1 // SPDX-License-Identifier: GPL-2.0 2 #include "callchain.h" 3 #include "debug.h" 4 #include "dso.h" 5 #include "build-id.h" 6 #include "hist.h" 7 #include "map.h" 8 #include "map_symbol.h" 9 #include "branch.h" 10 #include "mem-events.h" 11 #include "session.h" 12 #include "namespaces.h" 13 #include "cgroup.h" 14 #include "sort.h" 15 #include "units.h" 16 #include "evlist.h" 17 #include "evsel.h" 18 #include "annotate.h" 19 #include "srcline.h" 20 #include "symbol.h" 21 #include "thread.h" 22 #include "block-info.h" 23 #include "ui/progress.h" 24 #include <errno.h> 25 #include <math.h> 26 #include <inttypes.h> 27 #include <sys/param.h> 28 #include <linux/rbtree.h> 29 #include <linux/string.h> 30 #include <linux/time64.h> 31 #include <linux/zalloc.h> 32 33 static bool hists__filter_entry_by_dso(struct hists *hists, 34 struct hist_entry *he); 35 static bool hists__filter_entry_by_thread(struct hists *hists, 36 struct hist_entry *he); 37 static bool hists__filter_entry_by_symbol(struct hists *hists, 38 struct hist_entry *he); 39 static bool hists__filter_entry_by_socket(struct hists *hists, 40 struct hist_entry *he); 41 42 u16 hists__col_len(struct hists *hists, enum hist_column col) 43 { 44 return hists->col_len[col]; 45 } 46 47 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 48 { 49 hists->col_len[col] = len; 50 } 51 52 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 53 { 54 if (len > hists__col_len(hists, col)) { 55 hists__set_col_len(hists, col, len); 56 return true; 57 } 58 return false; 59 } 60 61 void hists__reset_col_len(struct hists *hists) 62 { 63 enum hist_column col; 64 65 for (col = 0; col < HISTC_NR_COLS; ++col) 66 hists__set_col_len(hists, col, 0); 67 } 68 69 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 70 { 71 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 72 73 if (hists__col_len(hists, dso) < unresolved_col_width && 74 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 75 !symbol_conf.dso_list) 76 hists__set_col_len(hists, dso, unresolved_col_width); 77 } 78 79 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 80 { 81 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 82 int symlen; 83 u16 len; 84 85 if (h->block_info) 86 return; 87 /* 88 * +4 accounts for '[x] ' priv level info 89 * +2 accounts for 0x prefix on raw addresses 90 * +3 accounts for ' y ' symtab origin info 91 */ 92 if (h->ms.sym) { 93 symlen = h->ms.sym->namelen + 4; 94 if (verbose > 0) 95 symlen += BITS_PER_LONG / 4 + 2 + 3; 96 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 97 } else { 98 symlen = unresolved_col_width + 4 + 2; 99 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 100 hists__set_unres_dso_col_len(hists, HISTC_DSO); 101 } 102 103 len = thread__comm_len(h->thread); 104 if (hists__new_col_len(hists, HISTC_COMM, len)) 105 hists__set_col_len(hists, HISTC_THREAD, len + 8); 106 107 if (h->ms.map) { 108 len = dso__name_len(h->ms.map->dso); 109 hists__new_col_len(hists, HISTC_DSO, len); 110 } 111 112 if (h->parent) 113 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 114 115 if (h->branch_info) { 116 if (h->branch_info->from.ms.sym) { 117 symlen = (int)h->branch_info->from.ms.sym->namelen + 4; 118 if (verbose > 0) 119 symlen += BITS_PER_LONG / 4 + 2 + 3; 120 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 121 122 symlen = dso__name_len(h->branch_info->from.ms.map->dso); 123 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 124 } else { 125 symlen = unresolved_col_width + 4 + 2; 126 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 127 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 128 } 129 130 if (h->branch_info->to.ms.sym) { 131 symlen = (int)h->branch_info->to.ms.sym->namelen + 4; 132 if (verbose > 0) 133 symlen += BITS_PER_LONG / 4 + 2 + 3; 134 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 135 136 symlen = dso__name_len(h->branch_info->to.ms.map->dso); 137 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 138 } else { 139 symlen = unresolved_col_width + 4 + 2; 140 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 141 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 142 } 143 144 if (h->branch_info->srcline_from) 145 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 146 strlen(h->branch_info->srcline_from)); 147 if (h->branch_info->srcline_to) 148 hists__new_col_len(hists, HISTC_SRCLINE_TO, 149 strlen(h->branch_info->srcline_to)); 150 } 151 152 if (h->mem_info) { 153 if (h->mem_info->daddr.ms.sym) { 154 symlen = (int)h->mem_info->daddr.ms.sym->namelen + 4 155 + unresolved_col_width + 2; 156 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 157 symlen); 158 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 159 symlen + 1); 160 } else { 161 symlen = unresolved_col_width + 4 + 2; 162 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 163 symlen); 164 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 165 symlen); 166 } 167 168 if (h->mem_info->iaddr.ms.sym) { 169 symlen = (int)h->mem_info->iaddr.ms.sym->namelen + 4 170 + unresolved_col_width + 2; 171 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 172 symlen); 173 } else { 174 symlen = unresolved_col_width + 4 + 2; 175 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 176 symlen); 177 } 178 179 if (h->mem_info->daddr.ms.map) { 180 symlen = dso__name_len(h->mem_info->daddr.ms.map->dso); 181 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 182 symlen); 183 } else { 184 symlen = unresolved_col_width + 4 + 2; 185 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 186 } 187 188 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR, 189 unresolved_col_width + 4 + 2); 190 191 hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE, 192 unresolved_col_width + 4 + 2); 193 194 } else { 195 symlen = unresolved_col_width + 4 + 2; 196 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 197 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 198 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 199 } 200 201 hists__new_col_len(hists, HISTC_CGROUP, 6); 202 hists__new_col_len(hists, HISTC_CGROUP_ID, 20); 203 hists__new_col_len(hists, HISTC_CPU, 3); 204 hists__new_col_len(hists, HISTC_SOCKET, 6); 205 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 206 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 207 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 208 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3); 209 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 210 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 211 hists__new_col_len(hists, HISTC_MEM_BLOCKED, 10); 212 hists__new_col_len(hists, HISTC_LOCAL_INS_LAT, 13); 213 hists__new_col_len(hists, HISTC_GLOBAL_INS_LAT, 13); 214 hists__new_col_len(hists, HISTC_P_STAGE_CYC, 13); 215 if (symbol_conf.nanosecs) 216 hists__new_col_len(hists, HISTC_TIME, 16); 217 else 218 hists__new_col_len(hists, HISTC_TIME, 12); 219 hists__new_col_len(hists, HISTC_CODE_PAGE_SIZE, 6); 220 221 if (h->srcline) { 222 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header)); 223 hists__new_col_len(hists, HISTC_SRCLINE, len); 224 } 225 226 if (h->srcfile) 227 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 228 229 if (h->transaction) 230 hists__new_col_len(hists, HISTC_TRANSACTION, 231 hist_entry__transaction_len()); 232 233 if (h->trace_output) 234 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 235 236 if (h->cgroup) { 237 const char *cgrp_name = "unknown"; 238 struct cgroup *cgrp = cgroup__find(h->ms.maps->machine->env, 239 h->cgroup); 240 if (cgrp != NULL) 241 cgrp_name = cgrp->name; 242 243 hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name)); 244 } 245 } 246 247 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 248 { 249 struct rb_node *next = rb_first_cached(&hists->entries); 250 struct hist_entry *n; 251 int row = 0; 252 253 hists__reset_col_len(hists); 254 255 while (next && row++ < max_rows) { 256 n = rb_entry(next, struct hist_entry, rb_node); 257 if (!n->filtered) 258 hists__calc_col_len(hists, n); 259 next = rb_next(&n->rb_node); 260 } 261 } 262 263 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 264 unsigned int cpumode, u64 period) 265 { 266 switch (cpumode) { 267 case PERF_RECORD_MISC_KERNEL: 268 he_stat->period_sys += period; 269 break; 270 case PERF_RECORD_MISC_USER: 271 he_stat->period_us += period; 272 break; 273 case PERF_RECORD_MISC_GUEST_KERNEL: 274 he_stat->period_guest_sys += period; 275 break; 276 case PERF_RECORD_MISC_GUEST_USER: 277 he_stat->period_guest_us += period; 278 break; 279 default: 280 break; 281 } 282 } 283 284 static long hist_time(unsigned long htime) 285 { 286 unsigned long time_quantum = symbol_conf.time_quantum; 287 if (time_quantum) 288 return (htime / time_quantum) * time_quantum; 289 return htime; 290 } 291 292 static void he_stat__add_period(struct he_stat *he_stat, u64 period) 293 { 294 he_stat->period += period; 295 he_stat->nr_events += 1; 296 } 297 298 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 299 { 300 dest->period += src->period; 301 dest->period_sys += src->period_sys; 302 dest->period_us += src->period_us; 303 dest->period_guest_sys += src->period_guest_sys; 304 dest->period_guest_us += src->period_guest_us; 305 dest->nr_events += src->nr_events; 306 } 307 308 static void he_stat__decay(struct he_stat *he_stat) 309 { 310 he_stat->period = (he_stat->period * 7) / 8; 311 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 312 /* XXX need decay for weight too? */ 313 } 314 315 