xref: /linux/tools/perf/util/hist.c (revision c34e9ab9a612ee8b18273398ef75c207b01f516d)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "callchain.h"
3 #include "debug.h"
4 #include "dso.h"
5 #include "build-id.h"
6 #include "hist.h"
7 #include "kvm-stat.h"
8 #include "map.h"
9 #include "map_symbol.h"
10 #include "branch.h"
11 #include "mem-events.h"
12 #include "mem-info.h"
13 #include "session.h"
14 #include "namespaces.h"
15 #include "cgroup.h"
16 #include "sort.h"
17 #include "units.h"
18 #include "evlist.h"
19 #include "evsel.h"
20 #include "annotate.h"
21 #include "srcline.h"
22 #include "symbol.h"
23 #include "thread.h"
24 #include "block-info.h"
25 #include "ui/progress.h"
26 #include <errno.h>
27 #include <math.h>
28 #include <inttypes.h>
29 #include <sys/param.h>
30 #include <linux/rbtree.h>
31 #include <linux/string.h>
32 #include <linux/time64.h>
33 #include <linux/zalloc.h>
34 
35 static bool hists__filter_entry_by_dso(struct hists *hists,
36 				       struct hist_entry *he);
37 static bool hists__filter_entry_by_thread(struct hists *hists,
38 					  struct hist_entry *he);
39 static bool hists__filter_entry_by_symbol(struct hists *hists,
40 					  struct hist_entry *he);
41 static bool hists__filter_entry_by_socket(struct hists *hists,
42 					  struct hist_entry *he);
43 
44 u16 hists__col_len(struct hists *hists, enum hist_column col)
45 {
46 	return hists->col_len[col];
47 }
48 
49 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
50 {
51 	hists->col_len[col] = len;
52 }
53 
54 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
55 {
56 	if (len > hists__col_len(hists, col)) {
57 		hists__set_col_len(hists, col, len);
58 		return true;
59 	}
60 	return false;
61 }
62 
63 void hists__reset_col_len(struct hists *hists)
64 {
65 	enum hist_column col;
66 
67 	for (col = 0; col < HISTC_NR_COLS; ++col)
68 		hists__set_col_len(hists, col, 0);
69 }
70 
71 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
72 {
73 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
74 
75 	if (hists__col_len(hists, dso) < unresolved_col_width &&
76 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
77 	    !symbol_conf.dso_list)
78 		hists__set_col_len(hists, dso, unresolved_col_width);
79 }
80 
81 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
82 {
83 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
84 	int symlen;
85 	u16 len;
86 
87 	if (h->block_info)
88 		return;
89 	/*
90 	 * +4 accounts for '[x] ' priv level info
91 	 * +2 accounts for 0x prefix on raw addresses
92 	 * +3 accounts for ' y ' symtab origin info
93 	 */
94 	if (h->ms.sym) {
95 		symlen = h->ms.sym->namelen + 4;
96 		if (verbose > 0)
97 			symlen += BITS_PER_LONG / 4 + 2 + 3;
98 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
99 	} else {
100 		symlen = unresolved_col_width + 4 + 2;
101 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
102 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
103 	}
104 
105 	len = thread__comm_len(h->thread);
106 	if (hists__new_col_len(hists, HISTC_COMM, len))
107 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
108 
109 	if (h->ms.map) {
110 		len = dso__name_len(map__dso(h->ms.map));
111 		hists__new_col_len(hists, HISTC_DSO, len);
112 	}
113 
114 	if (h->parent)
115 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
116 
117 	if (h->branch_info) {
118 		if (h->branch_info->from.ms.sym) {
119 			symlen = (int)h->branch_info->from.ms.sym->namelen + 4;
120 			if (verbose > 0)
121 				symlen += BITS_PER_LONG / 4 + 2 + 3;
122 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
123 
124 			symlen = dso__name_len(map__dso(h->branch_info->from.ms.map));
125 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
126 		} else {
127 			symlen = unresolved_col_width + 4 + 2;
128 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
129 			hists__new_col_len(hists, HISTC_ADDR_FROM, symlen);
130 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
131 		}
132 
133 		if (h->branch_info->to.ms.sym) {
134 			symlen = (int)h->branch_info->to.ms.sym->namelen + 4;
135 			if (verbose > 0)
136 				symlen += BITS_PER_LONG / 4 + 2 + 3;
137 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
138 
139 			symlen = dso__name_len(map__dso(h->branch_info->to.ms.map));
140 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
141 		} else {
142 			symlen = unresolved_col_width + 4 + 2;
143 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
144 			hists__new_col_len(hists, HISTC_ADDR_TO, symlen);
145 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
146 		}
147 
148 		if (h->branch_info->srcline_from)
149 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
150 					strlen(h->branch_info->srcline_from));
151 		if (h->branch_info->srcline_to)
152 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
153 					strlen(h->branch_info->srcline_to));
154 	}
155 
156 	if (h->mem_info) {
157 		if (mem_info__daddr(h->mem_info)->ms.sym) {
158 			symlen = (int)mem_info__daddr(h->mem_info)->ms.sym->namelen + 4
159 			       + unresolved_col_width + 2;
160 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
161 					   symlen);
162 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
163 					   symlen + 1);
164 		} else {
165 			symlen = unresolved_col_width + 4 + 2;
166 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
167 					   symlen);
168 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
169 					   symlen);
170 		}
171 
172 		if (mem_info__iaddr(h->mem_info)->ms.sym) {
173 			symlen = (int)mem_info__iaddr(h->mem_info)->ms.sym->namelen + 4
174 			       + unresolved_col_width + 2;
175 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
176 					   symlen);
177 		} else {
178 			symlen = unresolved_col_width + 4 + 2;
179 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
180 					   symlen);
181 		}
182 
183 		if (mem_info__daddr(h->mem_info)->ms.map) {
184 			symlen = dso__name_len(map__dso(mem_info__daddr(h->mem_info)->ms.map));
185 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
186 					   symlen);
187 		} else {
188 			symlen = unresolved_col_width + 4 + 2;
189 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
190 		}
191 
192 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
193 				   unresolved_col_width + 4 + 2);
194 
195 		hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE,
196 				   unresolved_col_width + 4 + 2);
197 
198 	} else {
199 		symlen = unresolved_col_width + 4 + 2;
200 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
201 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
202 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
203 	}
204 
205 	hists__new_col_len(hists, HISTC_CGROUP, 6);
206 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
207 	hists__new_col_len(hists, HISTC_CPU, 3);
208 	hists__new_col_len(hists, HISTC_SOCKET, 6);
209 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
210 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
211 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
212 	hists__new_col_len(hists, HISTC_MEM_LVL, 36 + 3);
213 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
214 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
215 	hists__new_col_len(hists, HISTC_MEM_BLOCKED, 10);
216 	hists__new_col_len(hists, HISTC_LOCAL_INS_LAT, 13);
217 	hists__new_col_len(hists, HISTC_GLOBAL_INS_LAT, 13);
218 	hists__new_col_len(hists, HISTC_LOCAL_P_STAGE_CYC, 13);
219 	hists__new_col_len(hists, HISTC_GLOBAL_P_STAGE_CYC, 13);
220 	hists__new_col_len(hists, HISTC_ADDR, BITS_PER_LONG / 4 + 2);
221 	hists__new_col_len(hists, HISTC_CALLCHAIN_BRANCH_PREDICTED, 9);
222 	hists__new_col_len(hists, HISTC_CALLCHAIN_BRANCH_ABORT, 5);
223 	hists__new_col_len(hists, HISTC_CALLCHAIN_BRANCH_CYCLES, 6);
224 
225 	if (symbol_conf.nanosecs)
226 		hists__new_col_len(hists, HISTC_TIME, 16);
227 	else
228 		hists__new_col_len(hists, HISTC_TIME, 12);
229 	hists__new_col_len(hists, HISTC_CODE_PAGE_SIZE, 6);
230 
231 	if (h->srcline) {
232 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
233 		hists__new_col_len(hists, HISTC_SRCLINE, len);
234 	}
235 
236 	if (h->srcfile)
237 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
238 
239 	if (h->transaction)
240 		hists__new_col_len(hists, HISTC_TRANSACTION,
241 				   hist_entry__transaction_len());
242 
243 	if (h->trace_output)
244 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
245 
246 	if (h->cgroup) {
247 		const char *cgrp_name = "unknown";
248 		struct cgroup *cgrp = cgroup__find(maps__machine(h->ms.maps)->env,
249 						   h->cgroup);
250 		if (cgrp != NULL)
251 			cgrp_name = cgrp->name;
252 
253 		hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name));
254 	}
255 }
256 
257 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
258 {
259 	struct rb_node *next = rb_first_cached(&hists->entries);
260 	struct hist_entry *n;
261 	int row = 0;
262 
263 	hists__reset_col_len(hists);
264 
265 	while (next && row++ < max_rows) {
266 		n = rb_entry(next, struct hist_entry, rb_node);
267 		if (!n->filtered)
268 			hists__calc_col_len(hists, n);
269 		next = rb_next(&n->rb_node);
270 	}
271 }
272 
273 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
274 					unsigned int cpumode, u64 period)
275 {
276 	switch (cpumode) {
277 	case PERF_RECORD_MISC_KERNEL:
278 		he_stat->period_sys += period;
279 		break;
280 	case PERF_RECORD_MISC_USER:
281 		he_stat->period_us += period;
282 		break;
283 	case PERF_RECORD_MISC_GUEST_KERNEL:
284 		he_stat->period_guest_sys += period;
285 		break;
286 	case PERF_RECORD_MISC_GUEST_USER:
287 		he_stat->period_guest_us += period;
288 		break;
289 	default:
290 		break;
291 	}
292 }
293 
294 static long hist_time(unsigned long htime)
295 {
