1 // SPDX-License-Identifier: GPL-2.0 2 #include "callchain.h" 3 #include "debug.h" 4 #include "dso.h" 5 #include "build-id.h" 6 #include "hist.h" 7 #include "kvm-stat.h" 8 #include "map.h" 9 #include "map_symbol.h" 10 #include "branch.h" 11 #include "mem-events.h" 12 #include "mem-info.h" 13 #include "session.h" 14 #include "namespaces.h" 15 #include "cgroup.h" 16 #include "sort.h" 17 #include "units.h" 18 #include "evlist.h" 19 #include "evsel.h" 20 #include "annotate.h" 21 #include "srcline.h" 22 #include "symbol.h" 23 #include "thread.h" 24 #include "block-info.h" 25 #include "ui/progress.h" 26 #include <errno.h> 27 #include <math.h> 28 #include <inttypes.h> 29 #include <sys/param.h> 30 #include <linux/rbtree.h> 31 #include <linux/string.h> 32 #include <linux/time64.h> 33 #include <linux/zalloc.h> 34 35 static bool hists__filter_entry_by_dso(struct hists *hists, 36 struct hist_entry *he); 37 static bool hists__filter_entry_by_thread(struct hists *hists, 38 struct hist_entry *he); 39 static bool hists__filter_entry_by_symbol(struct hists *hists, 40 struct hist_entry *he); 41 static bool hists__filter_entry_by_socket(struct hists *hists, 42 struct hist_entry *he); 43 44 u16 hists__col_len(struct hists *hists, enum hist_column col) 45 { 46 return hists->col_len[col]; 47 } 48 49 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 50 { 51 hists->col_len[col] = len; 52 } 53 54 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 55 { 56 if (len > hists__col_len(hists, col)) { 57 hists__set_col_len(hists, col, len); 58 return true; 59 } 60 return false; 61 } 62 63 void hists__reset_col_len(struct hists *hists) 64 { 65 enum hist_column col; 66 67 for (col = 0; col < HISTC_NR_COLS; ++col) 68 hists__set_col_len(hists, col, 0); 69 } 70 71 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 72 { 73 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 74 75 if (hists__col_len(hists, dso) < unresolved_col_width && 76 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 77 !symbol_conf.dso_list) 78 hists__set_col_len(hists, dso, unresolved_col_width); 79 } 80 81 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 82 { 83 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 84 int symlen; 85 u16 len; 86 87 if (h->block_info) 88 return; 89 /* 90 * +4 accounts for '[x] ' priv level info 91 * +2 accounts for 0x prefix on raw addresses 92 * +3 accounts for ' y ' symtab origin info 93 */ 94 if (h->ms.sym) { 95 symlen = h->ms.sym->namelen + 4; 96 if (verbose > 0) 97 symlen += BITS_PER_LONG / 4 + 2 + 3; 98 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 99 } else { 100 symlen = unresolved_col_width + 4 + 2; 101 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 102 hists__set_unres_dso_col_len(hists, HISTC_DSO); 103 } 104 105 len = thread__comm_len(h->thread); 106 if (hists__new_col_len(hists, HISTC_COMM, len)) 107 hists__set_col_len(hists, HISTC_THREAD, len + 8); 108 109 if (h->ms.map) { 110 len = dso__name_len(map__dso(h->ms.map)); 111 hists__new_col_len(hists, HISTC_DSO, len); 112 } 113 114 if (h->parent) 115 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 116 117 if (h->branch_info) { 118 if (h->branch_info->from.ms.sym) { 119 symlen = (int)h->branch_info->from.ms.sym->namelen + 4; 120 if (verbose > 0) 121 symlen += BITS_PER_LONG / 4 + 2 + 3; 122 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 123 124 symlen = dso__name_len(map__dso(h->branch_info->from.ms.map)); 125 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 126 } else { 127 symlen = unresolved_col_width + 4 + 2; 128 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 129 hists__new_col_len(hists, HISTC_ADDR_FROM, symlen); 130 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 131 } 132 133 if (h->branch_info->to.ms.sym) { 134 symlen = (int)h->branch_info->to.ms.sym->namelen + 4; 135 if (verbose > 0) 136 symlen += BITS_PER_LONG / 4 + 2 + 3; 137 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 138 139 symlen = dso__name_len(map__dso(h->branch_info->to.ms.map)); 140 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 141 } else { 142 symlen = unresolved_col_width + 4 + 2; 143 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 144 hists__new_col_len(hists, HISTC_ADDR_TO, symlen); 145 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 146 } 147 148 if (h->branch_info->srcline_from) 149 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 150 strlen(h->branch_info->srcline_from)); 151 if (h->branch_info->srcline_to) 152 hists__new_col_len(hists, HISTC_SRCLINE_TO, 153 strlen(h->branch_info->srcline_to)); 154 } 155 156 if (h->mem_info) { 157 if (mem_info__daddr(h->mem_info)->ms.sym) { 158 symlen = (int)mem_info__daddr(h->mem_info)->ms.sym->namelen + 4 159 + unresolved_col_width + 2; 160 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 161 symlen); 162 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 163 symlen + 1); 164 } else { 165 symlen = unresolved_col_width + 4 + 2; 166 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 167 symlen); 168 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 169 symlen); 170 } 171 172 if (mem_info__iaddr(h->mem_info)->ms.sym) { 173 symlen = (int)mem_info__iaddr(h->mem_info)->ms.sym->namelen + 4 174 + unresolved_col_width + 2; 175 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 176 symlen); 177 } else { 178 symlen = unresolved_col_width + 4 + 2; 179 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 180 symlen); 181 } 182 183 if (mem_info__daddr(h->mem_info)->ms.map) { 184 symlen = dso__name_len(map__dso(mem_info__daddr(h->mem_info)->ms.map)); 185 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 186 symlen); 187 } else { 188 symlen = unresolved_col_width + 4 + 2; 189 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 190 } 191 192 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR, 193 unresolved_col_width + 4 + 2); 194 195 hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE, 196 unresolved_col_width + 4 + 2); 197 198 } else { 199 symlen = unresolved_col_width + 4 + 2; 200 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 201 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 202 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 203 } 204 205 hists__new_col_len(hists, HISTC_CGROUP, 6); 206 hists__new_col_len(hists, HISTC_CGROUP_ID, 20); 207 hists__new_col_len(hists, HISTC_CPU, 3); 208 hists__new_col_len(hists, HISTC_SOCKET, 6); 209 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 210 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 211 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 212 hists__new_col_len(hists, HISTC_MEM_LVL, 36 + 3); 213 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 214 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 215 hists__new_col_len(hists, HISTC_MEM_BLOCKED, 10); 216 hists__new_col_len(hists, HISTC_LOCAL_INS_LAT, 13); 217 hists__new_col_len(hists, HISTC_GLOBAL_INS_LAT, 13); 218 hists__new_col_len(hists, HISTC_LOCAL_P_STAGE_CYC, 13); 219 hists__new_col_len(hists, HISTC_GLOBAL_P_STAGE_CYC, 13); 220 hists__new_col_len(hists, HISTC_ADDR, BITS_PER_LONG / 4 + 2); 221 222 if (symbol_conf.nanosecs) 223 hists__new_col_len(hists, HISTC_TIME, 16); 224 else 225 hists__new_col_len(hists, HISTC_TIME, 12); 226 hists__new_col_len(hists, HISTC_CODE_PAGE_SIZE, 6); 227 228 if (h->srcline) { 229 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header)); 230 hists__new_col_len(hists, HISTC_SRCLINE, len); 231 } 232 233 if (h->srcfile) 234 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 235 236 if (h->transaction) 237 hists__new_col_len(hists, HISTC_TRANSACTION, 238 hist_entry__transaction_len()); 239 240 if (h->trace_output) 241 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 242 243 if (h->cgroup) { 244 const char *cgrp_name = "unknown"; 245 struct cgroup *cgrp = cgroup__find(maps__machine(h->ms.maps)->env, 246 h->cgroup); 247 if (cgrp != NULL) 248 cgrp_name = cgrp->name; 249 250 hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name)); 251 } 252 } 253 254 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 255 { 256 struct rb_node *next = rb_first_cached(&hists->entries); 257 struct hist_entry *n; 258 int row = 0; 259 260 hists__reset_col_len(hists); 261 262 while (next && row++ < max_rows) { 263 n = rb_entry(next, struct hist_entry, rb_node); 264 if (!n->filtered) 265 hists__calc_col_len(hists, n); 266 next = rb_next(&n->rb_node); 267 } 268 } 269 270 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 271 unsigned int cpumode, u64 period) 272 { 273 switch (cpumode) { 274 case PERF_RECORD_MISC_KERNEL: 275 he_stat->period_sys += period; 276 break; 277 case PERF_RECORD_MISC_USER: 278 he_stat->period_us += period; 279 break; 280 case PERF_RECORD_MISC_GUEST_KERNEL: 281 he_stat->period_guest_sys += period; 282 break; 283 case PERF_RECORD_MISC_GUEST_USER: 284 he_stat->period_guest_us += period; 285 break; 286 default: 287 break; 288 } 289 } 290 291 static long hist_time(unsigned long htime) 292 { 293 unsigned long time_quantum = symbol_conf.time_quantum; 294 if (time_quantum) 295 return (htime / time_quantum) * time_quantum; 296 return htime; 297 } 298 299 static void he_stat__add_period(struct he_stat *he_stat, u64 period) 300 { 301 he_stat->period += period; 302 he_stat->nr_events += 1; 303 } 304 305 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 306 { 307 dest->period += src->period; 308 dest->period_sys += src->period_sys; 309 dest->period_us += src->period_us; 310 dest->period_guest_sys += src->period_guest_sys; 311 dest->period_guest_us += src->period_guest_us; 312 dest->weight1 += src->weight1; 313 dest->weight2 += src->weight2; 314 dest->weight3 += src->weight3; 315 dest->nr_events += src->nr_events; 316 } 317 318 static void