR, BITS_PER_LONG / 4 + 2); 220 221 if (symbol_conf.nanosecs) 222 hists__new_col_len(hists, HISTC_TIME, 16); 223 else 224 hists__new_col_len(hists, HISTC_TIME, 12); 225 hists__new_col_len(hists, HISTC_CODE_PAGE_SIZE, 6); 226 227 if (h->srcline) { 228 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header)); 229 hists__new_col_len(hists, HISTC_SRCLINE, len); 230 } 231 232 if (h->srcfile) 233 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 234 235 if (h->transaction) 236 hists__new_col_len(hists, HISTC_TRANSACTION, 237 hist_entry__transaction_len()); 238 239 if (h->trace_output) 240 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 241 242 if (h->cgroup) { 243 const char *cgrp_name = "unknown"; 244 struct cgroup *cgrp = cgroup__find(maps__machine(h->ms.maps)->env, 245 h->cgroup); 246 if (cgrp != NULL) 247 cgrp_name = cgrp->name; 248 249 hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name)); 250 } 251 } 252 253 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 254 { 255 struct rb_node *next = rb_first_cached(&hists->entries); 256 struct hist_entry *n; 257 int row = 0; 258 259 hists__reset_col_len(hists); 260 261 while (next && row++ < max_rows) { 262 n = rb_entry(next, struct hist_entry, rb_node); 263 if (!n->filtered) 264 hists__calc_col_len(hists, n); 265 next = rb_next(&n->rb_node); 266 } 267 } 268 269 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 270 unsigned int cpumode, u64 period) 271 { 272 switch (cpumode) { 273 case PERF_RECORD_MISC_KERNEL: 274 he_stat->period_sys += period; 275 break; 276 case PERF_RECORD_MISC_USER: 277 he_stat->period_us += period; 278 break; 279 case PERF_RECORD_MISC_GUEST_KERNEL: 280 he_stat->period_guest_sys += period; 281 break; 282 case PERF_RECORD_MISC_GUEST_USER: 283 he_stat->period_guest_us += period; 284 break; 285 default: 286 break; 287 } 288 } 289 290 static long hist_time(unsigned long htime) 291 { 292 unsigned long time_quantum = symbol_conf.time_quantum; 293 if (time_quantum) 294 return (htime / time_quantum) * time_quantum; 295 return htime; 296 } 297 298 static void he_stat__add_period(struct he_stat *he_stat, u64 period) 299 { 300 he_stat->period += period; 301 he_stat->nr_events += 1; 302 } 303 304 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 305 { 306 dest->period += src->period; 307 dest->period_sys += src->period_sys; 308 dest->period_us += src->period_us; 309 dest->period_guest_sys += src->period_guest_sys; 310 dest->period_guest_us += src->period_guest_us; 311 dest->nr_events += src->nr_events; 312 } 313 314 static void he_stat__decay(struct he_stat *he_stat) 315 { 316 he_stat->period = (he_stat->period * 7) / 8; 317 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 318 /* XXX need decay for weight too? */ 319 } 320 321 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 322 323 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 324 { 325 u64 prev_period = he->stat.period; 326 u64 diff; 327 328 if (prev_period == 0) 329 return true; 330 331 he_stat__decay(&he->stat); 332 if (symbol_conf.cumulate_callchain) 333 he_stat__decay(he->stat_acc); 334 decay_callchain(he->callchain); 335 336 diff = prev_period - he->stat.period; 337 338 if (!he->depth) { 339 hists->stats.total_period -= diff; 340 if (!he->filtered) 341 hists->stats.total_non_filtered_period -= diff; 342 } 343 344 if (!he->leaf) { 345 struct hist_entry *child; 346 struct rb_node *node = rb_first_cached(&he->hroot_out); 347 while (node) { 348 child = rb_entry(node, struct hist_entry, rb_node); 349 node = rb_next(node); 350 351 if (hists__decay_entry(hists, child)) 352 hists__delete_entry(hists, child); 353 } 354 } 355 356 return he->stat.period == 0; 357 } 358 359 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 360 { 361 struct rb_root_cached *root_in; 362 struct rb_root_cached *root_out; 363 364 if (he->parent_he) { 365 root_in = &he->parent_he->hroot_in; 366 root_out = &he->parent_he->hroot_out; 367 } else { 368 if (hists__has(hists, need_collapse)) 369 root_in = &hists->entries_collapsed; 370 else 371 root_in = hists->entries_in; 372 root_out = &hists->entries; 373 } 374 375 rb_erase_cached(&he->rb_node_in, root_in); 376 rb_erase_cached(&he->rb_node, root_out); 377 378 --hists->nr_entries; 379 if (!he->filtered) 380 --hists->nr_non_filtered_entries; 381 382 hist_entry__delete(he); 383 } 384 385 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 386 { 387 struct rb_node *next = rb_first_cached(&hists->entries); 388 struct hist_entry *n; 389 390 while (next) { 391 n = rb_entry(next, struct hist_entry, rb_node); 392 next = rb_next(&n->rb_node); 393 if (((zap_user && n->level == '.') || 394 (zap_kernel && n->level != '.') || 395 hists__decay_entry(hists, n))) { 396 hists__delete_entry(hists, n); 397 } 398 } 399 } 400 401 void hists__delete_entries(struct hists *hists) 402 { 403 struct rb_node *next = rb_first_cached(&hists->entries); 404 struct hist_entry *n; 405 406 while (next) { 407 n = rb_entry(next, struct hist_entry, rb_node); 408 next = rb_next(&n->rb_node); 409 410 hists__delete_entry(hists, n); 411 } 412 } 413 414 struct hist_entry *hists__get_entry(struct hists *hists, int idx) 415 { 416 struct rb_node *next = rb_first_cached(&hists->entries); 417 struct hist_entry *n; 418 int i = 0; 419 420 while (next) { 421 n = rb_entry(next, struct hist_entry, rb_node); 422 if (i == idx) 423 return n; 424 425 next = rb_next(&n->rb_node); 426 i++; 427 } 428 429 return NULL; 430 } 431 432 /* 433 * histogram, sorted on item, collects periods 434 */ 435 436 static int hist_entry__init(struct hist_entry *he, 437 struct hist_entry *template, 438 bool sample_self, 439 size_t callchain_size) 440 { 441 *he = *template; 442 he->callchain_size = callchain_size; 443 444 if (symbol_conf.cumulate_callchain) { 445 he->stat_acc = malloc(sizeof(he->stat)); 446 if (he->stat_acc == NULL) 447 return -ENOMEM; 448 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 449 if (!sample_self) 450 memset(&he->stat, 0, sizeof(he->stat)); 451 } 452 453 he->ms.maps = maps__get(he->ms.maps); 454 he->ms.map = map__get(he->ms.map); 455 456 if (he->branch_info) { 457 /* 458 * This branch info is (a part of) allocated from 459 * sample__resolve_bstack() and will be freed after 460 * adding new entries. So we need to save a copy. 461 */ 462 he->branch_info = malloc(sizeof(*he->branch_info)); 463 if (he->branch_info == NULL) 464 goto err; 465 466 memcpy(he->branch_info, template->branch_info, 467 sizeof(*he->branch_info)); 468 469 he->branch_info->from.ms.map = map__get(he->branch_info->from.ms.map); 470 he->branch_info->to.ms.map = map__get(he->branch_info->to.ms.map); 471 } 472 473 if (he->mem_info) { 474 he->mem_info->iaddr.ms.map = map__get(he->mem_info->iaddr.ms.map); 475 he->mem_info->daddr.ms.map = map__get(he->mem_info->daddr.ms.map); 476 } 477 478 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 479 callchain_init(he->callchain); 480 481 if (he->raw_data) { 482 he->raw_data = memdup(he->raw_data, he->raw_size); 483 if (he->raw_data == NULL) 484 goto err_infos; 485 } 486 487 if (he->srcline && he->srcline != SRCLINE_UNKNOWN) { 488 he->srcline = strdup(he->srcline); 489 if (he->srcline == NULL) 490 goto err_rawdata; 491 } 492 493 if (symbol_conf.res_sample) { 494 he->res_samples = calloc(symbol_conf.res_sample, 495 sizeof(struct res_sample)); 496 if (!he->res_samples) 497 goto err_srcline; 498 } 499 500 INIT_LIST_HEAD(&he->pairs.node); 501 he->thread = thread__get(he->thread); 502 he->hroot_in = RB_ROOT_CACHED; 503 he->hroot_out = RB_ROOT_CACHED; 504 505 if (!symbol_conf.report_hierarchy) 506 he->leaf = true; 507 508 return 0; 509 510 err_srcline: 511 zfree(&he->srcline); 512 513 err_rawdata: 514 zfree(&he->raw_data); 515 516 err_infos: 517 if (he->branch_info) { 518 map_symbol__exit(&he->branch_info->from.ms); 519 map_symbol__exit(&he->branch_info->to.ms); 520 zfree(&he->branch_info); 521 } 522 if (he->mem_info) { 523 map_symbol__exit(&he->mem_info->iaddr.ms); 524 map_symbol__exit(&he->mem_info->daddr.ms); 525 } 526 err: 527 map_symbol__exit(&he->ms); 528 zfree(&he->stat_acc); 529 return -ENOMEM; 530 } 531 532 static void *hist_entry__zalloc(size_t size) 533 { 534 return zalloc(size + sizeof(struct hist_entry)); 535 } 536 537 static void hist_entry__free(void *ptr) 538 { 539 free(ptr); 540 } 541 542 static struct hist_entry_ops default_ops = { 543 .new = hist_entry__zalloc, 544 .free = hist_entry__free, 545 }; 546 547 static struct hist_entry *hist_entry__new(struct hist_entry *template, 548 bool sample_self) 549 { 550 struct hist_entry_ops *ops = template->ops; 551 size_t callchain_size = 0; 552 struct hist_entry *he; 553 int err = 0; 554 555 if (!ops) 556 ops = template->ops = &default_ops; 557 558 if (symbol_conf.use_callchain) 559 callchain_size = sizeof(struct callchain_root); 560 561 he = ops->new(callchain_size); 