296 	unsigned long time_quantum = symbol_conf.time_quantum;
297 	if (time_quantum)
298 		return (htime / time_quantum) * time_quantum;
299 	return htime;
300 }
301 
302 static void he_stat__add_period(struct he_stat *he_stat, u64 period)
303 {
304 	he_stat->period		+= period;
305 	he_stat->nr_events	+= 1;
306 }
307 
308 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
309 {
310 	dest->period		+= src->period;
311 	dest->period_sys	+= src->period_sys;
312 	dest->period_us		+= src->period_us;
313 	dest->period_guest_sys	+= src->period_guest_sys;
314 	dest->period_guest_us	+= src->period_guest_us;
315 	dest->weight1		+= src->weight1;
316 	dest->weight2		+= src->weight2;
317 	dest->weight3		+= src->weight3;
318 	dest->nr_events		+= src->nr_events;
319 }
320 
321 static void he_stat__decay(struct he_stat *he_stat)
322 {
323 	he_stat->period = (he_stat->period * 7) / 8;
324 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
325 	he_stat->weight1 = (he_stat->weight1 * 7) / 8;
326 	he_stat->weight2 = (he_stat->weight2 * 7) / 8;
327 	he_stat->weight3 = (he_stat->weight3 * 7) / 8;
328 }
329 
330 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
331 
332 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
333 {
334 	u64 prev_period = he->stat.period;
335 	u64 diff;
336 
337 	if (prev_period == 0)
338 		return true;
339 
340 	he_stat__decay(&he->stat);
341 	if (symbol_conf.cumulate_callchain)
342 		he_stat__decay(he->stat_acc);
343 	decay_callchain(he->callchain);
344 
345 	diff = prev_period - he->stat.period;
346 
347 	if (!he->depth) {
348 		hists->stats.total_period -= diff;
349 		if (!he->filtered)
350 			hists->stats.total_non_filtered_period -= diff;
351 	}
352 
353 	if (!he->leaf) {
354 		struct hist_entry *child;
355 		struct rb_node *node = rb_first_cached(&he->hroot_out);
356 		while (node) {
357 			child = rb_entry(node, struct hist_entry, rb_node);
358 			node = rb_next(node);
359 
360 			if (hists__decay_entry(hists, child))
361 				hists__delete_entry(hists, child);
362 		}
363 	}
364 
365 	return he->stat.period == 0;
366 }
367 
368 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
369 {
370 	struct rb_root_cached *root_in;
371 	struct rb_root_cached *root_out;
372 
373 	if (he->parent_he) {
374 		root_in  = &he->parent_he->hroot_in;
375 		root_out = &he->parent_he->hroot_out;
376 	} else {
377 		if (hists__has(hists, need_collapse))
378 			root_in = &hists->entries_collapsed;
379 		else
380 			root_in = hists->entries_in;
381 		root_out = &hists->entries;
382 	}
383 
384 	rb_erase_cached(&he->rb_node_in, root_in);
385 	rb_erase_cached(&he->rb_node, root_out);
386 
387 	--hists->nr_entries;
388 	if (!he->filtered)
389 		--hists->nr_non_filtered_entries;
390 
391 	hist_entry__delete(he);
392 }
393 
394 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
395 {
396 	struct rb_node *next = rb_first_cached(&hists->entries);
397 	struct hist_entry *n;
398 
399 	while (next) {
400 		n = rb_entry(next, struct hist_entry, rb_node);
401 		next = rb_next(&n->rb_node);
402 		if (((zap_user && n->level == '.') ||
403 		     (zap_kernel && n->level != '.') ||
404 		     hists__decay_entry(hists, n))) {
405 			hists__delete_entry(hists, n);
406 		}
407 	}
408 }
409 
410 void hists__delete_entries(struct hists *hists)
411 {
412 	struct rb_node *next = rb_first_cached(&hists->entries);
413 	struct hist_entry *n;
414 
415 	while (next) {
416 		n = rb_entry(next, struct hist_entry, rb_node);
417 		next = rb_next(&n->rb_node);
418 
419 		hists__delete_entry(hists, n);
420 	}
421 }
422 
423 struct hist_entry *hists__get_entry(struct hists *hists, int idx)
424 {
425 	struct rb_node *next = rb_first_cached(&hists->entries);
426 	struct hist_entry *n;
427 	int i = 0;
428 
429 	while (next) {
430 		n = rb_entry(next, struct hist_entry, rb_node);
431 		if (i == idx)
432 			return n;
433 
434 		next = rb_next(&n->rb_node);
435 		i++;
436 	}
437 
438 	return NULL;
439 }
440 
441 /*
442  * histogram, sorted on item, collects periods
443  */
444 
445 static int hist_entry__init(struct hist_entry *he,
446 			    struct hist_entry *template,
447 			    bool sample_self,
448 			    size_t callchain_size)
449 {
450 	*he = *template;
451 	he->callchain_size = callchain_size;
452 
453 	if (symbol_conf.cumulate_callchain) {
454 		he->stat_acc = malloc(sizeof(he->stat));
455 		if (he->stat_acc == NULL)
456 			return -ENOMEM;
457 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
458 		if (!sample_self)
459 			memset(&he->stat, 0, sizeof(he->stat));
460 	}
461 
462 	he->ms.maps = maps__get(he->ms.maps);
463 	he->ms.map = map__get(he->ms.map);
464 
465 	if (he->branch_info) {
466 		/*
467 		 * This branch info is (a part of) allocated from
468 		 * sample__resolve_bstack() and will be freed after
469 		 * adding new entries.  So we need to save a copy.
470 		 */
471 		he->branch_info = malloc(sizeof(*he->branch_info));
472 		if (he->branch_info == NULL)
473 			goto err;
474 
475 		memcpy(he->branch_info, template->branch_info,
476 		       sizeof(*he->branch_info));
477 
478 		he->branch_info->from.ms.maps = maps__get(he->branch_info->from.ms.maps);
479 		he->branch_info->from.ms.map = map__get(he->branch_info->from.ms.map);
480 		he->branch_info->to.ms.maps = maps__get(he->branch_info->to.ms.maps);
481 		he->branch_info->to.ms.map = map__get(he->branch_info->to.ms.map);
482 	}
483 
484 	if (he->mem_info) {
485 		he->mem_info = mem_info__clone(template->mem_info);
486 		if (he->mem_info == NULL)
487 			goto err_infos;
488 	}
489 
490 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
491 		callchain_init(he->callchain);
492 
493 	if (he->raw_data) {
494 		he->raw_data = memdup(he->raw_data, he->raw_size);
495 		if (he->raw_data == NULL)
496 			goto err_infos;
497 	}
498 
499 	if (he->srcline && he->srcline != SRCLINE_UNKNOWN) {
500 		he->srcline = strdup(he->srcline);
501 		if (he->srcline == NULL)
502 			goto err_rawdata;
503 	}
504 
505 	if (symbol_conf.res_sample) {
506 		he->res_samples = calloc(symbol_conf.res_sample,
507 					sizeof(struct res_sample));
508 		if (!he->res_samples)
509 			goto err_srcline;
510 	}
511 
512 	INIT_LIST_HEAD(&he->pairs.node);
513 	he->thread = thread__get(he->thread);
514 	he->hroot_in  = RB_ROOT_CACHED;
515 	he->hroot_out = RB_ROOT_CACHED;
516 
517 	if (!symbol_conf.report_hierarchy)
518 		he->leaf = true;
519 
520 	return 0;
521 
522 err_srcline:
523 	zfree(&he->srcline);
524 
525 err_rawdata:
526 	zfree(&he->raw_data);
527 
528 err_infos:
529 	if (he->branch_info) {
530 		map_symbol__exit(&he->branch_info->from.ms);
531 		map_symbol__exit(&he->branch_info->to.ms);
532 		zfree(&he->branch_info);
533 	}
534 	if (he->mem_info) {
535 		map_symbol__exit(&mem_info__iaddr(he->mem_info)->ms);
536 		map_symbol__exit(&mem_info__daddr(he->mem_info)->ms);
537 	}
538 err:
539 	map_symbol__exit(&he->ms);
540 	zfree(&he->stat_acc);
541 	return -ENOMEM;
542 }
543 
544 static void *hist_entry__zalloc(size_t size)
545 {
546 	return zalloc(size + sizeof(struct hist_entry));
547 }
548 
549 static void hist_entry__free(void *ptr)
550 {
551 	free(ptr);
552 }
553 
554 static struct hist_entry_ops default_ops = {
555 	.new	= hist_entry__zalloc,
556 	.free	= hist_entry__free,
557 };
558 
559 static struct hist_entry *hist_entry__new(struct hist_entry *template,
560 					  bool sample_self)
561 {
562 	struct hist_entry_ops *ops = template->ops;
563 	size_t callchain_size = 0;
564 	struct hist_entry *he;
565 	int err = 0;
566 
567 	if (!ops)
568 		ops = template->ops = &default_ops;
569 
570 	if (symbol_conf.use_callchain)
571 		callchain_size = sizeof(struct callchain_root);
572 
573 	he = ops->new(callchain_size);
574 	if (he) {
575 		err = hist_entry__init(he, template, sample_self, callchain_size);
576 		if (err) {
577 			ops->free(he);
578 			he = NULL;
579 		}
580 	}
581 	return he;
582 }
583 
584 static u8 symbol__parent_filter(const struct symbol *parent)
585 {
586 	if (symbol_conf.exclude_other && parent == NULL)
587 		return 1 << HIST_FILTER__PARENT;
588 	return 0;
589 }
590 
591 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
592 {
593 	if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
594 		return;
595 
596 	he->hists->callchain_period += period;
597 	if (!he->filtered)
598 		he->hists->callchain_non_filtered_period += period;
599 }
600 
601 static struct hist_entry *hists__findnew_entry(struct hists *hists,
602 					       struct hist_entry *entry,
603 					       const struct addr_location *al,
604 					       bool sample_self)
605 {
606 	struct rb_node **p;
607 	struct rb_node *parent = NULL;
608 	struct hist_entry *he;
609 	int64_t cmp;
610 	u64 period = entry->stat.period;
611 	bool leftmost = true;
612 
613 	p = &hists->entries_in->rb_root.rb_node;
614 
615 	while (*p != NULL) {
616 		parent = *p;
617 		he = rb_entry(parent, struct hist_entry, rb_node_in);
618 
619 		/*
620 		 * Make sure that it receives arguments in a same order as
621 		 * hist_entry__collapse() so that we can use an appropriate
622 		 * function when searching an entry regardless which sort
623 		 * keys were used.
624 		 */
625 		cmp = hist_entry__cmp(he, entry);
626 		if (!cmp) {
627 			if (sample_self) {
628 				he_stat__add_stat(&he->stat, &entry->stat);
629 				hist_entry__add_callchain_period(he, period);
630 			}
631 			if (symbol_conf.cumulate_callchain)
632 				he_stat__add_period(he->stat_acc, period);
633 
634 			block_info__delete(entry->block_info);
635 
636 			kvm_info__zput(entry->kvm_info);
637 
638 			/* If the map of an existing hist_entry has
639 			 * become out-of-date due to an exec() or
640 			 * similar, update it.  Otherwise we will
641 			 * mis-adjust symbol addresses when computing
642 			 * the history counter to increment.
