xref: /linux/tools/perf/util/hist.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "session.h"
5 #include "sort.h"
6 #include "evlist.h"
7 #include "evsel.h"
8 #include "annotate.h"
9 #include "ui/progress.h"
10 #include <math.h>
11 
12 static bool hists__filter_entry_by_dso(struct hists *hists,
13 				       struct hist_entry *he);
14 static bool hists__filter_entry_by_thread(struct hists *hists,
15 					  struct hist_entry *he);
16 static bool hists__filter_entry_by_symbol(struct hists *hists,
17 					  struct hist_entry *he);
18 static bool hists__filter_entry_by_socket(struct hists *hists,
19 					  struct hist_entry *he);
20 
21 u16 hists__col_len(struct hists *hists, enum hist_column col)
22 {
23 	return hists->col_len[col];
24 }
25 
26 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
27 {
28 	hists->col_len[col] = len;
29 }
30 
31 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
32 {
33 	if (len > hists__col_len(hists, col)) {
34 		hists__set_col_len(hists, col, len);
35 		return true;
36 	}
37 	return false;
38 }
39 
40 void hists__reset_col_len(struct hists *hists)
41 {
42 	enum hist_column col;
43 
44 	for (col = 0; col < HISTC_NR_COLS; ++col)
45 		hists__set_col_len(hists, col, 0);
46 }
47 
48 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
49 {
50 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
51 
52 	if (hists__col_len(hists, dso) < unresolved_col_width &&
53 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
54 	    !symbol_conf.dso_list)
55 		hists__set_col_len(hists, dso, unresolved_col_width);
56 }
57 
58 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
59 {
60 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
61 	int symlen;
62 	u16 len;
63 
64 	/*
65 	 * +4 accounts for '[x] ' priv level info
66 	 * +2 accounts for 0x prefix on raw addresses
67 	 * +3 accounts for ' y ' symtab origin info
68 	 */
69 	if (h->ms.sym) {
70 		symlen = h->ms.sym->namelen + 4;
71 		if (verbose)
72 			symlen += BITS_PER_LONG / 4 + 2 + 3;
73 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
74 	} else {
75 		symlen = unresolved_col_width + 4 + 2;
76 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
77 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
78 	}
79 
80 	len = thread__comm_len(h->thread);
81 	if (hists__new_col_len(hists, HISTC_COMM, len))
82 		hists__set_col_len(hists, HISTC_THREAD, len + 6);
83 
84 	if (h->ms.map) {
85 		len = dso__name_len(h->ms.map->dso);
86 		hists__new_col_len(hists, HISTC_DSO, len);
87 	}
88 
89 	if (h->parent)
90 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
91 
92 	if (h->branch_info) {
93 		if (h->branch_info->from.sym) {
94 			symlen = (int)h->branch_info->from.sym->namelen + 4;
95 			if (verbose)
96 				symlen += BITS_PER_LONG / 4 + 2 + 3;
97 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
98 
99 			symlen = dso__name_len(h->branch_info->from.map->dso);
100 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
101 		} else {
102 			symlen = unresolved_col_width + 4 + 2;
103 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
104 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
105 		}
106 
107 		if (h->branch_info->to.sym) {
108 			symlen = (int)h->branch_info->to.sym->namelen + 4;
109 			if (verbose)
110 				symlen += BITS_PER_LONG / 4 + 2 + 3;
111 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
112 
113 			symlen = dso__name_len(h->branch_info->to.map->dso);
114 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
115 		} else {
116 			symlen = unresolved_col_width + 4 + 2;
117 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
118 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
119 		}
120 
121 		if (h->branch_info->srcline_from)
122 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
123 					strlen(h->branch_info->srcline_from));
124 		if (h->branch_info->srcline_to)
125 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
126 					strlen(h->branch_info->srcline_to));
127 	}
128 
129 	if (h->mem_info) {
130 		if (h->mem_info->daddr.sym) {
131 			symlen = (int)h->mem_info->daddr.sym->namelen + 4
132 			       + unresolved_col_width + 2;
133 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
134 					   symlen);
135 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
136 					   symlen + 1);
137 		} else {
138 			symlen = unresolved_col_width + 4 + 2;
139 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
140 					   symlen);
141 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
142 					   symlen);
143 		}
144 
145 		if (h->mem_info->iaddr.sym) {
146 			symlen = (int)h->mem_info->iaddr.sym->namelen + 4
147 			       + unresolved_col_width + 2;
148 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
149 					   symlen);
150 		} else {
151 			symlen = unresolved_col_width + 4 + 2;
152 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
153 					   symlen);
154 		}
155 
156 		if (h->mem_info->daddr.map) {
157 			symlen = dso__name_len(h->mem_info->daddr.map->dso);
158 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
159 					   symlen);
160 		} else {
161 			symlen = unresolved_col_width + 4 + 2;
162 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
163 		}
164 	} else {
165 		symlen = unresolved_col_width + 4 + 2;
166 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
167 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
168 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
169 	}
170 
171 	hists__new_col_len(hists, HISTC_CPU, 3);
172 	hists__new_col_len(hists, HISTC_SOCKET, 6);
173 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
174 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
175 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
176 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
177 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
178 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
179 
180 	if (h->srcline)
181 		hists__new_col_len(hists, HISTC_SRCLINE, strlen(h->srcline));
182 
183 	if (h->srcfile)
184 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
185 
186 	if (h->transaction)
187 		hists__new_col_len(hists, HISTC_TRANSACTION,
188 				   hist_entry__transaction_len());
189 
190 	if (h->trace_output)
191 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
192 }
193 
194 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
195 {
196 	struct rb_node *next = rb_first(&hists->entries);
197 	struct hist_entry *n;
198 	int row = 0;
199 
200 	hists__reset_col_len(hists);
201 
202 	while (next && row++ < max_rows) {
203 		n = rb_entry(next, struct hist_entry, rb_node);
204 		if (!n->filtered)
205 			hists__calc_col_len(hists, n);
206 		next = rb_next(&n->rb_node);
207 	}
208 }
209 
210 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
211 					unsigned int cpumode, u64 period)
212 {
213 	switch (cpumode) {
214 	case PERF_RECORD_MISC_KERNEL:
215 		he_stat->period_sys += period;
216 		break;
217 	case PERF_RECORD_MISC_USER:
218 		he_stat->period_us += period;
219 		break;
220 	case PERF_RECORD_MISC_GUEST_KERNEL:
221 		he_stat->period_guest_sys += period;
222 		break;
223 	case PERF_RECORD_MISC_GUEST_USER:
224 		he_stat->period_guest_us += period;
225 		break;
226 	default:
227 		break;
228 	}
229 }
230 
231 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
232 				u64 weight)
233 {
234 
235 	he_stat->period		+= period;
236 	he_stat->weight		+= weight;
237 	he_stat->nr_events	+= 1;
238 }
239 
240 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
241 {
242 	dest->period		+= src->period;
243 	dest->period_sys	+= src->period_sys;
244 	dest->period_us		+= src->period_us;
245 	dest->period_guest_sys	+= src->period_guest_sys;
246 	dest->period_guest_us	+= src->period_guest_us;
247 	dest->nr_events		+= src->nr_events;
248 	dest->weight		+= src->weight;
249 }
250 
251 static void he_stat__decay(struct he_stat *he_stat)
252 {
253 	he_stat->period = (he_stat->period * 7) / 8;
254 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
255 	/* XXX need decay for weight too? */
256 }
257 
258 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
259 
260 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
261 {
262 	u64 prev_period = he->stat.period;
263 	u64 diff;
264 
265 	if (prev_period == 0)
266 		return true;
267 
268 	he_stat__decay(&he->stat);
269 	if (symbol_conf.cumulate_callchain)
270 		he_stat__decay(he->stat_acc);
271 	decay_callchain(he->callchain);
272 
273 	diff = prev_period - he->stat.period;
274 
275 	if (!he->depth) {
276 		hists->stats.total_period -= diff;
277 		if (!he->filtered)
278 			hists->stats.total_non_filtered_period -= diff;
279 	}
280 
281 	if (!he->leaf) {
282 		struct hist_entry *child;
283 		struct rb_node *node = rb_first(&he->hroot_out);
284 		while (node) {
285 			child = rb_entry(node, struct hist_entry, rb_node);
286 			node = rb_next(node);
287 
288 			if (hists__decay_entry(hists, child))
289 				hists__delete_entry(hists, child);