562 if (he) { 563 err = hist_entry__init(he, template, sample_self, callchain_size); 564 if (err) { 565 ops->free(he); 566 he = NULL; 567 } 568 } 569 570 return he; 571 } 572 573 static u8 symbol__parent_filter(const struct symbol *parent) 574 { 575 if (symbol_conf.exclude_other && parent == NULL) 576 return 1 << HIST_FILTER__PARENT; 577 return 0; 578 } 579 580 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 581 { 582 if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain) 583 return; 584 585 he->hists->callchain_period += period; 586 if (!he->filtered) 587 he->hists->callchain_non_filtered_period += period; 588 } 589 590 static struct hist_entry *hists__findnew_entry(struct hists *hists, 591 struct hist_entry *entry, 592 const struct addr_location *al, 593 bool sample_self) 594 { 595 struct rb_node **p; 596 struct rb_node *parent = NULL; 597 struct hist_entry *he; 598 int64_t cmp; 599 u64 period = entry->stat.period; 600 bool leftmost = true; 601 602 p = &hists->entries_in->rb_root.rb_node; 603 604 while (*p != NULL) { 605 parent = *p; 606 he = rb_entry(parent, struct hist_entry, rb_node_in); 607 608 /* 609 * Make sure that it receives arguments in a same order as 610 * hist_entry__collapse() so that we can use an appropriate 611 * function when searching an entry regardless which sort 612 * keys were used. 613 */ 614 cmp = hist_entry__cmp(he, entry); 615 if (!cmp) { 616 if (sample_self) { 617 he_stat__add_period(&he->stat, period); 618 hist_entry__add_callchain_period(he, period); 619 } 620 if (symbol_conf.cumulate_callchain) 621 he_stat__add_period(he->stat_acc, period); 622 623 /* 624 * This mem info was allocated from sample__resolve_mem 625 * and will not be used anymore. 626 */ 627 mem_info__zput(entry->mem_info); 628 629 block_info__zput(entry->block_info); 630 631 kvm_info__zput(entry->kvm_info); 632 633 /* If the map of an existing hist_entry has 634 * become out-of-date due to an exec() or 635 * similar, update it. Otherwise we will 636 * mis-adjust symbol addresses when computing 637 * the history counter to increment. 638 */ 639 if (he->ms.map != entry->ms.map) { 640 map__put(he->ms.map); 641 he->ms.map = map__get(entry->ms.map); 642 } 643 goto out; 644 } 645 646 if (cmp < 0) 647 p = &(*p)->rb_left; 648 else { 649 p = &(*p)->rb_right; 650 leftmost = false; 651 } 652 } 653 654 he = hist_entry__new(entry, sample_self); 655 if (!he) 656 return NULL; 657 658 if (sample_self) 659 hist_entry__add_callchain_period(he, period); 660 hists->nr_entries++; 661 662 rb_link_node(&he->rb_node_in, parent, p); 663 rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost); 664 out: 665 if (sample_self) 666 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 667 if (symbol_conf.cumulate_callchain) 668 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 669 return he; 670 } 671 672 static unsigned random_max(unsigned high) 673 { 674 unsigned thresh = -high % high; 675 for (;;) { 676 unsigned r = random(); 677 if (r >= thresh) 678 return r % high; 679 } 680 } 681 682 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample) 683 { 684 struct res_sample *r; 685 int j; 686 687 if (he->num_res < symbol_conf.res_sample) { 688 j = he->num_res++; 689 } else { 690 j = random_max(symbol_conf.res_sample); 691 } 692 r = &he->res_samples[j]; 693 r->time = sample->time; 694 r->cpu = sample->cpu; 695 r->tid = sample->tid; 696 } 697 698 static struct hist_entry* 699 __hists__add_entry(struct hists *hists, 700 struct addr_location *al, 701 struct symbol *sym_parent, 702 struct branch_info *bi, 703 struct mem_info *mi, 704 struct kvm_info *ki, 705 struct block_info *block_info, 706 struct perf_sample *sample, 707 bool sample_self, 708 struct hist_entry_ops *ops) 709 { 710 struct namespaces *ns = thread__namespaces(al->thread); 711 struct hist_entry entry = { 712 .thread = al->thread, 713 .comm = thread__comm(al->thread), 714 .cgroup_id = { 715 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0, 716 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0, 717 }, 718 .cgroup = sample->cgroup, 719 .ms = { 720 .maps = al->maps, 721 .map = al->map, 722 .sym = al->sym, 723 }, 724 .srcline = (char *) al->srcline, 725 .socket = al->socket, 726 .cpu = al->cpu, 727 .cpumode = al->cpumode, 728 .ip = al->addr, 729 .level = al->level, 730 .code_page_size = sample->code_page_size, 731 .stat = { 732 .nr_events = 1, 733 .period = sample->period, 734 }, 735 .parent = sym_parent, 736 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 737 .hists = hists, 738 .branch_info = bi, 739 .mem_info = mi, 740 .kvm_info = ki, 741 .block_info = block_info, 742 .transaction = sample->transaction, 743 .raw_data = sample->raw_data, 744 .raw_size = sample->raw_size, 745 .ops = ops, 746 .time = hist_time(sample->time), 747 .weight = sample->weight, 748 .ins_lat = sample->ins_lat, 749 .p_stage_cyc = sample->p_stage_cyc, 750 .simd_flags = sample->simd_flags, 751 }, *he = hists__findnew_entry(hists, &entry, al, sample_self); 752 753 if (!hists->has_callchains && he && he->callchain_size != 0) 754 hists->has_callchains = true; 755 if (he && symbol_conf.res_sample) 756 hists__res_sample(he, sample); 757 return he; 758 } 759 760 struct hist_entry *hists__add_entry(struct hists *hists, 761 struct addr_location *al, 762 struct symbol *sym_parent, 763 struct branch_info *bi, 764 struct mem_info *mi, 765 struct kvm_info *ki, 766 struct perf_sample *sample, 767 bool sample_self) 768 { 769 return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL, 770 sample, sample_self, NULL); 771 } 772 773 struct hist_entry *hists__add_entry_ops(struct hists *hists, 774 struct hist_entry_ops *ops, 775 struct addr_location *al, 776 struct symbol *sym_parent, 777 struct branch_info *bi, 778 struct mem_info *mi, 779 struct kvm_info *ki, 780 struct perf_sample *sample, 781 bool sample_self) 782 { 783 return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL, 784 sample, sample_self, ops); 785 } 786 787 struct hist_entry *hists__add_entry_block(struct hists *hists, 788 struct addr_location *al, 789 struct block_info *block_info) 790 { 791 struct hist_entry entry = { 792 .block_info = block_info, 793 .hists = hists, 794 .ms = { 795 .maps = al->maps, 796 .map = al->map, 797 .sym = al->sym, 798 }, 799 }, *he = hists__findnew_entry(hists, &entry, al, false); 800 801 return he; 802 } 803 804 static int 805 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 806 struct addr_location *al __maybe_unused) 807 { 808 return 0; 809 } 810 811 static int 812 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 813 struct addr_location *al __maybe_unused) 814 { 815 return 0; 816 } 817 818 static int 819 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 820 { 821 struct perf_sample *sample = iter->sample; 822 struct mem_info *mi; 823 824 mi = sample__resolve_mem(sample, al); 825 if (mi == NULL) 826 return -ENOMEM; 827 828 iter->priv = mi; 829 return 0; 830 } 831 832 static int 833 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 834 { 835 u64 cost; 836 struct mem_info *mi = iter->priv; 837 struct hists *hists = evsel__hists(iter->evsel); 838 struct perf_sample *sample = iter->sample; 839 struct hist_entry *he; 840 841 if (mi == NULL) 842 return -EINVAL; 843 844 cost = sample->weight; 845 if (!cost) 846 cost = 1; 847 848 /* 849 * must pass period=weight in order to get the correct 850 * sorting from hists__collapse_resort() which is solely 851 * based on periods. We want sorting be done on nr_events * weight 852 * and this is indirectly achieved by passing period=weight here 853 * and the he_stat__add_period() function. 854 */ 855 sample->period = cost; 856 857 he = hists__add_entry(hists, al, iter->parent, NULL, mi, NULL, 858 sample, true); 859 if (!he) 860 return -ENOMEM; 861 862 iter->he = he; 863 return 0; 864 } 865 866 static int 867 iter_finish_mem_entry(struct hist_entry_iter *iter, 868 struct addr_location *al __maybe_unused) 869 { 870 struct evsel *evsel = iter->evsel; 871 struct hists *hists = evsel__hists(evsel); 872 struct hist_entry *he = iter->he; 873 int err = -EINVAL; 874 875 if (he == NULL) 876 goto out; 877 878 hists__inc_nr_samples(hists, he->filtered); 879 880 err = hist_entry__append_callchain(he, iter->sample); 881 882 out: 883 /* 884 * We don't need to free iter->priv (mem_info) here since the mem info 885 * was either already freed in hists__findnew_entry() or passed to a 886 * new hist entry by hist_entry__new(). 