1 // SPDX-License-Identifier: GPL-2.0 2 #include "callchain.h" 3 #include "debug.h" 4 #include "dso.h" 5 #include "build-id.h" 6 #include "hist.h" 7 #include "kvm-stat.h" 8 #include "map.h" 9 #include "map_symbol.h" 10 #include "branch.h" 11 #include "mem-events.h" 12 #include "mem-info.h" 13 #include "session.h" 14 #include "namespaces.h" 15 #include "cgroup.h" 16 #include "sort.h" 17 #include "units.h" 18 #include "evlist.h" 19 #include "evsel.h" 20 #include "annotate.h" 21 #include "srcline.h" 22 #include "symbol.h" 23 #include "thread.h" 24 #include "block-info.h" 25 #include "ui/progress.h" 26 #include <errno.h> 27 #include <math.h> 28 #include <inttypes.h> 29 #include <sys/param.h> 30 #include <linux/rbtree.h> 31 #include <linux/string.h> 32 #include <linux/time64.h> 33 #include <linux/zalloc.h> 34 35 static bool hists__filter_entry_by_dso(struct hists *hists, 36 struct hist_entry *he); 37 static bool hists__filter_entry_by_thread(struct hists *hists, 38 struct hist_entry *he); 39 static bool hists__filter_entry_by_symbol(struct hists *hists, 40 struct hist_entry *he); 41 static bool hists__filter_entry_by_socket(struct hists *hists, 42 struct hist_entry *he); 43 44 u16 hists__col_len(struct hists *hists, enum hist_column col) 45 { 46 return hists->col_len[col]; 47 } 48 49 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 50 { 51 hists->col_len[col] = len; 52 } 53 54 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 55 { 56 if (len > hists__col_len(hists, col)) { 57 hists__set_col_len(hists, col, len); 58 return true; 59 } 60 return false; 61 } 62 63 void hists__reset_col_len(struct hists *hists) 64 { 65 enum hist_column col; 66 67 for (col = 0; col < HISTC_NR_COLS; ++col) 68 hists__set_col_len(hists, col, 0); 69 } 70 71 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 72 { 73 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 74 75 if (hists__col_len(hists, dso) < unresolved_col_width && 76 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 77 !symbol_conf.dso_list) 78 hists__set_col_len(hists, dso, unresolved_col_width); 79 } 80 81 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 82 { 83 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 84 int symlen; 85 u16 len; 86 87 if (h->block_info) 88 return; 89 /* 90 * +4 accounts for '[x] ' priv level info 91 * +2 accounts for 0x prefix on raw addresses 92 * +3 accounts for ' y ' symtab origin info 93 */ 94 if (h->ms.sym) { 95 symlen = h->ms.sym->namelen + 4; 96 if (verbose > 0) 97 symlen += BITS_PER_LONG / 4 + 2 + 3; 98 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 99 } else { 100 symlen = unresolved_col_width + 4 + 2; 101 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 102 hists__set_unres_dso_col_len(hists, HISTC_DSO); 103 } 104 105 len = thread__comm_len(h->thread); 106 if (hists__new_col_len(hists, HISTC_COMM, len)) 107 hists__set_col_len(hists, HISTC_THREAD, len + 8); 108 109 if (h->ms.map) { 110 len = dso__name_len(map__dso(h->ms.map)); 111 hists__new_col_len(hists, HISTC_DSO, len); 112 } 113 114 if (h->parent) 115 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 116 117 if (h->branch_info) { 118 if (h->branch_info->from.ms.sym) { 119 symlen = (int)h->branch_info->from.ms.sym->namelen + 4; 120 if (verbose > 0) 121 symlen += BITS_PER_LONG / 4 + 2 + 3; 122 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 123 124 symlen = dso__name_len(map__dso(h->branch_info->from.ms.map)); 125 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 126 } else { 127 symlen = unresolved_col_width + 4 + 2; 128 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 129 hists__new_col_len(hists, HISTC_ADDR_FROM, symlen); 130 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 131 } 132 133 if (h->branch_info->to.ms.sym) { 134 symlen = (int)h->branch_info->to.ms.sym->namelen + 4; 135 if (verbose > 0) 136 symlen += BITS_PER_LONG / 4 + 2 + 3; 137 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 138 139 symlen = dso__name_len(map__dso(h->branch_info->to.ms.map)); 140 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 141 } else { 142 symlen = unresolved_col_width + 4 + 2; 143 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 144 hists__new_col_len(hists, HISTC_ADDR_TO, symlen); 145 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 146 } 147 148 if (h->branch_info->srcline_from) 149 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 150 strlen(h->branch_info->srcline_from)); 151 if (h->branch_info->srcline_to) 152 hists__new_col_len(hists, HISTC_SRCLINE_TO, 153 strlen(h->branch_info->srcline_to)); 154 } 155 156 if (h->mem_info) { 157 if (mem_info__daddr(h->mem_info)->ms.sym) { 158 symlen = (int)mem_info__daddr(h->mem_info)->ms.sym->namelen + 4 159 + unresolved_col_width + 2; 160 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 161 symlen); 162 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 163 symlen + 1); 164 } else { 165 symlen = unresolved_col_width + 4 + 2; 166 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 167 symlen); 168 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 169 symlen); 170 } 171 172 if (mem_info__iaddr(h->mem_info)->ms.sym) { 173 symlen = (int)mem_info__iaddr(h->mem_info)->ms.sym->namelen + 4 174 + unresolved_col_width + 2; 175 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 176 symlen); 177 } else { 178 symlen = unresolved_col_width + 4 + 2; 179 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 180 symlen); 181 } 182 183 if (mem_info__daddr(h->mem_info)->ms.map) { 184 symlen = dso__name_len(map__dso(mem_info__daddr(h->mem_info)->ms.map)); 185 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 186 symlen); 187 } else { 188 symlen = unresolved_col_width + 4 + 2; 189 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 190 } 191 192 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR, 193 unresolved_col_width + 4 + 2); 194 195 hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE, 196 unresolved_col_width + 4 + 2); 197 198 } else { 199 symlen = unresolved_col_width + 4 + 2; 200 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 201 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 202 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 203 } 204 205 hists__new_col_len(hists, HISTC_CGROUP, 6); 206 hists__new_col_len(hists, HISTC_CGROUP_ID, 20); 207 hists__new_col_len(hists, HISTC_CPU, 3); 208 hists__new_col_len(hists, HISTC_SOCKET, 6); 209 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 210 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 211 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 212 hists__new_col_len(hists, HISTC_MEM_LVL, 36 + 3); 213 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 214 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 215 hists__new_col_len(hists, HISTC_MEM_BLOCKED, 10); 216 hists__new_col_len(hists, HISTC_LOCAL_INS_LAT, 13); 217 hists__new_col_len(hists, HISTC_GLOBAL_INS_LAT, 13); 218 hists__new_col_len(hists, HISTC_LOCAL_P_STAGE_CYC, 13); 219 hists__new_col_len(hists, HISTC_GLOBAL_P_STAGE_CYC, 13); 220 hists__new_col_len(hists, HISTC_ADDR, BITS_PER_LONG / 4 + 2); 221 222 if (symbol_conf.nanosecs) 223 hists__new_col_len(hists, HISTC_TIME, 16); 224 else 225 hists__new_col_len(hists, HISTC_TIME, 12); 226 hists__new_col_len(hists, HISTC_CODE_PAGE_SIZE, 6); 227 228 if (h->srcline) { 229 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header)); 230 hists__new_col_len(hists, HISTC_SRCLINE, len); 231 } 232 233 if (h->srcfile) 234 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 235 236 if (h->transaction) 237 hists__new_col_len(hists, HISTC_TRANSACTION, 238 hist_entry__transaction_len()); 239 240 if (h->trace_output) 241 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 242 243 if (h->cgroup) { 244 const char *cgrp_name = "unknown"; 245 struct cgroup *cgrp = cgroup__find(maps__machine(h->ms.maps)->env, 246 h->cgroup); 247 if (cgrp != NULL) 248 cgrp_name = cgrp->name; 249 250 hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name)); 251 } 252 } 253 254 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 255 { 256 struct rb_node *next = rb_first_cached(&hists->entries); 257 struct hist_entry *n; 258 int row = 0; 259 260 hists__reset_col_len(hists); 261 262 while (next && row++ < max_rows) { 263 n = rb_entry(next, struct hist_entry, rb_node); 264 if (!n->filtered) 265 hists__calc_col_len(hists, n); 266 next = rb_next(&n->rb_node); 267 } 268 } 269 270 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 271 unsigned int cpumode, u64 period) 272 { 273 switch (cpumode) { 274 case PERF_RECORD_MISC_KERNEL: 275 he_stat->period_sys += period; 276 break; 277 case PERF_RECORD_MISC_USER: 278 he_stat->period_us += period; 279 break; 280 case PERF_RECORD_MISC_GUEST_KERNEL: 281 he_stat->period_guest_sys += period; 282 break; 283 case PERF_RECORD_MISC_GUEST_USER: 284 he_stat->period_guest_us += period; 285 break; 286 default: 287 break; 288 } 289 } 290 291 static long hist_time(unsigned long htime) 292 { 293 unsigned long time_quantum = symbol_conf.time_quantum; 294 if (time_quantum) 295 return (htime / time_quantum) * time_quantum; 296 return htime; 297 } 298 299 static void he_stat__add_period(struct he_stat *he_stat, u64 period) 300 { 301 he_stat->period += period; 302 he_stat->nr_events += 1; 303 } 304 305 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 306 { 307 dest->period += src->period; 308 dest->period_sys += src->period_sys; 309 dest->period_us += src->period_us; 310 dest->period_guest_sys += src->period_guest_sys; 311 dest->period_guest_us += src->period_guest_us; 312 dest->weight1 += src->weight1; 313 dest->weight2 += src->weight2; 314 dest->weight3 += src->weight3; 315 dest->nr_events += src->nr_events; 