1 // SPDX-License-Identifier: GPL-2.0 2 #include "callchain.h" 3 #include "debug.h" 4 #include "dso.h" 5 #include "build-id.h" 6 #include "hist.h" 7 #include "kvm-stat.h" 8 #include "map.h" 9 #include "map_symbol.h" 10 #include "branch.h" 11 #include "mem-events.h" 12 #include "session.h" 13 #include "namespaces.h" 14 #include "cgroup.h" 15 #include "sort.h" 16 #include "units.h" 17 #include "evlist.h" 18 #include "evsel.h" 19 #include "annotate.h" 20 #include "srcline.h" 21 #include "symbol.h" 22 #include "thread.h" 23 #include "block-info.h" 24 #include "ui/progress.h" 25 #include <errno.h> 26 #include <math.h> 27 #include <inttypes.h> 28 #include <sys/param.h> 29 #include <linux/rbtree.h> 30 #include <linux/string.h> 31 #include <linux/time64.h> 32 #include <linux/zalloc.h> 33 34 static bool hists__filter_entry_by_dso(struct hists *hists, 35 struct hist_entry *he); 36 static bool hists__filter_entry_by_thread(struct hists *hists, 37 struct hist_entry *he); 38 static bool hists__filter_entry_by_symbol(struct hists *hists, 39 struct hist_entry *he); 40 static bool hists__filter_entry_by_socket(struct hists *hists, 41 struct hist_entry *he); 42 43 u16 hists__col_len(struct hists *hists, enum hist_column col) 44 { 45 return hists->col_len[col]; 46 } 47 48 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 49 { 50 hists->col_len[col] = len; 51 } 52 53 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 54 { 55 if (len > hists__col_len(hists, col)) { 56 hists__set_col_len(hists, col, len); 57 return true; 58 } 59 return false; 60 } 61 62 void hists__reset_col_len(struct hists *hists) 63 { 64 enum hist_column col; 65 66 for (col = 0; col < HISTC_NR_COLS; ++col) 67 hists__set_col_len(hists, col, 0); 68 } 69 70 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 71 { 72 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 73 74 if (hists__col_len(hists, dso) < unresolved_col_width && 75 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 76 !symbol_conf.dso_list) 77 hists__set_col_len(hists, dso, unresolved_col_width); 78 } 79 80 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 81 { 82 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 83 int symlen; 84 u16 len; 85 86 if (h->block_info) 87 return; 88 /* 89 * +4 accounts for '[x] ' priv level info 90 * +2 accounts for 0x prefix on raw addresses 91 * +3 accounts for ' y ' symtab origin info 92 */ 93 if (h->ms.sym) { 94 symlen = h->ms.sym->namelen + 4; 95 if (verbose > 0) 96 symlen += BITS_PER_LONG / 4 + 2 + 3; 97 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 98 } else { 99 symlen = unresolved_col_width + 4 + 2; 100 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 101 hists__set_unres_dso_col_len(hists, HISTC_DSO); 102 } 103 104 len = thread__comm_len(h->thread); 105 if (hists__new_col_len(hists, HISTC_COMM, len)) 106 hists__set_col_len(hists, HISTC_THREAD, len + 8); 107 108 if (h->ms.map) { 109 len = dso__name_len(map__dso(h->ms.map)); 110 hists__new_col_len(hists, HISTC_DSO, len); 111 } 112 113 if (h->parent) 114 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 115 116 if (h->branch_info) { 117 if (h->branch_info->from.ms.sym) { 118 symlen = (int)h->branch_info->from.ms.sym->namelen + 4; 119 if (verbose > 0) 120 symlen += BITS_PER_LONG / 4 + 2 + 3; 121 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 122 123 symlen = dso__name_len(map__dso(h->branch_info->from.ms.map)); 124 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 125 } else { 126 symlen = unresolved_col_width + 4 + 2; 127 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 128 hists__new_col_len(hists, HISTC_ADDR_FROM, symlen); 129 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 130 } 131 132 if (h->branch_info->to.ms.sym) { 133 symlen = (int)h->branch_info->to.ms.sym->namelen + 4; 134 if (verbose > 0) 135 symlen += BITS_PER_LONG / 4 + 2 + 3; 136 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 137 138 symlen = dso__name_len(map__dso(h->branch_info->to.ms.map)); 139 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 140 } else { 141 symlen = unresolved_col_width + 4 + 2; 142 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 143 hists__new_col_len(hists, HISTC_ADDR_TO, symlen); 144 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 145 } 146 147 if (h->branch_info->srcline_from) 148 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 149 strlen(h->branch_info->srcline_from)); 150 if (h->branch_info->srcline_to) 151 hists__new_col_len(hists, HISTC_SRCLINE_TO, 152 strlen(h->branch_info->srcline_to)); 153 } 154 155 if (h->mem_info) { 156 if (h->mem_info->daddr.ms.sym) { 157 symlen = (int)h->mem_info->daddr.ms.sym->namelen + 4 158 + unresolved_col_width + 2; 159 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 160 symlen); 161 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 162 symlen + 1); 163 } else { 164 symlen = unresolved_col_width + 4 + 2; 165 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 166 symlen); 167 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 168 symlen); 169 } 170 171 if (h->mem_info->iaddr.ms.sym) { 172 symlen = (int)h->mem_info->iaddr.ms.sym->namelen + 4 173 + unresolved_col_width + 2; 174 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 175 symlen); 176 } else { 177 symlen = unresolved_col_width + 4 + 2; 178 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 179 symlen); 180 } 181 182 if (h->mem_info->daddr.ms.map) { 183 symlen = dso__name_len(map__dso(h->mem_info->daddr.ms.map)); 184 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 185 symlen); 186 } else { 187 symlen = unresolved_col_width + 4 + 2; 188 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 189 } 190 191 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR, 192 unresolved_col_width + 4 + 2); 193 194 hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE, 195 unresolved_col_width + 4 + 2); 196 197 } else { 198 symlen = unresolved_col_width + 4 + 2; 199 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 200 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 201 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 202 } 203 204 hists__new_col_len(hists, HISTC_CGROUP, 6); 205 hists__new_col_len(hists, HISTC_CGROUP_ID, 20); 206 hists__new_col_len(hists, HISTC_CPU, 3); 207 hists__new_col_len(hists, HISTC_SOCKET, 6); 208 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 209 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 210 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 211 hists__new_col_len(hists, HISTC_MEM_LVL, 36 + 3); 212 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 213 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 214 hists__new_col_len(hists, HISTC_MEM_BLOCKED, 10); 215 hists__new_col_len(hists, HISTC_LOCAL_INS_LAT, 13); 216 hists__new_col_len(hists, HISTC_GLOBAL_INS_LAT, 13); 217 hists__new_col_len(hists, HISTC_LOCAL_P_STAGE_CYC, 13); 218 hists__new_col_len(hists, HISTC_GLOBAL_P_STAGE_CYC, 13); 219 hists__new_col_len(hists, HISTC_ADDR, BITS_PER_LONG / 4 + 2); 220 221 if (symbol_conf.nanosecs) 222 hists__new_col_len(hists, HISTC_TIME, 16); 223 else 224 hists__new_col_len(hists, HISTC_TIME, 12); 225 hists__new_col_len(hists, HISTC_CODE_PAGE_SIZE, 6); 226 227 if (h->srcline) { 228 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header)); 229 hists__new_col_len(hists, HISTC_SRCLINE, len); 230 } 231 232 if (h->srcfile) 233 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 234 235 if (h->transaction) 236 hists__new_col_len(hists, HISTC_TRANSACTION, 237 hist_entry__transaction_len()); 238 239 if (h->trace_output) 240 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 241 242 if (h->cgroup) { 243 const char *cgrp_name = "unknown"; 244 struct cgroup *cgrp = cgroup__find(maps__machine(h->ms.maps)->env, 245 h->cgroup); 246 if (cgrp != NULL) 247 cgrp_name = cgrp->name; 248 249 hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name)); 250 } 251 } 252 253 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 254 { 255 struct rb_node *next = rb_first_cached(&hists->entries); 256 struct hist_entry *n; 257 int row = 0; 258 259 hists__reset_col_len(hists); 260 261 while (next && row++ < max_rows) { 262 n = rb_entry(next, struct hist_entry, rb_node); 263 if (!n->filtered) 264 hists__calc_col_len(hists, n); 265 next = rb_next(&n->rb_node); 266 } 267 } 268 269 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 270 unsigned int cpumode, u64 period) 271 { 272 switch (cpumode) { 273 case PERF_RECORD_MISC_KERNEL: 274 he_stat->period_sys += period; 275 break; 276 case PERF_RECORD_MISC_USER: 277 he_stat->period_us += period; 278 break; 279 case PERF_RECORD_MISC_GUEST_KERNEL: 280 he_stat->period_guest_sys += period; 281 break; 282 case PERF_RECORD_MISC_GUEST_USER: 283 he_stat->period_guest_us += period; 284 break; 285 default: 286 break; 287 } 288 } 289 290 static long hist_time(unsigned long htime) 291 { 292 unsigned long time_quantum = symbol_conf.time_quantum; 293 if (time_quantum) 294 return (htime / time_quantum) * time_quantum; 295 return htime; 296 } 297 298 static void he_stat__add_period(struct he_stat *he_stat, u64 period) 299 { 300 he_stat->period += period; 301 he_stat->nr_events += 1; 302 } 303 304 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 305 { 306 dest->period += src->period; 307 dest->period_sys += src->period_sys; 308 dest->period_us += src->period_us; 309 dest->period_guest_sys += src->period_guest_sys; 310 dest->period_guest_us += src->period_guest_us; 311 dest->nr_events += src->nr_events; 312 } 313 314 static void he_stat__decay(struct he_stat *he_stat) 315 { 316 he_stat->period = (he_stat->period * 7) / 8; 317 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 