887 */ 888 iter->priv = NULL; 889 890 iter->he = NULL; 891 return err; 892 } 893 894 static int 895 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 896 { 897 struct branch_info *bi; 898 struct perf_sample *sample = iter->sample; 899 900 bi = sample__resolve_bstack(sample, al); 901 if (!bi) 902 return -ENOMEM; 903 904 iter->curr = 0; 905 iter->total = sample->branch_stack->nr; 906 907 iter->priv = bi; 908 return 0; 909 } 910 911 static int 912 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused, 913 struct addr_location *al __maybe_unused) 914 { 915 return 0; 916 } 917 918 static int 919 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 920 { 921 struct branch_info *bi = iter->priv; 922 int i = iter->curr; 923 924 if (bi == NULL) 925 return 0; 926 927 if (iter->curr >= iter->total) 928 return 0; 929 930 maps__put(al->maps); 931 al->maps = maps__get(bi[i].to.ms.maps); 932 map__put(al->map); 933 al->map = map__get(bi[i].to.ms.map); 934 al->sym = bi[i].to.ms.sym; 935 al->addr = bi[i].to.addr; 936 return 1; 937 } 938 939 static int 940 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 941 { 942 struct branch_info *bi; 943 struct evsel *evsel = iter->evsel; 944 struct hists *hists = evsel__hists(evsel); 945 struct perf_sample *sample = iter->sample; 946 struct hist_entry *he = NULL; 947 int i = iter->curr; 948 int err = 0; 949 950 bi = iter->priv; 951 952 if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym)) 953 goto out; 954 955 /* 956 * The report shows the percentage of total branches captured 957 * and not events sampled. Thus we use a pseudo period of 1. 958 */ 959 sample->period = 1; 960 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 961 962 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, NULL, 963 sample, true); 964 if (he == NULL) 965 return -ENOMEM; 966 967 hists__inc_nr_samples(hists, he->filtered); 968 969 out: 970 iter->he = he; 971 iter->curr++; 972 return err; 973 } 974 975 static int 976 iter_finish_branch_entry(struct hist_entry_iter *iter, 977 struct addr_location *al __maybe_unused) 978 { 979 zfree(&iter->priv); 980 iter->he = NULL; 981 982 return iter->curr >= iter->total ? 0 : -1; 983 } 984 985 static int 986 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 987 struct addr_location *al __maybe_unused) 988 { 989 return 0; 990 } 991 992 static int 993 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 994 { 995 struct evsel *evsel = iter->evsel; 996 struct perf_sample *sample = iter->sample; 997 struct hist_entry *he; 998 999 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 1000 NULL, sample, true); 1001 if (he == NULL) 1002 return -ENOMEM; 1003 1004 iter->he = he; 1005 return 0; 1006 } 1007 1008 static int 1009 iter_finish_normal_entry(struct hist_entry_iter *iter, 1010 struct addr_location *al __maybe_unused) 1011 { 1012 struct hist_entry *he = iter->he; 1013 struct evsel *evsel = iter->evsel; 1014 struct perf_sample *sample = iter->sample; 1015 1016 if (he == NULL) 1017 return 0; 1018 1019 iter->he = NULL; 1020 1021 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 1022 1023 return hist_entry__append_callchain(he, sample); 1024 } 1025 1026 static int 1027 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 1028 struct addr_location *al __maybe_unused) 1029 { 1030 struct hist_entry **he_cache; 1031 struct callchain_cursor *cursor = get_tls_callchain_cursor(); 1032 1033 if (cursor == NULL) 1034 return -ENOMEM; 1035 1036 callchain_cursor_commit(cursor); 1037 1038 /* 1039 * This is for detecting cycles or recursions so that they're 1040 * cumulated only one time to prevent entries more than 100% 1041 * overhead. 1042 */ 1043 he_cache = malloc(sizeof(*he_cache) * (cursor->nr + 1)); 1044 if (he_cache == NULL) 1045 return -ENOMEM; 1046 1047 iter->priv = he_cache; 1048 iter->curr = 0; 1049 1050 return 0; 1051 } 1052 1053 static int 1054 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 1055 struct addr_location *al) 1056 { 1057 struct evsel *evsel = iter->evsel; 1058 struct hists *hists = evsel__hists(evsel); 1059 struct perf_sample *sample = iter->sample; 1060 struct hist_entry **he_cache = iter->priv; 1061 struct hist_entry *he; 1062 int err = 0; 1063 1064 he = hists__add_entry(hists, al, iter->parent, NULL, NULL, NULL, 1065 sample, true); 1066 if (he == NULL) 1067 return -ENOMEM; 1068 1069 iter->he = he; 1070 he_cache[iter->curr++] = he; 1071 1072 hist_entry__append_callchain(he, sample); 1073 1074 /* 1075 * We need to re-initialize the cursor since callchain_append() 1076 * advanced the cursor to the end. 1077 */ 1078 callchain_cursor_commit(get_tls_callchain_cursor()); 1079 1080 hists__inc_nr_samples(hists, he->filtered); 1081 1082 return err; 1083 } 1084 1085 static int 1086 iter_next_cumulative_entry(struct hist_entry_iter *iter, 1087 struct addr_location *al) 1088 { 1089 struct callchain_cursor_node *node; 1090 1091 node = callchain_cursor_current(get_tls_callchain_cursor()); 1092 if (node == NULL) 1093 return 0; 1094 1095 return fill_callchain_info(al, node, iter->hide_unresolved); 1096 } 1097 1098 static bool 1099 hist_entry__fast__sym_diff(struct hist_entry *left, 1100 struct hist_entry *right) 1101 { 1102 struct symbol *sym_l = left->ms.sym; 1103 struct symbol *sym_r = right->ms.sym; 1104 1105 if (!sym_l && !sym_r) 1106 return left->ip != right->ip; 1107 1108 return !!_sort__sym_cmp(sym_l, sym_r); 1109 } 1110 1111 1112 static int 1113 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 1114 struct addr_location *al) 1115 { 1116 struct evsel *evsel = iter->evsel; 1117 struct perf_sample *sample = iter->sample; 1118 struct hist_entry **he_cache = iter->priv; 1119 struct hist_entry *he; 1120 struct hist_entry he_tmp = { 1121 .hists = evsel__hists(evsel), 1122 .cpu = al->cpu, 1123 .thread = al->thread, 1124 .comm = thread__comm(al->thread), 1125 .ip = al->addr, 1126 .ms = { 1127 .maps = al->maps, 1128 .map = al->map, 1129 .sym = al->sym, 1130 }, 1131 .srcline = (char *) al->srcline, 1132 .parent = iter->parent, 1133 .raw_data = sample->raw_data, 1134 .raw_size = sample->raw_size, 1135 }; 1136 int i; 1137 struct callchain_cursor cursor, *tls_cursor = get_tls_callchain_cursor(); 1138 bool fast = hists__has(he_tmp.hists, sym); 1139 1140 if (tls_cursor == NULL) 1141 return -ENOMEM; 1142 1143 callchain_cursor_snapshot(&cursor, tls_cursor); 1144 1145 callchain_cursor_advance(tls_cursor); 1146 1147 /* 1148 * Check if there's duplicate entries in the callchain. 1149 * It's possible that it has cycles or recursive calls. 1150 */ 1151 for (i = 0; i < iter->curr; i++) { 1152 /* 1153 * For most cases, there are no duplicate entries in callchain. 1154 * The symbols are usually different. Do a quick check for 1155 * symbols first. 1156 */ 1157 if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp)) 1158 continue; 1159 1160 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 1161 /* to avoid calling callback function */ 1162 iter->he = NULL; 1163 return 0; 1164 } 1165 } 1166 1167 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 1168 NULL, sample, false); 1169 if (he == NULL) 1170 return -ENOMEM; 1171 1172 iter->he = he; 1173 he_cache[iter->curr++] = he; 1174 1175 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 1176 callchain_append(he->callchain, &cursor, sample->period); 1177 return 0; 1178 } 1179 1180 static int 1181 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 1182 struct addr_location *al __maybe_unused) 1183 { 1184 zfree(&iter->priv); 1185 iter->he = NULL; 1186 1187 return 0; 1188 } 1189 1190 const struct hist_iter_ops hist_iter_mem = { 1191 .prepare_entry = iter_prepare_mem_entry, 1192 .add_single_entry = iter_add_single_mem_entry, 1193 .next_entry = iter_next_nop_entry, 1194 .add_next_entry = iter_add_next_nop_entry, 1195 .finish_entry = iter_finish_mem_entry, 1196 }; 1197 1198 const struct hist_iter_ops hist_iter_branch = { 1199 .prepare_entry = iter_prepare_branch_entry, 1200 .add_single_entry = iter_add_single_branch_entry, 1201 .next_entry = iter_next_branch_entry, 1202 .add_next_entry = iter_add_next_branch_entry, 1203 .finish_entry = iter_finish_branch_entry, 1204 }; 1205 1206 const struct hist_iter_ops hist_iter_normal = { 1207 .prepare_entry = iter_prepare_normal_entry, 1208 .add_single_entry = iter_add_single_normal_entry, 1209 .next_entry = iter_next_nop_entry, 1210 .add_next_entry = iter_add_next_nop_entry, 1211 .finish_entry = iter_finish_normal_entry, 1212 }; 1213 1214 const struct hist_iter_ops hist_iter_cumulative = { 1215 .prepare_entry = iter_prepare_cumulative_entry, 1216 .add_single_entry = iter_add_single_cumulative_entry, 1217 .next_entry = iter_next_cumulative_entry, 1218 .add_next_entry = iter_add_next_cumulative_entry, 1219 .finish_entry = iter_finish_cumulative_entry, 1220 }; 1221 1222 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1223 int max_stack_depth, void *arg) 1224 { 1225 int err, err2; 1226 struct map *alm = NULL; 1227 1228 if (al) 1229 alm = map__get(al->map); 1230 1231 err = sample__resolve_callchain(iter->sample, get_tls_callchain_cursor(), &iter->parent, 1232 iter->evsel, al, max_stack_depth); 1233 if (err) { 1234 map__put(alm); 1235 return err; 1236 } 1237 1238 err = iter->ops->prepare_entry(iter, al); 