xref: /linux/tools/perf/util/header.c (revision fb7fd2a14a503b9a23fe10303923fc0605c22288)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 #include <tools/libc_compat.h> // reallocarray
28 
29 #include "dso.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "util/evsel_fprintf.h"
33 #include "header.h"
34 #include "memswap.h"
35 #include "trace-event.h"
36 #include "session.h"
37 #include "symbol.h"
38 #include "debug.h"
39 #include "cpumap.h"
40 #include "pmu.h"
41 #include "pmus.h"
42 #include "vdso.h"
43 #include "strbuf.h"
44 #include "build-id.h"
45 #include "data.h"
46 #include <api/fs/fs.h>
47 #include "asm/bug.h"
48 #include "tool.h"
49 #include "time-utils.h"
50 #include "units.h"
51 #include "util/util.h" // perf_exe()
52 #include "cputopo.h"
53 #include "bpf-event.h"
54 #include "bpf-utils.h"
55 #include "clockid.h"
56 
57 #include <linux/ctype.h>
58 #include <internal/lib.h>
59 
60 #ifdef HAVE_LIBTRACEEVENT
61 #include <traceevent/event-parse.h>
62 #endif
63 
64 /*
65  * magic2 = "PERFILE2"
66  * must be a numerical value to let the endianness
67  * determine the memory layout. That way we are able
68  * to detect endianness when reading the perf.data file
69  * back.
70  *
71  * we check for legacy (PERFFILE) format.
72  */
73 static const char *__perf_magic1 = "PERFFILE";
74 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
75 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
76 
77 #define PERF_MAGIC	__perf_magic2
78 
79 const char perf_version_string[] = PERF_VERSION;
80 
81 struct perf_file_attr {
82 	struct perf_event_attr	attr;
83 	struct perf_file_section	ids;
84 };
85 
86 void perf_header__set_feat(struct perf_header *header, int feat)
87 {
88 	__set_bit(feat, header->adds_features);
89 }
90 
91 void perf_header__clear_feat(struct perf_header *header, int feat)
92 {
93 	__clear_bit(feat, header->adds_features);
94 }
95 
96 bool perf_header__has_feat(const struct perf_header *header, int feat)
97 {
98 	return test_bit(feat, header->adds_features);
99 }
100 
101 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
102 {
103 	ssize_t ret = writen(ff->fd, buf, size);
104 
105 	if (ret != (ssize_t)size)
106 		return ret < 0 ? (int)ret : -1;
107 	return 0;
108 }
109 
110 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
111 {
112 	/* struct perf_event_header::size is u16 */
113 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
114 	size_t new_size = ff->size;
115 	void *addr;
116 
117 	if (size + ff->offset > max_size)
118 		return -E2BIG;
119 
120 	while (size > (new_size - ff->offset))
121 		new_size <<= 1;
122 	new_size = min(max_size, new_size);
123 
124 	if (ff->size < new_size) {
125 		addr = realloc(ff->buf, new_size);
126 		if (!addr)
127 			return -ENOMEM;
128 		ff->buf = addr;
129 		ff->size = new_size;
130 	}
131 
132 	memcpy(ff->buf + ff->offset, buf, size);
133 	ff->offset += size;
134 
135 	return 0;
136 }
137 
138 /* Return: 0 if succeeded, -ERR if failed. */
139 int do_write(struct feat_fd *ff, const void *buf, size_t size)
140 {
141 	if (!ff->buf)
142 		return __do_write_fd(ff, buf, size);
143 	return __do_write_buf(ff, buf, size);
144 }
145 
146 /* Return: 0 if succeeded, -ERR if failed. */
147 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
148 {
149 	u64 *p = (u64 *) set;
150 	int i, ret;
151 
152 	ret = do_write(ff, &size, sizeof(size));
153 	if (ret < 0)
154 		return ret;
155 
156 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
157 		ret = do_write(ff, p + i, sizeof(*p));
158 		if (ret < 0)
159 			return ret;
160 	}
161 
162 	return 0;
163 }
164 
165 /* Return: 0 if succeeded, -ERR if failed. */
166 int write_padded(struct feat_fd *ff, const void *bf,
167 		 size_t count, size_t count_aligned)
168 {
169 	static const char zero_buf[NAME_ALIGN];
170 	int err = do_write(ff, bf, count);
171 
172 	if (!err)
173 		err = do_write(ff, zero_buf, count_aligned - count);
174 
175 	return err;
176 }
177 
178 #define string_size(str)						\
179 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
180 
181 /* Return: 0 if succeeded, -ERR if failed. */
182 static int do_write_string(struct feat_fd *ff, const char *str)
183 {
184 	u32 len, olen;
185 	int ret;
186 
187 	olen = strlen(str) + 1;
188 	len = PERF_ALIGN(olen, NAME_ALIGN);
189 
190 	/* write len, incl. \0 */
191 	ret = do_write(ff, &len, sizeof(len));
192 	if (ret < 0)
193 		return ret;
194 
195 	return write_padded(ff, str, olen, len);
196 }
197 
198 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
199 {
200 	ssize_t ret = readn(ff->fd, addr, size);
201 
202 	if (ret != size)
203 		return ret < 0 ? (int)ret : -1;
204 	return 0;
205 }
206 
207 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
208 {
209 	if (size > (ssize_t)ff->size - ff->offset)
210 		return -1;
211 
212 	memcpy(addr, ff->buf + ff->offset, size);
213 	ff->offset += size;
214 
215 	return 0;
216 
217 }
218 
219 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
220 {
221 	if (!ff->buf)
222 		return __do_read_fd(ff, addr, size);
223 	return __do_read_buf(ff, addr, size);
224 }
225 
226 static int do_read_u32(struct feat_fd *ff, u32 *addr)
227 {
228 	int ret;
229 
230 	ret = __do_read(ff, addr, sizeof(*addr));
231 	if (ret)
232 		return ret;
233 
234 	if (ff->ph->needs_swap)
235 		*addr = bswap_32(*addr);
236 	return 0;
237 }
238 
239 static int do_read_u64(struct feat_fd *ff, u64 *addr)
240 {
241 	int ret;
242 
243 	ret = __do_read(ff, addr, sizeof(*addr));
244 	if (ret)
245 		return ret;
246 
247 	if (ff->ph->needs_swap)
248 		*addr = bswap_64(*addr);
249 	return 0;
250 }
251 
252 static char *do_read_string(struct feat_fd *ff)