318 /* XXX need decay for weight too? */ 319 } 320 321 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 322 323 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 324 { 325 u64 prev_period = he->stat.period; 326 u64 diff; 327 328 if (prev_period == 0) 329 return true; 330 331 he_stat__decay(&he->stat); 332 if (symbol_conf.cumulate_callchain) 333 he_stat__decay(he->stat_acc); 334 decay_callchain(he->callchain); 335 336 diff = prev_period - he->stat.period; 337 338 if (!he->depth) { 339 hists->stats.total_period -= diff; 340 if (!he->filtered) 341 hists->stats.total_non_filtered_period -= diff; 342 } 343 344 if (!he->leaf) { 345 struct hist_entry *child; 346 struct rb_node *node = rb_first_cached(&he->hroot_out); 347 while (node) { 348 child = rb_entry(node, struct hist_entry, rb_node); 349 node = rb_next(node); 350 351 if (hists__decay_entry(hists, child)) 352 hists__delete_entry(hists, child); 353 } 354 } 355 356 return he->stat.period == 0; 357 } 358 359 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 360 { 361 struct rb_root_cached *root_in; 362 struct rb_root_cached *root_out; 363 364 if (he->parent_he) { 365 root_in = &he->parent_he->hroot_in; 366 root_out = &he->parent_he->hroot_out; 367 } else { 368 if (hists__has(hists, need_collapse)) 369 root_in = &hists->entries_collapsed; 370 else 371 root_in = hists->entries_in; 372 root_out = &hists->entries; 373 } 374 375 rb_erase_cached(&he->rb_node_in, root_in); 376 rb_erase_cached(&he->rb_node, root_out); 377 378 --hists->nr_entries; 379 if (!he->filtered) 380 --hists->nr_non_filtered_entries; 381 382 hist_entry__delete(he); 383 } 384 385 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 386 { 387 struct rb_node *next = rb_first_cached(&hists->entries); 388 struct hist_entry *n; 389 390 while (next) { 391 n = rb_entry(next, struct hist_entry, rb_node); 392 next = rb_next(&n->rb_node); 393 if (((zap_user && n->level == '.') || 394 (zap_kernel && n->level != '.') || 395 hists__decay_entry(hists, n))) { 396 hists__delete_entry(hists, n); 397 } 398 } 399 } 400 401 void hists__delete_entries(struct hists *hists) 402 { 403 struct rb_node *next = rb_first_cached(&hists->entries); 404 struct hist_entry *n; 405 406 while (next) { 407 n = rb_entry(next, struct hist_entry, rb_node); 408 next = rb_next(&n->rb_node); 409 410 hists__delete_entry(hists, n); 411 } 412 } 413 414 struct hist_entry *hists__get_entry(struct hists *hists, int idx) 415 { 416 struct rb_node *next = rb_first_cached(&hists->entries); 417 struct hist_entry *n; 418 int i = 0; 419 420 while (next) { 421 n = rb_entry(next, struct hist_entry, rb_node); 422 if (i == idx) 423 return n; 424 425 next = rb_next(&n->rb_node); 426 i++; 427 } 428 429 return NULL; 430 } 431 432 /* 433 * histogram, sorted on item, collects periods 434 */ 435 436 static int hist_entry__init(struct hist_entry *he, 437 struct hist_entry *template, 438 bool sample_self, 439 size_t callchain_size) 440 { 441 *he = *template; 442 he->callchain_size = callchain_size; 443 444 if (symbol_conf.cumulate_callchain) { 445 he->stat_acc = malloc(sizeof(he->stat)); 446 if (he->stat_acc == NULL) 447 return -ENOMEM; 448 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 449 if (!sample_self) 450 memset(&he->stat, 0, sizeof(he->stat)); 451 } 452 453 he->ms.maps = maps__get(he->ms.maps); 454 he->ms.map = map__get(he->ms.map); 455 456 if (he->branch_info) { 457 /* 458 * This branch info is (a part of) allocated from 459 * sample__resolve_bstack() and will be freed after 460 * adding new entries. So we need to save a copy. 461 */ 462 he->branch_info = malloc(sizeof(*he->branch_info)); 463 if (he->branch_info == NULL) 464 goto err; 465 466 memcpy(he->branch_info, template->branch_info, 467 sizeof(*he->branch_info)); 468 469 he->branch_info->from.ms.map = map__get(he->branch_info->from.ms.map); 470 he->branch_info->to.ms.map = map__get(he->branch_info->to.ms.map); 471 } 472 473 if (he->mem_info) { 474 he->mem_info->iaddr.ms.map = map__get(he->mem_info->iaddr.ms.map); 475 he->mem_info->daddr.ms.map = map__get(he->mem_info->daddr.ms.map); 476 } 477 478 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 479 callchain_init(he->callchain); 480 481 if (he->raw_data) { 482 he->raw_data = memdup(he->raw_data, he->raw_size); 483 if (he->raw_data == NULL) 484 goto err_infos; 485 } 486 487 if (he->srcline && he->srcline != SRCLINE_UNKNOWN) { 488 he->srcline = strdup(he->srcline); 489 if (he->srcline == NULL) 490 goto err_rawdata; 491 } 492 493 if (symbol_conf.res_sample) { 494 he->res_samples = calloc(sizeof(struct res_sample), 495 symbol_conf.res_sample); 496 if (!he->res_samples) 497 goto err_srcline; 498 } 499 500 INIT_LIST_HEAD(&he->pairs.node); 501 he->thread = thread__get(he->thread); 502 he->hroot_in = RB_ROOT_CACHED; 503 he->hroot_out = RB_ROOT_CACHED; 504 505 if (!symbol_conf.report_hierarchy) 506 he->leaf = true; 507 508 return 0; 509 510 err_srcline: 511 zfree(&he->srcline); 512 513 err_rawdata: 514 zfree(&he->raw_data); 515 516 err_infos: 517 if (he->branch_info) { 518 map__put(he->branch_info->from.ms.map); 519 map__put(he->branch_info->to.ms.map); 520 zfree(&he->branch_info); 521 } 522 if (he->mem_info) { 523 map__put(he->mem_info->iaddr.ms.map); 524 map__put(he->mem_info->daddr.ms.map); 525 } 526 err: 527 maps__zput(he->ms.maps); 528 map__zput(he->ms.map); 529 zfree(&he->stat_acc); 530 return -ENOMEM; 531 } 532 533 static void *hist_entry__zalloc(size_t size) 534 { 535 return zalloc(size + sizeof(struct hist_entry)); 536 } 537 538 static void hist_entry__free(void *ptr) 539 { 540 free(ptr); 541 } 542 543 static struct hist_entry_ops default_ops = { 544 .new = hist_entry__zalloc, 545 .free = hist_entry__free, 546 }; 547 548 static struct hist_entry *hist_entry__new(struct hist_entry *template, 549 bool sample_self) 550 { 551 struct hist_entry_ops *ops = template->ops; 552 size_t callchain_size = 0; 553 struct hist_entry *he; 554 int err = 0; 555 556 if (!ops) 557 ops = template->ops = &default_ops; 558 559 if (symbol_conf.use_callchain) 560 callchain_size = sizeof(struct callchain_root); 561 562 he = ops->new(callchain_size); 563 if (he) { 564 err = hist_entry__init(he, template, sample_self, callchain_size); 565 if (err) { 566 ops->free(he); 567 he = NULL; 568 } 569 } 570 571 return he; 572 } 573 574 static u8 symbol__parent_filter(const struct symbol *parent) 575 { 576 if (symbol_conf.exclude_other && parent == NULL) 577 return 1 << HIST_FILTER__PARENT; 578 return 0; 579 } 580 581 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 582 { 583 if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain) 584 return; 585 586 he->hists->callchain_period += period; 587 if (!he->filtered) 588 he->hists->callchain_non_filtered_period += period; 589 } 590 591 static struct hist_entry *hists__findnew_entry(struct hists *hists, 592 struct hist_entry *entry, 593 const struct addr_location *al, 594 bool sample_self) 595 { 596 struct rb_node **p; 597 struct rb_node *parent = NULL; 598 struct hist_entry *he; 599 int64_t cmp; 600 u64 period = entry->stat.period; 601 bool leftmost = true; 602 603 p = &hists->entries_in->rb_root.rb_node; 604 605 while (*p != NULL) { 606 parent = *p; 607 he = rb_entry(parent, struct hist_entry, rb_node_in); 608 609 /* 610 * Make sure that it receives arguments in a same order as 611 * hist_entry__collapse() so that we can use an appropriate 612 * function when searching an entry regardless which sort 613 * keys were used. 614 */ 615 cmp = hist_entry__cmp(he, entry); 616 if (!cmp) { 617 if (sample_self) { 618 he_stat__add_period(&he->stat, period); 619 hist_entry__add_callchain_period(he, period); 620 } 621 if (symbol_conf.cumulate_callchain) 622 he_stat__add_period(he->stat_acc, period); 623 624 /* 625 * This mem info was allocated from sample__resolve_mem 626 * and will not be used anymore. 627 */ 628 mem_info__zput(entry->mem_info); 629 630 block_info__zput(entry->block_info); 631 632 kvm_info__zput(entry->kvm_info); 633 634 /* If the map of an existing hist_entry has 635 * become out-of-date due to an exec() or 636 * similar, update it. Otherwise we will 637 * mis-adjust symbol addresses when computing 638 * the history counter to increment. 639 */ 640 if (he->ms.map != entry->ms.map) { 641 map__put(he->ms.map); 642 he->ms.map = map__get(entry->ms.map); 643 } 644 goto out; 645 } 646 647 if (cmp < 0) 648 p = &(*p)->rb_left; 649 else { 650 p = &(*p)->rb_right; 651 leftmost = false; 652 } 653 } 654 655 he = hist_entry__new(entry, sample_self); 656 if (!he) 657 return NULL; 658 659 if (sample_self) 660 hist_entry__add_callchain_period(he, period); 661 hists->nr_entries++; 662 663 rb_link_node(&he->rb_node_in, parent, p); 664 rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost); 665 out: 666 if (sample_self) 667 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 668 if (symbol_conf.cumulate_callchain) 669 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 670 return he; 671 } 672 673 static unsigned random_max(unsigned high) 674 { 675 unsigned thresh = -high % high; 676 for (;;) { 677 unsigned r = random(); 678 if (r >= thresh) 679 return r % high; 680 } 681 } 682 683 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample) 684 { 685 struct res_sample *r; 686 int j; 687 688 if (he->num_res < symbol_conf.res_sample) { 689 j = he->num_res++; 690 } else { 691 j = random_max(symbol_conf.res_sample); 692 } 693 r = &he->res_samples[j]; 694 r->time = sample->time; 695 r->cpu = sample->cpu; 696 r->tid = sample->tid; 697 } 698 699 static struct hist_entry* 700 __hists__add_entry(struct hists *hists, 701 struct addr_location *al, 702 struct symbol *sym_parent, 703 struct branch_info *bi, 704 struct mem_info *mi, 705 struct kvm_info *ki, 706 struct block_info *block_info, 707 struct perf_sample *sample, 708 bool sample_self, 709 struct hist_entry_ops *ops) 710 { 711 struct namespaces *ns = thread__namespaces(al->thread); 712 struct hist_entry entry = { 713 .thread = al->thread, 714 .comm = thread__comm(al->thread), 715 .cgroup_id = { 716 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0, 717 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0, 718 }, 719 .cgroup = sample->cgroup, 720 .ms = { 721 .maps = al->maps, 722 .map = al->map, 723 .sym = al->sym, 724 }, 725 .srcline = (char *) al->srcline, 726 .socket = al->socket, 727 .cpu = al->cpu, 728 .cpumode = al->cpumode, 729 .ip = al->addr, 730 .level = al->level, 731 .code_page_size = sample->code_page_size, 732 .stat = { 733 .nr_events = 1, 734 .period = sample->period, 735 }, 736 .parent = sym_parent, 737 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 738 .hists = hists, 739 .branch_info = bi, 740 .mem_info = mi, 741 .kvm_info = ki, 742 .block_info = block_info, 743 .transaction = sample->transaction, 744 .raw_data = sample->raw_data, 745 .raw_size = sample->raw_size, 746 .ops = ops, 747 .time = hist_time(sample->time), 748 .weight = sample->weight, 749 .ins_lat = sample->ins_lat, 750 .p_stage_cyc = sample->p_stage_cyc, 751 .simd_flags = sample->simd_flags, 752 }, *he = hists__findnew_entry(hists, &entry, al, sample_self); 753 754 if (!hists->has_callchains && he && he->callchain_size != 0) 755 hists->has_callchains = true; 756 if (he && symbol_conf.res_sample) 757 hists__res_sample(he, sample); 758 return he; 759 } 760 761 struct hist_entry *hists__add_entry(struct hists *hists, 762 struct addr_location *al, 763 struct symbol *sym_parent, 764 struct branch_info *bi, 765 struct mem_info *mi, 766 struct kvm_info *ki, 767 struct perf_sample *sample, 768 bool sample_self) 769 { 770 return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL, 771 sample, sample_self, NULL); 772 } 773 774 struct hist_entry *hists__add_entry_ops(struct hists *hists, 775 struct hist_entry_ops *ops, 776 struct addr_location *al, 777 struct symbol *sym_parent, 778 struct branch_info *bi, 779 struct mem_info *mi, 780 struct kvm_info *ki, 781 struct perf_sample *sample, 782 bool sample_self) 783 { 784 return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL, 785 sample, sample_self, ops); 786 } 787 788 struct hist_entry *hists__add_entry_block(struct hists *hists, 789 struct addr_location *al, 790 struct block_info *block_info) 791 { 792 struct hist_entry entry = { 793 .block_info = block_info, 794 .hists = hists, 795 .ms = { 796 .maps = al->maps, 797 .map = al->map, 798 .sym = al->sym, 799 }, 800 }, *he = hists__findnew_entry(hists, &entry, al, false); 801 802 return he; 803 } 804 805 static int 806 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 807 struct addr_location *al __maybe_unused) 808 { 809 return 0; 810 } 811 812 static int 813 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 814 struct addr_location *al __maybe_unused) 815 { 816 return 0; 817 } 818 819 static int 820 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 821 { 822 struct perf_sample *sample = iter->sample; 823 struct mem_info *mi; 824 825 mi = sample__resolve_mem(sample, al); 826 if (mi == NULL) 827 return -ENOMEM; 828 829 iter->priv = mi; 830 return 0; 831 } 832 833 static int 834 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 835 { 836 u64 cost; 837 struct mem_info *mi = iter->priv; 838 struct hists *hists = evsel__hists(iter->evsel); 839 struct perf_sample *sample = iter->sample; 840 struct hist_entry *he; 841 842 if (mi == NULL) 843 return -EINVAL; 844 845 cost = sample->weight; 846 if (!cost) 847 cost = 1; 848 849 /* 850 * must pass period=weight in order to get the correct 851 * sorting from hists__collapse_resort() which is solely 852 * based on periods. We want sorting be done on nr_events * weight 853 * and this is indirectly achieved by passing period=weight here 854 * and the he_stat__add_period() function. 855 */ 856 sample->period = cost; 857 858 he = hists__add_entry(hists, al, iter->parent, NULL, mi, NULL, 859 sample, true); 860 if (!he) 861 return -ENOMEM; 862 863 iter->he = he; 864 return 0; 865 } 866 867 static int 868 iter_finish_mem_entry(struct hist_entry_iter *iter, 869 struct addr_location *al __maybe_unused) 870 { 871 struct evsel *evsel = iter->evsel; 872 struct hists *hists = evsel__hists(evsel); 873 struct hist_entry *he = iter->he; 874 int err = -EINVAL; 875 876 if (he == NULL) 877 goto out; 878 879 hists__inc_nr_samples(hists, he->filtered); 880 881 err = hist_entry__append_callchain(he, iter->sample); 882 883 out: 884 /* 885 * We don't need to free iter->priv (mem_info) here since the mem info 886 * was either already freed in hists__findnew_entry() or passed to a 887 * new hist entry by hist_entry__new(). 888 */ 889 iter->priv = NULL; 890 891 iter->he = NULL; 892 return err; 893 } 894 895 static int 896 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 897 { 898 struct branch_info *bi; 899 struct perf_sample *sample = iter->sample; 900 901 bi = sample__resolve_bstack(sample, al); 902 if (!bi) 903 return -ENOMEM; 904 905 iter->curr = 0; 906 iter->total = sample->branch_stack->nr; 907 908 iter->priv = bi; 909 return 0; 910 } 911 912 static int 913 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused, 914 struct addr_location *al __maybe_unused) 915 { 916 return 0; 917 } 918 919 static int 920 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 921 { 922 struct branch_info *bi = iter->priv; 923 int i = iter->curr; 924 925 if (bi == NULL) 926 return 0; 927 928 if (iter->curr >= iter->total) 929 return 0; 930 931 maps__put(al->maps); 932 al->maps = maps__get(bi[i].to.ms.maps); 933 map__put(al->map); 934 al->map = map__get(bi[i].to.ms.map); 935 al->sym = bi[i].to.ms.sym; 936 al->addr = bi[i].to.addr; 937 return 1; 938 } 939 940 static int 941 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 942 { 943 struct branch_info *bi; 944 struct evsel *evsel = iter->evsel; 945 struct hists *hists = evsel__hists(evsel); 946 struct perf_sample *sample = iter->sample; 947 struct hist_entry *he = NULL; 948 int i = iter->curr; 949 int err = 0; 950 951 bi = iter->priv; 952 953 if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym)) 954 goto out; 955 956 /* 957 * The report shows the percentage of total branches captured 958 * and not events sampled. Thus we use a pseudo period of 1. 959 */ 960 sample->period = 1; 961 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 962 963 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, NULL, 964 sample, true); 965 if (he == NULL) 966 return -ENOMEM; 967 968 hists__inc_nr_samples(hists, he->filtered); 969 970 out: 971 iter->he = he; 972 iter->curr++; 973 return err; 974 } 975 976 static int 977 iter_finish_branch_entry(struct hist_entry_iter *iter, 978 struct addr_location *al __maybe_unused) 979 { 980 zfree(&iter->priv); 981 iter->he = NULL; 982 983 return iter->curr >= iter->total ? 0 : -1; 984 } 985 986 static int 987 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 988 struct addr_location *al __maybe_unused) 989 { 990 return 0; 991 } 992 993 static int 994 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 995 { 996 struct evsel *evsel = iter->evsel; 997 struct perf_sample *sample = iter->sample; 998 struct hist_entry *he; 999 1000 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 1001 NULL, sample, true); 1002 if (he == NULL) 1003 return -ENOMEM; 1004 1005 iter->he = he; 1006 return 0; 1007 } 1008 1009 static int 1010 iter_finish_normal_entry(struct hist_entry_iter *iter, 1011 struct addr_location *al __maybe_unused) 1012 { 1013 struct hist_entry *he = iter->he; 1014 struct evsel *evsel = iter->evsel; 1015 struct perf_sample *sample = iter->sample; 1016 1017 if (he == NULL) 1018 return 0; 1019 1020 iter->he = NULL; 1021 1022 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 1023 1024 return hist_entry__append_callchain(he, sample); 1025 } 1026 1027 static int 1028 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 1029 struct addr_location *al __maybe_unused) 1030 { 1031 struct hist_entry **he_cache; 1032 struct callchain_cursor *cursor = get_tls_callchain_cursor(); 1033 1034 if (cursor == NULL) 1035 return -ENOMEM; 1036 1037 callchain_cursor_commit(cursor); 1038 1039 /* 1040 * This is for detecting cycles or recursions so that they're 1041 * cumulated only one time to prevent entries more than 100% 1042 * overhead. 1043 */ 1044 he_cache = malloc(sizeof(*he_cache) * (cursor->nr + 1)); 1045 if (he_cache == NULL) 1046 return -ENOMEM; 1047 1048 iter->priv = he_cache; 1049 iter->curr = 0; 1050 1051 return 0; 1052 } 1053 1054 static int 1055 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 1056 struct addr_location *al) 1057 { 1058 struct evsel *evsel = iter->evsel; 1059 struct hists *hists = evsel__hists(evsel); 1060 struct perf_sample *sample = iter->sample; 1061 struct hist_entry **he_cache = iter->priv; 1062 struct hist_entry *he; 1063 int err = 0; 1064 1065 he = hists__add_entry(hists, al, iter->parent, NULL, NULL, NULL, 1066 sample, true); 1067 if (he == NULL) 1068 return -ENOMEM; 1069 1070 iter->he = he; 1071 he_cache[iter->curr++] = he; 1072 1073 hist_entry__append_callchain(he, sample); 1074 1075 /* 1076 * We need to re-initialize the cursor since callchain_append() 1077 * advanced the cursor to the end. 1078 */ 1079 callchain_cursor_commit(get_tls_callchain_cursor()); 1080 1081 hists__inc_nr_samples(hists, he->filtered); 1082 1083 return err; 1084 } 1085 1086 static int 1087 iter_next_cumulative_entry(struct hist_entry_iter *iter, 1088 struct addr_location *al) 1089 { 1090 struct callchain_cursor_node *node; 1091 1092 node = callchain_cursor_current(get_tls_callchain_cursor()); 1093 if (node == NULL) 1094 return 0; 1095 1096 return fill_callchain_info(al, node, iter->hide_unresolved); 1097 } 1098 1099 static bool 1100 hist_entry__fast__sym_diff(struct hist_entry *left, 1101 struct hist_entry *right) 1102 { 1103 struct symbol *sym_l = left->ms.sym; 1104 struct symbol *sym_r = right->ms.sym; 1105 1106 if (!sym_l && !sym_r) 1107 return left->ip != right->ip; 1108 1109 return !!