290 		}
291 	}
292 
293 	return he->stat.period == 0;
294 }
295 
296 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
297 {
298 	struct rb_root *root_in;
299 	struct rb_root *root_out;
300 
301 	if (he->parent_he) {
302 		root_in  = &he->parent_he->hroot_in;
303 		root_out = &he->parent_he->hroot_out;
304 	} else {
305 		if (hists__has(hists, need_collapse))
306 			root_in = &hists->entries_collapsed;
307 		else
308 			root_in = hists->entries_in;
309 		root_out = &hists->entries;
310 	}
311 
312 	rb_erase(&he->rb_node_in, root_in);
313 	rb_erase(&he->rb_node, root_out);
314 
315 	--hists->nr_entries;
316 	if (!he->filtered)
317 		--hists->nr_non_filtered_entries;
318 
319 	hist_entry__delete(he);
320 }
321 
322 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
323 {
324 	struct rb_node *next = rb_first(&hists->entries);
325 	struct hist_entry *n;
326 
327 	while (next) {
328 		n = rb_entry(next, struct hist_entry, rb_node);
329 		next = rb_next(&n->rb_node);
330 		if (((zap_user && n->level == '.') ||
331 		     (zap_kernel && n->level != '.') ||
332 		     hists__decay_entry(hists, n))) {
333 			hists__delete_entry(hists, n);
334 		}
335 	}
336 }
337 
338 void hists__delete_entries(struct hists *hists)
339 {
340 	struct rb_node *next = rb_first(&hists->entries);
341 	struct hist_entry *n;
342 
343 	while (next) {
344 		n = rb_entry(next, struct hist_entry, rb_node);
345 		next = rb_next(&n->rb_node);
346 
347 		hists__delete_entry(hists, n);
348 	}
349 }
350 
351 /*
352  * histogram, sorted on item, collects periods
353  */
354 
355 static struct hist_entry *hist_entry__new(struct hist_entry *template,
356 					  bool sample_self)
357 {
358 	size_t callchain_size = 0;
359 	struct hist_entry *he;
360 
361 	if (symbol_conf.use_callchain)
362 		callchain_size = sizeof(struct callchain_root);
363 
364 	he = zalloc(sizeof(*he) + callchain_size);
365 
366 	if (he != NULL) {
367 		*he = *template;
368 
369 		if (symbol_conf.cumulate_callchain) {
370 			he->stat_acc = malloc(sizeof(he->stat));
371 			if (he->stat_acc == NULL) {
372 				free(he);
373 				return NULL;
374 			}
375 			memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
376 			if (!sample_self)
377 				memset(&he->stat, 0, sizeof(he->stat));
378 		}
379 
380 		map__get(he->ms.map);
381 
382 		if (he->branch_info) {
383 			/*
384 			 * This branch info is (a part of) allocated from
385 			 * sample__resolve_bstack() and will be freed after
386 			 * adding new entries.  So we need to save a copy.
387 			 */
388 			he->branch_info = malloc(sizeof(*he->branch_info));
389 			if (he->branch_info == NULL) {
390 				map__zput(he->ms.map);
391 				free(he->stat_acc);
392 				free(he);
393 				return NULL;
394 			}
395 
396 			memcpy(he->branch_info, template->branch_info,
397 			       sizeof(*he->branch_info));
398 
399 			map__get(he->branch_info->from.map);
400 			map__get(he->branch_info->to.map);
401 		}
402 
403 		if (he->mem_info) {
404 			map__get(he->mem_info->iaddr.map);
405 			map__get(he->mem_info->daddr.map);
406 		}
407 
408 		if (symbol_conf.use_callchain)
409 			callchain_init(he->callchain);
410 
411 		if (he->raw_data) {
412 			he->raw_data = memdup(he->raw_data, he->raw_size);
413 
414 			if (he->raw_data == NULL) {
415 				map__put(he->ms.map);
416 				if (he->branch_info) {
417 					map__put(he->branch_info->from.map);
418 					map__put(he->branch_info->to.map);
419 					free(he->branch_info);
420 				}
421 				if (he->mem_info) {
422 					map__put(he->mem_info->iaddr.map);
423 					map__put(he->mem_info->daddr.map);
424 				}
425 				free(he->stat_acc);
426 				free(he);
427 				return NULL;
428 			}
429 		}
430 		INIT_LIST_HEAD(&he->pairs.node);
431 		thread__get(he->thread);
432 
433 		if (!symbol_conf.report_hierarchy)
434 			he->leaf = true;
435 	}
436 
437 	return he;
438 }
439 
440 static u8 symbol__parent_filter(const struct symbol *parent)
441 {
442 	if (symbol_conf.exclude_other && parent == NULL)
443 		return 1 << HIST_FILTER__PARENT;
444 	return 0;
445 }
446 
447 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
448 {
449 	if (!symbol_conf.use_callchain)
450 		return;
451 
452 	he->hists->callchain_period += period;
453 	if (!he->filtered)
454 		he->hists->callchain_non_filtered_period += period;
455 }
456 
457 static struct hist_entry *hists__findnew_entry(struct hists *hists,
458 					       struct hist_entry *entry,
459 					       struct addr_location *al,
460 					       bool sample_self)
461 {
462 	struct rb_node **p;
463 	struct rb_node *parent = NULL;
464 	struct hist_entry *he;
465 	int64_t cmp;
466 	u64 period = entry->stat.period;
467 	u64 weight = entry->stat.weight;
468 
469 	p = &hists->entries_in->rb_node;
470 
471 	while (*p != NULL) {
472 		parent = *p;
473 		he = rb_entry(parent, struct hist_entry, rb_node_in);
474 
475 		/*
476 		 * Make sure that it receives arguments in a same order as
477 		 * hist_entry__collapse() so that we can use an appropriate
478 		 * function when searching an entry regardless which sort
479 		 * keys were used.
480 		 */
481 		cmp = hist_entry__cmp(he, entry);
482 
483 		if (!cmp) {
484 			if (sample_self) {
485 				he_stat__add_period(&he->stat, period, weight);
486 				hist_entry__add_callchain_period(he, period);
487 			}
488 			if (symbol_conf.cumulate_callchain)
489 				he_stat__add_period(he->stat_acc, period, weight);
490 
491 			/*
492 			 * This mem info was allocated from sample__resolve_mem
493 			 * and will not be used anymore.
494 			 */
495 			zfree(&entry->mem_info);
496 
497 			/* If the map of an existing hist_entry has
498 			 * become out-of-date due to an exec() or
499 			 * similar, update it.  Otherwise we will
500 			 * mis-adjust symbol addresses when computing
501 			 * the history counter to increment.
502 			 */
503 			if (he->ms.map != entry->ms.map) {
504 				map__put(he->ms.map);
505 				he->ms.map = map__get(entry->ms.map);
506 			}
507 			goto out;
508 		}
509 
510 		if (cmp < 0)
511 			p = &(*p)->rb_left;
512 		else
513 			p = &(*p)->rb_right;
514 	}
515 
516 	he = hist_entry__new(entry, sample_self);
517 	if (!he)
518 		return NULL;
519 
520 	if (sample_self)
521 		hist_entry__add_callchain_period(he, period);
522 	hists->nr_entries++;
523 
524 	rb_link_node(&he->rb_node_in, parent, p);
525 	rb_insert_color(&he->rb_node_in, hists->entries_in);
526 out:
527 	if (sample_self)
528 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
529 	if (symbol_conf.cumulate_callchain)
530 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
531 	return he;
532 }
533 
534 struct hist_entry *__hists__add_entry(struct hists *hists,
535 				      struct addr_location *al,
536 				      struct symbol *sym_parent,
537 				      struct branch_info *bi,
538 				      struct mem_info *mi,
539 				      struct perf_sample *sample,
540 				      bool sample_self)
541 {
542 	struct hist_entry entry = {
543 		.thread	= al->thread,
544 		.comm = thread__comm(al->thread),
545 		.ms = {
546 			.map	= al->map,
547 			.sym	= al->sym,
548 		},
549 		.socket	 = al->socket,
550 		.cpu	 = al->cpu,
551 		.cpumode = al->cpumode,
552 		.ip	 = al->addr,
553 		.level	 = al->level,
554 		.stat = {
555 			.nr_events = 1,
556 			.period	= sample->period,
557 			.weight = sample->weight,
558 		},
559 		.parent = sym_parent,
560 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
561 		.hists	= hists,
562 		.branch_info = bi,
563 		.mem_info = mi,
564 		.transaction = sample->transaction,
565 		.raw_data = sample->raw_data,
566 		.raw_size = sample->raw_size,
567 	};
568 
569 	return hists__findnew_entry(hists, &entry, al, sample_self);
570 }
571 
572 static int
573 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
574 		    struct addr_location *al __maybe_unused)
575 {
576 	return 0;
577 }
578 
579 static int
580 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
581 			struct addr_location *al __maybe_unused)
582 {
583 	return 0;
584 }
585 
586 static int
587 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
588 {
589 	struct perf_sample *sample = iter->sample;
590 	struct mem_info *mi;
591 
592 	mi = sample__resolve_mem(sample, al);
593 	if (mi == NULL)
594 		return -ENOMEM;
595 
596 	iter->priv = mi;
597 	return 0;
598 }
599 
600 static int
601 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
602 {
603 	u64 cost;
604 	struct mem_info *mi = iter->priv;
605 	struct hists *hists = evsel__hists(iter->evsel);
606 	struct perf_sample *sample = iter->sample;
607 	struct hist_entry *he;
608 
609 	if (mi == NULL)
610 		return -EINVAL;
611 
612 	cost = sample->weight;
613 	if (!cost)
614 		cost = 1;
615 
616 	/*
617 	 * must pass period=weight in order to get the correct
618 	 * sorting from hists__collapse_resort() which is solely
619 	 * based on periods. We want sorting be done on nr_events * weight
620 	 * and this is indirectly achieved by passing period=weight here
621 	 * and the he_stat__add_period() function.
