xref: /linux/tools/perf/util/hist.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "callchain.h"
3 #include "debug.h"
4 #include "dso.h"
5 #include "build-id.h"
6 #include "hist.h"
7 #include "map.h"
8 #include "map_symbol.h"
9 #include "branch.h"
10 #include "mem-events.h"
11 #include "session.h"
12 #include "namespaces.h"
13 #include "cgroup.h"
14 #include "sort.h"
15 #include "units.h"
16 #include "evlist.h"
17 #include "evsel.h"
18 #include "annotate.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "thread.h"
22 #include "block-info.h"
23 #include "ui/progress.h"
24 #include <errno.h>
25 #include <math.h>
26 #include <inttypes.h>
27 #include <sys/param.h>
28 #include <linux/rbtree.h>
29 #include <linux/string.h>
30 #include <linux/time64.h>
31 #include <linux/zalloc.h>
32 
33 static bool hists__filter_entry_by_dso(struct hists *hists,
34 				       struct hist_entry *he);
35 static bool hists__filter_entry_by_thread(struct hists *hists,
36 					  struct hist_entry *he);
37 static bool hists__filter_entry_by_symbol(struct hists *hists,
38 					  struct hist_entry *he);
39 static bool hists__filter_entry_by_socket(struct hists *hists,
40 					  struct hist_entry *he);
41 
42 u16 hists__col_len(struct hists *hists, enum hist_column col)
43 {
44 	return hists->col_len[col];
45 }
46 
47 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
48 {
49 	hists->col_len[col] = len;
50 }
51 
52 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
53 {
54 	if (len > hists__col_len(hists, col)) {
55 		hists__set_col_len(hists, col, len);
56 		return true;
57 	}
58 	return false;
59 }
60 
61 void hists__reset_col_len(struct hists *hists)
62 {
63 	enum hist_column col;
64 
65 	for (col = 0; col < HISTC_NR_COLS; ++col)
66 		hists__set_col_len(hists, col, 0);
67 }
68 
69 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
70 {
71 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
72 
73 	if (hists__col_len(hists, dso) < unresolved_col_width &&
74 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
75 	    !symbol_conf.dso_list)
76 		hists__set_col_len(hists, dso, unresolved_col_width);
77 }
78 
79 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
80 {
81 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
82 	int symlen;
83 	u16 len;
84 
85 	if (h->block_info)
86 		return;
87 	/*
88 	 * +4 accounts for '[x] ' priv level info
89 	 * +2 accounts for 0x prefix on raw addresses
90 	 * +3 accounts for ' y ' symtab origin info
91 	 */
92 	if (h->ms.sym) {
93 		symlen = h->ms.sym->namelen + 4;
94 		if (verbose > 0)
95 			symlen += BITS_PER_LONG / 4 + 2 + 3;
96 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
97 	} else {
98 		symlen = unresolved_col_width + 4 + 2;
99 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
100 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
101 	}
102 
103 	len = thread__comm_len(h->thread);
104 	if (hists__new_col_len(hists, HISTC_COMM, len))
105 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
106 
107 	if (h->ms.map) {
108 		len = dso__name_len(h->ms.map->dso);
109 		hists__new_col_len(hists, HISTC_DSO, len);
110 	}
111 
112 	if (h->parent)
113 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
114 
115 	if (h->branch_info) {
116 		if (h->branch_info->from.ms.sym) {
117 			symlen = (int)h->branch_info->from.ms.sym->namelen + 4;
118 			if (verbose > 0)
119 				symlen += BITS_PER_LONG / 4 + 2 + 3;
120 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
121 
122 			symlen = dso__name_len(h->branch_info->from.ms.map->dso);
123 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
124 		} else {
125 			symlen = unresolved_col_width + 4 + 2;
126 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
127 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
128 		}
129 
130 		if (h->branch_info->to.ms.sym) {
131 			symlen = (int)h->branch_info->to.ms.sym->namelen + 4;
132 			if (verbose > 0)
133 				symlen += BITS_PER_LONG / 4 + 2 + 3;
134 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
135 
136 			symlen = dso__name_len(h->branch_info->to.ms.map->dso);
137 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
138 		} else {
139 			symlen = unresolved_col_width + 4 + 2;
140 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
141 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
142 		}
143 
144 		if (h->branch_info->srcline_from)
145 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
146 					strlen(h->branch_info->srcline_from));
147 		if (h->branch_info->srcline_to)
148 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
149 					strlen(h->branch_info->srcline_to));
150 	}
151 
152 	if (h->mem_info) {
153 		if (h->mem_info->daddr.ms.sym) {
154 			symlen = (int)h->mem_info->daddr.ms.sym->namelen + 4
155 			       + unresolved_col_width + 2;
156 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
157 					   symlen);
158 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
159 					   symlen + 1);
160 		} else {
161 			symlen = unresolved_col_width + 4 + 2;
162 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
163 					   symlen);
164 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
165 					   symlen);
166 		}
167 
168 		if (h->mem_info->iaddr.ms.sym) {
169 			symlen = (int)h->mem_info->iaddr.ms.sym->namelen + 4
170 			       + unresolved_col_width + 2;
171 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
172 					   symlen);
173 		} else {
174 			symlen = unresolved_col_width + 4 + 2;
175 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
176 					   symlen);
177 		}
178 
179 		if (h->mem_info->daddr.ms.map) {
180 			symlen = dso__name_len(h->mem_info->daddr.ms.map->dso);
181 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
182 					   symlen);
183 		} else {
184 			symlen = unresolved_col_width + 4 + 2;
185 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
186 		}
187 
188 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
189 				   unresolved_col_width + 4 + 2);
190 
191 		hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE,
192 				   unresolved_col_width + 4 + 2);
193 
194 	} else {
195 		symlen = unresolved_col_width + 4 + 2;
196 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
197 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
198 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
199 	}
200 
201 	hists__new_col_len(hists, HISTC_CGROUP, 6);
202 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
203 	hists__new_col_len(hists, HISTC_CPU, 3);
204 	hists__new_col_len(hists, HISTC_SOCKET, 6);
205 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
206 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
207 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
208 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
209 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
210 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
211 	hists__new_col_len(hists, HISTC_MEM_BLOCKED, 10);
212 	hists__new_col_len(hists, HISTC_LOCAL_INS_LAT, 13);
213 	hists__new_col_len(hists, HISTC_GLOBAL_INS_LAT, 13);
214 	hists__new_col_len(hists, HISTC_P_STAGE_CYC, 13);
215 	if (symbol_conf.nanosecs)
216 		hists__new_col_len(hists, HISTC_TIME, 16);
217 	else
218 		hists__new_col_len(hists, HISTC_TIME, 12);
219 	hists__new_col_len(hists, HISTC_CODE_PAGE_SIZE, 6);
220 
221 	if (h->srcline) {
222 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
223 		hists__new_col_len(hists, HISTC_SRCLINE, len);
224 	}
225 
226 	if (h->srcfile)
227 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
228 
229 	if (h->transaction)
230 		hists__new_col_len(hists, HISTC_TRANSACTION,
231 				   hist_entry__transaction_len());
232 
233 	if (h->trace_output)
234 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
235 
236 	if (h->cgroup) {
237 		const char *cgrp_name = "unknown";
238 		struct cgroup *cgrp = cgroup__find(h->ms.maps->machine->env,
239 						   h->cgroup);
240 		if (cgrp != NULL)
241 			cgrp_name = cgrp->name;
242 
243 		hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name));
244 	}
245 }
246 
247 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
248 {
249 	struct rb_node *next = rb_first_cached(&hists->entries);
250 	struct hist_entry *n;
251 	int row = 0;
252 
253 	hists__reset_col_len(hists);
254 
255 	while (next && row++ < max_rows) {
256 		n = rb_entry(next, struct hist_entry, rb_node);
257 		if (!n->filtered)
258 			hists__calc_col_len(hists, n);
259 		next = rb_next(&n->rb_node);
260 	}
261 }
262 
263 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
264 					unsigned int cpumode, u64 period)
265 {
266 	switch (cpumode) {
267 	case PERF_RECORD_MISC_KERNEL:
268 		he_stat->period_sys += period;
269 		break;
270 	case PERF_RECORD_MISC_USER:
271 		he_stat->period_us += period;
272 		break;
273 	case PERF_RECORD_MISC_GUEST_KERNEL:
274 		he_stat->period_guest_sys += period;
275 		break;
276 	case PERF_RECORD_MISC_GUEST_USER:
277 		he_stat->period_guest_us += period;
278 		break;
279 	default:
280 		break;
281 	}
282 }
283 
284 static long hist_time(unsigned long htime)
285 {
286 	unsigned long time_quantum = symbol_conf.time_quantum;
287 	if (time_quantum)
288 		return (htime / time_quantum) * time_quantum;
289 	return htime;
290 }
291 
292 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
293 				u64 weight, u64 ins_lat, u64 p_stage_cyc)
294 {
295 
296 	he_stat->period		+= period;
297 	he_stat->weight		+= weight;
298 	he_stat->nr_events	+= 1;
299 	he_stat->ins_lat	+= ins_lat;
300 	he_stat->p_stage_cyc	+= p_stage_cyc;
301 }
302 
303 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
304 {
305 	dest->period		+= src->period;
306 	dest->period_sys	+= src->period_sys;
307 	dest->period_us		+= src->period_us;
308 	dest->period_guest_sys	+= src->period_guest_sys;
309 	dest->period_guest_us	+= src->period_guest_us;
310 	dest->nr_events		+= src->nr_events;
311 	dest->weight		+= src->weight;
312 	dest->ins_lat		+= src->ins_lat;
313 	dest->p_stage_cyc		+= src->p_stage_cyc;
314 }
315 
316 static void he_stat__decay(struct he_stat *he_stat)
317 {
318 	he_stat->period = (he_stat->period * 7) / 8;
319 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
320 	/* XXX need decay for weight too? */
321 }
322 
323 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
324 
325 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
326 {
327 	u64 prev_period = he->stat.period;
328 	u64 diff;
329 
330 	if (prev_period == 0)
331 		return true;
332 
333 	he_stat__decay(&he->stat);
334 	if (symbol_conf.cumulate_callchain)
335 		he_stat__decay(he->stat_acc);
336 	decay_callchain(he->callchain);
337 
338 	diff = prev_period - he->stat.period;
339 
340 	if (!he->depth) {
341 		hists->stats.total_period -= diff;
342 		if (!he->filtered)
343 			hists->stats.total_non_filtered_period -= diff;
344 	}
345 
346 	if (!he->leaf) {
347 		struct hist_entry *child;
348 		struct rb_node *node = rb_first_cached(&he->hroot_out);
349 		while (node) {
350 			child = rb_entry(node, struct hist_entry, rb_node);
351 			node = rb_next(node);
352 
353 			if (hists__decay_entry(hists, child))
354 				hists__delete_entry(hists, child);
355 		}
356 	}
357 
358 	return he->stat.period == 0;
359 }
360 
361 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
362 {
363 	struct rb_root_cached *root_in;
364 	struct rb_root_cached *root_out;
365 
366 	if (he->parent_he) {
367 		root_in  = &he->parent_he->hroot_in;
368 		root_out = &he->parent_he->hroot_out;
369 	} else {
370 		if (hists__has(hists, need_collapse))
371 			root_in = &hists->entries_collapsed;
372 		else
373 			root_in = hists->entries_in;
374 		root_out = &hists->entries;
375 	}
376 
377 	rb_erase_cached(&he->rb_node_in, root_in);
378 	rb_erase_cached(&he->rb_node, root_out);
379 
380 	--hists->nr_entries;
381 	if (!he->filtered)
382 		--hists->nr_non_filtered_entries;
383 
384 	hist_entry__delete(he);
385 }
386 
387 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
388 {
389 	struct rb_node *next = rb_first_cached(&hists->entries);
390 	struct hist_entry *n;
391 
392 	while (next) {
393 		n = rb_entry(next, struct hist_entry, rb_node);
394 		next = rb_next(&n->rb_node);
395 		if (((zap_user && n->level == '.') ||
396 		     (zap_kernel && n->level != '.') ||
397 		     hists__decay_entry(hists, n))) {
398 			hists__delete_entry(hists, n);
399 		}
400 	}
401 }
402 
403 void hists__delete_entries(struct hists *hists)
404 {
405 	struct rb_node *next = rb_first_cached(&hists->entries);
406 	struct hist_entry *n;
407 
408 	while (next) {
409 		n = rb_entry(next, struct hist_entry, rb_node);
410 		next = rb_next(&n->rb_node);
411 
412 		hists__delete_entry(hists, n);
413 	}
414 }
415 
416 struct hist_entry *hists__get_entry(struct hists *hists, int idx)
417 {
418 	struct rb_node *next = rb_first_cached(&hists->entries);
419 	struct hist_entry *n;
420 	int i = 0;
421 
422 	while (next) {
423 		n = rb_entry(next, struct hist_entry, rb_node);
424 		if (i == idx)
425 			return n;
426 
427 		next = rb_next(&n->rb_node);
428 		i++;
429 	}
430 
431 	return NULL;
432 }
433 
434 /*
435  * histogram, sorted on item, collects periods
436  */
437 
438 static int hist_entry__init(struct hist_entry *he,
439 			    struct hist_entry *template,
440 			    bool sample_self,
441 			    size_t callchain_size)
442 {
443 	*he = *template;
444 	he->callchain_size = callchain_size;
445 
446 	if (symbol_conf.cumulate_callchain) {
447 		he->stat_acc = malloc(sizeof(he->stat));
448 		if (he->stat_acc == NULL)
449 			return -ENOMEM;
450 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
451 		if (!sample_self)
452 			memset(&he->stat, 0, sizeof(he->stat));
453 	}
454 
455 	map__get(he->ms.map);
456 
457 	if (he->branch_info) {
458 		/*
459 		 * This branch info is (a part of) allocated from
460 		 * sample__resolve_bstack() and will be freed after
461 		 * adding new entries.  So we need to save a copy.