_sort__sym_cmp(sym_l, sym_r); 1110 } 1111 1112 1113 static int 1114 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 1115 struct addr_location *al) 1116 { 1117 struct evsel *evsel = iter->evsel; 1118 struct perf_sample *sample = iter->sample; 1119 struct hist_entry **he_cache = iter->priv; 1120 struct hist_entry *he; 1121 struct hist_entry he_tmp = { 1122 .hists = evsel__hists(evsel), 1123 .cpu = al->cpu, 1124 .thread = al->thread, 1125 .comm = thread__comm(al->thread), 1126 .ip = al->addr, 1127 .ms = { 1128 .maps = al->maps, 1129 .map = al->map, 1130 .sym = al->sym, 1131 }, 1132 .srcline = (char *) al->srcline, 1133 .parent = iter->parent, 1134 .raw_data = sample->raw_data, 1135 .raw_size = sample->raw_size, 1136 }; 1137 int i; 1138 struct callchain_cursor cursor, *tls_cursor = get_tls_callchain_cursor(); 1139 bool fast = hists__has(he_tmp.hists, sym); 1140 1141 if (tls_cursor == NULL) 1142 return -ENOMEM; 1143 1144 callchain_cursor_snapshot(&cursor, tls_cursor); 1145 1146 callchain_cursor_advance(tls_cursor); 1147 1148 /* 1149 * Check if there's duplicate entries in the callchain. 1150 * It's possible that it has cycles or recursive calls. 1151 */ 1152 for (i = 0; i < iter->curr; i++) { 1153 /* 1154 * For most cases, there are no duplicate entries in callchain. 1155 * The symbols are usually different. Do a quick check for 1156 * symbols first. 1157 */ 1158 if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp)) 1159 continue; 1160 1161 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 1162 /* to avoid calling callback function */ 1163 iter->he = NULL; 1164 return 0; 1165 } 1166 } 1167 1168 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 1169 NULL, sample, false); 1170 if (he == NULL) 1171 return -ENOMEM; 1172 1173 iter->he = he; 1174 he_cache[iter->curr++] = he; 1175 1176 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 1177 callchain_append(he->callchain, &cursor, sample->period); 1178 return 0; 1179 } 1180 1181 static int 1182 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 1183 struct addr_location *al __maybe_unused) 1184 { 1185 zfree(&iter->priv); 1186 iter->he = NULL; 1187 1188 return 0; 1189 } 1190 1191 const struct hist_iter_ops hist_iter_mem = { 1192 .prepare_entry = iter_prepare_mem_entry, 1193 .add_single_entry = iter_add_single_mem_entry, 1194 .next_entry = iter_next_nop_entry, 1195 .add_next_entry = iter_add_next_nop_entry, 1196 .finish_entry = iter_finish_mem_entry, 1197 }; 1198 1199 const struct hist_iter_ops hist_iter_branch = { 1200 .prepare_entry = iter_prepare_branch_entry, 1201 .add_single_entry = iter_add_single_branch_entry, 1202 .next_entry = iter_next_branch_entry, 1203 .add_next_entry = iter_add_next_branch_entry, 1204 .finish_entry = iter_finish_branch_entry, 1205 }; 1206 1207 const struct hist_iter_ops hist_iter_normal = { 1208 .prepare_entry = iter_prepare_normal_entry, 1209 .add_single_entry = iter_add_single_normal_entry, 1210 .next_entry = iter_next_nop_entry, 1211 .add_next_entry = iter_add_next_nop_entry, 1212 .finish_entry = iter_finish_normal_entry, 1213 }; 1214 1215 const struct hist_iter_ops hist_iter_cumulative = { 1216 .prepare_entry = iter_prepare_cumulative_entry, 1217 .add_single_entry = iter_add_single_cumulative_entry, 1218 .next_entry = iter_next_cumulative_entry, 1219 .add_next_entry = iter_add_next_cumulative_entry, 1220 .finish_entry = iter_finish_cumulative_entry, 1221 }; 1222 1223 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1224 int max_stack_depth, void *arg) 1225 { 1226 int err, err2; 1227 struct map *alm = NULL; 1228 1229 if (al) 1230 alm = map__get(al->map); 1231 1232 err = sample__resolve_callchain(iter->sample, get_tls_callchain_cursor(), &iter->parent, 1233 iter->evsel, al, max_stack_depth); 1234 if (err) { 1235 map__put(alm); 1236 return err; 1237 } 1238 1239 err = iter->ops->prepare_entry(iter, al); 1240 if (err) 1241 goto out; 1242 1243 err = iter->ops->add_single_entry(iter, al); 1244 if (err) 1245 goto out; 1246 1247 if (iter->he && iter->add_entry_cb) { 1248 err = iter->add_entry_cb(iter, al, true, arg); 1249 if (err) 1250 goto out; 1251 } 1252 1253 while (iter->ops->next_entry(iter, al)) { 1254 err = iter->ops->add_next_entry(iter, al); 1255 if (err) 1256 break; 1257 1258 if (iter->he && iter->add_entry_cb) { 1259 err = iter->add_entry_cb(iter, al, false, arg); 1260 if (err) 1261 goto out; 1262 } 1263 } 1264 1265 out: 1266 err2 = iter->ops->finish_entry(iter, al); 1267 if (!err) 1268 err = err2; 1269 1270 map__put(alm); 1271 1272 return err; 1273 } 1274 1275 int64_t 1276 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1277 { 1278 struct hists *hists = left->hists; 1279 struct perf_hpp_fmt *fmt; 1280 int64_t cmp = 0; 1281 1282 hists__for_each_sort_list(hists, fmt) { 1283 if (perf_hpp__is_dynamic_entry(fmt) && 1284 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1285 continue; 1286 1287 cmp = fmt->cmp(fmt, left, right); 1288 if (cmp) 1289 break; 1290 } 1291 1292 return cmp; 1293 } 1294 1295 int64_t 1296 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1297 { 1298 struct hists *hists = left->hists; 1299 struct perf_hpp_fmt *fmt; 1300 int64_t cmp = 0; 1301 1302 hists__for_each_sort_list(hists, fmt) { 1303 if (perf_hpp__is_dynamic_entry(fmt) && 1304 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1305 continue; 1306 1307 cmp = fmt->collapse(fmt, left, right); 1308 if (cmp) 1309 break; 1310 } 1311 1312 return cmp; 1313 } 1314 1315 void hist_entry__delete(struct hist_entry *he) 1316 { 1317 struct hist_entry_ops *ops = he->ops; 1318 1319 thread__zput(he->thread); 1320 maps__zput(he->ms.maps); 1321 map__zput(he->ms.map); 1322 1323 if (he->branch_info) { 1324 map__zput(he->branch_info->from.ms.map); 1325 map__zput(he->branch_info->to.ms.map); 1326 zfree_srcline(&he->branch_info->srcline_from); 1327 zfree_srcline(&he->branch_info->srcline_to); 1328 zfree(&he->branch_info); 1329 } 1330 1331 if (he->mem_info) { 1332 map__zput(he->mem_info->iaddr.ms.map); 1333 map__zput(he->mem_info->daddr.ms.map); 1334 mem_info__zput(he->mem_info); 1335 } 1336 1337 if (he->block_info) 1338 block_info__zput(he->block_info); 1339 1340 if (he->kvm_info) 1341 kvm_info__zput(he->kvm_info); 1342 1343 zfree(&he->res_samples); 1344 zfree(&he->stat_acc); 1345 zfree_srcline(&he->srcline); 1346 if (he->srcfile && he->srcfile[0]) 1347 zfree(&he->srcfile); 1348 free_callchain(he->callchain); 1349 zfree(&he->trace_output); 1350 zfree(&he->raw_data); 1351 ops->free(he); 1352 } 1353 1354 /* 1355 * If this is not the last column, then we need to pad it according to the 1356 * pre-calculated max length for this column, otherwise don't bother adding 1357 * spaces because that would break viewing this with, for instance, 'less', 1358 * that would show tons of trailing spaces when a long C++ demangled method 1359 * names is sampled. 1360 */ 1361 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1362 struct perf_hpp_fmt *fmt, int printed) 1363 { 1364 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1365 const int width = fmt->width(fmt, hpp, he->hists); 1366 if (printed < width) { 1367 advance_hpp(hpp, printed); 1368 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1369 } 1370 } 1371 1372 return printed; 1373 } 1374 1375 /* 1376 * collapse the histogram 1377 */ 1378 1379 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1380 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1381 enum hist_filter type); 1382 1383 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1384 1385 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1386 { 1387 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1388 } 1389 1390 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1391 enum hist_filter type, 1392 fmt_chk_fn check) 1393 { 1394 struct perf_hpp_fmt *fmt; 1395 bool type_match = false; 1396 struct hist_entry *parent = he->parent_he; 1397 1398 switch (type) { 1399 case HIST_FILTER__THREAD: 1400 if (symbol_conf.comm_list == NULL && 1401 symbol_conf.pid_list == NULL && 1402 symbol_conf.tid_list == NULL) 1403 return; 1404 break; 1405 case HIST_FILTER__DSO: 1406 if (symbol_conf.dso_list == NULL) 1407 return; 1408 break; 1409 case HIST_FILTER__SYMBOL: 1410 if (symbol_conf.sym_list == NULL) 1411 return; 1412 break; 1413 case HIST_FILTER__PARENT: 1414 case HIST_FILTER__GUEST: 1415 case HIST_FILTER__HOST: 1416 case HIST_FILTER__SOCKET: 1417 case HIST_FILTER__C2C: 1418 default: 1419 return; 1420 } 1421 1422 /* if it's filtered by own fmt, it has to have filter bits */ 1423 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1424 if (check(fmt)) { 1425 type_match = true; 1426 break; 1427 } 1428 } 1429 1430 if (type_match) { 1431 /* 1432 * If the filter is for current level entry, propagate 1433 * filter marker to parents. The marker bit was 1434 * already set by default so it only needs to clear 1435 * non-filtered entries. 1436 */ 1437 if (!(he->filtered & (1 << type))) { 1438 while (parent) { 1439 parent->filtered &= ~(1 << type); 1440 parent = parent->parent_he; 1441 } 1442 } 1443 } else { 1444 /* 1445 * If current entry doesn't have matching formats, set 1446 * filter marker for upper level entries. it will be 1447 * cleared if its lower level entries is not filtered. 