253 {
254 	u32 len;
255 	char *buf;
256 
257 	if (do_read_u32(ff, &len))
258 		return NULL;
259 
260 	buf = malloc(len);
261 	if (!buf)
262 		return NULL;
263 
264 	if (!__do_read(ff, buf, len)) {
265 		/*
266 		 * strings are padded by zeroes
267 		 * thus the actual strlen of buf
268 		 * may be less than len
269 		 */
270 		return buf;
271 	}
272 
273 	free(buf);
274 	return NULL;
275 }
276 
277 /* Return: 0 if succeeded, -ERR if failed. */
278 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
279 {
280 	unsigned long *set;
281 	u64 size, *p;
282 	int i, ret;
283 
284 	ret = do_read_u64(ff, &size);
285 	if (ret)
286 		return ret;
287 
288 	set = bitmap_zalloc(size);
289 	if (!set)
290 		return -ENOMEM;
291 
292 	p = (u64 *) set;
293 
294 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
295 		ret = do_read_u64(ff, p + i);
296 		if (ret < 0) {
297 			free(set);
298 			return ret;
299 		}
300 	}
301 
302 	*pset  = set;
303 	*psize = size;
304 	return 0;
305 }
306 
307 #ifdef HAVE_LIBTRACEEVENT
308 static int write_tracing_data(struct feat_fd *ff,
309 			      struct evlist *evlist)
310 {
311 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
312 		return -1;
313 
314 	return read_tracing_data(ff->fd, &evlist->core.entries);
315 }
316 #endif
317 
318 static int write_build_id(struct feat_fd *ff,
319 			  struct evlist *evlist __maybe_unused)
320 {
321 	struct perf_session *session;
322 	int err;
323 
324 	session = container_of(ff->ph, struct perf_session, header);
325 
326 	if (!perf_session__read_build_ids(session, true))
327 		return -1;
328 
329 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
330 		return -1;
331 
332 	err = perf_session__write_buildid_table(session, ff);
333 	if (err < 0) {
334 		pr_debug("failed to write buildid table\n");
335 		return err;
336 	}
337 	perf_session__cache_build_ids(session);
338 
339 	return 0;
340 }
341 
342 static int write_hostname(struct feat_fd *ff,
343 			  struct evlist *evlist __maybe_unused)
344 {
345 	struct utsname uts;
346 	int ret;
347 
348 	ret = uname(&uts);
349 	if (ret < 0)
350 		return -1;
351 
352 	return do_write_string(ff, uts.nodename);
353 }
354 
355 static int write_osrelease(struct feat_fd *ff,
356 			   struct evlist *evlist __maybe_unused)
357 {
358 	struct utsname uts;
359 	int ret;
360 
361 	ret = uname(&uts);
362 	if (ret < 0)
363 		return -1;
364 
365 	return do_write_string(ff, uts.release);
366 }
367 
368 static int write_arch(struct feat_fd *ff,
369 		      struct evlist *evlist __maybe_unused)
370 {
371 	struct utsname uts;
372 	int ret;
373 
374 	ret = uname(&uts);
375 	if (ret < 0)
376 		return -1;
377 
378 	return do_write_string(ff, uts.machine);
379 }
380 
381 static int write_version(struct feat_fd *ff,
382 			 struct evlist *evlist __maybe_unused)
383 {
384 	return do_write_string(ff, perf_version_string);
385 }
386 
387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
388 {
389 	FILE *file;
390 	char *buf = NULL;
391 	char *s, *p;
392 	const char *search = cpuinfo_proc;
393 	size_t len = 0;
394 	int ret = -1;
395 
396 	if (!search)
397 		return -1;
398 
399 	file = fopen("/proc/cpuinfo", "r");
400 	if (!file)
401 		return -1;
402 
403 	while (getline(&buf, &len, file) > 0) {
404 		ret = strncmp(buf, search, strlen(search));
405 		if (!ret)
406 			break;
407 	}
408 
409 	if (ret) {
410 		ret = -1;
411 		goto done;
412 	}
413 
414 	s = buf;
415 
416 	p = strchr(buf, ':');
417 	if (p && *(p+1) == ' ' && *(p+2))
418 		s = p + 2;
419 	p = strchr(s, '\n');
420 	if (p)
421 		*p = '\0';
422 
423 	/* squash extra space characters (branding string) */
424 	p = s;
425 	while (*p) {
426 		if (isspace(*p)) {
427 			char *r = p + 1;
428 			char *q = skip_spaces(r);
429 			*p = ' ';
430 			if (q != (p+1))
431 				while ((*r++ = *q++));
432 		}
433 		p++;
434 	}
435 	ret = do_write_string(ff, s);
436 done:
437 	free(buf);
438 	fclose(file);
439 	return ret;
440 }
441 
442 static int write_cpudesc(struct feat_fd *ff,
443 		       struct evlist *evlist __maybe_unused)
444 {
445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446 #define CPUINFO_PROC	{ "cpu", }
447 #elif defined(__s390__)
448 #define CPUINFO_PROC	{ "vendor_id", }
449 #elif defined(__sh__)
450 #define CPUINFO_PROC	{ "cpu type", }
451 #elif defined(__alpha__) || defined(__mips__)
452 #define CPUINFO_PROC	{ "cpu model", }
453 #elif defined(__arm__)
454 #define CPUINFO_PROC	{ "model name", "Processor", }
455 #elif defined(__arc__)
456 #define CPUINFO_PROC	{ "Processor", }
457 #elif defined(__xtensa__)
458 #define CPUINFO_PROC	{ "core ID", }
459 #elif defined(__loongarch__)
460 #define CPUINFO_PROC	{ "Model Name", }
461 #else
462 #define CPUINFO_PROC	{ "model name", }
463 #endif
464 	const char *cpuinfo_procs[] = CPUINFO_PROC;
465 #undef CPUINFO_PROC
466 	unsigned int i;
467 
468 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
469 		int ret;
470 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
471 		if (ret >= 0)
472 			return ret;
473 	}
474 	return -1;
475 }
476 
477 
478 static int write_nrcpus(struct feat_fd *ff,
479 			struct evlist *evlist __maybe_unused)
480 {
481 	long nr;
482 	u32 nrc, nra;
483 	int ret;
484 
485 	nrc = cpu__max_present_cpu().cpu;
486 
487 	nr = sysconf(_SC_NPROCESSORS_ONLN);
488 	if (nr < 0)
489 		return -1;
490 
491 	nra = (u32)(nr & UINT_MAX);
492 
493 	ret = do_write(ff, &nrc, sizeof(nrc));
494 	if (ret < 0)
495 		return ret;
496 
497 	return do_write(ff, &nra, sizeof(nra));
498 }
499 
500 static int write_event_desc(struct feat_fd *ff,
501 			    struct evlist *evlist)
502 {
503 	struct evsel *evsel;