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 316 317 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 318 { 319 u64 prev_period = he->stat.period; 320 u64 diff; 321 322 if (prev_period == 0) 323 return true; 324 325 he_stat__decay(&he->stat); 326 if (symbol_conf.cumulate_callchain) 327 he_stat__decay(he->stat_acc); 328 decay_callchain(he->callchain); 329 330 diff = prev_period - he->stat.period; 331 332 if (!he->depth) { 333 hists->stats.total_period -= diff; 334 if (!he->filtered) 335 hists->stats.total_non_filtered_period -= diff; 336 } 337 338 if (!he->leaf) { 339 struct hist_entry *child; 340 struct rb_node *node = rb_first_cached(&he->hroot_out); 341 while (node) { 342 child = rb_entry(node, struct hist_entry, rb_node); 343 node = rb_next(node); 344 345 if (hists__decay_entry(hists, child)) 346 hists__delete_entry(hists, child); 347 } 348 } 349 350 return he->stat.period == 0; 351 } 352 353 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 354 { 355 struct rb_root_cached *root_in; 356 struct rb_root_cached *root_out; 357 358 if (he->parent_he) { 359 root_in = &he->parent_he->hroot_in; 360 root_out = &he->parent_he->hroot_out; 361 } else { 362 if (hists__has(hists, need_collapse)) 363 root_in = &hists->entries_collapsed; 364 else 365 root_in = hists->entries_in; 366 root_out = &hists->entries; 367 } 368 369 rb_erase_cached(&he->rb_node_in, root_in); 370 rb_erase_cached(&he->rb_node, root_out); 371 372 --hists->nr_entries; 373 if (!he->filtered) 374 --hists->nr_non_filtered_entries; 375 376 hist_entry__delete(he); 377 } 378 379 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 380 { 381 struct rb_node *next = rb_first_cached(&hists->entries); 382 struct hist_entry *n; 383 384 while (next) { 385 n = rb_entry(next, struct hist_entry, rb_node); 386 next = rb_next(&n->rb_node); 387 if (((zap_user && n->level == '.') || 388 (zap_kernel && n->level != '.') || 389 hists__decay_entry(hists, n))) { 390 hists__delete_entry(hists, n); 391 } 392 } 393 } 394 395 void hists__delete_entries(struct hists *hists) 396 { 397 struct rb_node *next = rb_first_cached(&hists->entries); 398 struct hist_entry *n; 399 400 while (next) { 401 n = rb_entry(next, struct hist_entry, rb_node); 402 next = rb_next(&n->rb_node); 403 404 hists__delete_entry(hists, n); 405 } 406 } 407 408 struct hist_entry *hists__get_entry(struct hists *hists, int idx) 409 { 410 struct rb_node *next = rb_first_cached(&hists->entries); 411 struct hist_entry *n; 412 int i = 0; 413 414 while (next) { 415 n = rb_entry(next, struct hist_entry, rb_node); 416 if (i == idx) 417 return n; 418 419 next = rb_next(&n->rb_node); 420 i++; 421 } 422 423 return NULL; 424 } 425 426 /* 427 * histogram, sorted on item, collects periods 428 */ 429 430 static int hist_entry__init(struct hist_entry *he, 431 struct hist_entry *template, 432 bool sample_self, 433 size_t callchain_size) 434 { 435 *he = *template; 436 he->callchain_size = callchain_size; 437 438 if (symbol_conf.cumulate_callchain) { 439 he->stat_acc = malloc(sizeof(he->stat)); 440 if (he->stat_acc == NULL) 441 return -ENOMEM; 442 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 443 if (!sample_self) 444 memset(&he->stat, 0, sizeof(he->stat)); 445 } 446 447 map__get(he->ms.map); 448 449 if (he->branch_info) { 450 /* 451 * This branch info is (a part of) allocated from 452 * sample__resolve_bstack() and will be freed after 453 * adding new entries. So we need to save a copy. 454 */ 455 he->branch_info = malloc(sizeof(*he->branch_info)); 456 if (he->branch_info == NULL) 457 goto err; 458 459 memcpy(he->branch_info, template->branch_info, 460 sizeof(*he->branch_info)); 461 462 map__get(he->branch_info->from.ms.map); 463 map__get(he->branch_info->to.ms.map); 464 } 465 466 if (he->mem_info) { 467 map__get(he->mem_info->iaddr.ms.map); 468 map__get(he->mem_info->daddr.ms.map); 469 } 470 471 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 472 callchain_init(he->callchain); 473 474 if (he->raw_data) { 475 he->raw_data = memdup(he->raw_data, he->raw_size); 476 if (he->raw_data == NULL) 477 goto err_infos; 478 } 479 480 if (he->srcline) { 481 he->srcline = strdup(he->srcline); 482 if (he->srcline == NULL) 483 goto err_rawdata; 484 } 485 486 if (symbol_conf.res_sample) { 487 he->res_samples = calloc(sizeof(struct res_sample), 488 symbol_conf.res_sample); 489 if (!he->res_samples) 490 goto err_srcline; 491 } 492 493 INIT_LIST_HEAD(&he->pairs.node); 494 thread__get(he->thread); 495 he->hroot_in = RB_ROOT_CACHED; 496 he->hroot_out = RB_ROOT_CACHED; 497 498 if (!symbol_conf.report_hierarchy) 499 he->leaf = true; 500 501 return 0; 502 503 err_srcline: 504 zfree(&he->srcline); 505 506 err_rawdata: 507 zfree(&he->raw_data); 508 509 err_infos: 510 if (he->branch_info) { 511 map__put(he->branch_info->from.ms.map); 512 map__put(he->branch_info->to.ms.map); 513 zfree(&he->branch_info); 514 } 515 if (he->mem_info) { 516 map__put(he->mem_info->iaddr.ms.map); 517 map__put(he->mem_info->daddr.ms.map); 518 } 519 err: 520 map__zput(he->ms.map); 521 zfree(&he->stat_acc); 522 return -ENOMEM; 523 } 524 525 static void *hist_entry__zalloc(size_t size) 526 { 527 return zalloc(size + sizeof(struct hist_entry)); 528 } 529 530 static void hist_entry__free(void *ptr) 531 { 532 free(ptr); 533 } 534 535 static struct hist_entry_ops default_ops = { 536 .new = hist_entry__zalloc, 537 .free = hist_entry__free, 538 }; 539 540 static struct hist_entry *hist_entry__new(struct hist_entry *template, 541 bool sample_self) 542 { 543 struct hist_entry_ops *ops = template->ops; 544 size_t callchain_size = 0; 545 struct hist_entry *he; 546 int err = 0; 547 548 if (!ops) 549 ops = template->ops = &default_ops; 550 551 if (symbol_conf.use_callchain) 552 callchain_size = sizeof(struct callchain_root); 553 554 he = ops->new(callchain_size); 555 if (he) { 556 err = hist_entry__init(he, template, sample_self, callchain_size); 557 if (err) { 558 ops->free(he); 559 he = NULL; 560 } 561 } 562 563 return he; 564 } 565 566 static u8 symbol__parent_filter(const struct symbol *parent) 567 { 568 if (symbol_conf.exclude_other && parent == NULL) 569 return 1 << HIST_FILTER__PARENT; 570 return 0; 571 } 572 573 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 574 { 575 if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain) 576 return; 577 578 he->hists->callchain_period += period; 579 if (!he->filtered) 580 he->hists->callchain_non_filtered_period += period; 581 } 582 583 static struct hist_entry *hists__findnew_entry(struct hists *hists, 584 struct hist_entry *entry, 585 struct addr_location *al, 586 bool sample_self) 587 { 588 struct rb_node **p; 589 struct rb_node *parent = NULL; 590 struct hist_entry *he; 591 int64_t cmp; 592 u64 period = entry->stat.period; 593 bool leftmost = true; 594 595 p = &hists->entries_in->rb_root.rb_node; 596 597 while (*p != NULL) { 598 parent = *p; 599 he = rb_entry(parent, struct hist_entry, rb_node_in); 600 601 /* 602 * Make sure that it receives arguments in a same order as 603 * hist_entry__collapse() so that we can use an appropriate 604 * function when searching an entry regardless which sort 605 * keys were used. 606 */ 607 cmp = hist_entry__cmp(he, entry); 608 609 if (!cmp) { 610 if (sample_self) { 611 he_stat__add_period(&he->stat, period); 612 hist_entry__add_callchain_period(he, period); 613 } 614 if (symbol_conf.cumulate_callchain) 615 he_stat__add_period(he->stat_acc, period); 616 617 /* 618 * This mem info was allocated from sample__resolve_mem 619 * and will not be used anymore. 620 */ 621 mem_info__zput(entry->mem_info); 622 623 block_info__zput(entry->block_info); 624 625 /* If the map of an existing hist_entry has 626 * become out-of-date due to an exec() or 627 * similar, update it. Otherwise we will 628 * mis-adjust symbol addresses when computing 629 * the history counter to increment. 630 */ 631 if (he->ms.map != entry->ms.map) { 632 map__put(he->ms.map); 633 he->ms.map = map__get(entry->ms.map); 634 } 635 goto out; 636 } 637 638 if (cmp < 0) 639 p = &(*p)->rb_left; 640 else { 641 p = &(*p)->rb_right; 642 leftmost = false; 643 } 644 } 645 646 he = hist_entry__new(entry, sample_self); 647 if (!he) 648 return NULL; 649 650 if (sample_self) 651 hist_entry__add_callchain_period(he, period); 652 hists->nr_entries++; 653 654 rb_link_node(&he->rb_node_in, parent, p); 655 rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost); 656 out: 657 if (sample_self) 658 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 659 if (symbol_conf.cumulate_callchain) 660 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 661 return he; 662 } 663 664 static unsigned random_max(unsigned high) 665 { 666 unsigned thresh = -high % high; 667 for (;;) { 668 unsigned r = random(); 669 if (r >= thresh) 670 return r % high; 671 } 672 } 673 674 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample) 675 { 676 struct res_sample *r; 677 int j; 678 679 if (he->num_res < symbol_conf.res_sample) { 680 j = he->num_res++; 681 } else { 682 j = random_max(symbol_conf.res_sample); 683 } 684 r = &he->res_samples[j]; 685 r->time = sample->time; 686 r->cpu = sample->cpu; 687 r->tid = sample->tid; 688 } 689 690 static struct hist_entry* 691 __hists__add_entry(struct hists *hists, 692 struct addr_location *al, 693 struct symbol *sym_parent, 694 struct branch_info *bi, 695 struct mem_info *mi, 696 struct block_info *block_info, 697 struct perf_sample *sample, 698 bool sample_self, 699 struct hist_entry_ops *ops) 700 { 701 struct