622 	 */
623 	sample->period = cost;
624 
625 	he = __hists__add_entry(hists, al, iter->parent, NULL, mi,
626 				sample, true);
627 	if (!he)
628 		return -ENOMEM;
629 
630 	iter->he = he;
631 	return 0;
632 }
633 
634 static int
635 iter_finish_mem_entry(struct hist_entry_iter *iter,
636 		      struct addr_location *al __maybe_unused)
637 {
638 	struct perf_evsel *evsel = iter->evsel;
639 	struct hists *hists = evsel__hists(evsel);
640 	struct hist_entry *he = iter->he;
641 	int err = -EINVAL;
642 
643 	if (he == NULL)
644 		goto out;
645 
646 	hists__inc_nr_samples(hists, he->filtered);
647 
648 	err = hist_entry__append_callchain(he, iter->sample);
649 
650 out:
651 	/*
652 	 * We don't need to free iter->priv (mem_info) here since the mem info
653 	 * was either already freed in hists__findnew_entry() or passed to a
654 	 * new hist entry by hist_entry__new().
655 	 */
656 	iter->priv = NULL;
657 
658 	iter->he = NULL;
659 	return err;
660 }
661 
662 static int
663 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
664 {
665 	struct branch_info *bi;
666 	struct perf_sample *sample = iter->sample;
667 
668 	bi = sample__resolve_bstack(sample, al);
669 	if (!bi)
670 		return -ENOMEM;
671 
672 	iter->curr = 0;
673 	iter->total = sample->branch_stack->nr;
674 
675 	iter->priv = bi;
676 	return 0;
677 }
678 
679 static int
680 iter_add_single_branch_entry(struct hist_entry_iter *iter,
681 			     struct addr_location *al __maybe_unused)
682 {
683 	/* to avoid calling callback function */
684 	iter->he = NULL;
685 
686 	return 0;
687 }
688 
689 static int
690 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
691 {
692 	struct branch_info *bi = iter->priv;
693 	int i = iter->curr;
694 
695 	if (bi == NULL)
696 		return 0;
697 
698 	if (iter->curr >= iter->total)
699 		return 0;
700 
701 	al->map = bi[i].to.map;
702 	al->sym = bi[i].to.sym;
703 	al->addr = bi[i].to.addr;
704 	return 1;
705 }
706 
707 static int
708 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
709 {
710 	struct branch_info *bi;
711 	struct perf_evsel *evsel = iter->evsel;
712 	struct hists *hists = evsel__hists(evsel);
713 	struct perf_sample *sample = iter->sample;
714 	struct hist_entry *he = NULL;
715 	int i = iter->curr;
716 	int err = 0;
717 
718 	bi = iter->priv;
719 
720 	if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
721 		goto out;
722 
723 	/*
724 	 * The report shows the percentage of total branches captured
725 	 * and not events sampled. Thus we use a pseudo period of 1.
726 	 */
727 	sample->period = 1;
728 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
729 
730 	he = __hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
731 				sample, true);
732 	if (he == NULL)
733 		return -ENOMEM;
734 
735 	hists__inc_nr_samples(hists, he->filtered);
736 
737 out:
738 	iter->he = he;
739 	iter->curr++;
740 	return err;
741 }
742 
743 static int
744 iter_finish_branch_entry(struct hist_entry_iter *iter,
745 			 struct addr_location *al __maybe_unused)
746 {
747 	zfree(&iter->priv);
748 	iter->he = NULL;
749 
750 	return iter->curr >= iter->total ? 0 : -1;
751 }
752 
753 static int
754 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
755 			  struct addr_location *al __maybe_unused)
756 {
757 	return 0;
758 }
759 
760 static int
761 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
762 {
763 	struct perf_evsel *evsel = iter->evsel;
764 	struct perf_sample *sample = iter->sample;
765 	struct hist_entry *he;
766 
767 	he = __hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
768 				sample, true);
769 	if (he == NULL)
770 		return -ENOMEM;
771 
772 	iter->he = he;
773 	return 0;
774 }
775 
776 static int
777 iter_finish_normal_entry(struct hist_entry_iter *iter,
778 			 struct addr_location *al __maybe_unused)
779 {
780 	struct hist_entry *he = iter->he;
781 	struct perf_evsel *evsel = iter->evsel;
782 	struct perf_sample *sample = iter->sample;
783 
784 	if (he == NULL)
785 		return 0;
786 
787 	iter->he = NULL;
788 
789 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
790 
791 	return hist_entry__append_callchain(he, sample);
792 }
793 
794 static int
795 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
796 			      struct addr_location *al __maybe_unused)
797 {
798 	struct hist_entry **he_cache;
799 
800 	callchain_cursor_commit(&callchain_cursor);
801 
802 	/*
803 	 * This is for detecting cycles or recursions so that they're
804 	 * cumulated only one time to prevent entries more than 100%
805 	 * overhead.
806 	 */
807 	he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
808 	if (he_cache == NULL)
809 		return -ENOMEM;
810 
811 	iter->priv = he_cache;
812 	iter->curr = 0;
813 
814 	return 0;
815 }
816 
817 static int
818 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
819 				 struct addr_location *al)
820 {
821 	struct perf_evsel *evsel = iter->evsel;
822 	struct hists *hists = evsel__hists(evsel);
823 	struct perf_sample *sample = iter->sample;
824 	struct hist_entry **he_cache = iter->priv;
825 	struct hist_entry *he;
826 	int err = 0;
827 
828 	he = __hists__add_entry(hists, al, iter->parent, NULL, NULL,
829 				sample, true);
830 	if (he == NULL)
831 		return -ENOMEM;
832 
833 	iter->he = he;
834 	he_cache[iter->curr++] = he;
835 
836 	hist_entry__append_callchain(he, sample);
837 
838 	/*
839 	 * We need to re-initialize the cursor since callchain_append()
840 	 * advanced the cursor to the end.
841 	 */
842 	callchain_cursor_commit(&callchain_cursor);
843 
844 	hists__inc_nr_samples(hists, he->filtered);
845 
846 	return err;
847 }
848 
849 static int
850 iter_next_cumulative_entry(struct hist_entry_iter *iter,
851 			   struct addr_location *al)
852 {
853 	struct callchain_cursor_node *node;
854 
855 	node = callchain_cursor_current(&callchain_cursor);
856 	if (node == NULL)
857 		return 0;
858 
859 	return fill_callchain_info(al, node, iter->hide_unresolved);
860 }
861 
862 static int
863 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
864 			       struct addr_location *al)
865 {
866 	struct perf_evsel *evsel = iter->evsel;
867 	struct perf_sample *sample = iter->sample;
868 	struct hist_entry **he_cache = iter->priv;
869 	struct hist_entry *he;
870 	struct hist_entry he_tmp = {
871 		.hists = evsel__hists(evsel),
872 		.cpu = al->cpu,
873 		.thread = al->thread,
874 		.comm = thread__comm(al->thread),
875 		.ip = al->addr,
876 		.ms = {
877 			.map = al->map,
878 			.sym = al->sym,
879 		},
880 		.parent = iter->parent,
881 		.raw_data = sample->raw_data,
882 		.raw_size = sample->raw_size,
883 	};
884 	int i;
885 	struct callchain_cursor cursor;
886 
887 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
888 
889 	callchain_cursor_advance(&callchain_cursor);
890 
891 	/*
892 	 * Check if there's duplicate entries in the callchain.
893 	 * It's possible that it has cycles or recursive calls.