504 	u32 nre, nri, sz;
505 	int ret;
506 
507 	nre = evlist->core.nr_entries;
508 
509 	/*
510 	 * write number of events
511 	 */
512 	ret = do_write(ff, &nre, sizeof(nre));
513 	if (ret < 0)
514 		return ret;
515 
516 	/*
517 	 * size of perf_event_attr struct
518 	 */
519 	sz = (u32)sizeof(evsel->core.attr);
520 	ret = do_write(ff, &sz, sizeof(sz));
521 	if (ret < 0)
522 		return ret;
523 
524 	evlist__for_each_entry(evlist, evsel) {
525 		ret = do_write(ff, &evsel->core.attr, sz);
526 		if (ret < 0)
527 			return ret;
528 		/*
529 		 * write number of unique id per event
530 		 * there is one id per instance of an event
531 		 *
532 		 * copy into an nri to be independent of the
533 		 * type of ids,
534 		 */
535 		nri = evsel->core.ids;
536 		ret = do_write(ff, &nri, sizeof(nri));
537 		if (ret < 0)
538 			return ret;
539 
540 		/*
541 		 * write event string as passed on cmdline
542 		 */
543 		ret = do_write_string(ff, evsel__name(evsel));
544 		if (ret < 0)
545 			return ret;
546 		/*
547 		 * write unique ids for this event
548 		 */
549 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
550 		if (ret < 0)
551 			return ret;
552 	}
553 	return 0;
554 }
555 
556 static int write_cmdline(struct feat_fd *ff,
557 			 struct evlist *evlist __maybe_unused)
558 {
559 	char pbuf[MAXPATHLEN], *buf;
560 	int i, ret, n;
561 
562 	/* actual path to perf binary */
563 	buf = perf_exe(pbuf, MAXPATHLEN);
564 
565 	/* account for binary path */
566 	n = perf_env.nr_cmdline + 1;
567 
568 	ret = do_write(ff, &n, sizeof(n));
569 	if (ret < 0)
570 		return ret;
571 
572 	ret = do_write_string(ff, buf);
573 	if (ret < 0)
574 		return ret;
575 
576 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
577 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
578 		if (ret < 0)
579 			return ret;
580 	}
581 	return 0;
582 }
583 
584 
585 static int write_cpu_topology(struct feat_fd *ff,
586 			      struct evlist *evlist __maybe_unused)
587 {
588 	struct cpu_topology *tp;
589 	u32 i;
590 	int ret, j;
591 
592 	tp = cpu_topology__new();
593 	if (!tp)
594 		return -1;
595 
596 	ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
597 	if (ret < 0)
598 		goto done;
599 
600 	for (i = 0; i < tp->package_cpus_lists; i++) {
601 		ret = do_write_string(ff, tp->package_cpus_list[i]);
602 		if (ret < 0)
603 			goto done;
604 	}
605 	ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
606 	if (ret < 0)
607 		goto done;
608 
609 	for (i = 0; i < tp->core_cpus_lists; i++) {
610 		ret = do_write_string(ff, tp->core_cpus_list[i]);
611 		if (ret < 0)
612 			break;
613 	}
614 
615 	ret = perf_env__read_cpu_topology_map(&perf_env);
616 	if (ret < 0)
617 		goto done;
618 
619 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
620 		ret = do_write(ff, &perf_env.cpu[j].core_id,
621 			       sizeof(perf_env.cpu[j].core_id));
622 		if (ret < 0)
623 			return ret;
624 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
625 			       sizeof(perf_env.cpu[j].socket_id));
626 		if (ret < 0)
627 			return ret;
628 	}
629 
630 	if (!tp->die_cpus_lists)
631 		goto done;
632 
633 	ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
634 	if (ret < 0)
635 		goto done;
636 
637 	for (i = 0; i < tp->die_cpus_lists; i++) {
638 		ret = do_write_string(ff, tp->die_cpus_list[i]);
639 		if (ret < 0)
640 			goto done;
641 	}
642 
643 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
644 		ret = do_write(ff, &perf_env.cpu[j].die_id,
645 			       sizeof(perf_env.cpu[j].die_id));
646 		if (ret < 0)
647 			return ret;
648 	}
649 
650 done:
651 	cpu_topology__delete(tp);
652 	return ret;
653 }
654 
655 
656 
657 static int write_total_mem(struct feat_fd *ff,
658 			   struct evlist *evlist __maybe_unused)
659 {
660 	char *buf = NULL;
661 	FILE *fp;
662 	size_t len = 0;
663 	int ret = -1, n;
664 	uint64_t mem;
665 
666 	fp = fopen("/proc/meminfo", "r");
667 	if (!fp)
668 		return -1;
669 
670 	while (getline(&buf, &len, fp) > 0) {
671 		ret = strncmp(buf, "MemTotal:", 9);
672 		if (!ret)
673 			break;
674 	}
675 	if (!ret) {
676 		n = sscanf(buf, "%*s %"PRIu64, &mem);
677 		if (n == 1)
678 			ret = do_write(ff, &mem, sizeof(mem));
679 	} else
680 		ret = -1;
681 	free(buf);
682 	fclose(fp);
683 	return ret;
684 }
685 
686 static int write_numa_topology(struct feat_fd *ff,
687 			       struct evlist *evlist __maybe_unused)
688 {
689 	struct numa_topology *tp;
690 	int ret = -1;
691 	u32 i;
692 
693 	tp = numa_topology__new();
694 	if (!tp)
695 		return -ENOMEM;
696 
697 	ret = do_write(ff, &tp->nr, sizeof(u32));
698 	if (ret < 0)
699 		goto err;
700 
701 	for (i = 0; i < tp->nr; i++) {
702 		struct numa_topology_node *n = &tp->nodes[i];
703 
704 		ret = do_write(ff, &n->node, sizeof(u32));
705 		if (ret < 0)
706 			goto err;
707 
708 		ret = do_write(ff, &n->mem_total, sizeof(u64));
709 		if (ret)
710 			goto err;
711 
712 		ret = do_write(ff, &n->mem_free, sizeof(u64));
713 		if (ret)
714 			goto err;
715 
716 		ret = do_write_string(ff, n->cpus);
717 		if (ret < 0)
718 			goto err;
719 	}
720 
721 	ret = 0;
722 
723 err:
724 	numa_topology__delete(tp);
725 	return ret;
726 }
727 
728 /*
729  * File format:
730  *
731  * struct pmu_mappings {
732  *	u32	pmu_num;
733  *	struct pmu_map {
734  *		u32	type;
735  *		char	name[];
736  *	}[pmu_num];
737  * };
738  */
739 
740 static int write_pmu_mappings(struct feat_fd *ff,
741 			      struct evlist *evlist __maybe_unused)
742 {
743 	struct perf_pmu *pmu = NULL;
744 	u32 pmu_num = 0;
745 	int ret;
746 
747 	/*
748 	 * Do a first pass to count number of pmu to avoid lseek so this
749 	 * works in pipe mode as well.