643 			 */
644 			if (hists__has(hists, sym) && he->ms.map != entry->ms.map) {
645 				if (he->ms.sym) {
646 					u64 addr = he->ms.sym->start;
647 					he->ms.sym = map__find_symbol(entry->ms.map, addr);
648 				}
649 
650 				map__put(he->ms.map);
651 				he->ms.map = map__get(entry->ms.map);
652 			}
653 			goto out;
654 		}
655 
656 		if (cmp < 0)
657 			p = &(*p)->rb_left;
658 		else {
659 			p = &(*p)->rb_right;
660 			leftmost = false;
661 		}
662 	}
663 
664 	he = hist_entry__new(entry, sample_self);
665 	if (!he)
666 		return NULL;
667 
668 	if (sample_self)
669 		hist_entry__add_callchain_period(he, period);
670 	hists->nr_entries++;
671 
672 	rb_link_node(&he->rb_node_in, parent, p);
673 	rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
674 out:
675 	if (sample_self)
676 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
677 	if (symbol_conf.cumulate_callchain)
678 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
679 	return he;
680 }
681 
682 static unsigned random_max(unsigned high)
683 {
684 	unsigned thresh = -high % high;
685 	for (;;) {
686 		unsigned r = random();
687 		if (r >= thresh)
688 			return r % high;
689 	}
690 }
691 
692 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
693 {
694 	struct res_sample *r;
695 	int j;
696 
697 	if (he->num_res < symbol_conf.res_sample) {
698 		j = he->num_res++;
699 	} else {
700 		j = random_max(symbol_conf.res_sample);
701 	}
702 	r = &he->res_samples[j];
703 	r->time = sample->time;
704 	r->cpu = sample->cpu;
705 	r->tid = sample->tid;
706 }
707 
708 static struct hist_entry*
709 __hists__add_entry(struct hists *hists,
710 		   struct addr_location *al,
711 		   struct symbol *sym_parent,
712 		   struct branch_info *bi,
713 		   struct mem_info *mi,
714 		   struct kvm_info *ki,
715 		   struct block_info *block_info,
716 		   struct perf_sample *sample,
717 		   bool sample_self,
718 		   struct hist_entry_ops *ops)
719 {
720 	struct namespaces *ns = thread__namespaces(al->thread);
721 	struct hist_entry entry = {
722 		.thread	= al->thread,
723 		.comm = thread__comm(al->thread),
724 		.cgroup_id = {
725 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
726 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
727 		},
728 		.cgroup = sample->cgroup,
729 		.ms = {
730 			.maps	= al->maps,
731 			.map	= al->map,
732 			.sym	= al->sym,
733 		},
734 		.srcline = (char *) al->srcline,
735 		.socket	 = al->socket,
736 		.cpu	 = al->cpu,
737 		.cpumode = al->cpumode,
738 		.ip	 = al->addr,
739 		.level	 = al->level,
740 		.code_page_size = sample->code_page_size,
741 		.stat = {
742 			.nr_events = 1,
743 			.period	= sample->period,
744 			.weight1 = sample->weight,
745 			.weight2 = sample->ins_lat,
746 			.weight3 = sample->p_stage_cyc,
747 		},
748 		.parent = sym_parent,
749 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
750 		.hists	= hists,
751 		.branch_info = bi,
752 		.mem_info = mi,
753 		.kvm_info = ki,
754 		.block_info = block_info,
755 		.transaction = sample->transaction,
756 		.raw_data = sample->raw_data,
757 		.raw_size = sample->raw_size,
758 		.ops = ops,
759 		.time = hist_time(sample->time),
760 		.weight = sample->weight,
761 		.ins_lat = sample->ins_lat,
762 		.p_stage_cyc = sample->p_stage_cyc,
763 		.simd_flags = sample->simd_flags,
764 	}, *he = hists__findnew_entry(hists, &entry, al, sample_self);
765 
766 	if (!hists->has_callchains && he && he->callchain_size != 0)
767 		hists->has_callchains = true;
768 	if (he && symbol_conf.res_sample)
769 		hists__res_sample(he, sample);
770 	return he;
771 }
772 
773 struct hist_entry *hists__add_entry(struct hists *hists,
774 				    struct addr_location *al,
775 				    struct symbol *sym_parent,
776 				    struct branch_info *bi,
777 				    struct mem_info *mi,
778 				    struct kvm_info *ki,
779 				    struct perf_sample *sample,
780 				    bool sample_self)
781 {
782 	return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL,
783 				  sample, sample_self, NULL);
784 }
785 
786 struct hist_entry *hists__add_entry_ops(struct hists *hists,
787 					struct hist_entry_ops *ops,
788 					struct addr_location *al,
789 					struct symbol *sym_parent,
790 					struct branch_info *bi,
791 					struct mem_info *mi,
792 					struct kvm_info *ki,
793 					struct perf_sample *sample,
794 					bool sample_self)
795 {
796 	return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL,
797 				  sample, sample_self, ops);
798 }
799 
800 struct hist_entry *hists__add_entry_block(struct hists *hists,
801 					  struct addr_location *al,
802 					  struct block_info *block_info)
803 {
804 	struct hist_entry entry = {
805 		.block_info = block_info,
806 		.hists = hists,
807 		.ms = {
808 			.maps = al->maps,
809 			.map = al->map,
810 			.sym = al->sym,
811 		},
812 	}, *he = hists__findnew_entry(hists, &entry, al, false);
813 
814 	return he;
815 }
816 
817 static int
818 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
819 		    struct addr_location *al __maybe_unused)
820 {
821 	return 0;
822 }
823 
824 static int
825 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
826 			struct addr_location *al __maybe_unused)
827 {
828 	return 0;
829 }
830 
831 static int
832 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
833 {
834 	struct perf_sample *sample = iter->sample;
835 	struct mem_info *mi;
836 
837 	mi = sample__resolve_mem(sample, al);
838 	if (mi == NULL)
839 		return -ENOMEM;
840 
841 	iter->mi = mi;
842 	return 0;
843 }
844 
845 static int
846 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
847 {
848 	u64 cost;
849 	struct mem_info *mi = iter->mi;
850 	struct hists *hists = evsel__hists(iter->evsel);
851 	struct perf_sample *sample = iter->sample;
852 	struct hist_entry *he;
853 
854 	if (mi == NULL)
855 		return -EINVAL;
856 
857 	cost = sample->weight;
858 	if (!cost)
859 		cost = 1;
860 
861 	/*
862 	 * must pass period=weight in order to get the correct
863 	 * sorting from hists__collapse_resort() which is solely
864 	 * based on periods. We want sorting be done on nr_events * weight
865 	 * and this is indirectly achieved by passing period=weight here
866 	 * and the he_stat__add_period() function.
867 	 */
868 	sample->period = cost;
869 
870 	he = hists__add_entry(hists, al, iter->parent, NULL, mi, NULL,
871 			      sample, true);
872 	if (!he)
873 		return -ENOMEM;
874 
875 	iter->he = he;
876 	return 0;
877 }
878 
879 static int
880 iter_finish_mem_entry(struct hist_entry_iter *iter,
881 		      struct addr_location *al __maybe_unused)
882 {
883 	struct evsel *evsel = iter->evsel;
884 	struct hists *hists = evsel__hists(evsel);
885 	struct hist_entry *he = iter->he;
886 	int err = -EINVAL;
887 
888 	if (he == NULL)
889 		goto out;
890 
891 	hists__inc_nr_samples(hists, he->filtered);
892 
893 	err = hist_entry__append_callchain(he, iter->sample);
894 
895 out:
896 	mem_info__zput(iter->mi);
897 
898 	iter->he = NULL;
899 	return err;
900 }
901 
902 static int
903 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
904 {
905 	struct branch_info *bi;
906 	struct perf_sample *sample = iter->sample;
907 
908 	bi = sample__resolve_bstack(sample, al);
909 	if (!bi)
910 		return -ENOMEM;
911 
912 	iter->curr = 0;
913 	iter->total = sample->branch_stack->nr;
914 
915 	iter->bi = bi;
916 	return 0;
917 }
918 
919 static int
920 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
921 			     struct addr_location *al __maybe_unused)
922 {
923 	return 0;
924 }
925 
926 static int
927 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
928 {
929 	struct branch_info *bi = iter->bi;
930 	int i = iter->curr;
931 
932 	if (bi == NULL)
933 		return 0;
934 
935 	if (iter->curr >= iter->total)
936 		return 0;
937 
938 	maps__put(al->maps);
939 	al->maps = maps__get(bi[i].to.ms.maps);
940 	map__put(al->map);
941 	al->map = map__get(bi[i].to.ms.map);
942 	al->sym = bi[i].to.ms.sym;
943 	al->addr = bi[i].to.addr;
944 	return 1;
945 }
946 
947 static int
948 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
949 {
950 	struct branch_info *bi;
951 	struct evsel *evsel = iter->evsel;
952 	struct hists *hists = evsel__hists(evsel);
953 	struct perf_sample *sample = iter->sample;
954 	struct hist_entry *he = NULL;
955 	int i = iter->curr;
956 	int err = 0;
957 
958 	bi = iter->bi;
959 
960 	if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym))
961 		goto out;
962 
963 	/*
964 	 * The report shows the percentage of total branches captured
965 	 * and not events sampled. Thus we use a pseudo period of 1.
966 	 */
967 	sample->period = 1;
968 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
969 
970 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, NULL,
971 			      sample, true);
972 	if (he == NULL)
973 		return -ENOMEM;
974 
975 	hists__inc_nr_samples(hists, he->filtered);
976 
977 out:
978 	iter->he = he;
979 	iter->curr++;
980 	return err;
981 }
982 
983 static void branch_info__exit(struct branch_info *bi)
984 {
985 	map_symbol__exit(&bi->from.ms);
986 	map_symbol__exit(&bi->to.ms);
987 	zfree_srcline(&bi->srcline_from);
988 	zfree_srcline(&bi->srcline_to);
989 }
990 
991 static int
992 iter_finish_branch_entry(struct hist_entry_iter *iter,
993 			 struct addr_location *al __maybe_unused)
994 {
995 	for (int i = 0; i < iter->total; i++)
996 		branch_info__exit(&iter->bi[i]);
997 
998 	zfree(&iter->bi);
999 	iter->he = NULL;
1000 
1001 	return iter->curr >= iter->total ? 0 : -1;
1002 }
1003 
1004 static int
1005 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
1006 			  struct addr_location *al __maybe_unused)
1007 {
1008 	return 0;
1009 }
1010 
1011 static int
1012 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
1013 {
1014 	struct evsel *evsel = iter->evsel;
1015 	struct perf_sample *sample = iter->sample;
1016 	struct hist_entry *he;
1017 
1018 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1019 			      NULL, sample, true);
1020 	if (he == NULL)
1021 		return -ENOMEM;
1022 
1023 	iter->he = he;
1024 	return 0;
1025 }
1026 
1027 static int
1028 iter_finish_normal_entry(struct hist_entry_iter *iter,
1029 			 struct addr_location *al __maybe_unused)
1030 {
1031 	struct hist_entry *he = iter->he;
1032 	struct evsel *evsel = iter->evsel;
1033 	struct perf_sample *sample = iter->sample;
1034 
1035 	if (he == NULL)
1036 		return 0;
1037 
1038 	iter->he = NULL;
1039 
1040 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
1041 
1042 	return hist_entry__append_callchain(he, sample);
1043 }
1044 
1045 static int
1046 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
1047 			      struct addr_location *al __maybe_unused)
1048 {
1049 	struct hist_entry **he_cache;
1050 	struct callchain_cursor *cursor = get_tls_callchain_cursor();
1051 
1052 	if (cursor == NULL)
1053 		return -ENOMEM;
1054 
1055 	callchain_cursor_commit(cursor);
1056 
1057 	/*
1058 	 * This is for detecting cycles or recursions so that they're
1059 	 * cumulated only one time to prevent entries more than 100%
1060 	 * overhead.
1061 	 */
1062 	he_cache = malloc(sizeof(*he_cache) * (cursor->nr + 1));
1063 	if (he_cache == NULL)
1064 		return -ENOMEM;
1065 
1066 	iter->he_cache = he_cache;
1067 	iter->curr = 0;
1068 
1069 	return 0;
1070 }
1071 
1072 static int
1073 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1074 				 struct addr_location *al)
1075 {
1076 	struct evsel *evsel = iter->evsel;
1077 	struct hists *hists = evsel__hists(evsel);
1078 	struct perf_sample *sample = iter->sample;
1079 	struct hist_entry **he_cache = iter->he_cache;
1080 	struct hist_entry *he;
1081 	int err = 0;
1082 
1083 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL, NULL,
1084 			      sample, true);
1085 	if (he == NULL)
1086 		return -ENOMEM;
1087 
1088 	iter->he = he;
1089 	he_cache[iter->curr++] = he;
1090 
1091 	hist_entry__append_callchain(he, sample);
1092 
1093 	/*
1094 	 * We need to re-initialize the cursor since callchain_append()
1095 	 * advanced the cursor to the end.