316 } 317 318 static void he_stat__decay(struct he_stat *he_stat) 319 { 320 he_stat->period = (he_stat->period * 7) / 8; 321 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 322 he_stat->weight1 = (he_stat->weight1 * 7) / 8; 323 he_stat->weight2 = (he_stat->weight2 * 7) / 8; 324 he_stat->weight3 = (he_stat->weight3 * 7) / 8; 325 } 326 327 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 328 329 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 330 { 331 u64 prev_period = he->stat.period; 332 u64 diff; 333 334 if (prev_period == 0) 335 return true; 336 337 he_stat__decay(&he->stat); 338 if (symbol_conf.cumulate_callchain) 339 he_stat__decay(he->stat_acc); 340 decay_callchain(he->callchain); 341 342 diff = prev_period - he->stat.period; 343 344 if (!he->depth) { 345 hists->stats.total_period -= diff; 346 if (!he->filtered) 347 hists->stats.total_non_filtered_period -= diff; 348 } 349 350 if (!he->leaf) { 351 struct hist_entry *child; 352 struct rb_node *node = rb_first_cached(&he->hroot_out); 353 while (node) { 354 child = rb_entry(node, struct hist_entry, rb_node); 355 node = rb_next(node); 356 357 if (hists__decay_entry(hists, child)) 358 hists__delete_entry(hists, child); 359 } 360 } 361 362 return he->stat.period == 0; 363 } 364 365 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 366 { 367 struct rb_root_cached *root_in; 368 struct rb_root_cached *root_out; 369 370 if (he->parent_he) { 371 root_in = &he->parent_he->hroot_in; 372 root_out = &he->parent_he->hroot_out; 373 } else { 374 if (hists__has(hists, need_collapse)) 375 root_in = &hists->entries_collapsed; 376 else 377 root_in = hists->entries_in; 378 root_out = &hists->entries; 379 } 380 381 rb_erase_cached(&he->rb_node_in, root_in); 382 rb_erase_cached(&he->rb_node, root_out); 383 384 --hists->nr_entries; 385 if (!he->filtered) 386 --hists->nr_non_filtered_entries; 387 388 hist_entry__delete(he); 389 } 390 391 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 392 { 393 struct rb_node *next = rb_first_cached(&hists->entries); 394 struct hist_entry *n; 395 396 while (next) { 397 n = rb_entry(next, struct hist_entry, rb_node); 398 next = rb_next(&n->rb_node); 399 if (((zap_user && n->level == '.') || 400 (zap_kernel && n->level != '.') || 401 hists__decay_entry(hists, n))) { 402 hists__delete_entry(hists, n); 403 } 404 } 405 } 406 407 void hists__delete_entries(struct hists *hists) 408 { 409 struct rb_node *next = rb_first_cached(&hists->entries); 410 struct hist_entry *n; 411 412 while (next) { 413 n = rb_entry(next, struct hist_entry, rb_node); 414 next = rb_next(&n->rb_node); 415 416 hists__delete_entry(hists, n); 417 } 418 } 419 420 struct hist_entry *hists__get_entry(struct hists *hists, int idx) 421 { 422 struct rb_node *next = rb_first_cached(&hists->entries); 423 struct hist_entry *n; 424 int i = 0; 425 426 while (next) { 427 n = rb_entry(next, struct hist_entry, rb_node); 428 if (i == idx) 429 return n; 430 431 next = rb_next(&n->rb_node); 432 i++; 433 } 434 435 return NULL; 436 } 437 438 /* 439 * histogram, sorted on item, collects periods 440 */ 441 442 static int hist_entry__init(struct hist_entry *he, 443 struct hist_entry *template, 444 bool sample_self, 445 size_t callchain_size) 446 { 447 *he = *template; 448 he->callchain_size = callchain_size; 449 450 if (symbol_conf.cumulate_callchain) { 451 he->stat_acc = malloc(sizeof(he->stat)); 452 if (he->stat_acc == NULL) 453 return -ENOMEM; 454 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 455 if (!sample_self) 456 memset(&he->stat, 0, sizeof(he->stat)); 457 } 458 459 he->ms.maps = maps__get(he->ms.maps); 460 he->ms.map = map__get(he->ms.map); 461 462 if (he->branch_info) { 463 /* 464 * This branch info is (a part of) allocated from 465 * sample__resolve_bstack() and will be freed after 466 * adding new entries. So we need to save a copy. 467 */ 468 he->branch_info = malloc(sizeof(*he->branch_info)); 469 if (he->branch_info == NULL) 470 goto err; 471 472 memcpy(he->branch_info, template->branch_info, 473 sizeof(*he->branch_info)); 474 475 he->branch_info->from.ms.map = map__get(he->branch_info->from.ms.map); 476 he->branch_info->to.ms.map = map__get(he->branch_info->to.ms.map); 477 } 478 479 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 480 callchain_init(he->callchain); 481 482 if (he->raw_data) { 483 he->raw_data = memdup(he->raw_data, he->raw_size); 484 if (he->raw_data == NULL) 485 goto err_infos; 486 } 487 488 if (he->srcline && he->srcline != SRCLINE_UNKNOWN) { 489 he->srcline = strdup(he->srcline); 490 if (he->srcline == NULL) 491 goto err_rawdata; 492 } 493 494 if (symbol_conf.res_sample) { 495 he->res_samples = calloc(symbol_conf.res_sample, 496 sizeof(struct res_sample)); 497 if (!he->res_samples) 498 goto err_srcline; 499 } 500 501 INIT_LIST_HEAD(&he->pairs.node); 502 he->thread = thread__get(he->thread); 503 he->hroot_in = RB_ROOT_CACHED; 504 he->hroot_out = RB_ROOT_CACHED; 505 506 if (!symbol_conf.report_hierarchy) 507 he->leaf = true; 508 509 return 0; 510 511 err_srcline: 512 zfree(&he->srcline); 513 514 err_rawdata: 515 zfree(&he->raw_data); 516 517 err_infos: 518 if (he->branch_info) { 519 map_symbol__exit(&he->branch_info->from.ms); 520 map_symbol__exit(&he->branch_info->to.ms); 521 zfree(&he->branch_info); 522 } 523 if (he->mem_info) { 524 map_symbol__exit(&mem_info__iaddr(he->mem_info)->ms); 525 map_symbol__exit(&mem_info__daddr(he->mem_info)->ms); 526 } 527 err: 528 map_symbol__exit(&he->ms); 529 zfree(&he->stat_acc); 530 return -ENOMEM; 531 } 532 533 static void *hist_entry__zalloc(size_t size) 534 { 535 return zalloc(size + sizeof(struct hist_entry)); 536 } 537 538 static void hist_entry__free(void *ptr) 539 { 540 free(ptr); 541 } 542 543 static struct hist_entry_ops default_ops = { 544 .new = hist_entry__zalloc, 545 .free = hist_entry__free, 546 }; 547 548 static struct hist_entry *hist_entry__new(struct hist_entry *template, 549 bool sample_self) 550 { 551 struct hist_entry_ops *ops = template->ops; 552 size_t callchain_size = 0; 553 struct hist_entry *he; 554 int err = 0; 555 556 if (!ops) 557 ops = template->ops = &default_ops; 558 559 if (symbol_conf.use_callchain) 560 callchain_size = sizeof(struct callchain_root); 561 562 he = ops->new(callchain_size); 563 if (he) { 564 err = hist_entry__init(he, template, sample_self, callchain_size); 565 if (err) { 566 ops->free(he); 567 he = NULL; 568 } 569 } 570 return he; 571 } 572 573 static u8 symbol__parent_filter(const struct symbol *parent) 574 { 575 if (symbol_conf.exclude_other && parent == NULL) 576 return 1 << HIST_FILTER__PARENT; 577 return 0; 578 } 579 580 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 581 { 582 if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain) 583 return; 584 585 he->hists->callchain_period += period; 586 if (!he->filtered) 587 he->hists->callchain_non_filtered_period += period; 588 } 589 590 static struct hist_entry *hists__findnew_entry(struct hists *hists, 591 struct hist_entry *entry, 592 const struct addr_location *al, 593 bool sample_self) 594 { 595 struct rb_node **p; 596 struct rb_node *parent = NULL; 597 struct hist_entry *he; 598 int64_t cmp; 599 u64 period = entry->stat.period; 600 bool leftmost = true; 601 602 p = &hists->entries_in->rb_root.rb_node; 603 604 while (*p != NULL) { 605 parent = *p; 606 he = rb_entry(parent, struct hist_entry, rb_node_in); 607 608 /* 609 * Make sure that it receives arguments in a same order as 610 * hist_entry__collapse() so that we can use an appropriate 611 * function when searching an entry regardless which sort 612 * keys were used. 613 */ 614 cmp = hist_entry__cmp(he, entry); 615 if (!cmp) { 616 if (sample_self) { 617 he_stat__add_stat(&he->stat, &entry->stat); 618 hist_entry__add_callchain_period(he, period); 619 } 620 if (symbol_conf.cumulate_callchain) 621 he_stat__add_period(he->stat_acc, period); 622 623 /* 624 * This mem info was allocated from sample__resolve_mem 625 * and will not be used anymore. 626 */ 627 mem_info__zput(entry->mem_info); 628 629 block_info__delete(entry->block_info); 630 631 kvm_info__zput(entry->kvm_info); 632 633 /* If the map of an existing hist_entry has 634 * become out-of-date due to an exec() or 635 * similar, update it. Otherwise we will 636 * mis-adjust symbol addresses when computing 637 * the history counter to increment. 