750 	 */
751 	while ((pmu = perf_pmus__scan(pmu)))
752 		pmu_num++;
753 
754 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
755 	if (ret < 0)
756 		return ret;
757 
758 	while ((pmu = perf_pmus__scan(pmu))) {
759 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
760 		if (ret < 0)
761 			return ret;
762 
763 		ret = do_write_string(ff, pmu->name);
764 		if (ret < 0)
765 			return ret;
766 	}
767 
768 	return 0;
769 }
770 
771 /*
772  * File format:
773  *
774  * struct group_descs {
775  *	u32	nr_groups;
776  *	struct group_desc {
777  *		char	name[];
778  *		u32	leader_idx;
779  *		u32	nr_members;
780  *	}[nr_groups];
781  * };
782  */
783 static int write_group_desc(struct feat_fd *ff,
784 			    struct evlist *evlist)
785 {
786 	u32 nr_groups = evlist__nr_groups(evlist);
787 	struct evsel *evsel;
788 	int ret;
789 
790 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
791 	if (ret < 0)
792 		return ret;
793 
794 	evlist__for_each_entry(evlist, evsel) {
795 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
796 			const char *name = evsel->group_name ?: "{anon_group}";
797 			u32 leader_idx = evsel->core.idx;
798 			u32 nr_members = evsel->core.nr_members;
799 
800 			ret = do_write_string(ff, name);
801 			if (ret < 0)
802 				return ret;
803 
804 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
805 			if (ret < 0)
806 				return ret;
807 
808 			ret = do_write(ff, &nr_members, sizeof(nr_members));
809 			if (ret < 0)
810 				return ret;
811 		}
812 	}
813 	return 0;
814 }
815 
816 /*
817  * Return the CPU id as a raw string.
818  *
819  * Each architecture should provide a more precise id string that
820  * can be use to match the architecture's "mapfile".
821  */
822 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
823 {
824 	return NULL;
825 }
826 
827 /* Return zero when the cpuid from the mapfile.csv matches the
828  * cpuid string generated on this platform.
829  * Otherwise return non-zero.
830  */
831 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
832 {
833 	regex_t re;
834 	regmatch_t pmatch[1];
835 	int match;
836 
837 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
838 		/* Warn unable to generate match particular string. */
839 		pr_info("Invalid regular expression %s\n", mapcpuid);
840 		return 1;
841 	}
842 
843 	match = !regexec(&re, cpuid, 1, pmatch, 0);
844 	regfree(&re);
845 	if (match) {
846 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
847 
848 		/* Verify the entire string matched. */
849 		if (match_len == strlen(cpuid))
850 			return 0;
851 	}
852 	return 1;
853 }
854 
855 /*
856  * default get_cpuid(): nothing gets recorded
857  * actual implementation must be in arch/$(SRCARCH)/util/header.c
858  */
859 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
860 {
861 	return ENOSYS; /* Not implemented */
862 }
863 
864 static int write_cpuid(struct feat_fd *ff,
865 		       struct evlist *evlist __maybe_unused)
866 {
867 	char buffer[64];
868 	int ret;
869 
870 	ret = get_cpuid(buffer, sizeof(buffer));
871 	if (ret)
872 		return -1;
873 
874 	return do_write_string(ff, buffer);
875 }
876 
877 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
878 			      struct evlist *evlist __maybe_unused)
879 {
880 	return 0;
881 }
882 
883 static int write_auxtrace(struct feat_fd *ff,
884 			  struct evlist *evlist __maybe_unused)
885 {
886 	struct perf_session *session;
887 	int err;
888 
889 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
890 		return -1;
891 
892 	session = container_of(ff->ph, struct perf_session, header);
893 
894 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
895 	if (err < 0)
896 		pr_err("Failed to write auxtrace index\n");
897 	return err;
898 }
899 
900 static int write_clockid(struct feat_fd *ff,
901 			 struct evlist *evlist __maybe_unused)
902 {
903 	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
904 			sizeof(ff->ph->env.clock.clockid_res_ns));
905 }
906 
907 static int write_clock_data(struct feat_fd *ff,
908 			    struct evlist *evlist __maybe_unused)
909 {
910 	u64 *data64;
911 	u32 data32;
912 	int ret;
913 
914 	/* version */
915 	data32 = 1;
916 
917 	ret = do_write(ff, &data32, sizeof(data32));
918 	if (ret < 0)
919 		return ret;
920 
921 	/* clockid */
922 	data32 = ff->ph->env.clock.clockid;
923 
924 	ret = do_write(ff, &data32, sizeof(data32));
925 	if (ret < 0)
926 		return ret;
927 
928 	/* TOD ref time */
929 	data64 = &ff->ph->env.clock.tod_ns;
930 
931 	ret = do_write(ff, data64, sizeof(*data64));
932 	if (ret < 0)
933 		return ret;
934 
935 	/* clockid ref time */
936 	data64 = &ff->ph->env.clock.clockid_ns;
937 
938 	return do_write(ff, data64, sizeof(*data64));
939 }
940 
941 static int write_hybrid_topology(struct feat_fd *ff,
942 				 struct evlist *evlist __maybe_unused)
943 {
944 	struct hybrid_topology *tp;
945 	int ret;
946 	u32 i;
947 
948 	tp = hybrid_topology__new();
949 	if (!tp)
950 		return -ENOENT;
951 
952 	ret = do_write(ff, &tp->nr, sizeof(u32));
953 	if (ret < 0)
954 		goto err;
955 
956 	for (i = 0; i < tp->nr; i++) {
957 		struct hybrid_topology_node *n = &tp->nodes[i];
958 
959 		ret = do_write_string(ff, n->pmu_name);
960 		if (ret < 0)
961 			goto err;
962 
963 		ret = do_write_string(ff, n->cpus);
964 		if (ret < 0)
965 			goto err;
966 	}
967 
968 	ret = 0;
969 
970 err:
971 	hybrid_topology__delete(tp);
972 	return ret;
973 }
974 
975 static int write_dir_format(struct feat_fd *ff,
976 			    struct evlist *evlist __maybe_unused)
977 {
978 	struct perf_session *session;
979 	struct perf_data *data;
980 
981 	session = container_of(ff->ph, struct perf_session, header);
982 	data = session->data;
983 
984 	if (WARN_ON(!perf_data__is_dir(data)))
985 		return -1;
986 
987 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
988 }
989 
990 /*
991  * Check whether a CPU is online
992  *
993  * Returns:
994  *     1 -> if CPU is online
995  *     0 -> if CPU is offline
996  *    -1 -> error case
997  */
998 int is_cpu_online(unsigned int cpu)
999 {
1000 	char *str;
1001 	size_t strlen;
1002 	char buf[256];
1003 	int status = -1;
1004 	struct stat statbuf;
1005 
1006 	snprintf(buf, sizeof(buf),
1007 		"/sys/devices/system/cpu/cpu%d", cpu);
1008 	if (stat(buf, &statbuf) != 0)
1009 		return 0;
1010 
1011 	/*
1012 	 * Check if /sys/devices/system/cpu/cpux/online file
1013 	 * exists. Some cases cpu0 won't have online file since
1014 	 * it is not expected to be turned off generally.