he_stat__decay(struct he_stat *he_stat) 319 { 320 he_stat->period = (he_stat->period * 7) / 8; 321 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 322 he_stat->weight1 = (he_stat->weight1 * 7) / 8; 323 he_stat->weight2 = (he_stat->weight2 * 7) / 8; 324 he_stat->weight3 = (he_stat->weight3 * 7) / 8; 325 } 326 327 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 328 329 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 330 { 331 u64 prev_period = he->stat.period; 332 u64 diff; 333 334 if (prev_period == 0) 335 return true; 336 337 he_stat__decay(&he->stat); 338 if (symbol_conf.cumulate_callchain) 339 he_stat__decay(he->stat_acc); 340 decay_callchain(he->callchain); 341 342 diff = prev_period - he->stat.period; 343 344 if (!he->depth) { 345 hists->stats.total_period -= diff; 346 if (!he->filtered) 347 hists->stats.total_non_filtered_period -= diff; 348 } 349 350 if (!he->leaf) { 351 struct hist_entry *child; 352 struct rb_node *node = rb_first_cached(&he->hroot_out); 353 while (node) { 354 child = rb_entry(node, struct hist_entry, rb_node); 355 node = rb_next(node); 356 357 if (hists__decay_entry(hists, child)) 358 hists__delete_entry(hists, child); 359 } 360 } 361 362 return he->stat.period == 0; 363 } 364 365 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 366 { 367 struct rb_root_cached *root_in; 368 struct rb_root_cached *root_out; 369 370 if (he->parent_he) { 371 root_in = &he->parent_he->hroot_in; 372 root_out = &he->parent_he->hroot_out; 373 } else { 374 if (hists__has(hists, need_collapse)) 375 root_in = &hists->entries_collapsed; 376 else 377 root_in = hists->entries_in; 378 root_out = &hists->entries; 379 } 380 381 rb_erase_cached(&he->rb_node_in, root_in); 382 rb_erase_cached(&he->rb_node, root_out); 383 384 --hists->nr_entries; 385 if (!he->filtered) 386 --hists->nr_non_filtered_entries; 387 388 hist_entry__delete(he); 389 } 390 391 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 392 { 393 struct rb_node *next = rb_first_cached(&hists->entries); 394 struct hist_entry *n; 395 396 while (next) { 397 n = rb_entry(next, struct hist_entry, rb_node); 398 next = rb_next(&n->rb_node); 399 if (((zap_user && n->level == '.') || 400 (zap_kernel && n->level != '.') || 401 hists__decay_entry(hists, n))) { 402 hists__delete_entry(hists, n); 403 } 404 } 405 } 406 407 void hists__delete_entries(struct hists *hists) 408 { 409 struct rb_node *next = rb_first_cached(&hists->entries); 410 struct hist_entry *n; 411 412 while (next) { 413 n = rb_entry(next, struct hist_entry, rb_node); 414 next = rb_next(&n->rb_node); 415 416 hists__delete_entry(hists, n); 417 } 418 } 419 420 struct hist_entry *hists__get_entry(struct hists *hists, int idx) 421 { 422 struct rb_node *next = rb_first_cached(&hists->entries); 423 struct hist_entry *n; 424 int i = 0; 425 426 while (next) { 427 n = rb_entry(next, struct hist_entry, rb_node); 428 if (i == idx) 429 return n; 430 431 next = rb_next(&n->rb_node); 432 i++; 433 } 434 435 return NULL; 436 } 437 438 /* 439 * histogram, sorted on item, collects periods 440 */ 441 442 static int hist_entry__init(struct hist_entry *he, 443 struct hist_entry *template, 444 bool sample_self, 445 size_t callchain_size) 446 { 447 *he = *template; 448 he->callchain_size = callchain_size; 449 450 if (symbol_conf.cumulate_callchain) { 451 he->stat_acc = malloc(sizeof(he->stat)); 452 if (he->stat_acc == NULL) 453 return -ENOMEM; 454 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 455 if (!sample_self) 456 memset(&he->stat, 0, sizeof(he->stat)); 457 } 458 459 he->ms.maps = maps__get(he->ms.maps); 460 he->ms.map = map__get(he->ms.map); 461 462 if (he->branch_info) { 463 /* 464 * This branch info is (a part of) allocated from 465 * sample__resolve_bstack() and will be freed after 466 * adding new entries. So we need to save a copy. 467 */ 468 he->branch_info = malloc(sizeof(*he->branch_info)); 469 if (he->branch_info == NULL) 470 goto err; 471 472 memcpy(he->branch_info, template->branch_info, 473 sizeof(*he->branch_info)); 474 475 he->branch_info->from.ms.maps = maps__get(he->branch_info->from.ms.maps); 476 he->branch_info->from.ms.map = map__get(he->branch_info->from.ms.map); 477 he->branch_info->to.ms.maps = maps__get(he->branch_info->to.ms.maps); 478 he->branch_info->to.ms.map = map__get(he->branch_info->to.ms.map); 479 } 480 481 if (he->mem_info) { 482 he->mem_info = mem_info__clone(template->mem_info); 483 if (he->mem_info == NULL) 484 goto err_infos; 485 } 486 487 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 488 callchain_init(he->callchain); 489 490 if (he->raw_data) { 491 he->raw_data = memdup(he->raw_data, he->raw_size); 492 if (he->raw_data == NULL) 493 goto err_infos; 494 } 495 496 if (he->srcline && he->srcline != SRCLINE_UNKNOWN) { 497 he->srcline = strdup(he->srcline); 498 if (he->srcline == NULL) 499 goto err_rawdata; 500 } 501 502 if (symbol_conf.res_sample) { 503 he->res_samples = calloc(symbol_conf.res_sample, 504 sizeof(struct res_sample)); 505 if (!he->res_samples) 506 goto err_srcline; 507 } 508 509 INIT_LIST_HEAD(&he->pairs.node); 510 he->thread = thread__get(he->thread); 511 he->hroot_in = RB_ROOT_CACHED; 512 he->hroot_out = RB_ROOT_CACHED; 513 514 if (!symbol_conf.report_hierarchy) 515 he->leaf = true; 516 517 return 0; 518 519 err_srcline: 520 zfree(&he->srcline); 521 522 err_rawdata: 523 zfree(&he->raw_data); 524 525 err_infos: 526 if (he->branch_info) { 527 map_symbol__exit(&he->branch_info->from.ms); 528 map_symbol__exit(&he->branch_info->to.ms); 529 zfree(&he->branch_info); 530 } 531 if (he->mem_info) { 532 map_symbol__exit(&mem_info__iaddr(he->mem_info)->ms); 533 map_symbol__exit(&mem_info__daddr(he->mem_info)->ms); 534 } 535 err: 536 map_symbol__exit(&he->ms); 537 zfree(&he->stat_acc); 538 return -ENOMEM; 539 } 540 541 static void *hist_entry__zalloc(size_t size) 542 { 543 return zalloc(size + sizeof(struct hist_entry)); 544 } 545 546 static void hist_entry__free(void *ptr) 547 { 548 free(ptr); 549 } 550 551 static struct hist_entry_ops default_ops = { 552 .new = hist_entry__zalloc, 553 .free = hist_entry__free, 554 }; 555 556 static struct hist_entry *hist_entry__new(struct hist_entry *template, 557 bool sample_self) 558 { 559 struct hist_entry_ops *ops = template->ops; 560 size_t callchain_size = 0; 561 struct hist_entry *he; 562 int err = 0; 563 564 if (!ops) 565 ops = template->ops = &default_ops; 566 567 if (symbol_conf.use_callchain) 568 callchain_size = sizeof(struct callchain_root); 569 570 he = ops->new(callchain_size); 571 if (he) { 572 err = hist_entry__init(he, template, sample_self, callchain_size); 573 if (err) { 574 ops->free(he); 575 he = NULL; 576 } 577 } 578 return he; 579 } 580 581 static u8 symbol__parent_filter(const struct symbol *parent) 582 { 583 if (symbol_conf.exclude_other && parent == NULL) 584 return 1 << HIST_FILTER__PARENT; 585 return 0; 586 } 587 588 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 589 { 590 if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain) 591 return; 592 593 he->hists->callchain_period += period; 594 if (!he->filtered) 595 he->hists->callchain_non_filtered_period += period; 596 } 597 598 static struct hist_entry *hists__findnew_entry(struct hists *hists, 599 struct hist_entry *entry, 600 const struct addr_location *al, 601 bool sample_self) 602 { 603 struct rb_node **p; 604 struct rb_node *parent = NULL; 605 struct hist_entry *he; 606 int64_t cmp; 607 u64 period = entry->stat.period; 608 bool leftmost = true; 609 610 p = &hists->entries_in->rb_root.rb_node; 611 612 while (*p != NULL) { 613 parent = *p; 614 he = rb_entry(parent, struct hist_entry, rb_node_in); 615 616 /* 617 * Make sure that it receives arguments in a same order as 618 * hist_entry__collapse() so that we can use an appropriate 619 * function when searching an entry regardless which sort 620 * keys were used. 621 */ 622 cmp = hist_entry__cmp(he, entry); 623 if (!cmp) { 624 if (sample_self) { 625 he_stat__add_stat(&he->stat, &entry->stat); 626 hist_entry__add_callchain_period(he, period); 627 } 628 if (symbol_conf.cumulate_callchain) 629 he_stat__add_period(he->stat_acc, period); 630 631 block_info__delete(entry->block_info); 632 633 kvm_info__zput(entry->kvm_info); 634 635 /* If the map of an existing hist_entry has 636 * become out-of-date due to an exec() or 637 * similar, update it. Otherwise we will 638 * mis-adjust symbol addresses when computing 639 * the history counter to increment. 