1 // SPDX-License-Identifier: GPL-2.0 2 #include "callchain.h" 3 #include "build-id.h" 4 #include "hist.h" 5 #include "map.h" 6 #include "session.h" 7 #include "namespaces.h" 8 #include "sort.h" 9 #include "units.h" 10 #include "evlist.h" 11 #include "evsel.h" 12 #include "annotate.h" 13 #include "srcline.h" 14 #include "symbol.h" 15 #include "thread.h" 16 #include "ui/progress.h" 17 #include <errno.h> 18 #include <math.h> 19 #include <inttypes.h> 20 #include <sys/param.h> 21 #include <linux/time64.h> 22 #include <linux/zalloc.h> 23 24 static bool hists__filter_entry_by_dso(struct hists *hists, 25 struct hist_entry *he); 26 static bool hists__filter_entry_by_thread(struct hists *hists, 27 struct hist_entry *he); 28 static bool hists__filter_entry_by_symbol(struct hists *hists, 29 struct hist_entry *he); 30 static bool hists__filter_entry_by_socket(struct hists *hists, 31 struct hist_entry *he); 32 33 u16 hists__col_len(struct hists *hists, enum hist_column col) 34 { 35 return hists->col_len[col]; 36 } 37 38 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 39 { 40 hists->col_len[col] = len; 41 } 42 43 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 44 { 45 if (len > hists__col_len(hists, col)) { 46 hists__set_col_len(hists, col, len); 47 return true; 48 } 49 return false; 50 } 51 52 void hists__reset_col_len(struct hists *hists) 53 { 54 enum hist_column col; 55 56 for (col = 0; col < HISTC_NR_COLS; ++col) 57 hists__set_col_len(hists, col, 0); 58 } 59 60 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 61 { 62 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 63 64 if (hists__col_len(hists, dso) < unresolved_col_width && 65 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 66 !symbol_conf.dso_list) 67 hists__set_col_len(hists, dso, unresolved_col_width); 68 } 69 70 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 71 { 72 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 73 int symlen; 74 u16 len; 75 76 /* 77 * +4 accounts for '[x] ' priv level info 78 * +2 accounts for 0x prefix on raw addresses 79 * +3 accounts for ' y ' symtab origin info 80 */ 81 if (h->ms.sym) { 82 symlen = h->ms.sym->namelen + 4; 83 if (verbose > 0) 84 symlen += BITS_PER_LONG / 4 + 2 + 3; 85 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 86 } else { 87 symlen = unresolved_col_width + 4 + 2; 88 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 89 hists__set_unres_dso_col_len(hists, HISTC_DSO); 90 } 91 92 len = thread__comm_len(h->thread); 93 if (hists__new_col_len(hists, HISTC_COMM, len)) 94 hists__set_col_len(hists, HISTC_THREAD, len + 8); 95 96 if (h->ms.map) { 97 len = dso__name_len(h->ms.map->dso); 98 hists__new_col_len(hists, HISTC_DSO, len); 99 } 100 101 if (h->parent) 102 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 103 104 if (h->branch_info) { 105 if (h->branch_info->from.sym) { 106 symlen = (int)h->branch_info->from.sym->namelen + 4; 107 if (verbose > 0) 108 symlen += BITS_PER_LONG / 4 + 2 + 3; 109 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 110 111 symlen = dso__name_len(h->branch_info->from.map->dso); 112 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 113 } else { 114 symlen = unresolved_col_width + 4 + 2; 115 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 116 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 117 } 118 119 if (h->branch_info->to.sym) { 120 symlen = (int)h->branch_info->to.sym->namelen + 4; 121 if (verbose > 0) 122 symlen += BITS_PER_LONG / 4 + 2 + 3; 123 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 124 125 symlen = dso__name_len(h->branch_info->to.map->dso); 126 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 127 } else { 128 symlen = unresolved_col_width + 4 + 2; 129 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 130 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 131 } 132 133 if (h->branch_info->srcline_from) 134 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 135 strlen(h->branch_info->srcline_from)); 136 if (h->branch_info->srcline_to) 137 hists__new_col_len(hists, HISTC_SRCLINE_TO, 138 strlen(h->branch_info->srcline_to)); 139 } 140 141 if (h->mem_info) { 142 if (h->mem_info->daddr.sym) { 143 symlen = (int)h->mem_info->daddr.sym->namelen + 4 144 + unresolved_col_width + 2; 145 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 146 symlen); 147 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 148 symlen + 1); 149 } else { 150 symlen = unresolved_col_width + 4 + 2; 151 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 152 symlen); 153 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 154 symlen); 155 } 156 157 if (h->mem_info->iaddr.sym) { 158 symlen = (int)h->mem_info->iaddr.sym->namelen + 4 159 + unresolved_col_width + 2; 160 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 161 symlen); 162 } else { 163 symlen = unresolved_col_width + 4 + 2; 164 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 165 symlen); 166 } 167 168 if (h->mem_info->daddr.map) { 169 symlen = dso__name_len(h->mem_info->daddr.map->dso); 170 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 171 symlen); 172 } else { 173 symlen = unresolved_col_width + 4 + 2; 174 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 175 } 176 177 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR, 178 unresolved_col_width + 4 + 2); 179 180 } else { 181 symlen = unresolved_col_width + 4 + 2; 182 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 183 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 184 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 185 } 186 187 hists__new_col_len(hists, HISTC_CGROUP_ID, 20); 188 hists__new_col_len(hists, HISTC_CPU, 3); 189 hists__new_col_len(hists, HISTC_SOCKET, 6); 190 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 191 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 192 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 193 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3); 194 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 195 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 196 hists__new_col_len(hists, HISTC_TIME, 12); 197 198 if (h->srcline) { 199 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header)); 200 hists__new_col_len(hists, HISTC_SRCLINE, len); 201 } 202 203 if (h->srcfile) 204 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 205 206 if (h->transaction) 207 hists__new_col_len(hists, HISTC_TRANSACTION, 208 hist_entry__transaction_len()); 209 210 if (h->trace_output) 211 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 212 } 213 214 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 215 { 216 struct rb_node *next = rb_first_cached(&hists->entries); 217 struct hist_entry *n; 218 int row = 0; 219 220 hists__reset_col_len(hists); 221 222 while (next && row++ < max_rows) { 223 n = rb_entry(next, struct hist_entry, rb_node); 224 if (!n->filtered) 225 hists__calc_col_len(hists, n); 226 next = rb_next(&n->rb_node); 227 } 228 } 229 230 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 231 unsigned int cpumode, u64 period) 232 { 233 switch (cpumode) { 234 case PERF_RECORD_MISC_KERNEL: 235 he_stat->period_sys += period; 236 break; 237 case PERF_RECORD_MISC_USER: 238 he_stat->period_us += period; 239 break; 240 case PERF_RECORD_MISC_GUEST_KERNEL: 241 he_stat->period_guest_sys += period; 242 break; 243 case PERF_RECORD_MISC_GUEST_USER: 244 he_stat->period_guest_us += period; 245 break; 246 default: 247 break; 248 } 249 } 250 251 static long hist_time(unsigned long htime) 252 { 253 unsigned long time_quantum = symbol_conf.time_quantum; 254 if (time_quantum) 255 return (htime / time_quantum) * time_quantum; 256 return htime; 257 } 258 259 static void he_stat__add_period(struct he_stat *he_stat, u64 period, 260 u64 weight) 261 { 262 263 he_stat->period += period; 264 he_stat->weight += weight; 265 he_stat->nr_events += 1; 266 } 267 268 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 269 { 270 dest->period += src->period; 271 dest->period_sys += src->period_sys; 272 dest->period_us += src->period_us; 273 dest->period_guest_sys += src->period_guest_sys; 274 dest->period_guest_us += src->period_guest_us; 275 dest->nr_events += src->nr_events; 276 dest->weight += src->weight; 277 } 278 279 static void he_stat__decay(struct he_stat *he_stat) 280 { 281 he_stat->period = (he_stat->period * 7) / 8; 282 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 283 /* XXX need decay for weight too? */ 284 } 285 286 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 287 288 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 289 { 290 u64 prev_period = he->stat.period; 291 u64 diff; 292 293 if (prev_period == 0) 294 return true; 295 296 he_stat__decay(&he->stat); 297 if (symbol_conf.cumulate_callchain) 298 he_stat__decay(he->stat_acc); 299 decay_callchain(he->callchain); 300 301 diff = prev_period - he->stat.period; 302 303 if (!he->depth) { 304 hists->stats.total_period -= diff; 305 if (!he->filtered) 306 hists->stats.total_non_filtered_period -= diff; 307 } 308 309 if (!he->leaf) { 310 struct hist_entry *child; 311 struct rb_node *node = rb_first_cached(&he->hroot_out); 312 