1239 if (err) 1240 goto out; 1241 1242 err = iter->ops->add_single_entry(iter, al); 1243 if (err) 1244 goto out; 1245 1246 if (iter->he && iter->add_entry_cb) { 1247 err = iter->add_entry_cb(iter, al, true, arg); 1248 if (err) 1249 goto out; 1250 } 1251 1252 while (iter->ops->next_entry(iter, al)) { 1253 err = iter->ops->add_next_entry(iter, al); 1254 if (err) 1255 break; 1256 1257 if (iter->he && iter->add_entry_cb) { 1258 err = iter->add_entry_cb(iter, al, false, arg); 1259 if (err) 1260 goto out; 1261 } 1262 } 1263 1264 out: 1265 err2 = iter->ops->finish_entry(iter, al); 1266 if (!err) 1267 err = err2; 1268 1269 map__put(alm); 1270 1271 return err; 1272 } 1273 1274 int64_t 1275 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1276 { 1277 struct hists *hists = left->hists; 1278 struct perf_hpp_fmt *fmt; 1279 int64_t cmp = 0; 1280 1281 hists__for_each_sort_list(hists, fmt) { 1282 if (perf_hpp__is_dynamic_entry(fmt) && 1283 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1284 continue; 1285 1286 cmp = fmt->cmp(fmt, left, right); 1287 if (cmp) 1288 break; 1289 } 1290 1291 return cmp; 1292 } 1293 1294 int64_t 1295 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1296 { 1297 struct hists *hists = left->hists; 1298 struct perf_hpp_fmt *fmt; 1299 int64_t cmp = 0; 1300 1301 hists__for_each_sort_list(hists, fmt) { 1302 if (perf_hpp__is_dynamic_entry(fmt) && 1303 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1304 continue; 1305 1306 cmp = fmt->collapse(fmt, left, right); 1307 if (cmp) 1308 break; 1309 } 1310 1311 return cmp; 1312 } 1313 1314 void hist_entry__delete(struct hist_entry *he) 1315 { 1316 struct hist_entry_ops *ops = he->ops; 1317 1318 thread__zput(he->thread); 1319 map_symbol__exit(&he->ms); 1320 1321 if (he->branch_info) { 1322 map_symbol__exit(&he->branch_info->from.ms); 1323 map_symbol__exit(&he->branch_info->to.ms); 1324 zfree_srcline(&he->branch_info->srcline_from); 1325 zfree_srcline(&he->branch_info->srcline_to); 1326 zfree(&he->branch_info); 1327 } 1328 1329 if (he->mem_info) { 1330 map_symbol__exit(&he->mem_info->iaddr.ms); 1331 map_symbol__exit(&he->mem_info->daddr.ms); 1332 mem_info__zput(he->mem_info); 1333 } 1334 1335 if (he->block_info) 1336 block_info__zput(he->block_info); 1337 1338 if (he->kvm_info) 1339 kvm_info__zput(he->kvm_info); 1340 1341 zfree(&he->res_samples); 1342 zfree(&he->stat_acc); 1343 zfree_srcline(&he->srcline); 1344 if (he->srcfile && he->srcfile[0]) 1345 zfree(&he->srcfile); 1346 free_callchain(he->callchain); 1347 zfree(&he->trace_output); 1348 zfree(&he->raw_data); 1349 ops->free(he); 1350 } 1351 1352 /* 1353 * If this is not the last column, then we need to pad it according to the 1354 * pre-calculated max length for this column, otherwise don't bother adding 1355 * spaces because that would break viewing this with, for instance, 'less', 1356 * that would show tons of trailing spaces when a long C++ demangled method 1357 * names is sampled. 1358 */ 1359 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1360 struct perf_hpp_fmt *fmt, int printed) 1361 { 1362 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1363 const int width = fmt->width(fmt, hpp, he->hists); 1364 if (printed < width) { 1365 advance_hpp(hpp, printed); 1366 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1367 } 1368 } 1369 1370 return printed; 1371 } 1372 1373 /* 1374 * collapse the histogram 1375 */ 1376 1377 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1378 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1379 enum hist_filter type); 1380 1381 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1382 1383 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1384 { 1385 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1386 } 1387 1388 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1389 enum hist_filter type, 1390 fmt_chk_fn check) 1391 { 1392 struct perf_hpp_fmt *fmt; 1393 bool type_match = false; 1394 struct hist_entry *parent = he->parent_he; 1395 1396 switch (type) { 1397 case HIST_FILTER__THREAD: 1398 if (symbol_conf.comm_list == NULL && 1399 symbol_conf.pid_list == NULL && 1400 symbol_conf.tid_list == NULL) 1401 return; 1402 break; 1403 case HIST_FILTER__DSO: 1404 if (symbol_conf.dso_list == NULL) 1405 return; 1406 break; 1407 case HIST_FILTER__SYMBOL: 1408 if (symbol_conf.sym_list == NULL) 1409 return; 1410 break; 1411 case HIST_FILTER__PARENT: 1412 case HIST_FILTER__GUEST: 1413 case HIST_FILTER__HOST: 1414 case HIST_FILTER__SOCKET: 1415 case HIST_FILTER__C2C: 1416 default: 1417 return; 1418 } 1419 1420 /* if it's filtered by own fmt, it has to have filter bits */ 1421 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1422 if (check(fmt)) { 1423 type_match = true; 1424 break; 1425 } 1426 } 1427 1428 if (type_match) { 1429 /* 1430 * If the filter is for current level entry, propagate 1431 * filter marker to parents. The marker bit was 1432 * already set by default so it only needs to clear 1433 * non-filtered entries. 1434 */ 1435 if (!(he->filtered & (1 << type))) { 1436 while (parent) { 1437 parent->filtered &= ~(1 << type); 1438 parent = parent->parent_he; 1439 } 1440 } 1441 } else { 1442 /* 1443 * If current entry doesn't have matching formats, set 1444 * filter marker for upper level entries. it will be 1445 * cleared if its lower level entries is not filtered. 1446 * 1447 * For lower-level entries, it inherits parent's 1448 * filter bit so that lower level entries of a 1449 * non-filtered entry won't set the filter marker. 1450 */ 1451 if (parent == NULL) 1452 he->filtered |= (1 << type); 1453 else 1454 he->filtered |= (parent->filtered & (1 << type)); 1455 } 1456 } 1457 1458 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1459 { 1460 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1461 check_thread_entry); 1462 1463 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1464 perf_hpp__is_dso_entry); 1465 1466 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1467 perf_hpp__is_sym_entry); 1468 1469 hists__apply_filters(he->hists, he); 1470 } 1471 1472 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1473 struct rb_root_cached *root, 1474 struct hist_entry *he, 1475 struct hist_entry *parent_he, 1476 struct perf_hpp_list *hpp_list) 1477 { 1478 struct rb_node **p = &root->rb_root.rb_node; 1479 struct rb_node *parent = NULL; 1480 struct hist_entry *iter, *new; 1481 struct perf_hpp_fmt *fmt; 1482 int64_t cmp; 1483 bool leftmost = true; 1484 1485 while (*p != NULL) { 1486 parent = *p; 1487 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1488 1489 cmp = 0; 1490 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1491 cmp = fmt->collapse(fmt, iter, he); 1492 if (cmp) 1493 break; 1494 } 1495 1496 if (!cmp) { 1497 he_stat__add_stat(&iter->stat, &he->stat); 1498 return iter; 1499 } 1500 1501 if (cmp < 0) 1502 p = &parent->rb_left; 1503 else { 1504 p = &parent->rb_right; 1505 leftmost = false; 1506 } 1507 } 1508 1509 new = hist_entry__new(he, true); 1510 if (new == NULL) 1511 return NULL; 1512 1513 hists->nr_entries++; 1514 1515 /* save related format list for output */ 1516 new->hpp_list = hpp_list; 1517 new->parent_he = parent_he; 1518 1519 hist_entry__apply_hierarchy_filters(new); 1520 1521 /* some fields are now passed to 'new' */ 1522 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1523 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1524 he->trace_output = NULL; 1525 else 1526 new->trace_output = NULL; 1527 1528 if (perf_hpp__is_srcline_entry(fmt)) 1529 he->srcline = NULL; 1530 else 1531 new->srcline = NULL; 1532 1533 if (perf_hpp__is_srcfile_entry(fmt)) 1534 he->srcfile = NULL; 1535 else 1536 new->srcfile = NULL; 1537 } 1538 1539 rb_link_node(&new->rb_node_in, parent, p); 1540 rb_insert_color_cached(&new->rb_node_in, root, leftmost); 1541 return new; 1542 } 1543 1544 static int hists__hierarchy_insert_entry(struct hists *hists, 1545 struct rb_root_cached *root, 1546 struct hist_entry *he) 1547 { 1548 struct perf_hpp_list_node *node; 1549 struct hist_entry *new_he = NULL; 1550 struct hist_entry *parent = NULL; 1551 int depth = 0; 1552 int ret = 0; 1553 1554 list_for_each_entry(node, &hists->hpp_formats, list) { 1555 /* skip period (overhead) and elided columns */ 1556 if (node->level == 0 || node->skip) 1557 continue; 1558 1559 /* insert copy of 'he' for each fmt into the hierarchy */ 1560 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1561 if (new_he == NULL) { 1562 ret = -1; 1563 break; 1564 } 1565 1566 root = &new_he->hroot_in; 1567 new_he->depth = depth++; 1568 parent = new_he; 1569 } 1570 1571 if (new_he) { 1572 new_he->leaf = true; 1573 1574 if (hist_entry__has_callchains(new_he) && 1575 symbol_conf.use_callchain) { 1576 struct callchain_cursor *cursor = get_tls_callchain_cursor(); 1577 1578 if (cursor == NULL) 1579 return -1; 1580 1581 