1096 	 */
1097 	callchain_cursor_commit(get_tls_callchain_cursor());
1098 
1099 	hists__inc_nr_samples(hists, he->filtered);
1100 
1101 	return err;
1102 }
1103 
1104 static int
1105 iter_next_cumulative_entry(struct hist_entry_iter *iter,
1106 			   struct addr_location *al)
1107 {
1108 	struct callchain_cursor_node *node;
1109 
1110 	node = callchain_cursor_current(get_tls_callchain_cursor());
1111 	if (node == NULL)
1112 		return 0;
1113 
1114 	return fill_callchain_info(al, node, iter->hide_unresolved);
1115 }
1116 
1117 static bool
1118 hist_entry__fast__sym_diff(struct hist_entry *left,
1119 			   struct hist_entry *right)
1120 {
1121 	struct symbol *sym_l = left->ms.sym;
1122 	struct symbol *sym_r = right->ms.sym;
1123 
1124 	if (!sym_l && !sym_r)
1125 		return left->ip != right->ip;
1126 
1127 	return !!_sort__sym_cmp(sym_l, sym_r);
1128 }
1129 
1130 
1131 static int
1132 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1133 			       struct addr_location *al)
1134 {
1135 	struct evsel *evsel = iter->evsel;
1136 	struct perf_sample *sample = iter->sample;
1137 	struct hist_entry **he_cache = iter->he_cache;
1138 	struct hist_entry *he;
1139 	struct hist_entry he_tmp = {
1140 		.hists = evsel__hists(evsel),
1141 		.cpu = al->cpu,
1142 		.thread = al->thread,
1143 		.comm = thread__comm(al->thread),
1144 		.ip = al->addr,
1145 		.ms = {
1146 			.maps = al->maps,
1147 			.map = al->map,
1148 			.sym = al->sym,
1149 		},
1150 		.srcline = (char *) al->srcline,
1151 		.parent = iter->parent,
1152 		.raw_data = sample->raw_data,
1153 		.raw_size = sample->raw_size,
1154 	};
1155 	int i;
1156 	struct callchain_cursor cursor, *tls_cursor = get_tls_callchain_cursor();
1157 	bool fast = hists__has(he_tmp.hists, sym);
1158 
1159 	if (tls_cursor == NULL)
1160 		return -ENOMEM;
1161 
1162 	callchain_cursor_snapshot(&cursor, tls_cursor);
1163 
1164 	callchain_cursor_advance(tls_cursor);
1165 
1166 	/*
1167 	 * Check if there's duplicate entries in the callchain.
1168 	 * It's possible that it has cycles or recursive calls.
1169 	 */
1170 	for (i = 0; i < iter->curr; i++) {
1171 		/*
1172 		 * For most cases, there are no duplicate entries in callchain.
1173 		 * The symbols are usually different. Do a quick check for
1174 		 * symbols first.
1175 		 */
1176 		if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp))
1177 			continue;
1178 
1179 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1180 			/* to avoid calling callback function */
1181 			iter->he = NULL;
1182 			return 0;
1183 		}
1184 	}
1185 
1186 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1187 			      NULL, sample, false);
1188 	if (he == NULL)
1189 		return -ENOMEM;
1190 
1191 	iter->he = he;
1192 	he_cache[iter->curr++] = he;
1193 
1194 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1195 		callchain_append(he->callchain, &cursor, sample->period);
1196 	return 0;
1197 }
1198 
1199 static int
1200 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1201 			     struct addr_location *al __maybe_unused)
1202 {
1203 	mem_info__zput(iter->mi);
1204 	zfree(&iter->bi);
1205 	zfree(&iter->he_cache);
1206 	iter->he = NULL;
1207 
1208 	return 0;
1209 }
1210 
1211 const struct hist_iter_ops hist_iter_mem = {
1212 	.prepare_entry 		= iter_prepare_mem_entry,
1213 	.add_single_entry 	= iter_add_single_mem_entry,
1214 	.next_entry 		= iter_next_nop_entry,
1215 	.add_next_entry 	= iter_add_next_nop_entry,
1216 	.finish_entry 		= iter_finish_mem_entry,
1217 };
1218 
1219 const struct hist_iter_ops hist_iter_branch = {
1220 	.prepare_entry 		= iter_prepare_branch_entry,
1221 	.add_single_entry 	= iter_add_single_branch_entry,
1222 	.next_entry 		= iter_next_branch_entry,
1223 	.add_next_entry 	= iter_add_next_branch_entry,
1224 	.finish_entry 		= iter_finish_branch_entry,
1225 };
1226 
1227 const struct hist_iter_ops hist_iter_normal = {
1228 	.prepare_entry 		= iter_prepare_normal_entry,
1229 	.add_single_entry 	= iter_add_single_normal_entry,
1230 	.next_entry 		= iter_next_nop_entry,
1231 	.add_next_entry 	= iter_add_next_nop_entry,
1232 	.finish_entry 		= iter_finish_normal_entry,
1233 };
1234 
1235 const struct hist_iter_ops hist_iter_cumulative = {
1236 	.prepare_entry 		= iter_prepare_cumulative_entry,
1237 	.add_single_entry 	= iter_add_single_cumulative_entry,
1238 	.next_entry 		= iter_next_cumulative_entry,
1239 	.add_next_entry 	= iter_add_next_cumulative_entry,
1240 	.finish_entry 		= iter_finish_cumulative_entry,
1241 };
1242 
1243 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1244 			 int max_stack_depth, void *arg)
1245 {
1246 	int err, err2;
1247 	struct map *alm = NULL;
1248 
1249 	if (al)
1250 		alm = map__get(al->map);
1251 
1252 	err = sample__resolve_callchain(iter->sample, get_tls_callchain_cursor(), &iter->parent,
1253 					iter->evsel, al, max_stack_depth);
1254 	if (err) {
1255 		map__put(alm);
1256 		return err;
1257 	}
1258 
1259 	err = iter->ops->prepare_entry(iter, al);
1260 	if (err)
1261 		goto out;
1262 
1263 	err = iter->ops->add_single_entry(iter, al);
1264 	if (err)
1265 		goto out;
1266 
1267 	if (iter->he && iter->add_entry_cb) {
1268 		err = iter->add_entry_cb(iter, al, true, arg);
1269 		if (err)
1270 			goto out;
1271 	}
1272 
1273 	while (iter->ops->next_entry(iter, al)) {
1274 		err = iter->ops->add_next_entry(iter, al);
1275 		if (err)
1276 			break;
1277 
1278 		if (iter->he && iter->add_entry_cb) {
1279 			err = iter->add_entry_cb(iter, al, false, arg);
1280 			if (err)
1281 				goto out;
1282 		}
1283 	}
1284 
1285 out:
1286 	err2 = iter->ops->finish_entry(iter, al);
1287 	if (!err)
1288 		err = err2;
1289 
1290 	map__put(alm);
1291 
1292 	return err;
1293 }
1294 
1295 int64_t
1296 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1297 {
1298 	struct hists *hists = left->hists;
1299 	struct perf_hpp_fmt *fmt;
1300 	int64_t cmp = 0;
1301 
1302 	hists__for_each_sort_list(hists, fmt) {
1303 		if (perf_hpp__is_dynamic_entry(fmt) &&
1304 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1305 			continue;
1306 
1307 		cmp = fmt->cmp(fmt, left, right);
1308 		if (cmp)
1309 			break;
1310 	}
1311 
1312 	return cmp;
1313 }
1314 
1315 int64_t
1316 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1317 {
1318 	struct hists *hists = left->hists;
1319 	struct perf_hpp_fmt *fmt;
1320 	int64_t cmp = 0;
1321 
1322 	hists__for_each_sort_list(hists, fmt) {
1323 		if (perf_hpp__is_dynamic_entry(fmt) &&
1324 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1325 			continue;
1326 
1327 		cmp = fmt->collapse(fmt, left, right);
1328 		if (cmp)
1329 			break;
1330 	}
1331 
1332 	return cmp;
1333 }
1334 
1335 void hist_entry__delete(struct hist_entry *he)
1336 {
1337 	struct hist_entry_ops *ops = he->ops;
1338 
1339 	thread__zput(he->thread);
1340 	map_symbol__exit(&he->ms);
1341 
1342 	if (he->branch_info) {
1343 		branch_info__exit(he->branch_info);
1344 		zfree(&he->branch_info);
1345 	}
1346 
1347 	if (he->mem_info) {
1348 		map_symbol__exit(&mem_info__iaddr(he->mem_info)->ms);
1349 		map_symbol__exit(&mem_info__daddr(he->mem_info)->ms);
1350 		mem_info__zput(he->mem_info);
1351 	}
1352 
1353 	if (he->block_info)
1354 		block_info__delete(he->block_info);
1355 
1356 	if (he->kvm_info)
1357 		kvm_info__zput(he->kvm_info);
1358 
1359 	zfree(&he->res_samples);
1360 	zfree(&he->stat_acc);
1361 	zfree_srcline(&he->srcline);
1362 	if (he->srcfile && he->srcfile[0])
1363 		zfree(&he->srcfile);
1364 	free_callchain(he->callchain);
1365 	zfree(&he->trace_output);
1366 	zfree(&he->raw_data);
1367 	ops->free(he);
1368 }
1369 
1370 /*
1371  * If this is not the last column, then we need to pad it according to the
1372  * pre-calculated max length for this column, otherwise don't bother adding
1373  * spaces because that would break viewing this with, for instance, 'less',
1374  * that would show tons of trailing spaces when a long C++ demangled method
1375  * names is sampled.
1376 */
1377 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1378 				   struct perf_hpp_fmt *fmt, int printed)
1379 {
1380 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1381 		const int width = fmt->width(fmt, hpp, he->hists);
1382 		if (printed < width) {
1383 			advance_hpp(hpp, printed);
1384 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1385 		}
1386 	}
1387 
1388 	return printed;
1389 }
1390 
1391 /*
1392  * collapse the histogram
1393  */
1394 
1395 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1396 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1397 				       enum hist_filter type);
1398 
1399 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1400 
1401 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1402 {
1403 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1404 }
1405 
1406 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1407 						enum hist_filter type,
1408 						fmt_chk_fn check)
1409 {
1410 	struct perf_hpp_fmt *fmt;
1411 	bool type_match = false;
1412 	struct hist_entry *parent = he->parent_he;
1413 
1414 	switch (type) {
1415 	case HIST_FILTER__THREAD:
1416 		if (symbol_conf.comm_list == NULL &&
1417 		    symbol_conf.pid_list == NULL &&
1418 		    symbol_conf.tid_list == NULL)
1419 			return;
1420 		break;
1421 	case HIST_FILTER__DSO:
1422 		if (symbol_conf.dso_list == NULL)
1423 			return;
1424 		break;
1425 	case HIST_FILTER__SYMBOL:
1426 		if (symbol_conf.sym_list == NULL)
1427 			return;
1428 		break;
1429 	case HIST_FILTER__PARENT:
1430 	case HIST_FILTER__GUEST:
1431 	case HIST_FILTER__HOST:
1432 	case HIST_FILTER__SOCKET:
1433 	case HIST_FILTER__C2C:
1434 	default:
1435 		return;
1436 	}
1437 
1438 	/* if it's filtered by own fmt, it has to have filter bits */
1439 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1440 		if (check(fmt)) {
1441 			type_match = true;
1442 			break;
1443 		}
1444 	}
1445 
1446 	if (type_match) {
1447 		/*
1448 		 * If the filter is for current level entry, propagate
1449 		 * filter marker to parents.  The marker bit was
1450 		 * already set by default so it only needs to clear
1451 		 * non-filtered entries.