namespaces *ns = thread__namespaces(al->thread); 702 struct hist_entry entry = { 703 .thread = al->thread, 704 .comm = thread__comm(al->thread), 705 .cgroup_id = { 706 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0, 707 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0, 708 }, 709 .cgroup = sample->cgroup, 710 .ms = { 711 .maps = al->maps, 712 .map = al->map, 713 .sym = al->sym, 714 }, 715 .srcline = (char *) al->srcline, 716 .socket = al->socket, 717 .cpu = al->cpu, 718 .cpumode = al->cpumode, 719 .ip = al->addr, 720 .level = al->level, 721 .code_page_size = sample->code_page_size, 722 .stat = { 723 .nr_events = 1, 724 .period = sample->period, 725 }, 726 .parent = sym_parent, 727 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 728 .hists = hists, 729 .branch_info = bi, 730 .mem_info = mi, 731 .block_info = block_info, 732 .transaction = sample->transaction, 733 .raw_data = sample->raw_data, 734 .raw_size = sample->raw_size, 735 .ops = ops, 736 .time = hist_time(sample->time), 737 .weight = sample->weight, 738 .ins_lat = sample->ins_lat, 739 .p_stage_cyc = sample->p_stage_cyc, 740 }, *he = hists__findnew_entry(hists, &entry, al, sample_self); 741 742 if (!hists->has_callchains && he && he->callchain_size != 0) 743 hists->has_callchains = true; 744 if (he && symbol_conf.res_sample) 745 hists__res_sample(he, sample); 746 return he; 747 } 748 749 struct hist_entry *hists__add_entry(struct hists *hists, 750 struct addr_location *al, 751 struct symbol *sym_parent, 752 struct branch_info *bi, 753 struct mem_info *mi, 754 struct perf_sample *sample, 755 bool sample_self) 756 { 757 return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL, 758 sample, sample_self, NULL); 759 } 760 761 struct hist_entry *hists__add_entry_ops(struct hists *hists, 762 struct hist_entry_ops *ops, 763 struct addr_location *al, 764 struct symbol *sym_parent, 765 struct branch_info *bi, 766 struct mem_info *mi, 767 struct perf_sample *sample, 768 bool sample_self) 769 { 770 return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL, 771 sample, sample_self, ops); 772 } 773 774 struct hist_entry *hists__add_entry_block(struct hists *hists, 775 struct addr_location *al, 776 struct block_info *block_info) 777 { 778 struct hist_entry entry = { 779 .block_info = block_info, 780 .hists = hists, 781 .ms = { 782 .maps = al->maps, 783 .map = al->map, 784 .sym = al->sym, 785 }, 786 }, *he = hists__findnew_entry(hists, &entry, al, false); 787 788 return he; 789 } 790 791 static int 792 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 793 struct addr_location *al __maybe_unused) 794 { 795 return 0; 796 } 797 798 static int 799 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 800 struct addr_location *al __maybe_unused) 801 { 802 return 0; 803 } 804 805 static int 806 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 807 { 808 struct perf_sample *sample = iter->sample; 809 struct mem_info *mi; 810 811 mi = sample__resolve_mem(sample, al); 812 if (mi == NULL) 813 return -ENOMEM; 814 815 iter->priv = mi; 816 return 0; 817 } 818 819 static int 820 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 821 { 822 u64 cost; 823 struct mem_info *mi = iter->priv; 824 struct hists *hists = evsel__hists(iter->evsel); 825 struct perf_sample *sample = iter->sample; 826 struct hist_entry *he; 827 828 if (mi == NULL) 829 return -EINVAL; 830 831 cost = sample->weight; 832 if (!cost) 833 cost = 1; 834 835 /* 836 * must pass period=weight in order to get the correct 837 * sorting from hists__collapse_resort() which is solely 838 * based on periods. We want sorting be done on nr_events * weight 839 * and this is indirectly achieved by passing period=weight here 840 * and the he_stat__add_period() function. 841 */ 842 sample->period = cost; 843 844 he = hists__add_entry(hists, al, iter->parent, NULL, mi, 845 sample, true); 846 if (!he) 847 return -ENOMEM; 848 849 iter->he = he; 850 return 0; 851 } 852 853 static int 854 iter_finish_mem_entry(struct hist_entry_iter *iter, 855 struct addr_location *al __maybe_unused) 856 { 857 struct evsel *evsel = iter->evsel; 858 struct hists *hists = evsel__hists(evsel); 859 struct hist_entry *he = iter->he; 860 int err = -EINVAL; 861 862 if (he == NULL) 863 goto out; 864 865 hists__inc_nr_samples(hists, he->filtered); 866 867 err = hist_entry__append_callchain(he, iter->sample); 868 869 out: 870 /* 871 * We don't need to free iter->priv (mem_info) here since the mem info 872 * was either already freed in hists__findnew_entry() or passed to a 873 * new hist entry by hist_entry__new(). 874 */ 875 iter->priv = NULL; 876 877 iter->he = NULL; 878 return err; 879 } 880 881 static int 882 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 883 { 884 struct branch_info *bi; 885 struct perf_sample *sample = iter->sample; 886 887 bi = sample__resolve_bstack(sample, al); 888 if (!bi) 889 return -ENOMEM; 890 891 iter->curr = 0; 892 iter->total = sample->branch_stack->nr; 893 894 iter->priv = bi; 895 return 0; 896 } 897 898 static int 899 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused, 900 struct addr_location *al __maybe_unused) 901 { 902 return 0; 903 } 904 905 static int 906 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 907 { 908 struct branch_info *bi = iter->priv; 909 int i = iter->curr; 910 911 if (bi == NULL) 912 return 0; 913 914 if (iter->curr >= iter->total) 915 return 0; 916 917 al->maps = bi[i].to.ms.maps; 918 al->map = bi[i].to.ms.map; 919 al->sym = bi[i].to.ms.sym; 920 al->addr = bi[i].to.addr; 921 return 1; 922 } 923 924 static int 925 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 926 { 927 struct branch_info *bi; 928 struct evsel *evsel = iter->evsel; 929 struct hists *hists = evsel__hists(evsel); 930 struct perf_sample *sample = iter->sample; 931 struct hist_entry *he = NULL; 932 int i = iter->curr; 933 int err = 0; 934 935 bi = iter->priv; 936 937 if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym)) 938 goto out; 939 940 /* 941 * The report shows the percentage of total branches captured 942 * and not events sampled. Thus we use a pseudo period of 1. 943 */ 944 sample->period = 1; 945 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 946 947 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, 948 sample, true); 949 if (he == NULL) 950 return -ENOMEM; 951 952 hists__inc_nr_samples(hists, he->filtered); 953 954 out: 955 iter->he = he; 956 iter->curr++; 957 return err; 958 } 959 960 static int 961 iter_finish_branch_entry(struct hist_entry_iter *iter, 962 struct addr_location *al __maybe_unused) 963 { 964 zfree(&iter->priv); 965 iter->he = NULL; 966 967 return iter->curr >= iter->total ? 0 : -1; 968 } 969 970 static int 971 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 972 struct addr_location *al __maybe_unused) 973 { 974 return 0; 975 } 976 977 static int 978 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 979 { 980 struct evsel *evsel = iter->evsel; 981 struct perf_sample *sample = iter->sample; 982 struct hist_entry *he; 983 984 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 985 sample, true); 986 if (he == NULL) 987 return -ENOMEM; 988 989 iter->he = he; 990 return 0; 991 } 992 993 static int 994 iter_finish_normal_entry(struct hist_entry_iter *iter, 995 struct addr_location *al __maybe_unused) 996 { 997 struct hist_entry *he = iter->he; 998 struct evsel *evsel = iter->evsel; 999 struct perf_sample *sample = iter->sample; 1000 1001 if (he == NULL) 1002 return 0; 1003 1004 iter->he = NULL; 1005 1006 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 1007 1008 return hist_entry__append_callchain(he, sample); 1009 } 1010 1011 static int 1012 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 1013 struct addr_location *al __maybe_unused) 1014 { 1015 struct hist_entry **he_cache; 1016 1017 callchain_cursor_commit(&callchain_cursor); 1018 1019 /* 1020 * This is for detecting cycles or recursions so that they're 1021 * cumulated only one time to prevent entries more than 100% 1022 * overhead. 1023 */ 1024 he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1)); 1025 if (he_cache == NULL) 1026 return -ENOMEM; 1027 1028 iter->priv = he_cache; 1029 iter->curr = 0; 1030 1031 return 0; 1032 } 1033 1034 static int 1035 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 1036 struct addr_location *al) 1037 { 1038 struct evsel *evsel = iter->evsel; 1039 struct hists *hists = evsel__hists(evsel); 1040 struct perf_sample *sample = iter->sample; 1041 struct hist_entry **he_cache = iter->priv; 1042 struct hist_entry *he; 1043 int err = 0; 1044 1045 he = hists__add_entry(hists, al, iter->parent, NULL, NULL, 1046 sample, true); 1047 if (he == NULL) 1048 return -ENOMEM; 1049 1050 iter->he = he; 1051 he_cache[iter->curr++] = he; 1052 1053 hist_entry__append_callchain(he, sample); 1054 1055 /* 1056 * We need to re-initialize the cursor since callchain_append() 1057 * advanced the cursor to the end. 1058 */ 1059 callchain_cursor_commit(&callchain_cursor); 1060 1061 hists__inc_nr_samples(hists, he->filtered); 1062 1063 return err; 1064 } 1065 1066 static int 1067 iter_next_cumulative_entry(struct hist_entry_iter *iter, 1068 struct addr_location *al) 1069 { 1070 struct callchain_cursor_node *node; 1071 1072 node = callchain_cursor_current(&callchain_cursor); 1073 if (node == NULL) 1074 return 0; 1075 1076 return fill_callchain_info(al, node, iter->hide_unresolved); 1077 } 1078 1079 static bool 1080 hist_entry__fast__sym_diff(struct hist_entry *left, 1081 struct hist_entry *right) 1082 { 1083 struct symbol *sym_l = left->ms.sym; 1084 struct symbol *sym_r = right->ms.sym; 1085 1086 if (!sym_l && !sym_r) 1087 return left->ip != right->ip; 1088 1089 return !!