1448 * 1449 * For lower-level entries, it inherits parent's 1450 * filter bit so that lower level entries of a 1451 * non-filtered entry won't set the filter marker. 1452 */ 1453 if (parent == NULL) 1454 he->filtered |= (1 << type); 1455 else 1456 he->filtered |= (parent->filtered & (1 << type)); 1457 } 1458 } 1459 1460 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1461 { 1462 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1463 check_thread_entry); 1464 1465 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1466 perf_hpp__is_dso_entry); 1467 1468 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1469 perf_hpp__is_sym_entry); 1470 1471 hists__apply_filters(he->hists, he); 1472 } 1473 1474 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1475 struct rb_root_cached *root, 1476 struct hist_entry *he, 1477 struct hist_entry *parent_he, 1478 struct perf_hpp_list *hpp_list) 1479 { 1480 struct rb_node **p = &root->rb_root.rb_node; 1481 struct rb_node *parent = NULL; 1482 struct hist_entry *iter, *new; 1483 struct perf_hpp_fmt *fmt; 1484 int64_t cmp; 1485 bool leftmost = true; 1486 1487 while (*p != NULL) { 1488 parent = *p; 1489 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1490 1491 cmp = 0; 1492 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1493 cmp = fmt->collapse(fmt, iter, he); 1494 if (cmp) 1495 break; 1496 } 1497 1498 if (!cmp) { 1499 he_stat__add_stat(&iter->stat, &he->stat); 1500 return iter; 1501 } 1502 1503 if (cmp < 0) 1504 p = &parent->rb_left; 1505 else { 1506 p = &parent->rb_right; 1507 leftmost = false; 1508 } 1509 } 1510 1511 new = hist_entry__new(he, true); 1512 if (new == NULL) 1513 return NULL; 1514 1515 hists->nr_entries++; 1516 1517 /* save related format list for output */ 1518 new->hpp_list = hpp_list; 1519 new->parent_he = parent_he; 1520 1521 hist_entry__apply_hierarchy_filters(new); 1522 1523 /* some fields are now passed to 'new' */ 1524 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1525 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1526 he->trace_output = NULL; 1527 else 1528 new->trace_output = NULL; 1529 1530 if (perf_hpp__is_srcline_entry(fmt)) 1531 he->srcline = NULL; 1532 else 1533 new->srcline = NULL; 1534 1535 if (perf_hpp__is_srcfile_entry(fmt)) 1536 he->srcfile = NULL; 1537 else 1538 new->srcfile = NULL; 1539 } 1540 1541 rb_link_node(&new->rb_node_in, parent, p); 1542 rb_insert_color_cached(&new->rb_node_in, root, leftmost); 1543 return new; 1544 } 1545 1546 static int hists__hierarchy_insert_entry(struct hists *hists, 1547 struct rb_root_cached *root, 1548 struct hist_entry *he) 1549 { 1550 struct perf_hpp_list_node *node; 1551 struct hist_entry *new_he = NULL; 1552 struct hist_entry *parent = NULL; 1553 int depth = 0; 1554 int ret = 0; 1555 1556 list_for_each_entry(node, &hists->hpp_formats, list) { 1557 /* skip period (overhead) and elided columns */ 1558 if (node->level == 0 || node->skip) 1559 continue; 1560 1561 /* insert copy of 'he' for each fmt into the hierarchy */ 1562 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1563 if (new_he == NULL) { 1564 ret = -1; 1565 break; 1566 } 1567 1568 root = &new_he->hroot_in; 1569 new_he->depth = depth++; 1570 parent = new_he; 1571 } 1572 1573 if (new_he) { 1574 new_he->leaf = true; 1575 1576 if (hist_entry__has_callchains(new_he) && 1577 symbol_conf.use_callchain) { 1578 struct callchain_cursor *cursor = get_tls_callchain_cursor(); 1579 1580 if (cursor == NULL) 1581 return -1; 1582 1583 callchain_cursor_reset(cursor); 1584 if (callchain_merge(cursor, 1585 new_he->callchain, 1586 he->callchain) < 0) 1587 ret = -1; 1588 } 1589 } 1590 1591 /* 'he' is no longer used */ 1592 hist_entry__delete(he); 1593 1594 /* return 0 (or -1) since it already applied filters */ 1595 return ret; 1596 } 1597 1598 static int hists__collapse_insert_entry(struct hists *hists, 1599 struct rb_root_cached *root, 1600 struct hist_entry *he) 1601 { 1602 struct rb_node **p = &root->rb_root.rb_node; 1603 struct rb_node *parent = NULL; 1604 struct hist_entry *iter; 1605 int64_t cmp; 1606 bool leftmost = true; 1607 1608 if (symbol_conf.report_hierarchy) 1609 return hists__hierarchy_insert_entry(hists, root, he); 1610 1611 while (*p != NULL) { 1612 parent = *p; 1613 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1614 1615 cmp = hist_entry__collapse(iter, he); 1616 1617 if (!cmp) { 1618 int ret = 0; 1619 1620 he_stat__add_stat(&iter->stat, &he->stat); 1621 if (symbol_conf.cumulate_callchain) 1622 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1623 1624 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) { 1625 struct callchain_cursor *cursor = get_tls_callchain_cursor(); 1626 1627 if (cursor != NULL) { 1628 callchain_cursor_reset(cursor); 1629 if (callchain_merge(cursor, iter->callchain, he->callchain) < 0) 1630 ret = -1; 1631 } else { 1632 ret = 0; 1633 } 1634 } 1635 hist_entry__delete(he); 1636 return ret; 1637 } 1638 1639 if (cmp < 0) 1640 p = &(*p)->rb_left; 1641 else { 1642 p = &(*p)->rb_right; 1643 leftmost = false; 1644 } 1645 } 1646 hists->nr_entries++; 1647 1648 rb_link_node(&he->rb_node_in, parent, p); 1649 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 1650 return 1; 1651 } 1652 1653 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists) 1654 { 1655 struct rb_root_cached *root; 1656 1657 mutex_lock(&hists->lock); 1658 1659 root = hists->entries_in; 1660 if (++hists->entries_in > &hists->entries_in_array[1]) 1661 hists->entries_in = &hists->entries_in_array[0]; 1662 1663 mutex_unlock(&hists->lock); 1664 1665 return root; 1666 } 1667 1668 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1669 { 1670 hists__filter_entry_by_dso(hists, he); 1671 hists__filter_entry_by_thread(hists, he); 1672 hists__filter_entry_by_symbol(hists, he); 1673 hists__filter_entry_by_socket(hists, he); 1674 } 1675 1676 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1677 { 1678 struct rb_root_cached *root; 1679 struct rb_node *next; 1680 struct hist_entry *n; 1681 int ret; 1682 1683 if (!hists__has(hists, need_collapse)) 1684 return 0; 1685 1686 hists->nr_entries = 0; 1687 1688 root = hists__get_rotate_entries_in(hists); 1689 1690 next = rb_first_cached(root); 1691 1692 while (next) { 1693 if (session_done()) 1694 break; 1695 n = rb_entry(next, struct hist_entry, rb_node_in); 1696 next = rb_next(&n->rb_node_in); 1697 1698 rb_erase_cached(&n->rb_node_in, root); 1699 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1700 if (ret < 0) 1701 return -1; 1702 1703 if (ret) { 1704 /* 1705 * If it wasn't combined with one of the entries already 1706 * collapsed, we need to apply the filters that may have 1707 * been set by, say, the hist_browser. 1708 */ 1709 hists__apply_filters(hists, n); 1710 } 1711 if (prog) 1712 ui_progress__update(prog, 1); 1713 } 1714 return 0; 1715 } 1716 1717 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1718 { 1719 struct hists *hists = a->hists; 1720 struct perf_hpp_fmt *fmt; 1721 int64_t cmp = 0; 1722 1723 hists__for_each_sort_list(hists, fmt) { 1724 if (perf_hpp__should_skip(fmt, a->hists)) 1725 continue; 1726 1727 cmp = fmt->sort(fmt, a, b); 1728 if (cmp) 1729 break; 1730 } 1731 1732 return cmp; 1733 } 1734 1735 static void hists__reset_filter_stats(struct hists *hists) 1736 { 1737 hists->nr_non_filtered_entries = 0; 1738 hists->stats.total_non_filtered_period = 0; 1739 } 1740 1741 void hists__reset_stats(struct hists *hists) 1742 { 1743 hists->nr_entries = 0; 1744 hists->stats.total_period = 0; 1745 1746 hists__reset_filter_stats(hists); 1747 } 1748 1749 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1750 { 1751 hists->nr_non_filtered_entries++; 1752 hists->stats.total_non_filtered_period += h->stat.period; 1753 } 1754 1755 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1756 { 1757 if (!h->filtered) 1758 hists__inc_filter_stats(hists, h); 1759 1760 hists->nr_entries++; 1761 hists->stats.total_period += h->stat.period; 1762 } 1763 1764 static void hierarchy_recalc_total_periods(struct hists *hists) 1765 { 1766 struct rb_node *node; 1767 struct hist_entry *he; 1768 1769 node = rb_first_cached(&hists->entries); 1770 1771 hists->stats.total_period = 0; 1772 hists->stats.total_non_filtered_period = 0; 1773 1774 /* 1775 * recalculate total period using top-level entries only 1776 * since lower level entries only see non-filtered entries 1777 * but upper level entries have sum of both entries. 