while (node) { 313 child = rb_entry(node, struct hist_entry, rb_node); 314 node = rb_next(node); 315 316 if (hists__decay_entry(hists, child)) 317 hists__delete_entry(hists, child); 318 } 319 } 320 321 return he->stat.period == 0; 322 } 323 324 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 325 { 326 struct rb_root_cached *root_in; 327 struct rb_root_cached *root_out; 328 329 if (he->parent_he) { 330 root_in = &he->parent_he->hroot_in; 331 root_out = &he->parent_he->hroot_out; 332 } else { 333 if (hists__has(hists, need_collapse)) 334 root_in = &hists->entries_collapsed; 335 else 336 root_in = hists->entries_in; 337 root_out = &hists->entries; 338 } 339 340 rb_erase_cached(&he->rb_node_in, root_in); 341 rb_erase_cached(&he->rb_node, root_out); 342 343 --hists->nr_entries; 344 if (!he->filtered) 345 --hists->nr_non_filtered_entries; 346 347 hist_entry__delete(he); 348 } 349 350 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 351 { 352 struct rb_node *next = rb_first_cached(&hists->entries); 353 struct hist_entry *n; 354 355 while (next) { 356 n = rb_entry(next, struct hist_entry, rb_node); 357 next = rb_next(&n->rb_node); 358 if (((zap_user && n->level == '.') || 359 (zap_kernel && n->level != '.') || 360 hists__decay_entry(hists, n))) { 361 hists__delete_entry(hists, n); 362 } 363 } 364 } 365 366 void hists__delete_entries(struct hists *hists) 367 { 368 struct rb_node *next = rb_first_cached(&hists->entries); 369 struct hist_entry *n; 370 371 while (next) { 372 n = rb_entry(next, struct hist_entry, rb_node); 373 next = rb_next(&n->rb_node); 374 375 hists__delete_entry(hists, n); 376 } 377 } 378 379 struct hist_entry *hists__get_entry(struct hists *hists, int idx) 380 { 381 struct rb_node *next = rb_first_cached(&hists->entries); 382 struct hist_entry *n; 383 int i = 0; 384 385 while (next) { 386 n = rb_entry(next, struct hist_entry, rb_node); 387 if (i == idx) 388 return n; 389 390 next = rb_next(&n->rb_node); 391 i++; 392 } 393 394 return NULL; 395 } 396 397 /* 398 * histogram, sorted on item, collects periods 399 */ 400 401 static int hist_entry__init(struct hist_entry *he, 402 struct hist_entry *template, 403 bool sample_self, 404 size_t callchain_size) 405 { 406 *he = *template; 407 he->callchain_size = callchain_size; 408 409 if (symbol_conf.cumulate_callchain) { 410 he->stat_acc = malloc(sizeof(he->stat)); 411 if (he->stat_acc == NULL) 412 return -ENOMEM; 413 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 414 if (!sample_self) 415 memset(&he->stat, 0, sizeof(he->stat)); 416 } 417 418 map__get(he->ms.map); 419 420 if (he->branch_info) { 421 /* 422 * This branch info is (a part of) allocated from 423 * sample__resolve_bstack() and will be freed after 424 * adding new entries. So we need to save a copy. 425 */ 426 he->branch_info = malloc(sizeof(*he->branch_info)); 427 if (he->branch_info == NULL) 428 goto err; 429 430 memcpy(he->branch_info, template->branch_info, 431 sizeof(*he->branch_info)); 432 433 map__get(he->branch_info->from.map); 434 map__get(he->branch_info->to.map); 435 } 436 437 if (he->mem_info) { 438 map__get(he->mem_info->iaddr.map); 439 map__get(he->mem_info->daddr.map); 440 } 441 442 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 443 callchain_init(he->callchain); 444 445 if (he->raw_data) { 446 he->raw_data = memdup(he->raw_data, he->raw_size); 447 if (he->raw_data == NULL) 448 goto err_infos; 449 } 450 451 if (he->srcline) { 452 he->srcline = strdup(he->srcline); 453 if (he->srcline == NULL) 454 goto err_rawdata; 455 } 456 457 if (symbol_conf.res_sample) { 458 he->res_samples = calloc(sizeof(struct res_sample), 459 symbol_conf.res_sample); 460 if (!he->res_samples) 461 goto err_srcline; 462 } 463 464 INIT_LIST_HEAD(&he->pairs.node); 465 thread__get(he->thread); 466 he->hroot_in = RB_ROOT_CACHED; 467 he->hroot_out = RB_ROOT_CACHED; 468 469 if (!symbol_conf.report_hierarchy) 470 he->leaf = true; 471 472 return 0; 473 474 err_srcline: 475 zfree(&he->srcline); 476 477 err_rawdata: 478 zfree(&he->raw_data); 479 480 err_infos: 481 if (he->branch_info) { 482 map__put(he->branch_info->from.map); 483 map__put(he->branch_info->to.map); 484 zfree(&he->branch_info); 485 } 486 if (he->mem_info) { 487 map__put(he->mem_info->iaddr.map); 488 map__put(he->mem_info->daddr.map); 489 } 490 err: 491 map__zput(he->ms.map); 492 zfree(&he->stat_acc); 493 return -ENOMEM; 494 } 495 496 static void *hist_entry__zalloc(size_t size) 497 { 498 return zalloc(size + sizeof(struct hist_entry)); 499 } 500 501 static void hist_entry__free(void *ptr) 502 { 503 free(ptr); 504 } 505 506 static struct hist_entry_ops default_ops = { 507 .new = hist_entry__zalloc, 508 .free = hist_entry__free, 509 }; 510 511 static struct hist_entry *hist_entry__new(struct hist_entry *template, 512 bool sample_self) 513 { 514 struct hist_entry_ops *ops = template->ops; 515 size_t callchain_size = 0; 516 struct hist_entry *he; 517 int err = 0; 518 519 if (!ops) 520 ops = template->ops = &default_ops; 521 522 if (symbol_conf.use_callchain) 523 callchain_size = sizeof(struct callchain_root); 524 525 he = ops->new(callchain_size); 526 if (he) { 527 err = hist_entry__init(he, template, sample_self, callchain_size); 528 if (err) { 529 ops->free(he); 530 he = NULL; 531 } 532 } 533 534 return he; 535 } 536 537 static u8 symbol__parent_filter(const struct symbol *parent) 538 { 539 if (symbol_conf.exclude_other && parent == NULL) 540 return 1 << HIST_FILTER__PARENT; 541 return 0; 542 } 543 544 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 545 { 546 if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain) 547 return; 548 549 he->hists->callchain_period += period; 550 if (!he->filtered) 551 he->hists->callchain_non_filtered_period += period; 552 } 553 554 static struct hist_entry *hists__findnew_entry(struct hists *hists, 555 struct hist_entry *entry, 556 struct addr_location *al, 557 bool sample_self) 558 { 559 struct rb_node **p; 560 struct rb_node *parent = NULL; 561 struct hist_entry *he; 562 int64_t cmp; 563 u64 period = entry->stat.period; 564 u64 weight = entry->stat.weight; 565 bool leftmost = true; 566 567 p = &hists->entries_in->rb_root.rb_node; 568 569 while (*p != NULL) { 570 parent = *p; 571 he = rb_entry(parent, struct hist_entry, rb_node_in); 572 573 /* 574 * Make sure that it receives arguments in a same order as 575 * hist_entry__collapse() so that we can use an appropriate 576 * function when searching an entry regardless which sort 577 * keys were used. 578 */ 579 cmp = hist_entry__cmp(he, entry); 580 581 if (!cmp) { 582 if (sample_self) { 583 he_stat__add_period(&he->stat, period, weight); 584 hist_entry__add_callchain_period(he, period); 585 } 586 if (symbol_conf.cumulate_callchain) 587 he_stat__add_period(he->stat_acc, period, weight); 588 589 /* 590 * This mem info was allocated from sample__resolve_mem 591 * and will not be used anymore. 592 */ 593 mem_info__zput(entry->mem_info); 594 595 block_info__zput(entry->block_info); 596 597 /* If the map of an existing hist_entry has 598 * become out-of-date due to an exec() or 599 * similar, update it. Otherwise we will 600 * mis-adjust symbol addresses when computing 601 * the history counter to increment. 602 */ 603 if (he->ms.map != entry->ms.map) { 604 map__put(he->ms.map); 605 he->ms.map = map__get(entry->ms.map); 606 } 607 goto out; 608 } 609 610 if (cmp < 0) 611 p = &(*p)->rb_left; 612 else { 613 p = &(*p)->rb_right; 614 leftmost = false; 615 } 616 } 617 618 he = hist_entry__new(entry, sample_self); 619 if (!he) 620 return NULL; 621 622 if (sample_self) 623 hist_entry__add_callchain_period(he, period); 624 hists->nr_entries++; 625 626 rb_link_node(&he->rb_node_in, parent, p); 627 rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost); 628 out: 629 if (sample_self) 630 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 631 if (symbol_conf.cumulate_callchain) 632 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 633 return he; 634 } 635 636 static unsigned random_max(unsigned high) 637 { 638 unsigned thresh = -high % high; 639 for (;;) { 640 unsigned r = random(); 641 if (r >= thresh) 642 return r % high; 643 } 644 } 645 646 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample) 647 { 648 struct res_sample *r; 649 int j; 650 651 if (he->num_res < symbol_conf.res_sample) { 652 j = he->num_res++; 653 } else { 654 j = random_max(symbol_conf.res_sample); 655 } 656 r = &he->res_samples[j]; 657 r->time = sample->time; 658 r->cpu = sample->cpu; 659 r->tid = sample->tid; 660 } 661 662 static struct hist_entry* 663 __hists__add_entry(struct hists *hists, 664 struct addr_location *al, 665 struct symbol *sym_parent, 666 struct branch_info *bi, 667 struct mem_info *mi, 668 struct block_info *block_info, 669 struct perf_sample *sample, 670 bool sample_self, 671 struct hist_entry_ops *ops) 672 { 673 struct namespaces *ns = thread__namespaces(al->thread); 674 struct hist_entry entry = { 675 .thread = al->thread, 676 .comm = thread__comm(al->thread), 677 .cgroup_id = { 678 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0, 679 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0, 680 }, 681 .ms = { 682 .map = al->map, 683 .sym = al->sym, 684 }, 685 .srcline = (char *) al->srcline, 686 .socket = al->socket, 687 .cpu = al->cpu, 688 .cpumode = al->cpumode, 689 .ip = al->addr, 690 .level = al->level, 691 .stat = { 692 .nr_events = 1, 693 .period = sample->period, 694 .weight = sample->weight, 695 }, 696 .parent = sym_parent, 697 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 698 .hists = hists, 699 .branch_info = bi, 700 .mem_info = mi, 701 .block_info = block_info, 702 .transaction = sample->transaction, 703 .raw_data = sample->raw_data, 704 .raw_size = sample->raw_size, 705 .ops = ops, 706 .time = hist_time(sample->time), 707 }, *he = hists__findnew_entry(hists, &entry, al, sample_self); 708 709 if (!hists->has_callchains && he && he->callchain_size != 0) 710 hists->has_callchains = true; 711 if (he && symbol_conf.res_sample) 712 hists__res_sample(he, sample); 713 return he; 714 } 715 716 struct hist_entry *hists__add_entry(struct hists *hists, 717 struct addr_location *al, 718 struct symbol *sym_parent, 719 struct branch_info *bi, 720 struct mem_info *mi, 721 struct perf_sample *sample, 722 bool sample_self) 723 { 724 return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL, 725 sample, sample_self, NULL); 726 } 727 728 struct hist_entry *hists__add_entry_ops(struct hists *hists, 729 struct hist_entry_ops *ops, 730 struct addr_location *al, 731 struct symbol *sym_parent, 732 struct branch_info *bi, 733 struct mem_info *mi, 734 struct perf_sample *sample, 735 bool sample_self) 736 { 737 return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL, 738 sample, sample_self, ops); 739 } 740 741 struct hist_entry *hists__add_entry_block(struct hists *hists, 742 struct addr_location *al, 743 struct block_info *block_info) 744 { 745 struct hist_entry entry = { 746 .block_info = block_info, 747 .hists = hists, 748 }, *he = hists__findnew_entry(hists, &entry, al, false); 749 750 return he; 751 } 752 753 static int 754 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 755 struct addr_location *al __maybe_unused) 756 { 757 return 0; 758 } 759 760 static int 761 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 762 struct addr_location *al __maybe_unused) 763 { 764 return 0; 765 } 766 767 static int 768 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 769 { 770 struct perf_sample *sample = iter->sample; 771 struct mem_info *mi; 772 773 mi = sample__resolve_mem(sample, al); 774 if (mi == NULL) 775 return -ENOMEM; 776 777 iter->priv = mi; 778 return 0; 779 } 780 781 static int 782 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 783 { 784 u64 cost; 785 struct mem_info *mi = iter->priv; 786 struct hists *hists = evsel__hists(iter->evsel); 787 struct perf_sample *sample = iter->sample; 788 struct hist_entry *he; 789 790 if (mi == NULL) 791 return -EINVAL; 792 793 cost = sample->weight; 794 if (!cost) 795 cost = 1; 796 797 /* 798 * must pass period=weight in order to get the correct 799 * sorting from hists__collapse_resort() which is solely 800 * based on periods. We want sorting be done on nr_events * weight 801 * and this is indirectly achieved by passing period=weight here 802 * and the he_stat__add_period() function. 803 */ 804 sample->period = cost; 805 806 he = hists__add_entry(hists, al, iter->parent, NULL, mi, 807 sample, true); 808 if (!he) 809 return -ENOMEM; 810 811 iter->he = he; 812 return 0; 813 } 814 815 static int 816 iter_finish_mem_entry(struct hist_entry_iter *iter, 817 struct addr_location *al __maybe_unused) 818 { 819 struct perf_evsel *evsel = iter->evsel; 820 struct hists *hists = evsel__hists(evsel); 821 struct hist_entry *he = iter->he; 822 int err = -EINVAL; 823 824 if (he == NULL) 825 goto out; 826 827 hists__inc_nr_samples(hists, he->filtered); 828 829 err = hist_entry__append_callchain(he, iter->sample); 830 831 out: 832 /* 833 * We don't need to free iter->priv (mem_info) here since the mem info 834 * was either already freed in hists__findnew_entry() or passed to a 835 * new hist entry by hist_entry__new(). 836 */ 837 iter->priv = NULL; 838 839 iter->he = NULL; 840 return err; 841 } 842 843 static int 844 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 845 { 846 struct branch_info *bi; 847 struct perf_sample *sample = iter->sample; 848 849 bi = sample__resolve_bstack(sample, al); 850 if (!bi) 851 return -ENOMEM; 852 853 iter->curr = 0; 854 iter->total = sample->branch_stack->nr; 855 856 iter->priv = bi; 857 return 0; 858 } 859 860 static int 861 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused, 862 struct addr_location *al __maybe_unused) 863 { 864 return 0; 865 } 866 867 static int 868 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 869 { 870 struct branch_info *bi = iter->priv; 871 int i = iter->curr; 872 873 if (bi == NULL) 874 return 0; 875 876 if (iter->curr >= iter->total) 877 return 0; 878 879 al->map = bi[i].to.map; 880 al->sym = bi[i].to.sym; 881 al->addr = bi[i].to.addr; 882 return 1; 883 } 884 885 static int 886 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 887 { 888 struct branch_info *bi; 889 struct perf_evsel *evsel = iter->evsel; 890 struct hists *hists = evsel__hists(evsel); 891 struct perf_sample *sample = iter->sample; 892 struct hist_entry *he = NULL; 893 int i = iter->curr; 894 int err = 0; 895 896 bi = iter->priv; 897 898 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym)) 899 goto out; 900 901 /* 902 * The report shows the percentage of total branches captured 903 * and not events sampled. Thus we use a pseudo period of 1. 904 */ 905 sample->period = 1; 906 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 907 908 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, 909 sample, true); 910 if (he == NULL) 911 return -ENOMEM; 912 913 hists__inc_nr_samples(hists, he->filtered); 914 915 out: 916 iter->he = he; 917 iter->curr++; 918 return err; 919 } 920 921 static int 922 iter_finish_branch_entry(struct hist_entry_iter *iter, 923 struct addr_location *al __maybe_unused) 924 { 925 zfree(&iter->priv); 926 iter->he = NULL; 927 928 return iter->curr >= iter->total ? 0 : -1; 929 } 930 931 static int 932 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 933 struct addr_location *al __maybe_unused) 934 { 935 return 0; 936 } 937 938 static int 939 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 940 { 941 struct perf_evsel *evsel = iter->evsel; 942 struct perf_sample *sample = iter->sample; 943 struct hist_entry *he; 944 945 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 946 sample, true); 947 if (he == NULL) 948 return -ENOMEM; 949 950 iter->he = he; 951 return 0; 952 } 953 954 static int 955 iter_finish_normal_entry(struct hist_entry_iter *iter, 956 struct addr_location *al __maybe_unused) 957 { 958 struct hist_entry *he = iter->he; 959 struct perf_evsel *evsel = iter->evsel; 960 struct perf_sample *sample = iter->sample; 961 962 if (he == NULL) 963 return 0; 964 965 iter->he = NULL; 966 967 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 968 969 return hist_entry__append_callchain(he, sample); 970 } 971 972 static int 973 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 974 struct addr_location *al __maybe_unused) 975 { 976 struct hist_entry **he_cache; 977 978 callchain_cursor_commit(&callchain_cursor); 979 980 /* 981 * This is for detecting cycles or recursions so that they're 982 * cumulated only one time to prevent entries more than 100% 983 * overhead. 984 */ 985 he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1)); 986 if (he_cache == NULL) 987 return -ENOMEM; 988 989 iter->priv = he_cache; 990 iter->curr = 0; 991 992 return 0; 993 } 994 995 static int 996 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 997 struct addr_location *al) 998 { 999 struct perf_evsel *evsel = iter->evsel; 1000 struct hists *hists = evsel__hists(evsel); 1001 struct perf_sample *sample = iter->sample; 1002 struct hist_entry **he_cache = iter->priv; 1003 struct hist_entry *he; 1004 int err = 0; 1005 1006 he = hists__add_entry(hists, al, iter->parent, NULL, NULL, 1007 sample, true); 1008 if (he == NULL) 1009 return -ENOMEM; 1010 1011 iter->he = he; 1012 he_cache[iter->curr++] = he; 1013 1014 hist_entry__append_callchain(he, sample); 1015 1016 /* 1017 * We need to re-initialize the cursor since callchain_append() 1018 * advanced the cursor to the end. 1019 */ 1020 callchain_cursor_commit(&callchain_cursor); 1021 1022 hists__inc_nr_samples(hists, he->filtered); 1023 1024 return err; 1025 } 1026 1027 static int 1028 iter_next_cumulative_entry(struct hist_entry_iter *iter, 1029 struct addr_location *al) 1030 { 1031 struct callchain_cursor_node *node; 1032 1033 node = callchain_cursor_current(&callchain_cursor); 1034 if (node == NULL) 1035 return 0; 1036 1037 return fill_callchain_info(al, node, iter->hide_unresolved); 1038 } 1039 1040 static int 1041 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 1042 struct addr_location *al) 1043 { 1044 struct perf_evsel *evsel = iter->evsel; 1045 struct perf_sample *sample = iter->sample; 1046 struct hist_entry **he_cache = iter->priv; 1047 struct hist_entry *he; 1048 struct hist_entry he_tmp = { 1049 .hists = evsel__hists(evsel), 1050 .cpu = al->cpu, 1051 .thread = al->thread, 1052 .comm = thread__comm(al->thread), 1053 .ip = al->addr, 1054 .ms = { 1055 .map = al->map, 1056 .sym = al->sym, 1057 }, 1058 .srcline = (char *) al->srcline, 1059 .parent = iter->parent, 1060 .raw_data = sample->raw_data, 1061 .raw_size = sample->raw_size, 1062 }; 1063 int i; 1064 struct callchain_cursor cursor; 1065 1066 callchain_cursor_snapshot(&cursor, &callchain_cursor); 1067 1068 callchain_cursor_advance(&callchain_cursor); 1069 1070 /* 1071 * Check if there's duplicate entries in the callchain. 