1 #include "util.h" 2 #include "build-id.h" 3 #include "hist.h" 4 #include "session.h" 5 #include "sort.h" 6 #include "evlist.h" 7 #include "evsel.h" 8 #include "annotate.h" 9 #include "ui/progress.h" 10 #include <math.h> 11 12 static bool hists__filter_entry_by_dso(struct hists *hists, 13 struct hist_entry *he); 14 static bool hists__filter_entry_by_thread(struct hists *hists, 15 struct hist_entry *he); 16 static bool hists__filter_entry_by_symbol(struct hists *hists, 17 struct hist_entry *he); 18 static bool hists__filter_entry_by_socket(struct hists *hists, 19 struct hist_entry *he); 20 21 u16 hists__col_len(struct hists *hists, enum hist_column col) 22 { 23 return hists->col_len[col]; 24 } 25 26 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 27 { 28 hists->col_len[col] = len; 29 } 30 31 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 32 { 33 if (len > hists__col_len(hists, col)) { 34 hists__set_col_len(hists, col, len); 35 return true; 36 } 37 return false; 38 } 39 40 void hists__reset_col_len(struct hists *hists) 41 { 42 enum hist_column col; 43 44 for (col = 0; col < HISTC_NR_COLS; ++col) 45 hists__set_col_len(hists, col, 0); 46 } 47 48 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 49 { 50 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 51 52 if (hists__col_len(hists, dso) < unresolved_col_width && 53 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 54 !symbol_conf.dso_list) 55 hists__set_col_len(hists, dso, unresolved_col_width); 56 } 57 58 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 59 { 60 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 61 int symlen; 62 u16 len; 63 64 /* 65 * +4 accounts for '[x] ' priv level info 66 * +2 accounts for 0x prefix on raw addresses 67 * +3 accounts for ' y ' symtab origin info 68 */ 69 if (h->ms.sym) { 70 symlen = h->ms.sym->namelen + 4; 71 if (verbose) 72 symlen += BITS_PER_LONG / 4 + 2 + 3; 73 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 74 } else { 75 symlen = unresolved_col_width + 4 + 2; 76 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 77 hists__set_unres_dso_col_len(hists, HISTC_DSO); 78 } 79 80 len = thread__comm_len(h->thread); 81 if (hists__new_col_len(hists, HISTC_COMM, len)) 82 hists__set_col_len(hists, HISTC_THREAD, len + 6); 83 84 if (h->ms.map) { 85 len = dso__name_len(h->ms.map->dso); 86 hists__new_col_len(hists, HISTC_DSO, len); 87 } 88 89 if (h->parent) 90 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 91 92 if (h->branch_info) { 93 if (h->branch_info->from.sym) { 94 symlen = (int)h->branch_info->from.sym->namelen + 4; 95 if (verbose) 96 symlen += BITS_PER_LONG / 4 + 2 + 3; 97 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 98 99 symlen = dso__name_len(h->branch_info->from.map->dso); 100 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 101 } else { 102 symlen = unresolved_col_width + 4 + 2; 103 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 104 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 105 } 106 107 if (h->branch_info->to.sym) { 108 symlen = (int)h->branch_info->to.sym->namelen + 4; 109 if (verbose) 110 symlen += BITS_PER_LONG / 4 + 2 + 3; 111 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 112 113 symlen = dso__name_len(h->branch_info->to.map->dso); 114 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 115 } else { 116 symlen = unresolved_col_width + 4 + 2; 117 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 118 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 119 } 120 } 121 122 if (h->mem_info) { 123 if (h->mem_info->daddr.sym) { 124 symlen = (int)h->mem_info->daddr.sym->namelen + 4 125 + unresolved_col_width + 2; 126 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 127 symlen); 128 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 129 symlen + 1); 130 } else { 131 symlen = unresolved_col_width + 4 + 2; 132 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 133 symlen); 134 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 135 symlen); 136 } 137 138 if (h->mem_info->iaddr.sym) { 139 symlen = (int)h->mem_info->iaddr.sym->namelen + 4 140 + unresolved_col_width + 2; 141 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 142 symlen); 143 } else { 144 symlen = unresolved_col_width + 4 + 2; 145 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 146 symlen); 147 } 148 149 if (h->mem_info->daddr.map) { 150 symlen = dso__name_len(h->mem_info->daddr.map->dso); 151 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 152 symlen); 153 } else { 154 symlen = unresolved_col_width + 4 + 2; 155 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 156 } 157 } else { 158 symlen = unresolved_col_width + 4 + 2; 159 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 160 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 161 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 162 } 163 164 hists__new_col_len(hists, HISTC_CPU, 3); 165 hists__new_col_len(hists, HISTC_SOCKET, 6); 166 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 167 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 168 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 169 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3); 170 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 171 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 172 173 if (h->srcline) 174 hists__new_col_len(hists, HISTC_SRCLINE, strlen(h->srcline)); 175 176 if (h->srcfile) 177 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 178 179 if (h->transaction) 180 hists__new_col_len(hists, HISTC_TRANSACTION, 181 hist_entry__transaction_len()); 182 183 if (h->trace_output) 184 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 185 } 186 187 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 188 { 189 struct rb_node *next = rb_first(&hists->entries); 190 struct hist_entry *n; 191 int row = 0; 192 193 hists__reset_col_len(hists); 194 195 while (next && row++ < max_rows) { 196 n = rb_entry(next, struct hist_entry, rb_node); 197 if (!n->filtered) 198 hists__calc_col_len(hists, n); 199 next = rb_next(&n->rb_node); 200 } 201 } 202 203 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 204 unsigned int cpumode, u64 period) 205 { 206 switch (cpumode) { 207 case PERF_RECORD_MISC_KERNEL: 208 he_stat->period_sys += period; 209 break; 210 case PERF_RECORD_MISC_USER: 211 he_stat->period_us += period; 212 break; 213 case PERF_RECORD_MISC_GUEST_KERNEL: 214 he_stat->period_guest_sys += period; 215 break; 216 case PERF_RECORD_MISC_GUEST_USER: 217 he_stat->period_guest_us += period; 218 break; 219 default: 220 break; 221 } 222 } 223 224 static void he_stat__add_period(struct he_stat *he_stat, u64 period, 225 u64 weight) 226 { 227 228 he_stat->period += period; 229 he_stat->weight += weight; 230 he_stat->nr_events += 1; 231 } 232 233 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 234 { 235 dest->period += src->period; 236 dest->period_sys += src->period_sys; 237 dest->period_us += src->period_us; 238 dest->period_guest_sys += src->period_guest_sys; 239 dest->period_guest_us += src->period_guest_us; 240 dest->nr_events += src->nr_events; 241 dest->weight += src->weight; 242 } 243 244 static void he_stat__decay(struct he_stat *he_stat) 245 { 246 he_stat->period = (he_stat->period * 7) / 8; 247 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 248 /* XXX need decay for weight too? */ 249 } 250 251 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 252 253 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 