callchain_cursor_reset(cursor); 1582 if (callchain_merge(cursor, 1583 new_he->callchain, 1584 he->callchain) < 0) 1585 ret = -1; 1586 } 1587 } 1588 1589 /* 'he' is no longer used */ 1590 hist_entry__delete(he); 1591 1592 /* return 0 (or -1) since it already applied filters */ 1593 return ret; 1594 } 1595 1596 static int hists__collapse_insert_entry(struct hists *hists, 1597 struct rb_root_cached *root, 1598 struct hist_entry *he) 1599 { 1600 struct rb_node **p = &root->rb_root.rb_node; 1601 struct rb_node *parent = NULL; 1602 struct hist_entry *iter; 1603 int64_t cmp; 1604 bool leftmost = true; 1605 1606 if (symbol_conf.report_hierarchy) 1607 return hists__hierarchy_insert_entry(hists, root, he); 1608 1609 while (*p != NULL) { 1610 parent = *p; 1611 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1612 1613 cmp = hist_entry__collapse(iter, he); 1614 1615 if (!cmp) { 1616 int ret = 0; 1617 1618 he_stat__add_stat(&iter->stat, &he->stat); 1619 if (symbol_conf.cumulate_callchain) 1620 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1621 1622 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) { 1623 struct callchain_cursor *cursor = get_tls_callchain_cursor(); 1624 1625 if (cursor != NULL) { 1626 callchain_cursor_reset(cursor); 1627 if (callchain_merge(cursor, iter->callchain, he->callchain) < 0) 1628 ret = -1; 1629 } else { 1630 ret = 0; 1631 } 1632 } 1633 hist_entry__delete(he); 1634 return ret; 1635 } 1636 1637 if (cmp < 0) 1638 p = &(*p)->rb_left; 1639 else { 1640 p = &(*p)->rb_right; 1641 leftmost = false; 1642 } 1643 } 1644 hists->nr_entries++; 1645 1646 rb_link_node(&he->rb_node_in, parent, p); 1647 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 1648 return 1; 1649 } 1650 1651 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists) 1652 { 1653 struct rb_root_cached *root; 1654 1655 mutex_lock(&hists->lock); 1656 1657 root = hists->entries_in; 1658 if (++hists->entries_in > &hists->entries_in_array[1]) 1659 hists->entries_in = &hists->entries_in_array[0]; 1660 1661 mutex_unlock(&hists->lock); 1662 1663 return root; 1664 } 1665 1666 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1667 { 1668 hists__filter_entry_by_dso(hists, he); 1669 hists__filter_entry_by_thread(hists, he); 1670 hists__filter_entry_by_symbol(hists, he); 1671 hists__filter_entry_by_socket(hists, he); 1672 } 1673 1674 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1675 { 1676 struct rb_root_cached *root; 1677 struct rb_node *next; 1678 struct hist_entry *n; 1679 int ret; 1680 1681 if (!hists__has(hists, need_collapse)) 1682 return 0; 1683 1684 hists->nr_entries = 0; 1685 1686 root = hists__get_rotate_entries_in(hists); 1687 1688 next = rb_first_cached(root); 1689 1690 while (next) { 1691 if (session_done()) 1692 break; 1693 n = rb_entry(next, struct hist_entry, rb_node_in); 1694 next = rb_next(&n->rb_node_in); 1695 1696 rb_erase_cached(&n->rb_node_in, root); 1697 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1698 if (ret < 0) 1699 return -1; 1700 1701 if (ret) { 1702 /* 1703 * If it wasn't combined with one of the entries already 1704 * collapsed, we need to apply the filters that may have 1705 * been set by, say, the hist_browser. 1706 */ 1707 hists__apply_filters(hists, n); 1708 } 1709 if (prog) 1710 ui_progress__update(prog, 1); 1711 } 1712 return 0; 1713 } 1714 1715 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1716 { 1717 struct hists *hists = a->hists; 1718 struct perf_hpp_fmt *fmt; 1719 int64_t cmp = 0; 1720 1721 hists__for_each_sort_list(hists, fmt) { 1722 if (perf_hpp__should_skip(fmt, a->hists)) 1723 continue; 1724 1725 cmp = fmt->sort(fmt, a, b); 1726 if (cmp) 1727 break; 1728 } 1729 1730 return cmp; 1731 } 1732 1733 static void hists__reset_filter_stats(struct hists *hists) 1734 { 1735 hists->nr_non_filtered_entries = 0; 1736 hists->stats.total_non_filtered_period = 0; 1737 } 1738 1739 void hists__reset_stats(struct hists *hists) 1740 { 1741 hists->nr_entries = 0; 1742 hists->stats.total_period = 0; 1743 1744 hists__reset_filter_stats(hists); 1745 } 1746 1747 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1748 { 1749 hists->nr_non_filtered_entries++; 1750 hists->stats.total_non_filtered_period += h->stat.period; 1751 } 1752 1753 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1754 { 1755 if (!h->filtered) 1756 hists__inc_filter_stats(hists, h); 1757 1758 hists->nr_entries++; 1759 hists->stats.total_period += h->stat.period; 1760 } 1761 1762 static void hierarchy_recalc_total_periods(struct hists *hists) 1763 { 1764 struct rb_node *node; 1765 struct hist_entry *he; 1766 1767 node = rb_first_cached(&hists->entries); 1768 1769 hists->stats.total_period = 0; 1770 hists->stats.total_non_filtered_period = 0; 1771 1772 /* 1773 * recalculate total period using top-level entries only 1774 * since lower level entries only see non-filtered entries 1775 * but upper level entries have sum of both entries. 1776 */ 1777 while (node) { 1778 he = rb_entry(node, struct hist_entry, rb_node); 1779 node = rb_next(node); 1780 1781 hists->stats.total_period += he->stat.period; 1782 if (!he->filtered) 1783 hists->stats.total_non_filtered_period += he->stat.period; 1784 } 1785 } 1786 1787 static void hierarchy_insert_output_entry(struct rb_root_cached *root, 1788 struct hist_entry *he) 1789 { 1790 struct rb_node **p = &root->rb_root.rb_node; 1791 struct rb_node *parent = NULL; 1792 struct hist_entry *iter; 1793 struct perf_hpp_fmt *fmt; 1794 bool leftmost = true; 1795 1796 while (*p != NULL) { 1797 parent = *p; 1798 iter = rb_entry(parent, struct hist_entry, rb_node); 1799 1800 if (hist_entry__sort(he, iter) > 0) 1801 p = &parent->rb_left; 1802 else { 1803 p = &parent->rb_right; 1804 leftmost = false; 1805 } 1806 } 1807 1808 rb_link_node(&he->rb_node, parent, p); 1809 rb_insert_color_cached(&he->rb_node, root, leftmost); 1810 1811 /* update column width of dynamic entry */ 1812 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1813 if (fmt->init) 1814 fmt->init(fmt, he); 1815 } 1816 } 1817 1818 static void hists__hierarchy_output_resort(struct hists *hists, 1819 struct ui_progress *prog, 1820 struct rb_root_cached *root_in, 1821 struct rb_root_cached *root_out, 1822 u64 min_callchain_hits, 1823 bool use_callchain) 1824 { 1825 struct rb_node *node; 1826 struct hist_entry *he; 1827 1828 *root_out = RB_ROOT_CACHED; 1829 node = rb_first_cached(root_in); 1830 1831 while (node) { 1832 he = rb_entry(node, struct hist_entry, rb_node_in); 1833 node = rb_next(node); 1834 1835 hierarchy_insert_output_entry(root_out, he); 1836 1837 if (prog) 1838 ui_progress__update(prog, 1); 1839 1840 hists->nr_entries++; 1841 if (!he->filtered) { 1842 hists->nr_non_filtered_entries++; 1843 hists__calc_col_len(hists, he); 1844 } 1845 1846 if (!he->leaf) { 1847 hists__hierarchy_output_resort(hists, prog, 1848 &he->hroot_in, 1849 &he->hroot_out, 1850 min_callchain_hits, 1851 use_callchain); 1852 continue; 1853 } 1854 1855 if (!use_callchain) 1856 continue; 1857 1858 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1859 u64 total = he->stat.period; 1860 1861 if (symbol_conf.cumulate_callchain) 1862 total = he->stat_acc->period; 1863 1864 min_callchain_hits = total * (callchain_param.min_percent / 100); 1865 } 1866 1867 callchain_param.sort(&he->sorted_chain, he->callchain, 1868 min_callchain_hits, &callchain_param); 1869 } 1870 } 1871 1872 static void __hists__insert_output_entry(struct rb_root_cached *entries, 1873 struct hist_entry *he, 1874 u64 min_callchain_hits, 1875 bool use_callchain) 1876 { 1877 struct rb_node **p = &entries->rb_root.rb_node; 1878 struct rb_node *parent = NULL; 1879 struct hist_entry *iter; 1880 struct perf_hpp_fmt *fmt; 1881 bool leftmost = true; 1882 1883 if (use_callchain) { 1884 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1885 u64 total = he->stat.period; 1886 1887 if (symbol_conf.cumulate_callchain) 1888 total = he->stat_acc->period; 1889 1890 min_callchain_hits = total * (callchain_param.min_percent / 100); 1891 } 1892 callchain_param.sort(&he->sorted_chain, he->callchain, 1893 min_callchain_hits, &callchain_param); 1894 } 1895 1896 while (*p != NULL) { 1897 parent = *p; 1898 iter = rb_entry(parent, struct hist_entry, rb_node); 1899 1900 if (hist_entry__sort(he, iter) > 0) 1901 p = &(*p)->rb_left; 1902 else { 1903 p = &(*p)->rb_right; 1904 leftmost = false; 1905 } 1906 } 1907 1908 rb_link_node(&he->rb_node, parent, p); 1909 rb_insert_color_cached(&he->rb_node, entries, leftmost); 1910 1911 /* update column width of dynamic entries */ 1912 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1913 if (fmt->init) 1914 fmt->init(fmt, he); 1915 } 1916 } 1917 1918 static void output_resort(struct hists *hists, struct ui_progress *prog, 1919 bool use_callchain, hists__resort_cb_t cb, 1920 void *cb_arg) 1921 { 1922 struct rb_root_cached *root; 1923 struct rb_node *next; 1924 struct hist_entry *n; 1925 u64 callchain_total; 1926 u64 min_callchain_hits; 1927 1928 callchain_total = hists->callchain_period; 1929 if (symbol_conf.filter_relative) 1930 callchain_total = hists->callchain_non_filtered_period; 1931 1932 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1933 1934 hists__reset_stats(hists); 1935 hists__reset_col_len(hists); 1936 1937 if (symbol_conf.report_hierarchy) { 1938 hists__hierarchy_output_resort(hists, prog, 1939 &hists->entries_collapsed, 1940 &hists->entries, 1941 min_callchain_hits, 1942 use_callchain); 1943 hierarchy_recalc_total_periods(hists); 1944 return; 1945 } 1946 1947 if (hists__has(hists, need_collapse)) 1948 root = &hists->entries_collapsed; 1949 else 1950 root = hists->entries_in; 1951 1952 next = rb_first_cached(root); 1953 hists->entries = RB_ROOT_CACHED; 1954 1955 while (next) { 1956 n = rb_entry(next, struct hist_entry, rb_node_in); 1957 next = rb_next(&n->rb_node_in); 1958 1959 if (cb && cb(n, cb_arg)) 1960 continue; 1961 1962 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1963 hists__inc_stats(hists, n); 1964 1965 if (!n->filtered) 1966 hists__calc_col_len(hists, n); 1967 1968 if (prog) 1969 ui_progress__update(prog, 1); 1970 } 1971 } 1972 1973 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog, 1974 hists__resort_cb_t cb, void *cb_arg) 1975 { 1976 bool use_callchain; 1977 1978 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1979 use_callchain = evsel__has_callchain(evsel); 1980 else 1981 use_callchain = symbol_conf.use_callchain; 1982 1983 use_callchain |= symbol_conf.show_branchflag_count; 1984 1985 output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg); 1986 } 1987 1988 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog) 1989 { 1990 return evsel__output_resort_cb(evsel, prog, NULL, NULL); 1991 } 1992 1993 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 1994 { 1995 output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL); 1996 } 1997 1998 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, 1999 hists__resort_cb_t cb) 2000 { 2001 output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL); 2002 } 2003 2004 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 2005 { 2006 if (he->leaf || hmd == HMD_FORCE_SIBLING) 2007 return false; 2008 2009 if (he->unfolded || hmd == HMD_FORCE_CHILD) 2010 return true; 2011 2012 return false; 2013 } 2014 2015 struct rb_node *rb_hierarchy_last(struct rb_node *node) 2016 { 2017 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2018 2019 while (can_goto_child(he, HMD_NORMAL)) { 2020 node = rb_last(&he->hroot_out.rb_root); 2021 he = rb_entry(node, struct hist_entry, rb_node); 2022 } 2023 return node; 2024 } 2025 2026 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 2027 { 2028 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2029 2030 if (can_goto_child(he, hmd)) 2031 node = rb_first_cached(&he->hroot_out); 2032 else 2033 node = rb_next(node); 2034 2035 while (node == NULL) { 2036 he = he->parent_he; 2037 if (he == NULL) 2038 break; 2039 2040 node = rb_next(&he->rb_node); 2041 } 2042 return node; 2043 } 2044 2045 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 2046 { 2047 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2048 2049 node = rb_prev(node); 2050 if (node) 2051 return rb_hierarchy_last(node); 2052 2053 he = he->parent_he; 2054 if (he == NULL) 2055 return NULL; 2056 2057 return &he->rb_node; 2058 } 2059 2060 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 2061 { 2062 struct rb_node *node; 2063 struct hist_entry *child; 2064 float percent; 2065 2066 if (he->leaf) 2067 return false; 2068 2069 node = rb_first_cached(&he->hroot_out); 2070 child = rb_entry(node, struct hist_entry, rb_node); 2071 2072 while (node && child->filtered) { 2073 node = rb_next(node); 2074 child = rb_entry(node, struct hist_entry, rb_node); 2075 } 2076 2077 if (node) 2078 percent = hist_entry__get_percent_limit(child); 2079 else 2080 percent = 0; 2081 2082 return node && percent >= limit; 2083 } 2084 2085 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 2086 enum hist_filter filter) 2087 { 2088 h->filtered &= ~(1 << filter); 2089 2090 if (symbol_conf.report_hierarchy) { 2091 struct hist_entry *parent = h->parent_he; 2092 2093 while (parent) { 2094 he_stat__add_stat(&parent->stat, &h->stat); 2095 2096 parent->filtered &= ~(1 << filter); 2097 2098 if (parent->filtered) 2099 goto next; 2100 2101 /* force fold unfiltered entry for simplicity */ 2102 parent->unfolded = false; 2103 parent->has_no_entry = false; 2104 parent->row_offset = 0; 2105 parent->nr_rows = 0; 2106 next: 2107 parent = parent->parent_he; 2108 } 2109 } 2110 2111 if (h->filtered) 2112 return; 2113 2114 /* force fold unfiltered entry for simplicity */ 2115 h->unfolded = false; 2116 h->has_no_entry = false; 2117 h->row_offset = 0; 2118 h->nr_rows = 0; 2119 2120 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 2121 2122 hists__inc_filter_stats(hists, h); 2123 hists__calc_col_len(hists, h); 2124 } 2125 2126 2127 static bool hists__filter_entry_by_dso(struct hists *hists, 2128 struct hist_entry *he) 2129 { 2130 if (hists->dso_filter != NULL && 2131 (he->ms.map == NULL || map__dso(he->ms.map) != hists->dso_filter)) { 2132 he->filtered |= (1 << HIST_FILTER__DSO); 2133 return true; 2134 } 2135 2136 return false; 2137 } 2138 2139 static bool hists__filter_entry_by_thread(struct hists *hists, 2140 struct hist_entry *he) 2141 { 2142 if (hists->thread_filter != NULL && 2143 !RC_CHK_EQUAL(he->thread, hists->thread_filter)) { 2144 he->filtered |= (1 << HIST_FILTER__THREAD); 2145 return true; 2146 } 2147 2148 return false; 2149 } 2150 2151 static bool hists__filter_entry_by_symbol(struct hists *hists, 2152 struct hist_entry *he) 2153 { 2154 if (hists->symbol_filter_str != NULL && 2155 (!he->ms.sym || strstr(he->ms.sym->name, 2156 hists->symbol_filter_str) == NULL)) { 2157 he->filtered |= (1 << HIST_FILTER__SYMBOL); 2158 return true; 2159 } 2160 2161 return false; 2162 } 2163 2164 static bool hists__filter_entry_by_socket(struct hists *hists, 2165 struct hist_entry *he) 2166 { 2167 if ((hists->socket_filter > -1) && 2168 (he->socket != hists->socket_filter)) { 2169 he->filtered |= (1 << HIST_FILTER__SOCKET); 2170 return true; 2171 } 2172 2173 return false; 2174 } 2175 2176 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 2177 2178 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 2179 { 2180 struct rb_node *nd; 2181 2182 hists->stats.nr_non_filtered_samples = 0; 2183 2184 hists__reset_filter_stats(hists); 2185 hists__reset_col_len(hists); 2186 2187 for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) { 2188 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2189 2190 if (filter(hists, h)) 2191 continue; 2192 2193 hists__remove_entry_filter(hists, h, type); 2194 } 2195 } 2196 2197 static void resort_filtered_entry(struct rb_root_cached *root, 2198 struct hist_entry *he) 2199 { 2200 struct rb_node **p = &root->rb_root.rb_node; 2201 struct rb_node *parent = NULL; 2202 struct hist_entry *iter; 2203 struct rb_root_cached new_root = RB_ROOT_CACHED; 2204 struct rb_node *nd; 2205 bool leftmost = true; 2206 2207 while (*p != NULL) { 2208 parent = *p; 2209 iter = rb_entry(parent, struct hist_entry, rb_node); 2210 2211 if (hist_entry__sort(he, iter) > 0) 2212 p = &(*p)->rb_left; 2213 else { 2214 p = &(*p)->rb_right; 2215 leftmost = false; 2216 } 2217 } 2218 2219 rb_link_node(&he->rb_node, parent, p); 2220 rb_insert_color_cached(&he->rb_node, root, leftmost); 2221 2222 if (he->leaf || he->filtered) 2223 return; 2224 2225 nd = rb_first_cached(&he->hroot_out); 2226 while (nd) { 2227 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2228 2229 nd = rb_next(nd); 2230 rb_erase_cached(&h->rb_node, &he->hroot_out); 2231 2232 resort_filtered_entry(&new_root, h); 2233 } 2234 2235 he->hroot_out = new_root; 2236 } 2237 2238 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 2239 { 2240 struct rb_node *nd; 2241 struct rb_root_cached new_root = RB_ROOT_CACHED; 2242 2243 hists->stats.nr_non_filtered_samples = 0; 2244 2245 hists__reset_filter_stats(hists); 2246 hists__reset_col_len(hists); 2247 2248 nd = rb_first_cached(&hists->entries); 2249 while (nd) { 2250 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2251 int ret; 2252 2253 ret = hist_entry__filter(h, type, arg); 2254 2255 /* 2256 * case 1. non-matching type 2257 * zero out the period, set filter marker and move to child 2258 */ 2259 if (ret < 0) { 2260 memset(&h->stat, 0, sizeof(h->stat)); 2261 h->filtered |= (1 << type); 2262 2263 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 2264 } 2265 /* 2266 * case 2. matched type (filter out) 2267 * set filter marker and move to next 2268 */ 2269 else if (ret == 1) { 2270 h->filtered |= (1 << type); 2271 2272 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2273 } 2274 /* 2275 * case 3. ok (not filtered) 2276 * add period to hists and parents, erase the filter marker 2277 * and move to next sibling 2278 */ 2279 else { 2280 hists__remove_entry_filter(hists, h, type); 2281 2282 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2283 } 2284 } 2285 2286 hierarchy_recalc_total_periods(hists); 2287 2288 /* 2289 * resort output after applying a new filter since filter in a lower 2290 * hierarchy can change periods in a upper hierarchy. 