1072 * It's possible that it has cycles or recursive calls. 1073 */ 1074 for (i = 0; i < iter->curr; i++) { 1075 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 1076 /* to avoid calling callback function */ 1077 iter->he = NULL; 1078 return 0; 1079 } 1080 } 1081 1082 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 1083 sample, false); 1084 if (he == NULL) 1085 return -ENOMEM; 1086 1087 iter->he = he; 1088 he_cache[iter->curr++] = he; 1089 1090 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 1091 callchain_append(he->callchain, &cursor, sample->period); 1092 return 0; 1093 } 1094 1095 static int 1096 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 1097 struct addr_location *al __maybe_unused) 1098 { 1099 zfree(&iter->priv); 1100 iter->he = NULL; 1101 1102 return 0; 1103 } 1104 1105 const struct hist_iter_ops hist_iter_mem = { 1106 .prepare_entry = iter_prepare_mem_entry, 1107 .add_single_entry = iter_add_single_mem_entry, 1108 .next_entry = iter_next_nop_entry, 1109 .add_next_entry = iter_add_next_nop_entry, 1110 .finish_entry = iter_finish_mem_entry, 1111 }; 1112 1113 const struct hist_iter_ops hist_iter_branch = { 1114 .prepare_entry = iter_prepare_branch_entry, 1115 .add_single_entry = iter_add_single_branch_entry, 1116 .next_entry = iter_next_branch_entry, 1117 .add_next_entry = iter_add_next_branch_entry, 1118 .finish_entry = iter_finish_branch_entry, 1119 }; 1120 1121 const struct hist_iter_ops hist_iter_normal = { 1122 .prepare_entry = iter_prepare_normal_entry, 1123 .add_single_entry = iter_add_single_normal_entry, 1124 .next_entry = iter_next_nop_entry, 1125 .add_next_entry = iter_add_next_nop_entry, 1126 .finish_entry = iter_finish_normal_entry, 1127 }; 1128 1129 const struct hist_iter_ops hist_iter_cumulative = { 1130 .prepare_entry = iter_prepare_cumulative_entry, 1131 .add_single_entry = iter_add_single_cumulative_entry, 1132 .next_entry = iter_next_cumulative_entry, 1133 .add_next_entry = iter_add_next_cumulative_entry, 1134 .finish_entry = iter_finish_cumulative_entry, 1135 }; 1136 1137 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1138 int max_stack_depth, void *arg) 1139 { 1140 int err, err2; 1141 struct map *alm = NULL; 1142 1143 if (al) 1144 alm = map__get(al->map); 1145 1146 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, 1147 iter->evsel, al, max_stack_depth); 1148 if (err) { 1149 map__put(alm); 1150 return err; 1151 } 1152 1153 err = iter->ops->prepare_entry(iter, al); 1154 if (err) 1155 goto out; 1156 1157 err = iter->ops->add_single_entry(iter, al); 1158 if (err) 1159 goto out; 1160 1161 if (iter->he && iter->add_entry_cb) { 1162 err = iter->add_entry_cb(iter, al, true, arg); 1163 if (err) 1164 goto out; 1165 } 1166 1167 while (iter->ops->next_entry(iter, al)) { 1168 err = iter->ops->add_next_entry(iter, al); 1169 if (err) 1170 break; 1171 1172 if (iter->he && iter->add_entry_cb) { 1173 err = iter->add_entry_cb(iter, al, false, arg); 1174 if (err) 1175 goto out; 1176 } 1177 } 1178 1179 out: 1180 err2 = iter->ops->finish_entry(iter, al); 1181 if (!err) 1182 err = err2; 1183 1184 map__put(alm); 1185 1186 return err; 1187 } 1188 1189 int64_t 1190 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1191 { 1192 struct hists *hists = left->hists; 1193 struct perf_hpp_fmt *fmt; 1194 int64_t cmp = 0; 1195 1196 hists__for_each_sort_list(hists, fmt) { 1197 if (perf_hpp__is_dynamic_entry(fmt) && 1198 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1199 continue; 1200 1201 cmp = fmt->cmp(fmt, left, right); 1202 if (cmp) 1203 break; 1204 } 1205 1206 return cmp; 1207 } 1208 1209 int64_t 1210 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1211 { 1212 struct hists *hists = left->hists; 1213 struct perf_hpp_fmt *fmt; 1214 int64_t cmp = 0; 1215 1216 hists__for_each_sort_list(hists, fmt) { 1217 if (perf_hpp__is_dynamic_entry(fmt) && 1218 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1219 continue; 1220 1221 cmp = fmt->collapse(fmt, left, right); 1222 if (cmp) 1223 break; 1224 } 1225 1226 return cmp; 1227 } 1228 1229 void hist_entry__delete(struct hist_entry *he) 1230 { 1231 struct hist_entry_ops *ops = he->ops; 1232 1233 thread__zput(he->thread); 1234 map__zput(he->ms.map); 1235 1236 if (he->branch_info) { 1237 map__zput(he->branch_info->from.map); 1238 map__zput(he->branch_info->to.map); 1239 free_srcline(he->branch_info->srcline_from); 1240 free_srcline(he->branch_info->srcline_to); 1241 zfree(&he->branch_info); 1242 } 1243 1244 if (he->mem_info) { 1245 map__zput(he->mem_info->iaddr.map); 1246 map__zput(he->mem_info->daddr.map); 1247 mem_info__zput(he->mem_info); 1248 } 1249 1250 if (he->block_info) 1251 block_info__zput(he->block_info); 1252 1253 zfree(&he->res_samples); 1254 zfree(&he->stat_acc); 1255 free_srcline(he->srcline); 1256 if (he->srcfile && he->srcfile[0]) 1257 zfree(&he->srcfile); 1258 free_callchain(he->callchain); 1259 zfree(&he->trace_output); 1260 zfree(&he->raw_data); 1261 ops->free(he); 1262 } 1263 1264 /* 1265 * If this is not the last column, then we need to pad it according to the 1266 * pre-calculated max length for this column, otherwise don't bother adding 1267 * spaces because that would break viewing this with, for instance, 'less', 1268 * that would show tons of trailing spaces when a long C++ demangled method 1269 * names is sampled. 1270 */ 1271 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1272 struct perf_hpp_fmt *fmt, int printed) 1273 { 1274 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1275 const int width = fmt->width(fmt, hpp, he->hists); 1276 if (printed < width) { 1277 advance_hpp(hpp, printed); 1278 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1279 } 1280 } 1281 1282 return printed; 1283 } 1284 1285 /* 1286 * collapse the histogram 1287 */ 1288 1289 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1290 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1291 enum hist_filter type); 1292 1293 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1294 1295 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1296 { 1297 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1298 } 1299 1300 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1301 enum hist_filter type, 1302 fmt_chk_fn check) 1303 { 1304 struct perf_hpp_fmt *fmt; 1305 bool type_match = false; 1306 struct hist_entry *parent = he->parent_he; 1307 1308 switch (type) { 1309 case HIST_FILTER__THREAD: 1310 if (symbol_conf.comm_list == NULL && 1311 symbol_conf.pid_list == NULL && 1312 symbol_conf.tid_list == NULL) 1313 return; 1314 break; 1315 case HIST_FILTER__DSO: 1316 if (symbol_conf.dso_list == NULL) 1317 return; 1318 break; 1319 case HIST_FILTER__SYMBOL: 1320 if (symbol_conf.sym_list == NULL) 1321 return; 1322 break; 1323 case HIST_FILTER__PARENT: 1324 case HIST_FILTER__GUEST: 1325 case HIST_FILTER__HOST: 1326 case HIST_FILTER__SOCKET: 1327 case HIST_FILTER__C2C: 1328 default: 1329 return; 1330 } 1331 1332 /* if it's filtered by own fmt, it has to have filter bits */ 1333 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1334 if (check(fmt)) { 1335 type_match = true; 1336 break; 1337 } 1338 } 1339 1340 if (type_match) { 1341 /* 1342 * If the filter is for current level entry, propagate 1343 * filter marker to parents. The marker bit was 1344 * already set by default so it only needs to clear 1345 * non-filtered entries. 1346 */ 1347 if (!(he->filtered & (1 << type))) { 1348 while (parent) { 1349 parent->filtered &= ~(1 << type); 1350 parent = parent->parent_he; 1351 } 1352 } 1353 } else { 1354 /* 1355 * If current entry doesn't have matching formats, set 1356 * filter marker for upper level entries. it will be 1357 * cleared if its lower level entries is not filtered. 1358 * 1359 * For lower-level entries, it inherits parent's 1360 * filter bit so that lower level entries of a 1361 * non-filtered entry won't set the filter marker. 