1778 */ 1779 while (node) { 1780 he = rb_entry(node, struct hist_entry, rb_node); 1781 node = rb_next(node); 1782 1783 hists->stats.total_period += he->stat.period; 1784 if (!he->filtered) 1785 hists->stats.total_non_filtered_period += he->stat.period; 1786 } 1787 } 1788 1789 static void hierarchy_insert_output_entry(struct rb_root_cached *root, 1790 struct hist_entry *he) 1791 { 1792 struct rb_node **p = &root->rb_root.rb_node; 1793 struct rb_node *parent = NULL; 1794 struct hist_entry *iter; 1795 struct perf_hpp_fmt *fmt; 1796 bool leftmost = true; 1797 1798 while (*p != NULL) { 1799 parent = *p; 1800 iter = rb_entry(parent, struct hist_entry, rb_node); 1801 1802 if (hist_entry__sort(he, iter) > 0) 1803 p = &parent->rb_left; 1804 else { 1805 p = &parent->rb_right; 1806 leftmost = false; 1807 } 1808 } 1809 1810 rb_link_node(&he->rb_node, parent, p); 1811 rb_insert_color_cached(&he->rb_node, root, leftmost); 1812 1813 /* update column width of dynamic entry */ 1814 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1815 if (fmt->init) 1816 fmt->init(fmt, he); 1817 } 1818 } 1819 1820 static void hists__hierarchy_output_resort(struct hists *hists, 1821 struct ui_progress *prog, 1822 struct rb_root_cached *root_in, 1823 struct rb_root_cached *root_out, 1824 u64 min_callchain_hits, 1825 bool use_callchain) 1826 { 1827 struct rb_node *node; 1828 struct hist_entry *he; 1829 1830 *root_out = RB_ROOT_CACHED; 1831 node = rb_first_cached(root_in); 1832 1833 while (node) { 1834 he = rb_entry(node, struct hist_entry, rb_node_in); 1835 node = rb_next(node); 1836 1837 hierarchy_insert_output_entry(root_out, he); 1838 1839 if (prog) 1840 ui_progress__update(prog, 1); 1841 1842 hists->nr_entries++; 1843 if (!he->filtered) { 1844 hists->nr_non_filtered_entries++; 1845 hists__calc_col_len(hists, he); 1846 } 1847 1848 if (!he->leaf) { 1849 hists__hierarchy_output_resort(hists, prog, 1850 &he->hroot_in, 1851 &he->hroot_out, 1852 min_callchain_hits, 1853 use_callchain); 1854 continue; 1855 } 1856 1857 if (!use_callchain) 1858 continue; 1859 1860 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1861 u64 total = he->stat.period; 1862 1863 if (symbol_conf.cumulate_callchain) 1864 total = he->stat_acc->period; 1865 1866 min_callchain_hits = total * (callchain_param.min_percent / 100); 1867 } 1868 1869 callchain_param.sort(&he->sorted_chain, he->callchain, 1870 min_callchain_hits, &callchain_param); 1871 } 1872 } 1873 1874 static void __hists__insert_output_entry(struct rb_root_cached *entries, 1875 struct hist_entry *he, 1876 u64 min_callchain_hits, 1877 bool use_callchain) 1878 { 1879 struct rb_node **p = &entries->rb_root.rb_node; 1880 struct rb_node *parent = NULL; 1881 struct hist_entry *iter; 1882 struct perf_hpp_fmt *fmt; 1883 bool leftmost = true; 1884 1885 if (use_callchain) { 1886 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1887 u64 total = he->stat.period; 1888 1889 if (symbol_conf.cumulate_callchain) 1890 total = he->stat_acc->period; 1891 1892 min_callchain_hits = total * (callchain_param.min_percent / 100); 1893 } 1894 callchain_param.sort(&he->sorted_chain, he->callchain, 1895 min_callchain_hits, &callchain_param); 1896 } 1897 1898 while (*p != NULL) { 1899 parent = *p; 1900 iter = rb_entry(parent, struct hist_entry, rb_node); 1901 1902 if (hist_entry__sort(he, iter) > 0) 1903 p = &(*p)->rb_left; 1904 else { 1905 p = &(*p)->rb_right; 1906 leftmost = false; 1907 } 1908 } 1909 1910 rb_link_node(&he->rb_node, parent, p); 1911 rb_insert_color_cached(&he->rb_node, entries, leftmost); 1912 1913 /* update column width of dynamic entries */ 1914 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1915 if (fmt->init) 1916 fmt->init(fmt, he); 1917 } 1918 } 1919 1920 static void output_resort(struct hists *hists, struct ui_progress *prog, 1921 bool use_callchain, hists__resort_cb_t cb, 1922 void *cb_arg) 1923 { 1924 struct rb_root_cached *root; 1925 struct rb_node *next; 1926 struct hist_entry *n; 1927 u64 callchain_total; 1928 u64 min_callchain_hits; 1929 1930 callchain_total = hists->callchain_period; 1931 if (symbol_conf.filter_relative) 1932 callchain_total = hists->callchain_non_filtered_period; 1933 1934 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1935 1936 hists__reset_stats(hists); 1937 hists__reset_col_len(hists); 1938 1939 if (symbol_conf.report_hierarchy) { 1940 hists__hierarchy_output_resort(hists, prog, 1941 &hists->entries_collapsed, 1942 &hists->entries, 1943 min_callchain_hits, 1944 use_callchain); 1945 hierarchy_recalc_total_periods(hists); 1946 return; 1947 } 1948 1949 if (hists__has(hists, need_collapse)) 1950 root = &hists->entries_collapsed; 1951 else 1952 root = hists->entries_in; 1953 1954 next = rb_first_cached(root); 1955 hists->entries = RB_ROOT_CACHED; 1956 1957 while (next) { 1958 n = rb_entry(next, struct hist_entry, rb_node_in); 1959 next = rb_next(&n->rb_node_in); 1960 1961 if (cb && cb(n, cb_arg)) 1962 continue; 1963 1964 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1965 hists__inc_stats(hists, n); 1966 1967 if (!n->filtered) 1968 hists__calc_col_len(hists, n); 1969 1970 if (prog) 1971 ui_progress__update(prog, 1); 1972 } 1973 } 1974 1975 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog, 1976 hists__resort_cb_t cb, void *cb_arg) 1977 { 1978 bool use_callchain; 1979 1980 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1981 use_callchain = evsel__has_callchain(evsel); 1982 else 1983 use_callchain = symbol_conf.use_callchain; 1984 1985 use_callchain |= symbol_conf.show_branchflag_count; 1986 1987 output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg); 1988 } 1989 1990 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog) 1991 { 1992 return evsel__output_resort_cb(evsel, prog, NULL, NULL); 1993 } 1994 1995 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 1996 { 1997 output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL); 1998 } 1999 2000 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, 2001 hists__resort_cb_t cb) 2002 { 2003 output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL); 2004 } 2005 2006 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 2007 { 2008 if (he->leaf || hmd == HMD_FORCE_SIBLING) 2009 return false; 2010 2011 if (he->unfolded || hmd == HMD_FORCE_CHILD) 2012 return true; 2013 2014 return false; 2015 } 2016 2017 struct rb_node *rb_hierarchy_last(struct rb_node *node) 2018 { 2019 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2020 2021 while (can_goto_child(he, HMD_NORMAL)) { 2022 node = rb_last(&he->hroot_out.rb_root); 2023 he = rb_entry(node, struct hist_entry, rb_node); 2024 } 2025 return node; 2026 } 2027 2028 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 2029 { 2030 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2031 2032 if (can_goto_child(he, hmd)) 2033 node = rb_first_cached(&he->hroot_out); 2034 else 2035 node = rb_next(node); 2036 2037 while (node == NULL) { 2038 he = he->parent_he; 2039 if (he == NULL) 2040 break; 2041 2042 node = rb_next(&he->rb_node); 2043 } 2044 return node; 2045 } 2046 2047 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 2048 { 2049 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2050 2051 node = rb_prev(node); 2052 if (node) 2053 return rb_hierarchy_last(node); 2054 2055 he = he->parent_he; 2056 if (he == NULL) 2057 return NULL; 2058 2059 return &he->rb_node; 2060 } 2061 2062 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 2063 { 2064 struct rb_node *node; 2065 struct hist_entry *child; 2066 float percent; 2067 2068 if (he->leaf) 2069 return false; 2070 2071 node = rb_first_cached(&he->hroot_out); 2072 child = rb_entry(node, struct hist_entry, rb_node); 2073 2074 while (node && child->filtered) { 2075 node = rb_next(node); 2076 child = rb_entry(node, struct hist_entry, rb_node); 2077 } 2078 2079 if (node) 2080 percent = hist_entry__get_percent_limit(child); 2081 else 2082 percent = 0; 2083 2084 return node && percent >= limit; 2085 } 2086 2087 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 2088 enum hist_filter filter) 2089 { 2090 h->filtered &= ~(1 << filter); 2091 2092 if (symbol_conf.report_hierarchy) { 2093 struct hist_entry *parent = h->parent_he; 2094 2095 while (parent) { 2096 he_stat__add_stat(&parent->stat, &h->stat); 2097 2098 parent->filtered &= ~(1 << filter); 2099 2100 if (parent->filtered) 2101 goto next; 2102 2103 /* force fold unfiltered entry for simplicity */ 2104 parent->unfolded = false; 2105 parent->has_no_entry = false; 2106 parent->row_offset = 0; 2107 parent->nr_rows = 0; 2108 next: 2109 parent = parent->parent_he; 2110 } 2111 } 2112 2113 if (h->filtered) 2114 return; 2115 2116 /* force fold unfiltered entry for simplicity */ 2117 h->unfolded = false; 2118 h->has_no_entry = false; 2119 h->row_offset = 0; 2120 h->nr_rows = 0; 2121 2122 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 2123 2124 hists__inc_filter_stats(hists, h); 2125 hists__calc_col_len(hists, h); 2126 } 2127 2128 2129 static bool hists__filter_entry_by_dso(struct hists *hists, 2130 struct hist_entry *he) 2131 { 2132 if (hists->dso_filter != NULL && 2133 (he->ms.map == NULL || map__dso(he->ms.map) != hists->dso_filter)) { 2134 he->filtered |= (1 << HIST_FILTER__DSO); 2135 return true; 2136 } 2137 2138 return false; 2139 } 2140 2141 static bool hists__filter_entry_by_thread(struct hists *hists, 2142 struct hist_entry *he) 2143 { 2144 if (hists->thread_filter != NULL && 2145 RC_CHK_ACCESS(he->thread) != RC_CHK_ACCESS(hists->thread_filter)) { 2146 he->filtered |= (1 << HIST_FILTER__THREAD); 2147 return true; 2148 } 2149 2150 return false; 2151 } 2152 2153 static bool hists__filter_entry_by_symbol(struct hists *hists, 2154 struct hist_entry *he) 2155 { 2156 if (hists->symbol_filter_str != NULL && 2157 (!he->ms.sym || strstr(he->ms.sym->name, 2158 hists->symbol_filter_str) == NULL)) { 2159 he->filtered |= (1 << HIST_FILTER__SYMBOL); 2160 return true; 2161 } 2162 2163 return false; 2164 } 2165 2166 static bool hists__filter_entry_by_socket(struct hists *hists, 2167 struct hist_entry *he) 2168 { 2169 if ((hists->socket_filter > -1) && 2170 (he->socket != hists->socket_filter)) { 2171 he->filtered |= (1 << HIST_FILTER__SOCKET); 2172 return true; 2173 } 2174 2175 return false; 2176 } 2177 2178 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 2179 2180 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 2181 { 2182 struct rb_node *nd; 2183 2184 hists->stats.nr_non_filtered_samples = 0; 2185 2186 hists__reset_filter_stats(hists); 2187 hists__reset_col_len(hists); 2188 2189 for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) { 2190 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2191 2192 if (filter(hists, h)) 2193 continue; 2194 2195 hists__remove_entry_filter(hists, h, type); 2196 } 2197 } 2198 2199 static void resort_filtered_entry(struct rb_root_cached *root, 2200 struct hist_entry *he) 2201 { 2202 struct