1015 	 * In kernels without CONFIG_HOTPLUG_CPU, this
1016 	 * file won't exist
1017 	 */
1018 	snprintf(buf, sizeof(buf),
1019 		"/sys/devices/system/cpu/cpu%d/online", cpu);
1020 	if (stat(buf, &statbuf) != 0)
1021 		return 1;
1022 
1023 	/*
1024 	 * Read online file using sysfs__read_str.
1025 	 * If read or open fails, return -1.
1026 	 * If read succeeds, return value from file
1027 	 * which gets stored in "str"
1028 	 */
1029 	snprintf(buf, sizeof(buf),
1030 		"devices/system/cpu/cpu%d/online", cpu);
1031 
1032 	if (sysfs__read_str(buf, &str, &strlen) < 0)
1033 		return status;
1034 
1035 	status = atoi(str);
1036 
1037 	free(str);
1038 	return status;
1039 }
1040 
1041 #ifdef HAVE_LIBBPF_SUPPORT
1042 static int write_bpf_prog_info(struct feat_fd *ff,
1043 			       struct evlist *evlist __maybe_unused)
1044 {
1045 	struct perf_env *env = &ff->ph->env;
1046 	struct rb_root *root;
1047 	struct rb_node *next;
1048 	int ret;
1049 
1050 	down_read(&env->bpf_progs.lock);
1051 
1052 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
1053 		       sizeof(env->bpf_progs.infos_cnt));
1054 	if (ret < 0)
1055 		goto out;
1056 
1057 	root = &env->bpf_progs.infos;
1058 	next = rb_first(root);
1059 	while (next) {
1060 		struct bpf_prog_info_node *node;
1061 		size_t len;
1062 
1063 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1064 		next = rb_next(&node->rb_node);
1065 		len = sizeof(struct perf_bpil) +
1066 			node->info_linear->data_len;
1067 
1068 		/* before writing to file, translate address to offset */
1069 		bpil_addr_to_offs(node->info_linear);
1070 		ret = do_write(ff, node->info_linear, len);
1071 		/*
1072 		 * translate back to address even when do_write() fails,
1073 		 * so that this function never changes the data.
1074 		 */
1075 		bpil_offs_to_addr(node->info_linear);
1076 		if (ret < 0)
1077 			goto out;
1078 	}
1079 out:
1080 	up_read(&env->bpf_progs.lock);
1081 	return ret;
1082 }
1083 
1084 static int write_bpf_btf(struct feat_fd *ff,
1085 			 struct evlist *evlist __maybe_unused)
1086 {
1087 	struct perf_env *env = &ff->ph->env;
1088 	struct rb_root *root;
1089 	struct rb_node *next;
1090 	int ret;
1091 
1092 	down_read(&env->bpf_progs.lock);
1093 
1094 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1095 		       sizeof(env->bpf_progs.btfs_cnt));
1096 
1097 	if (ret < 0)
1098 		goto out;
1099 
1100 	root = &env->bpf_progs.btfs;
1101 	next = rb_first(root);
1102 	while (next) {
1103 		struct btf_node *node;
1104 
1105 		node = rb_entry(next, struct btf_node, rb_node);
1106 		next = rb_next(&node->rb_node);
1107 		ret = do_write(ff, &node->id,
1108 			       sizeof(u32) * 2 + node->data_size);
1109 		if (ret < 0)
1110 			goto out;
1111 	}
1112 out:
1113 	up_read(&env->bpf_progs.lock);
1114 	return ret;
1115 }
1116 #endif // HAVE_LIBBPF_SUPPORT
1117 
1118 static int cpu_cache_level__sort(const void *a, const void *b)
1119 {
1120 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1121 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1122 
1123 	return cache_a->level - cache_b->level;
1124 }
1125 
1126 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1127 {
1128 	if (a->level != b->level)
1129 		return false;
1130 
1131 	if (a->line_size != b->line_size)
1132 		return false;
1133 
1134 	if (a->sets != b->sets)
1135 		return false;
1136 
1137 	if (a->ways != b->ways)
1138 		return false;
1139 
1140 	if (strcmp(a->type, b->type))
1141 		return false;
1142 
1143 	if (strcmp(a->size, b->size))
1144 		return false;
1145 
1146 	if (strcmp(a->map, b->map))
1147 		return false;
1148 
1149 	return true;
1150 }
1151 
1152 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1153 {
1154 	char path[PATH_MAX], file[PATH_MAX];
1155 	struct stat st;
1156 	size_t len;
1157 
1158 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1159 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1160 
1161 	if (stat(file, &st))
1162 		return 1;
1163 
1164 	scnprintf(file, PATH_MAX, "%s/level", path);
1165 	if (sysfs__read_int(file, (int *) &cache->level))
1166 		return -1;
1167 
1168 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1169 	if (sysfs__read_int(file, (int *) &cache->line_size))
1170 		return -1;
1171 
1172 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1173 	if (sysfs__read_int(file, (int *) &cache->sets))
1174 		return -1;
1175 
1176 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1177 	if (sysfs__read_int(file, (int *) &cache->ways))
1178 		return -1;
1179 
1180 	scnprintf(file, PATH_MAX, "%s/type", path);
1181 	if (sysfs__read_str(file, &cache->type, &len))
1182 		return -1;
1183 
1184 	cache->type[len] = 0;
1185 	cache->type = strim(cache->type);
1186 
1187 	scnprintf(file, PATH_MAX, "%s/size", path);
1188 	if (sysfs__read_str(file, &cache->size, &len)) {
1189 		zfree(&cache->type);
1190 		return -1;
1191 	}
1192 
1193 	cache->size[len] = 0;
1194 	cache->size = strim(cache->size);
1195 
1196 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1197 	if (sysfs__read_str(file, &cache->map, &len)) {
1198 		zfree(&cache->size);
1199 		zfree(&cache->type);
1200 		return -1;
1201 	}
1202 
1203 	cache->map[len] = 0;
1204 	cache->map = strim(cache->map);
1205 	return 0;
1206 }
1207 
1208 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1209 {
1210 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1211 }
1212 
1213 /*
1214  * Build caches levels for a particular CPU from the data in
1215  * /sys/devices/system/cpu/cpu<cpu>/cache/
1216  * The cache level data is stored in caches[] from index at
1217  * *cntp.