_sort__sym_cmp(sym_l, sym_r); 1090 } 1091 1092 1093 static int 1094 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 1095 struct addr_location *al) 1096 { 1097 struct evsel *evsel = iter->evsel; 1098 struct perf_sample *sample = iter->sample; 1099 struct hist_entry **he_cache = iter->priv; 1100 struct hist_entry *he; 1101 struct hist_entry he_tmp = { 1102 .hists = evsel__hists(evsel), 1103 .cpu = al->cpu, 1104 .thread = al->thread, 1105 .comm = thread__comm(al->thread), 1106 .ip = al->addr, 1107 .ms = { 1108 .maps = al->maps, 1109 .map = al->map, 1110 .sym = al->sym, 1111 }, 1112 .srcline = (char *) al->srcline, 1113 .parent = iter->parent, 1114 .raw_data = sample->raw_data, 1115 .raw_size = sample->raw_size, 1116 }; 1117 int i; 1118 struct callchain_cursor cursor; 1119 bool fast = hists__has(he_tmp.hists, sym); 1120 1121 callchain_cursor_snapshot(&cursor, &callchain_cursor); 1122 1123 callchain_cursor_advance(&callchain_cursor); 1124 1125 /* 1126 * Check if there's duplicate entries in the callchain. 1127 * It's possible that it has cycles or recursive calls. 1128 */ 1129 for (i = 0; i < iter->curr; i++) { 1130 /* 1131 * For most cases, there are no duplicate entries in callchain. 1132 * The symbols are usually different. Do a quick check for 1133 * symbols first. 1134 */ 1135 if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp)) 1136 continue; 1137 1138 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 1139 /* to avoid calling callback function */ 1140 iter->he = NULL; 1141 return 0; 1142 } 1143 } 1144 1145 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 1146 sample, false); 1147 if (he == NULL) 1148 return -ENOMEM; 1149 1150 iter->he = he; 1151 he_cache[iter->curr++] = he; 1152 1153 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 1154 callchain_append(he->callchain, &cursor, sample->period); 1155 return 0; 1156 } 1157 1158 static int 1159 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 1160 struct addr_location *al __maybe_unused) 1161 { 1162 zfree(&iter->priv); 1163 iter->he = NULL; 1164 1165 return 0; 1166 } 1167 1168 const struct hist_iter_ops hist_iter_mem = { 1169 .prepare_entry = iter_prepare_mem_entry, 1170 .add_single_entry = iter_add_single_mem_entry, 1171 .next_entry = iter_next_nop_entry, 1172 .add_next_entry = iter_add_next_nop_entry, 1173 .finish_entry = iter_finish_mem_entry, 1174 }; 1175 1176 const struct hist_iter_ops hist_iter_branch = { 1177 .prepare_entry = iter_prepare_branch_entry, 1178 .add_single_entry = iter_add_single_branch_entry, 1179 .next_entry = iter_next_branch_entry, 1180 .add_next_entry = iter_add_next_branch_entry, 1181 .finish_entry = iter_finish_branch_entry, 1182 }; 1183 1184 const struct hist_iter_ops hist_iter_normal = { 1185 .prepare_entry = iter_prepare_normal_entry, 1186 .add_single_entry = iter_add_single_normal_entry, 1187 .next_entry = iter_next_nop_entry, 1188 .add_next_entry = iter_add_next_nop_entry, 1189 .finish_entry = iter_finish_normal_entry, 1190 }; 1191 1192 const struct hist_iter_ops hist_iter_cumulative = { 1193 .prepare_entry = iter_prepare_cumulative_entry, 1194 .add_single_entry = iter_add_single_cumulative_entry, 1195 .next_entry = iter_next_cumulative_entry, 1196 .add_next_entry = iter_add_next_cumulative_entry, 1197 .finish_entry = iter_finish_cumulative_entry, 1198 }; 1199 1200 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1201 int max_stack_depth, void *arg) 1202 { 1203 int err, err2; 1204 struct map *alm = NULL; 1205 1206 if (al) 1207 alm = map__get(al->map); 1208 1209 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, 1210 iter->evsel, al, max_stack_depth); 1211 if (err) { 1212 map__put(alm); 1213 return err; 1214 } 1215 1216 err = iter->ops->prepare_entry(iter, al); 1217 if (err) 1218 goto out; 1219 1220 err = iter->ops->add_single_entry(iter, al); 1221 if (err) 1222 goto out; 1223 1224 if (iter->he && iter->add_entry_cb) { 1225 err = iter->add_entry_cb(iter, al, true, arg); 1226 if (err) 1227 goto out; 1228 } 1229 1230 while (iter->ops->next_entry(iter, al)) { 1231 err = iter->ops->add_next_entry(iter, al); 1232 if (err) 1233 break; 1234 1235 if (iter->he && iter->add_entry_cb) { 1236 err = iter->add_entry_cb(iter, al, false, arg); 1237 if (err) 1238 goto out; 1239 } 1240 } 1241 1242 out: 1243 err2 = iter->ops->finish_entry(iter, al); 1244 if (!err) 1245 err = err2; 1246 1247 map__put(alm); 1248 1249 return err; 1250 } 1251 1252 int64_t 1253 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1254 { 1255 struct hists *hists = left->hists; 1256 struct perf_hpp_fmt *fmt; 1257 int64_t cmp = 0; 1258 1259 hists__for_each_sort_list(hists, fmt) { 1260 if (perf_hpp__is_dynamic_entry(fmt) && 1261 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1262 continue; 1263 1264 cmp = fmt->cmp(fmt, left, right); 1265 if (cmp) 1266 break; 1267 } 1268 1269 return cmp; 1270 } 1271 1272 int64_t 1273 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1274 { 1275 struct hists *hists = left->hists; 1276 struct perf_hpp_fmt *fmt; 1277 int64_t cmp = 0; 1278 1279 hists__for_each_sort_list(hists, fmt) { 1280 if (perf_hpp__is_dynamic_entry(fmt) && 1281 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1282 continue; 1283 1284 cmp = fmt->collapse(fmt, left, right); 1285 if (cmp) 1286 break; 1287 } 1288 1289 return cmp; 1290 } 1291 1292 void hist_entry__delete(struct hist_entry *he) 1293 { 1294 struct hist_entry_ops *ops = he->ops; 1295 1296 thread__zput(he->thread); 1297 map__zput(he->ms.map); 1298 1299 if (he->branch_info) { 1300 map__zput(he->branch_info->from.ms.map); 1301 map__zput(he->branch_info->to.ms.map); 1302 free_srcline(he->branch_info->srcline_from); 1303 free_srcline(he->branch_info->srcline_to); 1304 zfree(&he->branch_info); 1305 } 1306 1307 if (he->mem_info) { 1308 map__zput(he->mem_info->iaddr.ms.map); 1309 map__zput(he->mem_info->daddr.ms.map); 1310 mem_info__zput(he->mem_info); 1311 } 1312 1313 if (he->block_info) 1314 block_info__zput(he->block_info); 1315 1316 zfree(&he->res_samples); 1317 zfree(&he->stat_acc); 1318 free_srcline(he->srcline); 1319 if (he->srcfile && he->srcfile[0]) 1320 zfree(&he->srcfile); 1321 free_callchain(he->callchain); 1322 zfree(&he->trace_output); 1323 zfree(&he->raw_data); 1324 ops->free(he); 1325 } 1326 1327 /* 1328 * If this is not the last column, then we need to pad it according to the 1329 * pre-calculated max length for this column, otherwise don't bother adding 1330 * spaces because that would break viewing this with, for instance, 'less', 1331 * that would show tons of trailing spaces when a long C++ demangled method 1332 * names is sampled. 1333 */ 1334 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1335 struct perf_hpp_fmt *fmt, int printed) 1336 { 1337 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1338 const int width = fmt->width(fmt, hpp, he->hists); 1339 if (printed < width) { 1340 advance_hpp(hpp, printed); 1341 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1342 } 1343 } 1344 1345 return printed; 1346 } 1347 1348 /* 1349 * collapse the histogram 1350 */ 1351 1352 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1353 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1354 enum hist_filter type); 1355 1356 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1357 1358 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1359 { 1360 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1361 } 1362 1363 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1364 enum hist_filter type, 1365 fmt_chk_fn check) 1366 { 1367 struct perf_hpp_fmt *fmt; 1368 bool type_match = false; 1369 struct hist_entry *parent = he->parent_he; 1370 1371 switch (type) { 1372 case HIST_FILTER__THREAD: 1373 if (symbol_conf.comm_list == NULL && 1374 symbol_conf.pid_list == NULL && 1375 symbol_conf.tid_list == NULL) 1376 return; 1377 break; 1378 case HIST_FILTER__DSO: 1379 if (symbol_conf.dso_list == NULL) 1380 return; 1381 break; 1382 case HIST_FILTER__SYMBOL: 1383 if (symbol_conf.sym_list == NULL) 1384 return; 1385 break; 1386 case HIST_FILTER__PARENT: 1387 case HIST_FILTER__GUEST: 1388 case HIST_FILTER__HOST: 1389 case HIST_FILTER__SOCKET: 1390 case HIST_FILTER__C2C: 1391 default: 1392 return; 1393 } 1394 1395 /* if it's filtered by own fmt, it has to have filter bits */ 1396 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1397 if (check(fmt)) { 1398 type_match = true; 1399 break; 1400 } 1401 } 1402 1403 if (type_match) { 1404 /* 1405 * If the filter is for current level entry, propagate 1406 * filter marker to parents. The marker bit was 1407 * already set by default so it only needs to clear 1408 * non-filtered entries. 1409 */ 1410 if (!(he->filtered & (1 << type))) { 1411 while (parent) { 1412 parent->filtered &= ~(1 << type); 1413 parent = parent->parent_he; 1414 } 1415 } 1416 } else { 1417 /* 1418 * If current entry doesn't have matching formats, set 1419 * filter marker for upper level entries. it will be 1420 * cleared if its lower level entries is not filtered. 1421 * 1422 * For lower-level entries, it inherits parent's 1423 * filter bit so that lower level entries of a 1424 * non-filtered entry won't set the filter marker. 