638 */ 639 if (he->ms.map != entry->ms.map) { 640 map__put(he->ms.map); 641 he->ms.map = map__get(entry->ms.map); 642 } 643 goto out; 644 } 645 646 if (cmp < 0) 647 p = &(*p)->rb_left; 648 else { 649 p = &(*p)->rb_right; 650 leftmost = false; 651 } 652 } 653 654 he = hist_entry__new(entry, sample_self); 655 if (!he) 656 return NULL; 657 658 if (sample_self) 659 hist_entry__add_callchain_period(he, period); 660 hists->nr_entries++; 661 662 rb_link_node(&he->rb_node_in, parent, p); 663 rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost); 664 out: 665 if (sample_self) 666 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 667 if (symbol_conf.cumulate_callchain) 668 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 669 return he; 670 } 671 672 static unsigned random_max(unsigned high) 673 { 674 unsigned thresh = -high % high; 675 for (;;) { 676 unsigned r = random(); 677 if (r >= thresh) 678 return r % high; 679 } 680 } 681 682 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample) 683 { 684 struct res_sample *r; 685 int j; 686 687 if (he->num_res < symbol_conf.res_sample) { 688 j = he->num_res++; 689 } else { 690 j = random_max(symbol_conf.res_sample); 691 } 692 r = &he->res_samples[j]; 693 r->time = sample->time; 694 r->cpu = sample->cpu; 695 r->tid = sample->tid; 696 } 697 698 static struct hist_entry* 699 __hists__add_entry(struct hists *hists, 700 struct addr_location *al, 701 struct symbol *sym_parent, 702 struct branch_info *bi, 703 struct mem_info *mi, 704 struct kvm_info *ki, 705 struct block_info *block_info, 706 struct perf_sample *sample, 707 bool sample_self, 708 struct hist_entry_ops *ops) 709 { 710 struct namespaces *ns = thread__namespaces(al->thread); 711 struct hist_entry entry = { 712 .thread = al->thread, 713 .comm = thread__comm(al->thread), 714 .cgroup_id = { 715 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0, 716 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0, 717 }, 718 .cgroup = sample->cgroup, 719 .ms = { 720 .maps = al->maps, 721 .map = al->map, 722 .sym = al->sym, 723 }, 724 .srcline = (char *) al->srcline, 725 .socket = al->socket, 726 .cpu = al->cpu, 727 .cpumode = al->cpumode, 728 .ip = al->addr, 729 .level = al->level, 730 .code_page_size = sample->code_page_size, 731 .stat = { 732 .nr_events = 1, 733 .period = sample->period, 734 .weight1 = sample->weight, 735 .weight2 = sample->ins_lat, 736 .weight3 = sample->p_stage_cyc, 737 }, 738 .parent = sym_parent, 739 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 740 .hists = hists, 741 .branch_info = bi, 742 .mem_info = mem_info__get(mi), 743 .kvm_info = ki, 744 .block_info = block_info, 745 .transaction = sample->transaction, 746 .raw_data = sample->raw_data, 747 .raw_size = sample->raw_size, 748 .ops = ops, 749 .time = hist_time(sample->time), 750 .weight = sample->weight, 751 .ins_lat = sample->ins_lat, 752 .p_stage_cyc = sample->p_stage_cyc, 753 .simd_flags = sample->simd_flags, 754 }, *he = hists__findnew_entry(hists, &entry, al, sample_self); 755 756 if (!hists->has_callchains && he && he->callchain_size != 0) 757 hists->has_callchains = true; 758 if (he && symbol_conf.res_sample) 759 hists__res_sample(he, sample); 760 return he; 761 } 762 763 struct hist_entry *hists__add_entry(struct hists *hists, 764 struct addr_location *al, 765 struct symbol *sym_parent, 766 struct branch_info *bi, 767 struct mem_info *mi, 768 struct kvm_info *ki, 769 struct perf_sample *sample, 770 bool sample_self) 771 { 772 return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL, 773 sample, sample_self, NULL); 774 } 775 776 struct hist_entry *hists__add_entry_ops(struct hists *hists, 777 struct hist_entry_ops *ops, 778 struct addr_location *al, 779 struct symbol *sym_parent, 780 struct branch_info *bi, 781 struct mem_info *mi, 782 struct kvm_info *ki, 783 struct perf_sample *sample, 784 bool sample_self) 785 { 786 return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL, 787 sample, sample_self, ops); 788 } 789 790 struct hist_entry *hists__add_entry_block(struct hists *hists, 791 struct addr_location *al, 792 struct block_info *block_info) 793 { 794 struct hist_entry entry = { 795 .block_info = block_info, 796 .hists = hists, 797 .ms = { 798 .maps = al->maps, 799 .map = al->map, 800 .sym = al->sym, 801 }, 802 }, *he = hists__findnew_entry(hists, &entry, al, false); 803 804 return he; 805 } 806 807 static int 808 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 809 struct addr_location *al __maybe_unused) 810 { 811 return 0; 812 } 813 814 static int 815 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 816 struct addr_location *al __maybe_unused) 817 { 818 return 0; 819 } 820 821 static int 822 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 823 { 824 struct perf_sample *sample = iter->sample; 825 struct mem_info *mi; 826 827 mi = sample__resolve_mem(sample, al); 828 if (mi == NULL) 829 return -ENOMEM; 830 831 iter->mi = mi; 832 return 0; 833 } 834 835 static int 836 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 837 { 838 u64 cost; 839 struct mem_info *mi = iter->mi; 840 struct hists *hists = evsel__hists(iter->evsel); 841 struct perf_sample *sample = iter->sample; 842 struct hist_entry *he; 843 844 if (mi == NULL) 845 return -EINVAL; 846 847 cost = sample->weight; 848 if (!cost) 849 cost = 1; 850 851 /* 852 * must pass period=weight in order to get the correct 853 * sorting from hists__collapse_resort() which is solely 854 * based on periods. We want sorting be done on nr_events * weight 855 * and this is indirectly achieved by passing period=weight here 856 * and the he_stat__add_period() function. 857 */ 858 sample->period = cost; 859 860 he = hists__add_entry(hists, al, iter->parent, NULL, mi, NULL, 861 sample, true); 862 if (!he) 863 return -ENOMEM; 864 865 iter->he = he; 866 return 0; 867 } 868 869 static int 870 iter_finish_mem_entry(struct hist_entry_iter *iter, 871 struct addr_location *al __maybe_unused) 872 { 873 struct evsel *evsel = iter->evsel; 874 struct hists *hists = evsel__hists(evsel); 875 struct hist_entry *he = iter->he; 876 int err = -EINVAL; 877 878 if (he == NULL) 879 goto out; 880 881 hists__inc_nr_samples(hists, he->filtered); 882 883 err = hist_entry__append_callchain(he, iter->sample); 884 885 out: 886 mem_info__zput(iter->mi); 887 888 iter->he = NULL; 889 return err; 890 } 891 892 static int 893 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 894 { 895 struct branch_info *bi; 896 struct perf_sample *sample = iter->sample; 897 898 bi = sample__resolve_bstack(sample, al); 899 if (!bi) 900 return -ENOMEM; 901 902 iter->curr = 0; 903 iter->total = sample->branch_stack->nr; 904 905 iter->bi = bi; 906 return 0; 907 } 908 909 static int 910 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused, 911 struct addr_location *al __maybe_unused) 912 { 913 return 0; 914 } 915 916 static int 917 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 918 { 919 struct branch_info *bi = iter->bi; 920 int i = iter->curr; 921 922 if (bi == NULL) 923 return 0; 924 925 if (iter->curr >= iter->total) 926 return 0; 927 928 maps__put(al->maps); 929 al->maps = maps__get(bi[i].to.ms.maps); 930 map__put(al->map); 931 al->map = map__get(bi[i].to.ms.map); 932 al->sym = bi[i].to.ms.sym; 933 al->addr = bi[i].to.addr; 934 return 1; 935 } 936 937 static int 938 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 939 { 940 struct branch_info *bi; 941 struct evsel *evsel = iter->evsel; 942 struct hists *hists = evsel__hists(evsel); 943 struct perf_sample *sample = iter->sample; 944 struct hist_entry *he = NULL; 945 int i = iter->curr; 946 int err = 0; 947 948 bi = iter->bi; 949 950 if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym)) 951 goto out; 952 953 /* 954 * The report shows the percentage of total branches captured 955 * and not events sampled. Thus we use a pseudo period of 1. 956 */ 957 sample->period = 1; 958 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 959 960 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, NULL, 961 sample, true); 962 if (he == NULL) 963 return -ENOMEM; 964 965 hists__inc_nr_samples(hists, he->filtered); 966 967 out: 968 iter->he = he; 969 iter->curr++; 970 return err; 971 } 972 973 static int 974 iter_finish_branch_entry(struct hist_entry_iter *iter, 975 struct addr_location *al __maybe_unused) 976 { 977 zfree(&iter->bi); 978 iter->he = NULL; 979 980 return iter->curr >= iter->total ? 0 : -1; 981 } 982 983 static int 984 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 985 struct addr_location *al __maybe_unused) 986 { 987 return 0; 988 } 989 990 static int 991 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 992 { 993 struct evsel *evsel = iter->evsel; 994 struct perf_sample *sample = iter->sample; 995 struct hist_entry *he; 996 997 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 998 NULL, sample, true); 999 if (he == NULL) 1000 return -ENOMEM; 1001 1002 iter->he = he; 1003 return 0; 1004 } 1005 1006 static int 1007 iter_finish_normal_entry(struct hist_entry_iter *iter, 1008 struct addr_location *al __maybe_unused) 1009 { 1010 struct hist_entry *he = iter->he; 1011 struct evsel *evsel = iter->evsel; 1012 struct perf_sample *sample = iter->sample; 1013 1014 if (he == NULL) 1015 return 0; 1016 1017 iter->he = NULL; 1018 1019 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 1020 1021 return hist_entry__append_callchain(he, sample); 1022 } 1023 1024 static int 1025 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 1026 struct addr_location *al __maybe_unused) 1027 { 1028 struct hist_entry **he_cache; 1029 struct callchain_cursor *cursor = get_tls_callchain_cursor(); 1030 1031 if (cursor == NULL) 1032 return -ENOMEM; 1033 1034 callchain_cursor_commit(cursor); 1035 1036 /* 1037 * This is for detecting cycles or recursions so that they're 1038 * cumulated only one time to prevent entries more than 100% 1039 * overhead. 1040 */ 1041 he_cache = malloc(sizeof(*he_cache) * (cursor->nr + 1)); 1042 if (he_cache == NULL) 1043 return -ENOMEM; 1044 1045 iter->he_cache = he_cache; 1046 iter->curr = 0; 1047 1048 return 0; 1049 } 1050 1051 static int 1052 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 1053 struct addr_location *al) 1054 { 1055 struct evsel *evsel = iter->evsel; 1056 struct hists *hists = evsel__hists(evsel); 1057 struct perf_sample *sample = iter->sample; 1058 struct hist_entry **he_cache = iter->he_cache; 1059 struct hist_entry *he; 1060 int err = 0; 1061 1062 he = hists__add_entry(hists, al, iter->parent, NULL, NULL, NULL, 1063 sample, true); 1064 if (he == NULL) 1065 return -ENOMEM; 1066 1067 iter->he = he; 1068 he_cache[iter->curr++] = he; 1069 1070 hist_entry__append_callchain(he, sample); 1071 1072 /* 1073 * We need to re-initialize the cursor since callchain_append() 1074 * advanced the cursor to the end. 1075 */ 1076 callchain_cursor_commit(get_tls_callchain_cursor()); 1077 1078 hists__inc_nr_samples(hists, he->filtered); 1079 1080 return err; 1081 } 1082 1083 static int 1084 iter_next_cumulative_entry(struct hist_entry_iter *iter, 1085 struct addr_location *al) 1086 { 1087 struct callchain_cursor_node *node; 1088 1089 node = callchain_cursor_current(get_tls_callchain_cursor()); 1090 if (node == NULL) 1091 return 0; 1092 1093 return fill_callchain_info(al, node, iter->hide_unresolved); 1094 } 1095 1096 static bool 1097 hist_entry__fast__sym_diff(struct hist_entry *left, 1098 struct hist_entry *right) 1099 { 1100 struct symbol *sym_l = left->ms.sym; 1101 struct symbol *sym_r = right->ms.sym; 1102 1103 if (!sym_l && !sym_r) 1104 return left->ip != right->ip; 1105 1106 return !!