894 	 */
895 	for (i = 0; i < iter->curr; i++) {
896 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
897 			/* to avoid calling callback function */
898 			iter->he = NULL;
899 			return 0;
900 		}
901 	}
902 
903 	he = __hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
904 				sample, false);
905 	if (he == NULL)
906 		return -ENOMEM;
907 
908 	iter->he = he;
909 	he_cache[iter->curr++] = he;
910 
911 	if (symbol_conf.use_callchain)
912 		callchain_append(he->callchain, &cursor, sample->period);
913 	return 0;
914 }
915 
916 static int
917 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
918 			     struct addr_location *al __maybe_unused)
919 {
920 	zfree(&iter->priv);
921 	iter->he = NULL;
922 
923 	return 0;
924 }
925 
926 const struct hist_iter_ops hist_iter_mem = {
927 	.prepare_entry 		= iter_prepare_mem_entry,
928 	.add_single_entry 	= iter_add_single_mem_entry,
929 	.next_entry 		= iter_next_nop_entry,
930 	.add_next_entry 	= iter_add_next_nop_entry,
931 	.finish_entry 		= iter_finish_mem_entry,
932 };
933 
934 const struct hist_iter_ops hist_iter_branch = {
935 	.prepare_entry 		= iter_prepare_branch_entry,
936 	.add_single_entry 	= iter_add_single_branch_entry,
937 	.next_entry 		= iter_next_branch_entry,
938 	.add_next_entry 	= iter_add_next_branch_entry,
939 	.finish_entry 		= iter_finish_branch_entry,
940 };
941 
942 const struct hist_iter_ops hist_iter_normal = {
943 	.prepare_entry 		= iter_prepare_normal_entry,
944 	.add_single_entry 	= iter_add_single_normal_entry,
945 	.next_entry 		= iter_next_nop_entry,
946 	.add_next_entry 	= iter_add_next_nop_entry,
947 	.finish_entry 		= iter_finish_normal_entry,
948 };
949 
950 const struct hist_iter_ops hist_iter_cumulative = {
951 	.prepare_entry 		= iter_prepare_cumulative_entry,
952 	.add_single_entry 	= iter_add_single_cumulative_entry,
953 	.next_entry 		= iter_next_cumulative_entry,
954 	.add_next_entry 	= iter_add_next_cumulative_entry,
955 	.finish_entry 		= iter_finish_cumulative_entry,
956 };
957 
958 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
959 			 int max_stack_depth, void *arg)
960 {
961 	int err, err2;
962 
963 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
964 					iter->evsel, al, max_stack_depth);
965 	if (err)
966 		return err;
967 
968 	iter->max_stack = max_stack_depth;
969 
970 	err = iter->ops->prepare_entry(iter, al);
971 	if (err)
972 		goto out;
973 
974 	err = iter->ops->add_single_entry(iter, al);
975 	if (err)
976 		goto out;
977 
978 	if (iter->he && iter->add_entry_cb) {
979 		err = iter->add_entry_cb(iter, al, true, arg);
980 		if (err)
981 			goto out;
982 	}
983 
984 	while (iter->ops->next_entry(iter, al)) {
985 		err = iter->ops->add_next_entry(iter, al);
986 		if (err)
987 			break;
988 
989 		if (iter->he && iter->add_entry_cb) {
990 			err = iter->add_entry_cb(iter, al, false, arg);
991 			if (err)
992 				goto out;
993 		}
994 	}
995 
996 out:
997 	err2 = iter->ops->finish_entry(iter, al);
998 	if (!err)
999 		err = err2;
1000 
1001 	return err;
1002 }
1003 
1004 int64_t
1005 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1006 {
1007 	struct hists *hists = left->hists;
1008 	struct perf_hpp_fmt *fmt;
1009 	int64_t cmp = 0;
1010 
1011 	hists__for_each_sort_list(hists, fmt) {
1012 		if (perf_hpp__is_dynamic_entry(fmt) &&
1013 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1014 			continue;
1015 
1016 		cmp = fmt->cmp(fmt, left, right);
1017 		if (cmp)
1018 			break;
1019 	}
1020 
1021 	return cmp;
1022 }
1023 
1024 int64_t
1025 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1026 {
1027 	struct hists *hists = left->hists;
1028 	struct perf_hpp_fmt *fmt;
1029 	int64_t cmp = 0;
1030 
1031 	hists__for_each_sort_list(hists, fmt) {
1032 		if (perf_hpp__is_dynamic_entry(fmt) &&
1033 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1034 			continue;
1035 
1036 		cmp = fmt->collapse(fmt, left, right);
1037 		if (cmp)
1038 			break;
1039 	}
1040 
1041 	return cmp;
1042 }
1043 
1044 void hist_entry__delete(struct hist_entry *he)
1045 {
1046 	thread__zput(he->thread);
1047 	map__zput(he->ms.map);
1048 
1049 	if (he->branch_info) {
1050 		map__zput(he->branch_info->from.map);
1051 		map__zput(he->branch_info->to.map);
1052 		free_srcline(he->branch_info->srcline_from);
1053 		free_srcline(he->branch_info->srcline_to);
1054 		zfree(&he->branch_info);
1055 	}
1056 
1057 	if (he->mem_info) {
1058 		map__zput(he->mem_info->iaddr.map);
1059 		map__zput(he->mem_info->daddr.map);
1060 		zfree(&he->mem_info);
1061 	}
1062 
1063 	zfree(&he->stat_acc);
1064 	free_srcline(he->srcline);
1065 	if (he->srcfile && he->srcfile[0])
1066 		free(he->srcfile);
1067 	free_callchain(he->callchain);
1068 	free(he->trace_output);
1069 	free(he->raw_data);
1070 	free(he);
1071 }
1072 
1073 /*
1074  * If this is not the last column, then we need to pad it according to the
1075  * pre-calculated max lenght for this column, otherwise don't bother adding
1076  * spaces because that would break viewing this with, for instance, 'less',
1077  * that would show tons of trailing spaces when a long C++ demangled method
1078  * names is sampled.
1079 */
1080 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1081 				   struct perf_hpp_fmt *fmt, int printed)
1082 {
1083 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1084 		const int width = fmt->width(fmt, hpp, hists_to_evsel(he->hists));
1085 		if (printed < width) {
1086 			advance_hpp(hpp, printed);
1087 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1088 		}
1089 	}
1090 
1091 	return printed;
1092 }
1093 
1094 /*
1095  * collapse the histogram
1096  */
1097 
1098 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1099 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1100 				       enum hist_filter type);
1101 
1102 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1103 
1104 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1105 {
1106 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1107 }
1108 
1109 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1110 						enum hist_filter type,
1111 						fmt_chk_fn check)
1112 {
1113 	struct perf_hpp_fmt *fmt;
1114 	bool type_match = false;
1115 	struct hist_entry *parent = he->parent_he;
1116 
1117 	switch (type) {
1118 	case HIST_FILTER__THREAD:
1119 		if (symbol_conf.comm_list == NULL &&
1120 		    symbol_conf.pid_list == NULL &&
1121 		    symbol_conf.tid_list == NULL)
1122 			return;
1123 		break;
1124 	case HIST_FILTER__DSO:
1125 		if (symbol_conf.dso_list == NULL)
1126 			return;
1127 		break;
1128 	case HIST_FILTER__SYMBOL:
1129 		if (symbol_conf.sym_list == NULL)
1130 			return;
1131 		break;
1132 	case HIST_FILTER__PARENT:
1133 	case HIST_FILTER__GUEST:
1134 	case HIST_FILTER__HOST:
1135 	case HIST_FILTER__SOCKET:
1136 	default:
1137 		return;
1138 	}
1139 
1140 	/* if it's filtered by own fmt, it has to have filter bits */
1141 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1142 		if (check(fmt)) {
1143 			type_match = true;
1144 			break;
1145 		}
1146 	}
1147 
1148 	if (type_match) {
1149 		/*
1150 		 * If the filter is for current level entry, propagate
1151 		 * filter marker to parents.  The marker bit was
1152 		 * already set by default so it only needs to clear
1153 		 * non-filtered entries.
1154 		 */
1155 		if (!(he->filtered & (1 << type))) {
1156 			while (parent) {
1157 				parent->filtered &= ~(1 << type);
1158 				parent = parent->parent_he;
1159 			}
1160 		}
1161 	} else {
1162 		/*
1163 		 * If current entry doesn't have matching formats, set
1164 		 * filter marker for upper level entries.  it will be
1165 		 * cleared if its lower level entries is not filtered.
1166 		 *
1167 		 * For lower-level entries, it inherits parent's
1168 		 * filter bit so that lower level entries of a
1169 		 * non-filtered entry won't set the filter marker.