640 */ 641 if (he->ms.map != entry->ms.map) { 642 map__put(he->ms.map); 643 he->ms.map = map__get(entry->ms.map); 644 } 645 goto out; 646 } 647 648 if (cmp < 0) 649 p = &(*p)->rb_left; 650 else { 651 p = &(*p)->rb_right; 652 leftmost = false; 653 } 654 } 655 656 he = hist_entry__new(entry, sample_self); 657 if (!he) 658 return NULL; 659 660 if (sample_self) 661 hist_entry__add_callchain_period(he, period); 662 hists->nr_entries++; 663 664 rb_link_node(&he->rb_node_in, parent, p); 665 rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost); 666 out: 667 if (sample_self) 668 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 669 if (symbol_conf.cumulate_callchain) 670 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 671 return he; 672 } 673 674 static unsigned random_max(unsigned high) 675 { 676 unsigned thresh = -high % high; 677 for (;;) { 678 unsigned r = random(); 679 if (r >= thresh) 680 return r % high; 681 } 682 } 683 684 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample) 685 { 686 struct res_sample *r; 687 int j; 688 689 if (he->num_res < symbol_conf.res_sample) { 690 j = he->num_res++; 691 } else { 692 j = random_max(symbol_conf.res_sample); 693 } 694 r = &he->res_samples[j]; 695 r->time = sample->time; 696 r->cpu = sample->cpu; 697 r->tid = sample->tid; 698 } 699 700 static struct hist_entry* 701 __hists__add_entry(struct hists *hists, 702 struct addr_location *al, 703 struct symbol *sym_parent, 704 struct branch_info *bi, 705 struct mem_info *mi, 706 struct kvm_info *ki, 707 struct block_info *block_info, 708 struct perf_sample *sample, 709 bool sample_self, 710 struct hist_entry_ops *ops) 711 { 712 struct namespaces *ns = thread__namespaces(al->thread); 713 struct hist_entry entry = { 714 .thread = al->thread, 715 .comm = thread__comm(al->thread), 716 .cgroup_id = { 717 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0, 718 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0, 719 }, 720 .cgroup = sample->cgroup, 721 .ms = { 722 .maps = al->maps, 723 .map = al->map, 724 .sym = al->sym, 725 }, 726 .srcline = (char *) al->srcline, 727 .socket = al->socket, 728 .cpu = al->cpu, 729 .cpumode = al->cpumode, 730 .ip = al->addr, 731 .level = al->level, 732 .code_page_size = sample->code_page_size, 733 .stat = { 734 .nr_events = 1, 735 .period = sample->period, 736 .weight1 = sample->weight, 737 .weight2 = sample->ins_lat, 738 .weight3 = sample->p_stage_cyc, 739 }, 740 .parent = sym_parent, 741 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 742 .hists = hists, 743 .branch_info = bi, 744 .mem_info = mi, 745 .kvm_info = ki, 746 .block_info = block_info, 747 .transaction = sample->transaction, 748 .raw_data = sample->raw_data, 749 .raw_size = sample->raw_size, 750 .ops = ops, 751 .time = hist_time(sample->time), 752 .weight = sample->weight, 753 .ins_lat = sample->ins_lat, 754 .p_stage_cyc = sample->p_stage_cyc, 755 .simd_flags = sample->simd_flags, 756 }, *he = hists__findnew_entry(hists, &entry, al, sample_self); 757 758 if (!hists->has_callchains && he && he->callchain_size != 0) 759 hists->has_callchains = true; 760 if (he && symbol_conf.res_sample) 761 hists__res_sample(he, sample); 762 return he; 763 } 764 765 struct hist_entry *hists__add_entry(struct hists *hists, 766 struct addr_location *al, 767 struct symbol *sym_parent, 768 struct branch_info *bi, 769 struct mem_info *mi, 770 struct kvm_info *ki, 771 struct perf_sample *sample, 772 bool sample_self) 773 { 774 return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL, 775 sample, sample_self, NULL); 776 } 777 778 struct hist_entry *hists__add_entry_ops(struct hists *hists, 779 struct hist_entry_ops *ops, 780 struct addr_location *al, 781 struct symbol *sym_parent, 782 struct branch_info *bi, 783 struct mem_info *mi, 784 struct kvm_info *ki, 785 struct perf_sample *sample, 786 bool sample_self) 787 { 788 return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL, 789 sample, sample_self, ops); 790 } 791 792 struct hist_entry *hists__add_entry_block(struct hists *hists, 793 struct addr_location *al, 794 struct block_info *block_info) 795 { 796 struct hist_entry entry = { 797 .block_info = block_info, 798 .hists = hists, 799 .ms = { 800 .maps = al->maps, 801 .map = al->map, 802 .sym = al->sym, 803 }, 804 }, *he = hists__findnew_entry(hists, &entry, al, false); 805 806 return he; 807 } 808 809 static int 810 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 811 struct addr_location *al __maybe_unused) 812 { 813 return 0; 814 } 815 816 static int 817 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 818 struct addr_location *al __maybe_unused) 819 { 820 return 0; 821 } 822 823 static int 824 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 825 { 826 struct perf_sample *sample = iter->sample; 827 struct mem_info *mi; 828 829 mi = sample__resolve_mem(sample, al); 830 if (mi == NULL) 831 return -ENOMEM; 832 833 iter->mi = mi; 834 return 0; 835 } 836 837 static int 838 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 839 { 840 u64 cost; 841 struct mem_info *mi = iter->mi; 842 struct hists *hists = evsel__hists(iter->evsel); 843 struct perf_sample *sample = iter->sample; 844 struct hist_entry *he; 845 846 if (mi == NULL) 847 return -EINVAL; 848 849 cost = sample->weight; 850 if (!cost) 851 cost = 1; 852 853 /* 854 * must pass period=weight in order to get the correct 855 * sorting from hists__collapse_resort() which is solely 856 * based on periods. We want sorting be done on nr_events * weight 857 * and this is indirectly achieved by passing period=weight here 858 * and the he_stat__add_period() function. 859 */ 860 sample->period = cost; 861 862 he = hists__add_entry(hists, al, iter->parent, NULL, mi, NULL, 863 sample, true); 864 if (!he) 865 return -ENOMEM; 866 867 iter->he = he; 868 return 0; 869 } 870 871 static int 872 iter_finish_mem_entry(struct hist_entry_iter *iter, 873 struct addr_location *al __maybe_unused) 874 { 875 struct evsel *evsel = iter->evsel; 876 struct hists *hists = evsel__hists(evsel); 877 struct hist_entry *he = iter->he; 878 int err = -EINVAL; 879 880 if (he == NULL) 881 goto out; 882 883 hists__inc_nr_samples(hists, he->filtered); 884 885 err = hist_entry__append_callchain(he, iter->sample); 886 887 out: 888 mem_info__zput(iter->mi); 889 890 iter->he = NULL; 891 return err; 892 } 893 894 static int 895 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 896 { 897 struct branch_info *bi; 898 struct perf_sample *sample = iter->sample; 899 900 bi = sample__resolve_bstack(sample, al); 901 if (!bi) 902 return -ENOMEM; 903 904 iter->curr = 0; 905 iter->total = sample->branch_stack->nr; 906 907 iter->bi = bi; 908 return 0; 909 } 910 911 static int 912 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused, 913 struct addr_location *al __maybe_unused) 914 { 915 return 0; 916 } 917 918 static int 919 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 920 { 921 struct branch_info *bi = iter->bi; 922 int i = iter->curr; 923 924 if (bi == NULL) 925 return 0; 926 927 if (iter->curr >= iter->total) 928 return 0; 929 930 maps__put(al->maps); 931 al->maps = maps__get(bi[i].to.ms.maps); 932 map__put(al->map); 933 al->map = map__get(bi[i].to.ms.map); 934 al->sym = bi[i].to.ms.sym; 935 al->addr = bi[i].to.addr; 936 return 1; 937 } 938 939 static int 940 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 941 { 942 struct branch_info *bi; 943 struct evsel *evsel = iter->evsel; 944 struct hists *hists = evsel__hists(evsel); 945 struct perf_sample *sample = iter->sample; 946 struct hist_entry *he = NULL; 947 int i = iter->curr; 948 int err = 0; 949 950 bi = iter->bi; 951 952 if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym)) 953 goto out; 954 955 /* 956 * The report shows the percentage of total branches captured 957 * and not events sampled. Thus we use a pseudo period of 1. 958 */ 959 sample->period = 1; 960 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 961 962 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, NULL, 963 sample, true); 964 if (he == NULL) 965 return -ENOMEM; 966 967 hists__inc_nr_samples(hists, he->filtered); 968 969 out: 970 iter->he = he; 971 iter->curr++; 972 return err; 973 } 974 975 static void branch_info__exit(struct branch_info *bi) 976 { 977 map_symbol__exit(&bi->from.ms); 978 map_symbol__exit(&bi->to.ms); 979 zfree_srcline(&bi->srcline_from); 980 zfree_srcline(&bi->srcline_to); 981 } 982 983 static int 984 iter_finish_branch_entry(struct hist_entry_iter *iter, 985 struct addr_location *al __maybe_unused) 986 { 987 for (int i = 0; i < iter->total; i++) 988 branch_info__exit(&iter->bi[i]); 989 990 zfree(&iter->bi); 991 iter->he = NULL; 992 993 return iter->curr >= iter->total ? 0 : -1; 994 } 995 996 static int 997 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 998 struct addr_location *al __maybe_unused) 999 { 1000 return 0; 1001 } 1002 1003 static int 1004 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 1005 { 1006 struct evsel *evsel = iter->evsel; 1007 struct perf_sample *sample = iter->sample; 1008 struct hist_entry *he; 1009 1010 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 1011 NULL, sample, true); 1012 if (he == NULL) 1013 return -ENOMEM; 1014 1015 iter->he = he; 1016 return 0; 1017 } 1018 1019 static int 1020 iter_finish_normal_entry(struct hist_entry_iter *iter, 1021 struct addr_location *al __maybe_unused) 1022 { 1023 struct hist_entry *he = iter->he; 1024 struct evsel *evsel = iter->evsel; 1025 struct perf_sample *sample = iter->sample; 1026 1027 if (he == NULL) 1028 return 0; 1029 1030 iter->he = NULL; 1031 1032 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 1033 1034 return hist_entry__append_callchain(he, sample); 1035 } 1036 1037 static int 1038 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 1039 struct addr_location *al __maybe_unused) 1040 { 1041 struct hist_entry **he_cache; 1042 struct callchain_cursor *cursor = get_tls_callchain_cursor(); 1043 1044 if (cursor == NULL) 1045 return -ENOMEM; 1046 1047 callchain_cursor_commit(cursor); 1048 1049 /* 1050 * This is for detecting cycles or recursions so that they're 1051 * cumulated only one time to prevent entries more than 100% 1052 * overhead. 1053 */ 1054 he_cache = malloc(sizeof(*he_cache) * (cursor->nr + 1)); 1055 if (he_cache == NULL) 1056 return -ENOMEM; 1057 1058 iter->he_cache = he_cache; 1059 iter->curr = 0; 1060 1061 return 0; 1062 } 1063 1064 static int 1065 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 1066 struct addr_location *al) 1067 { 1068 struct evsel *evsel = iter->evsel; 1069 struct hists *hists = evsel__hists(evsel); 1070 struct perf_sample *sample = iter->sample; 1071 struct hist_entry **he_cache = iter->he_cache; 1072 struct hist_entry *he; 1073 int err = 0; 1074 1075 he = hists__add_entry(hists, al, iter->parent, NULL, NULL, NULL, 1076 sample, true); 1077 if (he == NULL) 1078 return -ENOMEM; 1079 1080 iter->he = he; 1081 he_cache[iter->curr++] = he; 1082 1083 hist_entry__append_callchain(he, sample); 1084 1085 /* 1086 * We need to re-initialize the cursor since callchain_append() 1087 * advanced the cursor to the end. 1088 */ 1089 callchain_cursor_commit(get_tls_callchain_cursor()); 1090 1091 hists__inc_nr_samples(hists, he->filtered); 1092 1093 return err; 1094 } 1095 1096 static int 1097 iter_next_cumulative_entry(struct hist_entry_iter *iter, 1098 struct addr_location *al) 1099 { 1100 struct callchain_cursor_node *node; 1101 1102 node = callchain_cursor_current(get_tls_callchain_cursor()); 1103 if (node == NULL) 1104 return 0; 1105 1106 return fill_callchain_info(al, node, iter->hide_unresolved); 1107 } 1108 1109 static bool 1110 hist_entry__fast__sym_diff(struct hist_entry *left, 1111 struct hist_entry *right) 1112 { 1113 struct symbol *sym_l = left->ms.sym; 1114 struct symbol *sym_r = right->ms.sym; 1115 1116 if (!sym_l && !sym_r) 1117 return left->ip != right->ip; 1118 1119 return !!