462 		 */
463 		he->branch_info = malloc(sizeof(*he->branch_info));
464 		if (he->branch_info == NULL)
465 			goto err;
466 
467 		memcpy(he->branch_info, template->branch_info,
468 		       sizeof(*he->branch_info));
469 
470 		map__get(he->branch_info->from.ms.map);
471 		map__get(he->branch_info->to.ms.map);
472 	}
473 
474 	if (he->mem_info) {
475 		map__get(he->mem_info->iaddr.ms.map);
476 		map__get(he->mem_info->daddr.ms.map);
477 	}
478 
479 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
480 		callchain_init(he->callchain);
481 
482 	if (he->raw_data) {
483 		he->raw_data = memdup(he->raw_data, he->raw_size);
484 		if (he->raw_data == NULL)
485 			goto err_infos;
486 	}
487 
488 	if (he->srcline) {
489 		he->srcline = strdup(he->srcline);
490 		if (he->srcline == NULL)
491 			goto err_rawdata;
492 	}
493 
494 	if (symbol_conf.res_sample) {
495 		he->res_samples = calloc(sizeof(struct res_sample),
496 					symbol_conf.res_sample);
497 		if (!he->res_samples)
498 			goto err_srcline;
499 	}
500 
501 	INIT_LIST_HEAD(&he->pairs.node);
502 	thread__get(he->thread);
503 	he->hroot_in  = RB_ROOT_CACHED;
504 	he->hroot_out = RB_ROOT_CACHED;
505 
506 	if (!symbol_conf.report_hierarchy)
507 		he->leaf = true;
508 
509 	return 0;
510 
511 err_srcline:
512 	zfree(&he->srcline);
513 
514 err_rawdata:
515 	zfree(&he->raw_data);
516 
517 err_infos:
518 	if (he->branch_info) {
519 		map__put(he->branch_info->from.ms.map);
520 		map__put(he->branch_info->to.ms.map);
521 		zfree(&he->branch_info);
522 	}
523 	if (he->mem_info) {
524 		map__put(he->mem_info->iaddr.ms.map);
525 		map__put(he->mem_info->daddr.ms.map);
526 	}
527 err:
528 	map__zput(he->ms.map);
529 	zfree(&he->stat_acc);
530 	return -ENOMEM;
531 }
532 
533 static void *hist_entry__zalloc(size_t size)
534 {
535 	return zalloc(size + sizeof(struct hist_entry));
536 }
537 
538 static void hist_entry__free(void *ptr)
539 {
540 	free(ptr);
541 }
542 
543 static struct hist_entry_ops default_ops = {
544 	.new	= hist_entry__zalloc,
545 	.free	= hist_entry__free,
546 };
547 
548 static struct hist_entry *hist_entry__new(struct hist_entry *template,
549 					  bool sample_self)
550 {
551 	struct hist_entry_ops *ops = template->ops;
552 	size_t callchain_size = 0;
553 	struct hist_entry *he;
554 	int err = 0;
555 
556 	if (!ops)
557 		ops = template->ops = &default_ops;
558 
559 	if (symbol_conf.use_callchain)
560 		callchain_size = sizeof(struct callchain_root);
561 
562 	he = ops->new(callchain_size);
563 	if (he) {
564 		err = hist_entry__init(he, template, sample_self, callchain_size);
565 		if (err) {
566 			ops->free(he);
567 			he = NULL;
568 		}
569 	}
570 
571 	return he;
572 }
573 
574 static u8 symbol__parent_filter(const struct symbol *parent)
575 {
576 	if (symbol_conf.exclude_other && parent == NULL)
577 		return 1 << HIST_FILTER__PARENT;
578 	return 0;
579 }
580 
581 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
582 {
583 	if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
584 		return;
585 
586 	he->hists->callchain_period += period;
587 	if (!he->filtered)
588 		he->hists->callchain_non_filtered_period += period;
589 }
590 
591 static struct hist_entry *hists__findnew_entry(struct hists *hists,
592 					       struct hist_entry *entry,
593 					       struct addr_location *al,
594 					       bool sample_self)
595 {
596 	struct rb_node **p;
597 	struct rb_node *parent = NULL;
598 	struct hist_entry *he;
599 	int64_t cmp;
600 	u64 period = entry->stat.period;
601 	u64 weight = entry->stat.weight;
602 	u64 ins_lat = entry->stat.ins_lat;
603 	u64 p_stage_cyc = entry->stat.p_stage_cyc;
604 	bool leftmost = true;
605 
606 	p = &hists->entries_in->rb_root.rb_node;
607 
608 	while (*p != NULL) {
609 		parent = *p;
610 		he = rb_entry(parent, struct hist_entry, rb_node_in);
611 
612 		/*
613 		 * Make sure that it receives arguments in a same order as
614 		 * hist_entry__collapse() so that we can use an appropriate
615 		 * function when searching an entry regardless which sort
616 		 * keys were used.
617 		 */
618 		cmp = hist_entry__cmp(he, entry);
619 
620 		if (!cmp) {
621 			if (sample_self) {
622 				he_stat__add_period(&he->stat, period, weight, ins_lat, p_stage_cyc);
623 				hist_entry__add_callchain_period(he, period);
624 			}
625 			if (symbol_conf.cumulate_callchain)
626 				he_stat__add_period(he->stat_acc, period, weight, ins_lat, p_stage_cyc);
627 
628 			/*
629 			 * This mem info was allocated from sample__resolve_mem
630 			 * and will not be used anymore.
631 			 */
632 			mem_info__zput(entry->mem_info);
633 
634 			block_info__zput(entry->block_info);
635 
636 			/* If the map of an existing hist_entry has
637 			 * become out-of-date due to an exec() or
638 			 * similar, update it.  Otherwise we will
639 			 * mis-adjust symbol addresses when computing
640 			 * the history counter to increment.