1170 		 */
1171 		if (parent == NULL)
1172 			he->filtered |= (1 << type);
1173 		else
1174 			he->filtered |= (parent->filtered & (1 << type));
1175 	}
1176 }
1177 
1178 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1179 {
1180 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1181 					    check_thread_entry);
1182 
1183 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1184 					    perf_hpp__is_dso_entry);
1185 
1186 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1187 					    perf_hpp__is_sym_entry);
1188 
1189 	hists__apply_filters(he->hists, he);
1190 }
1191 
1192 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1193 						 struct rb_root *root,
1194 						 struct hist_entry *he,
1195 						 struct hist_entry *parent_he,
1196 						 struct perf_hpp_list *hpp_list)
1197 {
1198 	struct rb_node **p = &root->rb_node;
1199 	struct rb_node *parent = NULL;
1200 	struct hist_entry *iter, *new;
1201 	struct perf_hpp_fmt *fmt;
1202 	int64_t cmp;
1203 
1204 	while (*p != NULL) {
1205 		parent = *p;
1206 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1207 
1208 		cmp = 0;
1209 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1210 			cmp = fmt->collapse(fmt, iter, he);
1211 			if (cmp)
1212 				break;
1213 		}
1214 
1215 		if (!cmp) {
1216 			he_stat__add_stat(&iter->stat, &he->stat);
1217 			return iter;
1218 		}
1219 
1220 		if (cmp < 0)
1221 			p = &parent->rb_left;
1222 		else
1223 			p = &parent->rb_right;
1224 	}
1225 
1226 	new = hist_entry__new(he, true);
1227 	if (new == NULL)
1228 		return NULL;
1229 
1230 	hists->nr_entries++;
1231 
1232 	/* save related format list for output */
1233 	new->hpp_list = hpp_list;
1234 	new->parent_he = parent_he;
1235 
1236 	hist_entry__apply_hierarchy_filters(new);
1237 
1238 	/* some fields are now passed to 'new' */
1239 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1240 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1241 			he->trace_output = NULL;
1242 		else
1243 			new->trace_output = NULL;
1244 
1245 		if (perf_hpp__is_srcline_entry(fmt))
1246 			he->srcline = NULL;
1247 		else
1248 			new->srcline = NULL;
1249 
1250 		if (perf_hpp__is_srcfile_entry(fmt))
1251 			he->srcfile = NULL;
1252 		else
1253 			new->srcfile = NULL;
1254 	}
1255 
1256 	rb_link_node(&new->rb_node_in, parent, p);
1257 	rb_insert_color(&new->rb_node_in, root);
1258 	return new;
1259 }
1260 
1261 static int hists__hierarchy_insert_entry(struct hists *hists,
1262 					 struct rb_root *root,
1263 					 struct hist_entry *he)
1264 {
1265 	struct perf_hpp_list_node *node;
1266 	struct hist_entry *new_he = NULL;
1267 	struct hist_entry *parent = NULL;
1268 	int depth = 0;
1269 	int ret = 0;
1270 
1271 	list_for_each_entry(node, &hists->hpp_formats, list) {
1272 		/* skip period (overhead) and elided columns */
1273 		if (node->level == 0 || node->skip)
1274 			continue;
1275 
1276 		/* insert copy of 'he' for each fmt into the hierarchy */
1277 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1278 		if (new_he == NULL) {
1279 			ret = -1;
1280 			break;
1281 		}
1282 
1283 		root = &new_he->hroot_in;
1284 		new_he->depth = depth++;
1285 		parent = new_he;
1286 	}
1287 
1288 	if (new_he) {
1289 		new_he->leaf = true;
1290 
1291 		if (symbol_conf.use_callchain) {
1292 			callchain_cursor_reset(&callchain_cursor);
1293 			if (callchain_merge(&callchain_cursor,
1294 					    new_he->callchain,
1295 					    he->callchain) < 0)
1296 				ret = -1;
1297 		}
1298 	}
1299 
1300 	/* 'he' is no longer used */
1301 	hist_entry__delete(he);
1302 
1303 	/* return 0 (or -1) since it already applied filters */
1304 	return ret;
1305 }
1306 
1307 static int hists__collapse_insert_entry(struct hists *hists,
1308 					struct rb_root *root,
1309 					struct hist_entry *he)
1310 {
1311 	struct rb_node **p = &root->rb_node;
1312 	struct rb_node *parent = NULL;
1313 	struct hist_entry *iter;
1314 	int64_t cmp;
1315 
1316 	if (symbol_conf.report_hierarchy)
1317 		return hists__hierarchy_insert_entry(hists, root, he);
1318 
1319 	while (*p != NULL) {
1320 		parent = *p;
1321 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1322 
1323 		cmp = hist_entry__collapse(iter, he);
1324 
1325 		if (!cmp) {
1326 			int ret = 0;
1327 
1328 			he_stat__add_stat(&iter->stat, &he->stat);
1329 			if (symbol_conf.cumulate_callchain)
1330 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1331 
1332 			if (symbol_conf.use_callchain) {
1333 				callchain_cursor_reset(&callchain_cursor);
1334 				if (callchain_merge(&callchain_cursor,
1335 						    iter->callchain,
1336 						    he->callchain) < 0)
1337 					ret = -1;
1338 			}
1339 			hist_entry__delete(he);
1340 			return ret;
1341 		}
1342 
1343 		if (cmp < 0)
1344 			p = &(*p)->rb_left;
1345 		else
1346 			p = &(*p)->rb_right;
1347 	}
1348 	hists->nr_entries++;
1349 
1350 	rb_link_node(&he->rb_node_in, parent, p);
1351 	rb_insert_color(&he->rb_node_in, root);
1352 	return 1;
1353 }
1354 
1355 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1356 {
1357 	struct rb_root *root;
1358 
1359 	pthread_mutex_lock(&hists->lock);
1360 
1361 	root = hists->entries_in;
1362 	if (++hists->entries_in > &hists->entries_in_array[1])
1363 		hists->entries_in = &hists->entries_in_array[0];
1364 
1365 	pthread_mutex_unlock(&hists->lock);
1366 
1367 	return root;
1368 }
1369 
1370 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1371 {
1372 	hists__filter_entry_by_dso(hists, he);
1373 	hists__filter_entry_by_thread(hists, he);
1374 	hists__filter_entry_by_symbol(hists, he);
1375 	hists__filter_entry_by_socket(hists, he);
1376 }
1377 
1378 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1379 {
1380 	struct rb_root *root;
1381 	struct rb_node *next;
1382 	struct hist_entry *n;
1383 	int ret;
1384 
1385 	if (!hists__has(hists, need_collapse))
1386 		return 0;
1387 
1388 	hists->nr_entries = 0;
1389 
1390 	root = hists__get_rotate_entries_in(hists);
1391 
1392 	next = rb_first(root);
1393 
1394 	while (next) {
1395 		if (session_done())
1396 			break;
1397 		n = rb_entry(next, struct hist_entry, rb_node_in);
1398 		next = rb_next(&n->rb_node_in);
1399 
1400 		rb_erase(&n->rb_node_in, root);
1401 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1402 		if (ret < 0)
1403 			return -1;
1404 
1405 		if (ret) {
1406 			/*
1407 			 * If it wasn't combined with one of the entries already
1408 			 * collapsed, we need to apply the filters that may have
1409 			 * been set by, say, the hist_browser.
1410 			 */
1411 			hists__apply_filters(hists, n);
1412 		}
1413 		if (prog)
1414 			ui_progress__update(prog, 1);
1415 	}
1416 	return 0;
1417 }
1418 
1419 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1420 {
1421 	struct hists *hists = a->hists;
1422 	struct perf_hpp_fmt *fmt;
1423 	int64_t cmp = 0;
1424 
1425 	hists__for_each_sort_list(hists, fmt) {
1426 		if (perf_hpp__should_skip(fmt, a->hists))
1427 			continue;
1428 
1429 		cmp = fmt->sort(fmt, a, b);
1430 		if (cmp)
1431 			break;
1432 	}
1433 
1434 	return cmp;
1435 }
1436 
1437 static void hists__reset_filter_stats(struct hists *hists)
1438 {
1439 	hists->nr_non_filtered_entries = 0;
1440 	hists->stats.total_non_filtered_period = 0;
1441 }
1442 
1443 void hists__reset_stats(struct hists *hists)
1444 {
1445 	hists->nr_entries = 0;
1446 	hists->stats.total_period = 0;
1447 
1448 	hists__reset_filter_stats(hists);
1449 }
1450 
1451 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1452 {
1453 	hists->nr_non_filtered_entries++;
1454 	hists->stats.total_non_filtered_period += h->stat.period;
1455 }
1456 
1457 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1458 {
1459 	if (!h->filtered)
1460 		hists__inc_filter_stats(hists, h);
1461 
1462 	hists->nr_entries++;
1463 	hists->stats.total_period += h->stat.period;
1464 }
1465 
1466 static void hierarchy_recalc_total_periods(struct hists *hists)
1467 {
1468 	struct rb_node *node;
1469 	struct hist_entry *he;
1470 
1471 	node = rb_first(&hists->entries);
1472 
1473 	hists->stats.total_period = 0;
1474 	hists->stats.total_non_filtered_period = 0;
1475 
1476 	/*
1477 	 * recalculate total period using top-level entries only
1478 	 * since lower level entries only see non-filtered entries
1479 	 * but upper level entries have sum of both entries.