_sort__sym_cmp(sym_l, sym_r); 1120 } 1121 1122 1123 static int 1124 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 1125 struct addr_location *al) 1126 { 1127 struct evsel *evsel = iter->evsel; 1128 struct perf_sample *sample = iter->sample; 1129 struct hist_entry **he_cache = iter->he_cache; 1130 struct hist_entry *he; 1131 struct hist_entry he_tmp = { 1132 .hists = evsel__hists(evsel), 1133 .cpu = al->cpu, 1134 .thread = al->thread, 1135 .comm = thread__comm(al->thread), 1136 .ip = al->addr, 1137 .ms = { 1138 .maps = al->maps, 1139 .map = al->map, 1140 .sym = al->sym, 1141 }, 1142 .srcline = (char *) al->srcline, 1143 .parent = iter->parent, 1144 .raw_data = sample->raw_data, 1145 .raw_size = sample->raw_size, 1146 }; 1147 int i; 1148 struct callchain_cursor cursor, *tls_cursor = get_tls_callchain_cursor(); 1149 bool fast = hists__has(he_tmp.hists, sym); 1150 1151 if (tls_cursor == NULL) 1152 return -ENOMEM; 1153 1154 callchain_cursor_snapshot(&cursor, tls_cursor); 1155 1156 callchain_cursor_advance(tls_cursor); 1157 1158 /* 1159 * Check if there's duplicate entries in the callchain. 1160 * It's possible that it has cycles or recursive calls. 1161 */ 1162 for (i = 0; i < iter->curr; i++) { 1163 /* 1164 * For most cases, there are no duplicate entries in callchain. 1165 * The symbols are usually different. Do a quick check for 1166 * symbols first. 1167 */ 1168 if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp)) 1169 continue; 1170 1171 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 1172 /* to avoid calling callback function */ 1173 iter->he = NULL; 1174 return 0; 1175 } 1176 } 1177 1178 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 1179 NULL, sample, false); 1180 if (he == NULL) 1181 return -ENOMEM; 1182 1183 iter->he = he; 1184 he_cache[iter->curr++] = he; 1185 1186 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 1187 callchain_append(he->callchain, &cursor, sample->period); 1188 return 0; 1189 } 1190 1191 static int 1192 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 1193 struct addr_location *al __maybe_unused) 1194 { 1195 mem_info__zput(iter->mi); 1196 zfree(&iter->bi); 1197 zfree(&iter->he_cache); 1198 iter->he = NULL; 1199 1200 return 0; 1201 } 1202 1203 const struct hist_iter_ops hist_iter_mem = { 1204 .prepare_entry = iter_prepare_mem_entry, 1205 .add_single_entry = iter_add_single_mem_entry, 1206 .next_entry = iter_next_nop_entry, 1207 .add_next_entry = iter_add_next_nop_entry, 1208 .finish_entry = iter_finish_mem_entry, 1209 }; 1210 1211 const struct hist_iter_ops hist_iter_branch = { 1212 .prepare_entry = iter_prepare_branch_entry, 1213 .add_single_entry = iter_add_single_branch_entry, 1214 .next_entry = iter_next_branch_entry, 1215 .add_next_entry = iter_add_next_branch_entry, 1216 .finish_entry = iter_finish_branch_entry, 1217 }; 1218 1219 const struct hist_iter_ops hist_iter_normal = { 1220 .prepare_entry = iter_prepare_normal_entry, 1221 .add_single_entry = iter_add_single_normal_entry, 1222 .next_entry = iter_next_nop_entry, 1223 .add_next_entry = iter_add_next_nop_entry, 1224 .finish_entry = iter_finish_normal_entry, 1225 }; 1226 1227 const struct hist_iter_ops hist_iter_cumulative = { 1228 .prepare_entry = iter_prepare_cumulative_entry, 1229 .add_single_entry = iter_add_single_cumulative_entry, 1230 .next_entry = iter_next_cumulative_entry, 1231 .add_next_entry = iter_add_next_cumulative_entry, 1232 .finish_entry = iter_finish_cumulative_entry, 1233 }; 1234 1235 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1236 int max_stack_depth, void *arg) 1237 { 1238 int err, err2; 1239 struct map *alm = NULL; 1240 1241 if (al) 1242 alm = map__get(al->map); 1243 1244 err = sample__resolve_callchain(iter->sample, get_tls_callchain_cursor(), &iter->parent, 1245 iter->evsel, al, max_stack_depth); 1246 if (err) { 1247 map__put(alm); 1248 return err; 1249 } 1250 1251 err = iter->ops->prepare_entry(iter, al); 1252 if (err) 1253 goto out; 1254 1255 err = iter->ops->add_single_entry(iter, al); 1256 if (err) 1257 goto out; 1258 1259 if (iter->he && iter->add_entry_cb) { 1260 err = iter->add_entry_cb(iter, al, true, arg); 1261 if (err) 1262 goto out; 1263 } 1264 1265 while (iter->ops->next_entry(iter, al)) { 1266 err = iter->ops->add_next_entry(iter, al); 1267 if (err) 1268 break; 1269 1270 if (iter->he && iter->add_entry_cb) { 1271 err = iter->add_entry_cb(iter, al, false, arg); 1272 if (err) 1273 goto out; 1274 } 1275 } 1276 1277 out: 1278 err2 = iter->ops->finish_entry(iter, al); 1279 if (!err) 1280 err = err2; 1281 1282 map__put(alm); 1283 1284 return err; 1285 } 1286 1287 int64_t 1288 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1289 { 1290 struct hists *hists = left->hists; 1291 struct perf_hpp_fmt *fmt; 1292 int64_t cmp = 0; 1293 1294 hists__for_each_sort_list(hists, fmt) { 1295 if (perf_hpp__is_dynamic_entry(fmt) && 1296 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1297 continue; 1298 1299 cmp = fmt->cmp(fmt, left, right); 1300 if (cmp) 1301 break; 1302 } 1303 1304 return cmp; 1305 } 1306 1307 int64_t 1308 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1309 { 1310 struct hists *hists = left->hists; 1311 struct perf_hpp_fmt *fmt; 1312 int64_t cmp = 0; 1313 1314 hists__for_each_sort_list(hists, fmt) { 1315 if (perf_hpp__is_dynamic_entry(fmt) && 1316 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1317 continue; 1318 1319 cmp = fmt->collapse(fmt, left, right); 1320 if (cmp) 1321 break; 1322 } 1323 1324 return cmp; 1325 } 1326 1327 void hist_entry__delete(struct hist_entry *he) 1328 { 1329 struct hist_entry_ops *ops = he->ops; 1330 1331 thread__zput(he->thread); 1332 map_symbol__exit(&he->ms); 1333 1334 if (he->branch_info) { 1335 branch_info__exit(he->branch_info); 1336 zfree(&he->branch_info); 1337 } 1338 1339 if (he->mem_info) { 1340 map_symbol__exit(&mem_info__iaddr(he->mem_info)->ms); 1341 map_symbol__exit(&mem_info__daddr(he->mem_info)->ms); 1342 mem_info__zput(he->mem_info); 1343 } 1344 1345 if (he->block_info) 1346 block_info__delete(he->block_info); 1347 1348 if (he->kvm_info) 1349 kvm_info__zput(he->kvm_info); 1350 1351 zfree(&he->res_samples); 1352 zfree(&he->stat_acc); 1353 zfree_srcline(&he->srcline); 1354 if (he->srcfile && he->srcfile[0]) 1355 zfree(&he->srcfile); 1356 free_callchain(he->callchain); 1357 zfree(&he->trace_output); 1358 zfree(&he->raw_data); 1359 ops->free(he); 1360 } 1361 1362 /* 1363 * If this is not the last column, then we need to pad it according to the 1364 * pre-calculated max length for this column, otherwise don't bother adding 1365 * spaces because that would break viewing this with, for instance, 'less', 1366 * that would show tons of trailing spaces when a long C++ demangled method 1367 * names is sampled. 1368 */ 1369 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1370 struct perf_hpp_fmt *fmt, int printed) 1371 { 1372 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1373 const int width = fmt->width(fmt, hpp, he->hists); 1374 if (printed < width) { 1375 advance_hpp(hpp, printed); 1376 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1377 } 1378 } 1379 1380 return printed; 1381 } 1382 1383 /* 1384 * collapse the histogram 1385 */ 1386 1387 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1388 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1389 enum hist_filter type); 1390 1391 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1392 1393 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1394 { 1395 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1396 } 1397 1398 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1399 enum hist_filter type, 1400 fmt_chk_fn check) 1401 { 1402 struct perf_hpp_fmt *fmt; 1403 bool type_match = false; 1404 struct hist_entry *parent = he->parent_he; 1405 1406 switch (type) { 1407 case HIST_FILTER__THREAD: 1408 if (symbol_conf.comm_list == NULL && 1409 symbol_conf.pid_list == NULL && 1410 symbol_conf.tid_list == NULL) 1411 return; 1412 break; 1413 case HIST_FILTER__DSO: 1414 if (symbol_conf.dso_list == NULL) 1415 return; 1416 break; 1417 case HIST_FILTER__SYMBOL: 1418 if (symbol_conf.sym_list == NULL) 1419 return; 1420 break; 1421 case HIST_FILTER__PARENT: 1422 case HIST_FILTER__GUEST: 1423 case HIST_FILTER__HOST: 1424 case HIST_FILTER__SOCKET: 1425 case HIST_FILTER__C2C: 1426 default: 1427 return; 1428 } 1429 1430 /* if it's filtered by own fmt, it has to have filter bits */ 1431 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1432 if (check(fmt)) { 1433 type_match = true; 1434 break; 1435 } 1436 } 1437 1438 if (type_match) { 1439 /* 1440 * If the filter is for current level entry, propagate 1441 * filter marker to parents. The marker bit was 1442 * already set by default so it only needs to clear 1443 * non-filtered entries. 1444 */ 1445 if (!