641 			 */
642 			if (he->ms.map != entry->ms.map) {
643 				map__put(he->ms.map);
644 				he->ms.map = map__get(entry->ms.map);
645 			}
646 			goto out;
647 		}
648 
649 		if (cmp < 0)
650 			p = &(*p)->rb_left;
651 		else {
652 			p = &(*p)->rb_right;
653 			leftmost = false;
654 		}
655 	}
656 
657 	he = hist_entry__new(entry, sample_self);
658 	if (!he)
659 		return NULL;
660 
661 	if (sample_self)
662 		hist_entry__add_callchain_period(he, period);
663 	hists->nr_entries++;
664 
665 	rb_link_node(&he->rb_node_in, parent, p);
666 	rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
667 out:
668 	if (sample_self)
669 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
670 	if (symbol_conf.cumulate_callchain)
671 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
672 	return he;
673 }
674 
675 static unsigned random_max(unsigned high)
676 {
677 	unsigned thresh = -high % high;
678 	for (;;) {
679 		unsigned r = random();
680 		if (r >= thresh)
681 			return r % high;
682 	}
683 }
684 
685 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
686 {
687 	struct res_sample *r;
688 	int j;
689 
690 	if (he->num_res < symbol_conf.res_sample) {
691 		j = he->num_res++;
692 	} else {
693 		j = random_max(symbol_conf.res_sample);
694 	}
695 	r = &he->res_samples[j];
696 	r->time = sample->time;
697 	r->cpu = sample->cpu;
698 	r->tid = sample->tid;
699 }
700 
701 static struct hist_entry*
702 __hists__add_entry(struct hists *hists,
703 		   struct addr_location *al,
704 		   struct symbol *sym_parent,
705 		   struct branch_info *bi,
706 		   struct mem_info *mi,
707 		   struct block_info *block_info,
708 		   struct perf_sample *sample,
709 		   bool sample_self,
710 		   struct hist_entry_ops *ops)
711 {
712 	struct namespaces *ns = thread__namespaces(al->thread);
713 	struct hist_entry entry = {
714 		.thread	= al->thread,
715 		.comm = thread__comm(al->thread),
716 		.cgroup_id = {
717 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
718 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
719 		},
720 		.cgroup = sample->cgroup,
721 		.ms = {
722 			.maps	= al->maps,
723 			.map	= al->map,
724 			.sym	= al->sym,
725 		},
726 		.srcline = (char *) al->srcline,
727 		.socket	 = al->socket,
728 		.cpu	 = al->cpu,
729 		.cpumode = al->cpumode,
730 		.ip	 = al->addr,
731 		.level	 = al->level,
732 		.code_page_size = sample->code_page_size,
733 		.stat = {
734 			.nr_events = 1,
735 			.period	= sample->period,
736 			.weight = sample->weight,
737 			.ins_lat = sample->ins_lat,
738 			.p_stage_cyc = sample->p_stage_cyc,
739 		},
740 		.parent = sym_parent,
741 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
742 		.hists	= hists,
743 		.branch_info = bi,
744 		.mem_info = mi,
745 		.block_info = block_info,
746 		.transaction = sample->transaction,
747 		.raw_data = sample->raw_data,
748 		.raw_size = sample->raw_size,
749 		.ops = ops,
750 		.time = hist_time(sample->time),
751 	}, *he = hists__findnew_entry(hists, &entry, al, sample_self);
752 
753 	if (!hists->has_callchains && he && he->callchain_size != 0)
754 		hists->has_callchains = true;
755 	if (he && symbol_conf.res_sample)
756 		hists__res_sample(he, sample);
757 	return he;
758 }
759 
760 struct hist_entry *hists__add_entry(struct hists *hists,
761 				    struct addr_location *al,
762 				    struct symbol *sym_parent,
763 				    struct branch_info *bi,
764 				    struct mem_info *mi,
765 				    struct perf_sample *sample,
766 				    bool sample_self)
767 {
768 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
769 				  sample, sample_self, NULL);
770 }
771 
772 struct hist_entry *hists__add_entry_ops(struct hists *hists,
773 					struct hist_entry_ops *ops,
774 					struct addr_location *al,
775 					struct symbol *sym_parent,
776 					struct branch_info *bi,
777 					struct mem_info *mi,
778 					struct perf_sample *sample,
779 					bool sample_self)
780 {
781 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
782 				  sample, sample_self, ops);
783 }
784 
785 struct hist_entry *hists__add_entry_block(struct hists *hists,
786 					  struct addr_location *al,
787 					  struct block_info *block_info)
788 {
789 	struct hist_entry entry = {
790 		.block_info = block_info,
791 		.hists = hists,
792 		.ms = {
793 			.maps = al->maps,
794 			.map = al->map,
795 			.sym = al->sym,
796 		},
797 	}, *he = hists__findnew_entry(hists, &entry, al, false);
798 
799 	return he;
800 }
801 
802 static int
803 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
804 		    struct addr_location *al __maybe_unused)
805 {
806 	return 0;
807 }
808 
809 static int
810 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
811 			struct addr_location *al __maybe_unused)
812 {
813 	return 0;
814 }
815 
816 static int
817 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
818 {
819 	struct perf_sample *sample = iter->sample;
820 	struct mem_info *mi;
821 
822 	mi = sample__resolve_mem(sample, al);
823 	if (mi == NULL)
824 		return -ENOMEM;
825 
826 	iter->priv = mi;
827 	return 0;
828 }
829 
830 static int
831 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
832 {
833 	u64 cost;
834 	struct mem_info *mi = iter->priv;
835 	struct hists *hists = evsel__hists(iter->evsel);
836 	struct perf_sample *sample = iter->sample;
837 	struct hist_entry *he;
838 
839 	if (mi == NULL)
840 		return -EINVAL;
841 
842 	cost = sample->weight;
843 	if (!cost)
844 		cost = 1;
845 
846 	/*
847 	 * must pass period=weight in order to get the correct
848 	 * sorting from hists__collapse_resort() which is solely
849 	 * based on periods. We want sorting be done on nr_events * weight
850 	 * and this is indirectly achieved by passing period=weight here
851 	 * and the he_stat__add_period() function.
852 	 */
853 	sample->period = cost;
854 
855 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
856 			      sample, true);
857 	if (!he)
858 		return -ENOMEM;
859 
860 	iter->he = he;
861 	return 0;
862 }
863 
864 static int
865 iter_finish_mem_entry(struct hist_entry_iter *iter,
866 		      struct addr_location *al __maybe_unused)
867 {
868 	struct evsel *evsel = iter->evsel;
869 	struct hists *hists = evsel__hists(evsel);
870 	struct hist_entry *he = iter->he;
871 	int err = -EINVAL;
872 
873 	if (he == NULL)
874 		goto out;
875 
876 	hists__inc_nr_samples(hists, he->filtered);
877 
878 	err = hist_entry__append_callchain(he, iter->sample);
879 
880 out:
881 	/*
882 	 * We don't need to free iter->priv (mem_info) here since the mem info
883 	 * was either already freed in hists__findnew_entry() or passed to a
884 	 * new hist entry by hist_entry__new().
885 	 */
886 	iter->priv = NULL;
887 
888 	iter->he = NULL;
889 	return err;
890 }
891 
892 static int
893 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
894 {
895 	struct branch_info *bi;
896 	struct perf_sample *sample = iter->sample;
897 
898 	bi = sample__resolve_bstack(sample, al);
899 	if (!bi)
900 		return -ENOMEM;
901 
902 	iter->curr = 0;
903 	iter->total = sample->branch_stack->nr;
904 
905 	iter->priv = bi;
906 	return 0;
907 }
908 
909 static int
910 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
911 			     struct addr_location *al __maybe_unused)
912 {
913 	return 0;
914 }
915 
916 static int
917 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
918 {
919 	struct branch_info *bi = iter->priv;
920 	int i = iter->curr;
921 
922 	if (bi == NULL)
923 		return 0;
924 
925 	if (iter->curr >= iter->total)
926 		return 0;
927 
928 	al->maps = bi[i].to.ms.maps;
929 	al->map = bi[i].to.ms.map;
930 	al->sym = bi[i].to.ms.sym;
931 	al->addr = bi[i].to.addr;
932 	return 1;
933 }
934 
935 static int
936 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
937 {
938 	struct branch_info *bi;
939 	struct evsel *evsel = iter->evsel;
940 	struct hists *hists = evsel__hists(evsel);
941 	struct perf_sample *sample = iter->sample;
942 	struct hist_entry *he = NULL;
943 	int i = iter->curr;
944 	int err = 0;
945 
946 	bi = iter->priv;
947 
948 	if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym))
949 		goto out;
950 
951 	/*
952 	 * The report shows the percentage of total branches captured
953 	 * and not events sampled. Thus we use a pseudo period of 1.
954 	 */
955 	sample->period = 1;
956 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
957 
958 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
959 			      sample, true);
960 	if (he == NULL)
961 		return -ENOMEM;
962 
963 	hists__inc_nr_samples(hists, he->filtered);
964 
965 out:
966 	iter->he = he;
967 	iter->curr++;
968 	return err;
969 }
970 
971 static int
972 iter_finish_branch_entry(struct hist_entry_iter *iter,
973 			 struct addr_location *al __maybe_unused)
974 {
975 	zfree(&iter->priv);
976 	iter->he = NULL;
977 
978 	return iter->curr >= iter->total ? 0 : -1;
979 }
980 
981 static int
982 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
983 			  struct addr_location *al __maybe_unused)
984 {
985 	return 0;
986 }
987 
988 static int
989 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
990 {
991 	struct evsel *evsel = iter->evsel;
992 	struct perf_sample *sample = iter->sample;
993 	struct hist_entry *he;
994 
995 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
996 			      sample, true);
997 	if (he == NULL)
998 		return -ENOMEM;
999 
1000 	iter->he = he;
1001 	return 0;
1002 }
1003 
1004 static int
1005 iter_finish_normal_entry(struct hist_entry_iter *iter,
1006 			 struct addr_location *al __maybe_unused)
1007 {
1008 	struct hist_entry *he = iter->he;
1009 	struct evsel *evsel = iter->evsel;
1010 	struct perf_sample *sample = iter->sample;
1011 
1012 	if (he == NULL)
1013 		return 0;
1014 
1015 	iter->he = NULL;
1016 
1017 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
1018 
1019 	return hist_entry__append_callchain(he, sample);
1020 }
1021 
1022 static int
1023 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
1024 			      struct addr_location *al __maybe_unused)
1025 {
1026 	struct hist_entry **he_cache;
1027 
1028 	callchain_cursor_commit(&callchain_cursor);
1029 
1030 	/*
1031 	 * This is for detecting cycles or recursions so that they're
1032 	 * cumulated only one time to prevent entries more than 100%
1033 	 * overhead.
1034 	 */
1035 	he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
1036 	if (he_cache == NULL)
1037 		return -ENOMEM;
1038 
1039 	iter->priv = he_cache;
1040 	iter->curr = 0;
1041 
1042 	return 0;
1043 }
1044 
1045 static int
1046 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1047 				 struct addr_location *al)
1048 {
1049 	struct evsel *evsel = iter->evsel;
1050 	struct hists *hists = evsel__hists(evsel);
1051 	struct perf_sample *sample = iter->sample;
1052 	struct hist_entry **he_cache = iter->priv;
1053 	struct hist_entry *he;
1054 	int err = 0;
1055 
1056 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
1057 			      sample, true);
1058 	if (he == NULL)
1059 		return -ENOMEM;
1060 
1061 	iter->he = he;
1062 	he_cache[iter->curr++] = he;
1063 
1064 	hist_entry__append_callchain(he, sample);
1065 
1066 	/*
1067 	 * We need to re-initialize the cursor since callchain_append()
1068 	 * advanced the cursor to the end.
1069 	 */
1070 	callchain_cursor_commit(&callchain_cursor);
1071 
1072 	hists__inc_nr_samples(hists, he->filtered);
1073 
1074 	return err;
1075 }
1076 
1077 static int
1078 iter_next_cumulative_entry(struct hist_entry_iter *iter,
1079 			   struct addr_location *al)
1080 {
1081 	struct callchain_cursor_node *node;
1082 
1083 	node = callchain_cursor_current(&callchain_cursor);
1084 	if (node == NULL)
1085 		return 0;
1086 
1087 	return fill_callchain_info(al, node, iter->hide_unresolved);
1088 }
1089 
1090 static bool
1091 hist_entry__fast__sym_diff(struct hist_entry *left,
1092 			   struct hist_entry *right)
1093 {
1094 	struct symbol *sym_l = left->ms.sym;
1095 	struct symbol *sym_r = right->ms.sym;
1096 
1097 	if (!sym_l && !sym_r)
1098 		return left->ip != right->ip;
1099 
1100 	return !!_sort__sym_cmp(sym_l, sym_r);
1101 }
1102 
1103 
1104 static int
1105 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1106 			       struct addr_location *al)
1107 {
1108 	struct evsel *evsel = iter->evsel;
1109 	struct perf_sample *sample = iter->sample;
1110 	struct hist_entry **he_cache = iter->priv;
1111 	struct hist_entry *he;
1112 	struct hist_entry he_tmp = {
1113 		.hists = evsel__hists(evsel),
1114 		.cpu = al->cpu,
1115 		.thread = al->thread,
1116 		.comm = thread__comm(al->thread),
1117 		.ip = al->addr,
1118 		.ms = {
1119 			.maps = al->maps,
1120 			.map = al->map,
1121 			.sym = al->sym,
1122 		},
1123 		.srcline = (char *) al->srcline,
1124 		.parent = iter->parent,
1125 		.raw_data = sample->raw_data,
1126 		.raw_size = sample->raw_size,
1127 	};
1128 	int i;
1129 	struct callchain_cursor cursor;
1130 	bool fast = hists__has(he_tmp.hists, sym);
1131 
1132 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
1133 
1134 	callchain_cursor_advance(&callchain_cursor);
1135 
1136 	/*
1137 	 * Check if there's duplicate entries in the callchain.