2291 */ 2292 nd = rb_first_cached(&hists->entries); 2293 while (nd) { 2294 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2295 2296 nd = rb_next(nd); 2297 rb_erase_cached(&h->rb_node, &hists->entries); 2298 2299 resort_filtered_entry(&new_root, h); 2300 } 2301 2302 hists->entries = new_root; 2303 } 2304 2305 void hists__filter_by_thread(struct hists *hists) 2306 { 2307 if (symbol_conf.report_hierarchy) 2308 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 2309 hists->thread_filter); 2310 else 2311 hists__filter_by_type(hists, HIST_FILTER__THREAD, 2312 hists__filter_entry_by_thread); 2313 } 2314 2315 void hists__filter_by_dso(struct hists *hists) 2316 { 2317 if (symbol_conf.report_hierarchy) 2318 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 2319 hists->dso_filter); 2320 else 2321 hists__filter_by_type(hists, HIST_FILTER__DSO, 2322 hists__filter_entry_by_dso); 2323 } 2324 2325 void hists__filter_by_symbol(struct hists *hists) 2326 { 2327 if (symbol_conf.report_hierarchy) 2328 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2329 hists->symbol_filter_str); 2330 else 2331 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2332 hists__filter_entry_by_symbol); 2333 } 2334 2335 void hists__filter_by_socket(struct hists *hists) 2336 { 2337 if (symbol_conf.report_hierarchy) 2338 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2339 &hists->socket_filter); 2340 else 2341 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2342 hists__filter_entry_by_socket); 2343 } 2344 2345 void events_stats__inc(struct events_stats *stats, u32 type) 2346 { 2347 ++stats->nr_events[0]; 2348 ++stats->nr_events[type]; 2349 } 2350 2351 static void hists_stats__inc(struct hists_stats *stats) 2352 { 2353 ++stats->nr_samples; 2354 } 2355 2356 void hists__inc_nr_events(struct hists *hists) 2357 { 2358 hists_stats__inc(&hists->stats); 2359 } 2360 2361 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2362 { 2363 hists_stats__inc(&hists->stats); 2364 if (!filtered) 2365 hists->stats.nr_non_filtered_samples++; 2366 } 2367 2368 void hists__inc_nr_lost_samples(struct hists *hists, u32 lost) 2369 { 2370 hists->stats.nr_lost_samples += lost; 2371 } 2372 2373 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2374 struct hist_entry *pair) 2375 { 2376 struct rb_root_cached *root; 2377 struct rb_node **p; 2378 struct rb_node *parent = NULL; 2379 struct hist_entry *he; 2380 int64_t cmp; 2381 bool leftmost = true; 2382 2383 if (hists__has(hists, need_collapse)) 2384 root = &hists->entries_collapsed; 2385 else 2386 root = hists->entries_in; 2387 2388 p = &root->rb_root.rb_node; 2389 2390 while (*p != NULL) { 2391 parent = *p; 2392 he = rb_entry(parent, struct hist_entry, rb_node_in); 2393 2394 cmp = hist_entry__collapse(he, pair); 2395 2396 if (!cmp) 2397 goto out; 2398 2399 if (cmp < 0) 2400 p = &(*p)->rb_left; 2401 else { 2402 p = &(*p)->rb_right; 2403 leftmost = false; 2404 } 2405 } 2406 2407 he = hist_entry__new(pair, true); 2408 if (he) { 2409 memset(&he->stat, 0, sizeof(he->stat)); 2410 he->hists = hists; 2411 if (symbol_conf.cumulate_callchain) 2412 memset(he->stat_acc, 0, sizeof(he->stat)); 2413 rb_link_node(&he->rb_node_in, parent, p); 2414 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2415 hists__inc_stats(hists, he); 2416 he->dummy = true; 2417 } 2418 out: 2419 return he; 2420 } 2421 2422 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, 2423 struct rb_root_cached *root, 2424 struct hist_entry *pair) 2425 { 2426 struct rb_node **p; 2427 struct rb_node *parent = NULL; 2428 struct hist_entry *he; 2429 struct perf_hpp_fmt *fmt; 2430 bool leftmost = true; 2431 2432 p = &root->rb_root.rb_node; 2433 while (*p != NULL) { 2434 int64_t cmp = 0; 2435 2436 parent = *p; 2437 he = rb_entry(parent, struct hist_entry, rb_node_in); 2438 2439 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2440 cmp = fmt->collapse(fmt, he, pair); 2441 if (cmp) 2442 break; 2443 } 2444 if (!cmp) 2445 goto out; 2446 2447 if (cmp < 0) 2448 p = &parent->rb_left; 2449 else { 2450 p = &parent->rb_right; 2451 leftmost = false; 2452 } 2453 } 2454 2455 he = hist_entry__new(pair, true); 2456 if (he) { 2457 rb_link_node(&he->rb_node_in, parent, p); 2458 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2459 2460 he->dummy = true; 2461 he->hists = hists; 2462 memset(&he->stat, 0, sizeof(he->stat)); 2463 hists__inc_stats(hists, he); 2464 } 2465 out: 2466 return he; 2467 } 2468 2469 static struct hist_entry *hists__find_entry(struct hists *hists, 2470 struct hist_entry *he) 2471 { 2472 struct rb_node *n; 2473 2474 if (hists__has(hists, need_collapse)) 2475 n = hists->entries_collapsed.rb_root.rb_node; 2476 else 2477 n = hists->entries_in->rb_root.rb_node; 2478 2479 while (n) { 2480 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2481 int64_t cmp = hist_entry__collapse(iter, he); 2482 2483 if (cmp < 0) 2484 n = n->rb_left; 2485 else if (cmp > 0) 2486 n = n->rb_right; 2487 else 2488 return iter; 2489 } 2490 2491 return NULL; 2492 } 2493 2494 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root, 2495 struct hist_entry *he) 2496 { 2497 struct rb_node *n = root->rb_root.rb_node; 2498 2499 while (n) { 2500 struct hist_entry *iter; 2501 struct perf_hpp_fmt *fmt; 2502 int64_t cmp = 0; 2503 2504 iter = rb_entry(n, struct hist_entry, rb_node_in); 2505 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2506 cmp = fmt->collapse(fmt, iter, he); 2507 if (cmp) 2508 break; 2509 } 2510 2511 if (cmp < 0) 2512 n = n->rb_left; 2513 else if (cmp > 0) 2514 n = n->rb_right; 2515 else 2516 return iter; 2517 } 2518 2519 return NULL; 2520 } 2521 2522 static void hists__match_hierarchy(struct rb_root_cached *leader_root, 2523 struct rb_root_cached *other_root) 2524 { 2525 struct rb_node *nd; 2526 struct hist_entry *pos, *pair; 2527 2528 for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) { 2529 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2530 pair = hists__find_hierarchy_entry(other_root, pos); 2531 2532 if (pair) { 2533 hist_entry__add_pair(pair, pos); 2534 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); 2535 } 2536 } 2537 } 2538 2539 /* 2540 * Look for pairs to link to the leader buckets (hist_entries): 2541 */ 2542 void hists__match(struct hists *leader, struct hists *other) 2543 { 2544 struct rb_root_cached *root; 2545 struct rb_node *nd; 2546 struct hist_entry *pos, *pair; 2547 2548 if (symbol_conf.report_hierarchy) { 2549 /* hierarchy report always collapses entries */ 2550 return hists__match_hierarchy(&leader->entries_collapsed, 2551 &other->entries_collapsed); 2552 } 2553 2554 if (hists__has(leader, need_collapse)) 2555 root = &leader->entries_collapsed; 2556 else 2557 root = leader->entries_in; 2558 2559 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2560 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2561 pair = hists__find_entry(other, pos); 2562 2563 if (pair) 2564 hist_entry__add_pair(pair, pos); 2565 } 2566 } 2567 2568 static int hists__link_hierarchy(struct hists *leader_hists, 2569 struct hist_entry *parent, 2570 struct rb_root_cached *leader_root, 2571 struct rb_root_cached *other_root) 2572 { 2573 struct rb_node *nd; 2574 struct hist_entry *pos, *leader; 2575 2576 for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) { 2577 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2578 2579 if (hist_entry__has_pairs(pos)) { 2580 bool found = false; 2581 2582 list_for_each_entry(leader, &pos->pairs.head, pairs.node) { 2583 if (leader->hists == leader_hists) { 2584 found = true; 2585 break; 2586 } 2587 } 2588 if (!found) 2589 return -1; 2590 } else { 2591 leader = add_dummy_hierarchy_entry(leader_hists, 2592 leader_root, pos); 2593 if (leader == NULL) 2594 return -1; 2595 2596 /* do not point parent in the pos */ 2597 leader->parent_he = parent; 2598 2599 hist_entry__add_pair(pos, leader); 2600 } 2601 2602 if (!pos->leaf) { 2603 if (hists__link_hierarchy(leader_hists, leader, 2604 &leader->hroot_in, 2605 &pos->hroot_in) < 0) 2606 return -1; 2607 } 2608 } 2609 return 0; 2610 } 2611 2612 /* 2613 * Look for entries in the other hists that are not present in the leader, if 2614 * we find them, just add a dummy entry on the leader hists, with period=0, 2615 * nr_events=0, to serve as the list header. 