1218  */
1219 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1220 {
1221 	u16 level;
1222 
1223 	for (level = 0; level < MAX_CACHE_LVL; level++) {
1224 		struct cpu_cache_level c;
1225 		int err;
1226 		u32 i;
1227 
1228 		err = cpu_cache_level__read(&c, cpu, level);
1229 		if (err < 0)
1230 			return err;
1231 
1232 		if (err == 1)
1233 			break;
1234 
1235 		for (i = 0; i < *cntp; i++) {
1236 			if (cpu_cache_level__cmp(&c, &caches[i]))
1237 				break;
1238 		}
1239 
1240 		if (i == *cntp) {
1241 			caches[*cntp] = c;
1242 			*cntp = *cntp + 1;
1243 		} else
1244 			cpu_cache_level__free(&c);
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1251 {
1252 	u32 nr, cpu, cnt = 0;
1253 
1254 	nr = cpu__max_cpu().cpu;
1255 
1256 	for (cpu = 0; cpu < nr; cpu++) {
1257 		int ret = build_caches_for_cpu(cpu, caches, &cnt);
1258 
1259 		if (ret)
1260 			return ret;
1261 	}
1262 	*cntp = cnt;
1263 	return 0;
1264 }
1265 
1266 static int write_cache(struct feat_fd *ff,
1267 		       struct evlist *evlist __maybe_unused)
1268 {
1269 	u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1270 	struct cpu_cache_level caches[max_caches];
1271 	u32 cnt = 0, i, version = 1;
1272 	int ret;
1273 
1274 	ret = build_caches(caches, &cnt);
1275 	if (ret)
1276 		goto out;
1277 
1278 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1279 
1280 	ret = do_write(ff, &version, sizeof(u32));
1281 	if (ret < 0)
1282 		goto out;
1283 
1284 	ret = do_write(ff, &cnt, sizeof(u32));
1285 	if (ret < 0)
1286 		goto out;
1287 
1288 	for (i = 0; i < cnt; i++) {
1289 		struct cpu_cache_level *c = &caches[i];
1290 
1291 		#define _W(v)					\
1292 			ret = do_write(ff, &c->v, sizeof(u32));	\
1293 			if (ret < 0)				\
1294 				goto out;
1295 
1296 		_W(level)
1297 		_W(line_size)
1298 		_W(sets)
1299 		_W(ways)
1300 		#undef _W
1301 
1302 		#define _W(v)						\
1303 			ret = do_write_string(ff, (const char *) c->v);	\
1304 			if (ret < 0)					\
1305 				goto out;
1306 
1307 		_W(type)
1308 		_W(size)
1309 		_W(map)
1310 		#undef _W
1311 	}
1312 
1313 out:
1314 	for (i = 0; i < cnt; i++)
1315 		cpu_cache_level__free(&caches[i]);
1316 	return ret;
1317 }
1318 
1319 static int write_stat(struct feat_fd *ff __maybe_unused,
1320 		      struct evlist *evlist __maybe_unused)
1321 {
1322 	return 0;
1323 }
1324 
1325 static int write_sample_time(struct feat_fd *ff,
1326 			     struct evlist *evlist)
1327 {
1328 	int ret;
1329 
1330 	ret = do_write(ff, &evlist->first_sample_time,
1331 		       sizeof(evlist->first_sample_time));
1332 	if (ret < 0)
1333 		return ret;
1334 
1335 	return do_write(ff, &evlist->last_sample_time,
1336 			sizeof(evlist->last_sample_time));
1337 }
1338 
1339 
1340 static int memory_node__read(struct memory_node *n, unsigned long idx)
1341 {
1342 	unsigned int phys, size = 0;
1343 	char path[PATH_MAX];
1344 	struct dirent *ent;
1345 	DIR *dir;
1346 
1347 #define for_each_memory(mem, dir)					\
1348 	while ((ent = readdir(dir)))					\
1349 		if (strcmp(ent->d_name, ".") &&				\
1350 		    strcmp(ent->d_name, "..") &&			\
1351 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1352 
1353 	scnprintf(path, PATH_MAX,
1354 		  "%s/devices/system/node/node%lu",
1355 		  sysfs__mountpoint(), idx);
1356 
1357 	dir = opendir(path);
1358 	if (!dir) {
1359 		pr_warning("failed: can't open memory sysfs data\n");
1360 		return -1;
1361 	}
1362 
1363 	for_each_memory(phys, dir) {
1364 		size = max(phys, size);
1365 	}
1366 
1367 	size++;
1368 
1369 	n->set = bitmap_zalloc(size);
1370 	if (!n->set) {
1371 		closedir(dir);
1372 		return -ENOMEM;
1373 	}
1374 
1375 	n->node = idx;
1376 	n->size = size;
1377 
1378 	rewinddir(dir);
1379 
1380 	for_each_memory(phys, dir) {
1381 		__set_bit(phys, n->set);
1382 	}
1383 
1384 	closedir(dir);
1385 	return 0;
1386 }
1387 
1388 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1389 {
1390 	for (u64 i = 0; i < cnt; i++)
1391 		bitmap_free(nodesp[i].set);
1392 
1393 	free(nodesp);
1394 }
1395 
1396 static int memory_node__sort(const void *a, const void *b)
1397 {
1398 	const struct memory_node *na = a;
1399 	const struct memory_node *nb = b;
1400 
1401 	return na->node - nb->node;
1402 }
1403 
1404 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1405 {
1406 	char path[PATH_MAX];
1407 	struct dirent *ent;
1408 	DIR *dir;
1409 	int ret = 0;
1410 	size_t cnt = 0, size = 0;
1411 	struct memory_node *nodes = NULL;
1412 
1413 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1414 		  sysfs__mountpoint());
1415 
1416 	dir = opendir(path);
1417 	if (!dir) {
1418 		pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1419 			  __func__, path);
1420 		return -1;
1421 	}
1422 
1423 	while (!ret && (ent = readdir(dir))) {
1424 		unsigned int idx;
1425 		int r;
1426 
1427 		if (!strcmp(ent->d_name, ".") ||
1428 		    !strcmp(ent->d_name, ".."))