1138 	 * It's possible that it has cycles or recursive calls.
1139 	 */
1140 	for (i = 0; i < iter->curr; i++) {
1141 		/*
1142 		 * For most cases, there are no duplicate entries in callchain.
1143 		 * The symbols are usually different. Do a quick check for
1144 		 * symbols first.
1145 		 */
1146 		if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp))
1147 			continue;
1148 
1149 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1150 			/* to avoid calling callback function */
1151 			iter->he = NULL;
1152 			return 0;
1153 		}
1154 	}
1155 
1156 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1157 			      sample, false);
1158 	if (he == NULL)
1159 		return -ENOMEM;
1160 
1161 	iter->he = he;
1162 	he_cache[iter->curr++] = he;
1163 
1164 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1165 		callchain_append(he->callchain, &cursor, sample->period);
1166 	return 0;
1167 }
1168 
1169 static int
1170 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1171 			     struct addr_location *al __maybe_unused)
1172 {
1173 	zfree(&iter->priv);
1174 	iter->he = NULL;
1175 
1176 	return 0;
1177 }
1178 
1179 const struct hist_iter_ops hist_iter_mem = {
1180 	.prepare_entry 		= iter_prepare_mem_entry,
1181 	.add_single_entry 	= iter_add_single_mem_entry,
1182 	.next_entry 		= iter_next_nop_entry,
1183 	.add_next_entry 	= iter_add_next_nop_entry,
1184 	.finish_entry 		= iter_finish_mem_entry,
1185 };
1186 
1187 const struct hist_iter_ops hist_iter_branch = {
1188 	.prepare_entry 		= iter_prepare_branch_entry,
1189 	.add_single_entry 	= iter_add_single_branch_entry,
1190 	.next_entry 		= iter_next_branch_entry,
1191 	.add_next_entry 	= iter_add_next_branch_entry,
1192 	.finish_entry 		= iter_finish_branch_entry,
1193 };
1194 
1195 const struct hist_iter_ops hist_iter_normal = {
1196 	.prepare_entry 		= iter_prepare_normal_entry,
1197 	.add_single_entry 	= iter_add_single_normal_entry,
1198 	.next_entry 		= iter_next_nop_entry,
1199 	.add_next_entry 	= iter_add_next_nop_entry,
1200 	.finish_entry 		= iter_finish_normal_entry,
1201 };
1202 
1203 const struct hist_iter_ops hist_iter_cumulative = {
1204 	.prepare_entry 		= iter_prepare_cumulative_entry,
1205 	.add_single_entry 	= iter_add_single_cumulative_entry,
1206 	.next_entry 		= iter_next_cumulative_entry,
1207 	.add_next_entry 	= iter_add_next_cumulative_entry,
1208 	.finish_entry 		= iter_finish_cumulative_entry,
1209 };
1210 
1211 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1212 			 int max_stack_depth, void *arg)
1213 {
1214 	int err, err2;
1215 	struct map *alm = NULL;
1216 
1217 	if (al)
1218 		alm = map__get(al->map);
1219 
1220 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1221 					iter->evsel, al, max_stack_depth);
1222 	if (err) {
1223 		map__put(alm);
1224 		return err;
1225 	}
1226 
1227 	err = iter->ops->prepare_entry(iter, al);
1228 	if (err)
1229 		goto out;
1230 
1231 	err = iter->ops->add_single_entry(iter, al);
1232 	if (err)
1233 		goto out;
1234 
1235 	if (iter->he && iter->add_entry_cb) {
1236 		err = iter->add_entry_cb(iter, al, true, arg);
1237 		if (err)
1238 			goto out;
1239 	}
1240 
1241 	while (iter->ops->next_entry(iter, al)) {
1242 		err = iter->ops->add_next_entry(iter, al);
1243 		if (err)
1244 			break;
1245 
1246 		if (iter->he && iter->add_entry_cb) {
1247 			err = iter->add_entry_cb(iter, al, false, arg);
1248 			if (err)
1249 				goto out;
1250 		}
1251 	}
1252 
1253 out:
1254 	err2 = iter->ops->finish_entry(iter, al);
1255 	if (!err)
1256 		err = err2;
1257 
1258 	map__put(alm);
1259 
1260 	return err;
1261 }
1262 
1263 int64_t
1264 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1265 {
1266 	struct hists *hists = left->hists;
1267 	struct perf_hpp_fmt *fmt;
1268 	int64_t cmp = 0;
1269 
1270 	hists__for_each_sort_list(hists, fmt) {
1271 		if (perf_hpp__is_dynamic_entry(fmt) &&
1272 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1273 			continue;
1274 
1275 		cmp = fmt->cmp(fmt, left, right);
1276 		if (cmp)
1277 			break;
1278 	}
1279 
1280 	return cmp;
1281 }
1282 
1283 int64_t
1284 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1285 {
1286 	struct hists *hists = left->hists;
1287 	struct perf_hpp_fmt *fmt;
1288 	int64_t cmp = 0;
1289 
1290 	hists__for_each_sort_list(hists, fmt) {
1291 		if (perf_hpp__is_dynamic_entry(fmt) &&
1292 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1293 			continue;
1294 
1295 		cmp = fmt->collapse(fmt, left, right);
1296 		if (cmp)
1297 			break;
1298 	}
1299 
1300 	return cmp;
1301 }
1302 
1303 void hist_entry__delete(struct hist_entry *he)
1304 {
1305 	struct hist_entry_ops *ops = he->ops;
1306 
1307 	thread__zput(he->thread);
1308 	map__zput(he->ms.map);
1309 
1310 	if (he->branch_info) {
1311 		map__zput(he->branch_info->from.ms.map);
1312 		map__zput(he->branch_info->to.ms.map);
1313 		free_srcline(he->branch_info->srcline_from);
1314 		free_srcline(he->branch_info->srcline_to);
1315 		zfree(&he->branch_info);
1316 	}
1317 
1318 	if (he->mem_info) {
1319 		map__zput(he->mem_info->iaddr.ms.map);
1320 		map__zput(he->mem_info->daddr.ms.map);
1321 		mem_info__zput(he->mem_info);
1322 	}
1323 
1324 	if (he->block_info)
1325 		block_info__zput(he->block_info);
1326 
1327 	zfree(&he->res_samples);
1328 	zfree(&he->stat_acc);
1329 	free_srcline(he->srcline);
1330 	if (he->srcfile && he->srcfile[0])
1331 		zfree(&he->srcfile);
1332 	free_callchain(he->callchain);
1333 	zfree(&he->trace_output);
1334 	zfree(&he->raw_data);
1335 	ops->free(he);
1336 }
1337 
1338 /*
1339  * If this is not the last column, then we need to pad it according to the
1340  * pre-calculated max length for this column, otherwise don't bother adding
1341  * spaces because that would break viewing this with, for instance, 'less',
1342  * that would show tons of trailing spaces when a long C++ demangled method
1343  * names is sampled.
1344 */
1345 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1346 				   struct perf_hpp_fmt *fmt, int printed)
1347 {
1348 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1349 		const int width = fmt->width(fmt, hpp, he->hists);
1350 		if (printed < width) {
1351 			advance_hpp(hpp, printed);
1352 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1353 		}
1354 	}
1355 
1356 	return printed;
1357 }
1358 
1359 /*
1360  * collapse the histogram
1361  */
1362 
1363 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1364 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1365 				       enum hist_filter type);
1366 
1367 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1368 
1369 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1370 {
1371 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1372 }
1373 
1374 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1375 						enum hist_filter type,
1376 						fmt_chk_fn check)
1377 {
1378 	struct perf_hpp_fmt *fmt;
1379 	bool type_match = false;
1380 	struct hist_entry *parent = he->parent_he;
1381 
1382 	switch (type) {
1383 	case HIST_FILTER__THREAD:
1384 		if (symbol_conf.comm_list == NULL &&
1385 		    symbol_conf.pid_list == NULL &&
1386 		    symbol_conf.tid_list == NULL)
1387 			return;
1388 		break;
1389 	case HIST_FILTER__DSO:
1390 		if (symbol_conf.dso_list == NULL)
1391 			return;
1392 		break;
1393 	case HIST_FILTER__SYMBOL:
1394 		if (symbol_conf.sym_list == NULL)
1395 			return;
1396 		break;
1397 	case HIST_FILTER__PARENT:
1398 	case HIST_FILTER__GUEST:
1399 	case HIST_FILTER__HOST:
1400 	case HIST_FILTER__SOCKET:
1401 	case HIST_FILTER__C2C:
1402 	default:
1403 		return;
1404 	}
1405 
1406 	/* if it's filtered by own fmt, it has to have filter bits */
1407 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1408 		if (check(fmt)) {
1409 			type_match = true;
1410 			break;
1411 		}
1412 	}
1413 
1414 	if (type_match) {
1415 		/*
1416 		 * If the filter is for current level entry, propagate
1417 		 * filter marker to parents.  The marker bit was
1418 		 * already set by default so it only needs to clear
1419 		 * non-filtered entries.
1420 		 */
1421 		if (!(he->filtered & (1 << type))) {
1422 			while (parent) {
1423 				parent->filtered &= ~(1 << type);
1424 				parent = parent->parent_he;
1425 			}
1426 		}
1427 	} else {
1428 		/*
1429 		 * If current entry doesn't have matching formats, set
1430 		 * filter marker for upper level entries.  it will be
1431 		 * cleared if its lower level entries is not filtered.
1432 		 *
1433 		 * For lower-level entries, it inherits parent's
1434 		 * filter bit so that lower level entries of a
1435 		 * non-filtered entry won't set the filter marker.