2616 */ 2617 int hists__link(struct hists *leader, struct hists *other) 2618 { 2619 struct rb_root_cached *root; 2620 struct rb_node *nd; 2621 struct hist_entry *pos, *pair; 2622 2623 if (symbol_conf.report_hierarchy) { 2624 /* hierarchy report always collapses entries */ 2625 return hists__link_hierarchy(leader, NULL, 2626 &leader->entries_collapsed, 2627 &other->entries_collapsed); 2628 } 2629 2630 if (hists__has(other, need_collapse)) 2631 root = &other->entries_collapsed; 2632 else 2633 root = other->entries_in; 2634 2635 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2636 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2637 2638 if (!hist_entry__has_pairs(pos)) { 2639 pair = hists__add_dummy_entry(leader, pos); 2640 if (pair == NULL) 2641 return -1; 2642 hist_entry__add_pair(pos, pair); 2643 } 2644 } 2645 2646 return 0; 2647 } 2648 2649 int hists__unlink(struct hists *hists) 2650 { 2651 struct rb_root_cached *root; 2652 struct rb_node *nd; 2653 struct hist_entry *pos; 2654 2655 if (hists__has(hists, need_collapse)) 2656 root = &hists->entries_collapsed; 2657 else 2658 root = hists->entries_in; 2659 2660 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2661 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2662 list_del_init(&pos->pairs.node); 2663 } 2664 2665 return 0; 2666 } 2667 2668 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2669 struct perf_sample *sample, bool nonany_branch_mode, 2670 u64 *total_cycles) 2671 { 2672 struct branch_info *bi; 2673 struct branch_entry *entries = perf_sample__branch_entries(sample); 2674 2675 /* If we have branch cycles always annotate them. */ 2676 if (bs && bs->nr && entries[0].flags.cycles) { 2677 bi = sample__resolve_bstack(sample, al); 2678 if (bi) { 2679 struct addr_map_symbol *prev = NULL; 2680 2681 /* 2682 * Ignore errors, still want to process the 2683 * other entries. 2684 * 2685 * For non standard branch modes always 2686 * force no IPC (prev == NULL) 2687 * 2688 * Note that perf stores branches reversed from 2689 * program order! 2690 */ 2691 for (int i = bs->nr - 1; i >= 0; i--) { 2692 addr_map_symbol__account_cycles(&bi[i].from, 2693 nonany_branch_mode ? NULL : prev, 2694 bi[i].flags.cycles); 2695 prev = &bi[i].to; 2696 2697 if (total_cycles) 2698 *total_cycles += bi[i].flags.cycles; 2699 } 2700 for (unsigned int i = 0; i < bs->nr; i++) { 2701 map_symbol__exit(&bi[i].to.ms); 2702 map_symbol__exit(&bi[i].from.ms); 2703 } 2704 free(bi); 2705 } 2706 } 2707 } 2708 2709 size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp, 2710 bool skip_empty) 2711 { 2712 struct evsel *pos; 2713 size_t ret = 0; 2714 2715 evlist__for_each_entry(evlist, pos) { 2716 struct hists *hists = evsel__hists(pos); 2717 2718 if (skip_empty && !hists->stats.nr_samples && !hists->stats.nr_lost_samples) 2719 continue; 2720 2721 ret += fprintf(fp, "%s stats:\n", evsel__name(pos)); 2722 if (hists->stats.nr_samples) 2723 ret += fprintf(fp, "%16s events: %10d\n", 2724 "SAMPLE", hists->stats.nr_samples); 2725 if (hists->stats.nr_lost_samples) 2726 ret += fprintf(fp, "%16s events: %10d\n", 2727 "LOST_SAMPLES", hists->stats.nr_lost_samples); 2728 } 2729 2730 return ret; 2731 } 2732 2733 2734 u64 hists__total_period(struct hists *hists) 2735 { 2736 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2737 hists->stats.total_period; 2738 } 2739 2740 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq) 2741 { 2742 char unit; 2743 int printed; 2744 const struct dso *dso = hists->dso_filter; 2745 struct thread *thread = hists->thread_filter; 2746 int socket_id = hists->socket_filter; 2747 unsigned long nr_samples = hists->stats.nr_samples; 2748 u64 nr_events = hists->stats.total_period; 2749 struct evsel *evsel = hists_to_evsel(hists); 2750 const char *ev_name = evsel__name(evsel); 2751 char buf[512], sample_freq_str[64] = ""; 2752 size_t buflen = sizeof(buf); 2753 char ref[30] = " show reference callgraph, "; 2754 bool enable_ref = false; 2755 2756 if (symbol_conf.filter_relative) { 2757 nr_samples = hists->stats.nr_non_filtered_samples; 2758 nr_events = hists->stats.total_non_filtered_period; 2759 } 2760 2761 if (evsel__is_group_event(evsel)) { 2762 struct evsel *pos; 2763 2764 evsel__group_desc(evsel, buf, buflen); 2765 ev_name = buf; 2766 2767 for_each_group_member(pos, evsel) { 2768 struct hists *pos_hists = evsel__hists(pos); 2769 2770 if (symbol_conf.filter_relative) { 2771 nr_samples += pos_hists->stats.nr_non_filtered_samples; 2772 nr_events += pos_hists->stats.total_non_filtered_period; 2773 } else { 2774 nr_samples += pos_hists->stats.nr_samples; 2775 nr_events += pos_hists->stats.total_period; 2776 } 2777 } 2778 } 2779 2780 if (symbol_conf.show_ref_callgraph && 2781 strstr(ev_name, "call-graph=no")) 2782 enable_ref = true; 2783 2784 if (show_freq) 2785 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq); 2786 2787 nr_samples = convert_unit(nr_samples, &unit); 2788 printed = scnprintf(bf, size, 2789 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64, 2790 nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "", 2791 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events); 2792 2793 2794 if (hists->uid_filter_str) 2795 printed += snprintf(bf + printed, size - printed, 2796 ", UID: %s", hists->uid_filter_str); 2797 if (thread) { 2798 if (hists__has(hists, thread)) { 2799 printed += scnprintf(bf + printed, size - printed, 2800 ", Thread: %s(%d)", 2801 (thread__comm_set(thread) ? thread__comm_str(thread) : ""), 2802 thread__tid(thread)); 2803 } else { 2804 printed += scnprintf(bf + printed, size - printed, 2805 ", Thread: %s", 2806 (thread__comm_set(thread) ? thread__comm_str(thread) : "")); 2807 } 2808 } 2809 if (dso) 2810 printed += scnprintf(bf + printed, size - printed, 2811 ", DSO: %s", dso->short_name); 2812 if (socket_id > -1) 2813 printed += scnprintf(bf + printed, size - printed, 2814 ", Processor Socket: %d", socket_id); 2815 2816 return printed; 2817 } 2818 2819 int parse_filter_percentage(const struct option *opt __maybe_unused, 2820 const char *arg, int unset __maybe_unused) 2821 { 2822 if (!strcmp(arg, "relative")) 2823 symbol_conf.filter_relative = true; 2824 else if (!strcmp(arg, "absolute")) 2825 symbol_conf.filter_relative = false; 2826 else { 2827 pr_debug("Invalid percentage: %s\n", arg); 2828 return -1; 2829 } 2830 2831 return 0; 2832 } 2833 2834 int perf_hist_config(const char *var, const char *value) 2835 { 2836 if (!strcmp(var, "hist.percentage")) 2837 return parse_filter_percentage(NULL, value, 0); 2838 2839 return 0; 2840 } 2841 2842 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2843 { 2844 memset(hists, 0, sizeof(*hists)); 2845 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED; 2846 hists->entries_in = &hists->entries_in_array[0]; 2847 hists->entries_collapsed = RB_ROOT_CACHED; 2848 hists->entries = RB_ROOT_CACHED; 2849 mutex_init(&hists->lock); 2850 hists->socket_filter = -1; 2851 hists->hpp_list = hpp_list; 2852 INIT_LIST_HEAD(&hists->hpp_formats); 2853 return 0; 2854 } 2855 2856 static void hists__delete_remaining_entries(struct rb_root_cached *root) 2857 { 2858 struct rb_node *node; 2859 struct hist_entry *he; 2860 2861 while (!RB_EMPTY_ROOT(&root->rb_root)) { 2862 node = rb_first_cached(root); 2863 rb_erase_cached(node, root); 2864 2865 he = rb_entry(node, struct hist_entry, rb_node_in); 2866 hist_entry__delete(he); 2867 } 2868 } 2869 2870 static void hists__delete_all_entries(struct hists *hists) 2871 { 2872 hists__delete_entries(hists); 2873 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2874 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2875 hists__delete_remaining_entries(&hists->entries_collapsed); 2876 } 2877 2878 static void hists_evsel__exit(struct evsel *evsel) 2879 { 2880 struct hists *hists = evsel__hists(evsel); 2881 struct perf_hpp_fmt *fmt, *pos; 2882 struct perf_hpp_list_node *node, *tmp; 2883 2884 hists__delete_all_entries(hists); 2885 2886 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2887 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2888 list_del_init(&fmt->list); 2889 free(fmt); 2890 } 2891 list_del_init(&node->list); 2892 free(node); 2893 } 2894 } 2895 2896 static int hists_evsel__init(struct evsel *evsel) 2897 { 2898 struct hists *hists = evsel__hists(evsel); 2899 2900 __hists__init(hists, &perf_hpp_list); 2901 return 0; 2902 } 2903 2904 /* 2905 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2906 * stored in the rbtree... 2907 */ 2908 2909 int hists__init(void) 2910 { 2911 int err = evsel__object_config(sizeof(struct hists_evsel), 2912 hists_evsel__init, hists_evsel__exit); 2913 if (err) 2914 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2915 2916 return err; 2917 } 2918 2919 void perf_hpp_list__init(struct perf_hpp_list *list) 2920 { 2921 INIT_LIST_HEAD(&list->fields); 2922 INIT_LIST_HEAD(&list->sorts); 2923 } 2924