254 { 255 u64 prev_period = he->stat.period; 256 u64 diff; 257 258 if (prev_period == 0) 259 return true; 260 261 he_stat__decay(&he->stat); 262 if (symbol_conf.cumulate_callchain) 263 he_stat__decay(he->stat_acc); 264 decay_callchain(he->callchain); 265 266 diff = prev_period - he->stat.period; 267 268 if (!he->depth) { 269 hists->stats.total_period -= diff; 270 if (!he->filtered) 271 hists->stats.total_non_filtered_period -= diff; 272 } 273 274 if (!he->leaf) { 275 struct hist_entry *child; 276 struct rb_node *node = rb_first(&he->hroot_out); 277 while (node) { 278 child = rb_entry(node, struct hist_entry, rb_node); 279 node = rb_next(node); 280 281 if (hists__decay_entry(hists, child)) 282 hists__delete_entry(hists, child); 283 } 284 } 285 286 return he->stat.period == 0; 287 } 288 289 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 290 { 291 struct rb_root *root_in; 292 struct rb_root *root_out; 293 294 if (he->parent_he) { 295 root_in = &he->parent_he->hroot_in; 296 root_out = &he->parent_he->hroot_out; 297 } else { 298 if (hists__has(hists, need_collapse)) 299 root_in = &hists->entries_collapsed; 300 else 301 root_in = hists->entries_in; 302 root_out = &hists->entries; 303 } 304 305 rb_erase(&he->rb_node_in, root_in); 306 rb_erase(&he->rb_node, root_out); 307 308 --hists->nr_entries; 309 if (!he->filtered) 310 --hists->nr_non_filtered_entries; 311 312 hist_entry__delete(he); 313 } 314 315 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 316 { 317 struct rb_node *next = rb_first(&hists->entries); 318 struct hist_entry *n; 319 320 while (next) { 321 n = rb_entry(next, struct hist_entry, rb_node); 322 next = rb_next(&n->rb_node); 323 if (((zap_user && n->level == '.') || 324 (zap_kernel && n->level != '.') || 325 hists__decay_entry(hists, n))) { 326 hists__delete_entry(hists, n); 327 } 328 } 329 } 330 331 void hists__delete_entries(struct hists *hists) 332 { 333 struct rb_node *next = rb_first(&hists->entries); 334 struct hist_entry *n; 335 336 while (next) { 337 n = rb_entry(next, struct hist_entry, rb_node); 338 next = rb_next(&n->rb_node); 339 340 hists__delete_entry(hists, n); 341 } 342 } 343 344 /* 345 * histogram, sorted on item, collects periods 346 */ 347 348 static struct hist_entry *hist_entry__new(struct hist_entry *template, 349 bool sample_self) 350 { 351 size_t callchain_size = 0; 352 struct hist_entry *he; 353 354 if (symbol_conf.use_callchain) 355 callchain_size = sizeof(struct callchain_root); 356 357 he = zalloc(sizeof(*he) + callchain_size); 358 359 if (he != NULL) { 360 *he = *template; 361 362 if (symbol_conf.cumulate_callchain) { 363 he->stat_acc = malloc(sizeof(he->stat)); 364 if (he->stat_acc == NULL) { 365 free(he); 366 return NULL; 367 } 368 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 369 if (!sample_self) 370 memset(&he->stat, 0, sizeof(he->stat)); 371 } 372 373 map__get(he->ms.map); 374 375 if (he->branch_info) { 376 /* 377 * This branch info is (a part of) allocated from 378 * sample__resolve_bstack() and will be freed after 379 * adding new entries. So we need to save a copy. 380 */ 381 he->branch_info = malloc(sizeof(*he->branch_info)); 382 if (he->branch_info == NULL) { 383 map__zput(he->ms.map); 384 free(he->stat_acc); 385 free(he); 386 return NULL; 387 } 388 389 memcpy(he->branch_info, template->branch_info, 390 sizeof(*he->branch_info)); 391 392 map__get(he->branch_info->from.map); 393 map__get(he->branch_info->to.map); 394 } 395 396 if (he->mem_info) { 397 map__get(he->mem_info->iaddr.map); 398 map__get(he->mem_info->daddr.map); 399 } 400 401 if (symbol_conf.use_callchain) 402 callchain_init(he->callchain); 403 404 if (he->raw_data) { 405 he->raw_data = memdup(he->raw_data, he->raw_size); 406 407 if (he->raw_data == NULL) { 408 map__put(he->ms.map); 409 if (he->branch_info) { 410 map__put(he->branch_info->from.map); 411 map__put(he->branch_info->to.map); 412 free(he->branch_info); 413 } 414 if (he->mem_info) { 415 map__put(he->mem_info->iaddr.map); 416 map__put(he->mem_info->daddr.map); 417 } 418 free(he->stat_acc); 419 free(he); 420 return NULL; 421 } 422 } 423 INIT_LIST_HEAD(&he->pairs.node); 424 thread__get(he->thread); 425 426 if (!symbol_conf.report_hierarchy) 427 he->leaf = true; 428 } 429 430 return he; 431 } 432 433 static u8 symbol__parent_filter(const struct symbol *parent) 434 { 435 if (symbol_conf.exclude_other && parent == NULL) 436 return 1 << HIST_FILTER__PARENT; 437 return 0; 438 } 439 440 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 441 { 442 if (!symbol_conf.use_callchain) 443 return; 444 445 he->hists->callchain_period += period; 446 if (!he->filtered) 447 he->hists->callchain_non_filtered_period += period; 448 } 449 450 static struct hist_entry *hists__findnew_entry(struct hists *hists, 451 struct hist_entry *entry, 452 struct addr_location *al, 453 bool sample_self) 454 { 455 struct rb_node **p; 456 struct rb_node *parent = NULL; 457 struct hist_entry *he; 458 int64_t cmp; 459 u64 period = entry->stat.period; 460 u64 weight = entry->stat.weight; 461 462 p = &hists->entries_in->rb_node; 463 464 while (*p != NULL) { 465 parent = *p; 466 he = rb_entry(parent, struct hist_entry, rb_node_in); 467 468 /* 469 * Make sure that it receives arguments in a same order as 470 * hist_entry__collapse() so that we can use an appropriate 471 * function when searching an entry regardless which sort 472 * keys were used. 473 */ 474 cmp = hist_entry__cmp(he, entry); 475 476 if (!cmp) { 477 if (sample_self) { 478 he_stat__add_period(&he->stat, period, weight); 479 hist_entry__add_callchain_period(he, period); 480 } 481 if (symbol_conf.cumulate_callchain) 482 he_stat__add_period(he->stat_acc, period, weight); 483 484 /* 485 * This mem info was allocated from sample__resolve_mem 486 * and will not be used anymore. 487 */ 488 zfree(&entry->mem_info); 489 490 /* If the map of an existing hist_entry has 491 * become out-of-date due to an exec() or 492 * similar, update it. Otherwise we will 493 * mis-adjust symbol addresses when computing 494 * the history counter to increment. 495 */ 496 if (he->ms.map != entry->ms.map) { 497 map__put(he->ms.map); 498 he->ms.map = map__get(entry->ms.map); 499 } 500 goto out; 501 } 502 503 if (cmp < 0) 504 p = &(*p)->rb_left; 505 else 506 p = &(*p)->rb_right; 507 } 508 509 he = hist_entry__new(entry, sample_self); 510 if (!he) 511 return NULL; 512 513 if (sample_self) 514 hist_entry__add_callchain_period(he, period); 515 hists->nr_entries++; 516 517 rb_link_node(&he->rb_node_in, parent, p); 518 rb_insert_color(&he->rb_node_in, hists->entries_in); 519 out: 520 if (sample_self) 521 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 522 if (symbol_conf.cumulate_callchain) 523 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 524 return he; 525 } 526 527 struct hist_entry *__hists__add_entry(struct hists *hists, 528 struct addr_location *al, 529 struct symbol *sym_parent, 530 struct branch_info *bi, 531 struct mem_info *mi, 532 struct perf_sample *sample, 533 bool sample_self) 534 { 535 struct hist_entry entry = { 536 .thread = al->thread, 537 .comm = thread__comm(al->thread), 538 .ms = { 539 .map = al->map, 540 .sym = al->sym, 541 }, 542 .socket = al->socket, 543 .cpu = al->cpu, 544 .cpumode = al->cpumode, 545 .ip = al->addr, 546 .level = al->level, 547 .stat = { 548 .nr_events = 1, 549 .period = sample->period, 550 .weight = sample->weight, 551 }, 552 .parent = sym_parent, 553 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 