1425 */ 1426 if (parent == NULL) 1427 he->filtered |= (1 << type); 1428 else 1429 he->filtered |= (parent->filtered & (1 << type)); 1430 } 1431 } 1432 1433 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1434 { 1435 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1436 check_thread_entry); 1437 1438 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1439 perf_hpp__is_dso_entry); 1440 1441 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1442 perf_hpp__is_sym_entry); 1443 1444 hists__apply_filters(he->hists, he); 1445 } 1446 1447 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1448 struct rb_root_cached *root, 1449 struct hist_entry *he, 1450 struct hist_entry *parent_he, 1451 struct perf_hpp_list *hpp_list) 1452 { 1453 struct rb_node **p = &root->rb_root.rb_node; 1454 struct rb_node *parent = NULL; 1455 struct hist_entry *iter, *new; 1456 struct perf_hpp_fmt *fmt; 1457 int64_t cmp; 1458 bool leftmost = true; 1459 1460 while (*p != NULL) { 1461 parent = *p; 1462 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1463 1464 cmp = 0; 1465 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1466 cmp = fmt->collapse(fmt, iter, he); 1467 if (cmp) 1468 break; 1469 } 1470 1471 if (!cmp) { 1472 he_stat__add_stat(&iter->stat, &he->stat); 1473 return iter; 1474 } 1475 1476 if (cmp < 0) 1477 p = &parent->rb_left; 1478 else { 1479 p = &parent->rb_right; 1480 leftmost = false; 1481 } 1482 } 1483 1484 new = hist_entry__new(he, true); 1485 if (new == NULL) 1486 return NULL; 1487 1488 hists->nr_entries++; 1489 1490 /* save related format list for output */ 1491 new->hpp_list = hpp_list; 1492 new->parent_he = parent_he; 1493 1494 hist_entry__apply_hierarchy_filters(new); 1495 1496 /* some fields are now passed to 'new' */ 1497 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1498 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1499 he->trace_output = NULL; 1500 else 1501 new->trace_output = NULL; 1502 1503 if (perf_hpp__is_srcline_entry(fmt)) 1504 he->srcline = NULL; 1505 else 1506 new->srcline = NULL; 1507 1508 if (perf_hpp__is_srcfile_entry(fmt)) 1509 he->srcfile = NULL; 1510 else 1511 new->srcfile = NULL; 1512 } 1513 1514 rb_link_node(&new->rb_node_in, parent, p); 1515 rb_insert_color_cached(&new->rb_node_in, root, leftmost); 1516 return new; 1517 } 1518 1519 static int hists__hierarchy_insert_entry(struct hists *hists, 1520 struct rb_root_cached *root, 1521 struct hist_entry *he) 1522 { 1523 struct perf_hpp_list_node *node; 1524 struct hist_entry *new_he = NULL; 1525 struct hist_entry *parent = NULL; 1526 int depth = 0; 1527 int ret = 0; 1528 1529 list_for_each_entry(node, &hists->hpp_formats, list) { 1530 /* skip period (overhead) and elided columns */ 1531 if (node->level == 0 || node->skip) 1532 continue; 1533 1534 /* insert copy of 'he' for each fmt into the hierarchy */ 1535 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1536 if (new_he == NULL) { 1537 ret = -1; 1538 break; 1539 } 1540 1541 root = &new_he->hroot_in; 1542 new_he->depth = depth++; 1543 parent = new_he; 1544 } 1545 1546 if (new_he) { 1547 new_he->leaf = true; 1548 1549 if (hist_entry__has_callchains(new_he) && 1550 symbol_conf.use_callchain) { 1551 callchain_cursor_reset(&callchain_cursor); 1552 if (callchain_merge(&callchain_cursor, 1553 new_he->callchain, 1554 he->callchain) < 0) 1555 ret = -1; 1556 } 1557 } 1558 1559 /* 'he' is no longer used */ 1560 hist_entry__delete(he); 1561 1562 /* return 0 (or -1) since it already applied filters */ 1563 return ret; 1564 } 1565 1566 static int hists__collapse_insert_entry(struct hists *hists, 1567 struct rb_root_cached *root, 1568 struct hist_entry *he) 1569 { 1570 struct rb_node **p = &root->rb_root.rb_node; 1571 struct rb_node *parent = NULL; 1572 struct hist_entry *iter; 1573 int64_t cmp; 1574 bool leftmost = true; 1575 1576 if (symbol_conf.report_hierarchy) 1577 return hists__hierarchy_insert_entry(hists, root, he); 1578 1579 while (*p != NULL) { 1580 parent = *p; 1581 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1582 1583 cmp = hist_entry__collapse(iter, he); 1584 1585 if (!cmp) { 1586 int ret = 0; 1587 1588 he_stat__add_stat(&iter->stat, &he->stat); 1589 if (symbol_conf.cumulate_callchain) 1590 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1591 1592 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) { 1593 callchain_cursor_reset(&callchain_cursor); 1594 if (callchain_merge(&callchain_cursor, 1595 iter->callchain, 1596 he->callchain) < 0) 1597 ret = -1; 1598 } 1599 hist_entry__delete(he); 1600 return ret; 1601 } 1602 1603 if (cmp < 0) 1604 p = &(*p)->rb_left; 1605 else { 1606 p = &(*p)->rb_right; 1607 leftmost = false; 1608 } 1609 } 1610 hists->nr_entries++; 1611 1612 rb_link_node(&he->rb_node_in, parent, p); 1613 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 1614 return 1; 1615 } 1616 1617 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists) 1618 { 1619 struct rb_root_cached *root; 1620 1621 pthread_mutex_lock(&hists->lock); 1622 1623 root = hists->entries_in; 1624 if (++hists->entries_in > &hists->entries_in_array[1]) 1625 hists->entries_in = &hists->entries_in_array[0]; 1626 1627 pthread_mutex_unlock(&hists->lock); 1628 1629 return root; 1630 } 1631 1632 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1633 { 1634 hists__filter_entry_by_dso(hists, he); 1635 hists__filter_entry_by_thread(hists, he); 1636 hists__filter_entry_by_symbol(hists, he); 1637 hists__filter_entry_by_socket(hists, he); 1638 } 1639 1640 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1641 { 1642 struct rb_root_cached *root; 1643 struct rb_node *next; 1644 struct hist_entry *n; 1645 int ret; 1646 1647 if (!hists__has(hists, need_collapse)) 1648 return 0; 1649 1650 hists->nr_entries = 0; 1651 1652 root = hists__get_rotate_entries_in(hists); 1653 1654 next = rb_first_cached(root); 1655 1656 while (next) { 1657 if (session_done()) 1658 break; 1659 n = rb_entry(next, struct hist_entry, rb_node_in); 1660 next = rb_next(&n->rb_node_in); 1661 1662 rb_erase_cached(&n->rb_node_in, root); 1663 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1664 if (ret < 0) 1665 return -1; 1666 1667 if (ret) { 1668 /* 1669 * If it wasn't combined with one of the entries already 1670 * collapsed, we need to apply the filters that may have 1671 * been set by, say, the hist_browser. 1672 */ 1673 hists__apply_filters(hists, n); 1674 } 1675 if (prog) 1676 ui_progress__update(prog, 1); 1677 } 1678 return 0; 1679 } 1680 1681 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1682 { 1683 struct hists *hists = a->hists; 1684 struct perf_hpp_fmt *fmt; 1685 int64_t cmp = 0; 1686 1687 hists__for_each_sort_list(hists, fmt) { 1688 if (perf_hpp__should_skip(fmt, a->hists)) 1689 continue; 1690 1691 cmp = fmt->sort(fmt, a, b); 1692 if (cmp) 1693 break; 1694 } 1695 1696 return cmp; 1697 } 1698 1699 static void hists__reset_filter_stats(struct hists *hists) 1700 { 1701 hists->nr_non_filtered_entries = 0; 1702 hists->stats.total_non_filtered_period = 0; 1703 } 1704 1705 void hists__reset_stats(struct hists *hists) 1706 { 1707 hists->nr_entries = 0; 1708 hists->stats.total_period = 0; 1709 1710 hists__reset_filter_stats(hists); 1711 } 1712 1713 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1714 { 1715 hists->nr_non_filtered_entries++; 1716 hists->stats.total_non_filtered_period += h->stat.period; 1717 } 1718 1719 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1720 { 1721 if (!h->filtered) 1722 hists__inc_filter_stats(hists, h); 1723 1724 hists->nr_entries++; 1725 hists->stats.total_period += h->stat.period; 1726 } 1727 1728 static void hierarchy_recalc_total_periods(struct hists *hists) 1729 { 1730 struct rb_node *node; 1731 struct hist_entry *he; 1732 1733 node = rb_first_cached(&hists->entries); 1734 1735 hists->stats.total_period = 0; 1736 hists->stats.total_non_filtered_period = 0; 1737 1738 /* 1739 * recalculate total period using top-level entries only 1740 * since lower level entries only see non-filtered entries 1741 * but upper level entries have sum of both entries. 1742 */ 1743 while (node) { 1744 he = rb_entry(node, struct hist_entry, rb_node); 1745 node = rb_next(node); 1746 1747 hists->stats.total_period += he->stat.period; 1748 if (!he->filtered) 1749 hists->stats.total_non_filtered_period += he->stat.period; 1750 } 1751 } 1752 1753 static void hierarchy_insert_output_entry(struct rb_root_cached *root, 1754 struct hist_entry *he) 1755 { 1756 struct rb_node **p = &root->rb_root.rb_node; 1757 struct rb_node *parent = NULL; 1758 struct hist_entry *iter; 1759 struct perf_hpp_fmt *fmt; 1760 bool leftmost = true; 1761 1762 while (*p != NULL) { 1763 parent = *p; 1764 iter = rb_entry(parent, struct hist_entry, rb_node); 1765 1766 if (hist_entry__sort(he, iter) > 0) 1767 p = &parent->rb_left; 1768 else { 1769 p = &parent->rb_right; 1770 leftmost = false; 1771 } 1772 } 1773 1774 rb_link_node(&he->rb_node, parent, p); 1775 rb_insert_color_cached(&he->rb_node, root, leftmost); 1776 1777 /* update column width of dynamic entry */ 1778 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1779 if (perf_hpp__is_dynamic_entry(fmt)) 1780 fmt->sort(fmt, he, NULL); 1781 } 1782 } 1783 1784 static void hists__hierarchy_output_resort(struct hists *hists, 1785 struct ui_progress *prog, 1786 struct rb_root_cached *root_in, 1787 struct rb_root_cached *root_out, 1788 u64 min_callchain_hits, 1789 bool use_callchain) 1790 { 1791 struct rb_node *node; 1792 struct hist_entry *he; 1793 1794 *root_out = RB_ROOT_CACHED; 1795 node = rb_first_cached(root_in); 1796 1797 while (node) { 1798 he = rb_entry(node, struct hist_entry, rb_node_in); 1799 node = rb_next(node); 1800 1801 hierarchy_insert_output_entry(root_out, he); 1802 1803 if (prog) 1804 ui_progress__update(prog, 1); 1805 1806 hists->nr_entries++; 1807 if (!he->filtered) { 1808 hists->nr_non_filtered_entries++; 1809 hists__calc_col_len(hists, he); 1810 } 1811 1812 if (!he->leaf) { 1813 hists__hierarchy_output_resort(hists, prog, 1814 &he->hroot_in, 1815 &he->hroot_out, 1816 min_callchain_hits, 1817 use_callchain); 1818 continue; 1819 } 1820 1821 if (!use_callchain) 1822 continue; 1823 1824 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1825 u64 total = he->stat.period; 1826 1827 if (symbol_conf.cumulate_callchain) 1828 total = he->stat_acc->period; 1829 1830 min_callchain_hits = total * (callchain_param.min_percent / 100); 1831 } 1832 1833 callchain_param.sort(&he->sorted_chain, he->callchain, 1834 min_callchain_hits, &callchain_param); 1835 } 1836 } 1837 1838 static void __hists__insert_output_entry(struct rb_root_cached *entries, 1839 struct hist_entry *he, 1840 u64 min_callchain_hits, 1841 bool use_callchain) 1842 { 1843 struct rb_node **p = &entries->rb_root.rb_node; 1844 struct rb_node *parent = NULL; 1845 struct hist_entry *iter; 1846 struct perf_hpp_fmt *fmt; 1847 bool leftmost = true; 1848 1849 if (use_callchain) { 1850 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1851 u64 total = he->stat.period; 1852 1853 if (symbol_conf.cumulate_callchain) 1854 total = he->stat_acc->period; 1855 1856 min_callchain_hits = total * (callchain_param.min_percent / 100); 1857 } 1858 callchain_param.sort(&he->sorted_chain, he->callchain, 1859 min_callchain_hits, &callchain_param); 1860 } 1861 1862 while (*p != NULL) { 1863 parent = *p; 1864 iter = rb_entry(parent, struct hist_entry, rb_node); 1865 1866 if (hist_entry__sort(he, iter) > 0) 1867 p = &(*p)->rb_left; 1868 else { 1869 p = &(*p)->rb_right; 1870 leftmost = false; 1871 } 1872 } 1873 1874 rb_link_node(&he->rb_node, parent, p); 1875 rb_insert_color_cached(&he->rb_node, entries, leftmost); 1876 1877 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1878 if (perf_hpp__is_dynamic_entry(fmt) && 1879 perf_hpp__defined_dynamic_entry(fmt, he->hists)) 1880 fmt->sort(fmt, he, NULL); /* update column width */ 1881 } 1882 } 1883 1884 static void output_resort(struct hists *hists, struct ui_progress *prog, 1885 bool use_callchain, hists__resort_cb_t cb, 1886 void *cb_arg) 1887 { 1888 struct rb_root_cached *root; 1889 struct rb_node *next; 1890 struct hist_entry *n; 1891 u64 callchain_total; 1892 u64 min_callchain_hits; 1893 1894 callchain_total = hists->callchain_period; 1895 if (symbol_conf.filter_relative) 1896 callchain_total = hists->callchain_non_filtered_period; 1897 1898 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1899 1900 hists__reset_stats(hists); 1901 hists__reset_col_len(hists); 1902 1903 if (symbol_conf.report_hierarchy) { 1904 hists__hierarchy_output_resort(hists, prog, 1905 &hists->entries_collapsed, 1906 &hists->entries, 1907 min_callchain_hits, 1908 use_callchain); 1909 hierarchy_recalc_total_periods(hists); 1910 return; 1911 } 1912 1913 if (hists__has(hists, need_collapse)) 1914 root = &hists->entries_collapsed; 1915 else 1916 root = hists->entries_in; 1917 1918 next = rb_first_cached(root); 1919 hists->entries = RB_ROOT_CACHED; 1920 1921 while (next) { 1922 n = rb_entry(next, struct hist_entry, rb_node_in); 1923 next = rb_next(&n->rb_node_in); 1924 1925 if (cb && cb(n, cb_arg)) 1926 continue; 1927 1928 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1929 hists__inc_stats(hists, n); 1930 1931 if (!n->filtered) 1932 hists__calc_col_len(hists, n); 1933 1934 if (prog) 1935 ui_progress__update(prog, 1); 1936 } 1937 } 1938 1939 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog, 1940 hists__resort_cb_t cb, void *cb_arg) 1941 { 1942 bool use_callchain; 1943 1944 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1945 use_callchain = evsel__has_callchain(evsel); 1946 else 1947 use_callchain = symbol_conf.use_callchain; 1948 1949 use_callchain |= symbol_conf.show_branchflag_count; 1950 1951 output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg); 1952 } 1953 1954 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog) 1955 { 1956 return evsel__output_resort_cb(evsel, prog, NULL, NULL); 1957 } 1958 1959 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 1960 { 1961 output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL); 1962 } 1963 1964 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, 1965 hists__resort_cb_t cb) 1966 { 1967 output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL); 1968 } 1969 1970 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 1971 { 1972 if (he->leaf || hmd == HMD_FORCE_SIBLING) 1973 return false; 1974 1975 if (he->unfolded || hmd == HMD_FORCE_CHILD) 1976 return true; 1977 1978 return false; 1979 } 1980 1981 struct rb_node *rb_hierarchy_last(struct rb_node *node) 1982 { 1983 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1984 1985 while (can_goto_child(he, HMD_NORMAL)) { 1986 node = rb_last(&he->hroot_out.rb_root); 1987 he = rb_entry(node, struct hist_entry, rb_node); 1988 } 1989 return node; 1990 } 1991 1992 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 1993 { 1994 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1995 1996 if (can_goto_child(he, hmd)) 1997 node = rb_first_cached(&he->hroot_out); 1998 else 1999 node = rb_next(node); 2000 2001 while (node == NULL) { 2002 he = he->parent_he; 2003 if (he == NULL) 2004 break; 2005 2006 node = rb_next(&he->rb_node); 2007 } 2008 return node; 2009 } 2010 2011 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 2012 { 2013 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2014 2015 node = rb_prev(node); 2016 if (node) 2017 return rb_hierarchy_last(node); 2018 2019 he = he->parent_he; 2020 if (he == NULL) 2021 return NULL; 2022 2023 return &he->rb_node; 2024 } 2025 2026 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 2027 { 2028 struct rb_node *node; 2029 struct hist_entry *child; 2030 float percent; 2031 2032 if (he->leaf) 2033 return false; 2034 2035 node = rb_first_cached(&he->hroot_out); 2036 child = rb_entry(node, struct hist_entry, rb_node); 2037 2038 while (node && child->filtered) { 2039 node = rb_next(node); 2040 child = rb_entry(node, struct hist_entry, rb_node); 2041 } 2042 2043 if (node) 2044 percent = hist_entry__get_percent_limit(child); 2045 else 2046 percent = 0; 2047 2048 return node && percent >= limit; 2049 } 2050 2051 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 2052 enum hist_filter filter) 2053 { 2054 h->filtered &= ~(1 << filter); 2055 2056 if (symbol_conf.report_hierarchy) { 2057 struct hist_entry *parent = h->parent_he; 2058 2059 while (parent) { 2060 he_stat__add_stat(&parent->stat, &h->stat); 2061 2062 parent->filtered &= ~(1 << filter); 2063 2064 if (parent->filtered) 2065 goto next; 2066 2067 /* force fold unfiltered entry for simplicity */ 2068 parent->unfolded = false; 2069 parent->has_no_entry = false; 2070 parent->row_offset = 0; 2071 parent->nr_rows = 0; 2072 next: 2073 parent = parent->parent_he; 2074 } 2075 } 2076 2077 if (h->filtered) 2078 return; 2079 2080 /* force fold unfiltered entry for simplicity */ 2081 h->unfolded = false; 2082 h->has_no_entry = false; 2083 h->row_offset = 0; 2084 h->nr_rows = 0; 2085 2086 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 2087 2088 hists__inc_filter_stats(hists, h); 2089 hists__calc_col_len(hists, h); 2090 } 2091 2092 2093 static bool hists__filter_entry_by_dso(struct hists *hists, 2094 struct hist_entry *he) 2095 { 2096 if (hists->dso_filter != NULL && 2097 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) { 2098 he->filtered |= (1 << HIST_FILTER__DSO); 2099 return true; 2100 } 2101 2102 return false; 2103 } 2104 2105 static bool hists__filter_entry_by_thread(struct hists *hists, 2106 struct hist_entry *he) 2107 { 2108 if (hists->thread_filter != NULL && 2109 he->thread != hists->thread_filter) { 2110 he->filtered |= (1 << HIST_FILTER__THREAD); 2111 return true; 2112 } 2113 2114 return false; 2115 } 2116 2117 static bool hists__filter_entry_by_symbol(struct hists *hists, 2118 struct hist_entry *he) 2119 { 2120 if (hists->symbol_filter_str != NULL && 2121 (!he->ms.sym || strstr(he->ms.sym->name, 2122 hists->symbol_filter_str) == NULL)) { 2123 he->filtered |= (1 << HIST_FILTER__SYMBOL); 2124 return true; 2125 } 2126 2127 return false; 2128 } 2129 2130 static bool hists__filter_entry_by_socket(struct hists *hists, 2131 struct hist_entry *he) 2132 { 2133 if ((hists->socket_filter > -1) && 2134 (he->socket != hists->socket_filter)) { 2135 he->filtered |= (1 << HIST_FILTER__SOCKET); 2136 return true; 2137 } 2138 2139 return false; 2140 } 2141 2142 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 2143 2144 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 2145 { 2146 struct rb_node *nd; 2147 2148 hists->stats.nr_non_filtered_samples = 0; 2149 2150 hists__reset_filter_stats(hists); 2151 hists__reset_col_len(hists); 2152 2153 for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) { 2154 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2155 2156 if (filter(hists, h)) 2157 continue; 2158 2159 hists__remove_entry_filter(hists, h, type); 2160 } 2161 } 2162 2163 static void resort_filtered_entry(struct rb_root_cached *root, 2164 struct hist_entry *he) 2165 { 2166 struct rb_node **p = &root->rb_root.rb_node; 2167 struct rb_node *parent = NULL; 2168 struct hist_entry *iter; 2169 struct rb_root_cached new_root = RB_ROOT_CACHED; 2170 struct rb_node *nd; 2171 bool leftmost = true; 2172 2173 while (*p != NULL) { 2174 parent = *p; 2175 iter = rb_entry(parent, struct hist_entry, rb_node); 2176 2177 if (hist_entry__sort(he, iter) > 0) 2178 p = &(*p)->rb_left; 2179 else { 2180 p = &(*p)->rb_right; 2181 leftmost = false; 2182 } 2183 } 2184 2185 rb_link_node(&he->rb_node, parent, p); 2186 rb_insert_color_cached(&he->rb_node, root, leftmost); 2187 2188 if (he->leaf || he->filtered) 2189 return; 2190 2191 nd = rb_first_cached(&he->hroot_out); 2192 while (nd) { 2193 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2194 2195 nd = rb_next(nd); 2196 rb_erase_cached(&h->rb_node, &he->hroot_out); 2197 2198 resort_filtered_entry(&new_root, h); 2199 } 2200 2201 he->hroot_out = new_root; 2202 } 2203 2204 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 2205 { 2206 struct rb_node *nd; 2207 struct rb_root_cached new_root = RB_ROOT_CACHED; 2208 2209 hists->stats.nr_non_filtered_samples = 0; 2210 2211 hists__reset_filter_stats(hists); 2212 hists__reset_col_len(hists); 2213 2214 nd = rb_first_cached(&hists->entries); 2215 while (nd) { 2216 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2217 int ret; 2218 2219 ret = hist_entry__filter(h, type, arg); 2220 2221 /* 2222 * case 1. non-matching type 2223 * zero out the period, set filter marker and move to child 2224 */ 2225 if (ret < 0) { 2226 memset(&h->stat, 0, sizeof(h->stat)); 2227 h->filtered |= (1 << type); 2228 2229 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 2230 } 2231 /* 2232 * case 2. matched type (filter out) 2233 * set filter marker and move to next 2234 */ 2235 else if (ret == 1) { 2236 h->filtered |= (1 << type); 2237 2238 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2239 } 2240 /* 2241 * case 3. ok (not filtered) 2242 * add period to hists and parents, erase the filter marker 2243 * and move to next sibling 2244 */ 2245 else { 2246 hists__remove_entry_filter(hists, h, type); 2247 2248 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2249 } 2250 } 2251 2252 hierarchy_recalc_total_periods(hists); 2253 2254 /* 2255 * resort output after applying a new filter since filter in a lower 2256 * hierarchy can change periods in a upper hierarchy. 2257 */ 2258 nd = rb_first_cached(&hists->entries); 2259 while (nd) { 2260 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2261 2262 nd = rb_next(nd); 2263 rb_erase_cached(&h->rb_node, &hists->entries); 2264 2265 resort_filtered_entry(&new_root, h); 2266 } 2267 2268 hists->entries = new_root; 2269 } 2270 2271 void hists__filter_by_thread(struct hists *hists) 2272 { 2273 if (symbol_conf.report_hierarchy) 2274 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 2275 hists->thread_filter); 2276 else 2277 hists__filter_by_type(hists, HIST_FILTER__THREAD, 2278 hists__filter_entry_by_thread); 2279 } 2280 2281 void hists__filter_by_dso(struct hists *hists) 2282 { 2283 if (symbol_conf.report_hierarchy) 2284 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 2285 hists->dso_filter); 2286 else 2287 hists__filter_by_type(hists, HIST_FILTER__DSO, 2288 hists__filter_entry_by_dso); 2289 } 2290 2291 void hists__filter_by_symbol(struct hists *hists) 2292 { 2293 if (symbol_conf.report_hierarchy) 2294 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2295 hists->symbol_filter_str); 2296 else 2297 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2298 hists__filter_entry_by_symbol); 2299 } 2300 2301 void hists__filter_by_socket(struct hists *hists) 2302 { 2303 if (symbol_conf.report_hierarchy) 2304 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2305 &hists->socket_filter); 2306 else 2307 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2308 hists__filter_entry_by_socket); 2309 } 2310 2311 void events_stats__inc(struct events_stats *stats, u32 type) 2312 { 2313 ++stats->nr_events[0]; 2314 ++stats->nr_events[type]; 2315 } 2316 2317 static void hists_stats__inc(struct hists_stats *stats) 2318 { 2319 ++stats->nr_samples; 2320 } 2321 2322 void hists__inc_nr_events(struct hists *hists) 2323 { 2324 hists_stats__inc(&hists->stats); 2325 } 2326 2327 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2328 { 2329 hists_stats__inc(&hists->stats); 2330 if (!filtered) 2331 hists->stats.nr_non_filtered_samples++; 2332 } 2333 2334 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2335 struct hist_entry *pair) 2336 { 2337 struct rb_root_cached *root; 2338 struct rb_node **p; 2339 struct rb_node *parent = NULL; 2340 struct hist_entry *he; 2341 int64_t cmp; 2342 bool leftmost = true; 2343 2344 if (hists__has(hists, need_collapse)) 2345 root = &hists->entries_collapsed; 2346 else 2347 root = hists->entries_in; 2348 2349 p = &root->rb_root.rb_node; 2350 2351 while (*p != NULL) { 2352 parent = *p; 2353 he = rb_entry(parent, struct hist_entry, rb_node_in); 2354 2355 cmp = hist_entry__collapse(he, pair); 2356 2357 if (!cmp) 2358 goto out; 2359 2360 if (cmp < 0) 2361 p = &(*p)->rb_left; 2362 else { 2363 p = &(*p)->rb_right; 2364 leftmost = false; 2365 } 2366 } 2367 2368 he = hist_entry__new(pair, true); 2369 if (he) { 2370 memset(&he->stat, 0, sizeof(he->stat)); 2371 he->hists = hists; 2372 if (symbol_conf.cumulate_callchain) 2373 memset(he->stat_acc, 0, sizeof(he->stat)); 2374 rb_link_node(&he->rb_node_in, parent, p); 2375 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2376 hists__inc_stats(hists, he); 2377 he->dummy = true; 2378 } 2379 out: 2380 return he; 2381 } 2382 2383 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, 2384 struct rb_root_cached *root, 2385 struct hist_entry *pair) 2386 { 2387 struct rb_node **p; 2388 struct rb_node *parent = NULL; 2389 struct hist_entry *he; 2390 struct perf_hpp_fmt *fmt; 2391 bool leftmost = true; 2392 2393 p = &root->rb_root.rb_node; 2394 while (*p != NULL) { 2395 int64_t cmp = 0; 2396 2397 parent = *p; 2398 he = rb_entry(parent, struct hist_entry, rb_node_in); 2399 2400 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2401 cmp = fmt->collapse(fmt, he, pair); 2402 if (cmp) 2403 break; 2404 } 2405 if (!cmp) 2406 goto out; 2407 2408 if (cmp < 0) 2409 p = &parent->rb_left; 2410 else { 2411 p = &parent->rb_right; 2412 leftmost = false; 2413 } 2414 } 2415 2416 he = hist_entry__new(pair, true); 2417 if (he) { 2418 rb_link_node(&he->rb_node_in, parent, p); 2419 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2420 2421 he->dummy = true; 2422 he->hists = hists; 2423 memset(&he->stat, 0, sizeof(he->stat)); 2424 hists__inc_stats(hists, he); 2425 } 2426 out: 2427 return he; 2428 } 2429 2430 static struct hist_entry *hists__find_entry(struct hists *hists, 2431 struct hist_entry *he) 2432 { 2433 struct rb_node *n; 2434 2435 if (hists__has(hists, need_collapse)) 2436 n = hists->entries_collapsed.rb_root.rb_node; 2437 else 2438 n = hists->entries_in->rb_root.rb_node; 2439 2440 while (n) { 2441 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2442 int64_t cmp = hist_entry__collapse(iter, he); 2443 2444 if (cmp < 0) 2445 n = n->rb_left; 2446 else if (cmp > 0) 2447 n = n->rb_right; 2448 else 2449 return iter; 2450 } 2451 2452 return NULL; 2453 } 2454 2455 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root, 2456 struct hist_entry *he) 2457 { 2458 struct rb_node *n = root->rb_root.rb_node; 2459 2460 while (n) { 2461 struct hist_entry *iter; 2462 struct perf_hpp_fmt *fmt; 2463 int64_t cmp = 0; 2464 2465 iter = rb_entry(n, struct hist_entry, rb_node_in); 2466 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2467 cmp = fmt->collapse(fmt, iter, he); 2468 if (cmp) 2469 break; 2470 } 2471 2472 if (cmp < 0) 2473 n = n->rb_left; 2474 else if (cmp > 0) 2475 n = n->rb_right; 2476 else 2477 return iter; 2478 } 2479 2480 return NULL; 2481 } 2482 2483 static void hists__match_hierarchy(struct rb_root_cached *leader_root, 2484 struct rb_root_cached *other_root) 2485 { 2486 struct rb_node *nd; 2487 struct hist_entry *pos, *pair; 2488 2489 for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) { 2490 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2491 pair = hists__find_hierarchy_entry(other_root, pos); 2492 2493 if (pair) { 2494 hist_entry__add_pair(pair, pos); 2495 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); 2496 } 2497 } 2498 } 2499 2500 /* 2501 * Look for pairs to link to the leader buckets (hist_entries): 2502 */ 2503 void hists__match(struct hists *leader, struct hists *other) 2504 { 2505 struct rb_root_cached *root; 2506 struct rb_node *nd; 2507 struct hist_entry *pos, *pair; 2508 2509 if (symbol_conf.report_hierarchy) { 2510 /* hierarchy report always collapses entries */ 2511 return hists__match_hierarchy(&leader->entries_collapsed, 2512 &other->entries_collapsed); 2513 } 2514 2515 if (hists__has(leader, need_collapse)) 2516 root = &leader->entries_collapsed; 2517 else 2518 root = leader->entries_in; 2519 2520 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2521 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2522 pair = hists__find_entry(other, pos); 2523 2524 if (pair) 2525 hist_entry__add_pair(pair, pos); 2526 } 2527 } 2528 2529 static int hists__link_hierarchy(struct hists *leader_hists, 2530 struct hist_entry *parent, 2531 struct rb_root_cached *leader_root, 2532 struct rb_root_cached *other_root) 2533 { 2534 struct rb_node *nd; 2535 struct hist_entry *pos, *leader; 2536 2537 for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) { 2538 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2539 2540 if (hist_entry__has_pairs(pos)) { 2541 bool found = false; 2542 2543 list_for_each_entry(leader, &pos->pairs.head, pairs.node) { 2544 if (leader->hists == leader_hists) { 2545 found = true; 2546 break; 2547 } 2548 } 2549 if (!found) 2550 return -1; 2551 } else { 2552 leader = add_dummy_hierarchy_entry(leader_hists, 2553 leader_root, pos); 2554 if (leader == NULL) 2555 return -1; 2556 2557 /* do not point parent in the pos */ 2558 leader->parent_he = parent; 2559 2560 hist_entry__add_pair(pos, leader); 2561 } 2562 2563 if (!pos->leaf) { 2564 if (hists__link_hierarchy(leader_hists, leader, 2565 &leader->hroot_in, 2566 &pos->hroot_in) < 0) 2567 return -1; 2568 } 2569 } 2570 return 0; 2571 } 2572 2573 /* 2574 * Look for entries in the other hists that are not present in the leader, if 2575 * we find them, just add a dummy entry on the leader hists, with period=0, 2576 * nr_events=0, to serve as the list header. 