1436 		 */
1437 		if (parent == NULL)
1438 			he->filtered |= (1 << type);
1439 		else
1440 			he->filtered |= (parent->filtered & (1 << type));
1441 	}
1442 }
1443 
1444 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1445 {
1446 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1447 					    check_thread_entry);
1448 
1449 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1450 					    perf_hpp__is_dso_entry);
1451 
1452 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1453 					    perf_hpp__is_sym_entry);
1454 
1455 	hists__apply_filters(he->hists, he);
1456 }
1457 
1458 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1459 						 struct rb_root_cached *root,
1460 						 struct hist_entry *he,
1461 						 struct hist_entry *parent_he,
1462 						 struct perf_hpp_list *hpp_list)
1463 {
1464 	struct rb_node **p = &root->rb_root.rb_node;
1465 	struct rb_node *parent = NULL;
1466 	struct hist_entry *iter, *new;
1467 	struct perf_hpp_fmt *fmt;
1468 	int64_t cmp;
1469 	bool leftmost = true;
1470 
1471 	while (*p != NULL) {
1472 		parent = *p;
1473 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1474 
1475 		cmp = 0;
1476 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1477 			cmp = fmt->collapse(fmt, iter, he);
1478 			if (cmp)
1479 				break;
1480 		}
1481 
1482 		if (!cmp) {
1483 			he_stat__add_stat(&iter->stat, &he->stat);
1484 			return iter;
1485 		}
1486 
1487 		if (cmp < 0)
1488 			p = &parent->rb_left;
1489 		else {
1490 			p = &parent->rb_right;
1491 			leftmost = false;
1492 		}
1493 	}
1494 
1495 	new = hist_entry__new(he, true);
1496 	if (new == NULL)
1497 		return NULL;
1498 
1499 	hists->nr_entries++;
1500 
1501 	/* save related format list for output */
1502 	new->hpp_list = hpp_list;
1503 	new->parent_he = parent_he;
1504 
1505 	hist_entry__apply_hierarchy_filters(new);
1506 
1507 	/* some fields are now passed to 'new' */
1508 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1509 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1510 			he->trace_output = NULL;
1511 		else
1512 			new->trace_output = NULL;
1513 
1514 		if (perf_hpp__is_srcline_entry(fmt))
1515 			he->srcline = NULL;
1516 		else
1517 			new->srcline = NULL;
1518 
1519 		if (perf_hpp__is_srcfile_entry(fmt))
1520 			he->srcfile = NULL;
1521 		else
1522 			new->srcfile = NULL;
1523 	}
1524 
1525 	rb_link_node(&new->rb_node_in, parent, p);
1526 	rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1527 	return new;
1528 }
1529 
1530 static int hists__hierarchy_insert_entry(struct hists *hists,
1531 					 struct rb_root_cached *root,
1532 					 struct hist_entry *he)
1533 {
1534 	struct perf_hpp_list_node *node;
1535 	struct hist_entry *new_he = NULL;
1536 	struct hist_entry *parent = NULL;
1537 	int depth = 0;
1538 	int ret = 0;
1539 
1540 	list_for_each_entry(node, &hists->hpp_formats, list) {
1541 		/* skip period (overhead) and elided columns */
1542 		if (node->level == 0 || node->skip)
1543 			continue;
1544 
1545 		/* insert copy of 'he' for each fmt into the hierarchy */
1546 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1547 		if (new_he == NULL) {
1548 			ret = -1;
1549 			break;
1550 		}
1551 
1552 		root = &new_he->hroot_in;
1553 		new_he->depth = depth++;
1554 		parent = new_he;
1555 	}
1556 
1557 	if (new_he) {
1558 		new_he->leaf = true;
1559 
1560 		if (hist_entry__has_callchains(new_he) &&
1561 		    symbol_conf.use_callchain) {
1562 			callchain_cursor_reset(&callchain_cursor);
1563 			if (callchain_merge(&callchain_cursor,
1564 					    new_he->callchain,
1565 					    he->callchain) < 0)
1566 				ret = -1;
1567 		}
1568 	}
1569 
1570 	/* 'he' is no longer used */
1571 	hist_entry__delete(he);
1572 
1573 	/* return 0 (or -1) since it already applied filters */
1574 	return ret;
1575 }
1576 
1577 static int hists__collapse_insert_entry(struct hists *hists,
1578 					struct rb_root_cached *root,
1579 					struct hist_entry *he)
1580 {
1581 	struct rb_node **p = &root->rb_root.rb_node;
1582 	struct rb_node *parent = NULL;
1583 	struct hist_entry *iter;
1584 	int64_t cmp;
1585 	bool leftmost = true;
1586 
1587 	if (symbol_conf.report_hierarchy)
1588 		return hists__hierarchy_insert_entry(hists, root, he);
1589 
1590 	while (*p != NULL) {
1591 		parent = *p;
1592 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1593 
1594 		cmp = hist_entry__collapse(iter, he);
1595 
1596 		if (!cmp) {
1597 			int ret = 0;
1598 
1599 			he_stat__add_stat(&iter->stat, &he->stat);
1600 			if (symbol_conf.cumulate_callchain)
1601 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1602 
1603 			if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1604 				callchain_cursor_reset(&callchain_cursor);
1605 				if (callchain_merge(&callchain_cursor,
1606 						    iter->callchain,
1607 						    he->callchain) < 0)
1608 					ret = -1;
1609 			}
1610 			hist_entry__delete(he);
1611 			return ret;
1612 		}
1613 
1614 		if (cmp < 0)
1615 			p = &(*p)->rb_left;
1616 		else {
1617 			p = &(*p)->rb_right;
1618 			leftmost = false;
1619 		}
1620 	}
1621 	hists->nr_entries++;
1622 
1623 	rb_link_node(&he->rb_node_in, parent, p);
1624 	rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1625 	return 1;
1626 }
1627 
1628 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1629 {
1630 	struct rb_root_cached *root;
1631 
1632 	pthread_mutex_lock(&hists->lock);
1633 
1634 	root = hists->entries_in;
1635 	if (++hists->entries_in > &hists->entries_in_array[1])
1636 		hists->entries_in = &hists->entries_in_array[0];
1637 
1638 	pthread_mutex_unlock(&hists->lock);
1639 
1640 	return root;
1641 }
1642 
1643 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1644 {
1645 	hists__filter_entry_by_dso(hists, he);
1646 	hists__filter_entry_by_thread(hists, he);
1647 	hists__filter_entry_by_symbol(hists, he);
1648 	hists__filter_entry_by_socket(hists, he);
1649 }
1650 
1651 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1652 {
1653 	struct rb_root_cached *root;
1654 	struct rb_node *next;
1655 	struct hist_entry *n;
1656 	int ret;
1657 
1658 	if (!hists__has(hists, need_collapse))
1659 		return 0;
1660 
1661 	hists->nr_entries = 0;
1662 
1663 	root = hists__get_rotate_entries_in(hists);
1664 
1665 	next = rb_first_cached(root);
1666 
1667 	while (next) {
1668 		if (session_done())
1669 			break;
1670 		n = rb_entry(next, struct hist_entry, rb_node_in);
1671 		next = rb_next(&n->rb_node_in);
1672 
1673 		rb_erase_cached(&n->rb_node_in, root);
1674 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1675 		if (ret < 0)
1676 			return -1;
1677 
1678 		if (ret) {
1679 			/*
1680 			 * If it wasn't combined with one of the entries already
1681 			 * collapsed, we need to apply the filters that may have
1682 			 * been set by, say, the hist_browser.
1683 			 */
1684 			hists__apply_filters(hists, n);
1685 		}
1686 		if (prog)
1687 			ui_progress__update(prog, 1);
1688 	}
1689 	return 0;
1690 }
1691 
1692 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1693 {
1694 	struct hists *hists = a->hists;
1695 	struct perf_hpp_fmt *fmt;
1696 	int64_t cmp = 0;
1697 
1698 	hists__for_each_sort_list(hists, fmt) {
1699 		if (perf_hpp__should_skip(fmt, a->hists))
1700 			continue;
1701 
1702 		cmp = fmt->sort(fmt, a, b);
1703 		if (cmp)
1704 			break;
1705 	}
1706 
1707 	return cmp;
1708 }
1709 
1710 static void hists__reset_filter_stats(struct hists *hists)
1711 {
1712 	hists->nr_non_filtered_entries = 0;
1713 	hists->stats.total_non_filtered_period = 0;
1714 }
1715 
1716 void hists__reset_stats(struct hists *hists)
1717 {
1718 	hists->nr_entries = 0;
1719 	hists->stats.total_period = 0;
1720 
1721 	hists__reset_filter_stats(hists);
1722 }
1723 
1724 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1725 {
1726 	hists->nr_non_filtered_entries++;
1727 	hists->stats.total_non_filtered_period += h->stat.period;
1728 }
1729 
1730 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1731 {
1732 	if (!h->filtered)
1733 		hists__inc_filter_stats(hists, h);
1734 
1735 	hists->nr_entries++;
1736 	hists->stats.total_period += h->stat.period;
1737 }
1738 
1739 static void hierarchy_recalc_total_periods(struct hists *hists)
1740 {
1741 	struct rb_node *node;
1742 	struct hist_entry *he;
1743 
1744 	node = rb_first_cached(&hists->entries);
1745 
1746 	hists->stats.total_period = 0;
1747 	hists->stats.total_non_filtered_period = 0;
1748 
1749 	/*
1750 	 * recalculate total period using top-level entries only
1751 	 * since lower level entries only see non-filtered entries
1752 	 * but upper level entries have sum of both entries.