1452 		 */
1453 		if (!(he->filtered & (1 << type))) {
1454 			while (parent) {
1455 				parent->filtered &= ~(1 << type);
1456 				parent = parent->parent_he;
1457 			}
1458 		}
1459 	} else {
1460 		/*
1461 		 * If current entry doesn't have matching formats, set
1462 		 * filter marker for upper level entries.  it will be
1463 		 * cleared if its lower level entries is not filtered.
1464 		 *
1465 		 * For lower-level entries, it inherits parent's
1466 		 * filter bit so that lower level entries of a
1467 		 * non-filtered entry won't set the filter marker.
1468 		 */
1469 		if (parent == NULL)
1470 			he->filtered |= (1 << type);
1471 		else
1472 			he->filtered |= (parent->filtered & (1 << type));
1473 	}
1474 }
1475 
1476 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1477 {
1478 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1479 					    check_thread_entry);
1480 
1481 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1482 					    perf_hpp__is_dso_entry);
1483 
1484 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1485 					    perf_hpp__is_sym_entry);
1486 
1487 	hists__apply_filters(he->hists, he);
1488 }
1489 
1490 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1491 						 struct rb_root_cached *root,
1492 						 struct hist_entry *he,
1493 						 struct hist_entry *parent_he,
1494 						 struct perf_hpp_list *hpp_list)
1495 {
1496 	struct rb_node **p = &root->rb_root.rb_node;
1497 	struct rb_node *parent = NULL;
1498 	struct hist_entry *iter, *new;
1499 	struct perf_hpp_fmt *fmt;
1500 	int64_t cmp;
1501 	bool leftmost = true;
1502 
1503 	while (*p != NULL) {
1504 		parent = *p;
1505 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1506 
1507 		cmp = 0;
1508 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1509 			cmp = fmt->collapse(fmt, iter, he);
1510 			if (cmp)
1511 				break;
1512 		}
1513 
1514 		if (!cmp) {
1515 			he_stat__add_stat(&iter->stat, &he->stat);
1516 			return iter;
1517 		}
1518 
1519 		if (cmp < 0)
1520 			p = &parent->rb_left;
1521 		else {
1522 			p = &parent->rb_right;
1523 			leftmost = false;
1524 		}
1525 	}
1526 
1527 	new = hist_entry__new(he, true);
1528 	if (new == NULL)
1529 		return NULL;
1530 
1531 	hists->nr_entries++;
1532 
1533 	/* save related format list for output */
1534 	new->hpp_list = hpp_list;
1535 	new->parent_he = parent_he;
1536 
1537 	hist_entry__apply_hierarchy_filters(new);
1538 
1539 	/* some fields are now passed to 'new' */
1540 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1541 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1542 			he->trace_output = NULL;
1543 		else
1544 			new->trace_output = NULL;
1545 
1546 		if (perf_hpp__is_srcline_entry(fmt))
1547 			he->srcline = NULL;
1548 		else
1549 			new->srcline = NULL;
1550 
1551 		if (perf_hpp__is_srcfile_entry(fmt))
1552 			he->srcfile = NULL;
1553 		else
1554 			new->srcfile = NULL;
1555 	}
1556 
1557 	rb_link_node(&new->rb_node_in, parent, p);
1558 	rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1559 	return new;
1560 }
1561 
1562 static int hists__hierarchy_insert_entry(struct hists *hists,
1563 					 struct rb_root_cached *root,
1564 					 struct hist_entry *he)
1565 {
1566 	struct perf_hpp_list_node *node;
1567 	struct hist_entry *new_he = NULL;
1568 	struct hist_entry *parent = NULL;
1569 	int depth = 0;
1570 	int ret = 0;
1571 
1572 	list_for_each_entry(node, &hists->hpp_formats, list) {
1573 		/* skip period (overhead) and elided columns */
1574 		if (node->level == 0 || node->skip)
1575 			continue;
1576 
1577 		/* insert copy of 'he' for each fmt into the hierarchy */
1578 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1579 		if (new_he == NULL) {
1580 			ret = -1;
1581 			break;
1582 		}
1583 
1584 		root = &new_he->hroot_in;
1585 		new_he->depth = depth++;
1586 		parent = new_he;
1587 	}
1588 
1589 	if (new_he) {
1590 		new_he->leaf = true;
1591 
1592 		if (hist_entry__has_callchains(new_he) &&
1593 		    symbol_conf.use_callchain) {
1594 			struct callchain_cursor *cursor = get_tls_callchain_cursor();
1595 
1596 			if (cursor == NULL)
1597 				return -1;
1598 
1599 			callchain_cursor_reset(cursor);
1600 			if (callchain_merge(cursor,
1601 					    new_he->callchain,
1602 					    he->callchain) < 0)
1603 				ret = -1;
1604 		}
1605 	}
1606 
1607 	/* 'he' is no longer used */
1608 	hist_entry__delete(he);
1609 
1610 	/* return 0 (or -1) since it already applied filters */
1611 	return ret;
1612 }
1613 
1614 static int hists__collapse_insert_entry(struct hists *hists,
1615 					struct rb_root_cached *root,
1616 					struct hist_entry *he)
1617 {
1618 	struct rb_node **p = &root->rb_root.rb_node;
1619 	struct rb_node *parent = NULL;
1620 	struct hist_entry *iter;
1621 	int64_t cmp;
1622 	bool leftmost = true;
1623 
1624 	if (symbol_conf.report_hierarchy)
1625 		return hists__hierarchy_insert_entry(hists, root, he);
1626 
1627 	while (*p != NULL) {
1628 		parent = *p;
1629 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1630 
1631 		cmp = hist_entry__collapse(iter, he);
1632 
1633 		if (!cmp) {
1634 			int ret = 0;
1635 
1636 			he_stat__add_stat(&iter->stat, &he->stat);
1637 			if (symbol_conf.cumulate_callchain)
1638 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1639 
1640 			if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1641 				struct callchain_cursor *cursor = get_tls_callchain_cursor();
1642 
1643 				if (cursor != NULL) {
1644 					callchain_cursor_reset(cursor);
1645 					if (callchain_merge(cursor, iter->callchain, he->callchain) < 0)
1646 						ret = -1;
1647 				} else {
1648 					ret = 0;
1649 				}
1650 			}
1651 			hist_entry__delete(he);
1652 			return ret;
1653 		}
1654 
1655 		if (cmp < 0)
1656 			p = &(*p)->rb_left;
1657 		else {
1658 			p = &(*p)->rb_right;
1659 			leftmost = false;
1660 		}
1661 	}
1662 	hists->nr_entries++;
1663 
1664 	rb_link_node(&he->rb_node_in, parent, p);
1665 	rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1666 	return 1;
1667 }
1668 
1669 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1670 {
1671 	struct rb_root_cached *root;
1672 
1673 	mutex_lock(&hists->lock);
1674 
1675 	root = hists->entries_in;
1676 	if (++hists->entries_in > &hists->entries_in_array[1])
1677 		hists->entries_in = &hists->entries_in_array[0];
1678 
1679 	mutex_unlock(&hists->lock);
1680 
1681 	return root;
1682 }
1683 
1684 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1685 {
1686 	hists__filter_entry_by_dso(hists, he);
1687 	hists__filter_entry_by_thread(hists, he);
1688 	hists__filter_entry_by_symbol(hists, he);
1689 	hists__filter_entry_by_socket(hists, he);
1690 }
1691 
1692 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1693 {
1694 	struct rb_root_cached *root;
1695 	struct rb_node *next;
1696 	struct hist_entry *n;
1697 	int ret;
1698 
1699 	if (!hists__has(hists, need_collapse))
1700 		return 0;
1701 
1702 	hists->nr_entries = 0;
1703 
1704 	root = hists__get_rotate_entries_in(hists);
1705 
1706 	next = rb_first_cached(root);
1707 
1708 	while (next) {
1709 		if (session_done())
1710 			break;
1711 		n = rb_entry(next, struct hist_entry, rb_node_in);
1712 		next = rb_next(&n->rb_node_in);
1713 
1714 		rb_erase_cached(&n->rb_node_in, root);
1715 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1716 		if (ret < 0)
1717 			return -1;
1718 
1719 		if (ret) {
1720 			/*
1721 			 * If it wasn't combined with one of the entries already
1722 			 * collapsed, we need to apply the filters that may have
1723 			 * been set by, say, the hist_browser.
1724 			 */
1725 			hists__apply_filters(hists, n);
1726 		}
1727 		if (prog)
1728 			ui_progress__update(prog, 1);
1729 	}
1730 	return 0;
1731 }
1732 
1733 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1734 {
1735 	struct hists *hists = a->hists;
1736 	struct perf_hpp_fmt *fmt;
1737 	int64_t cmp = 0;
1738 
1739 	hists__for_each_sort_list(hists, fmt) {
1740 		if (perf_hpp__should_skip(fmt, a->hists))
1741 			continue;
1742 
1743 		cmp = fmt->sort(fmt, a, b);
1744 		if (cmp)
1745 			break;
1746 	}
1747 
1748 	return cmp;
1749 }
1750 
1751 static void hists__reset_filter_stats(struct hists *hists)
1752 {
1753 	hists->nr_non_filtered_entries = 0;
1754 	hists->stats.total_non_filtered_period = 0;
1755 }
1756 
1757 void hists__reset_stats(struct hists *hists)
1758 {
1759 	hists->nr_entries = 0;
1760 	hists->stats.total_period = 0;
1761 
1762 	hists__reset_filter_stats(hists);
1763 }
1764 
1765 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1766 {
1767 	hists->nr_non_filtered_entries++;
1768 	hists->stats.total_non_filtered_period += h->stat.period;
1769 }
1770 
1771 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1772 {
1773 	if (!h->filtered)
1774 		hists__inc_filter_stats(hists, h);
1775 
1776 	hists->nr_entries++;
1777 	hists->stats.total_period += h->stat.period;
1778 }
1779 
1780 static void hierarchy_recalc_total_periods(struct hists *hists)
1781 {
1782 	struct rb_node *node;
1783 	struct hist_entry *he;
1784 
1785 	node = rb_first_cached(&hists->entries);
1786 
1787 	hists->stats.total_period = 0;
1788 	hists->stats.total_non_filtered_period = 0;
1789 
1790 	/*
1791 	 * recalculate total period using top-level entries only
1792 	 * since lower level entries only see non-filtered entries
1793 	 * but upper level entries have sum of both entries.