1362 */ 1363 if (parent == NULL) 1364 he->filtered |= (1 << type); 1365 else 1366 he->filtered |= (parent->filtered & (1 << type)); 1367 } 1368 } 1369 1370 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1371 { 1372 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1373 check_thread_entry); 1374 1375 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1376 perf_hpp__is_dso_entry); 1377 1378 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1379 perf_hpp__is_sym_entry); 1380 1381 hists__apply_filters(he->hists, he); 1382 } 1383 1384 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1385 struct rb_root_cached *root, 1386 struct hist_entry *he, 1387 struct hist_entry *parent_he, 1388 struct perf_hpp_list *hpp_list) 1389 { 1390 struct rb_node **p = &root->rb_root.rb_node; 1391 struct rb_node *parent = NULL; 1392 struct hist_entry *iter, *new; 1393 struct perf_hpp_fmt *fmt; 1394 int64_t cmp; 1395 bool leftmost = true; 1396 1397 while (*p != NULL) { 1398 parent = *p; 1399 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1400 1401 cmp = 0; 1402 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1403 cmp = fmt->collapse(fmt, iter, he); 1404 if (cmp) 1405 break; 1406 } 1407 1408 if (!cmp) { 1409 he_stat__add_stat(&iter->stat, &he->stat); 1410 return iter; 1411 } 1412 1413 if (cmp < 0) 1414 p = &parent->rb_left; 1415 else { 1416 p = &parent->rb_right; 1417 leftmost = false; 1418 } 1419 } 1420 1421 new = hist_entry__new(he, true); 1422 if (new == NULL) 1423 return NULL; 1424 1425 hists->nr_entries++; 1426 1427 /* save related format list for output */ 1428 new->hpp_list = hpp_list; 1429 new->parent_he = parent_he; 1430 1431 hist_entry__apply_hierarchy_filters(new); 1432 1433 /* some fields are now passed to 'new' */ 1434 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1435 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1436 he->trace_output = NULL; 1437 else 1438 new->trace_output = NULL; 1439 1440 if (perf_hpp__is_srcline_entry(fmt)) 1441 he->srcline = NULL; 1442 else 1443 new->srcline = NULL; 1444 1445 if (perf_hpp__is_srcfile_entry(fmt)) 1446 he->srcfile = NULL; 1447 else 1448 new->srcfile = NULL; 1449 } 1450 1451 rb_link_node(&new->rb_node_in, parent, p); 1452 rb_insert_color_cached(&new->rb_node_in, root, leftmost); 1453 return new; 1454 } 1455 1456 static int hists__hierarchy_insert_entry(struct hists *hists, 1457 struct rb_root_cached *root, 1458 struct hist_entry *he) 1459 { 1460 struct perf_hpp_list_node *node; 1461 struct hist_entry *new_he = NULL; 1462 struct hist_entry *parent = NULL; 1463 int depth = 0; 1464 int ret = 0; 1465 1466 list_for_each_entry(node, &hists->hpp_formats, list) { 1467 /* skip period (overhead) and elided columns */ 1468 if (node->level == 0 || node->skip) 1469 continue; 1470 1471 /* insert copy of 'he' for each fmt into the hierarchy */ 1472 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1473 if (new_he == NULL) { 1474 ret = -1; 1475 break; 1476 } 1477 1478 root = &new_he->hroot_in; 1479 new_he->depth = depth++; 1480 parent = new_he; 1481 } 1482 1483 if (new_he) { 1484 new_he->leaf = true; 1485 1486 if (hist_entry__has_callchains(new_he) && 1487 symbol_conf.use_callchain) { 1488 callchain_cursor_reset(&callchain_cursor); 1489 if (callchain_merge(&callchain_cursor, 1490 new_he->callchain, 1491 he->callchain) < 0) 1492 ret = -1; 1493 } 1494 } 1495 1496 /* 'he' is no longer used */ 1497 hist_entry__delete(he); 1498 1499 /* return 0 (or -1) since it already applied filters */ 1500 return ret; 1501 } 1502 1503 static int hists__collapse_insert_entry(struct hists *hists, 1504 struct rb_root_cached *root, 1505 struct hist_entry *he) 1506 { 1507 struct rb_node **p = &root->rb_root.rb_node; 1508 struct rb_node *parent = NULL; 1509 struct hist_entry *iter; 1510 int64_t cmp; 1511 bool leftmost = true; 1512 1513 if (symbol_conf.report_hierarchy) 1514 return hists__hierarchy_insert_entry(hists, root, he); 1515 1516 while (*p != NULL) { 1517 parent = *p; 1518 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1519 1520 cmp = hist_entry__collapse(iter, he); 1521 1522 if (!cmp) { 1523 int ret = 0; 1524 1525 he_stat__add_stat(&iter->stat, &he->stat); 1526 if (symbol_conf.cumulate_callchain) 1527 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1528 1529 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) { 1530 callchain_cursor_reset(&callchain_cursor); 1531 if (callchain_merge(&callchain_cursor, 1532 iter->callchain, 1533 he->callchain) < 0) 1534 ret = -1; 1535 } 1536 hist_entry__delete(he); 1537 return ret; 1538 } 1539 1540 if (cmp < 0) 1541 p = &(*p)->rb_left; 1542 else { 1543 p = &(*p)->rb_right; 1544 leftmost = false; 1545 } 1546 } 1547 hists->nr_entries++; 1548 1549 rb_link_node(&he->rb_node_in, parent, p); 1550 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 1551 return 1; 1552 } 1553 1554 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists) 1555 { 1556 struct rb_root_cached *root; 1557 1558 pthread_mutex_lock(&hists->lock); 1559 1560 root = hists->entries_in; 1561 if (++hists->entries_in > &hists->entries_in_array[1]) 1562 hists->entries_in = &hists->entries_in_array[0]; 1563 1564 pthread_mutex_unlock(&hists->lock); 1565 1566 return root; 1567 } 1568 1569 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1570 { 1571 hists__filter_entry_by_dso(hists, he); 1572 hists__filter_entry_by_thread(hists, he); 1573 hists__filter_entry_by_symbol(hists, he); 1574 hists__filter_entry_by_socket(hists, he); 1575 } 1576 1577 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1578 { 1579 struct rb_root_cached *root; 1580 struct rb_node *next; 1581 struct hist_entry *n; 1582 int ret; 1583 1584 if (!hists__has(hists, need_collapse)) 1585 return 0; 1586 1587 hists->nr_entries = 0; 1588 1589 root = hists__get_rotate_entries_in(hists); 1590 1591 next = rb_first_cached(root); 1592 1593 while (next) { 1594 if (session_done()) 1595 break; 1596 n = rb_entry(next, struct hist_entry, rb_node_in); 1597 next = rb_next(&n->rb_node_in); 1598 1599 rb_erase_cached(&n->rb_node_in, root); 1600 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1601 if (ret < 0) 1602 return -1; 1603 1604 if (ret) { 1605 /* 1606 * If it wasn't combined with one of the entries already 1607 * collapsed, we need to apply the filters that may have 1608 * been set by, say, the hist_browser. 1609 */ 1610 hists__apply_filters(hists, n); 1611 } 1612 if (prog) 1613 ui_progress__update(prog, 1); 1614 } 1615 return 0; 1616 } 1617 1618 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1619 { 1620 struct hists *hists = a->hists; 1621 struct perf_hpp_fmt *fmt; 1622 int64_t cmp = 0; 1623 1624 hists__for_each_sort_list(hists, fmt) { 1625 if (perf_hpp__should_skip(fmt, a->hists)) 1626 continue; 1627 1628 cmp = fmt->sort(fmt, a, b); 1629 if (cmp) 1630 break; 1631 } 1632 1633 return cmp; 1634 } 1635 1636 static void hists__reset_filter_stats(struct hists *hists) 1637 { 1638 hists->nr_non_filtered_entries = 0; 1639 hists->stats.total_non_filtered_period = 0; 1640 } 1641 1642 void hists__reset_stats(struct hists *hists) 1643 { 1644 hists->nr_entries = 0; 1645 hists->stats.total_period = 0; 1646 1647 hists__reset_filter_stats(hists); 1648 } 1649 1650 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1651 { 1652 hists->nr_non_filtered_entries++; 1653 hists->stats.total_non_filtered_period += h->stat.period; 1654 } 1655 1656 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1657 { 1658 if (!h->filtered) 1659 hists__inc_filter_stats(hists, h); 1660 1661 hists->nr_entries++; 1662 hists->stats.total_period += h->stat.period; 1663 } 1664 1665 static void hierarchy_recalc_total_periods(struct hists *hists) 1666 { 1667 struct rb_node *node; 1668 struct hist_entry *he; 1669 1670 node = rb_first_cached(&hists->entries); 1671 1672 hists->stats.total_period = 0; 1673 hists->stats.total_non_filtered_period = 0; 1674 1675 /* 1676 * recalculate total period using top-level entries only 1677 * since lower level entries only see non-filtered entries 1678 * but upper level entries have sum of both entries. 1679 */ 1680 while (node) { 1681 he = rb_entry(node, struct hist_entry, rb_node); 1682 node = rb_next(node); 1683 1684 hists->stats.total_period += he->stat.period; 1685 if (!he->filtered) 1686 hists->stats.total_non_filtered_period += he->stat.period; 1687 } 1688 } 1689 1690 static void hierarchy_insert_output_entry(struct rb_root_cached *root, 1691 struct hist_entry *he) 1692 { 1693 struct rb_node **p = &root->rb_root.rb_node; 1694 struct rb_node *parent = NULL; 1695 struct hist_entry *iter; 1696 struct perf_hpp_fmt *fmt; 1697 bool leftmost = true; 1698 1699 while (*p != NULL) { 1700 parent = *p; 1701 iter = rb_entry(parent, struct hist_entry, rb_node); 1702 1703 if (hist_entry__sort(he, iter) > 0) 1704 p = &parent->rb_left; 1705 else { 1706 p = &parent->rb_right; 1707 leftmost = false; 1708 } 1709 } 1710 1711 rb_link_node(&he->rb_node, parent, p); 1712 rb_insert_color_cached(&he->rb_node, root, leftmost); 1713 1714 /* update column width of dynamic entry */ 1715 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1716 if (perf_hpp__is_dynamic_entry(fmt)) 1717 fmt->sort(fmt, he, NULL); 1718 } 1719 } 1720 1721 static void hists__hierarchy_output_resort(struct hists *hists, 1722 struct ui_progress *prog, 1723 struct rb_root_cached *root_in, 1724 struct rb_root_cached *root_out, 1725 u64 min_callchain_hits, 1726 bool use_callchain) 1727 { 1728 struct rb_node *node; 1729 struct hist_entry *he; 1730 1731 *root_out = RB_ROOT_CACHED; 1732 node = rb_first_cached(root_in); 1733 1734 while (node) { 1735 he = rb_entry(node, struct hist_entry, rb_node_in); 1736 node = rb_next(node); 1737 1738 hierarchy_insert_output_entry(root_out, he); 1739 1740 if (prog) 1741 ui_progress__update(prog, 1); 1742 1743 hists->nr_entries++; 1744 if (!he->filtered) { 1745 hists->nr_non_filtered_entries++; 