1753 	 */
1754 	while (node) {
1755 		he = rb_entry(node, struct hist_entry, rb_node);
1756 		node = rb_next(node);
1757 
1758 		hists->stats.total_period += he->stat.period;
1759 		if (!he->filtered)
1760 			hists->stats.total_non_filtered_period += he->stat.period;
1761 	}
1762 }
1763 
1764 static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1765 					  struct hist_entry *he)
1766 {
1767 	struct rb_node **p = &root->rb_root.rb_node;
1768 	struct rb_node *parent = NULL;
1769 	struct hist_entry *iter;
1770 	struct perf_hpp_fmt *fmt;
1771 	bool leftmost = true;
1772 
1773 	while (*p != NULL) {
1774 		parent = *p;
1775 		iter = rb_entry(parent, struct hist_entry, rb_node);
1776 
1777 		if (hist_entry__sort(he, iter) > 0)
1778 			p = &parent->rb_left;
1779 		else {
1780 			p = &parent->rb_right;
1781 			leftmost = false;
1782 		}
1783 	}
1784 
1785 	rb_link_node(&he->rb_node, parent, p);
1786 	rb_insert_color_cached(&he->rb_node, root, leftmost);
1787 
1788 	/* update column width of dynamic entry */
1789 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1790 		if (perf_hpp__is_dynamic_entry(fmt))
1791 			fmt->sort(fmt, he, NULL);
1792 	}
1793 }
1794 
1795 static void hists__hierarchy_output_resort(struct hists *hists,
1796 					   struct ui_progress *prog,
1797 					   struct rb_root_cached *root_in,
1798 					   struct rb_root_cached *root_out,
1799 					   u64 min_callchain_hits,
1800 					   bool use_callchain)
1801 {
1802 	struct rb_node *node;
1803 	struct hist_entry *he;
1804 
1805 	*root_out = RB_ROOT_CACHED;
1806 	node = rb_first_cached(root_in);
1807 
1808 	while (node) {
1809 		he = rb_entry(node, struct hist_entry, rb_node_in);
1810 		node = rb_next(node);
1811 
1812 		hierarchy_insert_output_entry(root_out, he);
1813 
1814 		if (prog)
1815 			ui_progress__update(prog, 1);
1816 
1817 		hists->nr_entries++;
1818 		if (!he->filtered) {
1819 			hists->nr_non_filtered_entries++;
1820 			hists__calc_col_len(hists, he);
1821 		}
1822 
1823 		if (!he->leaf) {
1824 			hists__hierarchy_output_resort(hists, prog,
1825 						       &he->hroot_in,
1826 						       &he->hroot_out,
1827 						       min_callchain_hits,
1828 						       use_callchain);
1829 			continue;
1830 		}
1831 
1832 		if (!use_callchain)
1833 			continue;
1834 
1835 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1836 			u64 total = he->stat.period;
1837 
1838 			if (symbol_conf.cumulate_callchain)
1839 				total = he->stat_acc->period;
1840 
1841 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1842 		}
1843 
1844 		callchain_param.sort(&he->sorted_chain, he->callchain,
1845 				     min_callchain_hits, &callchain_param);
1846 	}
1847 }
1848 
1849 static void __hists__insert_output_entry(struct rb_root_cached *entries,
1850 					 struct hist_entry *he,
1851 					 u64 min_callchain_hits,
1852 					 bool use_callchain)
1853 {
1854 	struct rb_node **p = &entries->rb_root.rb_node;
1855 	struct rb_node *parent = NULL;
1856 	struct hist_entry *iter;
1857 	struct perf_hpp_fmt *fmt;
1858 	bool leftmost = true;
1859 
1860 	if (use_callchain) {
1861 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1862 			u64 total = he->stat.period;
1863 
1864 			if (symbol_conf.cumulate_callchain)
1865 				total = he->stat_acc->period;
1866 
1867 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1868 		}
1869 		callchain_param.sort(&he->sorted_chain, he->callchain,
1870 				      min_callchain_hits, &callchain_param);
1871 	}
1872 
1873 	while (*p != NULL) {
1874 		parent = *p;
1875 		iter = rb_entry(parent, struct hist_entry, rb_node);
1876 
1877 		if (hist_entry__sort(he, iter) > 0)
1878 			p = &(*p)->rb_left;
1879 		else {
1880 			p = &(*p)->rb_right;
1881 			leftmost = false;
1882 		}
1883 	}
1884 
1885 	rb_link_node(&he->rb_node, parent, p);
1886 	rb_insert_color_cached(&he->rb_node, entries, leftmost);
1887 
1888 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1889 		if (perf_hpp__is_dynamic_entry(fmt) &&
1890 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1891 			fmt->sort(fmt, he, NULL);  /* update column width */
1892 	}
1893 }
1894 
1895 static void output_resort(struct hists *hists, struct ui_progress *prog,
1896 			  bool use_callchain, hists__resort_cb_t cb,
1897 			  void *cb_arg)
1898 {
1899 	struct rb_root_cached *root;
1900 	struct rb_node *next;
1901 	struct hist_entry *n;
1902 	u64 callchain_total;
1903 	u64 min_callchain_hits;
1904 
1905 	callchain_total = hists->callchain_period;
1906 	if (symbol_conf.filter_relative)
1907 		callchain_total = hists->callchain_non_filtered_period;
1908 
1909 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1910 
1911 	hists__reset_stats(hists);
1912 	hists__reset_col_len(hists);
1913 
1914 	if (symbol_conf.report_hierarchy) {
1915 		hists__hierarchy_output_resort(hists, prog,
1916 					       &hists->entries_collapsed,
1917 					       &hists->entries,
1918 					       min_callchain_hits,
1919 					       use_callchain);
1920 		hierarchy_recalc_total_periods(hists);
1921 		return;
1922 	}
1923 
1924 	if (hists__has(hists, need_collapse))
1925 		root = &hists->entries_collapsed;
1926 	else
1927 		root = hists->entries_in;
1928 
1929 	next = rb_first_cached(root);
1930 	hists->entries = RB_ROOT_CACHED;
1931 
1932 	while (next) {
1933 		n = rb_entry(next, struct hist_entry, rb_node_in);
1934 		next = rb_next(&n->rb_node_in);
1935 
1936 		if (cb && cb(n, cb_arg))
1937 			continue;
1938 
1939 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1940 		hists__inc_stats(hists, n);
1941 
1942 		if (!n->filtered)
1943 			hists__calc_col_len(hists, n);
1944 
1945 		if (prog)
1946 			ui_progress__update(prog, 1);
1947 	}
1948 }
1949 
1950 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
1951 			     hists__resort_cb_t cb, void *cb_arg)
1952 {
1953 	bool use_callchain;
1954 
1955 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1956 		use_callchain = evsel__has_callchain(evsel);
1957 	else
1958 		use_callchain = symbol_conf.use_callchain;
1959 
1960 	use_callchain |= symbol_conf.show_branchflag_count;
1961 
1962 	output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
1963 }
1964 
1965 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
1966 {
1967 	return evsel__output_resort_cb(evsel, prog, NULL, NULL);
1968 }
1969 
1970 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1971 {
1972 	output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
1973 }
1974 
1975 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1976 			     hists__resort_cb_t cb)
1977 {
1978 	output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
1979 }
1980 
1981 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1982 {
1983 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1984 		return false;
1985 
1986 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1987 		return true;
1988 
1989 	return false;
1990 }
1991 
1992 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1993 {
1994 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1995 
1996 	while (can_goto_child(he, HMD_NORMAL)) {
1997 		node = rb_last(&he->hroot_out.rb_root);
1998 		he = rb_entry(node, struct hist_entry, rb_node);
1999 	}
2000 	return node;
2001 }
2002 
2003 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
2004 {
2005 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2006 
2007 	if (can_goto_child(he, hmd))
2008 		node = rb_first_cached(&he->hroot_out);
2009 	else
2010 		node = rb_next(node);
2011 
2012 	while (node == NULL) {
2013 		he = he->parent_he;
2014 		if (he == NULL)
2015 			break;
2016 
2017 		node = rb_next(&he->rb_node);
2018 	}
2019 	return node;
2020 }
2021 
2022 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
2023 {
2024 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2025 
2026 	node = rb_prev(node);
2027 	if (node)
2028 		return rb_hierarchy_last(node);
2029 
2030 	he = he->parent_he;
2031 	if (he == NULL)
2032 		return NULL;
2033 
2034 	return &he->rb_node;
2035 }
2036 
2037 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
2038 {
2039 	struct rb_node *node;
2040 	struct hist_entry *child;
2041 	float percent;
2042 
2043 	if (he->leaf)
2044 		return false;
2045 
2046 	node = rb_first_cached(&he->hroot_out);
2047 	child = rb_entry(node, struct hist_entry, rb_node);
2048 
2049 	while (node && child->filtered) {
2050 		node = rb_next(node);
2051 		child = rb_entry(node, struct hist_entry, rb_node);
2052 	}
2053 
2054 	if (node)
2055 		percent = hist_entry__get_percent_limit(child);
2056 	else
2057 		percent = 0;
2058 
2059 	return node && percent >= limit;
2060 }
2061 
2062 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
2063 				       enum hist_filter filter)
2064 {
2065 	h->filtered &= ~(1 << filter);
2066 
2067 	if (symbol_conf.report_hierarchy) {
2068 		struct hist_entry *parent = h->parent_he;
2069 
2070 		while (parent) {
2071 			he_stat__add_stat(&parent->stat, &h->stat);
2072 
2073 			parent->filtered &= ~(1 << filter);
2074 
2075 			if (parent->filtered)
2076 				goto next;
2077 
2078 			/* force fold unfiltered entry for simplicity */
2079 			parent->unfolded = false;
2080 			parent->has_no_entry = false;
2081 			parent->row_offset = 0;
2082 			parent->nr_rows = 0;
2083 next:
2084 			parent = parent->parent_he;
2085 		}
2086 	}
2087 
2088 	if (h->filtered)
2089 		return;
2090 
2091 	/* force fold unfiltered entry for simplicity */
2092 	h->unfolded = false;
2093 	h->has_no_entry = false;
2094 	h->row_offset = 0;
2095 	h->nr_rows = 0;
2096 
2097 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2098 
2099 	hists__inc_filter_stats(hists, h);
2100 	hists__calc_col_len(hists, h);
2101 }
2102 
2103 
2104 static bool hists__filter_entry_by_dso(struct hists *hists,
2105 				       struct hist_entry *he)
2106 {
2107 	if (hists->dso_filter != NULL &&
2108 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
2109 		he->filtered |= (1 << HIST_FILTER__DSO);
2110 		return true;
2111 	}
2112 
2113 	return false;
2114 }
2115 
2116 static bool hists__filter_entry_by_thread(struct hists *hists,
2117 					  struct hist_entry *he)
2118 {
2119 	if (hists->thread_filter != NULL &&
2120 	    he->thread != hists->thread_filter) {
2121 		he->filtered |= (1 << HIST_FILTER__THREAD);
2122 		return true;
2123 	}
2124 
2125 	return false;
2126 }
2127 
2128 static bool hists__filter_entry_by_symbol(struct hists *hists,
2129 					  struct hist_entry *he)
2130 {
2131 	if (hists->symbol_filter_str != NULL &&
2132 	    (!he->ms.sym || strstr(he->ms.sym->name,
2133 				   hists->symbol_filter_str) == NULL)) {
2134 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
2135 		return true;
2136 	}
2137 
2138 	return false;
2139 }
2140 
2141 static bool hists__filter_entry_by_socket(struct hists *hists,
2142 					  struct hist_entry *he)
2143 {
2144 	if ((hists->socket_filter > -1) &&
2145 	    (he->socket != hists->socket_filter)) {
2146 		he->filtered |= (1 << HIST_FILTER__SOCKET);
2147 		return true;
2148 	}
2149 
2150 	return false;
2151 }
2152 
2153 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2154 
2155 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2156 {
2157 	struct rb_node *nd;
2158 
2159 	hists->stats.nr_non_filtered_samples = 0;
2160 
2161 	hists__reset_filter_stats(hists);
2162 	hists__reset_col_len(hists);
2163 
2164 	for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2165 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2166 
2167 		if (filter(hists, h))
2168 			continue;
2169 
2170 		hists__remove_entry_filter(hists, h, type);
2171 	}
2172 }
2173 
2174 static void resort_filtered_entry(struct rb_root_cached *root,
2175 				  struct hist_entry *he)
2176 {
2177 	struct rb_node **p = &root->rb_root.rb_node;
2178 	struct rb_node *parent = NULL;
2179 	struct hist_entry *iter;
2180 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2181 	struct rb_node *nd;
2182 	bool leftmost = true;
2183 
2184 	while (*p != NULL) {
2185 		parent = *p;
2186 		iter = rb_entry(parent, struct hist_entry, rb_node);
2187 
2188 		if (hist_entry__sort(he, iter) > 0)
2189 			p = &(*p)->rb_left;
2190 		else {
2191 			p = &(*p)->rb_right;
2192 			leftmost = false;
2193 		}
2194 	}
2195 
2196 	rb_link_node(&he->rb_node, parent, p);
2197 	rb_insert_color_cached(&he->rb_node, root, leftmost);
2198 
2199 	if (he->leaf || he->filtered)
2200 		return;
2201 
2202 	nd = rb_first_cached(&he->hroot_out);
2203 	while (nd) {
2204 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2205 
2206 		nd = rb_next(nd);
2207 		rb_erase_cached(&h->rb_node, &he->hroot_out);
2208 
2209 		resort_filtered_entry(&new_root, h);
2210 	}
2211 
2212 	he->hroot_out = new_root;
2213 }
2214 
2215 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2216 {
2217 	struct rb_node *nd;
2218 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2219 
2220 	hists->stats.nr_non_filtered_samples = 0;
2221 
2222 	hists__reset_filter_stats(hists);
2223 	hists__reset_col_len(hists);
2224 
2225 	nd = rb_first_cached(&hists->entries);
2226 	while (nd) {
2227 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2228 		int ret;
2229 
2230 		ret = hist_entry__filter(h, type, arg);
2231 
2232 		/*
2233 		 * case 1. non-matching type
2234 		 * zero out the period, set filter marker and move to child
2235 		 */
2236 		if (ret < 0) {
2237 			memset(&h->stat, 0, sizeof(h->stat));
2238 			h->filtered |= (1 << type);
2239 
2240 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2241 		}
2242 		/*
2243 		 * case 2. matched type (filter out)
2244 		 * set filter marker and move to next
2245 		 */
2246 		else if (ret == 1) {
2247 			h->filtered |= (1 << type);
2248 
2249 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2250 		}
2251 		/*
2252 		 * case 3. ok (not filtered)
2253 		 * add period to hists and parents, erase the filter marker
2254 		 * and move to next sibling
2255 		 */
2256 		else {
2257 			hists__remove_entry_filter(hists, h, type);
2258 
2259 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2260 		}
2261 	}
2262 
2263 	hierarchy_recalc_total_periods(hists);
2264 
2265 	/*
2266 	 * resort output after applying a new filter since filter in a lower
2267 	 * hierarchy can change periods in a upper hierarchy.