(he->filtered & (1 << type))) { 1446 while (parent) { 1447 parent->filtered &= ~(1 << type); 1448 parent = parent->parent_he; 1449 } 1450 } 1451 } else { 1452 /* 1453 * If current entry doesn't have matching formats, set 1454 * filter marker for upper level entries. it will be 1455 * cleared if its lower level entries is not filtered. 1456 * 1457 * For lower-level entries, it inherits parent's 1458 * filter bit so that lower level entries of a 1459 * non-filtered entry won't set the filter marker. 1460 */ 1461 if (parent == NULL) 1462 he->filtered |= (1 << type); 1463 else 1464 he->filtered |= (parent->filtered & (1 << type)); 1465 } 1466 } 1467 1468 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1469 { 1470 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1471 check_thread_entry); 1472 1473 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1474 perf_hpp__is_dso_entry); 1475 1476 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1477 perf_hpp__is_sym_entry); 1478 1479 hists__apply_filters(he->hists, he); 1480 } 1481 1482 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1483 struct rb_root_cached *root, 1484 struct hist_entry *he, 1485 struct hist_entry *parent_he, 1486 struct perf_hpp_list *hpp_list) 1487 { 1488 struct rb_node **p = &root->rb_root.rb_node; 1489 struct rb_node *parent = NULL; 1490 struct hist_entry *iter, *new; 1491 struct perf_hpp_fmt *fmt; 1492 int64_t cmp; 1493 bool leftmost = true; 1494 1495 while (*p != NULL) { 1496 parent = *p; 1497 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1498 1499 cmp = 0; 1500 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1501 cmp = fmt->collapse(fmt, iter, he); 1502 if (cmp) 1503 break; 1504 } 1505 1506 if (!cmp) { 1507 he_stat__add_stat(&iter->stat, &he->stat); 1508 return iter; 1509 } 1510 1511 if (cmp < 0) 1512 p = &parent->rb_left; 1513 else { 1514 p = &parent->rb_right; 1515 leftmost = false; 1516 } 1517 } 1518 1519 new = hist_entry__new(he, true); 1520 if (new == NULL) 1521 return NULL; 1522 1523 hists->nr_entries++; 1524 1525 /* save related format list for output */ 1526 new->hpp_list = hpp_list; 1527 new->parent_he = parent_he; 1528 1529 hist_entry__apply_hierarchy_filters(new); 1530 1531 /* some fields are now passed to 'new' */ 1532 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1533 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1534 he->trace_output = NULL; 1535 else 1536 new->trace_output = NULL; 1537 1538 if (perf_hpp__is_srcline_entry(fmt)) 1539 he->srcline = NULL; 1540 else 1541 new->srcline = NULL; 1542 1543 if (perf_hpp__is_srcfile_entry(fmt)) 1544 he->srcfile = NULL; 1545 else 1546 new->srcfile = NULL; 1547 } 1548 1549 rb_link_node(&new->rb_node_in, parent, p); 1550 rb_insert_color_cached(&new->rb_node_in, root, leftmost); 1551 return new; 1552 } 1553 1554 static int hists__hierarchy_insert_entry(struct hists *hists, 1555 struct rb_root_cached *root, 1556 struct hist_entry *he) 1557 { 1558 struct perf_hpp_list_node *node; 1559 struct hist_entry *new_he = NULL; 1560 struct hist_entry *parent = NULL; 1561 int depth = 0; 1562 int ret = 0; 1563 1564 list_for_each_entry(node, &hists->hpp_formats, list) { 1565 /* skip period (overhead) and elided columns */ 1566 if (node->level == 0 || node->skip) 1567 continue; 1568 1569 /* insert copy of 'he' for each fmt into the hierarchy */ 1570 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1571 if (new_he == NULL) { 1572 ret = -1; 1573 break; 1574 } 1575 1576 root = &new_he->hroot_in; 1577 new_he->depth = depth++; 1578 parent = new_he; 1579 } 1580 1581 if (new_he) { 1582 new_he->leaf = true; 1583 1584 if (hist_entry__has_callchains(new_he) && 1585 symbol_conf.use_callchain) { 1586 struct callchain_cursor *cursor = get_tls_callchain_cursor(); 1587 1588 if (cursor == NULL) 1589 return -1; 1590 1591 callchain_cursor_reset(cursor); 1592 if (callchain_merge(cursor, 1593 new_he->callchain, 1594 he->callchain) < 0) 1595 ret = -1; 1596 } 1597 } 1598 1599 /* 'he' is no longer used */ 1600 hist_entry__delete(he); 1601 1602 /* return 0 (or -1) since it already applied filters */ 1603 return ret; 1604 } 1605 1606 static int hists__collapse_insert_entry(struct hists *hists, 1607 struct rb_root_cached *root, 1608 struct hist_entry *he) 1609 { 1610 struct rb_node **p = &root->rb_root.rb_node; 1611 struct rb_node *parent = NULL; 1612 struct hist_entry *iter; 1613 int64_t cmp; 1614 bool leftmost = true; 1615 1616 if (symbol_conf.report_hierarchy) 1617 return hists__hierarchy_insert_entry(hists, root, he); 1618 1619 while (*p != NULL) { 1620 parent = *p; 1621 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1622 1623 cmp = hist_entry__collapse(iter, he); 1624 1625 if (!cmp) { 1626 int ret = 0; 1627 1628 he_stat__add_stat(&iter->stat, &he->stat); 1629 if (symbol_conf.cumulate_callchain) 1630 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1631 1632 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) { 1633 struct callchain_cursor *cursor = get_tls_callchain_cursor(); 1634 1635 if (cursor != NULL) { 1636 callchain_cursor_reset(cursor); 1637 if (callchain_merge(cursor, iter->callchain, he->callchain) < 0) 1638 ret = -1; 1639 } else { 1640 ret = 0; 1641 } 1642 } 1643 hist_entry__delete(he); 1644 return ret; 1645 } 1646 1647 if (cmp < 0) 1648 p = &(*p)->rb_left; 1649 else { 1650 p = &(*p)->rb_right; 1651 leftmost = false; 1652 } 1653 } 1654 hists->nr_entries++; 1655 1656 rb_link_node(&he->rb_node_in, parent, p); 1657 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 1658 return 1; 1659 } 1660 1661 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists) 1662 { 1663 struct rb_root_cached *root; 1664 1665 mutex_lock(&hists->lock); 1666 1667 root = hists->entries_in; 1668 if (++hists->entries_in > &hists->entries_in_array[1]) 1669 hists->entries_in = &hists->entries_in_array[0]; 1670 1671 mutex_unlock(&hists->lock); 1672 1673 return root; 1674 } 1675 1676 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1677 { 1678 hists__filter_entry_by_dso(hists, he); 1679 hists__filter_entry_by_thread(hists, he); 1680 hists__filter_entry_by_symbol(hists, he); 1681 hists__filter_entry_by_socket(hists, he); 1682 } 1683 1684 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1685 { 1686 struct rb_root_cached *root; 1687 struct rb_node *next; 1688 struct hist_entry *n; 1689 int ret; 1690 1691 if (!hists__has(hists, need_collapse)) 1692 return 0; 1693 1694 hists->nr_entries = 0; 1695 1696 root = hists__get_rotate_entries_in(hists); 1697 1698 next = rb_first_cached(root); 1699 1700 while (next) { 1701 if (session_done()) 1702 break; 1703 n = rb_entry(next, struct hist_entry, rb_node_in); 1704 next = rb_next(&n->rb_node_in); 1705 1706 rb_erase_cached(&n->rb_node_in, root); 1707 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1708 if (ret < 0) 1709 return -1; 1710 1711 if (ret) { 1712 /* 1713 * If it wasn't combined with one of the entries already 1714 * collapsed, we need to apply the filters that may have 1715 * been set by, say, the hist_browser. 1716 */ 1717 hists__apply_filters(hists, n); 1718 } 1719 if (prog) 1720 ui_progress__update(prog, 1); 1721 } 1722 return 0; 1723 } 1724 1725 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1726 { 1727 struct hists *hists = a->hists; 1728 struct perf_hpp_fmt *fmt; 1729 int64_t cmp = 0; 1730 1731 hists__for_each_sort_list(hists, fmt) { 1732 if (perf_hpp__should_skip(fmt, a->hists)) 1733 continue; 1734 1735 cmp = fmt->sort(fmt, a, b); 1736 if (cmp) 1737 break; 1738 } 1739 1740 return cmp; 1741 } 1742 1743 static void hists__reset_filter_stats(struct hists *hists) 1744 { 1745 hists->nr_non_filtered_entries = 0; 1746 hists->stats.total_non_filtered_period = 0; 1747 } 1748 1749 void hists__reset_stats(struct hists *hists) 1750 { 1751 hists->nr_entries = 0; 1752 hists->stats.total_period = 0; 1753 1754 hists__reset_filter_stats(hists); 1755 } 1756 1757 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1758 { 1759 hists->nr_non_filtered_entries++; 1760 hists->stats.total_non_filtered_period += h->stat.period; 1761 } 1762 1763 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1764 { 1765 if (!h->filtered) 1766 hists__inc_filter_stats(hists, h); 1767 1768 hists->nr_entries++; 1769 hists->stats.total_period += h->stat.period; 1770 } 1771 1772 static void hierarchy_recalc_total_periods(struct hists *hists) 1773 { 1774 struct rb_node *node; 1775 struct hist_entry *he; 1776 1777 node = rb_first_cached(&hists->entries); 1778 1779 hists->stats.total_period = 0; 1780 hists->stats.total_non_filtered_period = 0; 1781 1782 /* 1783 * recalculate total period using top-level entries only 1784 * since lower level entries only see non-filtered entries 1785 * but upper level entries have sum of both entries. 