1480 	 */
1481 	while (node) {
1482 		he = rb_entry(node, struct hist_entry, rb_node);
1483 		node = rb_next(node);
1484 
1485 		hists->stats.total_period += he->stat.period;
1486 		if (!he->filtered)
1487 			hists->stats.total_non_filtered_period += he->stat.period;
1488 	}
1489 }
1490 
1491 static void hierarchy_insert_output_entry(struct rb_root *root,
1492 					  struct hist_entry *he)
1493 {
1494 	struct rb_node **p = &root->rb_node;
1495 	struct rb_node *parent = NULL;
1496 	struct hist_entry *iter;
1497 	struct perf_hpp_fmt *fmt;
1498 
1499 	while (*p != NULL) {
1500 		parent = *p;
1501 		iter = rb_entry(parent, struct hist_entry, rb_node);
1502 
1503 		if (hist_entry__sort(he, iter) > 0)
1504 			p = &parent->rb_left;
1505 		else
1506 			p = &parent->rb_right;
1507 	}
1508 
1509 	rb_link_node(&he->rb_node, parent, p);
1510 	rb_insert_color(&he->rb_node, root);
1511 
1512 	/* update column width of dynamic entry */
1513 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1514 		if (perf_hpp__is_dynamic_entry(fmt))
1515 			fmt->sort(fmt, he, NULL);
1516 	}
1517 }
1518 
1519 static void hists__hierarchy_output_resort(struct hists *hists,
1520 					   struct ui_progress *prog,
1521 					   struct rb_root *root_in,
1522 					   struct rb_root *root_out,
1523 					   u64 min_callchain_hits,
1524 					   bool use_callchain)
1525 {
1526 	struct rb_node *node;
1527 	struct hist_entry *he;
1528 
1529 	*root_out = RB_ROOT;
1530 	node = rb_first(root_in);
1531 
1532 	while (node) {
1533 		he = rb_entry(node, struct hist_entry, rb_node_in);
1534 		node = rb_next(node);
1535 
1536 		hierarchy_insert_output_entry(root_out, he);
1537 
1538 		if (prog)
1539 			ui_progress__update(prog, 1);
1540 
1541 		if (!he->leaf) {
1542 			hists__hierarchy_output_resort(hists, prog,
1543 						       &he->hroot_in,
1544 						       &he->hroot_out,
1545 						       min_callchain_hits,
1546 						       use_callchain);
1547 			hists->nr_entries++;
1548 			if (!he->filtered) {
1549 				hists->nr_non_filtered_entries++;
1550 				hists__calc_col_len(hists, he);
1551 			}
1552 
1553 			continue;
1554 		}
1555 
1556 		if (!use_callchain)
1557 			continue;
1558 
1559 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1560 			u64 total = he->stat.period;
1561 
1562 			if (symbol_conf.cumulate_callchain)
1563 				total = he->stat_acc->period;
1564 
1565 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1566 		}
1567 
1568 		callchain_param.sort(&he->sorted_chain, he->callchain,
1569 				     min_callchain_hits, &callchain_param);
1570 	}
1571 }
1572 
1573 static void __hists__insert_output_entry(struct rb_root *entries,
1574 					 struct hist_entry *he,
1575 					 u64 min_callchain_hits,
1576 					 bool use_callchain)
1577 {
1578 	struct rb_node **p = &entries->rb_node;
1579 	struct rb_node *parent = NULL;
1580 	struct hist_entry *iter;
1581 	struct perf_hpp_fmt *fmt;
1582 
1583 	if (use_callchain) {
1584 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1585 			u64 total = he->stat.period;
1586 
1587 			if (symbol_conf.cumulate_callchain)
1588 				total = he->stat_acc->period;
1589 
1590 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1591 		}
1592 		callchain_param.sort(&he->sorted_chain, he->callchain,
1593 				      min_callchain_hits, &callchain_param);
1594 	}
1595 
1596 	while (*p != NULL) {
1597 		parent = *p;
1598 		iter = rb_entry(parent, struct hist_entry, rb_node);
1599 
1600 		if (hist_entry__sort(he, iter) > 0)
1601 			p = &(*p)->rb_left;
1602 		else
1603 			p = &(*p)->rb_right;
1604 	}
1605 
1606 	rb_link_node(&he->rb_node, parent, p);
1607 	rb_insert_color(&he->rb_node, entries);
1608 
1609 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1610 		if (perf_hpp__is_dynamic_entry(fmt) &&
1611 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1612 			fmt->sort(fmt, he, NULL);  /* update column width */
1613 	}
1614 }
1615 
1616 static void output_resort(struct hists *hists, struct ui_progress *prog,
1617 			  bool use_callchain)
1618 {
1619 	struct rb_root *root;
1620 	struct rb_node *next;
1621 	struct hist_entry *n;
1622 	u64 callchain_total;
1623 	u64 min_callchain_hits;
1624 
1625 	callchain_total = hists->callchain_period;
1626 	if (symbol_conf.filter_relative)
1627 		callchain_total = hists->callchain_non_filtered_period;
1628 
1629 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1630 
1631 	hists__reset_stats(hists);
1632 	hists__reset_col_len(hists);
1633 
1634 	if (symbol_conf.report_hierarchy) {
1635 		hists__hierarchy_output_resort(hists, prog,
1636 					       &hists->entries_collapsed,
1637 					       &hists->entries,
1638 					       min_callchain_hits,
1639 					       use_callchain);
1640 		hierarchy_recalc_total_periods(hists);
1641 		return;
1642 	}
1643 
1644 	if (hists__has(hists, need_collapse))
1645 		root = &hists->entries_collapsed;
1646 	else
1647 		root = hists->entries_in;
1648 
1649 	next = rb_first(root);
1650 	hists->entries = RB_ROOT;
1651 
1652 	while (next) {
1653 		n = rb_entry(next, struct hist_entry, rb_node_in);
1654 		next = rb_next(&n->rb_node_in);
1655 
1656 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1657 		hists__inc_stats(hists, n);
1658 
1659 		if (!n->filtered)
1660 			hists__calc_col_len(hists, n);
1661 
1662 		if (prog)
1663 			ui_progress__update(prog, 1);
1664 	}
1665 }
1666 
1667 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1668 {
1669 	bool use_callchain;
1670 
1671 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1672 		use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1673 	else
1674 		use_callchain = symbol_conf.use_callchain;
1675 
1676 	output_resort(evsel__hists(evsel), prog, use_callchain);
1677 }
1678 
1679 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1680 {
1681 	output_resort(hists, prog, symbol_conf.use_callchain);
1682 }
1683 
1684 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1685 {
1686 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1687 		return false;
1688 
1689 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1690 		return true;
1691 
1692 	return false;
1693 }
1694 
1695 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1696 {
1697 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1698 
1699 	while (can_goto_child(he, HMD_NORMAL)) {
1700 		node = rb_last(&he->hroot_out);
1701 		he = rb_entry(node, struct hist_entry, rb_node);
1702 	}
1703 	return node;
1704 }
1705 
1706 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1707 {
1708 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1709 
1710 	if (can_goto_child(he, hmd))