554 .hists = hists, 555 .branch_info = bi, 556 .mem_info = mi, 557 .transaction = sample->transaction, 558 .raw_data = sample->raw_data, 559 .raw_size = sample->raw_size, 560 }; 561 562 return hists__findnew_entry(hists, &entry, al, sample_self); 563 } 564 565 static int 566 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 567 struct addr_location *al __maybe_unused) 568 { 569 return 0; 570 } 571 572 static int 573 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 574 struct addr_location *al __maybe_unused) 575 { 576 return 0; 577 } 578 579 static int 580 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 581 { 582 struct perf_sample *sample = iter->sample; 583 struct mem_info *mi; 584 585 mi = sample__resolve_mem(sample, al); 586 if (mi == NULL) 587 return -ENOMEM; 588 589 iter->priv = mi; 590 return 0; 591 } 592 593 static int 594 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 595 { 596 u64 cost; 597 struct mem_info *mi = iter->priv; 598 struct hists *hists = evsel__hists(iter->evsel); 599 struct perf_sample *sample = iter->sample; 600 struct hist_entry *he; 601 602 if (mi == NULL) 603 return -EINVAL; 604 605 cost = sample->weight; 606 if (!cost) 607 cost = 1; 608 609 /* 610 * must pass period=weight in order to get the correct 611 * sorting from hists__collapse_resort() which is solely 612 * based on periods. We want sorting be done on nr_events * weight 613 * and this is indirectly achieved by passing period=weight here 614 * and the he_stat__add_period() function. 615 */ 616 sample->period = cost; 617 618 he = __hists__add_entry(hists, al, iter->parent, NULL, mi, 619 sample, true); 620 if (!he) 621 return -ENOMEM; 622 623 iter->he = he; 624 return 0; 625 } 626 627 static int 628 iter_finish_mem_entry(struct hist_entry_iter *iter, 629 struct addr_location *al __maybe_unused) 630 { 631 struct perf_evsel *evsel = iter->evsel; 632 struct hists *hists = evsel__hists(evsel); 633 struct hist_entry *he = iter->he; 634 int err = -EINVAL; 635 636 if (he == NULL) 637 goto out; 638 639 hists__inc_nr_samples(hists, he->filtered); 640 641 err = hist_entry__append_callchain(he, iter->sample); 642 643 out: 644 /* 645 * We don't need to free iter->priv (mem_info) here since the mem info 646 * was either already freed in hists__findnew_entry() or passed to a 647 * new hist entry by hist_entry__new(). 648 */ 649 iter->priv = NULL; 650 651 iter->he = NULL; 652 return err; 653 } 654 655 static int 656 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 657 { 658 struct branch_info *bi; 659 struct perf_sample *sample = iter->sample; 660 661 bi = sample__resolve_bstack(sample, al); 662 if (!bi) 663 return -ENOMEM; 664 665 iter->curr = 0; 666 iter->total = sample->branch_stack->nr; 667 668 iter->priv = bi; 669 return 0; 670 } 671 672 static int 673 iter_add_single_branch_entry(struct hist_entry_iter *iter, 674 struct addr_location *al __maybe_unused) 675 { 676 /* to avoid calling callback function */ 677 iter->he = NULL; 678 679 return 0; 680 } 681 682 static int 683 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 684 { 685 struct branch_info *bi = iter->priv; 686 int i = iter->curr; 687 688 if (bi == NULL) 689 return 0; 690 691 if (iter->curr >= iter->total) 692 return 0; 693 694 al->map = bi[i].to.map; 695 al->sym = bi[i].to.sym; 696 al->addr = bi[i].to.addr; 697 return 1; 698 } 699 700 static int 701 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 702 { 703 struct branch_info *bi; 704 struct perf_evsel *evsel = iter->evsel; 705 struct hists *hists = evsel__hists(evsel); 706 struct perf_sample *sample = iter->sample; 707 struct hist_entry *he = NULL; 708 int i = iter->curr; 709 int err = 0; 710 711 bi = iter->priv; 712 713 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym)) 714 goto out; 715 716 /* 717 * The report shows the percentage of total branches captured 718 * and not events sampled. Thus we use a pseudo period of 1. 719 */ 720 sample->period = 1; 721 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 722 723 he = __hists__add_entry(hists, al, iter->parent, &bi[i], NULL, 724 sample, true); 725 if (he == NULL) 726 return -ENOMEM; 727 728 hists__inc_nr_samples(hists, he->filtered); 729 730 out: 731 iter->he = he; 732 iter->curr++; 733 return err; 734 } 735 736 static int 737 iter_finish_branch_entry(struct hist_entry_iter *iter, 738 struct addr_location *al __maybe_unused) 739 { 740 zfree(&iter->priv); 741 iter->he = NULL; 742 743 return iter->curr >= iter->total ? 0 : -1; 744 } 745 746 static int 747 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 748 struct addr_location *al __maybe_unused) 749 { 750 return 0; 751 } 752 753 static int 754 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 755 { 756 struct perf_evsel *evsel = iter->evsel; 757 struct perf_sample *sample = iter->sample; 758 struct hist_entry *he; 759 760 he = __hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 761 sample, true); 762 if (he == NULL) 763 return -ENOMEM; 764 765 iter->he = he; 766 return 0; 767 } 768 769 static int 770 iter_finish_normal_entry(struct hist_entry_iter *iter, 771 struct addr_location *al __maybe_unused) 772 { 773 struct hist_entry *he = iter->he; 774 struct perf_evsel *evsel = iter->evsel; 775 struct perf_sample *sample = iter->sample; 776 777 if (he == NULL) 778 return 0; 779 780 iter->he = NULL; 781 782 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 783 784 return hist_entry__append_callchain(he, sample); 785 } 786 787 static int 788 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 789 struct addr_location *al __maybe_unused) 790 { 791 struct hist_entry **he_cache; 792 793 callchain_cursor_commit(&callchain_cursor); 794 795 /* 796 * This is for detecting cycles or recursions so that they're 797 * cumulated only one time to prevent entries more than 100% 798 * overhead. 799 */ 800 he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1)); 801 if (he_cache == NULL) 802 return -ENOMEM; 803 804 iter->priv = he_cache; 805 iter->curr = 0; 806 807 return 0; 808 } 809 810 static int 811 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 812 struct addr_location *al) 813 { 814 struct perf_evsel *evsel = iter->evsel; 815 struct hists *hists = evsel__hists(evsel); 816 struct perf_sample *sample = iter->sample; 817 struct hist_entry **he_cache = iter->priv; 818 struct hist_entry *he; 819 int err = 0; 820 821 he = __hists__add_entry(hists, al, iter->parent, NULL, NULL, 822 sample, true); 823 if (he == NULL) 824 return -ENOMEM; 825 826 iter->he = he; 827 he_cache[iter->curr++] = he; 828 829 hist_entry__append_callchain(he, sample); 830 831 /* 832 * We need to re-initialize the cursor since callchain_append() 833 * advanced the cursor to the end. 834 */ 835 callchain_cursor_commit(&callchain_cursor); 836 837 hists__inc_nr_samples(hists, he->filtered); 838 839 return err; 840 } 841 842 static int 843 iter_next_cumulative_entry(struct hist_entry_iter *iter, 844 struct addr_location *al) 845 { 846 struct callchain_cursor_node *node; 847 848 node = callchain_cursor_current(&callchain_cursor); 849 if (node == NULL) 850 return 0; 851 852 return fill_callchain_info(al, node, iter->hide_unresolved); 853 } 854 855 static int 856 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 857 struct addr_location *al) 858 { 859 struct perf_evsel *evsel = iter->evsel; 860 struct perf_sample *sample = iter->sample; 861 struct hist_entry **he_cache = iter->priv; 862 struct hist_entry *he; 863 struct hist_entry he_tmp = { 864 .hists = evsel__hists(evsel), 865 .cpu = al->cpu, 866 .thread = al->thread, 867 .comm = thread__comm(al->thread), 868 .ip = al->addr, 869 .ms = { 870 .map = al->map, 871 .sym = al->sym, 872 }, 873 .parent = iter->parent, 874 .raw_data = sample->raw_data, 875 .raw_size = sample->raw_size, 876 }; 877 int i; 878 struct callchain_cursor cursor; 879 880 callchain_cursor_snapshot(&cursor, &callchain_cursor); 881 882 callchain_cursor_advance(&callchain_cursor); 883 884 /* 885 * Check if there's duplicate entries in the callchain. 