1429 			continue;
1430 
1431 		r = sscanf(ent->d_name, "node%u", &idx);
1432 		if (r != 1)
1433 			continue;
1434 
1435 		if (cnt >= size) {
1436 			struct memory_node *new_nodes =
1437 				reallocarray(nodes, cnt + 4, sizeof(*nodes));
1438 
1439 			if (!new_nodes) {
1440 				pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1441 				ret = -ENOMEM;
1442 				goto out;
1443 			}
1444 			nodes = new_nodes;
1445 			size += 4;
1446 		}
1447 		ret = memory_node__read(&nodes[cnt++], idx);
1448 	}
1449 out:
1450 	closedir(dir);
1451 	if (!ret) {
1452 		*cntp = cnt;
1453 		*nodesp = nodes;
1454 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1455 	} else
1456 		memory_node__delete_nodes(nodes, cnt);
1457 
1458 	return ret;
1459 }
1460 
1461 /*
1462  * The MEM_TOPOLOGY holds physical memory map for every
1463  * node in system. The format of data is as follows:
1464  *
1465  *  0 - version          | for future changes
1466  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1467  * 16 - count            | number of nodes
1468  *
1469  * For each node we store map of physical indexes for
1470  * each node:
1471  *
1472  * 32 - node id          | node index
1473  * 40 - size             | size of bitmap
1474  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1475  */
1476 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1477 			      struct evlist *evlist __maybe_unused)
1478 {
1479 	struct memory_node *nodes = NULL;
1480 	u64 bsize, version = 1, i, nr = 0;
1481 	int ret;
1482 
1483 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1484 			      (unsigned long long *) &bsize);
1485 	if (ret)
1486 		return ret;
1487 
1488 	ret = build_mem_topology(&nodes, &nr);
1489 	if (ret)
1490 		return ret;
1491 
1492 	ret = do_write(ff, &version, sizeof(version));
1493 	if (ret < 0)
1494 		goto out;
1495 
1496 	ret = do_write(ff, &bsize, sizeof(bsize));
1497 	if (ret < 0)
1498 		goto out;
1499 
1500 	ret = do_write(ff, &nr, sizeof(nr));
1501 	if (ret < 0)
1502 		goto out;
1503 
1504 	for (i = 0; i < nr; i++) {
1505 		struct memory_node *n = &nodes[i];
1506 
1507 		#define _W(v)						\
1508 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1509 			if (ret < 0)					\
1510 				goto out;
1511 
1512 		_W(node)
1513 		_W(size)
1514 
1515 		#undef _W
1516 
1517 		ret = do_write_bitmap(ff, n->set, n->size);
1518 		if (ret < 0)
1519 			goto out;
1520 	}
1521 
1522 out:
1523 	memory_node__delete_nodes(nodes, nr);
1524 	return ret;
1525 }
1526 
1527 static int write_compressed(struct feat_fd *ff __maybe_unused,
1528 			    struct evlist *evlist __maybe_unused)
1529 {
1530 	int ret;
1531 
1532 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1533 	if (ret)
1534 		return ret;
1535 
1536 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1537 	if (ret)
1538 		return ret;
1539 
1540 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1541 	if (ret)
1542 		return ret;
1543 
1544 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1545 	if (ret)
1546 		return ret;
1547 
1548 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1549 }
1550 
1551 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1552 			    bool write_pmu)
1553 {
1554 	struct perf_pmu_caps *caps = NULL;
1555 	int ret;
1556 
1557 	ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1558 	if (ret < 0)
1559 		return ret;
1560 
1561 	list_for_each_entry(caps, &pmu->caps, list) {
1562 		ret = do_write_string(ff, caps->name);
1563 		if (ret < 0)
1564 			return ret;
1565 
1566 		ret = do_write_string(ff, caps->value);
1567 		if (ret < 0)
1568 			return ret;
1569 	}
1570 
1571 	if (write_pmu) {
1572 		ret = do_write_string(ff, pmu->name);
1573 		if (ret < 0)
1574 			return ret;
1575 	}
1576 
1577 	return ret;
1578 }
1579 
1580 static int write_cpu_pmu_caps(struct feat_fd *ff,
1581 			      struct evlist *evlist __maybe_unused)
1582 {
1583 	struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1584 	int ret;
1585 
1586 	if (!cpu_pmu)
1587 		return -ENOENT;
1588 
1589 	ret = perf_pmu__caps_parse(cpu_pmu);
1590 	if (ret < 0)
1591 		return ret;
1592 
1593 	return __write_pmu_caps(ff, cpu_pmu, false);
1594 }
1595 
1596 static int write_pmu_caps(struct feat_fd *ff,
1597 			  struct evlist *evlist __maybe_unused)
1598 {
1599 	struct perf_pmu *pmu = NULL;
1600 	int nr_pmu = 0;
1601 	int ret;
1602 
1603 	while ((pmu = perf_pmus__scan(pmu))) {
1604 		if (!strcmp(pmu->name, "cpu")) {
1605 			/*
1606 			 * The "cpu" PMU is special and covered by
1607 			 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1608 			 * counted/written here for ARM, s390 and Intel hybrid.
1609 			 */
1610 			continue;
1611 		}
1612 		if (perf_pmu__caps_parse(pmu) <= 0)
1613 			continue;
1614 		nr_pmu++;
1615 	}
1616 
1617 	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1618 	if (ret < 0)
1619 		return ret;
1620 
1621 	if (!nr_pmu)
1622 		return 0;
1623 
1624 	/*
1625 	 * Note older perf tools assume core PMUs come first, this is a property
1626 	 * of perf_pmus__scan.
1627 	 */
1628 	pmu = NULL;
1629 	while ((pmu = perf_pmus__scan(pmu))) {
1630 		if (!strcmp(pmu->name, "cpu")) {
1631 			/* Skip as above. */
1632 			continue;
1633 		}
1634 		if (perf_pmu__caps_parse(pmu) <= 0)
1635 			continue;
1636 		ret = __write_pmu_caps(ff, pmu, true);
1637 		if (ret < 0)
1638 			return ret;
1639 	}
1640 	return 0;
1641 }
1642 
1643 static void print_hostname(struct feat_fd *ff, FILE *fp)
1644 {
1645 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1646 }
1647 
1648 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1649 {
1650 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1651 }
1652 
1653 static void print_arch(struct feat_fd *ff, FILE *fp)
1654 {
1655 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1656 }
1657 
1658 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1659 {
1660 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1661 }
1662 
1663 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1664 {
1665 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1666 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1667 }
1668 
1669 static void print_version(struct feat_fd *ff, FILE *fp)
1670 {
1671 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1672 }
1673 
1674 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1675 {
1676 	int nr, i;
1677 
1678 	nr = ff->ph->env.nr_cmdline;
1679 
1680 	fprintf(fp, "# cmdline : ");
1681 
1682 	for (i = 0; i < nr; i++) {
1683 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1684 		if (!argv_i) {
1685 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1686 		} else {
1687 			char *mem = argv_i;
1688 			do {
1689 				char *quote = strchr(argv_i, '\'');
1690 				if (!quote)
1691 					break;
1692 				*quote++ = '\0';
1693 				fprintf(fp, "%s\\\'", argv_i);
1694 				argv_i = quote;
1695 			} while (1);
1696 			fprintf(fp, "%s ", argv_i);
1697 			free(mem);
1698 		}
1699 	}
1700 	fputc('\n', fp);
1701 }
1702 
1703 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1704 {
1705 	struct perf_header *ph = ff->ph;
1706 	int cpu_nr = ph->env.nr_cpus_avail;
1707 	int nr, i;
1708 	char *str;
1709 
1710 	nr = ph->env.nr_sibling_cores;