1711 		node = rb_first(&he->hroot_out);
1712 	else
1713 		node = rb_next(node);
1714 
1715 	while (node == NULL) {
1716 		he = he->parent_he;
1717 		if (he == NULL)
1718 			break;
1719 
1720 		node = rb_next(&he->rb_node);
1721 	}
1722 	return node;
1723 }
1724 
1725 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1726 {
1727 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1728 
1729 	node = rb_prev(node);
1730 	if (node)
1731 		return rb_hierarchy_last(node);
1732 
1733 	he = he->parent_he;
1734 	if (he == NULL)
1735 		return NULL;
1736 
1737 	return &he->rb_node;
1738 }
1739 
1740 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1741 {
1742 	struct rb_node *node;
1743 	struct hist_entry *child;
1744 	float percent;
1745 
1746 	if (he->leaf)
1747 		return false;
1748 
1749 	node = rb_first(&he->hroot_out);
1750 	child = rb_entry(node, struct hist_entry, rb_node);
1751 
1752 	while (node && child->filtered) {
1753 		node = rb_next(node);
1754 		child = rb_entry(node, struct hist_entry, rb_node);
1755 	}
1756 
1757 	if (node)
1758 		percent = hist_entry__get_percent_limit(child);
1759 	else
1760 		percent = 0;
1761 
1762 	return node && percent >= limit;
1763 }
1764 
1765 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1766 				       enum hist_filter filter)
1767 {
1768 	h->filtered &= ~(1 << filter);
1769 
1770 	if (symbol_conf.report_hierarchy) {
1771 		struct hist_entry *parent = h->parent_he;
1772 
1773 		while (parent) {
1774 			he_stat__add_stat(&parent->stat, &h->stat);
1775 
1776 			parent->filtered &= ~(1 << filter);
1777 
1778 			if (parent->filtered)
1779 				goto next;
1780 
1781 			/* force fold unfiltered entry for simplicity */
1782 			parent->unfolded = false;
1783 			parent->has_no_entry = false;
1784 			parent->row_offset = 0;
1785 			parent->nr_rows = 0;
1786 next:
1787 			parent = parent->parent_he;
1788 		}
1789 	}
1790 
1791 	if (h->filtered)
1792 		return;
1793 
1794 	/* force fold unfiltered entry for simplicity */
1795 	h->unfolded = false;
1796 	h->has_no_entry = false;
1797 	h->row_offset = 0;
1798 	h->nr_rows = 0;
1799 
1800 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1801 
1802 	hists__inc_filter_stats(hists, h);
1803 	hists__calc_col_len(hists, h);
1804 }
1805 
1806 
1807 static bool hists__filter_entry_by_dso(struct hists *hists,
1808 				       struct hist_entry *he)
1809 {
1810 	if (hists->dso_filter != NULL &&
1811 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1812 		he->filtered |= (1 << HIST_FILTER__DSO);
1813 		return true;
1814 	}
1815 
1816 	return false;
1817 }
1818 
1819 static bool hists__filter_entry_by_thread(struct hists *hists,
1820 					  struct hist_entry *he)
1821 {
1822 	if (hists->thread_filter != NULL &&
1823 	    he->thread != hists->thread_filter) {
1824 		he->filtered |= (1 << HIST_FILTER__THREAD);
1825 		return true;
1826 	}
1827 
1828 	return false;
1829 }
1830 
1831 static bool hists__filter_entry_by_symbol(struct hists *hists,
1832 					  struct hist_entry *he)
1833 {
1834 	if (hists->symbol_filter_str != NULL &&
1835 	    (!he->ms.sym || strstr(he->ms.sym->name,
1836 				   hists->symbol_filter_str) == NULL)) {
1837 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
1838 		return true;
1839 	}
1840 
1841 	return false;
1842 }
1843 
1844 static bool hists__filter_entry_by_socket(struct hists *hists,
1845 					  struct hist_entry *he)
1846 {
1847 	if ((hists->socket_filter > -1) &&
1848 	    (he->socket != hists->socket_filter)) {
1849 		he->filtered |= (1 << HIST_FILTER__SOCKET);
1850 		return true;
1851 	}
1852 
1853 	return false;
1854 }
1855 
1856 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1857 
1858 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1859 {
1860 	struct rb_node *nd;
1861 
1862 	hists->stats.nr_non_filtered_samples = 0;
1863 
1864 	hists__reset_filter_stats(hists);
1865 	hists__reset_col_len(hists);
1866 
1867 	for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1868 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1869 
1870 		if (filter(hists, h))
1871 			continue;
1872 
1873 		hists__remove_entry_filter(hists, h, type);
1874 	}
1875 }
1876 
1877 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1878 {
1879 	struct rb_node **p = &root->rb_node;
1880 	struct rb_node *parent = NULL;
1881 	struct hist_entry *iter;
1882 	struct rb_root new_root = RB_ROOT;
1883 	struct rb_node *nd;
1884 
1885 	while (*p != NULL) {
1886 		parent = *p;
1887 		iter = rb_entry(parent, struct hist_entry, rb_node);
1888 
1889 		if (hist_entry__sort(he, iter) > 0)
1890 			p = &(*p)->rb_left;
1891 		else
1892 			p = &(*p)->rb_right;
1893 	}
1894 
1895 	rb_link_node(&he->rb_node, parent, p);
1896 	rb_insert_color(&he->rb_node, root);
1897 
1898 	if (he->leaf || he->filtered)
1899 		return;
1900 
1901 	nd = rb_first(&he->hroot_out);
1902 	while (nd) {
1903 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1904 
1905 		nd = rb_next(nd);
1906 		rb_erase(&h->rb_node, &he->hroot_out);
1907 
1908 		resort_filtered_entry(&new_root, h);
1909 	}
1910 
1911 	he->hroot_out = new_root;
1912 }
1913 
1914 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
1915 {
1916 	struct rb_node *nd;
1917 	struct rb_root new_root = RB_ROOT;
1918 
1919 	hists->stats.nr_non_filtered_samples = 0;
1920 
1921 	hists__reset_filter_stats(hists);
1922 	hists__reset_col_len(hists);
1923 
1924 	nd = rb_first(&hists->entries);
1925 	while (nd) {
1926 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1927 		int ret;
1928 
1929 		ret = hist_entry__filter(h, type, arg);
1930 
1931 		/*
1932 		 * case 1. non-matching type
1933 		 * zero out the period, set filter marker and move to child
1934 		 */
1935 		if (ret < 0) {
1936 			memset(&h->stat, 0, sizeof(h->stat));
1937 			h->filtered |= (1 << type);
1938 
1939 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
1940 		}
1941 		/*
1942 		 * case 2. matched type (filter out)
1943 		 * set filter marker and move to next
1944 		 */
1945 		else if (ret == 1) {
1946 			h->filtered |= (1 << type);
1947 
1948 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
1949 		}
1950 		/*
1951 		 * case 3. ok (not filtered)
1952 		 * add period to hists and parents, erase the filter marker
1953 		 * and move to next sibling
1954 		 */
1955 		else {
1956 			hists__remove_entry_filter(hists, h, type);
1957 
1958 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
1959 		}
1960 	}
1961 
1962 	hierarchy_recalc_total_periods(hists);
1963 
1964 	/*
1965 	 * resort output after applying a new filter since filter in a lower
1966 	 * hierarchy can change periods in a upper hierarchy.