1786 */ 1787 while (node) { 1788 he = rb_entry(node, struct hist_entry, rb_node); 1789 node = rb_next(node); 1790 1791 hists->stats.total_period += he->stat.period; 1792 if (!he->filtered) 1793 hists->stats.total_non_filtered_period += he->stat.period; 1794 } 1795 } 1796 1797 static void hierarchy_insert_output_entry(struct rb_root_cached *root, 1798 struct hist_entry *he) 1799 { 1800 struct rb_node **p = &root->rb_root.rb_node; 1801 struct rb_node *parent = NULL; 1802 struct hist_entry *iter; 1803 struct perf_hpp_fmt *fmt; 1804 bool leftmost = true; 1805 1806 while (*p != NULL) { 1807 parent = *p; 1808 iter = rb_entry(parent, struct hist_entry, rb_node); 1809 1810 if (hist_entry__sort(he, iter) > 0) 1811 p = &parent->rb_left; 1812 else { 1813 p = &parent->rb_right; 1814 leftmost = false; 1815 } 1816 } 1817 1818 rb_link_node(&he->rb_node, parent, p); 1819 rb_insert_color_cached(&he->rb_node, root, leftmost); 1820 1821 /* update column width of dynamic entry */ 1822 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1823 if (fmt->init) 1824 fmt->init(fmt, he); 1825 } 1826 } 1827 1828 static void hists__hierarchy_output_resort(struct hists *hists, 1829 struct ui_progress *prog, 1830 struct rb_root_cached *root_in, 1831 struct rb_root_cached *root_out, 1832 u64 min_callchain_hits, 1833 bool use_callchain) 1834 { 1835 struct rb_node *node; 1836 struct hist_entry *he; 1837 1838 *root_out = RB_ROOT_CACHED; 1839 node = rb_first_cached(root_in); 1840 1841 while (node) { 1842 he = rb_entry(node, struct hist_entry, rb_node_in); 1843 node = rb_next(node); 1844 1845 hierarchy_insert_output_entry(root_out, he); 1846 1847 if (prog) 1848 ui_progress__update(prog, 1); 1849 1850 hists->nr_entries++; 1851 if (!he->filtered) { 1852 hists->nr_non_filtered_entries++; 1853 hists__calc_col_len(hists, he); 1854 } 1855 1856 if (!he->leaf) { 1857 hists__hierarchy_output_resort(hists, prog, 1858 &he->hroot_in, 1859 &he->hroot_out, 1860 min_callchain_hits, 1861 use_callchain); 1862 continue; 1863 } 1864 1865 if (!use_callchain) 1866 continue; 1867 1868 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1869 u64 total = he->stat.period; 1870 1871 if (symbol_conf.cumulate_callchain) 1872 total = he->stat_acc->period; 1873 1874 min_callchain_hits = total * (callchain_param.min_percent / 100); 1875 } 1876 1877 callchain_param.sort(&he->sorted_chain, he->callchain, 1878 min_callchain_hits, &callchain_param); 1879 } 1880 } 1881 1882 static void __hists__insert_output_entry(struct rb_root_cached *entries, 1883 struct hist_entry *he, 1884 u64 min_callchain_hits, 1885 bool use_callchain) 1886 { 1887 struct rb_node **p = &entries->rb_root.rb_node; 1888 struct rb_node *parent = NULL; 1889 struct hist_entry *iter; 1890 struct perf_hpp_fmt *fmt; 1891 bool leftmost = true; 1892 1893 if (use_callchain) { 1894 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1895 u64 total = he->stat.period; 1896 1897 if (symbol_conf.cumulate_callchain) 1898 total = he->stat_acc->period; 1899 1900 min_callchain_hits = total * (callchain_param.min_percent / 100); 1901 } 1902 callchain_param.sort(&he->sorted_chain, he->callchain, 1903 min_callchain_hits, &callchain_param); 1904 } 1905 1906 while (*p != NULL) { 1907 parent = *p; 1908 iter = rb_entry(parent, struct hist_entry, rb_node); 1909 1910 if (hist_entry__sort(he, iter) > 0) 1911 p = &(*p)->rb_left; 1912 else { 1913 p = &(*p)->rb_right; 1914 leftmost = false; 1915 } 1916 } 1917 1918 rb_link_node(&he->rb_node, parent, p); 1919 rb_insert_color_cached(&he->rb_node, entries, leftmost); 1920 1921 /* update column width of dynamic entries */ 1922 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1923 if (fmt->init) 1924 fmt->init(fmt, he); 1925 } 1926 } 1927 1928 static void output_resort(struct hists *hists, struct ui_progress *prog, 1929 bool use_callchain, hists__resort_cb_t cb, 1930 void *cb_arg) 1931 { 1932 struct rb_root_cached *root; 1933 struct rb_node *next; 1934 struct hist_entry *n; 1935 u64 callchain_total; 1936 u64 min_callchain_hits; 1937 1938 callchain_total = hists->callchain_period; 1939 if (symbol_conf.filter_relative) 1940 callchain_total = hists->callchain_non_filtered_period; 1941 1942 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1943 1944 hists__reset_stats(hists); 1945 hists__reset_col_len(hists); 1946 1947 if (symbol_conf.report_hierarchy) { 1948 hists__hierarchy_output_resort(hists, prog, 1949 &hists->entries_collapsed, 1950 &hists->entries, 1951 min_callchain_hits, 1952 use_callchain); 1953 hierarchy_recalc_total_periods(hists); 1954 return; 1955 } 1956 1957 if (hists__has(hists, need_collapse)) 1958 root = &hists->entries_collapsed; 1959 else 1960 root = hists->entries_in; 1961 1962 next = rb_first_cached(root); 1963 hists->entries = RB_ROOT_CACHED; 1964 1965 while (next) { 1966 n = rb_entry(next, struct hist_entry, rb_node_in); 1967 next = rb_next(&n->rb_node_in); 1968 1969 if (cb && cb(n, cb_arg)) 1970 continue; 1971 1972 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1973 hists__inc_stats(hists, n); 1974 1975 if (!n->filtered) 1976 hists__calc_col_len(hists, n); 1977 1978 if (prog) 1979 ui_progress__update(prog, 1); 1980 } 1981 } 1982 1983 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog, 1984 hists__resort_cb_t cb, void *cb_arg) 1985 { 1986 bool use_callchain; 1987 1988 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1989 use_callchain = evsel__has_callchain(evsel); 1990 else 1991 use_callchain = symbol_conf.use_callchain; 1992 1993 use_callchain |= symbol_conf.show_branchflag_count; 1994 1995 output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg); 1996 } 1997 1998 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog) 1999 { 2000 return evsel__output_resort_cb(evsel, prog, NULL, NULL); 2001 } 2002 2003 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 2004 { 2005 output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL); 2006 } 2007 2008 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, 2009 hists__resort_cb_t cb) 2010 { 2011 output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL); 2012 } 2013 2014 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 2015 { 2016 if (he->leaf || hmd == HMD_FORCE_SIBLING) 2017 return false; 2018 2019 if (he->unfolded || hmd == HMD_FORCE_CHILD) 2020 return true; 2021 2022 return false; 2023 } 2024 2025 struct rb_node *rb_hierarchy_last(struct rb_node *node) 2026 { 2027 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2028 2029 while (can_goto_child(he, HMD_NORMAL)) { 2030 node = rb_last(&he->hroot_out.rb_root); 2031 he = rb_entry(node, struct hist_entry, rb_node); 2032 } 2033 return node; 2034 } 2035 2036 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 2037 { 2038 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2039 2040 if (can_goto_child(he, hmd)) 2041 node = rb_first_cached(&he->hroot_out); 2042 else 2043 node = rb_next(node); 2044 2045 while (node == NULL) { 2046 he = he->parent_he; 2047 if (he == NULL) 2048 break; 2049 2050 node = rb_next(&he->rb_node); 2051 } 2052 return node; 2053 } 2054 2055 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 2056 { 2057 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2058 2059 node = rb_prev(node); 2060 if (node) 2061 return rb_hierarchy_last(node); 2062 2063 he = he->parent_he; 2064 if (he == NULL) 2065 return NULL; 2066 2067 return &he->rb_node; 2068 } 2069 2070 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 2071 { 2072 struct rb_node *node; 2073 struct hist_entry *child; 2074 float percent; 2075 2076 if (he->leaf) 2077 return false; 2078 2079 node = rb_first_cached(&he->hroot_out); 2080 child = rb_entry(node, struct hist_entry, rb_node); 2081 2082 while (node && child->filtered) { 2083 node = rb_next(node); 2084 child = rb_entry(node, struct hist_entry, rb_node); 2085 } 2086 2087 if (node) 2088 percent = hist_entry__get_percent_limit(child); 2089 else 2090 percent = 0; 2091 2092 return node && percent >= limit; 2093 } 2094 2095 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 2096 enum hist_filter filter) 2097 { 2098 h->filtered &= ~(1 << filter); 2099 2100 if (symbol_conf.report_hierarchy) { 2101 struct hist_entry *parent = h->parent_he; 2102 2103 while (parent) { 2104 he_stat__add_stat(&parent->stat, &h->stat); 2105 2106 parent->filtered &= ~(1 << filter); 2107 2108 if (parent->filtered) 2109 goto next; 2110 2111 /* force fold unfiltered entry for simplicity */ 2112 parent->unfolded = false; 2113 parent->has_no_entry = false; 2114 parent->row_offset = 0; 2115 parent->nr_rows = 0; 2116 next: 2117 parent = parent->parent_he; 2118 } 2119 } 2120 2121 if (h->filtered) 2122 return; 2123 2124 /* force fold unfiltered entry for simplicity */ 2125 h->unfolded = false; 2126 h->has_no_entry = false; 2127 h->row_offset = 0; 2128 h->nr_rows = 0; 2129 2130 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 2131 2132 hists__inc_filter_stats(hists, h); 2133 hists__calc_col_len(hists, h); 2134 } 2135 2136 2137 static bool hists__filter_entry_by_dso(struct hists *hists, 2138 struct hist_entry *he) 2139 { 2140 if (hists->dso_filter != NULL && 2141 (he->ms.map == NULL || !RC_CHK_EQUAL(map__dso(he->ms.map), hists->dso_filter))) { 2142 he->filtered |= (1 << HIST_FILTER__DSO); 2143 return true; 2144 } 2145 2146 return false; 2147 } 2148 2149 static bool hists__filter_entry_by_thread(struct hists *hists, 2150 struct hist_entry *he) 2151 { 2152 if (hists->thread_filter != NULL && 2153 !RC_CHK_EQUAL(he->thread, hists->thread_filter)) { 2154 he->filtered |= (1 << HIST_FILTER__THREAD); 2155 return true; 2156 } 2157 2158 return false; 2159 } 2160 2161 static bool hists__filter_entry_by_symbol(struct hists *hists, 2162 struct hist_entry *he) 2163 { 2164 if (hists->symbol_filter_str != NULL && 2165 (!he->ms.sym || strstr(he->ms.sym->name, 2166 hists->symbol_filter_str) == NULL)) { 2167 he->filtered |= (1 << HIST_FILTER__SYMBOL); 2168 return true; 2169 } 2170 2171 return false; 2172 } 2173 2174 static bool hists__filter_entry_by_socket(struct hists *hists, 2175 struct hist_entry *he) 2176 { 2177 if ((hists->socket_filter > -1) && 2178 (he->socket != hists->socket_filter)) { 2179 he->filtered |= (1 << HIST_FILTER__SOCKET); 2180 return true; 2181 } 2182 2183 return false; 2184 } 2185 2186 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 2187 2188 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 2189 { 2190 struct rb_node *nd; 2191 2192 hists->stats.nr_non_filtered_samples = 0; 2193 2194 hists__reset_filter_stats(hists); 2195 hists__reset_col_len(hists); 2196 2197 for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) { 2198 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2199 2200 if (filter(hists, h)) 2201 continue; 2202 2203 hists__remove_entry_filter(hists, h, type); 2204 } 2205 } 2206 2207 static void resort_filtered_entry(struct rb_root_cached *root, 2208 struct hist_entry *he) 2209 { 2210 struct rb_node **p = &root->rb_root.rb_node; 2211 struct rb_node *parent = NULL; 2212 struct hist_entry *iter; 2213 struct rb_root_cached new_root = RB_ROOT_CACHED; 2214 struct rb_node *nd; 2215 bool leftmost = true; 2216 2217 while (*p != NULL) { 2218 parent = *p; 2219 iter = rb_entry(parent, struct hist_entry, rb_node); 2220 2221 if (hist_entry__sort(he, iter) > 0) 2222 p = &(*p)->rb_left; 2223 else { 2224 p = &(*p)->rb_right; 2225 leftmost = false; 2226 } 2227 } 2228 2229 rb_link_node(&he->rb_node, parent, p); 2230 rb_insert_color_cached(&he->rb_node, root, leftmost); 2231 2232 if (he->leaf || he->filtered) 2233 return; 2234 2235 nd = rb_first_cached(&he->hroot_out); 2236 while (nd) { 2237 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2238 2239 nd = rb_next(nd); 2240 rb_erase_cached(&h->rb_node, &he->hroot_out); 2241 2242 resort_filtered_entry(&new_root, h); 2243 } 2244 2245 he->hroot_out = new_root; 2246 } 2247 2248 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 2249 { 2250 struct rb_node *nd; 2251 struct rb_root_cached new_root = RB_ROOT_CACHED; 2252 2253 hists->stats.nr_non_filtered_samples = 0; 2254 2255 hists__reset_filter_stats(hists); 2256 hists__reset_col_len(hists); 2257 2258 nd = rb_first_cached(&hists->entries); 2259 while (nd) { 2260 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2261 int ret; 2262 2263 ret = hist_entry__filter(h, type, arg); 2264 2265 /* 2266 * case 1. non-matching type 2267 * zero out the period, set filter marker and move to child 2268 */ 2269 if (ret < 0) { 2270 memset(&h->stat, 0, sizeof(h->stat)); 2271 h->filtered |= (1 << type); 2272 2273 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 2274 } 2275 /* 2276 * case 2. matched type (filter out) 2277 * set filter marker and move to next 2278 */ 2279 else if (ret == 1) { 2280 h->filtered |= (1 << type); 2281 2282 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2283 } 2284 /* 2285 * case 3. ok (not filtered) 2286 * add period to hists and parents, erase the filter marker 2287 * and move to next sibling 2288 */ 2289 else { 2290 hists__remove_entry_filter(hists, h, type); 2291 2292 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2293 } 2294 } 2295 2296 hierarchy_recalc_total_periods(hists); 2297 2298 /* 2299 * resort output after applying a new filter since filter in a lower 2300 * hierarchy can change periods in a upper hierarchy. 2301 */ 2302 nd = rb_first_cached(&hists->entries); 2303 while (nd) { 2304 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2305 2306 nd = rb_next(nd); 2307 rb_erase_cached(&h->rb_node, &hists->entries); 2308 2309 resort_filtered_entry(&new_root, h); 2310 } 2311 2312 hists->entries = new_root; 2313 } 2314 2315 void hists__filter_by_thread(struct hists *hists) 2316 { 2317 if (symbol_conf.report_hierarchy) 2318 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 2319 hists->thread_filter); 2320 else 2321 hists__filter_by_type(hists, HIST_FILTER__THREAD, 2322 hists__filter_entry_by_thread); 2323 } 2324 2325 void hists__filter_by_dso(struct hists *hists) 2326 { 2327 if (symbol_conf.report_hierarchy) 2328 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 2329 hists->dso_filter); 2330 else 2331 hists__filter_by_type(hists, HIST_FILTER__DSO, 2332 hists__filter_entry_by_dso); 2333 } 2334 2335 void hists__filter_by_symbol(struct hists *hists) 2336 { 2337 if (symbol_conf.report_hierarchy) 2338 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2339 hists->symbol_filter_str); 2340 else 2341 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2342 hists__filter_entry_by_symbol); 2343 } 2344 2345 void hists__filter_by_socket(struct hists *hists) 2346 { 2347 if (symbol_conf.report_hierarchy) 2348 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2349 &hists->socket_filter); 2350 else 2351 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2352 hists__filter_entry_by_socket); 2353 } 2354 2355 void events_stats__inc(struct events_stats *stats, u32 type) 2356 { 2357 ++stats->nr_events[0]; 2358 ++stats->nr_events[type]; 2359 } 2360 2361 static void hists_stats__inc(struct hists_stats *stats) 2362 { 2363 ++stats->nr_samples; 2364 } 2365 2366 void hists__inc_nr_events(struct hists *hists) 2367 { 2368 hists_stats__inc(&hists->stats); 2369 } 2370 2371 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2372 { 2373 hists_stats__inc(&hists->stats); 2374 if (!filtered) 2375 hists->stats.nr_non_filtered_samples++; 2376 } 2377 2378 void hists__inc_nr_lost_samples(struct hists *hists, u32 lost) 2379 { 2380 hists->stats.nr_lost_samples += lost; 2381 } 2382 2383 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2384 struct hist_entry *pair) 2385 { 2386 struct rb_root_cached *root; 2387 struct rb_node **p; 2388 struct rb_node *parent = NULL; 2389 struct hist_entry *he; 2390 int64_t cmp; 2391 bool leftmost = true; 2392 2393 if (hists__has(hists, need_collapse)) 2394 root = &hists->entries_collapsed; 2395 else 2396 root = hists->entries_in; 2397 2398 p = &root->rb_root.rb_node; 2399 2400 while (*p != NULL) { 2401 parent = *p; 2402 he = rb_entry(parent, struct hist_entry, rb_node_in); 2403 2404 cmp = hist_entry__collapse(he, pair); 2405 2406 if (!cmp) 2407 goto out; 2408 2409 if (cmp < 0) 2410 p = &(*p)->rb_left; 2411 else { 2412 p = &(*p)->rb_right; 2413 leftmost = false; 2414 } 2415 } 2416 2417 he = hist_entry__new(pair, true); 2418 if (he) { 2419 memset(&he->stat, 0, sizeof(he->stat)); 2420 he->hists = hists; 2421 if (symbol_conf.cumulate_callchain) 2422 memset(he->stat_acc, 0, sizeof(he->stat)); 2423 rb_link_node(&he->rb_node_in, parent, p); 2424 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2425 hists__inc_stats(hists, he); 2426 he->dummy = true; 2427 } 2428 out: 2429 return he; 2430 } 2431 2432 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, 2433 struct rb_root_cached *root, 2434 struct hist_entry *pair) 2435 { 2436 struct rb_node **p; 2437 struct rb_node *parent = NULL; 2438 struct hist_entry *he; 2439 struct perf_hpp_fmt *fmt; 2440 bool leftmost = true; 2441 2442 p = &root->rb_root.rb_node; 2443 while (*p != NULL) { 2444 int64_t cmp = 0; 2445 2446 parent = *p; 2447 he = rb_entry(parent, struct hist_entry, rb_node_in); 2448 2449 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2450 cmp = fmt->collapse(fmt, he, pair); 2451 if (cmp) 2452 break; 2453 } 2454 if (!cmp) 2455 goto out; 2456 2457 if (cmp < 0) 2458 p = &parent->rb_left; 2459 else { 2460 p = &parent->rb_right; 2461 leftmost = false; 2462 } 2463 } 2464 2465 he = hist_entry__new(pair, true); 2466 if (he) { 2467 rb_link_node(&he->rb_node_in, parent, p); 2468 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2469 2470 he->dummy = true; 2471 he->hists = hists; 2472 memset(&he->stat, 0, sizeof(he->stat)); 2473 hists__inc_stats(hists, he); 2474 } 2475 out: 2476 return he; 2477 } 2478 2479 static struct hist_entry *hists__find_entry(struct hists *hists, 2480 struct hist_entry *he) 2481 { 2482 struct rb_node *n; 2483 2484 if (hists__has(hists, need_collapse)) 2485 n = hists->entries_collapsed.rb_root.rb_node; 2486 else 2487 n = hists->entries_in->rb_root.rb_node; 2488 2489 while (n) { 2490 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2491 int64_t cmp = hist_entry__collapse(iter, he); 2492 2493 if (cmp < 0) 2494 n = n->rb_left; 2495 else if (cmp > 0) 2496 n = n->rb_right; 2497 else 2498 return iter; 2499 } 2500 2501 return NULL; 2502 } 2503 2504 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root, 2505 struct hist_entry *he) 2506 { 2507 struct rb_node *n = root->rb_root.rb_node; 2508 2509 while (n) { 2510 struct hist_entry *iter; 2511 struct perf_hpp_fmt *fmt; 2512 int64_t cmp = 0; 2513 2514 iter = rb_entry(n, struct hist_entry, rb_node_in); 2515 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2516 cmp = fmt->collapse(fmt, iter, he); 2517 if (cmp) 2518 break; 2519 } 2520 2521 if (cmp < 0) 2522 n = n->rb_left; 2523 else if (cmp > 0) 2524 n = n->rb_right; 2525 else 2526 return iter; 2527 } 2528 2529 return NULL; 2530 } 2531 2532 static void hists__match_hierarchy(struct rb_root_cached *leader_root, 2533 struct rb_root_cached *other_root) 2534 { 2535 struct rb_node *nd; 2536 struct hist_entry *pos, *pair; 2537 2538 for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) { 2539 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2540 pair = hists__find_hierarchy_entry(other_root, pos); 2541 2542 if (pair) { 2543 hist_entry__add_pair(pair, pos); 2544 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); 2545 } 2546 } 2547 } 2548 2549 /* 2550 * Look for pairs to link to the leader buckets (hist_entries): 2551 */ 2552 void hists__match(struct hists *leader, struct hists *other) 2553 { 2554 struct rb_root_cached *root; 2555 struct rb_node *nd; 2556 struct hist_entry *pos, *pair; 2557 2558 if (symbol_conf.report_hierarchy) { 2559 /* hierarchy report always collapses entries */ 2560 return hists__match_hierarchy(&leader->entries_collapsed, 2561 &other->entries_collapsed); 2562 } 2563 2564 if (hists__has(leader, need_collapse)) 2565 root = &leader->entries_collapsed; 2566 else 2567 root = leader->entries_in; 2568 2569 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2570 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2571 pair = hists__find_entry(other, pos); 2572 2573 if (pair) 2574 hist_entry__add_pair(pair, pos); 2575 } 2576 } 2577 2578 static int hists__link_hierarchy(struct hists *leader_hists, 2579 struct hist_entry *parent, 2580 struct rb_root_cached *leader_root, 2581 struct rb_root_cached *other_root) 2582 { 2583 struct rb_node *nd; 2584 struct hist_entry *pos, *leader; 2585 2586 for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) { 2587 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2588 2589 if (hist_entry__has_pairs(pos)) { 2590 bool found = false; 2591 2592 list_for_each_entry(leader, &pos->pairs.head, pairs.node) { 2593 if (leader->hists == leader_hists) { 2594 found = true; 2595 break; 2596 } 2597 } 2598 if (!found) 2599 return -1; 2600 } else { 2601 leader = add_dummy_hierarchy_entry(leader_hists, 2602 leader_root, pos); 2603 if (leader == NULL) 2604 return -1; 2605 2606 /* do not point parent in the pos */ 2607 leader->parent_he = parent; 2608 2609 hist_entry__add_pair(pos, leader); 2610 } 2611 2612 if (!pos->leaf) { 2613 if (hists__link_hierarchy(leader_hists, leader, 2614 &leader->hroot_in, 2615 &pos->hroot_in) < 0) 2616 return -1; 2617 } 2618 } 2619 return 0; 2620 } 2621 2622 /* 2623 * Look for entries in the other hists that are not present in the leader, if 2624 * we find them, just add a dummy entry on the leader hists, with period=0, 2625 * nr_events=0, to serve as the list header. 