1794 	 */
1795 	while (node) {
1796 		he = rb_entry(node, struct hist_entry, rb_node);
1797 		node = rb_next(node);
1798 
1799 		hists->stats.total_period += he->stat.period;
1800 		if (!he->filtered)
1801 			hists->stats.total_non_filtered_period += he->stat.period;
1802 	}
1803 }
1804 
1805 static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1806 					  struct hist_entry *he)
1807 {
1808 	struct rb_node **p = &root->rb_root.rb_node;
1809 	struct rb_node *parent = NULL;
1810 	struct hist_entry *iter;
1811 	struct perf_hpp_fmt *fmt;
1812 	bool leftmost = true;
1813 
1814 	while (*p != NULL) {
1815 		parent = *p;
1816 		iter = rb_entry(parent, struct hist_entry, rb_node);
1817 
1818 		if (hist_entry__sort(he, iter) > 0)
1819 			p = &parent->rb_left;
1820 		else {
1821 			p = &parent->rb_right;
1822 			leftmost = false;
1823 		}
1824 	}
1825 
1826 	rb_link_node(&he->rb_node, parent, p);
1827 	rb_insert_color_cached(&he->rb_node, root, leftmost);
1828 
1829 	/* update column width of dynamic entry */
1830 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1831 		if (fmt->init)
1832 			fmt->init(fmt, he);
1833 	}
1834 }
1835 
1836 static void hists__hierarchy_output_resort(struct hists *hists,
1837 					   struct ui_progress *prog,
1838 					   struct rb_root_cached *root_in,
1839 					   struct rb_root_cached *root_out,
1840 					   u64 min_callchain_hits,
1841 					   bool use_callchain)
1842 {
1843 	struct rb_node *node;
1844 	struct hist_entry *he;
1845 
1846 	*root_out = RB_ROOT_CACHED;
1847 	node = rb_first_cached(root_in);
1848 
1849 	while (node) {
1850 		he = rb_entry(node, struct hist_entry, rb_node_in);
1851 		node = rb_next(node);
1852 
1853 		hierarchy_insert_output_entry(root_out, he);
1854 
1855 		if (prog)
1856 			ui_progress__update(prog, 1);
1857 
1858 		hists->nr_entries++;
1859 		if (!he->filtered) {
1860 			hists->nr_non_filtered_entries++;
1861 			hists__calc_col_len(hists, he);
1862 		}
1863 
1864 		if (!he->leaf) {
1865 			hists__hierarchy_output_resort(hists, prog,
1866 						       &he->hroot_in,
1867 						       &he->hroot_out,
1868 						       min_callchain_hits,
1869 						       use_callchain);
1870 			continue;
1871 		}
1872 
1873 		if (!use_callchain)
1874 			continue;
1875 
1876 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1877 			u64 total = he->stat.period;
1878 
1879 			if (symbol_conf.cumulate_callchain)
1880 				total = he->stat_acc->period;
1881 
1882 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1883 		}
1884 
1885 		callchain_param.sort(&he->sorted_chain, he->callchain,
1886 				     min_callchain_hits, &callchain_param);
1887 	}
1888 }
1889 
1890 static void __hists__insert_output_entry(struct rb_root_cached *entries,
1891 					 struct hist_entry *he,
1892 					 u64 min_callchain_hits,
1893 					 bool use_callchain)
1894 {
1895 	struct rb_node **p = &entries->rb_root.rb_node;
1896 	struct rb_node *parent = NULL;
1897 	struct hist_entry *iter;
1898 	struct perf_hpp_fmt *fmt;
1899 	bool leftmost = true;
1900 
1901 	if (use_callchain) {
1902 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1903 			u64 total = he->stat.period;
1904 
1905 			if (symbol_conf.cumulate_callchain)
1906 				total = he->stat_acc->period;
1907 
1908 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1909 		}
1910 		callchain_param.sort(&he->sorted_chain, he->callchain,
1911 				      min_callchain_hits, &callchain_param);
1912 	}
1913 
1914 	while (*p != NULL) {
1915 		parent = *p;
1916 		iter = rb_entry(parent, struct hist_entry, rb_node);
1917 
1918 		if (hist_entry__sort(he, iter) > 0)
1919 			p = &(*p)->rb_left;
1920 		else {
1921 			p = &(*p)->rb_right;
1922 			leftmost = false;
1923 		}
1924 	}
1925 
1926 	rb_link_node(&he->rb_node, parent, p);
1927 	rb_insert_color_cached(&he->rb_node, entries, leftmost);
1928 
1929 	/* update column width of dynamic entries */
1930 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1931 		if (fmt->init)
1932 			fmt->init(fmt, he);
1933 	}
1934 }
1935 
1936 static void output_resort(struct hists *hists, struct ui_progress *prog,
1937 			  bool use_callchain, hists__resort_cb_t cb,
1938 			  void *cb_arg)
1939 {
1940 	struct rb_root_cached *root;
1941 	struct rb_node *next;
1942 	struct hist_entry *n;
1943 	u64 callchain_total;
1944 	u64 min_callchain_hits;
1945 
1946 	callchain_total = hists->callchain_period;
1947 	if (symbol_conf.filter_relative)
1948 		callchain_total = hists->callchain_non_filtered_period;
1949 
1950 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1951 
1952 	hists__reset_stats(hists);
1953 	hists__reset_col_len(hists);
1954 
1955 	if (symbol_conf.report_hierarchy) {
1956 		hists__hierarchy_output_resort(hists, prog,
1957 					       &hists->entries_collapsed,
1958 					       &hists->entries,
1959 					       min_callchain_hits,
1960 					       use_callchain);
1961 		hierarchy_recalc_total_periods(hists);
1962 		return;
1963 	}
1964 
1965 	if (hists__has(hists, need_collapse))
1966 		root = &hists->entries_collapsed;
1967 	else
1968 		root = hists->entries_in;
1969 
1970 	next = rb_first_cached(root);
1971 	hists->entries = RB_ROOT_CACHED;
1972 
1973 	while (next) {
1974 		n = rb_entry(next, struct hist_entry, rb_node_in);
1975 		next = rb_next(&n->rb_node_in);
1976 
1977 		if (cb && cb(n, cb_arg))
1978 			continue;
1979 
1980 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1981 		hists__inc_stats(hists, n);
1982 
1983 		if (!n->filtered)
1984 			hists__calc_col_len(hists, n);
1985 
1986 		if (prog)
1987 			ui_progress__update(prog, 1);
1988 	}
1989 }
1990 
1991 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
1992 			     hists__resort_cb_t cb, void *cb_arg)
1993 {
1994 	bool use_callchain;
1995 
1996 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1997 		use_callchain = evsel__has_callchain(evsel);
1998 	else
1999 		use_callchain = symbol_conf.use_callchain;
2000 
2001 	use_callchain |= symbol_conf.show_branchflag_count;
2002 
2003 	output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
2004 }
2005 
2006 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
2007 {
2008 	return evsel__output_resort_cb(evsel, prog, NULL, NULL);
2009 }
2010 
2011 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
2012 {
2013 	output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
2014 }
2015 
2016 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
2017 			     hists__resort_cb_t cb)
2018 {
2019 	output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
2020 }
2021 
2022 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
2023 {
2024 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
2025 		return false;
2026 
2027 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
2028 		return true;
2029 
2030 	return false;
2031 }
2032 
2033 struct rb_node *rb_hierarchy_last(struct rb_node *node)
2034 {
2035 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2036 
2037 	while (can_goto_child(he, HMD_NORMAL)) {
2038 		node = rb_last(&he->hroot_out.rb_root);
2039 		he = rb_entry(node, struct hist_entry, rb_node);
2040 	}
2041 	return node;
2042 }
2043 
2044 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
2045 {
2046 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2047 
2048 	if (can_goto_child(he, hmd))
2049 		node = rb_first_cached(&he->hroot_out);
2050 	else
2051 		node = rb_next(node);
2052 
2053 	while (node == NULL) {
2054 		he = he->parent_he;
2055 		if (he == NULL)
2056 			break;
2057 
2058 		node = rb_next(&he->rb_node);
2059 	}
2060 	return node;
2061 }
2062 
2063 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
2064 {
2065 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2066 
2067 	node = rb_prev(node);
2068 	if (node)
2069 		return rb_hierarchy_last(node);
2070 
2071 	he = he->parent_he;
2072 	if (he == NULL)
2073 		return NULL;
2074 
2075 	return &he->rb_node;
2076 }
2077 
2078 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
2079 {
2080 	struct rb_node *node;
2081 	struct hist_entry *child;
2082 	float percent;
2083 
2084 	if (he->leaf)
2085 		return false;
2086 
2087 	node = rb_first_cached(&he->hroot_out);
2088 	child = rb_entry(node, struct hist_entry, rb_node);
2089 
2090 	while (node && child->filtered) {
2091 		node = rb_next(node);
2092 		child = rb_entry(node, struct hist_entry, rb_node);
2093 	}
2094 
2095 	if (node)
2096 		percent = hist_entry__get_percent_limit(child);
2097 	else
2098 		percent = 0;
2099 
2100 	return node && percent >= limit;
2101 }
2102 
2103 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
2104 				       enum hist_filter filter)
2105 {
2106 	h->filtered &= ~(1 << filter);
2107 
2108 	if (symbol_conf.report_hierarchy) {
2109 		struct hist_entry *parent = h->parent_he;
2110 
2111 		while (parent) {
2112 			he_stat__add_stat(&parent->stat, &h->stat);
2113 
2114 			parent->filtered &= ~(1 << filter);
2115 
2116 			if (parent->filtered)
2117 				goto next;
2118 
2119 			/* force fold unfiltered entry for simplicity */
2120 			parent->unfolded = false;
2121 			parent->has_no_entry = false;
2122 			parent->row_offset = 0;
2123 			parent->nr_rows = 0;
2124 next:
2125 			parent = parent->parent_he;
2126 		}
2127 	}
2128 
2129 	if (h->filtered)
2130 		return;
2131 
2132 	/* force fold unfiltered entry for simplicity */
2133 	h->unfolded = false;
2134 	h->has_no_entry = false;
2135 	h->row_offset = 0;
2136 	h->nr_rows = 0;
2137 
2138 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2139 
2140 	hists__inc_filter_stats(hists, h);
2141 	hists__calc_col_len(hists, h);
2142 }
2143 
2144 
2145 static bool hists__filter_entry_by_dso(struct hists *hists,
2146 				       struct hist_entry *he)
2147 {
2148 	if (hists->dso_filter != NULL &&
2149 	    (he->ms.map == NULL || !RC_CHK_EQUAL(map__dso(he->ms.map), hists->dso_filter))) {
2150 		he->filtered |= (1 << HIST_FILTER__DSO);
2151 		return true;
2152 	}
2153 
2154 	return false;
2155 }
2156 
2157 static bool hists__filter_entry_by_thread(struct hists *hists,
2158 					  struct hist_entry *he)
2159 {
2160 	if (hists->thread_filter != NULL &&
2161 	    !RC_CHK_EQUAL(he->thread, hists->thread_filter)) {
2162 		he->filtered |= (1 << HIST_FILTER__THREAD);
2163 		return true;
2164 	}
2165 
2166 	return false;
2167 }
2168 
2169 static bool hists__filter_entry_by_symbol(struct hists *hists,
2170 					  struct hist_entry *he)
2171 {
2172 	if (hists->symbol_filter_str != NULL &&
2173 	    (!he->ms.sym || strstr(he->ms.sym->name,
2174 				   hists->symbol_filter_str) == NULL)) {
2175 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
2176 		return true;
2177 	}
2178 
2179 	return false;
2180 }
2181 
2182 static bool hists__filter_entry_by_socket(struct hists *hists,
2183 					  struct hist_entry *he)
2184 {
2185 	if ((hists->socket_filter > -1) &&
2186 	    (he->socket != hists->socket_filter)) {
2187 		he->filtered |= (1 << HIST_FILTER__SOCKET);
2188 		return true;
2189 	}
2190 
2191 	return false;
2192 }
2193 
2194 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2195 
2196 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2197 {
2198 	struct rb_node *nd;
2199 
2200 	hists->stats.nr_non_filtered_samples = 0;
2201 
2202 	hists__reset_filter_stats(hists);
2203 	hists__reset_col_len(hists);
2204 
2205 	for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2206 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2207 
2208 		if (filter(hists, h))
2209 			continue;
2210 
2211 		hists__remove_entry_filter(hists, h, type);
2212 	}
2213 }
2214 
2215 static void resort_filtered_entry(struct rb_root_cached *root,
2216 				  struct hist_entry *he)
2217 {
2218 	struct rb_node **p = &root->rb_root.rb_node;
2219 	struct rb_node *parent = NULL;
2220 	struct hist_entry *iter;
2221 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2222 	struct rb_node *nd;
2223 	bool leftmost = true;
2224 
2225 	while (*p != NULL) {
2226 		parent = *p;
2227 		iter = rb_entry(parent, struct hist_entry, rb_node);
2228 
2229 		if (hist_entry__sort(he, iter) > 0)
2230 			p = &(*p)->rb_left;
2231 		else {
2232 			p = &(*p)->rb_right;
2233 			leftmost = false;
2234 		}
2235 	}
2236 
2237 	rb_link_node(&he->rb_node, parent, p);
2238 	rb_insert_color_cached(&he->rb_node, root, leftmost);
2239 
2240 	if (he->leaf || he->filtered)
2241 		return;
2242 
2243 	nd = rb_first_cached(&he->hroot_out);
2244 	while (nd) {
2245 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2246 
2247 		nd = rb_next(nd);
2248 		rb_erase_cached(&h->rb_node, &he->hroot_out);
2249 
2250 		resort_filtered_entry(&new_root, h);
2251 	}
2252 
2253 	he->hroot_out = new_root;
2254 }
2255 
2256 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2257 {
2258 	struct rb_node *nd;
2259 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2260 
2261 	hists->stats.nr_non_filtered_samples = 0;
2262 
2263 	hists__reset_filter_stats(hists);
2264 	hists__reset_col_len(hists);
2265 
2266 	nd = rb_first_cached(&hists->entries);
2267 	while (nd) {
2268 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2269 		int ret;
2270 
2271 		ret = hist_entry__filter(h, type, arg);
2272 
2273 		/*
2274 		 * case 1. non-matching type
2275 		 * zero out the period, set filter marker and move to child
2276 		 */
2277 		if (ret < 0) {
2278 			memset(&h->stat, 0, sizeof(h->stat));
2279 			h->filtered |= (1 << type);
2280 
2281 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2282 		}
2283 		/*
2284 		 * case 2. matched type (filter out)
2285 		 * set filter marker and move to next
2286 		 */
2287 		else if (ret == 1) {
2288 			h->filtered |= (1 << type);
2289 
2290 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2291 		}
2292 		/*
2293 		 * case 3. ok (not filtered)
2294 		 * add period to hists and parents, erase the filter marker
2295 		 * and move to next sibling
2296 		 */
2297 		else {
2298 			hists__remove_entry_filter(hists, h, type);
2299 
2300 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2301 		}
2302 	}
2303 
2304 	hierarchy_recalc_total_periods(hists);
2305 
2306 	/*
2307 	 * resort output after applying a new filter since filter in a lower
2308 	 * hierarchy can change periods in a upper hierarchy.