1967 	 */
1968 	nd = rb_first(&hists->entries);
1969 	while (nd) {
1970 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1971 
1972 		nd = rb_next(nd);
1973 		rb_erase(&h->rb_node, &hists->entries);
1974 
1975 		resort_filtered_entry(&new_root, h);
1976 	}
1977 
1978 	hists->entries = new_root;
1979 }
1980 
1981 void hists__filter_by_thread(struct hists *hists)
1982 {
1983 	if (symbol_conf.report_hierarchy)
1984 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
1985 					hists->thread_filter);
1986 	else
1987 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
1988 				      hists__filter_entry_by_thread);
1989 }
1990 
1991 void hists__filter_by_dso(struct hists *hists)
1992 {
1993 	if (symbol_conf.report_hierarchy)
1994 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
1995 					hists->dso_filter);
1996 	else
1997 		hists__filter_by_type(hists, HIST_FILTER__DSO,
1998 				      hists__filter_entry_by_dso);
1999 }
2000 
2001 void hists__filter_by_symbol(struct hists *hists)
2002 {
2003 	if (symbol_conf.report_hierarchy)
2004 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2005 					hists->symbol_filter_str);
2006 	else
2007 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2008 				      hists__filter_entry_by_symbol);
2009 }
2010 
2011 void hists__filter_by_socket(struct hists *hists)
2012 {
2013 	if (symbol_conf.report_hierarchy)
2014 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2015 					&hists->socket_filter);
2016 	else
2017 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2018 				      hists__filter_entry_by_socket);
2019 }
2020 
2021 void events_stats__inc(struct events_stats *stats, u32 type)
2022 {
2023 	++stats->nr_events[0];
2024 	++stats->nr_events[type];
2025 }
2026 
2027 void hists__inc_nr_events(struct hists *hists, u32 type)
2028 {
2029 	events_stats__inc(&hists->stats, type);
2030 }
2031 
2032 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2033 {
2034 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2035 	if (!filtered)
2036 		hists->stats.nr_non_filtered_samples++;
2037 }
2038 
2039 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2040 						 struct hist_entry *pair)
2041 {
2042 	struct rb_root *root;
2043 	struct rb_node **p;
2044 	struct rb_node *parent = NULL;
2045 	struct hist_entry *he;
2046 	int64_t cmp;
2047 
2048 	if (hists__has(hists, need_collapse))
2049 		root = &hists->entries_collapsed;
2050 	else
2051 		root = hists->entries_in;
2052 
2053 	p = &root->rb_node;
2054 
2055 	while (*p != NULL) {
2056 		parent = *p;
2057 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2058 
2059 		cmp = hist_entry__collapse(he, pair);
2060 
2061 		if (!cmp)
2062 			goto out;
2063 
2064 		if (cmp < 0)
2065 			p = &(*p)->rb_left;
2066 		else
2067 			p = &(*p)->rb_right;
2068 	}
2069 
2070 	he = hist_entry__new(pair, true);
2071 	if (he) {
2072 		memset(&he->stat, 0, sizeof(he->stat));
2073 		he->hists = hists;
2074 		if (symbol_conf.cumulate_callchain)
2075 			memset(he->stat_acc, 0, sizeof(he->stat));
2076 		rb_link_node(&he->rb_node_in, parent, p);
2077 		rb_insert_color(&he->rb_node_in, root);
2078 		hists__inc_stats(hists, he);
2079 		he->dummy = true;
2080 	}
2081 out:
2082 	return he;
2083 }
2084 
2085 static struct hist_entry *hists__find_entry(struct hists *hists,
2086 					    struct hist_entry *he)
2087 {
2088 	struct rb_node *n;
2089 
2090 	if (hists__has(hists, need_collapse))
2091 		n = hists->entries_collapsed.rb_node;
2092 	else
2093 		n = hists->entries_in->rb_node;
2094 
2095 	while (n) {
2096 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2097 		int64_t cmp = hist_entry__collapse(iter, he);
2098 
2099 		if (cmp < 0)
2100 			n = n->rb_left;
2101 		else if (cmp > 0)
2102 			n = n->rb_right;
2103 		else
2104 			return iter;
2105 	}
2106 
2107 	return NULL;
2108 }
2109 
2110 /*
2111  * Look for pairs to link to the leader buckets (hist_entries):
2112  */
2113 void hists__match(struct hists *leader, struct hists *other)
2114 {
2115 	struct rb_root *root;
2116 	struct rb_node *nd;
2117 	struct hist_entry *pos, *pair;
2118 
2119 	if (hists__has(leader, need_collapse))
2120 		root = &leader->entries_collapsed;
2121 	else
2122 		root = leader->entries_in;
2123 
2124 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2125 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2126 		pair = hists__find_entry(other, pos);
2127 
2128 		if (pair)
2129 			hist_entry__add_pair(pair, pos);
2130 	}
2131 }
2132 
2133 /*
2134  * Look for entries in the other hists that are not present in the leader, if
2135  * we find them, just add a dummy entry on the leader hists, with period=0,
2136  * nr_events=0, to serve as the list header.
2137  */
2138 int hists__link(struct hists *leader, struct hists *other)
2139 {
2140 	struct rb_root *root;
2141 	struct rb_node *nd;
2142 	struct hist_entry *pos, *pair;
2143 
2144 	if (hists__has(other, need_collapse))
2145 		root = &other->entries_collapsed;
2146 	else
2147 		root = other->entries_in;
2148 
2149 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2150 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2151 
2152 		if (!hist_entry__has_pairs(pos)) {
2153 			pair = hists__add_dummy_entry(leader, pos);
2154 			if (pair == NULL)
2155 				return -1;
2156 			hist_entry__add_pair(pos, pair);
2157 		}
2158 	}
2159 
2160 	return 0;
2161 }
2162 
2163 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2164 			  struct perf_sample *sample, bool nonany_branch_mode)
2165 {
2166 	struct branch_info *bi;
2167 
2168 	/* If we have branch cycles always annotate them. */
2169 	if (bs && bs->nr && bs->entries[0].flags.cycles) {
2170 		int i;
2171 
2172 		bi = sample__resolve_bstack(sample, al);
2173 		if (bi) {
2174 			struct addr_map_symbol *prev = NULL;
2175 
2176 			/*
2177 			 * Ignore errors, still want to process the
2178 			 * other entries.
2179 			 *
2180 			 * For non standard branch modes always
2181 			 * force no IPC (prev == NULL)
2182 			 *
2183 			 * Note that perf stores branches reversed from
2184 			 * program order!
2185 			 */
2186 			for (i = bs->nr - 1; i >= 0; i--) {
2187 				addr_map_symbol__account_cycles(&bi[i].from,
2188 					nonany_branch_mode ? NULL : prev,
2189 					bi[i].flags.cycles);
2190 				prev = &bi[i].to;
2191 			}
2192 			free(bi);
2193 		}
2194 	}
2195 }
2196 
2197 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2198 {
2199 	struct perf_evsel *pos;
2200 	size_t ret = 0;
2201 
2202 	evlist__for_each(evlist, pos) {
2203 		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2204 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2205 	}
2206 
2207 	return ret;
2208 }
2209 
2210 
2211 u64 hists__total_period(struct hists *hists)
2212 {
2213 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2214 		hists->stats.total_period;
2215 }
2216 
2217 int parse_filter_percentage(const struct option *opt __maybe_unused,
2218 			    const char *arg, int unset __maybe_unused)
2219 {
2220 	if (!strcmp(arg, "relative"))
2221 		symbol_conf.filter_relative = true;
2222 	else if (!strcmp(arg, "absolute"))
2223 		symbol_conf.filter_relative = false;
2224 	else
2225 		return -1;
2226 
2227 	return 0;
2228 }
2229 
2230 int perf_hist_config(const char *var, const char *value)
2231 {
2232 	if (!strcmp(var, "hist.percentage"))
2233 		return parse_filter_percentage(NULL, value, 0);
2234 
2235 	return 0;
2236 }
2237 
2238 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2239 {
2240 	memset(hists, 0, sizeof(*hists));
2241 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2242 	hists->entries_in = &hists->entries_in_array[0];
2243 	hists->entries_collapsed = RB_ROOT;
2244 	hists->entries = RB_ROOT;
2245 	pthread_mutex_init(&hists->lock, NULL);
2246 	hists->socket_filter = -1;
2247 	hists->hpp_list = hpp_list;
2248 	INIT_LIST_HEAD(&hists->hpp_formats);
2249 	return 0;
2250 }
2251 
2252 static void hists__delete_remaining_entries(struct rb_root *root)
2253 {
2254 	struct rb_node *node;
2255 	struct hist_entry *he;
2256 
2257 	while (!RB_EMPTY_ROOT(root)) {
2258 		node = rb_first(root);
2259 		rb_erase(node, root);
2260 
2261 		he = rb_entry(node, struct hist_entry, rb_node_in);
2262 		hist_entry__delete(he);
2263 	}
2264 }
2265 
2266 static void hists__delete_all_entries(struct hists *hists)
2267 {
2268 	hists__delete_entries(hists);
2269 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2270 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2271 	hists__delete_remaining_entries(&hists->entries_collapsed);
2272 }
2273 
2274 static void hists_evsel__exit(struct perf_evsel *evsel)
2275 {
2276 	struct hists *hists = evsel__hists(evsel);
2277 	struct perf_hpp_fmt *fmt, *pos;
2278 	struct perf_hpp_list_node *node, *tmp;
2279 
2280 	hists__delete_all_entries(hists);
2281 
2282 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2283 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2284 			list_del(&fmt->list);
2285 			free(fmt);
2286 		}
2287 		list_del(&node->list);
2288 		free(node);
2289 	}
2290 }
2291 
2292 static int hists_evsel__init(struct perf_evsel *evsel)
2293 {
2294 	struct hists *hists = evsel__hists(evsel);
2295 
2296 	__hists__init(hists, &perf_hpp_list);
2297 	return 0;
2298 }
2299 
2300 /*
2301  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2302  * stored in the rbtree...
2303  */
2304 
2305 int hists__init(void)
2306 {
2307 	int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2308 					    hists_evsel__init,
2309 					    hists_evsel__exit);
2310 	if (err)
2311 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2312 
2313 	return err;
2314 }
2315 
2316 void perf_hpp_list__init(struct perf_hpp_list *list)
2317 {
2318 	INIT_LIST_HEAD(&list->fields);
2319 	INIT_LIST_HEAD(&list->sorts);
2320 }
2321