886 * It's possible that it has cycles or recursive calls. 887 */ 888 for (i = 0; i < iter->curr; i++) { 889 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 890 /* to avoid calling callback function */ 891 iter->he = NULL; 892 return 0; 893 } 894 } 895 896 he = __hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 897 sample, false); 898 if (he == NULL) 899 return -ENOMEM; 900 901 iter->he = he; 902 he_cache[iter->curr++] = he; 903 904 if (symbol_conf.use_callchain) 905 callchain_append(he->callchain, &cursor, sample->period); 906 return 0; 907 } 908 909 static int 910 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 911 struct addr_location *al __maybe_unused) 912 { 913 zfree(&iter->priv); 914 iter->he = NULL; 915 916 return 0; 917 } 918 919 const struct hist_iter_ops hist_iter_mem = { 920 .prepare_entry = iter_prepare_mem_entry, 921 .add_single_entry = iter_add_single_mem_entry, 922 .next_entry = iter_next_nop_entry, 923 .add_next_entry = iter_add_next_nop_entry, 924 .finish_entry = iter_finish_mem_entry, 925 }; 926 927 const struct hist_iter_ops hist_iter_branch = { 928 .prepare_entry = iter_prepare_branch_entry, 929 .add_single_entry = iter_add_single_branch_entry, 930 .next_entry = iter_next_branch_entry, 931 .add_next_entry = iter_add_next_branch_entry, 932 .finish_entry = iter_finish_branch_entry, 933 }; 934 935 const struct hist_iter_ops hist_iter_normal = { 936 .prepare_entry = iter_prepare_normal_entry, 937 .add_single_entry = iter_add_single_normal_entry, 938 .next_entry = iter_next_nop_entry, 939 .add_next_entry = iter_add_next_nop_entry, 940 .finish_entry = iter_finish_normal_entry, 941 }; 942 943 const struct hist_iter_ops hist_iter_cumulative = { 944 .prepare_entry = iter_prepare_cumulative_entry, 945 .add_single_entry = iter_add_single_cumulative_entry, 946 .next_entry = iter_next_cumulative_entry, 947 .add_next_entry = iter_add_next_cumulative_entry, 948 .finish_entry = iter_finish_cumulative_entry, 949 }; 950 951 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 952 int max_stack_depth, void *arg) 953 { 954 int err, err2; 955 956 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, 957 iter->evsel, al, max_stack_depth); 958 if (err) 959 return err; 960 961 iter->max_stack = max_stack_depth; 962 963 err = iter->ops->prepare_entry(iter, al); 964 if (err) 965 goto out; 966 967 err = iter->ops->add_single_entry(iter, al); 968 if (err) 969 goto out; 970 971 if (iter->he && iter->add_entry_cb) { 972 err = iter->add_entry_cb(iter, al, true, arg); 973 if (err) 974 goto out; 975 } 976 977 while (iter->ops->next_entry(iter, al)) { 978 err = iter->ops->add_next_entry(iter, al); 979 if (err) 980 break; 981 982 if (iter->he && iter->add_entry_cb) { 983 err = iter->add_entry_cb(iter, al, false, arg); 984 if (err) 985 goto out; 986 } 987 } 988 989 out: 990 err2 = iter->ops->finish_entry(iter, al); 991 if (!err) 992 err = err2; 993 994 return err; 995 } 996 997 int64_t 998 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 999 { 1000 struct hists *hists = left->hists; 1001 struct perf_hpp_fmt *fmt; 1002 int64_t cmp = 0; 1003 1004 hists__for_each_sort_list(hists, fmt) { 1005 if (perf_hpp__is_dynamic_entry(fmt) && 1006 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1007 continue; 1008 1009 cmp = fmt->cmp(fmt, left, right); 1010 if (cmp) 1011 break; 1012 } 1013 1014 return cmp; 1015 } 1016 1017 int64_t 1018 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1019 { 1020 struct hists *hists = left->hists; 1021 struct perf_hpp_fmt *fmt; 1022 int64_t cmp = 0; 1023 1024 hists__for_each_sort_list(hists, fmt) { 1025 if (perf_hpp__is_dynamic_entry(fmt) && 1026 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1027 continue; 1028 1029 cmp = fmt->collapse(fmt, left, right); 1030 if (cmp) 1031 break; 1032 } 1033 1034 return cmp; 1035 } 1036 1037 void hist_entry__delete(struct hist_entry *he) 1038 { 1039 thread__zput(he->thread); 1040 map__zput(he->ms.map); 1041 1042 if (he->branch_info) { 1043 map__zput(he->branch_info->from.map); 1044 map__zput(he->branch_info->to.map); 1045 zfree(&he->branch_info); 1046 } 1047 1048 if (he->mem_info) { 1049 map__zput(he->mem_info->iaddr.map); 1050 map__zput(he->mem_info->daddr.map); 1051 zfree(&he->mem_info); 1052 } 1053 1054 zfree(&he->stat_acc); 1055 free_srcline(he->srcline); 1056 if (he->srcfile && he->srcfile[0]) 1057 free(he->srcfile); 1058 free_callchain(he->callchain); 1059 free(he->trace_output); 1060 free(he->raw_data); 1061 free(he); 1062 } 1063 1064 /* 1065 * If this is not the last column, then we need to pad it according to the 1066 * pre-calculated max lenght for this column, otherwise don't bother adding 1067 * spaces because that would break viewing this with, for instance, 'less', 1068 * that would show tons of trailing spaces when a long C++ demangled method 1069 * names is sampled. 1070 */ 1071 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1072 struct perf_hpp_fmt *fmt, int printed) 1073 { 1074 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1075 const int width = fmt->width(fmt, hpp, hists_to_evsel(he->hists)); 1076 if (printed < width) { 1077 advance_hpp(hpp, printed); 1078 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1079 } 1080 } 1081 1082 return printed; 1083 } 1084 1085 /* 1086 * collapse the histogram 1087 */ 1088 1089 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1090 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1091 enum hist_filter type); 1092 1093 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1094 1095 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1096 { 1097 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1098 } 1099 1100 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1101 enum hist_filter type, 1102 fmt_chk_fn check) 1103 { 1104 struct perf_hpp_fmt *fmt; 1105 bool type_match = false; 1106 struct hist_entry *parent = he->parent_he; 1107 1108 switch (type) { 1109 case HIST_FILTER__THREAD: 1110 if (symbol_conf.comm_list == NULL && 1111 symbol_conf.pid_list == NULL && 1112 symbol_conf.tid_list == NULL) 1113 return; 1114 break; 1115 case HIST_FILTER__DSO: 1116 if (symbol_conf.dso_list == NULL) 1117 return; 1118 break; 1119 case HIST_FILTER__SYMBOL: 1120 if (symbol_conf.sym_list == NULL) 1121 return; 1122 break; 1123 case HIST_FILTER__PARENT: 1124 case HIST_FILTER__GUEST: 1125 case HIST_FILTER__HOST: 1126 case HIST_FILTER__SOCKET: 1127 default: 1128 return; 1129 } 1130 1131 /* if it's filtered by own fmt, it has to have filter bits */ 1132 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1133 if (check(fmt)) { 1134 type_match = true; 1135 break; 1136 } 1137 } 1138 1139 if (type_match) { 1140 /* 1141 * If the filter is for current level entry, propagate 1142 * filter marker to parents. The marker bit was 1143 * already set by default so it only needs to clear 1144 * non-filtered entries. 1145 */ 1146 if (!