rb_node **p = &root->rb_root.rb_node; 2203 struct rb_node *parent = NULL; 2204 struct hist_entry *iter; 2205 struct rb_root_cached new_root = RB_ROOT_CACHED; 2206 struct rb_node *nd; 2207 bool leftmost = true; 2208 2209 while (*p != NULL) { 2210 parent = *p; 2211 iter = rb_entry(parent, struct hist_entry, rb_node); 2212 2213 if (hist_entry__sort(he, iter) > 0) 2214 p = &(*p)->rb_left; 2215 else { 2216 p = &(*p)->rb_right; 2217 leftmost = false; 2218 } 2219 } 2220 2221 rb_link_node(&he->rb_node, parent, p); 2222 rb_insert_color_cached(&he->rb_node, root, leftmost); 2223 2224 if (he->leaf || he->filtered) 2225 return; 2226 2227 nd = rb_first_cached(&he->hroot_out); 2228 while (nd) { 2229 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2230 2231 nd = rb_next(nd); 2232 rb_erase_cached(&h->rb_node, &he->hroot_out); 2233 2234 resort_filtered_entry(&new_root, h); 2235 } 2236 2237 he->hroot_out = new_root; 2238 } 2239 2240 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 2241 { 2242 struct rb_node *nd; 2243 struct rb_root_cached new_root = RB_ROOT_CACHED; 2244 2245 hists->stats.nr_non_filtered_samples = 0; 2246 2247 hists__reset_filter_stats(hists); 2248 hists__reset_col_len(hists); 2249 2250 nd = rb_first_cached(&hists->entries); 2251 while (nd) { 2252 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2253 int ret; 2254 2255 ret = hist_entry__filter(h, type, arg); 2256 2257 /* 2258 * case 1. non-matching type 2259 * zero out the period, set filter marker and move to child 2260 */ 2261 if (ret < 0) { 2262 memset(&h->stat, 0, sizeof(h->stat)); 2263 h->filtered |= (1 << type); 2264 2265 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 2266 } 2267 /* 2268 * case 2. matched type (filter out) 2269 * set filter marker and move to next 2270 */ 2271 else if (ret == 1) { 2272 h->filtered |= (1 << type); 2273 2274 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2275 } 2276 /* 2277 * case 3. ok (not filtered) 2278 * add period to hists and parents, erase the filter marker 2279 * and move to next sibling 2280 */ 2281 else { 2282 hists__remove_entry_filter(hists, h, type); 2283 2284 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2285 } 2286 } 2287 2288 hierarchy_recalc_total_periods(hists); 2289 2290 /* 2291 * resort output after applying a new filter since filter in a lower 2292 * hierarchy can change periods in a upper hierarchy. 2293 */ 2294 nd = rb_first_cached(&hists->entries); 2295 while (nd) { 2296 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2297 2298 nd = rb_next(nd); 2299 rb_erase_cached(&h->rb_node, &hists->entries); 2300 2301 resort_filtered_entry(&new_root, h); 2302 } 2303 2304 hists->entries = new_root; 2305 } 2306 2307 void hists__filter_by_thread(struct hists *hists) 2308 { 2309 if (symbol_conf.report_hierarchy) 2310 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 2311 hists->thread_filter); 2312 else 2313 hists__filter_by_type(hists, HIST_FILTER__THREAD, 2314 hists__filter_entry_by_thread); 2315 } 2316 2317 void hists__filter_by_dso(struct hists *hists) 2318 { 2319 if (symbol_conf.report_hierarchy) 2320 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 2321 hists->dso_filter); 2322 else 2323 hists__filter_by_type(hists, HIST_FILTER__DSO, 2324 hists__filter_entry_by_dso); 2325 } 2326 2327 void hists__filter_by_symbol(struct hists *hists) 2328 { 2329 if (symbol_conf.report_hierarchy) 2330 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2331 hists->symbol_filter_str); 2332 else 2333 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2334 hists__filter_entry_by_symbol); 2335 } 2336 2337 void hists__filter_by_socket(struct hists *hists) 2338 { 2339 if (symbol_conf.report_hierarchy) 2340 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2341 &hists->socket_filter); 2342 else 2343 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2344 hists__filter_entry_by_socket); 2345 } 2346 2347 void events_stats__inc(struct events_stats *stats, u32 type) 2348 { 2349 ++stats->nr_events[0]; 2350 ++stats->nr_events[type]; 2351 } 2352 2353 static void hists_stats__inc(struct hists_stats *stats) 2354 { 2355 ++stats->nr_samples; 2356 } 2357 2358 void hists__inc_nr_events(struct hists *hists) 2359 { 2360 hists_stats__inc(&hists->stats); 2361 } 2362 2363 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2364 { 2365 hists_stats__inc(&hists->stats); 2366 if (!filtered) 2367 hists->stats.nr_non_filtered_samples++; 2368 } 2369 2370 void hists__inc_nr_lost_samples(struct hists *hists, u32 lost) 2371 { 2372 hists->stats.nr_lost_samples += lost; 2373 } 2374 2375 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2376 struct hist_entry *pair) 2377 { 2378 struct rb_root_cached *root; 2379 struct rb_node **p; 2380 struct rb_node *parent = NULL; 2381 struct hist_entry *he; 2382 int64_t cmp; 2383 bool leftmost = true; 2384 2385 if (hists__has(hists, need_collapse)) 2386 root = &hists->entries_collapsed; 2387 else 2388 root = hists->entries_in; 2389 2390 p = &root->rb_root.rb_node; 2391 2392 while (*p != NULL) { 2393 parent = *p; 2394 he = rb_entry(parent, struct hist_entry, rb_node_in); 2395 2396 cmp = hist_entry__collapse(he, pair); 2397 2398 if (!cmp) 2399 goto out; 2400 2401 if (cmp < 0) 2402 p = &(*p)->rb_left; 2403 else { 2404 p = &(*p)->rb_right; 2405 leftmost = false; 2406 } 2407 } 2408 2409 he = hist_entry__new(pair, true); 2410 if (he) { 2411 memset(&he->stat, 0, sizeof(he->stat)); 2412 he->hists = hists; 2413 if (symbol_conf.cumulate_callchain) 2414 memset(he->stat_acc, 0, sizeof(he->stat)); 2415 rb_link_node(&he->rb_node_in, parent, p); 2416 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2417 hists__inc_stats(hists, he); 2418 he->dummy = true; 2419 } 2420 out: 2421 return he; 2422 } 2423 2424 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, 2425 struct rb_root_cached *root, 2426 struct hist_entry *pair) 2427 { 2428 struct rb_node **p; 2429 struct rb_node *parent = NULL; 2430 struct hist_entry *he; 2431 struct perf_hpp_fmt *fmt; 2432 bool leftmost = true; 2433 2434 p = &root->rb_root.rb_node; 2435 while (*p != NULL) { 2436 int64_t cmp = 0; 2437 2438 parent = *p; 2439 he = rb_entry(parent, struct hist_entry, rb_node_in); 2440 2441 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2442 cmp = fmt->collapse(fmt, he, pair); 2443 if (cmp) 2444 break; 2445 } 2446 if (!cmp) 2447 goto out; 2448 2449 if (cmp < 0) 2450 p = &parent->rb_left; 2451 else { 2452 p = &parent->rb_right; 2453 leftmost = false; 2454 } 2455 } 2456 2457 he = hist_entry__new(pair, true); 2458 if (he) { 2459 rb_link_node(&he->rb_node_in, parent, p); 2460 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2461 2462 he->dummy = true; 2463 he->hists = hists; 2464 memset(&he->stat, 0, sizeof(he->stat)); 2465 hists__inc_stats(hists, he); 2466 } 2467 out: 2468 return he; 2469 } 2470 2471 static struct hist_entry *hists__find_entry(struct hists *hists, 2472 struct hist_entry *he) 2473 { 2474 struct rb_node *n; 2475 2476 if (hists__has(hists, need_collapse)) 2477 n = hists->entries_collapsed.rb_root.rb_node; 2478 else 2479 n = hists->entries_in->rb_root.rb_node; 2480 2481 while (n) { 2482 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2483 int64_t cmp = hist_entry__collapse(iter, he); 2484 2485 if (cmp < 0) 2486 n = n->rb_left; 2487 else if (cmp > 0) 2488 n = n->rb_right; 2489 else 2490 return iter; 2491 } 2492 2493 return NULL; 2494 } 2495 2496 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root, 2497 struct hist_entry *he) 2498 { 2499 struct rb_node *n = root->rb_root.rb_node; 2500 2501 while (n) { 2502 struct hist_entry *iter; 2503 struct perf_hpp_fmt *fmt; 2504 int64_t cmp = 0; 2505 2506 iter = rb_entry(n, struct hist_entry, rb_node_in); 2507 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2508 cmp = fmt->collapse(fmt, iter, he); 2509 if (cmp) 2510 break; 2511 } 2512 2513 if (cmp < 0) 2514 n = n->rb_left; 2515 else if (cmp > 0) 2516 n = n->rb_right; 2517 else 2518 return iter; 2519 } 2520 2521 return NULL; 2522 } 2523 2524 static void hists__match_hierarchy(struct rb_root_cached *leader_root, 2525 struct rb_root_cached *other_root) 2526 { 2527 struct rb_node *nd; 2528 struct hist_entry *pos, *pair; 2529 2530 for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) { 2531 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2532 pair = hists__find_hierarchy_entry(other_root, pos); 2533 2534 if (pair) { 2535 hist_entry__add_pair(pair, pos); 2536 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); 2537 } 2538 } 2539 } 2540 2541 /* 2542 * Look for pairs to link to the leader buckets (hist_entries): 2543 */ 2544 void hists__match(struct hists *leader, struct hists *other) 2545 { 2546 struct rb_root_cached *root; 2547 struct rb_node *nd; 2548 struct hist_entry *pos, *pair; 2549 2550 if (symbol_conf.report_hierarchy) { 2551 /* hierarchy report always collapses entries */ 2552 return hists__match_hierarchy(&leader->entries_collapsed, 2553 &other->entries_collapsed); 2554 } 2555 2556 if (hists__has(leader, need_collapse)) 2557 root = &leader->entries_collapsed; 2558 else 2559 root = leader->entries_in; 2560 2561 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2562 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2563 pair = hists__find_entry(other, pos); 2564 2565 if (pair) 2566 hist_entry__add_pair(pair, pos); 2567 } 2568 } 2569 2570 static int hists__link_hierarchy(struct hists *leader_hists, 2571 struct hist_entry *parent, 2572 struct rb_root_cached *leader_root, 2573 struct rb_root_cached *other_root) 2574 { 2575 struct rb_node *nd; 2576 struct hist_entry *pos, *leader; 2577 2578 for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) { 2579 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2580 2581 if (hist_entry__has_pairs(pos)) { 2582 bool found = false; 2583 2584 list_for_each_entry(leader, &pos->pairs.head, pairs.node) { 2585 if (leader->hists == leader_hists) { 2586 found = true; 2587 break; 2588 } 2589 } 2590 if (!found) 2591 return -1; 2592 } else { 2593 leader = add_dummy_hierarchy_entry(leader_hists, 2594 leader_root, pos); 2595 if (leader == NULL) 2596 return -1; 2597 2598 /* do not point parent in the pos */ 2599 leader->parent_he = parent; 2600 2601 hist_entry__add_pair(pos, leader); 2602 } 2603 2604 if (!pos->leaf) { 2605 if (hists__link_hierarchy(leader_hists, leader, 2606 &leader->hroot_in, 2607 &pos->hroot_in) < 0) 2608 return -1; 2609 } 2610 } 2611 return 0; 2612 } 2613 2614 /* 2615 * Look for entries in the other hists that are not present in the leader, if 2616 * we find them, just add a dummy entry on the leader hists, with period=0, 2617 * nr_events=0, to serve as the list header. 