_sort__sym_cmp(sym_l, sym_r); 1107 } 1108 1109 1110 static int 1111 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 1112 struct addr_location *al) 1113 { 1114 struct evsel *evsel = iter->evsel; 1115 struct perf_sample *sample = iter->sample; 1116 struct hist_entry **he_cache = iter->he_cache; 1117 struct hist_entry *he; 1118 struct hist_entry he_tmp = { 1119 .hists = evsel__hists(evsel), 1120 .cpu = al->cpu, 1121 .thread = al->thread, 1122 .comm = thread__comm(al->thread), 1123 .ip = al->addr, 1124 .ms = { 1125 .maps = al->maps, 1126 .map = al->map, 1127 .sym = al->sym, 1128 }, 1129 .srcline = (char *) al->srcline, 1130 .parent = iter->parent, 1131 .raw_data = sample->raw_data, 1132 .raw_size = sample->raw_size, 1133 }; 1134 int i; 1135 struct callchain_cursor cursor, *tls_cursor = get_tls_callchain_cursor(); 1136 bool fast = hists__has(he_tmp.hists, sym); 1137 1138 if (tls_cursor == NULL) 1139 return -ENOMEM; 1140 1141 callchain_cursor_snapshot(&cursor, tls_cursor); 1142 1143 callchain_cursor_advance(tls_cursor); 1144 1145 /* 1146 * Check if there's duplicate entries in the callchain. 1147 * It's possible that it has cycles or recursive calls. 1148 */ 1149 for (i = 0; i < iter->curr; i++) { 1150 /* 1151 * For most cases, there are no duplicate entries in callchain. 1152 * The symbols are usually different. Do a quick check for 1153 * symbols first. 1154 */ 1155 if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp)) 1156 continue; 1157 1158 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 1159 /* to avoid calling callback function */ 1160 iter->he = NULL; 1161 return 0; 1162 } 1163 } 1164 1165 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 1166 NULL, sample, false); 1167 if (he == NULL) 1168 return -ENOMEM; 1169 1170 iter->he = he; 1171 he_cache[iter->curr++] = he; 1172 1173 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 1174 callchain_append(he->callchain, &cursor, sample->period); 1175 return 0; 1176 } 1177 1178 static int 1179 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 1180 struct addr_location *al __maybe_unused) 1181 { 1182 mem_info__zput(iter->mi); 1183 zfree(&iter->bi); 1184 zfree(&iter->he_cache); 1185 iter->he = NULL; 1186 1187 return 0; 1188 } 1189 1190 const struct hist_iter_ops hist_iter_mem = { 1191 .prepare_entry = iter_prepare_mem_entry, 1192 .add_single_entry = iter_add_single_mem_entry, 1193 .next_entry = iter_next_nop_entry, 1194 .add_next_entry = iter_add_next_nop_entry, 1195 .finish_entry = iter_finish_mem_entry, 1196 }; 1197 1198 const struct hist_iter_ops hist_iter_branch = { 1199 .prepare_entry = iter_prepare_branch_entry, 1200 .add_single_entry = iter_add_single_branch_entry, 1201 .next_entry = iter_next_branch_entry, 1202 .add_next_entry = iter_add_next_branch_entry, 1203 .finish_entry = iter_finish_branch_entry, 1204 }; 1205 1206 const struct hist_iter_ops hist_iter_normal = { 1207 .prepare_entry = iter_prepare_normal_entry, 1208 .add_single_entry = iter_add_single_normal_entry, 1209 .next_entry = iter_next_nop_entry, 1210 .add_next_entry = iter_add_next_nop_entry, 1211 .finish_entry = iter_finish_normal_entry, 1212 }; 1213 1214 const struct hist_iter_ops hist_iter_cumulative = { 1215 .prepare_entry = iter_prepare_cumulative_entry, 1216 .add_single_entry = iter_add_single_cumulative_entry, 1217 .next_entry = iter_next_cumulative_entry, 1218 .add_next_entry = iter_add_next_cumulative_entry, 1219 .finish_entry = iter_finish_cumulative_entry, 1220 }; 1221 1222 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1223 int max_stack_depth, void *arg) 1224 { 1225 int err, err2; 1226 struct map *alm = NULL; 1227 1228 if (al) 1229 alm = map__get(al->map); 1230 1231 err = sample__resolve_callchain(iter->sample, get_tls_callchain_cursor(), &iter->parent, 1232 iter->evsel, al, max_stack_depth); 1233 if (err) { 1234 map__put(alm); 1235 return err; 1236 } 1237 1238 err = iter->ops->prepare_entry(iter, al); 1239 if (err) 1240 goto out; 1241 1242 err = iter->ops->add_single_entry(iter, al); 1243 if (err) 1244 goto out; 1245 1246 if (iter->he && iter->add_entry_cb) { 1247 err = iter->add_entry_cb(iter, al, true, arg); 1248 if (err) 1249 goto out; 1250 } 1251 1252 while (iter->ops->next_entry(iter, al)) { 1253 err = iter->ops->add_next_entry(iter, al); 1254 if (err) 1255 break; 1256 1257 if (iter->he && iter->add_entry_cb) { 1258 err = iter->add_entry_cb(iter, al, false, arg); 1259 if (err) 1260 goto out; 1261 } 1262 } 1263 1264 out: 1265 err2 = iter->ops->finish_entry(iter, al); 1266 if (!err) 1267 err = err2; 1268 1269 map__put(alm); 1270 1271 return err; 1272 } 1273 1274 int64_t 1275 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1276 { 1277 struct hists *hists = left->hists; 1278 struct perf_hpp_fmt *fmt; 1279 int64_t cmp = 0; 1280 1281 hists__for_each_sort_list(hists, fmt) { 1282 if (perf_hpp__is_dynamic_entry(fmt) && 1283 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1284 continue; 1285 1286 cmp = fmt->cmp(fmt, left, right); 1287 if (cmp) 1288 break; 1289 } 1290 1291 return cmp; 1292 } 1293 1294 int64_t 1295 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1296 { 1297 struct hists *hists = left->hists; 1298 struct perf_hpp_fmt *fmt; 1299 int64_t cmp = 0; 1300 1301 hists__for_each_sort_list(hists, fmt) { 1302 if (perf_hpp__is_dynamic_entry(fmt) && 1303 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1304 continue; 1305 1306 cmp = fmt->collapse(fmt, left, right); 1307 if (cmp) 1308 break; 1309 } 1310 1311 return cmp; 1312 } 1313 1314 void hist_entry__delete(struct hist_entry *he) 1315 { 1316 struct hist_entry_ops *ops = he->ops; 1317 1318 thread__zput(he->thread); 1319 map_symbol__exit(&he->ms); 1320 1321 if (he->branch_info) { 1322 map_symbol__exit(&he->branch_info->from.ms); 1323 map_symbol__exit(&he->branch_info->to.ms); 1324 zfree_srcline(&he->branch_info->srcline_from); 1325 zfree_srcline(&he->branch_info->srcline_to); 1326 zfree(&he->branch_info); 1327 } 1328 1329 if (he->mem_info) { 1330 map_symbol__exit(&mem_info__iaddr(he->mem_info)->ms); 1331 map_symbol__exit(&mem_info__daddr(he->mem_info)->ms); 1332 mem_info__zput(he->mem_info); 1333 } 1334 1335 if (he->block_info) 1336 block_info__delete(he->block_info); 1337 1338 if (he->kvm_info) 1339 kvm_info__zput(he->kvm_info); 1340 1341 zfree(&he->res_samples); 1342 zfree(&he->stat_acc); 1343 zfree_srcline(&he->srcline); 1344 if (he->srcfile && he->srcfile[0]) 1345 zfree(&he->srcfile); 1346 free_callchain(he->callchain); 1347 zfree(&he->trace_output); 1348 zfree(&he->raw_data); 1349 ops->free(he); 1350 } 1351 1352 /* 1353 * If this is not the last column, then we need to pad it according to the 1354 * pre-calculated max length for this column, otherwise don't bother adding 1355 * spaces because that would break viewing this with, for instance, 'less', 1356 * that would show tons of trailing spaces when a long C++ demangled method 1357 * names is sampled. 1358 */ 1359 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1360 struct perf_hpp_fmt *fmt, int printed) 1361 { 1362 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1363 const int width = fmt->width(fmt, hpp, he->hists); 1364 if (printed < width) { 1365 advance_hpp(hpp, printed); 1366 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1367 } 1368 } 1369 1370 return printed; 1371 } 1372 1373 /* 1374 * collapse the histogram 1375 */ 1376 1377 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1378 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1379 enum hist_filter type); 1380 1381 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1382 1383 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1384 { 1385 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1386 } 1387 1388 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1389 enum hist_filter type, 1390 fmt_chk_fn check) 1391 { 1392 struct perf_hpp_fmt *fmt; 1393 bool type_match = false; 1394 struct hist_entry *parent = he->parent_he; 1395 1396 switch (type) { 1397 case HIST_FILTER__THREAD: 1398 if (symbol_conf.comm_list == NULL && 1399 symbol_conf.pid_list == NULL && 1400 symbol_conf.tid_list == NULL) 1401 return; 1402 break; 1403 case HIST_FILTER__DSO: 1404 if (symbol_conf.dso_list == NULL) 1405 return; 1406 break; 1407 case HIST_FILTER__SYMBOL: 1408 if (symbol_conf.sym_list == NULL) 1409 return; 1410 break; 1411 case HIST_FILTER__PARENT: 1412 case HIST_FILTER__GUEST: 1413 case HIST_FILTER__HOST: 1414 case HIST_FILTER__SOCKET: 1415 case HIST_FILTER__C2C: 1416 default: 1417 return; 1418 } 1419 1420 /* if it's filtered by own fmt, it has to have filter bits */ 1421 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1422 if (check(fmt)) { 1423 type_match = true; 1424 break; 1425 } 1426 } 1427 1428 if (type_match) { 1429 /* 1430 * If the filter is for current level entry, propagate 1431 * filter marker to parents. The marker bit was 1432 * already set by default so it only needs to clear 1433 * non-filtered entries. 1434 */ 1435 if (!(he->filtered & (1 << type))) { 1436 while (parent) { 1437 parent->filtered &= ~(1 << type); 1438 parent = parent->parent_he; 1439 } 1440 } 1441 } else { 1442 /* 1443 * If current entry doesn't have matching formats, set 1444 * filter marker for upper level entries. it will be 1445 * cleared if its lower level entries is not filtered. 