(he->filtered & (1 << type))) { 1147 while (parent) { 1148 parent->filtered &= ~(1 << type); 1149 parent = parent->parent_he; 1150 } 1151 } 1152 } else { 1153 /* 1154 * If current entry doesn't have matching formats, set 1155 * filter marker for upper level entries. it will be 1156 * cleared if its lower level entries is not filtered. 1157 * 1158 * For lower-level entries, it inherits parent's 1159 * filter bit so that lower level entries of a 1160 * non-filtered entry won't set the filter marker. 1161 */ 1162 if (parent == NULL) 1163 he->filtered |= (1 << type); 1164 else 1165 he->filtered |= (parent->filtered & (1 << type)); 1166 } 1167 } 1168 1169 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1170 { 1171 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1172 check_thread_entry); 1173 1174 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1175 perf_hpp__is_dso_entry); 1176 1177 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1178 perf_hpp__is_sym_entry); 1179 1180 hists__apply_filters(he->hists, he); 1181 } 1182 1183 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1184 struct rb_root *root, 1185 struct hist_entry *he, 1186 struct hist_entry *parent_he, 1187 struct perf_hpp_list *hpp_list) 1188 { 1189 struct rb_node **p = &root->rb_node; 1190 struct rb_node *parent = NULL; 1191 struct hist_entry *iter, *new; 1192 struct perf_hpp_fmt *fmt; 1193 int64_t cmp; 1194 1195 while (*p != NULL) { 1196 parent = *p; 1197 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1198 1199 cmp = 0; 1200 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1201 cmp = fmt->collapse(fmt, iter, he); 1202 if (cmp) 1203 break; 1204 } 1205 1206 if (!cmp) { 1207 he_stat__add_stat(&iter->stat, &he->stat); 1208 return iter; 1209 } 1210 1211 if (cmp < 0) 1212 p = &parent->rb_left; 1213 else 1214 p = &parent->rb_right; 1215 } 1216 1217 new = hist_entry__new(he, true); 1218 if (new == NULL) 1219 return NULL; 1220 1221 hists->nr_entries++; 1222 1223 /* save related format list for output */ 1224 new->hpp_list = hpp_list; 1225 new->parent_he = parent_he; 1226 1227 hist_entry__apply_hierarchy_filters(new); 1228 1229 /* some fields are now passed to 'new' */ 1230 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1231 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1232 he->trace_output = NULL; 1233 else 1234 new->trace_output = NULL; 1235 1236 if (perf_hpp__is_srcline_entry(fmt)) 1237 he->srcline = NULL; 1238 else 1239 new->srcline = NULL; 1240 1241 if (perf_hpp__is_srcfile_entry(fmt)) 1242 he->srcfile = NULL; 1243 else 1244 new->srcfile = NULL; 1245 } 1246 1247 rb_link_node(&new->rb_node_in, parent, p); 1248 rb_insert_color(&new->rb_node_in, root); 1249 return new; 1250 } 1251 1252 static int hists__hierarchy_insert_entry(struct hists *hists, 1253 struct rb_root *root, 1254 struct hist_entry *he) 1255 { 1256 struct perf_hpp_list_node *node; 1257 struct hist_entry *new_he = NULL; 1258 struct hist_entry *parent = NULL; 1259 int depth = 0; 1260 int ret = 0; 1261 1262 list_for_each_entry(node, &hists->hpp_formats, list) { 1263 /* skip period (overhead) and elided columns */ 1264 if (node->level == 0 || node->skip) 1265 continue; 1266 1267 /* insert copy of 'he' for each fmt into the hierarchy */ 1268 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1269 if (new_he == NULL) { 1270 ret = -1; 1271 break; 1272 } 1273 1274 root = &new_he->hroot_in; 1275 new_he->depth = depth++; 1276 parent = new_he; 1277 } 1278 1279 if (new_he) { 1280 new_he->leaf = true; 1281 1282 if (symbol_conf.use_callchain) { 1283 callchain_cursor_reset(&callchain_cursor); 1284 if (callchain_merge(&callchain_cursor, 1285 new_he->callchain, 1286 he->callchain) < 0) 1287 ret = -1; 1288 } 1289 } 1290 1291 /* 'he' is no longer used */ 1292 hist_entry__delete(he); 1293 1294 /* return 0 (or -1) since it already applied filters */ 1295 return ret; 1296 } 1297 1298 static int hists__collapse_insert_entry(struct hists *hists, 1299 struct rb_root *root, 1300 struct hist_entry *he) 1301 { 1302 struct rb_node **p = &root->rb_node; 1303 struct rb_node *parent = NULL; 1304 struct hist_entry *iter; 1305 int64_t cmp; 1306 1307 if (symbol_conf.report_hierarchy) 1308 return hists__hierarchy_insert_entry(hists, root, he); 1309 1310 while (*p != NULL) { 1311 parent = *p; 1312 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1313 1314 cmp = hist_entry__collapse(iter, he); 1315 1316 if (!cmp) { 1317 int ret = 0; 1318 1319 he_stat__add_stat(&iter->stat, &he->stat); 1320 if (symbol_conf.cumulate_callchain) 1321 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1322 1323 if (symbol_conf.use_callchain) { 1324 callchain_cursor_reset(&callchain_cursor); 1325 if (callchain_merge(&callchain_cursor, 1326 iter->callchain, 1327 he->callchain) < 0) 1328 ret = -1; 1329 } 1330 hist_entry__delete(he); 1331 return ret; 1332 } 1333 1334 if (cmp < 0) 1335 p = &(*p)->rb_left; 1336 else 1337 p = &(*p)->rb_right; 1338 } 1339 hists->nr_entries++; 1340 1341 rb_link_node(&he->rb_node_in, parent, p); 1342 rb_insert_color(&he->rb_node_in, root); 1343 return 1; 1344 } 1345 1346 struct rb_root *hists__get_rotate_entries_in(struct hists *hists) 1347 { 1348 struct rb_root *root; 1349 1350 pthread_mutex_lock(&hists->lock); 1351 1352 root = hists->entries_in; 1353 if (++hists->entries_in > &hists->entries_in_array[1]) 1354 hists->entries_in = &hists->entries_in_array[0]; 1355 1356 pthread_mutex_unlock(&hists->lock); 1357 1358 return root; 1359 } 1360 1361 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1362 { 1363 hists__filter_entry_by_dso(hists, he); 1364 hists__filter_entry_by_thread(hists, he); 1365 hists__filter_entry_by_symbol(hists, he); 1366 hists__filter_entry_by_socket(hists, he); 1367 } 1368 1369 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1370 { 1371 struct rb_root *root; 1372 struct rb_node *next; 1373 struct hist_entry *n; 1374 int ret; 1375 1376 if (!hists__has(hists, need_collapse)) 1377 return 0; 1378 1379 hists->nr_entries = 0; 1380 1381 root = hists__get_rotate_entries_in(hists); 1382 1383 next = rb_first(root); 1384 1385 while (next) { 1386 if (session_done()) 1387 break; 1388 n = rb_entry(next, struct hist_entry, rb_node_in); 1389 next = rb_next(&n->rb_node_in); 1390 1391 rb_erase(&n->rb_node_in, root); 1392 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1393 if (ret < 0) 1394 return -1; 1395 1396 if (ret) { 1397 /* 1398 * If it wasn't combined with one of the entries already 1399 * collapsed, we need to apply the filters that may have 1400 * been set by, say, the hist_browser. 1401 */ 1402 hists__apply_filters(hists, n); 1403 } 1404 if (prog) 1405 ui_progress__update(prog, 1); 1406 } 1407 return 0; 1408 } 1409 1410 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1411 { 1412 struct hists *hists = a->hists; 1413 struct perf_hpp_fmt *fmt; 1414 int64_t cmp = 0; 1415 1416 hists__for_each_sort_list(hists, fmt) { 1417 if (perf_hpp__should_skip(fmt, a->hists)) 1418 continue; 1419 1420 cmp = fmt->sort(fmt, a, b); 1421 if (cmp) 1422 break; 1423 } 1424 1425 return cmp; 1426 } 1427 1428 static void hists__reset_filter_stats(struct hists *hists) 1429 { 1430 hists->nr_non_filtered_entries = 0; 1431 hists->stats.total_non_filtered_period = 0; 1432 } 1433 1434 void hists__reset_stats(struct hists *hists) 1435 { 1436 hists->nr_entries = 0; 1437 hists->stats.total_period = 0; 1438 1439 hists__reset_filter_stats(hists); 1440 } 1441 1442 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1443 { 1444 hists->nr_non_filtered_entries++; 1445 hists->stats.total_non_filtered_period += h->stat.period; 1446 } 1447 1448 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1449 { 1450 if (!h->filtered) 1451 hists__inc_filter_stats(hists, h); 1452 1453 hists->nr_entries++; 1454 hists->stats.total_period += h->stat.period; 1455 } 1456 1457 static void hierarchy_recalc_total_periods(struct hists *hists) 1458 { 1459 struct rb_node *node; 1460 struct hist_entry *he; 1461 1462 node = rb_first(&hists->entries); 1463 1464 hists->stats.total_period = 0; 1465 hists->stats.total_non_filtered_period = 0; 1466 1467 /* 1468 * recalculate total period using top-level entries only 1469 * since lower level entries only see non-filtered entries 1470 * but upper level entries have sum of both entries. 