2618 */ 2619 int hists__link(struct hists *leader, struct hists *other) 2620 { 2621 struct rb_root_cached *root; 2622 struct rb_node *nd; 2623 struct hist_entry *pos, *pair; 2624 2625 if (symbol_conf.report_hierarchy) { 2626 /* hierarchy report always collapses entries */ 2627 return hists__link_hierarchy(leader, NULL, 2628 &leader->entries_collapsed, 2629 &other->entries_collapsed); 2630 } 2631 2632 if (hists__has(other, need_collapse)) 2633 root = &other->entries_collapsed; 2634 else 2635 root = other->entries_in; 2636 2637 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2638 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2639 2640 if (!hist_entry__has_pairs(pos)) { 2641 pair = hists__add_dummy_entry(leader, pos); 2642 if (pair == NULL) 2643 return -1; 2644 hist_entry__add_pair(pos, pair); 2645 } 2646 } 2647 2648 return 0; 2649 } 2650 2651 int hists__unlink(struct hists *hists) 2652 { 2653 struct rb_root_cached *root; 2654 struct rb_node *nd; 2655 struct hist_entry *pos; 2656 2657 if (hists__has(hists, need_collapse)) 2658 root = &hists->entries_collapsed; 2659 else 2660 root = hists->entries_in; 2661 2662 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2663 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2664 list_del_init(&pos->pairs.node); 2665 } 2666 2667 return 0; 2668 } 2669 2670 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2671 struct perf_sample *sample, bool nonany_branch_mode, 2672 u64 *total_cycles) 2673 { 2674 struct branch_info *bi; 2675 struct branch_entry *entries = perf_sample__branch_entries(sample); 2676 2677 /* If we have branch cycles always annotate them. */ 2678 if (bs && bs->nr && entries[0].flags.cycles) { 2679 int i; 2680 2681 bi = sample__resolve_bstack(sample, al); 2682 if (bi) { 2683 struct addr_map_symbol *prev = NULL; 2684 2685 /* 2686 * Ignore errors, still want to process the 2687 * other entries. 2688 * 2689 * For non standard branch modes always 2690 * force no IPC (prev == NULL) 2691 * 2692 * Note that perf stores branches reversed from 2693 * program order! 2694 */ 2695 for (i = bs->nr - 1; i >= 0; i--) { 2696 addr_map_symbol__account_cycles(&bi[i].from, 2697 nonany_branch_mode ? NULL : prev, 2698 bi[i].flags.cycles); 2699 prev = &bi[i].to; 2700 2701 if (total_cycles) 2702 *total_cycles += bi[i].flags.cycles; 2703 } 2704 free(bi); 2705 } 2706 } 2707 } 2708 2709 size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp, 2710 bool skip_empty) 2711 { 2712 struct evsel *pos; 2713 size_t ret = 0; 2714 2715 evlist__for_each_entry(evlist, pos) { 2716 struct hists *hists = evsel__hists(pos); 2717 2718 if (skip_empty && !hists->stats.nr_samples && !hists->stats.nr_lost_samples) 2719 continue; 2720 2721 ret += fprintf(fp, "%s stats:\n", evsel__name(pos)); 2722 if (hists->stats.nr_samples) 2723 ret += fprintf(fp, "%16s events: %10d\n", 2724 "SAMPLE", hists->stats.nr_samples); 2725 if (hists->stats.nr_lost_samples) 2726 ret += fprintf(fp, "%16s events: %10d\n", 2727 "LOST_SAMPLES", hists->stats.nr_lost_samples); 2728 } 2729 2730 return ret; 2731 } 2732 2733 2734 u64 hists__total_period(struct hists *hists) 2735 { 2736 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2737 hists->stats.total_period; 2738 } 2739 2740 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq) 2741 { 2742 char unit; 2743 int printed; 2744 const struct dso *dso = hists->dso_filter; 2745 struct thread *thread = hists->thread_filter; 2746 int socket_id = hists->socket_filter; 2747 unsigned long nr_samples = hists->stats.nr_samples; 2748 u64 nr_events = hists->stats.total_period; 2749 struct evsel *evsel = hists_to_evsel(hists); 2750 const char *ev_name = evsel__name(evsel); 2751 char buf[512], sample_freq_str[64] = ""; 2752 size_t buflen = sizeof(buf); 2753 char ref[30] = " show reference callgraph, "; 2754 bool enable_ref = false; 2755 2756 if (symbol_conf.filter_relative) { 2757 nr_samples = hists->stats.nr_non_filtered_samples; 2758 nr_events = hists->stats.total_non_filtered_period; 2759 } 2760 2761 if (evsel__is_group_event(evsel)) { 2762 struct evsel *pos; 2763 2764 evsel__group_desc(evsel, buf, buflen); 2765 ev_name = buf; 2766 2767 for_each_group_member(pos, evsel) { 2768 struct hists *pos_hists = evsel__hists(pos); 2769 2770 if (symbol_conf.filter_relative) { 2771 nr_samples += pos_hists->stats.nr_non_filtered_samples; 2772 nr_events += pos_hists->stats.total_non_filtered_period; 2773 } else { 2774 nr_samples += pos_hists->stats.nr_samples; 2775 nr_events += pos_hists->stats.total_period; 2776 } 2777 } 2778 } 2779 2780 if (symbol_conf.show_ref_callgraph && 2781 strstr(ev_name, "call-graph=no")) 2782 enable_ref = true; 2783 2784 if (show_freq) 2785 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq); 2786 2787 nr_samples = convert_unit(nr_samples, &unit); 2788 printed = scnprintf(bf, size, 2789 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64, 2790 nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "", 2791 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events); 2792 2793 2794 if (hists->uid_filter_str) 2795 printed += snprintf(bf + printed, size - printed, 2796 ", UID: %s", hists->uid_filter_str); 2797 if (thread) { 2798 if (hists__has(hists, thread)) { 2799 printed += scnprintf(bf + printed, size - printed, 2800 ", Thread: %s(%d)", 2801 (thread__comm_set(thread) ? thread__comm_str(thread) : ""), 2802 thread__tid(thread)); 2803 } else { 2804 printed += scnprintf(bf + printed, size - printed, 2805 ", Thread: %s", 2806 (thread__comm_set(thread) ? thread__comm_str(thread) : "")); 2807 } 2808 } 2809 if (dso) 2810 printed += scnprintf(bf + printed, size - printed, 2811 ", DSO: %s", dso->short_name); 2812 if (socket_id > -1) 2813 printed += scnprintf(bf + printed, size - printed, 2814 ", Processor Socket: %d", socket_id); 2815 2816 return printed; 2817 } 2818 2819 int parse_filter_percentage(const struct option *opt __maybe_unused, 2820 const char *arg, int unset __maybe_unused) 2821 { 2822 if (!strcmp(arg, "relative")) 2823 symbol_conf.filter_relative = true; 2824 else if (!strcmp(arg, "absolute")) 2825 symbol_conf.filter_relative = false; 2826 else { 2827 pr_debug("Invalid percentage: %s\n", arg); 2828 return -1; 2829 } 2830 2831 return 0; 2832 } 2833 2834 int perf_hist_config(const char *var, const char *value) 2835 { 2836 if (!strcmp(var, "hist.percentage")) 2837 return parse_filter_percentage(NULL, value, 0); 2838 2839 return 0; 2840 } 2841 2842 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2843 { 2844 memset(hists, 0, sizeof(*hists)); 2845 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED; 2846 hists->entries_in = &hists->entries_in_array[0]; 2847 hists->entries_collapsed = RB_ROOT_CACHED; 2848 hists->entries = RB_ROOT_CACHED; 2849 mutex_init(&hists->lock); 2850 hists->socket_filter = -1; 2851 hists->hpp_list = hpp_list; 2852 INIT_LIST_HEAD(&hists->hpp_formats); 2853 return 0; 2854 } 2855 2856 static void hists__delete_remaining_entries(struct rb_root_cached *root) 2857 { 2858 struct rb_node *node; 2859 struct hist_entry *he; 2860 2861 while (!RB_EMPTY_ROOT(&root->rb_root)) { 2862 node = rb_first_cached(root); 2863 rb_erase_cached(node, root); 2864 2865 he = rb_entry(node, struct hist_entry, rb_node_in); 2866 hist_entry__delete(he); 2867 } 2868 } 2869 2870 static void hists__delete_all_entries(struct hists *hists) 2871 { 2872 hists__delete_entries(hists); 2873 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2874 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2875 hists__delete_remaining_entries(&hists->entries_collapsed); 2876 } 2877 2878 static void hists_evsel__exit(struct evsel *evsel) 2879 { 2880 struct hists *hists = evsel__hists(evsel); 2881 struct perf_hpp_fmt *fmt, *pos; 2882 struct perf_hpp_list_node *node, *tmp; 2883 2884 hists__delete_all_entries(hists); 2885 2886 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2887 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2888 list_del_init(&fmt->list); 2889 free(fmt); 2890 } 2891 list_del_init(&node->list); 2892 free(node); 2893 } 2894 } 2895 2896 static int hists_evsel__init(struct evsel *evsel) 2897 { 2898 struct hists *hists = evsel__hists(evsel); 2899 2900 __hists__init(hists, &perf_hpp_list); 2901 return 0; 2902 } 2903 2904 /* 2905 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2906 * stored in the rbtree... 2907 */ 2908 2909 int hists__init(void) 2910 { 2911 int err = evsel__object_config(sizeof(struct hists_evsel), 2912 hists_evsel__init, hists_evsel__exit); 2913 if (err) 2914 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2915 2916 return err; 2917 } 2918 2919 void perf_hpp_list__init(struct perf_hpp_list *list) 2920 { 2921 INIT_LIST_HEAD(&list->fields); 2922 INIT_LIST_HEAD(&list->sorts); 2923 } 2924