2268 	 */
2269 	nd = rb_first_cached(&hists->entries);
2270 	while (nd) {
2271 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2272 
2273 		nd = rb_next(nd);
2274 		rb_erase_cached(&h->rb_node, &hists->entries);
2275 
2276 		resort_filtered_entry(&new_root, h);
2277 	}
2278 
2279 	hists->entries = new_root;
2280 }
2281 
2282 void hists__filter_by_thread(struct hists *hists)
2283 {
2284 	if (symbol_conf.report_hierarchy)
2285 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2286 					hists->thread_filter);
2287 	else
2288 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2289 				      hists__filter_entry_by_thread);
2290 }
2291 
2292 void hists__filter_by_dso(struct hists *hists)
2293 {
2294 	if (symbol_conf.report_hierarchy)
2295 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2296 					hists->dso_filter);
2297 	else
2298 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2299 				      hists__filter_entry_by_dso);
2300 }
2301 
2302 void hists__filter_by_symbol(struct hists *hists)
2303 {
2304 	if (symbol_conf.report_hierarchy)
2305 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2306 					hists->symbol_filter_str);
2307 	else
2308 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2309 				      hists__filter_entry_by_symbol);
2310 }
2311 
2312 void hists__filter_by_socket(struct hists *hists)
2313 {
2314 	if (symbol_conf.report_hierarchy)
2315 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2316 					&hists->socket_filter);
2317 	else
2318 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2319 				      hists__filter_entry_by_socket);
2320 }
2321 
2322 void events_stats__inc(struct events_stats *stats, u32 type)
2323 {
2324 	++stats->nr_events[0];
2325 	++stats->nr_events[type];
2326 }
2327 
2328 static void hists_stats__inc(struct hists_stats *stats)
2329 {
2330 	++stats->nr_samples;
2331 }
2332 
2333 void hists__inc_nr_events(struct hists *hists)
2334 {
2335 	hists_stats__inc(&hists->stats);
2336 }
2337 
2338 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2339 {
2340 	hists_stats__inc(&hists->stats);
2341 	if (!filtered)
2342 		hists->stats.nr_non_filtered_samples++;
2343 }
2344 
2345 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2346 						 struct hist_entry *pair)
2347 {
2348 	struct rb_root_cached *root;
2349 	struct rb_node **p;
2350 	struct rb_node *parent = NULL;
2351 	struct hist_entry *he;
2352 	int64_t cmp;
2353 	bool leftmost = true;
2354 
2355 	if (hists__has(hists, need_collapse))
2356 		root = &hists->entries_collapsed;
2357 	else
2358 		root = hists->entries_in;
2359 
2360 	p = &root->rb_root.rb_node;
2361 
2362 	while (*p != NULL) {
2363 		parent = *p;
2364 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2365 
2366 		cmp = hist_entry__collapse(he, pair);
2367 
2368 		if (!cmp)
2369 			goto out;
2370 
2371 		if (cmp < 0)
2372 			p = &(*p)->rb_left;
2373 		else {
2374 			p = &(*p)->rb_right;
2375 			leftmost = false;
2376 		}
2377 	}
2378 
2379 	he = hist_entry__new(pair, true);
2380 	if (he) {
2381 		memset(&he->stat, 0, sizeof(he->stat));
2382 		he->hists = hists;
2383 		if (symbol_conf.cumulate_callchain)
2384 			memset(he->stat_acc, 0, sizeof(he->stat));
2385 		rb_link_node(&he->rb_node_in, parent, p);
2386 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2387 		hists__inc_stats(hists, he);
2388 		he->dummy = true;
2389 	}
2390 out:
2391 	return he;
2392 }
2393 
2394 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2395 						    struct rb_root_cached *root,
2396 						    struct hist_entry *pair)
2397 {
2398 	struct rb_node **p;
2399 	struct rb_node *parent = NULL;
2400 	struct hist_entry *he;
2401 	struct perf_hpp_fmt *fmt;
2402 	bool leftmost = true;
2403 
2404 	p = &root->rb_root.rb_node;
2405 	while (*p != NULL) {
2406 		int64_t cmp = 0;
2407 
2408 		parent = *p;
2409 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2410 
2411 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2412 			cmp = fmt->collapse(fmt, he, pair);
2413 			if (cmp)
2414 				break;
2415 		}
2416 		if (!cmp)
2417 			goto out;
2418 
2419 		if (cmp < 0)
2420 			p = &parent->rb_left;
2421 		else {
2422 			p = &parent->rb_right;
2423 			leftmost = false;
2424 		}
2425 	}
2426 
2427 	he = hist_entry__new(pair, true);
2428 	if (he) {
2429 		rb_link_node(&he->rb_node_in, parent, p);
2430 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2431 
2432 		he->dummy = true;
2433 		he->hists = hists;
2434 		memset(&he->stat, 0, sizeof(he->stat));
2435 		hists__inc_stats(hists, he);
2436 	}
2437 out:
2438 	return he;
2439 }
2440 
2441 static struct hist_entry *hists__find_entry(struct hists *hists,
2442 					    struct hist_entry *he)
2443 {
2444 	struct rb_node *n;
2445 
2446 	if (hists__has(hists, need_collapse))
2447 		n = hists->entries_collapsed.rb_root.rb_node;
2448 	else
2449 		n = hists->entries_in->rb_root.rb_node;
2450 
2451 	while (n) {
2452 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2453 		int64_t cmp = hist_entry__collapse(iter, he);
2454 
2455 		if (cmp < 0)
2456 			n = n->rb_left;
2457 		else if (cmp > 0)
2458 			n = n->rb_right;
2459 		else
2460 			return iter;
2461 	}
2462 
2463 	return NULL;
2464 }
2465 
2466 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2467 						      struct hist_entry *he)
2468 {
2469 	struct rb_node *n = root->rb_root.rb_node;
2470 
2471 	while (n) {
2472 		struct hist_entry *iter;
2473 		struct perf_hpp_fmt *fmt;
2474 		int64_t cmp = 0;
2475 
2476 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2477 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2478 			cmp = fmt->collapse(fmt, iter, he);
2479 			if (cmp)
2480 				break;
2481 		}
2482 
2483 		if (cmp < 0)
2484 			n = n->rb_left;
2485 		else if (cmp > 0)
2486 			n = n->rb_right;
2487 		else
2488 			return iter;
2489 	}
2490 
2491 	return NULL;
2492 }
2493 
2494 static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2495 				   struct rb_root_cached *other_root)
2496 {
2497 	struct rb_node *nd;
2498 	struct hist_entry *pos, *pair;
2499 
2500 	for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2501 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2502 		pair = hists__find_hierarchy_entry(other_root, pos);
2503 
2504 		if (pair) {
2505 			hist_entry__add_pair(pair, pos);
2506 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2507 		}
2508 	}
2509 }
2510 
2511 /*
2512  * Look for pairs to link to the leader buckets (hist_entries):
2513  */
2514 void hists__match(struct hists *leader, struct hists *other)
2515 {
2516 	struct rb_root_cached *root;
2517 	struct rb_node *nd;
2518 	struct hist_entry *pos, *pair;
2519 
2520 	if (symbol_conf.report_hierarchy) {
2521 		/* hierarchy report always collapses entries */
2522 		return hists__match_hierarchy(&leader->entries_collapsed,
2523 					      &other->entries_collapsed);
2524 	}
2525 
2526 	if (hists__has(leader, need_collapse))
2527 		root = &leader->entries_collapsed;
2528 	else
2529 		root = leader->entries_in;
2530 
2531 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2532 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2533 		pair = hists__find_entry(other, pos);
2534 
2535 		if (pair)
2536 			hist_entry__add_pair(pair, pos);
2537 	}
2538 }
2539 
2540 static int hists__link_hierarchy(struct hists *leader_hists,
2541 				 struct hist_entry *parent,
2542 				 struct rb_root_cached *leader_root,
2543 				 struct rb_root_cached *other_root)
2544 {
2545 	struct rb_node *nd;
2546 	struct hist_entry *pos, *leader;
2547 
2548 	for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2549 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2550 
2551 		if (hist_entry__has_pairs(pos)) {
2552 			bool found = false;
2553 
2554 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2555 				if (leader->hists == leader_hists) {
2556 					found = true;
2557 					break;
2558 				}
2559 			}
2560 			if (!found)
2561 				return -1;
2562 		} else {
2563 			leader = add_dummy_hierarchy_entry(leader_hists,
2564 							   leader_root, pos);
2565 			if (leader == NULL)
2566 				return -1;
2567 
2568 			/* do not point parent in the pos */
2569 			leader->parent_he = parent;
2570 
2571 			hist_entry__add_pair(pos, leader);
2572 		}
2573 
2574 		if (!pos->leaf) {
2575 			if (hists__link_hierarchy(leader_hists, leader,
2576 						  &leader->hroot_in,
2577 						  &pos->hroot_in) < 0)
2578 				return -1;
2579 		}
2580 	}
2581 	return 0;
2582 }
2583 
2584 /*
2585  * Look for entries in the other hists that are not present in the leader, if
2586  * we find them, just add a dummy entry on the leader hists, with period=0,
2587  * nr_events=0, to serve as the list header.