1471 */ 1472 while (node) { 1473 he = rb_entry(node, struct hist_entry, rb_node); 1474 node = rb_next(node); 1475 1476 hists->stats.total_period += he->stat.period; 1477 if (!he->filtered) 1478 hists->stats.total_non_filtered_period += he->stat.period; 1479 } 1480 } 1481 1482 static void hierarchy_insert_output_entry(struct rb_root *root, 1483 struct hist_entry *he) 1484 { 1485 struct rb_node **p = &root->rb_node; 1486 struct rb_node *parent = NULL; 1487 struct hist_entry *iter; 1488 struct perf_hpp_fmt *fmt; 1489 1490 while (*p != NULL) { 1491 parent = *p; 1492 iter = rb_entry(parent, struct hist_entry, rb_node); 1493 1494 if (hist_entry__sort(he, iter) > 0) 1495 p = &parent->rb_left; 1496 else 1497 p = &parent->rb_right; 1498 } 1499 1500 rb_link_node(&he->rb_node, parent, p); 1501 rb_insert_color(&he->rb_node, root); 1502 1503 /* update column width of dynamic entry */ 1504 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1505 if (perf_hpp__is_dynamic_entry(fmt)) 1506 fmt->sort(fmt, he, NULL); 1507 } 1508 } 1509 1510 static void hists__hierarchy_output_resort(struct hists *hists, 1511 struct ui_progress *prog, 1512 struct rb_root *root_in, 1513 struct rb_root *root_out, 1514 u64 min_callchain_hits, 1515 bool use_callchain) 1516 { 1517 struct rb_node *node; 1518 struct hist_entry *he; 1519 1520 *root_out = RB_ROOT; 1521 node = rb_first(root_in); 1522 1523 while (node) { 1524 he = rb_entry(node, struct hist_entry, rb_node_in); 1525 node = rb_next(node); 1526 1527 hierarchy_insert_output_entry(root_out, he); 1528 1529 if (prog) 1530 ui_progress__update(prog, 1); 1531 1532 if (!he->leaf) { 1533 hists__hierarchy_output_resort(hists, prog, 1534 &he->hroot_in, 1535 &he->hroot_out, 1536 min_callchain_hits, 1537 use_callchain); 1538 hists->nr_entries++; 1539 if (!he->filtered) { 1540 hists->nr_non_filtered_entries++; 1541 hists__calc_col_len(hists, he); 1542 } 1543 1544 continue; 1545 } 1546 1547 if (!use_callchain) 1548 continue; 1549 1550 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1551 u64 total = he->stat.period; 1552 1553 if (symbol_conf.cumulate_callchain) 1554 total = he->stat_acc->period; 1555 1556 min_callchain_hits = total * (callchain_param.min_percent / 100); 1557 } 1558 1559 callchain_param.sort(&he->sorted_chain, he->callchain, 1560 min_callchain_hits, &callchain_param); 1561 } 1562 } 1563 1564 static void __hists__insert_output_entry(struct rb_root *entries, 1565 struct hist_entry *he, 1566 u64 min_callchain_hits, 1567 bool use_callchain) 1568 { 1569 struct rb_node **p = &entries->rb_node; 1570 struct rb_node *parent = NULL; 1571 struct hist_entry *iter; 1572 struct perf_hpp_fmt *fmt; 1573 1574 if (use_callchain) { 1575 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1576 u64 total = he->stat.period; 1577 1578 if (symbol_conf.cumulate_callchain) 1579 total = he->stat_acc->period; 1580 1581 min_callchain_hits = total * (callchain_param.min_percent / 100); 1582 } 1583 callchain_param.sort(&he->sorted_chain, he->callchain, 1584 min_callchain_hits, &callchain_param); 1585 } 1586 1587 while (*p != NULL) { 1588 parent = *p; 1589 iter = rb_entry(parent, struct hist_entry, rb_node); 1590 1591 if (hist_entry__sort(he, iter) > 0) 1592 p = &(*p)->rb_left; 1593 else 1594 p = &(*p)->rb_right; 1595 } 1596 1597 rb_link_node(&he->rb_node, parent, p); 1598 rb_insert_color(&he->rb_node, entries); 1599 1600 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1601 if (perf_hpp__is_dynamic_entry(fmt) && 1602 perf_hpp__defined_dynamic_entry(fmt, he->hists)) 1603 fmt->sort(fmt, he, NULL); /* update column width */ 1604 } 1605 } 1606 1607 static void output_resort(struct hists *hists, struct ui_progress *prog, 1608 bool use_callchain) 1609 { 1610 struct rb_root *root; 1611 struct rb_node *next; 1612 struct hist_entry *n; 1613 u64 callchain_total; 1614 u64 min_callchain_hits; 1615 1616 callchain_total = hists->callchain_period; 1617 if (symbol_conf.filter_relative) 1618 callchain_total = hists->callchain_non_filtered_period; 1619 1620 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1621 1622 hists__reset_stats(hists); 1623 hists__reset_col_len(hists); 1624 1625 if (symbol_conf.report_hierarchy) { 1626 hists__hierarchy_output_resort(hists, prog, 1627 &hists->entries_collapsed, 1628 &hists->entries, 1629 min_callchain_hits, 1630 use_callchain); 1631 hierarchy_recalc_total_periods(hists); 1632 return; 1633 } 1634 1635 if (hists__has(hists, need_collapse)) 1636 root = &hists->entries_collapsed; 1637 else 1638 root = hists->entries_in; 1639 1640 next = rb_first(root); 1641 hists->entries = RB_ROOT; 1642 1643 while (next) { 1644 n = rb_entry(next, struct hist_entry, rb_node_in); 1645 next = rb_next(&n->rb_node_in); 1646 1647 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1648 hists__inc_stats(hists, n); 1649 1650 if (!n->filtered) 1651 hists__calc_col_len(hists, n); 1652 1653 if (prog) 1654 ui_progress__update(prog, 1); 1655 } 1656 } 1657 1658 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog) 1659 { 1660 bool use_callchain; 1661 1662 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1663 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN; 1664 else 1665 use_callchain = symbol_conf.use_callchain; 1666 1667 output_resort(evsel__hists(evsel), prog, use_callchain); 1668 } 1669 1670 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 1671 { 1672 output_resort(hists, prog, symbol_conf.use_callchain); 1673 } 1674 1675 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 1676 { 1677 if (he->leaf || hmd == HMD_FORCE_SIBLING) 1678 return false; 1679 1680 if (he->unfolded || hmd == HMD_FORCE_CHILD) 1681 return true; 1682 1683 return false; 1684 } 1685 1686 struct rb_node *rb_hierarchy_last(struct rb_node *node) 1687 { 1688 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1689 1690 while (can_goto_child(he, HMD_NORMAL)) { 1691 node = rb_last(&he->hroot_out); 1692 he = rb_entry(node, struct hist_entry, rb_node); 1693 } 1694 return node; 1695 } 1696 1697 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 1698 { 1699 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1700 1701 if (can_goto_child(he, hmd)) 1702 node = rb_first(&he->hroot_out); 1703 else 1704 node = rb_next(node); 1705 1706 while (node == NULL) { 1707 he = he->parent_he; 1708 if (he == NULL) 1709 break; 1710 1711 node = rb_next(&he->rb_node); 1712 } 1713 return node; 1714 } 1715 1716 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 1717 { 1718 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1719 1720 node = rb_prev(node); 1721 if (node) 1722 return rb_hierarchy_last(node); 1723 1724 he = he->parent_he; 1725 if (he == NULL) 1726 return NULL; 1727 1728 return &he->rb_node; 1729 } 1730 1731 