1446 * 1447 * For lower-level entries, it inherits parent's 1448 * filter bit so that lower level entries of a 1449 * non-filtered entry won't set the filter marker. 1450 */ 1451 if (parent == NULL) 1452 he->filtered |= (1 << type); 1453 else 1454 he->filtered |= (parent->filtered & (1 << type)); 1455 } 1456 } 1457 1458 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1459 { 1460 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1461 check_thread_entry); 1462 1463 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1464 perf_hpp__is_dso_entry); 1465 1466 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1467 perf_hpp__is_sym_entry); 1468 1469 hists__apply_filters(he->hists, he); 1470 } 1471 1472 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1473 struct rb_root_cached *root, 1474 struct hist_entry *he, 1475 struct hist_entry *parent_he, 1476 struct perf_hpp_list *hpp_list) 1477 { 1478 struct rb_node **p = &root->rb_root.rb_node; 1479 struct rb_node *parent = NULL; 1480 struct hist_entry *iter, *new; 1481 struct perf_hpp_fmt *fmt; 1482 int64_t cmp; 1483 bool leftmost = true; 1484 1485 while (*p != NULL) { 1486 parent = *p; 1487 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1488 1489 cmp = 0; 1490 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1491 cmp = fmt->collapse(fmt, iter, he); 1492 if (cmp) 1493 break; 1494 } 1495 1496 if (!cmp) { 1497 he_stat__add_stat(&iter->stat, &he->stat); 1498 return iter; 1499 } 1500 1501 if (cmp < 0) 1502 p = &parent->rb_left; 1503 else { 1504 p = &parent->rb_right; 1505 leftmost = false; 1506 } 1507 } 1508 1509 new = hist_entry__new(he, true); 1510 if (new == NULL) 1511 return NULL; 1512 1513 hists->nr_entries++; 1514 1515 /* save related format list for output */ 1516 new->hpp_list = hpp_list; 1517 new->parent_he = parent_he; 1518 1519 hist_entry__apply_hierarchy_filters(new); 1520 1521 /* some fields are now passed to 'new' */ 1522 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1523 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1524 he->trace_output = NULL; 1525 else 1526 new->trace_output = NULL; 1527 1528 if (perf_hpp__is_srcline_entry(fmt)) 1529 he->srcline = NULL; 1530 else 1531 new->srcline = NULL; 1532 1533 if (perf_hpp__is_srcfile_entry(fmt)) 1534 he->srcfile = NULL; 1535 else 1536 new->srcfile = NULL; 1537 } 1538 1539 rb_link_node(&new->rb_node_in, parent, p); 1540 rb_insert_color_cached(&new->rb_node_in, root, leftmost); 1541 return new; 1542 } 1543 1544 static int hists__hierarchy_insert_entry(struct hists *hists, 1545 struct rb_root_cached *root, 1546 struct hist_entry *he) 1547 { 1548 struct perf_hpp_list_node *node; 1549 struct hist_entry *new_he = NULL; 1550 struct hist_entry *parent = NULL; 1551 int depth = 0; 1552 int ret = 0; 1553 1554 list_for_each_entry(node, &hists->hpp_formats, list) { 1555 /* skip period (overhead) and elided columns */ 1556 if (node->level == 0 || node->skip) 1557 continue; 1558 1559 /* insert copy of 'he' for each fmt into the hierarchy */ 1560 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1561 if (new_he == NULL) { 1562 ret = -1; 1563 break; 1564 } 1565 1566 root = &new_he->hroot_in; 1567 new_he->depth = depth++; 1568 parent = new_he; 1569 } 1570 1571 if (new_he) { 1572 new_he->leaf = true; 1573 1574 if (hist_entry__has_callchains(new_he) && 1575 symbol_conf.use_callchain) { 1576 struct callchain_cursor *cursor = get_tls_callchain_cursor(); 1577 1578 if (cursor == NULL) 1579 return -1; 1580 1581 callchain_cursor_reset(cursor); 1582 if (callchain_merge(cursor, 1583 new_he->callchain, 1584 he->callchain) < 0) 1585 ret = -1; 1586 } 1587 } 1588 1589 /* 'he' is no longer used */ 1590 hist_entry__delete(he); 1591 1592 /* return 0 (or -1) since it already applied filters */ 1593 return ret; 1594 } 1595 1596 static int hists__collapse_insert_entry(struct hists *hists, 1597 struct rb_root_cached *root, 1598 struct hist_entry *he) 1599 { 1600 struct rb_node **p = &root->rb_root.rb_node; 1601 struct rb_node *parent = NULL; 1602 struct hist_entry *iter; 1603 int64_t cmp; 1604 bool leftmost = true; 1605 1606 if (symbol_conf.report_hierarchy) 1607 return hists__hierarchy_insert_entry(hists, root, he); 1608 1609 while (*p != NULL) { 1610 parent = *p; 1611 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1612 1613 cmp = hist_entry__collapse(iter, he); 1614 1615 if (!cmp) { 1616 int ret = 0; 1617 1618 he_stat__add_stat(&iter->stat, &he->stat); 1619 if (symbol_conf.cumulate_callchain) 1620 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1621 1622 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) { 1623 struct callchain_cursor *cursor = get_tls_callchain_cursor(); 1624 1625 if (cursor != NULL) { 1626 callchain_cursor_reset(cursor); 1627 if (callchain_merge(cursor, iter->callchain, he->callchain) < 0) 1628 ret = -1; 1629 } else { 1630 ret = 0; 1631 } 1632 } 1633 hist_entry__delete(he); 1634 return ret; 1635 } 1636 1637 if (cmp < 0) 1638 p = &(*p)->rb_left; 1639 else { 1640 p = &(*p)->rb_right; 1641 leftmost = false; 1642 } 1643 } 1644 hists->nr_entries++; 1645 1646 rb_link_node(&he->rb_node_in, parent, p); 1647 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 1648 return 1; 1649 } 1650 1651 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists) 1652 { 1653 struct rb_root_cached *root; 1654 1655 mutex_lock(&hists->lock); 1656 1657 root = hists->entries_in; 1658 if (++hists->entries_in > &hists->entries_in_array[1]) 1659 hists->entries_in = &hists->entries_in_array[0]; 1660 1661 mutex_unlock(&hists->lock); 1662 1663 return root; 1664 } 1665 1666 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1667 { 1668 hists__filter_entry_by_dso(hists, he); 1669 hists__filter_entry_by_thread(hists, he); 1670 hists__filter_entry_by_symbol(hists, he); 1671 hists__filter_entry_by_socket(hists, he); 1672 } 1673 1674 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1675 { 1676 struct rb_root_cached *root; 1677 struct rb_node *next; 1678 struct hist_entry *n; 1679 int ret; 1680 1681 if (!hists__has(hists, need_collapse)) 1682 return 0; 1683 1684 hists->nr_entries = 0; 1685 1686 root = hists__get_rotate_entries_in(hists); 1687 1688 next = rb_first_cached(root); 1689 1690 while (next) { 1691 if (session_done()) 1692 break; 1693 n = rb_entry(next, struct hist_entry, rb_node_in); 1694 next = rb_next(&n->rb_node_in); 1695 1696 rb_erase_cached(&n->rb_node_in, root); 1697 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1698 if (ret < 0) 1699 return -1; 1700 1701 if (ret) { 1702 /* 1703 * If it wasn't combined with one of the entries already 1704 * collapsed, we need to apply the filters that may have 1705 * been set by, say, the hist_browser. 1706 */ 1707 hists__apply_filters(hists, n); 1708 } 1709 if (prog) 1710 ui_progress__update(prog, 1); 1711 } 1712 return 0; 1713 } 1714 1715 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1716 { 1717 struct hists *hists = a->hists; 1718 struct perf_hpp_fmt *fmt; 1719 int64_t cmp = 0; 1720 1721 hists__for_each_sort_list(hists, fmt) { 1722 if (perf_hpp__should_skip(fmt, a->hists)) 1723 continue; 1724 1725 cmp = fmt->sort(fmt, a, b); 1726 if (cmp) 1727 break; 1728 } 1729 1730 return cmp; 1731 } 1732 1733 static void hists__reset_filter_stats(struct hists *hists) 1734 { 1735 hists->nr_non_filtered_entries = 0; 1736 hists->stats.total_non_filtered_period = 0; 1737 } 1738 1739 void hists__reset_stats(struct hists *hists) 1740 { 1741 hists->nr_entries = 0; 1742 hists->stats.total_period = 0; 1743 1744 hists__reset_filter_stats(hists); 1745 } 1746 1747 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1748 { 1749 hists->nr_non_filtered_entries++; 1750 hists->stats.total_non_filtered_period += h->stat.period; 1751 } 1752 1753 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1754 { 1755 if (!h->filtered) 1756 hists__inc_filter_stats(hists, h); 1757 1758 hists->nr_entries++; 1759 hists->stats.total_period += h->stat.period; 1760 } 1761 1762 static void hierarchy_recalc_total_periods(struct hists *hists) 1763 { 1764 struct rb_node *node; 1765 struct hist_entry *he; 1766 1767 node = rb_first_cached(&hists->entries); 1768 1769 hists->stats.total_period = 0; 1770 hists->stats.total_non_filtered_period = 0; 1771 1772 /* 1773 * recalculate total period using top-level entries only 1774 * since lower level entries only see non-filtered entries 1775 * but upper level entries have sum of both entries. 