1746 hists__calc_col_len(hists, he); 1747 } 1748 1749 if (!he->leaf) { 1750 hists__hierarchy_output_resort(hists, prog, 1751 &he->hroot_in, 1752 &he->hroot_out, 1753 min_callchain_hits, 1754 use_callchain); 1755 continue; 1756 } 1757 1758 if (!use_callchain) 1759 continue; 1760 1761 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1762 u64 total = he->stat.period; 1763 1764 if (symbol_conf.cumulate_callchain) 1765 total = he->stat_acc->period; 1766 1767 min_callchain_hits = total * (callchain_param.min_percent / 100); 1768 } 1769 1770 callchain_param.sort(&he->sorted_chain, he->callchain, 1771 min_callchain_hits, &callchain_param); 1772 } 1773 } 1774 1775 static void __hists__insert_output_entry(struct rb_root_cached *entries, 1776 struct hist_entry *he, 1777 u64 min_callchain_hits, 1778 bool use_callchain) 1779 { 1780 struct rb_node **p = &entries->rb_root.rb_node; 1781 struct rb_node *parent = NULL; 1782 struct hist_entry *iter; 1783 struct perf_hpp_fmt *fmt; 1784 bool leftmost = true; 1785 1786 if (use_callchain) { 1787 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1788 u64 total = he->stat.period; 1789 1790 if (symbol_conf.cumulate_callchain) 1791 total = he->stat_acc->period; 1792 1793 min_callchain_hits = total * (callchain_param.min_percent / 100); 1794 } 1795 callchain_param.sort(&he->sorted_chain, he->callchain, 1796 min_callchain_hits, &callchain_param); 1797 } 1798 1799 while (*p != NULL) { 1800 parent = *p; 1801 iter = rb_entry(parent, struct hist_entry, rb_node); 1802 1803 if (hist_entry__sort(he, iter) > 0) 1804 p = &(*p)->rb_left; 1805 else { 1806 p = &(*p)->rb_right; 1807 leftmost = false; 1808 } 1809 } 1810 1811 rb_link_node(&he->rb_node, parent, p); 1812 rb_insert_color_cached(&he->rb_node, entries, leftmost); 1813 1814 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1815 if (perf_hpp__is_dynamic_entry(fmt) && 1816 perf_hpp__defined_dynamic_entry(fmt, he->hists)) 1817 fmt->sort(fmt, he, NULL); /* update column width */ 1818 } 1819 } 1820 1821 static void output_resort(struct hists *hists, struct ui_progress *prog, 1822 bool use_callchain, hists__resort_cb_t cb, 1823 void *cb_arg) 1824 { 1825 struct rb_root_cached *root; 1826 struct rb_node *next; 1827 struct hist_entry *n; 1828 u64 callchain_total; 1829 u64 min_callchain_hits; 1830 1831 callchain_total = hists->callchain_period; 1832 if (symbol_conf.filter_relative) 1833 callchain_total = hists->callchain_non_filtered_period; 1834 1835 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1836 1837 hists__reset_stats(hists); 1838 hists__reset_col_len(hists); 1839 1840 if (symbol_conf.report_hierarchy) { 1841 hists__hierarchy_output_resort(hists, prog, 1842 &hists->entries_collapsed, 1843 &hists->entries, 1844 min_callchain_hits, 1845 use_callchain); 1846 hierarchy_recalc_total_periods(hists); 1847 return; 1848 } 1849 1850 if (hists__has(hists, need_collapse)) 1851 root = &hists->entries_collapsed; 1852 else 1853 root = hists->entries_in; 1854 1855 next = rb_first_cached(root); 1856 hists->entries = RB_ROOT_CACHED; 1857 1858 while (next) { 1859 n = rb_entry(next, struct hist_entry, rb_node_in); 1860 next = rb_next(&n->rb_node_in); 1861 1862 if (cb && cb(n, cb_arg)) 1863 continue; 1864 1865 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1866 hists__inc_stats(hists, n); 1867 1868 if (!n->filtered) 1869 hists__calc_col_len(hists, n); 1870 1871 if (prog) 1872 ui_progress__update(prog, 1); 1873 } 1874 } 1875 1876 void perf_evsel__output_resort_cb(struct perf_evsel *evsel, struct ui_progress *prog, 1877 hists__resort_cb_t cb, void *cb_arg) 1878 { 1879 bool use_callchain; 1880 1881 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1882 use_callchain = evsel__has_callchain(evsel); 1883 else 1884 use_callchain = symbol_conf.use_callchain; 1885 1886 use_callchain |= symbol_conf.show_branchflag_count; 1887 1888 output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg); 1889 } 1890 1891 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog) 1892 { 1893 return perf_evsel__output_resort_cb(evsel, prog, NULL, NULL); 1894 } 1895 1896 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 1897 { 1898 output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL); 1899 } 1900 1901 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, 1902 hists__resort_cb_t cb) 1903 { 1904 output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL); 1905 } 1906 1907 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 1908 { 1909 if (he->leaf || hmd == HMD_FORCE_SIBLING) 1910 return false; 1911 1912 if (he->unfolded || hmd == HMD_FORCE_CHILD) 1913 return true; 1914 1915 return false; 1916 } 1917 1918 struct rb_node *rb_hierarchy_last(struct rb_node *node) 1919 { 1920 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1921 1922 while (can_goto_child(he, HMD_NORMAL)) { 1923 node = rb_last(&he->hroot_out.rb_root); 1924 he = rb_entry(node, struct hist_entry, rb_node); 1925 } 1926 return node; 1927 } 1928 1929 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 1930 { 1931 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1932 1933 if (can_goto_child(he, hmd)) 1934 node = rb_first_cached(&he->hroot_out); 1935 else 1936 node = rb_next(node); 1937 1938 while (node == NULL) { 1939 he = he->parent_he; 1940 if (he == NULL) 1941 break; 1942 1943 node = rb_next(&he->rb_node); 1944 } 1945 return node; 1946 } 1947 1948 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 1949 { 1950 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1951 1952 node = rb_prev(node); 1953 if (node) 1954 return rb_hierarchy_last(node); 1955 1956 he = he->parent_he; 1957 if (he == NULL) 1958 return NULL; 1959 1960 return &he->rb_node; 1961 } 1962 1963 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 1964 { 1965 struct rb_node *node; 1966 struct hist_entry *child; 1967 float percent; 1968 1969 if (he->leaf) 1970 return false; 1971 1972 node = rb_first_cached(&he->hroot_out); 1973 child = rb_entry(node, struct hist_entry, rb_node); 1974 1975 while (node && child->filtered) { 1976 node = rb_next(node); 1977 child = rb_entry(node, struct hist_entry, rb_node); 1978 } 1979 1980 if (node) 1981 percent = hist_entry__get_percent_limit(child); 1982 else 1983 percent = 0; 1984 1985 return node && percent >= limit; 1986 } 1987 1988 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 1989 enum hist_filter filter) 1990 { 1991 h->filtered &= ~(1 << filter); 1992 1993 if (symbol_conf.report_hierarchy) { 1994 struct hist_entry *parent = h->parent_he; 1995 1996 while (parent) { 1997 he_stat__add_stat(&parent->stat, &h->stat); 1998 1999 parent->filtered &= ~(1 << filter); 2000 2001 if (parent->filtered) 2002 goto next; 2003 2004 /* force fold unfiltered entry for simplicity */ 2005 parent->unfolded = false; 2006 parent->has_no_entry = false; 2007 parent->row_offset = 0; 2008 parent->nr_rows = 0; 2009 next: 2010 parent = parent->parent_he; 2011 } 2012 } 2013 2014 if (h->filtered) 2015 return; 2016 2017 /* force fold unfiltered entry for simplicity */ 2018 h->unfolded = false; 2019 h->has_no_entry = false; 2020 h->row_offset = 0; 2021 h->nr_rows = 0; 2022 2023 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 2024 2025 hists__inc_filter_stats(hists, h); 2026 hists__calc_col_len(hists, h); 2027 } 2028 2029 2030 static bool hists__filter_entry_by_dso(struct hists *hists, 2031 struct hist_entry *he) 2032 { 2033 if (hists->dso_filter != NULL && 2034 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) { 2035 he->filtered |= (1 << HIST_FILTER__DSO); 2036 return true; 2037 } 2038 2039 return false; 2040 } 2041 2042 static bool hists__filter_entry_by_thread(struct hists *hists, 2043 struct hist_entry *he) 2044 { 2045 if (hists->thread_filter != NULL && 2046 he->thread != hists->thread_filter) { 2047 he->filtered |= (1 << HIST_FILTER__THREAD); 2048 return true; 2049 } 2050 2051 return false; 2052 } 2053 2054 static bool hists__filter_entry_by_symbol(struct hists *hists, 2055 struct hist_entry *he) 2056 { 2057 if (hists->symbol_filter_str != NULL && 2058 (!he->ms.sym || strstr(he->ms.sym->name, 2059 hists->symbol_filter_str) == NULL)) { 2060 he->filtered |= (1 << HIST_FILTER__SYMBOL); 2061 return true; 2062 } 2063 2064 return false; 2065 } 2066 2067 static bool hists__filter_entry_by_socket(struct hists *hists, 2068 struct hist_entry *he) 2069 { 2070 if ((hists->socket_filter > -1) && 2071 (he->socket != hists->socket_filter)) { 2072 he->filtered |= (1 << HIST_FILTER__SOCKET); 2073 return true; 2074 } 2075 2076 return false; 2077 } 2078 2079 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 2080 2081 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 2082 { 2083 struct rb_node *nd; 2084 2085 hists->stats.nr_non_filtered_samples = 0; 2086 2087 hists__reset_filter_stats(hists); 2088 hists__reset_col_len(hists); 2089 2090 for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) { 2091 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2092 2093 if (filter(hists, h)) 2094 continue; 2095 2096 hists__remove_entry_filter(hists, h, type); 2097 } 2098 } 2099 2100 static void resort_filtered_entry(struct rb_root_cached *root, 2101 struct