2626 */ 2627 int hists__link(struct hists *leader, struct hists *other) 2628 { 2629 struct rb_root_cached *root; 2630 struct rb_node *nd; 2631 struct hist_entry *pos, *pair; 2632 2633 if (symbol_conf.report_hierarchy) { 2634 /* hierarchy report always collapses entries */ 2635 return hists__link_hierarchy(leader, NULL, 2636 &leader->entries_collapsed, 2637 &other->entries_collapsed); 2638 } 2639 2640 if (hists__has(other, need_collapse)) 2641 root = &other->entries_collapsed; 2642 else 2643 root = other->entries_in; 2644 2645 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2646 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2647 2648 if (!hist_entry__has_pairs(pos)) { 2649 pair = hists__add_dummy_entry(leader, pos); 2650 if (pair == NULL) 2651 return -1; 2652 hist_entry__add_pair(pos, pair); 2653 } 2654 } 2655 2656 return 0; 2657 } 2658 2659 int hists__unlink(struct hists *hists) 2660 { 2661 struct rb_root_cached *root; 2662 struct rb_node *nd; 2663 struct hist_entry *pos; 2664 2665 if (hists__has(hists, need_collapse)) 2666 root = &hists->entries_collapsed; 2667 else 2668 root = hists->entries_in; 2669 2670 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2671 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2672 list_del_init(&pos->pairs.node); 2673 } 2674 2675 return 0; 2676 } 2677 2678 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2679 struct perf_sample *sample, bool nonany_branch_mode, 2680 u64 *total_cycles) 2681 { 2682 struct branch_info *bi; 2683 struct branch_entry *entries = perf_sample__branch_entries(sample); 2684 2685 /* If we have branch cycles always annotate them. */ 2686 if (bs && bs->nr && entries[0].flags.cycles) { 2687 bi = sample__resolve_bstack(sample, al); 2688 if (bi) { 2689 struct addr_map_symbol *prev = NULL; 2690 2691 /* 2692 * Ignore errors, still want to process the 2693 * other entries. 2694 * 2695 * For non standard branch modes always 2696 * force no IPC (prev == NULL) 2697 * 2698 * Note that perf stores branches reversed from 2699 * program order! 2700 */ 2701 for (int i = bs->nr - 1; i >= 0; i--) { 2702 addr_map_symbol__account_cycles(&bi[i].from, 2703 nonany_branch_mode ? NULL : prev, 2704 bi[i].flags.cycles); 2705 prev = &bi[i].to; 2706 2707 if (total_cycles) 2708 *total_cycles += bi[i].flags.cycles; 2709 } 2710 for (unsigned int i = 0; i < bs->nr; i++) { 2711 map_symbol__exit(&bi[i].to.ms); 2712 map_symbol__exit(&bi[i].from.ms); 2713 } 2714 free(bi); 2715 } 2716 } 2717 } 2718 2719 size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp) 2720 { 2721 struct evsel *pos; 2722 size_t ret = 0; 2723 2724 evlist__for_each_entry(evlist, pos) { 2725 struct hists *hists = evsel__hists(pos); 2726 2727 if (symbol_conf.skip_empty && !hists->stats.nr_samples && 2728 !hists->stats.nr_lost_samples) 2729 continue; 2730 2731 ret += fprintf(fp, "%s stats:\n", evsel__name(pos)); 2732 if (hists->stats.nr_samples) 2733 ret += fprintf(fp, "%16s events: %10d\n", 2734 "SAMPLE", hists->stats.nr_samples); 2735 if (hists->stats.nr_lost_samples) 2736 ret += fprintf(fp, "%16s events: %10d\n", 2737 "LOST_SAMPLES", hists->stats.nr_lost_samples); 2738 } 2739 2740 return ret; 2741 } 2742 2743 2744 u64 hists__total_period(struct hists *hists) 2745 { 2746 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2747 hists->stats.total_period; 2748 } 2749 2750 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq) 2751 { 2752 char unit; 2753 int printed; 2754 const struct dso *dso = hists->dso_filter; 2755 struct thread *thread = hists->thread_filter; 2756 int socket_id = hists->socket_filter; 2757 unsigned long nr_samples = hists->stats.nr_samples; 2758 u64 nr_events = hists->stats.total_period; 2759 struct evsel *evsel = hists_to_evsel(hists); 2760 const char *ev_name = evsel__name(evsel); 2761 char buf[512], sample_freq_str[64] = ""; 2762 size_t buflen = sizeof(buf); 2763 char ref[30] = " show reference callgraph, "; 2764 bool enable_ref = false; 2765 2766 if (symbol_conf.filter_relative) { 2767 nr_samples = hists->stats.nr_non_filtered_samples; 2768 nr_events = hists->stats.total_non_filtered_period; 2769 } 2770 2771 if (evsel__is_group_event(evsel)) { 2772 struct evsel *pos; 2773 2774 evsel__group_desc(evsel, buf, buflen); 2775 ev_name = buf; 2776 2777 for_each_group_member(pos, evsel) { 2778 struct hists *pos_hists = evsel__hists(pos); 2779 2780 if (symbol_conf.filter_relative) { 2781 nr_samples += pos_hists->stats.nr_non_filtered_samples; 2782 nr_events += pos_hists->stats.total_non_filtered_period; 2783 } else { 2784 nr_samples += pos_hists->stats.nr_samples; 2785 nr_events += pos_hists->stats.total_period; 2786 } 2787 } 2788 } 2789 2790 if (symbol_conf.show_ref_callgraph && 2791 strstr(ev_name, "call-graph=no")) 2792 enable_ref = true; 2793 2794 if (show_freq) 2795 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq); 2796 2797 nr_samples = convert_unit(nr_samples, &unit); 2798 printed = scnprintf(bf, size, 2799 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64, 2800 nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "", 2801 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events); 2802 2803 2804 if (hists->uid_filter_str) 2805 printed += snprintf(bf + printed, size - printed, 2806 ", UID: %s", hists->uid_filter_str); 2807 if (thread) { 2808 if (hists__has(hists, thread)) { 2809 printed += scnprintf(bf + printed, size - printed, 2810 ", Thread: %s(%d)", 2811 (thread__comm_set(thread) ? thread__comm_str(thread) : ""), 2812 thread__tid(thread)); 2813 } else { 2814 printed += scnprintf(bf + printed, size - printed, 2815 ", Thread: %s", 2816 (thread__comm_set(thread) ? thread__comm_str(thread) : "")); 2817 } 2818 } 2819 if (dso) 2820 printed += scnprintf(bf + printed, size - printed, 2821 ", DSO: %s", dso__short_name(dso)); 2822 if (socket_id > -1) 2823 printed += scnprintf(bf + printed, size - printed, 2824 ", Processor Socket: %d", socket_id); 2825 2826 return printed; 2827 } 2828 2829 int parse_filter_percentage(const struct option *opt __maybe_unused, 2830 const char *arg, int unset __maybe_unused) 2831 { 2832 if (!strcmp(arg, "relative")) 2833 symbol_conf.filter_relative = true; 2834 else if (!strcmp(arg, "absolute")) 2835 symbol_conf.filter_relative = false; 2836 else { 2837 pr_debug("Invalid percentage: %s\n", arg); 2838 return -1; 2839 } 2840 2841 return 0; 2842 } 2843 2844 int perf_hist_config(const char *var, const char *value) 2845 { 2846 if (!strcmp(var, "hist.percentage")) 2847 return parse_filter_percentage(NULL, value, 0); 2848 2849 return 0; 2850 } 2851 2852 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2853 { 2854 memset(hists, 0, sizeof(*hists)); 2855 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED; 2856 hists->entries_in = &hists->entries_in_array[0]; 2857 hists->entries_collapsed = RB_ROOT_CACHED; 2858 hists->entries = RB_ROOT_CACHED; 2859 mutex_init(&hists->lock); 2860 hists->socket_filter = -1; 2861 hists->hpp_list = hpp_list; 2862 INIT_LIST_HEAD(&hists->hpp_formats); 2863 return 0; 2864 } 2865 2866 static void hists__delete_remaining_entries(struct rb_root_cached *root) 2867 { 2868 struct rb_node *node; 2869 struct hist_entry *he; 2870 2871 while (!RB_EMPTY_ROOT(&root->rb_root)) { 2872 node = rb_first_cached(root); 2873 rb_erase_cached(node, root); 2874 2875 he = rb_entry(node, struct hist_entry, rb_node_in); 2876 hist_entry__delete(he); 2877 } 2878 } 2879 2880 static void hists__delete_all_entries(struct hists *hists) 2881 { 2882 hists__delete_entries(hists); 2883 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2884 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2885 hists__delete_remaining_entries(&hists->entries_collapsed); 2886 } 2887 2888 static void hists_evsel__exit(struct evsel *evsel) 2889 { 2890 struct hists *hists = evsel__hists(evsel); 2891 struct perf_hpp_fmt *fmt, *pos; 2892 struct perf_hpp_list_node *node, *tmp; 2893 2894 hists__delete_all_entries(hists); 2895 2896 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2897 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2898 list_del_init(&fmt->list); 2899 free(fmt); 2900 } 2901 list_del_init(&node->list); 2902 free(node); 2903 } 2904 } 2905 2906 static int hists_evsel__init(struct evsel *evsel) 2907 { 2908 struct hists *hists = evsel__hists(evsel); 2909 2910 __hists__init(hists, &perf_hpp_list); 2911 return 0; 2912 } 2913 2914 /* 2915 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2916 * stored in the rbtree... 2917 */ 2918 2919 int hists__init(void) 2920 { 2921 int err = evsel__object_config(sizeof(struct hists_evsel), 2922 hists_evsel__init, hists_evsel__exit); 2923 if (err) 2924 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2925 2926 return err; 2927 } 2928 2929 void perf_hpp_list__init(struct perf_hpp_list *list) 2930 { 2931 INIT_LIST_HEAD(&list->fields); 2932 INIT_LIST_HEAD(&list->sorts); 2933 } 2934