2588  */
2589 int hists__link(struct hists *leader, struct hists *other)
2590 {
2591 	struct rb_root_cached *root;
2592 	struct rb_node *nd;
2593 	struct hist_entry *pos, *pair;
2594 
2595 	if (symbol_conf.report_hierarchy) {
2596 		/* hierarchy report always collapses entries */
2597 		return hists__link_hierarchy(leader, NULL,
2598 					     &leader->entries_collapsed,
2599 					     &other->entries_collapsed);
2600 	}
2601 
2602 	if (hists__has(other, need_collapse))
2603 		root = &other->entries_collapsed;
2604 	else
2605 		root = other->entries_in;
2606 
2607 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2608 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2609 
2610 		if (!hist_entry__has_pairs(pos)) {
2611 			pair = hists__add_dummy_entry(leader, pos);
2612 			if (pair == NULL)
2613 				return -1;
2614 			hist_entry__add_pair(pos, pair);
2615 		}
2616 	}
2617 
2618 	return 0;
2619 }
2620 
2621 int hists__unlink(struct hists *hists)
2622 {
2623 	struct rb_root_cached *root;
2624 	struct rb_node *nd;
2625 	struct hist_entry *pos;
2626 
2627 	if (hists__has(hists, need_collapse))
2628 		root = &hists->entries_collapsed;
2629 	else
2630 		root = hists->entries_in;
2631 
2632 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2633 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2634 		list_del_init(&pos->pairs.node);
2635 	}
2636 
2637 	return 0;
2638 }
2639 
2640 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2641 			  struct perf_sample *sample, bool nonany_branch_mode,
2642 			  u64 *total_cycles)
2643 {
2644 	struct branch_info *bi;
2645 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2646 
2647 	/* If we have branch cycles always annotate them. */
2648 	if (bs && bs->nr && entries[0].flags.cycles) {
2649 		int i;
2650 
2651 		bi = sample__resolve_bstack(sample, al);
2652 		if (bi) {
2653 			struct addr_map_symbol *prev = NULL;
2654 
2655 			/*
2656 			 * Ignore errors, still want to process the
2657 			 * other entries.
2658 			 *
2659 			 * For non standard branch modes always
2660 			 * force no IPC (prev == NULL)
2661 			 *
2662 			 * Note that perf stores branches reversed from
2663 			 * program order!
2664 			 */
2665 			for (i = bs->nr - 1; i >= 0; i--) {
2666 				addr_map_symbol__account_cycles(&bi[i].from,
2667 					nonany_branch_mode ? NULL : prev,
2668 					bi[i].flags.cycles);
2669 				prev = &bi[i].to;
2670 
2671 				if (total_cycles)
2672 					*total_cycles += bi[i].flags.cycles;
2673 			}
2674 			free(bi);
2675 		}
2676 	}
2677 }
2678 
2679 size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp,
2680 				 bool skip_empty)
2681 {
2682 	struct evsel *pos;
2683 	size_t ret = 0;
2684 
2685 	evlist__for_each_entry(evlist, pos) {
2686 		struct hists *hists = evsel__hists(pos);
2687 
2688 		if (skip_empty && !hists->stats.nr_samples)
2689 			continue;
2690 
2691 		ret += fprintf(fp, "%s stats:\n", evsel__name(pos));
2692 		ret += fprintf(fp, "%16s events: %10d\n",
2693 			       "SAMPLE", hists->stats.nr_samples);
2694 	}
2695 
2696 	return ret;
2697 }
2698 
2699 
2700 u64 hists__total_period(struct hists *hists)
2701 {
2702 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2703 		hists->stats.total_period;
2704 }
2705 
2706 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2707 {
2708 	char unit;
2709 	int printed;
2710 	const struct dso *dso = hists->dso_filter;
2711 	struct thread *thread = hists->thread_filter;
2712 	int socket_id = hists->socket_filter;
2713 	unsigned long nr_samples = hists->stats.nr_samples;
2714 	u64 nr_events = hists->stats.total_period;
2715 	struct evsel *evsel = hists_to_evsel(hists);
2716 	const char *ev_name = evsel__name(evsel);
2717 	char buf[512], sample_freq_str[64] = "";
2718 	size_t buflen = sizeof(buf);
2719 	char ref[30] = " show reference callgraph, ";
2720 	bool enable_ref = false;
2721 
2722 	if (symbol_conf.filter_relative) {
2723 		nr_samples = hists->stats.nr_non_filtered_samples;
2724 		nr_events = hists->stats.total_non_filtered_period;
2725 	}
2726 
2727 	if (evsel__is_group_event(evsel)) {
2728 		struct evsel *pos;
2729 
2730 		evsel__group_desc(evsel, buf, buflen);
2731 		ev_name = buf;
2732 
2733 		for_each_group_member(pos, evsel) {
2734 			struct hists *pos_hists = evsel__hists(pos);
2735 
2736 			if (symbol_conf.filter_relative) {
2737 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2738 				nr_events += pos_hists->stats.total_non_filtered_period;
2739 			} else {
2740 				nr_samples += pos_hists->stats.nr_samples;
2741 				nr_events += pos_hists->stats.total_period;
2742 			}
2743 		}
2744 	}
2745 
2746 	if (symbol_conf.show_ref_callgraph &&
2747 	    strstr(ev_name, "call-graph=no"))
2748 		enable_ref = true;
2749 
2750 	if (show_freq)
2751 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2752 
2753 	nr_samples = convert_unit(nr_samples, &unit);
2754 	printed = scnprintf(bf, size,
2755 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2756 			   nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2757 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2758 
2759 
2760 	if (hists->uid_filter_str)
2761 		printed += snprintf(bf + printed, size - printed,
2762 				    ", UID: %s", hists->uid_filter_str);
2763 	if (thread) {
2764 		if (hists__has(hists, thread)) {
2765 			printed += scnprintf(bf + printed, size - printed,
2766 				    ", Thread: %s(%d)",
2767 				     (thread->comm_set ? thread__comm_str(thread) : ""),
2768 				    thread->tid);
2769 		} else {
2770 			printed += scnprintf(bf + printed, size - printed,
2771 				    ", Thread: %s",
2772 				     (thread->comm_set ? thread__comm_str(thread) : ""));
2773 		}
2774 	}
2775 	if (dso)
2776 		printed += scnprintf(bf + printed, size - printed,
2777 				    ", DSO: %s", dso->short_name);
2778 	if (socket_id > -1)
2779 		printed += scnprintf(bf + printed, size - printed,
2780 				    ", Processor Socket: %d", socket_id);
2781 
2782 	return printed;
2783 }
2784 
2785 int parse_filter_percentage(const struct option *opt __maybe_unused,
2786 			    const char *arg, int unset __maybe_unused)
2787 {
2788 	if (!strcmp(arg, "relative"))
2789 		symbol_conf.filter_relative = true;
2790 	else if (!strcmp(arg, "absolute"))
2791 		symbol_conf.filter_relative = false;
2792 	else {
2793 		pr_debug("Invalid percentage: %s\n", arg);
2794 		return -1;
2795 	}
2796 
2797 	return 0;
2798 }
2799 
2800 int perf_hist_config(const char *var, const char *value)
2801 {
2802 	if (!strcmp(var, "hist.percentage"))
2803 		return parse_filter_percentage(NULL, value, 0);
2804 
2805 	return 0;
2806 }
2807 
2808 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2809 {
2810 	memset(hists, 0, sizeof(*hists));
2811 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2812 	hists->entries_in = &hists->entries_in_array[0];
2813 	hists->entries_collapsed = RB_ROOT_CACHED;
2814 	hists->entries = RB_ROOT_CACHED;
2815 	pthread_mutex_init(&hists->lock, NULL);
2816 	hists->socket_filter = -1;
2817 	hists->hpp_list = hpp_list;
2818 	INIT_LIST_HEAD(&hists->hpp_formats);
2819 	return 0;
2820 }
2821 
2822 static void hists__delete_remaining_entries(struct rb_root_cached *root)
2823 {
2824 	struct rb_node *node;
2825 	struct hist_entry *he;
2826 
2827 	while (!RB_EMPTY_ROOT(&root->rb_root)) {
2828 		node = rb_first_cached(root);
2829 		rb_erase_cached(node, root);
2830 
2831 		he = rb_entry(node, struct hist_entry, rb_node_in);
2832 		hist_entry__delete(he);
2833 	}
2834 }
2835 
2836 static void hists__delete_all_entries(struct hists *hists)
2837 {
2838 	hists__delete_entries(hists);
2839 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2840 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2841 	hists__delete_remaining_entries(&hists->entries_collapsed);
2842 }
2843 
2844 static void hists_evsel__exit(struct evsel *evsel)
2845 {
2846 	struct hists *hists = evsel__hists(evsel);
2847 	struct perf_hpp_fmt *fmt, *pos;
2848 	struct perf_hpp_list_node *node, *tmp;
2849 
2850 	hists__delete_all_entries(hists);
2851 
2852 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2853 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2854 			list_del_init(&fmt->list);
2855 			free(fmt);
2856 		}
2857 		list_del_init(&node->list);
2858 		free(node);
2859 	}
2860 }
2861 
2862 static int hists_evsel__init(struct evsel *evsel)
2863 {
2864 	struct hists *hists = evsel__hists(evsel);
2865 
2866 	__hists__init(hists, &perf_hpp_list);
2867 	return 0;
2868 }
2869 
2870 /*
2871  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2872  * stored in the rbtree...
2873  */
2874 
2875 int hists__init(void)
2876 {
2877 	int err = evsel__object_config(sizeof(struct hists_evsel),
2878 				       hists_evsel__init, hists_evsel__exit);
2879 	if (err)
2880 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2881 
2882 	return err;
2883 }
2884 
2885 void perf_hpp_list__init(struct perf_hpp_list *list)
2886 {
2887 	INIT_LIST_HEAD(&list->fields);
2888 	INIT_LIST_HEAD(&list->sorts);
2889 }
2890