1776 */ 1777 while (node) { 1778 he = rb_entry(node, struct hist_entry, rb_node); 1779 node = rb_next(node); 1780 1781 hists->stats.total_period += he->stat.period; 1782 if (!he->filtered) 1783 hists->stats.total_non_filtered_period += he->stat.period; 1784 } 1785 } 1786 1787 static void hierarchy_insert_output_entry(struct rb_root_cached *root, 1788 struct hist_entry *he) 1789 { 1790 struct rb_node **p = &root->rb_root.rb_node; 1791 struct rb_node *parent = NULL; 1792 struct hist_entry *iter; 1793 struct perf_hpp_fmt *fmt; 1794 bool leftmost = true; 1795 1796 while (*p != NULL) { 1797 parent = *p; 1798 iter = rb_entry(parent, struct hist_entry, rb_node); 1799 1800 if (hist_entry__sort(he, iter) > 0) 1801 p = &parent->rb_left; 1802 else { 1803 p = &parent->rb_right; 1804 leftmost = false; 1805 } 1806 } 1807 1808 rb_link_node(&he->rb_node, parent, p); 1809 rb_insert_color_cached(&he->rb_node, root, leftmost); 1810 1811 /* update column width of dynamic entry */ 1812 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1813 if (fmt->init) 1814 fmt->init(fmt, he); 1815 } 1816 } 1817 1818 static void hists__hierarchy_output_resort(struct hists *hists, 1819 struct ui_progress *prog, 1820 struct rb_root_cached *root_in, 1821 struct rb_root_cached *root_out, 1822 u64 min_callchain_hits, 1823 bool use_callchain) 1824 { 1825 struct rb_node *node; 1826 struct hist_entry *he; 1827 1828 *root_out = RB_ROOT_CACHED; 1829 node = rb_first_cached(root_in); 1830 1831 while (node) { 1832 he = rb_entry(node, struct hist_entry, rb_node_in); 1833 node = rb_next(node); 1834 1835 hierarchy_insert_output_entry(root_out, he); 1836 1837 if (prog) 1838 ui_progress__update(prog, 1); 1839 1840 hists->nr_entries++; 1841 if (!he->filtered) { 1842 hists->nr_non_filtered_entries++; 1843 hists__calc_col_len(hists, he); 1844 } 1845 1846 if (!he->leaf) { 1847 hists__hierarchy_output_resort(hists, prog, 1848 &he->hroot_in, 1849 &he->hroot_out, 1850 min_callchain_hits, 1851 use_callchain); 1852 continue; 1853 } 1854 1855 if (!use_callchain) 1856 continue; 1857 1858 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1859 u64 total = he->stat.period; 1860 1861 if (symbol_conf.cumulate_callchain) 1862 total = he->stat_acc->period; 1863 1864 min_callchain_hits = total * (callchain_param.min_percent / 100); 1865 } 1866 1867 callchain_param.sort(&he->sorted_chain, he->callchain, 1868 min_callchain_hits, &callchain_param); 1869 } 1870 } 1871 1872 static void __hists__insert_output_entry(struct rb_root_cached *entries, 1873 struct hist_entry *he, 1874 u64 min_callchain_hits, 1875 bool use_callchain) 1876 { 1877 struct rb_node **p = &entries->rb_root.rb_node; 1878 struct rb_node *parent = NULL; 1879 struct hist_entry *iter; 1880 struct perf_hpp_fmt *fmt; 1881 bool leftmost = true; 1882 1883 if (use_callchain) { 1884 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1885 u64 total = he->stat.period; 1886 1887 if (symbol_conf.cumulate_callchain) 1888 total = he->stat_acc->period; 1889 1890 min_callchain_hits = total * (callchain_param.min_percent / 100); 1891 } 1892 callchain_param.sort(&he->sorted_chain, he->callchain, 1893 min_callchain_hits, &callchain_param); 1894 } 1895 1896 while (*p != NULL) { 1897 parent = *p; 1898 iter = rb_entry(parent, struct hist_entry, rb_node); 1899 1900 if (hist_entry__sort(he, iter) > 0) 1901 p = &(*p)->rb_left; 1902 else { 1903 p = &(*p)->rb_right; 1904 leftmost = false; 1905 } 1906 } 1907 1908 rb_link_node(&he->rb_node, parent, p); 1909 rb_insert_color_cached(&he->rb_node, entries, leftmost); 1910 1911 /* update column width of dynamic entries */ 1912 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1913 if (fmt->init) 1914 fmt->init(fmt, he); 1915 } 1916 } 1917 1918 static void output_resort(struct hists *hists, struct ui_progress *prog, 1919 bool use_callchain, hists__resort_cb_t cb, 1920 void *cb_arg) 1921 { 1922 struct rb_root_cached *root; 1923 struct rb_node *next; 1924 struct hist_entry *n; 1925 u64 callchain_total; 1926 u64 min_callchain_hits; 1927 1928 callchain_total = hists->callchain_period; 1929 if (symbol_conf.filter_relative) 1930 callchain_total = hists->callchain_non_filtered_period; 1931 1932 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1933 1934 hists__reset_stats(hists); 1935 hists__reset_col_len(hists); 1936 1937 if (symbol_conf.report_hierarchy) { 1938 hists__hierarchy_output_resort(hists, prog, 1939 &hists->entries_collapsed, 1940 &hists->entries, 1941 min_callchain_hits, 1942 use_callchain); 1943 hierarchy_recalc_total_periods(hists); 1944 return; 1945 } 1946 1947 if (hists__has(hists, need_collapse)) 1948 root = &hists->entries_collapsed; 1949 else 1950 root = hists->entries_in; 1951 1952 next = rb_first_cached(root); 1953 hists->entries = RB_ROOT_CACHED; 1954 1955 while (next) { 1956 n = rb_entry(next, struct hist_entry, rb_node_in); 1957 next = rb_next(&n->rb_node_in); 1958 1959 if (cb && cb(n, cb_arg)) 1960 continue; 1961 1962 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1963 hists__inc_stats(hists, n); 1964 1965 if (!n->filtered) 1966 hists__calc_col_len(hists, n); 1967 1968 if (prog) 1969 ui_progress__update(prog, 1); 1970 } 1971 } 1972 1973 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog, 1974 hists__resort_cb_t cb, void *cb_arg) 1975 { 1976 bool use_callchain; 1977 1978 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1979 use_callchain = evsel__has_callchain(evsel); 1980 else 1981 use_callchain = symbol_conf.use_callchain; 1982 1983 use_callchain |= symbol_conf.show_branchflag_count; 1984 1985 output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg); 1986 } 1987 1988 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog) 1989 { 1990 return evsel__output_resort_cb(evsel, prog, NULL, NULL); 1991 } 1992 1993 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 1994 { 1995 output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL); 1996 } 1997 1998 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, 1999 hists__resort_cb_t cb) 2000 { 2001 output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL); 2002 } 2003 2004 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 2005 { 2006 if (he->leaf || hmd == HMD_FORCE_SIBLING) 2007 return false; 2008 2009 if (he->unfolded || hmd == HMD_FORCE_CHILD) 2010 return true; 2011 2012 return false; 2013 } 2014 2015 struct rb_node *rb_hierarchy_last(struct rb_node *node) 2016 { 2017 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2018 2019 while (can_goto_child(he, HMD_NORMAL)) { 2020 node = rb_last(&he->hroot_out.rb_root); 2021 he = rb_entry(node, struct hist_entry, rb_node); 2022 } 2023 return node; 2024 } 2025 2026 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 2027 { 2028 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2029 2030 if (can_goto_child(he, hmd)) 2031 node = rb_first_cached(&he->hroot_out); 2032 else 2033 node = rb_next(node); 2034 2035 while (node == NULL) { 2036 he = he->parent_he; 2037 if (he == NULL) 2038 break; 2039 2040 node = rb_next(&he->rb_node); 2041 } 2042 return node; 2043 } 2044 2045 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 2046 { 2047 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2048 2049 node = rb_prev(node); 2050 if (node) 2051 return rb_hierarchy_last(node); 2052 2053 he = he->parent_he; 2054 if (he == NULL) 2055 return NULL; 2056 2057 return &he->rb_node; 2058 } 2059 2060 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 2061 { 2062 struct rb_node *node; 2063 struct hist_entry *child; 2064 float percent; 2065 2066 if (he->leaf) 2067 return false; 2068 2069 node = rb_first_cached(&he->hroot_out); 2070 child = rb_entry(node, struct hist_entry, rb_node); 2071 2072 while (node && child->filtered) { 2073 node = rb_next(node); 2074 child = rb_entry(node, struct hist_entry, rb_node); 2075 } 2076 2077 if (node) 2078 percent = hist_entry__get_percent_limit(child); 2079 else 2080 percent = 0; 2081 2082 return node && percent >= limit; 2083 } 2084 2085 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 2086 enum hist_filter filter) 2087 { 2088 h->filtered &= ~(1 << filter); 2089 2090 if (symbol_conf.report_hierarchy) { 2091 struct hist_entry *parent = h->parent_he; 2092 2093 while (parent) { 2094 he_stat__add_stat(&parent->stat, &h->stat); 2095 2096 parent->filtered &= ~(1 << filter); 2097 2098 if (parent->filtered) 2099 goto next; 2100 2101 /* force fold unfiltered entry for simplicity */ 2102 parent->unfolded = false; 2103 parent->has_no_entry = false; 2104 parent->row_offset = 0; 2105 parent->nr_rows = 0; 2106 next: 2107 parent = parent->parent_he; 2108 } 2109 } 2110 2111 if (h->filtered) 2112 return; 2113 2114 /* force fold unfiltered entry for simplicity */ 2115 h->unfolded = false; 2116 h->has_no_entry = false; 2117 h->row_offset = 0; 2118 h->nr_rows = 0; 2119 2120 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 2121 2122 hists__inc_filter_stats(hists, h); 2123 hists__calc_col_len(hists, h); 2124 } 2125 2126 2127 static bool hists__filter_entry_by_dso(struct hists *hists, 2128 struct hist_entry *he) 2129 { 2130 if (hists->dso_filter != NULL && 2131 (he->ms.map == NULL || !RC_CHK_EQUAL(map__dso(he->ms.map), hists->dso_filter))) { 2132 he->filtered |= (1 << HIST_FILTER__DSO); 2133 return true; 2134 } 2135 2136 return false; 2137 } 2138 2139 static bool hists__filter_entry_by_thread(struct hists *hists, 2140 struct hist_entry *he) 2141 { 2142 if (hists->thread_filter != NULL && 2143 !RC_CHK_EQUAL(he->thread, hists->thread_filter)) { 2144 he->filtered |= (1 << HIST_FILTER__THREAD); 2145 return true; 2146 } 2147 2148 return false; 2149 } 2150 2151 static bool hists__filter_entry_by_symbol(struct hists *hists, 2152 struct hist_entry *he) 2153 { 2154 if (hists->symbol_filter_str != NULL && 2155 (!he->ms.sym || strstr(he->ms.sym->name, 2156 hists->symbol_filter_str) == NULL)) { 2157 he->filtered |= (1 << HIST_FILTER__SYMBOL); 2158 return true; 2159 } 2160 2161 return false; 2162 } 2163 2164 static bool hists__filter_entry_by_socket(struct hists *hists, 2165 struct hist_entry *he) 2166 { 2167 if ((hists->socket_filter > -1) && 2168 (he->socket != hists->socket_filter)) { 2169 he->filtered |= (1 << HIST_FILTER__SOCKET); 2170 return true; 2171 } 2172 2173 return false; 2174 } 2175 2176 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 2177 2178 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 2179 { 2180 struct rb_node *nd; 2181 2182 hists->stats.nr_non_filtered_samples = 0; 2183 2184 hists__reset_filter_stats(hists); 2185 hists__reset_col_len(hists); 2186 2187 for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) { 2188 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2189 2190 if (filter(hists, h)) 2191 continue; 2192 2193 hists__remove_entry_filter(hists, h, type); 2194 } 2195 } 2196 2197 static void resort_filtered_entry(struct rb_root_cached *root, 2198 struct hist_entry *he) 2199 { 2200 struct rb_node **p = &root->rb_root.rb_node; 2201 struct rb_node *parent = NULL; 2202 struct hist_entry *iter; 2203 struct rb_root_cached new_root = RB_ROOT_CACHED; 2204 struct rb_node *nd; 2205 bool leftmost = true; 2206 2207 while (*p != NULL) { 2208 parent = *p; 2209 iter = rb_entry(parent, struct hist_entry, rb_node); 2210 2211 if (hist_entry__sort(he, iter) > 0) 2212 p = &(*p)->rb_left; 2213 else { 2214 p = &(*p)->rb_right; 2215 leftmost = false; 2216 } 2217 } 2218 2219 rb_link_node(&he->rb_node, parent, p); 2220 rb_insert_color_cached(&he->rb_node, root, leftmost); 2221 2222 if (he->leaf || he->filtered) 2223 return; 2224 2225 nd = rb_first_cached(&he->hroot_out); 2226 while (nd) { 2227 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2228 2229 nd = rb_next(nd); 2230 rb_erase_cached(&h->rb_node, &he->hroot_out); 2231 2232 resort_filtered_entry(&new_root, h); 2233 } 2234 2235 he->hroot_out = new_root; 2236 } 2237 2238 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 2239 { 2240 struct rb_node *nd; 2241 struct rb_root_cached new_root = RB_ROOT_CACHED; 2242 2243 hists->stats.nr_non_filtered_samples = 0; 2244 2245 hists__reset_filter_stats(hists); 2246 hists__reset_col_len(hists); 2247 2248 nd = rb_first_cached(&hists->entries); 2249 while (nd) { 2250 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2251 int ret; 2252 2253 ret = hist_entry__filter(h, type, arg); 2254 2255 /* 2256 * case 1. non-matching type 2257 * zero out the period, set filter marker and move to child 2258 */ 2259 if (ret < 0) { 2260 memset(&h->stat, 0, sizeof(h->stat)); 2261 h->filtered |= (1 << type); 2262 2263 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 2264 } 2265 /* 2266 * case 2. matched type (filter out) 2267 * set filter marker and move to next 2268 */ 2269 else if (ret == 1) { 2270 h->filtered |= (1 << type); 2271 2272 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2273 } 2274 /* 2275 * case 3. ok (not filtered) 2276 * add period to hists and parents, erase the filter marker 2277 * and move to next sibling 2278 */ 2279 else { 2280 hists__remove_entry_filter(hists, h, type); 2281 2282 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2283 } 2284 } 2285 2286 hierarchy_recalc_total_periods(hists); 2287 2288 /* 2289 * resort output after applying a new filter since filter in a lower 2290 * hierarchy can change periods in a upper hierarchy. 2291 */ 2292 nd = rb_first_cached(&hists->entries); 2293 while (nd) { 2294 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2295 2296 nd = rb_next(nd); 2297 rb_erase_cached(&h->rb_node, &hists->entries); 2298 2299 resort_filtered_entry(&new_root, h); 2300 } 2301 2302 hists->entries = new_root; 2303 } 2304 2305 void hists__filter_by_thread(struct hists *hists) 2306 { 2307 if (symbol_conf.report_hierarchy) 2308 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 2309 hists->thread_filter); 2310 else 2311 hists__filter_by_type(hists, HIST_FILTER__THREAD, 2312 hists__filter_entry_by_thread); 2313 } 2314 2315 void hists__filter_by_dso(struct hists *hists) 2316 { 2317 if (symbol_conf.report_hierarchy) 2318 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 2319 hists->dso_filter); 2320 else 2321 hists__filter_by_type(hists, HIST_FILTER__DSO, 2322 hists__filter_entry_by_dso); 2323 } 2324 2325 void hists__filter_by_symbol(struct hists *hists) 2326 { 2327 if (symbol_conf.report_hierarchy) 2328 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2329 hists->symbol_filter_str); 2330 else 2331 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2332 hists__filter_entry_by_symbol); 2333 } 2334 2335 void hists__filter_by_socket(struct hists *hists) 2336 { 2337 if (symbol_conf.report_hierarchy) 2338 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2339 &hists->socket_filter); 2340 else 2341 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2342 hists__filter_entry_by_socket); 2343 } 2344 2345 void events_stats__inc(struct events_stats *stats, u32 type) 2346 { 2347 ++stats->nr_events[0]; 2348 ++stats->nr_events[type]; 2349 } 2350 2351 static void hists_stats__inc(struct hists_stats *stats) 2352 { 2353 ++stats->nr_samples; 2354 } 2355 2356 void hists__inc_nr_events(struct hists *hists) 2357 { 2358 hists_stats__inc(&hists->stats); 2359 } 2360 2361 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2362 { 2363 hists_stats__inc(&hists->stats); 2364 if (!filtered) 2365 hists->stats.nr_non_filtered_samples++; 2366 } 2367 2368 void hists__inc_nr_lost_samples(struct hists *hists, u32 lost) 2369 { 2370 hists->stats.nr_lost_samples += lost; 2371 } 2372 2373 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2374 struct hist_entry *pair) 2375 { 2376 struct rb_root_cached *root; 2377 struct rb_node **p; 2378 struct rb_node *parent = NULL; 2379 struct hist_entry *he; 2380 int64_t cmp; 2381 bool leftmost = true; 2382 2383 if (hists__has(hists, need_collapse)) 2384 root = &hists->entries_collapsed; 2385 else 2386 root = hists->entries_in; 2387 2388 p = &root->rb_root.rb_node; 2389 2390 while (*p != NULL) { 2391 parent = *p; 2392 he = rb_entry(parent, struct hist_entry, rb_node_in); 2393 2394 cmp = hist_entry__collapse(he, pair); 2395 2396 if (!cmp) 2397 goto out; 2398 2399 if (cmp < 0) 2400 p = &(*p)->rb_left; 2401 else { 2402 p = &(*p)->rb_right; 2403 leftmost = false; 2404 } 2405 } 2406 2407 he = hist_entry__new(pair, true); 2408 if (he) { 2409 memset(&he->stat, 0, sizeof(he->stat)); 2410 he->hists = hists; 2411 if (symbol_conf.cumulate_callchain) 2412 memset(he->stat_acc, 0, sizeof(he->stat)); 2413 rb_link_node(&he->rb_node_in, parent, p); 2414 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2415 hists__inc_stats(hists, he); 2416 he->dummy = true; 2417 } 2418 out: 2419 return he; 2420 } 2421 2422 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, 2423 struct rb_root_cached *root, 2424 struct hist_entry *pair) 2425 { 2426 struct rb_node **p; 2427 struct rb_node *parent = NULL; 2428 struct hist_entry *he; 2429 struct perf_hpp_fmt *fmt; 2430 bool leftmost = true; 2431 2432 p = &root->rb_root.rb_node; 2433 while (*p != NULL) { 2434 int64_t cmp = 0; 2435 2436 parent = *p; 2437 he = rb_entry(parent, struct hist_entry, rb_node_in); 2438 2439 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2440 cmp = fmt->collapse(fmt, he, pair); 2441 if (cmp) 2442 break; 2443 } 2444 if (!cmp) 2445 goto out; 2446 2447 if (cmp < 0) 2448 p = &parent->rb_left; 2449 else { 2450 p = &parent->rb_right; 2451 leftmost = false; 2452 } 2453 } 2454 2455 he = hist_entry__new(pair, true); 2456 if (he) { 2457 rb_link_node(&he->rb_node_in, parent, p); 2458 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2459 2460 he->dummy = true; 2461 he->hists = hists; 2462 memset(&he->stat, 0, sizeof(he->stat)); 2463 hists__inc_stats(hists, he); 2464 } 2465 out: 2466 return he; 2467 } 2468 2469 static struct hist_entry *hists__find_entry(struct hists *hists, 2470 struct hist_entry *he) 2471 { 2472 struct rb_node *n; 2473 2474 if (hists__has(hists, need_collapse)) 2475 n = hists->entries_collapsed.rb_root.rb_node; 2476 else 2477 n = hists->entries_in->rb_root.rb_node; 2478 2479 while (n) { 2480 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2481 int64_t cmp = hist_entry__collapse(iter, he); 2482 2483 if (cmp < 0) 2484 n = n->rb_left; 2485 else if (cmp > 0) 2486 n = n->rb_right; 2487 else 2488 return iter; 2489 } 2490 2491 return NULL; 2492 } 2493 2494 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root, 2495 struct hist_entry *he) 2496 { 2497 struct rb_node *n = root->rb_root.rb_node; 2498 2499 while (n) { 2500 struct hist_entry *iter; 2501 struct perf_hpp_fmt *fmt; 2502 int64_t cmp = 0; 2503 2504 iter = rb_entry(n, struct hist_entry, rb_node_in); 2505 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2506 cmp = fmt->collapse(fmt, iter, he); 2507 if (cmp) 2508 break; 2509 } 2510 2511 if (cmp < 0) 2512 n = n->rb_left; 2513 else if (cmp > 0) 2514 n = n->rb_right; 2515 else 2516 return iter; 2517 } 2518 2519 return NULL; 2520 } 2521 2522 static void hists__match_hierarchy(struct rb_root_cached *leader_root, 2523 struct rb_root_cached *other_root) 2524 { 2525 struct rb_node *nd; 2526 struct hist_entry *pos, *pair; 2527 2528 for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) { 2529 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2530 pair = hists__find_hierarchy_entry(other_root, pos); 2531 2532 if (pair) { 2533 hist_entry__add_pair(pair, pos); 2534 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); 2535 } 2536 } 2537 } 2538 2539 /* 2540 * Look for pairs to link to the leader buckets (hist_entries): 2541 */ 2542 void hists__match(struct hists *leader, struct hists *other) 2543 { 2544 struct rb_root_cached *root; 2545 struct rb_node *nd; 2546 struct hist_entry *pos, *pair; 2547 2548 if (symbol_conf.report_hierarchy) { 2549 /* hierarchy report always collapses entries */ 2550 return hists__match_hierarchy(&leader->entries_collapsed, 2551 &other->entries_collapsed); 2552 } 2553 2554 if (hists__has(leader, need_collapse)) 2555 root = &leader->entries_collapsed; 2556 else 2557 root = leader->entries_in; 2558 2559 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2560 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2561 pair = hists__find_entry(other, pos); 2562 2563 if (pair) 2564 hist_entry__add_pair(pair, pos); 2565 } 2566 } 2567 2568 static int hists__link_hierarchy(struct hists *leader_hists, 2569 struct hist_entry *parent, 2570 struct rb_root_cached *leader_root, 2571 struct rb_root_cached *other_root) 2572 { 2573 struct rb_node *nd; 2574 struct hist_entry *pos, *leader; 2575 2576 for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) { 2577 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2578 2579 if (hist_entry__has_pairs(pos)) { 2580 bool found = false; 2581 2582 list_for_each_entry(leader, &pos->pairs.head, pairs.node) { 2583 if (leader->hists == leader_hists) { 2584 found = true; 2585 break; 2586 } 2587 } 2588 if (!found) 2589 return -1; 2590 } else { 2591 leader = add_dummy_hierarchy_entry(leader_hists, 2592 leader_root, pos); 2593 if (leader == NULL) 2594 return -1; 2595 2596 /* do not point parent in the pos */ 2597 leader->parent_he = parent; 2598 2599 hist_entry__add_pair(pos, leader); 2600 } 2601 2602 if (!pos->leaf) { 2603 if (hists__link_hierarchy(leader_hists, leader, 2604 &leader->hroot_in, 2605 &pos->hroot_in) < 0) 2606 return -1; 2607 } 2608 } 2609 return 0; 2610 } 2611 2612 /* 2613 * Look for entries in the other hists that are not present in the leader, if 2614 * we find them, just add a dummy entry on the leader hists, with period=0, 2615 * nr_events=0, to serve as the list header. 