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 1732 { 1733 struct rb_node *node; 1734 struct hist_entry *child; 1735 float percent; 1736 1737 if (he->leaf) 1738 return false; 1739 1740 node = rb_first(&he->hroot_out); 1741 child = rb_entry(node, struct hist_entry, rb_node); 1742 1743 while (node && child->filtered) { 1744 node = rb_next(node); 1745 child = rb_entry(node, struct hist_entry, rb_node); 1746 } 1747 1748 if (node) 1749 percent = hist_entry__get_percent_limit(child); 1750 else 1751 percent = 0; 1752 1753 return node && percent >= limit; 1754 } 1755 1756 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 1757 enum hist_filter filter) 1758 { 1759 h->filtered &= ~(1 << filter); 1760 1761 if (symbol_conf.report_hierarchy) { 1762 struct hist_entry *parent = h->parent_he; 1763 1764 while (parent) { 1765 he_stat__add_stat(&parent->stat, &h->stat); 1766 1767 parent->filtered &= ~(1 << filter); 1768 1769 if (parent->filtered) 1770 goto next; 1771 1772 /* force fold unfiltered entry for simplicity */ 1773 parent->unfolded = false; 1774 parent->has_no_entry = false; 1775 parent->row_offset = 0; 1776 parent->nr_rows = 0; 1777 next: 1778 parent = parent->parent_he; 1779 } 1780 } 1781 1782 if (h->filtered) 1783 return; 1784 1785 /* force fold unfiltered entry for simplicity */ 1786 h->unfolded = false; 1787 h->has_no_entry = false; 1788 h->row_offset = 0; 1789 h->nr_rows = 0; 1790 1791 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 1792 1793 hists__inc_filter_stats(hists, h); 1794 hists__calc_col_len(hists, h); 1795 } 1796 1797 1798 static bool hists__filter_entry_by_dso(struct hists *hists, 1799 struct hist_entry *he) 1800 { 1801 if (hists->dso_filter != NULL && 1802 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) { 1803 he->filtered |= (1 << HIST_FILTER__DSO); 1804 return true; 1805 } 1806 1807 return false; 1808 } 1809 1810 static bool hists__filter_entry_by_thread(struct hists *hists, 1811 struct hist_entry *he) 1812 { 1813 if (hists->thread_filter != NULL && 1814 he->thread != hists->thread_filter) { 1815 he->filtered |= (1 << HIST_FILTER__THREAD); 1816 return true; 1817 } 1818 1819 return false; 1820 } 1821 1822 static bool hists__filter_entry_by_symbol(struct hists *hists, 1823 struct hist_entry *he) 1824 { 1825 if (hists->symbol_filter_str != NULL && 1826 (!he->ms.sym || strstr(he->ms.sym->name, 1827 hists->symbol_filter_str) == NULL)) { 1828 he->filtered |= (1 << HIST_FILTER__SYMBOL); 1829 return true; 1830 } 1831 1832 return false; 1833 } 1834 1835 static bool hists__filter_entry_by_socket(struct hists *hists, 1836 struct hist_entry *he) 1837 { 1838 if ((hists->socket_filter > -1) && 1839 (he->socket != hists->socket_filter)) { 1840 he->filtered |= (1 << HIST_FILTER__SOCKET); 1841 return true; 1842 } 1843 1844 return false; 1845 } 1846 1847 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 1848 1849 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 1850 { 1851 struct rb_node *nd; 1852 1853 hists->stats.nr_non_filtered_samples = 0; 1854 1855 hists__reset_filter_stats(hists); 1856 hists__reset_col_len(hists); 1857 1858 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) { 1859 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1860 1861 if (filter(hists, h)) 1862 continue; 1863 1864 hists__remove_entry_filter(hists, h, type); 1865 } 1866 } 1867 1868 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he) 1869 { 1870 struct rb_node **p = &root->rb_node; 1871 struct rb_node *parent = NULL; 1872 struct hist_entry *iter; 1873 struct rb_root new_root = RB_ROOT; 1874 struct rb_node *nd; 1875 1876 while (*p != NULL) { 1877 parent = *p; 1878 iter = rb_entry(parent, struct hist_entry, rb_node); 1879 1880 if (hist_entry__sort(he, iter) > 0) 1881 p = &(*p)->rb_left; 1882 else 1883 p = &(*p)->rb_right; 1884 } 1885 1886 rb_link_node(&he->rb_node, parent, p); 1887 rb_insert_color(&he->rb_node, root); 1888 1889 if (he->leaf || he->filtered) 1890 return; 1891 1892 nd = rb_first(&he->hroot_out); 1893 while (nd) { 1894 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1895 1896 nd = rb_next(nd); 1897 rb_erase(&h->rb_node, &he->hroot_out); 1898 1899 resort_filtered_entry(&new_root, h); 1900 } 1901 1902 he->hroot_out = new_root; 1903 } 1904 1905 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 1906 { 1907 struct rb_node *nd; 1908 struct rb_root new_root = RB_ROOT; 1909 1910 hists->stats.nr_non_filtered_samples = 0; 1911 1912 hists__reset_filter_stats(hists); 1913 hists__reset_col_len(hists); 1914 1915 nd = rb_first(&hists->entries); 1916 while (nd) { 1917 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1918 int ret; 1919 1920 ret = hist_entry__filter(h, type, arg); 1921 1922 /* 1923 * case 1. non-matching type 1924 * zero out the period, set filter marker and move to child 1925 */ 1926 if (ret < 0) { 1927 memset(&h->stat, 0, sizeof(h->stat)); 1928 h->filtered |= (1 << type); 1929 1930 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 1931 } 1932 /* 1933 * case 2. matched type (filter out) 1934 * set filter marker and move to next 1935 */ 1936 else if (ret == 1) { 1937 h->filtered |= (1 << type); 1938 1939 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 1940 } 1941 /* 1942 * case 3. ok (not filtered) 1943 * add period to hists and parents, erase the filter marker 1944 * and move to next sibling 1945 */ 1946 else { 1947 hists__remove_entry_filter(hists, h, type); 1948 1949 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 1950 } 1951 } 1952 1953 hierarchy_recalc_total_periods(hists); 1954 1955 /* 1956 * resort output after applying a new filter since filter in a lower 1957 * hierarchy can change periods in a upper hierarchy. 1958 */ 1959 nd = rb_first(&hists->entries); 1960 while (nd) { 1961 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1962 1963 nd = rb_next(nd); 1964 rb_erase(&h->rb_node, &hists->entries); 1965 1966 resort_filtered_entry(&new_root, h); 1967 } 1968 1969 hists->entries = new_root; 1970 } 1971 1972 void hists__filter_by_thread(struct hists *hists) 1973 { 1974 if (symbol_conf.report_hierarchy) 1975 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 1976 hists->thread_filter); 1977 else 1978 hists__filter_by_type(hists, HIST_FILTER__THREAD, 1979 hists__filter_entry_by_thread); 1980 } 1981 1982 void hists__filter_by_dso(struct hists *hists) 1983 { 1984 if (symbol_conf.report_hierarchy) 1985 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 1986 hists->dso_filter); 1987 else 1988 hists__filter_by_type(hists, HIST_FILTER__DSO, 1989 hists__filter_entry_by_dso); 1990 } 1991 1992 void hists__filter_by_symbol(struct hists *hists) 1993 { 1994 if (symbol_conf.report_hierarchy) 1995 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 1996 hists->symbol_filter_str); 1997 else 1998 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 1999 hists__filter_entry_by_symbol); 2000 } 2001 2002 void hists__filter_by_socket(struct hists *hists) 2003 { 2004 if (symbol_conf.report_hierarchy) 2005 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2006 &hists->socket_filter); 2007 else 2008 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2009 hists__filter_entry_by_socket); 2010 } 2011 2012 void events_stats__inc(struct events_stats *stats, u32 type) 2013 { 2014 ++stats->nr_events[0]; 2015 ++stats->nr_events[type]; 2016 } 2017 2018 void hists__inc_nr_events(struct hists *hists, u32 type) 2019 { 2020 events_stats__inc(&hists->stats, type); 2021 } 2022 2023 