2577 */ 2578 int hists__link(struct hists *leader, struct hists *other) 2579 { 2580 struct rb_root_cached *root; 2581 struct rb_node *nd; 2582 struct hist_entry *pos, *pair; 2583 2584 if (symbol_conf.report_hierarchy) { 2585 /* hierarchy report always collapses entries */ 2586 return hists__link_hierarchy(leader, NULL, 2587 &leader->entries_collapsed, 2588 &other->entries_collapsed); 2589 } 2590 2591 if (hists__has(other, need_collapse)) 2592 root = &other->entries_collapsed; 2593 else 2594 root = other->entries_in; 2595 2596 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2597 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2598 2599 if (!hist_entry__has_pairs(pos)) { 2600 pair = hists__add_dummy_entry(leader, pos); 2601 if (pair == NULL) 2602 return -1; 2603 hist_entry__add_pair(pos, pair); 2604 } 2605 } 2606 2607 return 0; 2608 } 2609 2610 int hists__unlink(struct hists *hists) 2611 { 2612 struct rb_root_cached *root; 2613 struct rb_node *nd; 2614 struct hist_entry *pos; 2615 2616 if (hists__has(hists, need_collapse)) 2617 root = &hists->entries_collapsed; 2618 else 2619 root = hists->entries_in; 2620 2621 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2622 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2623 list_del_init(&pos->pairs.node); 2624 } 2625 2626 return 0; 2627 } 2628 2629 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2630 struct perf_sample *sample, bool nonany_branch_mode, 2631 u64 *total_cycles) 2632 { 2633 struct branch_info *bi; 2634 struct branch_entry *entries = perf_sample__branch_entries(sample); 2635 2636 /* If we have branch cycles always annotate them. */ 2637 if (bs && bs->nr && entries[0].flags.cycles) { 2638 int i; 2639 2640 bi = sample__resolve_bstack(sample, al); 2641 if (bi) { 2642 struct addr_map_symbol *prev = NULL; 2643 2644 /* 2645 * Ignore errors, still want to process the 2646 * other entries. 2647 * 2648 * For non standard branch modes always 2649 * force no IPC (prev == NULL) 2650 * 2651 * Note that perf stores branches reversed from 2652 * program order! 2653 */ 2654 for (i = bs->nr - 1; i >= 0; i--) { 2655 addr_map_symbol__account_cycles(&bi[i].from, 2656 nonany_branch_mode ? NULL : prev, 2657 bi[i].flags.cycles); 2658 prev = &bi[i].to; 2659 2660 if (total_cycles) 2661 *total_cycles += bi[i].flags.cycles; 2662 } 2663 free(bi); 2664 } 2665 } 2666 } 2667 2668 size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp, 2669 bool skip_empty) 2670 { 2671 struct evsel *pos; 2672 size_t ret = 0; 2673 2674 evlist__for_each_entry(evlist, pos) { 2675 struct hists *hists = evsel__hists(pos); 2676 2677 if (skip_empty && !hists->stats.nr_samples) 2678 continue; 2679 2680 ret += fprintf(fp, "%s stats:\n", evsel__name(pos)); 2681 ret += fprintf(fp, "%16s events: %10d\n", 2682 "SAMPLE", hists->stats.nr_samples); 2683 } 2684 2685 return ret; 2686 } 2687 2688 2689 u64 hists__total_period(struct hists *hists) 2690 { 2691 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2692 hists->stats.total_period; 2693 } 2694 2695 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq) 2696 { 2697 char unit; 2698 int printed; 2699 const struct dso *dso = hists->dso_filter; 2700 struct thread *thread = hists->thread_filter; 2701 int socket_id = hists->socket_filter; 2702 unsigned long nr_samples = hists->stats.nr_samples; 2703 u64 nr_events = hists->stats.total_period; 2704 struct evsel *evsel = hists_to_evsel(hists); 2705 const char *ev_name = evsel__name(evsel); 2706 char buf[512], sample_freq_str[64] = ""; 2707 size_t buflen = sizeof(buf); 2708 char ref[30] = " show reference callgraph, "; 2709 bool enable_ref = false; 2710 2711 if (symbol_conf.filter_relative) { 2712 nr_samples = hists->stats.nr_non_filtered_samples; 2713 nr_events = hists->stats.total_non_filtered_period; 2714 } 2715 2716 if (evsel__is_group_event(evsel)) { 2717 struct evsel *pos; 2718 2719 evsel__group_desc(evsel, buf, buflen); 2720 ev_name = buf; 2721 2722 for_each_group_member(pos, evsel) { 2723 struct hists *pos_hists = evsel__hists(pos); 2724 2725 if (symbol_conf.filter_relative) { 2726 nr_samples += pos_hists->stats.nr_non_filtered_samples; 2727 nr_events += pos_hists->stats.total_non_filtered_period; 2728 } else { 2729 nr_samples += pos_hists->stats.nr_samples; 2730 nr_events += pos_hists->stats.total_period; 2731 } 2732 } 2733 } 2734 2735 if (symbol_conf.show_ref_callgraph && 2736 strstr(ev_name, "call-graph=no")) 2737 enable_ref = true; 2738 2739 if (show_freq) 2740 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq); 2741 2742 nr_samples = convert_unit(nr_samples, &unit); 2743 printed = scnprintf(bf, size, 2744 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64, 2745 nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "", 2746 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events); 2747 2748 2749 if (hists->uid_filter_str) 2750 printed += snprintf(bf + printed, size - printed, 2751 ", UID: %s", hists->uid_filter_str); 2752 if (thread) { 2753 if (hists__has(hists, thread)) { 2754 printed += scnprintf(bf + printed, size - printed, 2755 ", Thread: %s(%d)", 2756 (thread->comm_set ? thread__comm_str(thread) : ""), 2757 thread->tid); 2758 } else { 2759 printed += scnprintf(bf + printed, size - printed, 2760 ", Thread: %s", 2761 (thread->comm_set ? thread__comm_str(thread) : "")); 2762 } 2763 } 2764 if (dso) 2765 printed += scnprintf(bf + printed, size - printed, 2766 ", DSO: %s", dso->short_name); 2767 if (socket_id > -1) 2768 printed += scnprintf(bf + printed, size - printed, 2769 ", Processor Socket: %d", socket_id); 2770 2771 return printed; 2772 } 2773 2774 int parse_filter_percentage(const struct option *opt __maybe_unused, 2775 const char *arg, int unset __maybe_unused) 2776 { 2777 if (!strcmp(arg, "relative")) 2778 symbol_conf.filter_relative = true; 2779 else if (!strcmp(arg, "absolute")) 2780 symbol_conf.filter_relative = false; 2781 else { 2782 pr_debug("Invalid percentage: %s\n", arg); 2783 return -1; 2784 } 2785 2786 return 0; 2787 } 2788 2789 int perf_hist_config(const char *var, const char *value) 2790 { 2791 if (!strcmp(var, "hist.percentage")) 2792 return parse_filter_percentage(NULL, value, 0); 2793 2794 return 0; 2795 } 2796 2797 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2798 { 2799 memset(hists, 0, sizeof(*hists)); 2800 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED; 2801 hists->entries_in = &hists->entries_in_array[0]; 2802 hists->entries_collapsed = RB_ROOT_CACHED; 2803 hists->entries = RB_ROOT_CACHED; 2804 pthread_mutex_init(&hists->lock, NULL); 2805 hists->socket_filter = -1; 2806 hists->hpp_list = hpp_list; 2807 INIT_LIST_HEAD(&hists->hpp_formats); 2808 return 0; 2809 } 2810 2811 static void hists__delete_remaining_entries(struct rb_root_cached *root) 2812 { 2813 struct rb_node *node; 2814 struct hist_entry *he; 2815 2816 while (!RB_EMPTY_ROOT(&root->rb_root)) { 2817 node = rb_first_cached(root); 2818 rb_erase_cached(node, root); 2819 2820 he = rb_entry(node, struct hist_entry, rb_node_in); 2821 hist_entry__delete(he); 2822 } 2823 } 2824 2825 static void hists__delete_all_entries(struct hists *hists) 2826 { 2827 hists__delete_entries(hists); 2828 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2829 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2830 hists__delete_remaining_entries(&hists->entries_collapsed); 2831 } 2832 2833 static void hists_evsel__exit(struct evsel *evsel) 2834 { 2835 struct hists *hists = evsel__hists(evsel); 2836 struct perf_hpp_fmt *fmt, *pos; 2837 struct perf_hpp_list_node *node, *tmp; 2838 2839 hists__delete_all_entries(hists); 2840 2841 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2842 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2843 list_del_init(&fmt->list); 2844 free(fmt); 2845 } 2846 list_del_init(&node->list); 2847 free(node); 2848 } 2849 } 2850 2851 static int hists_evsel__init(struct evsel *evsel) 2852 { 2853 struct hists *hists = evsel__hists(evsel); 2854 2855 __hists__init(hists, &perf_hpp_list); 2856 return 0; 2857 } 2858 2859 /* 2860 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2861 * stored in the rbtree... 2862 */ 2863 2864 int hists__init(void) 2865 { 2866 int err = evsel__object_config(sizeof(struct hists_evsel), 2867 hists_evsel__init, hists_evsel__exit); 2868 if (err) 2869 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2870 2871 return err; 2872 } 2873 2874 void perf_hpp_list__init(struct perf_hpp_list *list) 2875 { 2876 INIT_LIST_HEAD(&list->fields); 2877 INIT_LIST_HEAD(&list->sorts); 2878 } 2879