2616 */ 2617 int hists__link(struct hists *leader, struct hists *other) 2618 { 2619 struct rb_root_cached *root; 2620 struct rb_node *nd; 2621 struct hist_entry *pos, *pair; 2622 2623 if (symbol_conf.report_hierarchy) { 2624 /* hierarchy report always collapses entries */ 2625 return hists__link_hierarchy(leader, NULL, 2626 &leader->entries_collapsed, 2627 &other->entries_collapsed); 2628 } 2629 2630 if (hists__has(other, need_collapse)) 2631 root = &other->entries_collapsed; 2632 else 2633 root = other->entries_in; 2634 2635 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2636 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2637 2638 if (!hist_entry__has_pairs(pos)) { 2639 pair = hists__add_dummy_entry(leader, pos); 2640 if (pair == NULL) 2641 return -1; 2642 hist_entry__add_pair(pos, pair); 2643 } 2644 } 2645 2646 return 0; 2647 } 2648 2649 int hists__unlink(struct hists *hists) 2650 { 2651 struct rb_root_cached *root; 2652 struct rb_node *nd; 2653 struct hist_entry *pos; 2654 2655 if (hists__has(hists, need_collapse)) 2656 root = &hists->entries_collapsed; 2657 else 2658 root = hists->entries_in; 2659 2660 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2661 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2662 list_del_init(&pos->pairs.node); 2663 } 2664 2665 return 0; 2666 } 2667 2668 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2669 struct perf_sample *sample, bool nonany_branch_mode, 2670 u64 *total_cycles) 2671 { 2672 struct branch_info *bi; 2673 struct branch_entry *entries = perf_sample__branch_entries(sample); 2674 2675 /* If we have branch cycles always annotate them. */ 2676 if (bs && bs->nr && entries[0].flags.cycles) { 2677 bi = sample__resolve_bstack(sample, al); 2678 if (bi) { 2679 struct addr_map_symbol *prev = NULL; 2680 2681 /* 2682 * Ignore errors, still want to process the 2683 * other entries. 2684 * 2685 * For non standard branch modes always 2686 * force no IPC (prev == NULL) 2687 * 2688 * Note that perf stores branches reversed from 2689 * program order! 2690 */ 2691 for (int i = bs->nr - 1; i >= 0; i--) { 2692 addr_map_symbol__account_cycles(&bi[i].from, 2693 nonany_branch_mode ? NULL : prev, 2694 bi[i].flags.cycles); 2695 prev = &bi[i].to; 2696 2697 if (total_cycles) 2698 *total_cycles += bi[i].flags.cycles; 2699 } 2700 for (unsigned int i = 0; i < bs->nr; i++) { 2701 map_symbol__exit(&bi[i].to.ms); 2702 map_symbol__exit(&bi[i].from.ms); 2703 } 2704 free(bi); 2705 } 2706 } 2707 } 2708 2709 size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp) 2710 { 2711 struct evsel *pos; 2712 size_t ret = 0; 2713 2714 evlist__for_each_entry(evlist, pos) { 2715 struct hists *hists = evsel__hists(pos); 2716 2717 if (symbol_conf.skip_empty && !hists->stats.nr_samples && 2718 !hists->stats.nr_lost_samples) 2719 continue; 2720 2721 ret += fprintf(fp, "%s stats:\n", evsel__name(pos)); 2722 if (hists->stats.nr_samples) 2723 ret += fprintf(fp, "%16s events: %10d\n", 2724 "SAMPLE", hists->stats.nr_samples); 2725 if (hists->stats.nr_lost_samples) 2726 ret += fprintf(fp, "%16s events: %10d\n", 2727 "LOST_SAMPLES", hists->stats.nr_lost_samples); 2728 } 2729 2730 return ret; 2731 } 2732 2733 2734 u64 hists__total_period(struct hists *hists) 2735 { 2736 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2737 hists->stats.total_period; 2738 } 2739 2740 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq) 2741 { 2742 char unit; 2743 int printed; 2744 const struct dso *dso = hists->dso_filter; 2745 struct thread *thread = hists->thread_filter; 2746 int socket_id = hists->socket_filter; 2747 unsigned long nr_samples = hists->stats.nr_samples; 2748 u64 nr_events = hists->stats.total_period; 2749 struct evsel *evsel = hists_to_evsel(hists); 2750 const char *ev_name = evsel__name(evsel); 2751 char buf[512], sample_freq_str[64] = ""; 2752 size_t buflen = sizeof(buf); 2753 char ref[30] = " show reference callgraph, "; 2754 bool enable_ref = false; 2755 2756 if (symbol_conf.filter_relative) { 2757 nr_samples = hists->stats.nr_non_filtered_samples; 2758 nr_events = hists->stats.total_non_filtered_period; 2759 } 2760 2761 if (evsel__is_group_event(evsel)) { 2762 struct evsel *pos; 2763 2764 evsel__group_desc(evsel, buf, buflen); 2765 ev_name = buf; 2766 2767 for_each_group_member(pos, evsel) { 2768 struct hists *pos_hists = evsel__hists(pos); 2769 2770 if (symbol_conf.filter_relative) { 2771 nr_samples += pos_hists->stats.nr_non_filtered_samples; 2772 nr_events += pos_hists->stats.total_non_filtered_period; 2773 } else { 2774 nr_samples += pos_hists->stats.nr_samples; 2775 nr_events += pos_hists->stats.total_period; 2776 } 2777 } 2778 } 2779 2780 if (symbol_conf.show_ref_callgraph && 2781 strstr(ev_name, "call-graph=no")) 2782 enable_ref = true; 2783 2784 if (show_freq) 2785 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq); 2786 2787 nr_samples = convert_unit(nr_samples, &unit); 2788 printed = scnprintf(bf, size, 2789 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64, 2790 nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "", 2791 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events); 2792 2793 2794 if (hists->uid_filter_str) 2795 printed += snprintf(bf + printed, size - printed, 2796 ", UID: %s", hists->uid_filter_str); 2797 if (thread) { 2798 if (hists__has(hists, thread)) { 2799 printed += scnprintf(bf + printed, size - printed, 2800 ", Thread: %s(%d)", 2801 (thread__comm_set(thread) ? thread__comm_str(thread) : ""), 2802 thread__tid(thread)); 2803 } else { 2804 printed += scnprintf(bf + printed, size - printed, 2805 ", Thread: %s", 2806 (thread__comm_set(thread) ? thread__comm_str(thread) : "")); 2807 } 2808 } 2809 if (dso) 2810 printed += scnprintf(bf + printed, size - printed, 2811 ", DSO: %s", dso__short_name(dso)); 2812 if (socket_id > -1) 2813 printed += scnprintf(bf + printed, size - printed, 2814 ", Processor Socket: %d", socket_id); 2815 2816 return printed; 2817 } 2818 2819 int parse_filter_percentage(const struct option *opt __maybe_unused, 2820 const char *arg, int unset __maybe_unused) 2821 { 2822 if (!strcmp(arg, "relative")) 2823 symbol_conf.filter_relative = true; 2824 else if (!strcmp(arg, "absolute")) 2825 symbol_conf.filter_relative = false; 2826 else { 2827 pr_debug("Invalid percentage: %s\n", arg); 2828 return -1; 2829 } 2830 2831 return 0; 2832 } 2833 2834 int perf_hist_config(const char *var, const char *value) 2835 { 2836 if (!strcmp(var, "hist.percentage")) 2837 return parse_filter_percentage(NULL, value, 0); 2838 2839 return 0; 2840 } 2841 2842 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2843 { 2844 memset(hists, 0, sizeof(*hists)); 2845 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED; 2846 hists->entries_in = &hists->entries_in_array[0]; 2847 hists->entries_collapsed = RB_ROOT_CACHED; 2848 hists->entries = RB_ROOT_CACHED; 2849 mutex_init(&hists->lock); 2850 hists->socket_filter = -1; 2851 hists->hpp_list = hpp_list; 2852 INIT_LIST_HEAD(&hists->hpp_formats); 2853 return 0; 2854 } 2855 2856 static void hists__delete_remaining_entries(struct rb_root_cached *root) 2857 { 2858 struct rb_node *node; 2859 struct hist_entry *he; 2860 2861 while (!RB_EMPTY_ROOT(&root->rb_root)) { 2862 node = rb_first_cached(root); 2863 rb_erase_cached(node, root); 2864 2865 he = rb_entry(node, struct hist_entry, rb_node_in); 2866 hist_entry__delete(he); 2867 } 2868 } 2869 2870 static void hists__delete_all_entries(struct hists *hists) 2871 { 2872 hists__delete_entries(hists); 2873 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2874 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2875 hists__delete_remaining_entries(&hists->entries_collapsed); 2876 } 2877 2878 static void hists_evsel__exit(struct evsel *evsel) 2879 { 2880 struct hists *hists = evsel__hists(evsel); 2881 struct perf_hpp_fmt *fmt, *pos; 2882 struct perf_hpp_list_node *node, *tmp; 2883 2884 hists__delete_all_entries(hists); 2885 2886 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2887 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2888 list_del_init(&fmt->list); 2889 free(fmt); 2890 } 2891 list_del_init(&node->list); 2892 free(node); 2893 } 2894 } 2895 2896 static int hists_evsel__init(struct evsel *evsel) 2897 { 2898 struct hists *hists = evsel__hists(evsel); 2899 2900 __hists__init(hists, &perf_hpp_list); 2901 return 0; 2902 } 2903 2904 /* 2905 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2906 * stored in the rbtree... 2907 */ 2908 2909 int hists__init(void) 2910 { 2911 int err = evsel__object_config(sizeof(struct hists_evsel), 2912 hists_evsel__init, hists_evsel__exit); 2913 if (err) 2914 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2915 2916 return err; 2917 } 2918 2919 void perf_hpp_list__init(struct perf_hpp_list *list) 2920 { 2921 INIT_LIST_HEAD(&list->fields); 2922 INIT_LIST_HEAD(&list->sorts); 2923 } 2924