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2024 { 2025 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE); 2026 if (!filtered) 2027 hists->stats.nr_non_filtered_samples++; 2028 } 2029 2030 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2031 struct hist_entry *pair) 2032 { 2033 struct rb_root *root; 2034 struct rb_node **p; 2035 struct rb_node *parent = NULL; 2036 struct hist_entry *he; 2037 int64_t cmp; 2038 2039 if (hists__has(hists, need_collapse)) 2040 root = &hists->entries_collapsed; 2041 else 2042 root = hists->entries_in; 2043 2044 p = &root->rb_node; 2045 2046 while (*p != NULL) { 2047 parent = *p; 2048 he = rb_entry(parent, struct hist_entry, rb_node_in); 2049 2050 cmp = hist_entry__collapse(he, pair); 2051 2052 if (!cmp) 2053 goto out; 2054 2055 if (cmp < 0) 2056 p = &(*p)->rb_left; 2057 else 2058 p = &(*p)->rb_right; 2059 } 2060 2061 he = hist_entry__new(pair, true); 2062 if (he) { 2063 memset(&he->stat, 0, sizeof(he->stat)); 2064 he->hists = hists; 2065 if (symbol_conf.cumulate_callchain) 2066 memset(he->stat_acc, 0, sizeof(he->stat)); 2067 rb_link_node(&he->rb_node_in, parent, p); 2068 rb_insert_color(&he->rb_node_in, root); 2069 hists__inc_stats(hists, he); 2070 he->dummy = true; 2071 } 2072 out: 2073 return he; 2074 } 2075 2076 static struct hist_entry *hists__find_entry(struct hists *hists, 2077 struct hist_entry *he) 2078 { 2079 struct rb_node *n; 2080 2081 if (hists__has(hists, need_collapse)) 2082 n = hists->entries_collapsed.rb_node; 2083 else 2084 n = hists->entries_in->rb_node; 2085 2086 while (n) { 2087 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2088 int64_t cmp = hist_entry__collapse(iter, he); 2089 2090 if (cmp < 0) 2091 n = n->rb_left; 2092 else if (cmp > 0) 2093 n = n->rb_right; 2094 else 2095 return iter; 2096 } 2097 2098 return NULL; 2099 } 2100 2101 /* 2102 * Look for pairs to link to the leader buckets (hist_entries): 2103 */ 2104 void hists__match(struct hists *leader, struct hists *other) 2105 { 2106 struct rb_root *root; 2107 struct rb_node *nd; 2108 struct hist_entry *pos, *pair; 2109 2110 if (hists__has(leader, need_collapse)) 2111 root = &leader->entries_collapsed; 2112 else 2113 root = leader->entries_in; 2114 2115 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2116 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2117 pair = hists__find_entry(other, pos); 2118 2119 if (pair) 2120 hist_entry__add_pair(pair, pos); 2121 } 2122 } 2123 2124 /* 2125 * Look for entries in the other hists that are not present in the leader, if 2126 * we find them, just add a dummy entry on the leader hists, with period=0, 2127 * nr_events=0, to serve as the list header. 2128 */ 2129 int hists__link(struct hists *leader, struct hists *other) 2130 { 2131 struct rb_root *root; 2132 struct rb_node *nd; 2133 struct hist_entry *pos, *pair; 2134 2135 if (hists__has(other, need_collapse)) 2136 root = &other->entries_collapsed; 2137 else 2138 root = other->entries_in; 2139 2140 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2141 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2142 2143 if (!hist_entry__has_pairs(pos)) { 2144 pair = hists__add_dummy_entry(leader, pos); 2145 if (pair == NULL) 2146 return -1; 2147 hist_entry__add_pair(pos, pair); 2148 } 2149 } 2150 2151 return 0; 2152 } 2153 2154 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2155 struct perf_sample *sample, bool nonany_branch_mode) 2156 { 2157 struct branch_info *bi; 2158 2159 /* If we have branch cycles always annotate them. */ 2160 if (bs && bs->nr && bs->entries[0].flags.cycles) { 2161 int i; 2162 2163 bi = sample__resolve_bstack(sample, al); 2164 if (bi) { 2165 struct addr_map_symbol *prev = NULL; 2166 2167 /* 2168 * Ignore errors, still want to process the 2169 * other entries. 2170 * 2171 * For non standard branch modes always 2172 * force no IPC (prev == NULL) 2173 * 2174 * Note that perf stores branches reversed from 2175 * program order! 2176 */ 2177 for (i = bs->nr - 1; i >= 0; i--) { 2178 addr_map_symbol__account_cycles(&bi[i].from, 2179 nonany_branch_mode ? NULL : prev, 2180 bi[i].flags.cycles); 2181 prev = &bi[i].to; 2182 } 2183 free(bi); 2184 } 2185 } 2186 } 2187 2188 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp) 2189 { 2190 struct perf_evsel *pos; 2191 size_t ret = 0; 2192 2193 evlist__for_each(evlist, pos) { 2194 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos)); 2195 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp); 2196 } 2197 2198 return ret; 2199 } 2200 2201 2202 u64 hists__total_period(struct hists *hists) 2203 { 2204 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2205 hists->stats.total_period; 2206 } 2207 2208 int parse_filter_percentage(const struct option *opt __maybe_unused, 2209 const char *arg, int unset __maybe_unused) 2210 { 2211 if (!strcmp(arg, "relative")) 2212 symbol_conf.filter_relative = true; 2213 else if (!strcmp(arg, "absolute")) 2214 symbol_conf.filter_relative = false; 2215 else 2216 return -1; 2217 2218 return 0; 2219 } 2220 2221 int perf_hist_config(const char *var, const char *value) 2222 { 2223 if (!strcmp(var, "hist.percentage")) 2224 return parse_filter_percentage(NULL, value, 0); 2225 2226 return 0; 2227 } 2228 2229 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2230 { 2231 memset(hists, 0, sizeof(*hists)); 2232 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT; 2233 hists->entries_in = &hists->entries_in_array[0]; 2234 hists->entries_collapsed = RB_ROOT; 2235 hists->entries = RB_ROOT; 2236 pthread_mutex_init(&hists->lock, NULL); 2237 hists->socket_filter = -1; 2238 hists->hpp_list = hpp_list; 2239 INIT_LIST_HEAD(&hists->hpp_formats); 2240 return 0; 2241 } 2242 2243 static void hists__delete_remaining_entries(struct rb_root *root) 2244 { 2245 struct rb_node *node; 2246 struct hist_entry *he; 2247 2248 while (!RB_EMPTY_ROOT(root)) { 2249 node = rb_first(root); 2250 rb_erase(node, root); 2251 2252 he = rb_entry(node, struct hist_entry, rb_node_in); 2253 hist_entry__delete(he); 2254 } 2255 } 2256 2257 static void hists__delete_all_entries(struct hists *hists) 2258 { 2259 hists__delete_entries(hists); 2260 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2261 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2262 hists__delete_remaining_entries(&hists->entries_collapsed); 2263 } 2264 2265 static void hists_evsel__exit(struct perf_evsel *evsel) 2266 { 2267 struct hists *hists = evsel__hists(evsel); 2268 struct perf_hpp_fmt *fmt, *pos; 2269 struct perf_hpp_list_node *node, *tmp; 2270 2271 hists__delete_all_entries(hists); 2272 2273 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2274 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2275 list_del(&fmt->list); 2276 free(fmt); 2277 } 2278 list_del(&node->list); 2279 free(node); 2280 } 2281 } 2282 2283 static int hists_evsel__init(struct perf_evsel *evsel) 2284 { 2285 struct hists *hists = evsel__hists(evsel); 2286 2287 __hists__init(hists, &perf_hpp_list); 2288 return 0; 2289 } 2290 2291 /* 2292 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2293 * stored in the rbtree... 2294 */ 2295 2296 int hists__init(void) 2297 { 2298 int err = perf_evsel__object_config(sizeof(struct hists_evsel), 2299 hists_evsel__init, 2300 hists_evsel__exit); 2301 if (err) 2302 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2303 2304 return err; 2305 } 2306 2307 void perf_hpp_list__init(struct perf_hpp_list *list) 2308 { 2309 INIT_LIST_HEAD(&list->fields); 2310 INIT_LIST_HEAD(&list->sorts); 2311 } 2312