2309 	 */
2310 	nd = rb_first_cached(&hists->entries);
2311 	while (nd) {
2312 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2313 
2314 		nd = rb_next(nd);
2315 		rb_erase_cached(&h->rb_node, &hists->entries);
2316 
2317 		resort_filtered_entry(&new_root, h);
2318 	}
2319 
2320 	hists->entries = new_root;
2321 }
2322 
2323 void hists__filter_by_thread(struct hists *hists)
2324 {
2325 	if (symbol_conf.report_hierarchy)
2326 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2327 					hists->thread_filter);
2328 	else
2329 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2330 				      hists__filter_entry_by_thread);
2331 }
2332 
2333 void hists__filter_by_dso(struct hists *hists)
2334 {
2335 	if (symbol_conf.report_hierarchy)
2336 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2337 					hists->dso_filter);
2338 	else
2339 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2340 				      hists__filter_entry_by_dso);
2341 }
2342 
2343 void hists__filter_by_symbol(struct hists *hists)
2344 {
2345 	if (symbol_conf.report_hierarchy)
2346 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2347 					hists->symbol_filter_str);
2348 	else
2349 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2350 				      hists__filter_entry_by_symbol);
2351 }
2352 
2353 void hists__filter_by_socket(struct hists *hists)
2354 {
2355 	if (symbol_conf.report_hierarchy)
2356 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2357 					&hists->socket_filter);
2358 	else
2359 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2360 				      hists__filter_entry_by_socket);
2361 }
2362 
2363 void events_stats__inc(struct events_stats *stats, u32 type)
2364 {
2365 	++stats->nr_events[0];
2366 	++stats->nr_events[type];
2367 }
2368 
2369 static void hists_stats__inc(struct hists_stats *stats)
2370 {
2371 	++stats->nr_samples;
2372 }
2373 
2374 void hists__inc_nr_events(struct hists *hists)
2375 {
2376 	hists_stats__inc(&hists->stats);
2377 }
2378 
2379 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2380 {
2381 	hists_stats__inc(&hists->stats);
2382 	if (!filtered)
2383 		hists->stats.nr_non_filtered_samples++;
2384 }
2385 
2386 void hists__inc_nr_lost_samples(struct hists *hists, u32 lost)
2387 {
2388 	hists->stats.nr_lost_samples += lost;
2389 }
2390 
2391 void hists__inc_nr_dropped_samples(struct hists *hists, u32 lost)
2392 {
2393 	hists->stats.nr_dropped_samples += lost;
2394 }
2395 
2396 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2397 						 struct hist_entry *pair)
2398 {
2399 	struct rb_root_cached *root;
2400 	struct rb_node **p;
2401 	struct rb_node *parent = NULL;
2402 	struct hist_entry *he;
2403 	int64_t cmp;
2404 	bool leftmost = true;
2405 
2406 	if (hists__has(hists, need_collapse))
2407 		root = &hists->entries_collapsed;
2408 	else
2409 		root = hists->entries_in;
2410 
2411 	p = &root->rb_root.rb_node;
2412 
2413 	while (*p != NULL) {
2414 		parent = *p;
2415 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2416 
2417 		cmp = hist_entry__collapse(he, pair);
2418 
2419 		if (!cmp)
2420 			goto out;
2421 
2422 		if (cmp < 0)
2423 			p = &(*p)->rb_left;
2424 		else {
2425 			p = &(*p)->rb_right;
2426 			leftmost = false;
2427 		}
2428 	}
2429 
2430 	he = hist_entry__new(pair, true);
2431 	if (he) {
2432 		memset(&he->stat, 0, sizeof(he->stat));
2433 		he->hists = hists;
2434 		if (symbol_conf.cumulate_callchain)
2435 			memset(he->stat_acc, 0, sizeof(he->stat));
2436 		rb_link_node(&he->rb_node_in, parent, p);
2437 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2438 		hists__inc_stats(hists, he);
2439 		he->dummy = true;
2440 	}
2441 out:
2442 	return he;
2443 }
2444 
2445 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2446 						    struct rb_root_cached *root,
2447 						    struct hist_entry *pair)
2448 {
2449 	struct rb_node **p;
2450 	struct rb_node *parent = NULL;
2451 	struct hist_entry *he;
2452 	struct perf_hpp_fmt *fmt;
2453 	bool leftmost = true;
2454 
2455 	p = &root->rb_root.rb_node;
2456 	while (*p != NULL) {
2457 		int64_t cmp = 0;
2458 
2459 		parent = *p;
2460 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2461 
2462 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2463 			cmp = fmt->collapse(fmt, he, pair);
2464 			if (cmp)
2465 				break;
2466 		}
2467 		if (!cmp)
2468 			goto out;
2469 
2470 		if (cmp < 0)
2471 			p = &parent->rb_left;
2472 		else {
2473 			p = &parent->rb_right;
2474 			leftmost = false;
2475 		}
2476 	}
2477 
2478 	he = hist_entry__new(pair, true);
2479 	if (he) {
2480 		rb_link_node(&he->rb_node_in, parent, p);
2481 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2482 
2483 		he->dummy = true;
2484 		he->hists = hists;
2485 		memset(&he->stat, 0, sizeof(he->stat));
2486 		hists__inc_stats(hists, he);
2487 	}
2488 out:
2489 	return he;
2490 }
2491 
2492 static struct hist_entry *hists__find_entry(struct hists *hists,
2493 					    struct hist_entry *he)
2494 {
2495 	struct rb_node *n;
2496 
2497 	if (hists__has(hists, need_collapse))
2498 		n = hists->entries_collapsed.rb_root.rb_node;
2499 	else
2500 		n = hists->entries_in->rb_root.rb_node;
2501 
2502 	while (n) {
2503 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2504 		int64_t cmp = hist_entry__collapse(iter, he);
2505 
2506 		if (cmp < 0)
2507 			n = n->rb_left;
2508 		else if (cmp > 0)
2509 			n = n->rb_right;
2510 		else
2511 			return iter;
2512 	}
2513 
2514 	return NULL;
2515 }
2516 
2517 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2518 						      struct hist_entry *he)
2519 {
2520 	struct rb_node *n = root->rb_root.rb_node;
2521 
2522 	while (n) {
2523 		struct hist_entry *iter;
2524 		struct perf_hpp_fmt *fmt;
2525 		int64_t cmp = 0;
2526 
2527 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2528 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2529 			cmp = fmt->collapse(fmt, iter, he);
2530 			if (cmp)
2531 				break;
2532 		}
2533 
2534 		if (cmp < 0)
2535 			n = n->rb_left;
2536 		else if (cmp > 0)
2537 			n = n->rb_right;
2538 		else
2539 			return iter;
2540 	}
2541 
2542 	return NULL;
2543 }
2544 
2545 static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2546 				   struct rb_root_cached *other_root)
2547 {
2548 	struct rb_node *nd;
2549 	struct hist_entry *pos, *pair;
2550 
2551 	for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2552 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2553 		pair = hists__find_hierarchy_entry(other_root, pos);
2554 
2555 		if (pair) {
2556 			hist_entry__add_pair(pair, pos);
2557 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2558 		}
2559 	}
2560 }
2561 
2562 /*
2563  * Look for pairs to link to the leader buckets (hist_entries):
2564  */
2565 void hists__match(struct hists *leader, struct hists *other)
2566 {
2567 	struct rb_root_cached *root;
2568 	struct rb_node *nd;
2569 	struct hist_entry *pos, *pair;
2570 
2571 	if (symbol_conf.report_hierarchy) {
2572 		/* hierarchy report always collapses entries */
2573 		return hists__match_hierarchy(&leader->entries_collapsed,
2574 					      &other->entries_collapsed);
2575 	}
2576 
2577 	if (hists__has(leader, need_collapse))
2578 		root = &leader->entries_collapsed;
2579 	else
2580 		root = leader->entries_in;
2581 
2582 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2583 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2584 		pair = hists__find_entry(other, pos);
2585 
2586 		if (pair)
2587 			hist_entry__add_pair(pair, pos);
2588 	}
2589 }
2590 
2591 static int hists__link_hierarchy(struct hists *leader_hists,
2592 				 struct hist_entry *parent,
2593 				 struct rb_root_cached *leader_root,
2594 				 struct rb_root_cached *other_root)
2595 {
2596 	struct rb_node *nd;
2597 	struct hist_entry *pos, *leader;
2598 
2599 	for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2600 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2601 
2602 		if (hist_entry__has_pairs(pos)) {
2603 			bool found = false;
2604 
2605 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2606 				if (leader->hists == leader_hists) {
2607 					found = true;
2608 					break;
2609 				}
2610 			}
2611 			if (!found)
2612 				return -1;
2613 		} else {
2614 			leader = add_dummy_hierarchy_entry(leader_hists,
2615 							   leader_root, pos);
2616 			if (leader == NULL)
2617 				return -1;
2618 
2619 			/* do not point parent in the pos */
2620 			leader->parent_he = parent;
2621 
2622 			hist_entry__add_pair(pos, leader);
2623 		}
2624 
2625 		if (!pos->leaf) {
2626 			if (hists__link_hierarchy(leader_hists, leader,
2627 						  &leader->hroot_in,
2628 						  &pos->hroot_in) < 0)
2629 				return -1;
2630 		}
2631 	}
2632 	return 0;
2633 }
2634 
2635 /*
2636  * Look for entries in the other hists that are not present in the leader, if
2637  * we find them, just add a dummy entry on the leader hists, with period=0,
2638  * nr_events=0, to serve as the list header.