hist_entry *he) 2102 { 2103 struct rb_node **p = &root->rb_root.rb_node; 2104 struct rb_node *parent = NULL; 2105 struct hist_entry *iter; 2106 struct rb_root_cached new_root = RB_ROOT_CACHED; 2107 struct rb_node *nd; 2108 bool leftmost = true; 2109 2110 while (*p != NULL) { 2111 parent = *p; 2112 iter = rb_entry(parent, struct hist_entry, rb_node); 2113 2114 if (hist_entry__sort(he, iter) > 0) 2115 p = &(*p)->rb_left; 2116 else { 2117 p = &(*p)->rb_right; 2118 leftmost = false; 2119 } 2120 } 2121 2122 rb_link_node(&he->rb_node, parent, p); 2123 rb_insert_color_cached(&he->rb_node, root, leftmost); 2124 2125 if (he->leaf || he->filtered) 2126 return; 2127 2128 nd = rb_first_cached(&he->hroot_out); 2129 while (nd) { 2130 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2131 2132 nd = rb_next(nd); 2133 rb_erase_cached(&h->rb_node, &he->hroot_out); 2134 2135 resort_filtered_entry(&new_root, h); 2136 } 2137 2138 he->hroot_out = new_root; 2139 } 2140 2141 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 2142 { 2143 struct rb_node *nd; 2144 struct rb_root_cached new_root = RB_ROOT_CACHED; 2145 2146 hists->stats.nr_non_filtered_samples = 0; 2147 2148 hists__reset_filter_stats(hists); 2149 hists__reset_col_len(hists); 2150 2151 nd = rb_first_cached(&hists->entries); 2152 while (nd) { 2153 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2154 int ret; 2155 2156 ret = hist_entry__filter(h, type, arg); 2157 2158 /* 2159 * case 1. non-matching type 2160 * zero out the period, set filter marker and move to child 2161 */ 2162 if (ret < 0) { 2163 memset(&h->stat, 0, sizeof(h->stat)); 2164 h->filtered |= (1 << type); 2165 2166 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 2167 } 2168 /* 2169 * case 2. matched type (filter out) 2170 * set filter marker and move to next 2171 */ 2172 else if (ret == 1) { 2173 h->filtered |= (1 << type); 2174 2175 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2176 } 2177 /* 2178 * case 3. ok (not filtered) 2179 * add period to hists and parents, erase the filter marker 2180 * and move to next sibling 2181 */ 2182 else { 2183 hists__remove_entry_filter(hists, h, type); 2184 2185 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2186 } 2187 } 2188 2189 hierarchy_recalc_total_periods(hists); 2190 2191 /* 2192 * resort output after applying a new filter since filter in a lower 2193 * hierarchy can change periods in a upper hierarchy. 2194 */ 2195 nd = rb_first_cached(&hists->entries); 2196 while (nd) { 2197 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2198 2199 nd = rb_next(nd); 2200 rb_erase_cached(&h->rb_node, &hists->entries); 2201 2202 resort_filtered_entry(&new_root, h); 2203 } 2204 2205 hists->entries = new_root; 2206 } 2207 2208 void hists__filter_by_thread(struct hists *hists) 2209 { 2210 if (symbol_conf.report_hierarchy) 2211 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 2212 hists->thread_filter); 2213 else 2214 hists__filter_by_type(hists, HIST_FILTER__THREAD, 2215 hists__filter_entry_by_thread); 2216 } 2217 2218 void hists__filter_by_dso(struct hists *hists) 2219 { 2220 if (symbol_conf.report_hierarchy) 2221 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 2222 hists->dso_filter); 2223 else 2224 hists__filter_by_type(hists, HIST_FILTER__DSO, 2225 hists__filter_entry_by_dso); 2226 } 2227 2228 void hists__filter_by_symbol(struct hists *hists) 2229 { 2230 if (symbol_conf.report_hierarchy) 2231 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2232 hists->symbol_filter_str); 2233 else 2234 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2235 hists__filter_entry_by_symbol); 2236 } 2237 2238 void hists__filter_by_socket(struct hists *hists) 2239 { 2240 if (symbol_conf.report_hierarchy) 2241 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2242 &hists->socket_filter); 2243 else 2244 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2245 hists__filter_entry_by_socket); 2246 } 2247 2248 void events_stats__inc(struct events_stats *stats, u32 type) 2249 { 2250 ++stats->nr_events[0]; 2251 ++stats->nr_events[type]; 2252 } 2253 2254 void hists__inc_nr_events(struct hists *hists, u32 type) 2255 { 2256 events_stats__inc(&hists->stats, type); 2257 } 2258 2259 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2260 { 2261 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE); 2262 if (!filtered) 2263 hists->stats.nr_non_filtered_samples++; 2264 } 2265 2266 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2267 struct hist_entry *pair) 2268 { 2269 struct rb_root_cached *root; 2270 struct rb_node **p; 2271 struct rb_node *parent = NULL; 2272 struct hist_entry *he; 2273 int64_t cmp; 2274 bool leftmost = true; 2275 2276 if (hists__has(hists, need_collapse)) 2277 root = &hists->entries_collapsed; 2278 else 2279 root = hists->entries_in; 2280 2281 p = &root->rb_root.rb_node; 2282 2283 while (*p != NULL) { 2284 parent = *p; 2285 he = rb_entry(parent, struct hist_entry, rb_node_in); 2286 2287 cmp = hist_entry__collapse(he, pair); 2288 2289 if (!cmp) 2290 goto out; 2291 2292 if (cmp < 0) 2293 p = &(*p)->rb_left; 2294 else { 2295 p = &(*p)->rb_right; 2296 leftmost = false; 2297 } 2298 } 2299 2300 he = hist_entry__new(pair, true); 2301 if (he) { 2302 memset(&he->stat, 0, sizeof(he->stat)); 2303 he->hists = hists; 2304 if (symbol_conf.cumulate_callchain) 2305 memset(he->stat_acc, 0, sizeof(he->stat)); 2306 rb_link_node(&he->rb_node_in, parent, p); 2307 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2308 hists__inc_stats(hists, he); 2309 he->dummy = true; 2310 } 2311 out: 2312 return he; 2313 } 2314 2315 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, 2316 struct rb_root_cached *root, 2317 struct hist_entry *pair) 2318 { 2319 struct rb_node **p; 2320 struct rb_node *parent = NULL; 2321 struct hist_entry *he; 2322 struct perf_hpp_fmt *fmt; 2323 bool leftmost = true; 2324 2325 p = &root->rb_root.rb_node; 2326 while (*p != NULL) { 2327 int64_t cmp = 0; 2328 2329 parent = *p; 2330 he = rb_entry(parent, struct hist_entry, rb_node_in); 2331 2332 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2333 cmp = fmt->collapse(fmt, he, pair); 2334 if (cmp) 2335 break; 2336 } 2337 if (!cmp) 2338 goto out; 2339 2340 if (cmp < 0) 2341 p = &parent->rb_left; 2342 else { 2343 p = &parent->rb_right; 2344 leftmost = false; 2345 } 2346 } 2347 2348 he = hist_entry__new(pair, true); 2349 if (he) { 2350 rb_link_node(&he->rb_node_in, parent, p); 2351 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2352 2353 he->dummy = true; 2354 he->hists = hists; 2355 memset(&he->stat, 0, sizeof(he->stat)); 2356 hists__inc_stats(hists, he); 2357 } 2358 out: 2359 return he; 2360 } 2361 2362 static struct hist_entry *hists__find_entry(struct hists *hists, 2363 struct hist_entry *he) 2364 { 2365 struct rb_node *n; 2366 2367 if (hists__has(hists, need_collapse)) 2368 n = hists->entries_collapsed.rb_root.rb_node; 2369 else 2370 n = hists->entries_in->rb_root.rb_node; 2371 2372 while (n) { 2373 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2374 int64_t cmp = hist_entry__collapse(iter, he); 2375 2376 if (cmp < 0) 2377 n = n->rb_left; 2378 else if (cmp > 0) 2379 n = n->rb_right; 2380 else 2381 return iter; 2382 } 2383 2384 return NULL; 2385 } 2386 2387 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root, 2388 struct hist_entry *he) 2389 { 2390 struct rb_node *n = root->rb_root.rb_node; 2391 2392 while (n) { 2393 struct hist_entry *iter; 2394 struct perf_hpp_fmt *fmt; 2395 int64_t cmp = 0; 2396 2397 iter = rb_entry(n, struct hist_entry, rb_node_in); 2398 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2399 cmp = fmt->collapse(fmt, iter, he); 2400 if (cmp) 2401 break; 2402 } 2403 2404 if (cmp < 0) 2405 n = n->rb_left; 2406 else if (cmp > 0) 2407 n = n->rb_right; 2408 else 2409 return iter; 2410 } 2411 2412 return NULL; 2413 } 2414 2415 static void hists__match_hierarchy(struct rb_root_cached *leader_root, 2416 struct rb_root_cached *other_root) 2417 { 2418 struct rb_node *nd; 2419 struct hist_entry *pos, *pair; 2420 2421 for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) { 2422 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2423 pair = hists__find_hierarchy_entry(other_root, pos); 2424 2425 if (pair) { 2426 hist_entry__add_pair(pair, pos); 2427 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); 2428 } 2429 } 2430 } 2431 2432 /* 2433 * Look for pairs to link to the leader buckets (hist_entries): 2434 */ 2435 void hists__match(struct hists *leader, struct hists *other) 2436 { 2437 struct rb_root_cached *root; 2438 struct rb_node *nd; 2439 struct hist_entry *pos, *pair; 2440 2441 if (symbol_conf.report_hierarchy) { 2442 /* hierarchy report always collapses entries */ 2443 return hists__match_hierarchy(&leader->entries_collapsed, 2444 &other->entries_collapsed); 2445 } 2446 2447 if (hists__has(leader, need_collapse)) 2448 root = &leader->entries_collapsed; 2449 else 2450 root = leader->entries_in; 2451 2452 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2453 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2454 pair = hists__find_entry(other, pos); 2455 2456 if (pair) 2457 hist_entry__add_pair(pair, pos); 2458 } 2459 } 2460 2461 static int hists__link_hierarchy(struct hists *leader_hists, 2462 struct hist_entry *parent, 2463 struct rb_root_cached *leader_root, 2464 struct rb_root_cached *other_root) 2465 { 2466 struct rb_node *nd; 2467 struct hist_entry *pos, *leader; 2468 2469 for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) { 2470 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2471 2472 if (hist_entry__has_pairs(pos)) { 2473 bool found = false; 2474 2475 list_for_each_entry(leader, &pos->pairs.head, pairs.node) { 2476 if (leader->hists == leader_hists) { 2477 found = true; 2478 break; 2479 } 2480 } 2481 if (!found) 2482 return -1; 2483 } else { 2484 leader = add_dummy_hierarchy_entry(leader_hists, 2485 leader_root, pos); 2486 if (leader == NULL) 2487 return -1; 2488 2489 /* do not point parent in the pos */ 2490 leader->parent_he = parent; 2491 2492 hist_entry__add_pair(pos, leader); 2493 } 2494 2495 if (!pos->leaf) { 2496 if (hists__link_hierarchy(leader_hists, leader, 2497 &leader->hroot_in, 2498 &pos->hroot_in) < 0) 2499 return -1; 2500 } 2501 } 2502 return 0; 2503 } 2504 2505 /* 2506 * Look for entries in the other hists that are not present in the leader, if 2507 * we find them, just add a dummy entry on the leader hists, with period=0, 2508 * nr_events=0, to serve as the list header. 