2639  */
2640 int hists__link(struct hists *leader, struct hists *other)
2641 {
2642 	struct rb_root_cached *root;
2643 	struct rb_node *nd;
2644 	struct hist_entry *pos, *pair;
2645 
2646 	if (symbol_conf.report_hierarchy) {
2647 		/* hierarchy report always collapses entries */
2648 		return hists__link_hierarchy(leader, NULL,
2649 					     &leader->entries_collapsed,
2650 					     &other->entries_collapsed);
2651 	}
2652 
2653 	if (hists__has(other, need_collapse))
2654 		root = &other->entries_collapsed;
2655 	else
2656 		root = other->entries_in;
2657 
2658 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2659 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2660 
2661 		if (!hist_entry__has_pairs(pos)) {
2662 			pair = hists__add_dummy_entry(leader, pos);
2663 			if (pair == NULL)
2664 				return -1;
2665 			hist_entry__add_pair(pos, pair);
2666 		}
2667 	}
2668 
2669 	return 0;
2670 }
2671 
2672 int hists__unlink(struct hists *hists)
2673 {
2674 	struct rb_root_cached *root;
2675 	struct rb_node *nd;
2676 	struct hist_entry *pos;
2677 
2678 	if (hists__has(hists, need_collapse))
2679 		root = &hists->entries_collapsed;
2680 	else
2681 		root = hists->entries_in;
2682 
2683 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2684 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2685 		list_del_init(&pos->pairs.node);
2686 	}
2687 
2688 	return 0;
2689 }
2690 
2691 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2692 			  struct perf_sample *sample, bool nonany_branch_mode,
2693 			  u64 *total_cycles, struct evsel *evsel)
2694 {
2695 	struct branch_info *bi;
2696 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2697 
2698 	/* If we have branch cycles always annotate them. */
2699 	if (bs && bs->nr && entries[0].flags.cycles) {
2700 		bi = sample__resolve_bstack(sample, al);
2701 		if (bi) {
2702 			struct addr_map_symbol *prev = NULL;
2703 
2704 			/*
2705 			 * Ignore errors, still want to process the
2706 			 * other entries.
2707 			 *
2708 			 * For non standard branch modes always
2709 			 * force no IPC (prev == NULL)
2710 			 *
2711 			 * Note that perf stores branches reversed from
2712 			 * program order!
2713 			 */
2714 			for (int i = bs->nr - 1; i >= 0; i--) {
2715 				addr_map_symbol__account_cycles(&bi[i].from,
2716 					nonany_branch_mode ? NULL : prev,
2717 					bi[i].flags.cycles, evsel,
2718 					bi[i].branch_stack_cntr);
2719 				prev = &bi[i].to;
2720 
2721 				if (total_cycles)
2722 					*total_cycles += bi[i].flags.cycles;
2723 			}
2724 			for (unsigned int i = 0; i < bs->nr; i++) {
2725 				map_symbol__exit(&bi[i].to.ms);
2726 				map_symbol__exit(&bi[i].from.ms);
2727 			}
2728 			free(bi);
2729 		}
2730 	}
2731 }
2732 
2733 size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp)
2734 {
2735 	struct evsel *pos;
2736 	size_t ret = 0;
2737 
2738 	evlist__for_each_entry(evlist, pos) {
2739 		struct hists *hists = evsel__hists(pos);
2740 		u64 total_samples = hists->stats.nr_samples;
2741 
2742 		total_samples += hists->stats.nr_lost_samples;
2743 		total_samples += hists->stats.nr_dropped_samples;
2744 
2745 		if (symbol_conf.skip_empty && total_samples == 0)
2746 			continue;
2747 
2748 		ret += fprintf(fp, "%s stats:\n", evsel__name(pos));
2749 		if (hists->stats.nr_samples)
2750 			ret += fprintf(fp, "%20s events: %10d\n",
2751 				       "SAMPLE", hists->stats.nr_samples);
2752 		if (hists->stats.nr_lost_samples)
2753 			ret += fprintf(fp, "%20s events: %10d\n",
2754 				       "LOST_SAMPLES", hists->stats.nr_lost_samples);
2755 		if (hists->stats.nr_dropped_samples)
2756 			ret += fprintf(fp, "%20s events: %10d\n",
2757 				       "LOST_SAMPLES (BPF)", hists->stats.nr_dropped_samples);
2758 	}
2759 
2760 	return ret;
2761 }
2762 
2763 
2764 u64 hists__total_period(struct hists *hists)
2765 {
2766 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2767 		hists->stats.total_period;
2768 }
2769 
2770 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2771 {
2772 	char unit;
2773 	int printed;
2774 	const struct dso *dso = hists->dso_filter;
2775 	struct thread *thread = hists->thread_filter;
2776 	int socket_id = hists->socket_filter;
2777 	unsigned long nr_samples = hists->stats.nr_samples;
2778 	u64 nr_events = hists->stats.total_period;
2779 	struct evsel *evsel = hists_to_evsel(hists);
2780 	const char *ev_name = evsel__name(evsel);
2781 	char buf[512], sample_freq_str[64] = "";
2782 	size_t buflen = sizeof(buf);
2783 	char ref[30] = " show reference callgraph, ";
2784 	bool enable_ref = false;
2785 
2786 	if (symbol_conf.filter_relative) {
2787 		nr_samples = hists->stats.nr_non_filtered_samples;
2788 		nr_events = hists->stats.total_non_filtered_period;
2789 	}
2790 
2791 	if (evsel__is_group_event(evsel)) {
2792 		struct evsel *pos;
2793 
2794 		evsel__group_desc(evsel, buf, buflen);
2795 		ev_name = buf;
2796 
2797 		for_each_group_member(pos, evsel) {
2798 			struct hists *pos_hists = evsel__hists(pos);
2799 
2800 			if (symbol_conf.filter_relative) {
2801 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2802 				nr_events += pos_hists->stats.total_non_filtered_period;
2803 			} else {
2804 				nr_samples += pos_hists->stats.nr_samples;
2805 				nr_events += pos_hists->stats.total_period;
2806 			}
2807 		}
2808 	}
2809 
2810 	if (symbol_conf.show_ref_callgraph &&
2811 	    strstr(ev_name, "call-graph=no"))
2812 		enable_ref = true;
2813 
2814 	if (show_freq)
2815 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2816 
2817 	nr_samples = convert_unit(nr_samples, &unit);
2818 	printed = scnprintf(bf, size,
2819 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2820 			   nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2821 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2822 
2823 
2824 	if (hists->uid_filter_str)
2825 		printed += snprintf(bf + printed, size - printed,
2826 				    ", UID: %s", hists->uid_filter_str);
2827 	if (thread) {
2828 		if (hists__has(hists, thread)) {
2829 			printed += scnprintf(bf + printed, size - printed,
2830 				    ", Thread: %s(%d)",
2831 				    (thread__comm_set(thread) ? thread__comm_str(thread) : ""),
2832 					thread__tid(thread));
2833 		} else {
2834 			printed += scnprintf(bf + printed, size - printed,
2835 				    ", Thread: %s",
2836 				    (thread__comm_set(thread) ? thread__comm_str(thread) : ""));
2837 		}
2838 	}
2839 	if (dso)
2840 		printed += scnprintf(bf + printed, size - printed,
2841 				     ", DSO: %s", dso__short_name(dso));
2842 	if (socket_id > -1)
2843 		printed += scnprintf(bf + printed, size - printed,
2844 				    ", Processor Socket: %d", socket_id);
2845 
2846 	return printed;
2847 }
2848 
2849 int parse_filter_percentage(const struct option *opt __maybe_unused,
2850 			    const char *arg, int unset __maybe_unused)
2851 {
2852 	if (!strcmp(arg, "relative"))
2853 		symbol_conf.filter_relative = true;
2854 	else if (!strcmp(arg, "absolute"))
2855 		symbol_conf.filter_relative = false;
2856 	else {
2857 		pr_debug("Invalid percentage: %s\n", arg);
2858 		return -1;
2859 	}
2860 
2861 	return 0;
2862 }
2863 
2864 int perf_hist_config(const char *var, const char *value)
2865 {
2866 	if (!strcmp(var, "hist.percentage"))
2867 		return parse_filter_percentage(NULL, value, 0);
2868 
2869 	return 0;
2870 }
2871 
2872 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2873 {
2874 	memset(hists, 0, sizeof(*hists));
2875 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2876 	hists->entries_in = &hists->entries_in_array[0];
2877 	hists->entries_collapsed = RB_ROOT_CACHED;
2878 	hists->entries = RB_ROOT_CACHED;
2879 	mutex_init(&hists->lock);
2880 	hists->socket_filter = -1;
2881 	hists->hpp_list = hpp_list;
2882 	INIT_LIST_HEAD(&hists->hpp_formats);
2883 	return 0;
2884 }
2885 
2886 static void hists__delete_remaining_entries(struct rb_root_cached *root)
2887 {
2888 	struct rb_node *node;
2889 	struct hist_entry *he;
2890 
2891 	while (!RB_EMPTY_ROOT(&root->rb_root)) {
2892 		node = rb_first_cached(root);
2893 		rb_erase_cached(node, root);
2894 
2895 		he = rb_entry(node, struct hist_entry, rb_node_in);
2896 		hist_entry__delete(he);
2897 	}
2898 }
2899 
2900 static void hists__delete_all_entries(struct hists *hists)
2901 {
2902 	hists__delete_entries(hists);
2903 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2904 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2905 	hists__delete_remaining_entries(&hists->entries_collapsed);
2906 }
2907 
2908 static void hists_evsel__exit(struct evsel *evsel)
2909 {
2910 	struct hists *hists = evsel__hists(evsel);
2911 	struct perf_hpp_fmt *fmt, *pos;
2912 	struct perf_hpp_list_node *node, *tmp;
2913 
2914 	hists__delete_all_entries(hists);
2915 
2916 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2917 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2918 			list_del_init(&fmt->list);
2919 			free(fmt);
2920 		}
2921 		list_del_init(&node->list);
2922 		free(node);
2923 	}
2924 }
2925 
2926 static int hists_evsel__init(struct evsel *evsel)
2927 {
2928 	struct hists *hists = evsel__hists(evsel);
2929 
2930 	__hists__init(hists, &perf_hpp_list);
2931 	return 0;
2932 }
2933 
2934 /*
2935  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2936  * stored in the rbtree...
2937  */
2938 
2939 int hists__init(void)
2940 {
2941 	int err = evsel__object_config(sizeof(struct hists_evsel),
2942 				       hists_evsel__init, hists_evsel__exit);
2943 	if (err)
2944 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2945 
2946 	return err;
2947 }
2948 
2949 void perf_hpp_list__init(struct perf_hpp_list *list)
2950 {
2951 	INIT_LIST_HEAD(&list->fields);
2952 	INIT_LIST_HEAD(&list->sorts);
2953 }
2954