2509 */ 2510 int hists__link(struct hists *leader, struct hists *other) 2511 { 2512 struct rb_root_cached *root; 2513 struct rb_node *nd; 2514 struct hist_entry *pos, *pair; 2515 2516 if (symbol_conf.report_hierarchy) { 2517 /* hierarchy report always collapses entries */ 2518 return hists__link_hierarchy(leader, NULL, 2519 &leader->entries_collapsed, 2520 &other->entries_collapsed); 2521 } 2522 2523 if (hists__has(other, need_collapse)) 2524 root = &other->entries_collapsed; 2525 else 2526 root = other->entries_in; 2527 2528 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2529 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2530 2531 if (!hist_entry__has_pairs(pos)) { 2532 pair = hists__add_dummy_entry(leader, pos); 2533 if (pair == NULL) 2534 return -1; 2535 hist_entry__add_pair(pos, pair); 2536 } 2537 } 2538 2539 return 0; 2540 } 2541 2542 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2543 struct perf_sample *sample, bool nonany_branch_mode) 2544 { 2545 struct branch_info *bi; 2546 2547 /* If we have branch cycles always annotate them. */ 2548 if (bs && bs->nr && bs->entries[0].flags.cycles) { 2549 int i; 2550 2551 bi = sample__resolve_bstack(sample, al); 2552 if (bi) { 2553 struct addr_map_symbol *prev = NULL; 2554 2555 /* 2556 * Ignore errors, still want to process the 2557 * other entries. 2558 * 2559 * For non standard branch modes always 2560 * force no IPC (prev == NULL) 2561 * 2562 * Note that perf stores branches reversed from 2563 * program order! 2564 */ 2565 for (i = bs->nr - 1; i >= 0; i--) { 2566 addr_map_symbol__account_cycles(&bi[i].from, 2567 nonany_branch_mode ? NULL : prev, 2568 bi[i].flags.cycles); 2569 prev = &bi[i].to; 2570 } 2571 free(bi); 2572 } 2573 } 2574 } 2575 2576 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp) 2577 { 2578 struct perf_evsel *pos; 2579 size_t ret = 0; 2580 2581 evlist__for_each_entry(evlist, pos) { 2582 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos)); 2583 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp); 2584 } 2585 2586 return ret; 2587 } 2588 2589 2590 u64 hists__total_period(struct hists *hists) 2591 { 2592 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2593 hists->stats.total_period; 2594 } 2595 2596 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq) 2597 { 2598 char unit; 2599 int printed; 2600 const struct dso *dso = hists->dso_filter; 2601 struct thread *thread = hists->thread_filter; 2602 int socket_id = hists->socket_filter; 2603 unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE]; 2604 u64 nr_events = hists->stats.total_period; 2605 struct perf_evsel *evsel = hists_to_evsel(hists); 2606 const char *ev_name = perf_evsel__name(evsel); 2607 char buf[512], sample_freq_str[64] = ""; 2608 size_t buflen = sizeof(buf); 2609 char ref[30] = " show reference callgraph, "; 2610 bool enable_ref = false; 2611 2612 if (symbol_conf.filter_relative) { 2613 nr_samples = hists->stats.nr_non_filtered_samples; 2614 nr_events = hists->stats.total_non_filtered_period; 2615 } 2616 2617 if (perf_evsel__is_group_event(evsel)) { 2618 struct perf_evsel *pos; 2619 2620 perf_evsel__group_desc(evsel, buf, buflen); 2621 ev_name = buf; 2622 2623 for_each_group_member(pos, evsel) { 2624 struct hists *pos_hists = evsel__hists(pos); 2625 2626 if (symbol_conf.filter_relative) { 2627 nr_samples += pos_hists->stats.nr_non_filtered_samples; 2628 nr_events += pos_hists->stats.total_non_filtered_period; 2629 } else { 2630 nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE]; 2631 nr_events += pos_hists->stats.total_period; 2632 } 2633 } 2634 } 2635 2636 if (symbol_conf.show_ref_callgraph && 2637 strstr(ev_name, "call-graph=no")) 2638 enable_ref = true; 2639 2640 if (show_freq) 2641 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->attr.sample_freq); 2642 2643 nr_samples = convert_unit(nr_samples, &unit); 2644 printed = scnprintf(bf, size, 2645 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64, 2646 nr_samples, unit, evsel->nr_members > 1 ? "s" : "", 2647 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events); 2648 2649 2650 if (hists->uid_filter_str) 2651 printed += snprintf(bf + printed, size - printed, 2652 ", UID: %s", hists->uid_filter_str); 2653 if (thread) { 2654 if (hists__has(hists, thread)) { 2655 printed += scnprintf(bf + printed, size - printed, 2656 ", Thread: %s(%d)", 2657 (thread->comm_set ? thread__comm_str(thread) : ""), 2658 thread->tid); 2659 } else { 2660 printed += scnprintf(bf + printed, size - printed, 2661 ", Thread: %s", 2662 (thread->comm_set ? thread__comm_str(thread) : "")); 2663 } 2664 } 2665 if (dso) 2666 printed += scnprintf(bf + printed, size - printed, 2667 ", DSO: %s", dso->short_name); 2668 if (socket_id > -1) 2669 printed += scnprintf(bf + printed, size - printed, 2670 ", Processor Socket: %d", socket_id); 2671 2672 return printed; 2673 } 2674 2675 int parse_filter_percentage(const struct option *opt __maybe_unused, 2676 const char *arg, int unset __maybe_unused) 2677 { 2678 if (!strcmp(arg, "relative")) 2679 symbol_conf.filter_relative = true; 2680 else if (!strcmp(arg, "absolute")) 2681 symbol_conf.filter_relative = false; 2682 else { 2683 pr_debug("Invalid percentage: %s\n", arg); 2684 return -1; 2685 } 2686 2687 return 0; 2688 } 2689 2690 int perf_hist_config(const char *var, const char *value) 2691 { 2692 if (!strcmp(var, "hist.percentage")) 2693 return parse_filter_percentage(NULL, value, 0); 2694 2695 return 0; 2696 } 2697 2698 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2699 { 2700 memset(hists, 0, sizeof(*hists)); 2701 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED; 2702 hists->entries_in = &hists->entries_in_array[0]; 2703 hists->entries_collapsed = RB_ROOT_CACHED; 2704 hists->entries = RB_ROOT_CACHED; 2705 pthread_mutex_init(&hists->lock, NULL); 2706 hists->socket_filter = -1; 2707 hists->hpp_list = hpp_list; 2708 INIT_LIST_HEAD(&hists->hpp_formats); 2709 return 0; 2710 } 2711 2712 static void hists__delete_remaining_entries(struct rb_root_cached *root) 2713 { 2714 struct rb_node *node; 2715 struct hist_entry *he; 2716 2717 while (!RB_EMPTY_ROOT(&root->rb_root)) { 2718 node = rb_first_cached(root); 2719 rb_erase_cached(node, root); 2720 2721 he = rb_entry(node, struct hist_entry, rb_node_in); 2722 hist_entry__delete(he); 2723 } 2724 } 2725 2726 static void hists__delete_all_entries(struct hists *hists) 2727 { 2728 hists__delete_entries(hists); 2729 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2730 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2731 hists__delete_remaining_entries(&hists->entries_collapsed); 2732 } 2733 2734 static void hists_evsel__exit(struct perf_evsel *evsel) 2735 { 2736 struct hists *hists = evsel__hists(evsel); 2737 struct perf_hpp_fmt *fmt, *pos; 2738 struct perf_hpp_list_node *node, *tmp; 2739 2740 hists__delete_all_entries(hists); 2741 2742 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2743 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2744 list_del_init(&fmt->list); 2745 free(fmt); 2746 } 2747 list_del_init(&node->list); 2748 free(node); 2749 } 2750 } 2751 2752 static int hists_evsel__init(struct perf_evsel *evsel) 2753 { 2754 struct hists *hists = evsel__hists(evsel); 2755 2756 __hists__init(hists, &perf_hpp_list); 2757 return 0; 2758 } 2759 2760 /* 2761 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2762 * stored in the rbtree... 2763 */ 2764 2765 int hists__init(void) 2766 { 2767 int err = perf_evsel__object_config(sizeof(struct hists_evsel), 2768 hists_evsel__init, 2769 hists_evsel__exit); 2770 if (err) 2771 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2772 2773 return err; 2774 } 2775 2776 void perf_hpp_list__init(struct perf_hpp_list *list) 2777 { 2778 INIT_LIST_HEAD(&list->fields); 2779 INIT_LIST_HEAD(&list->sorts); 2780 } 2781