1711 	str = ph->env.sibling_cores;
1712 
1713 	for (i = 0; i < nr; i++) {
1714 		fprintf(fp, "# sibling sockets : %s\n", str);
1715 		str += strlen(str) + 1;
1716 	}
1717 
1718 	if (ph->env.nr_sibling_dies) {
1719 		nr = ph->env.nr_sibling_dies;
1720 		str = ph->env.sibling_dies;
1721 
1722 		for (i = 0; i < nr; i++) {
1723 			fprintf(fp, "# sibling dies    : %s\n", str);
1724 			str += strlen(str) + 1;
1725 		}
1726 	}
1727 
1728 	nr = ph->env.nr_sibling_threads;
1729 	str = ph->env.sibling_threads;
1730 
1731 	for (i = 0; i < nr; i++) {
1732 		fprintf(fp, "# sibling threads : %s\n", str);
1733 		str += strlen(str) + 1;
1734 	}
1735 
1736 	if (ph->env.nr_sibling_dies) {
1737 		if (ph->env.cpu != NULL) {
1738 			for (i = 0; i < cpu_nr; i++)
1739 				fprintf(fp, "# CPU %d: Core ID %d, "
1740 					    "Die ID %d, Socket ID %d\n",
1741 					    i, ph->env.cpu[i].core_id,
1742 					    ph->env.cpu[i].die_id,
1743 					    ph->env.cpu[i].socket_id);
1744 		} else
1745 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1746 				    "information is not available\n");
1747 	} else {
1748 		if (ph->env.cpu != NULL) {
1749 			for (i = 0; i < cpu_nr; i++)
1750 				fprintf(fp, "# CPU %d: Core ID %d, "
1751 					    "Socket ID %d\n",
1752 					    i, ph->env.cpu[i].core_id,
1753 					    ph->env.cpu[i].socket_id);
1754 		} else
1755 			fprintf(fp, "# Core ID and Socket ID "
1756 				    "information is not available\n");
1757 	}
1758 }
1759 
1760 static void print_clockid(struct feat_fd *ff, FILE *fp)
1761 {
1762 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1763 		ff->ph->env.clock.clockid_res_ns * 1000);
1764 }
1765 
1766 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1767 {
1768 	struct timespec clockid_ns;
1769 	char tstr[64], date[64];
1770 	struct timeval tod_ns;
1771 	clockid_t clockid;
1772 	struct tm ltime;
1773 	u64 ref;
1774 
1775 	if (!ff->ph->env.clock.enabled) {
1776 		fprintf(fp, "# reference time disabled\n");
1777 		return;
1778 	}
1779 
1780 	/* Compute TOD time. */
1781 	ref = ff->ph->env.clock.tod_ns;
1782 	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1783 	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1784 	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1785 
1786 	/* Compute clockid time. */
1787 	ref = ff->ph->env.clock.clockid_ns;
1788 	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1789 	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1790 	clockid_ns.tv_nsec = ref;
1791 
1792 	clockid = ff->ph->env.clock.clockid;
1793 
1794 	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1795 		snprintf(tstr, sizeof(tstr), "<error>");
1796 	else {
1797 		strftime(date, sizeof(date), "%F %T", &ltime);
1798 		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1799 			  date, (int) tod_ns.tv_usec);
1800 	}
1801 
1802 	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1803 	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1804 		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1805 		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1806 		    clockid_name(clockid));
1807 }
1808 
1809 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1810 {
1811 	int i;
1812 	struct hybrid_node *n;
1813 
1814 	fprintf(fp, "# hybrid cpu system:\n");
1815 	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1816 		n = &ff->ph->env.hybrid_nodes[i];
1817 		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1818 	}
1819 }
1820 
1821 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1822 {
1823 	struct perf_session *session;
1824 	struct perf_data *data;
1825 
1826 	session = container_of(ff->ph, struct perf_session, header);
1827 	data = session->data;
1828 
1829 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1830 }
1831 
1832 #ifdef HAVE_LIBBPF_SUPPORT
1833 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1834 {
1835 	struct perf_env *env = &ff->ph->env;
1836 	struct rb_root *root;
1837 	struct rb_node *next;
1838 
1839 	down_read(&env->bpf_progs.lock);
1840 
1841 	root = &env->bpf_progs.infos;
1842 	next = rb_first(root);
1843 
1844 	while (next) {
1845 		struct bpf_prog_info_node *node;
1846 
1847 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1848 		next = rb_next(&node->rb_node);
1849 
1850 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1851 					       env, fp);
1852 	}
1853 
1854 	up_read(&env->bpf_progs.lock);
1855 }
1856 
1857 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1858 {
1859 	struct perf_env *env = &ff->ph->env;
1860 	struct rb_root *root;
1861 	struct rb_node *next;
1862 
1863 	down_read(&env->bpf_progs.lock);
1864 
1865 	root = &env->bpf_progs.btfs;
1866 	next = rb_first(root);
1867 
1868 	while (next) {
1869 		struct btf_node *node;
1870 
1871 		node = rb_entry(next, struct btf_node, rb_node);
1872 		next = rb_next(&node->rb_node);
1873 		fprintf(fp, "# btf info of id %u\n", node->id);
1874 	}
1875 
1876 	up_read(&env->bpf_progs.lock);
1877 }
1878 #endif // HAVE_LIBBPF_SUPPORT
1879 
1880 static void free_event_desc(struct evsel *events)
1881 {
1882 	struct evsel *evsel;
1883 
1884 	if (!events)
1885 		return;
1886 
1887 	for (evsel = events; evsel->core.attr.size; evsel++) {
1888 		zfree(&evsel->name);
1889 		zfree(&evsel->core.id);
1890 	}
1891 
1892 	free(events);
1893 }
1894 
1895 static bool perf_attr_check(struct perf_event_attr *attr)
1896 {
1897 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1898 		pr_warning("Reserved bits are set unexpectedly. "
1899 			   "Please update perf tool.\n");
1900 		return false;
1901 	}
1902 
1903 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1904 		pr_warning("Unknown sample type (0x%llx) is detected. "
1905 			   "Please update perf tool.\n",
1906 			   attr->sample_type);
1907 		return false;
1908 	}
1909 
1910 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1911 		pr_warning("Unknown read format (0x%llx) is detected. "
1912 			   "Please update perf tool.\n",
1913 			   attr->read_format);
1914 		return false;
1915 	}
1916 
1917 	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1918 	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1919 		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1920 			   "Please update perf tool.\n",
1921 			   attr->branch_sample_type);
1922 
1923 		return false;
1924 	}
1925 
1926 	return true;
1927 }
1928 
1929 static struct evsel *read_event_desc(struct feat_fd *ff)
1930 {
1931 	struct evsel *evsel, *events = NULL;
1932 	u64 *id;
1933 	void *buf = NULL;
1934 	u32 nre, sz, nr, i, j;
1935 	size_t msz;
1936 
1937 	/* number of events */
1938 	if (do_read_u32(ff, &nre))
1939 		goto error;
1940 
1941 	if (do_read_u32(ff, &sz))
1942 		goto error;
1943 
1944 	/* buffer to hold on file attr struct */
1945 	buf = malloc(sz);
1946 	if (!buf)
1947 		goto error;
1948 
1949 	/* the last event terminates with evsel->core.attr.size == 0: */
1950 	events = calloc(nre + 1, sizeof(*events));
1951 	if (!events)
1952 		goto error;
1953 
1954 	msz = sizeof(evsel->core.attr);
1955 	if (sz < msz)
1956 		msz = sz;
1957 
1958 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1959 		evsel->core.idx = i;
1960 
1961 		/*
1962 		 * must read entire on-file attr struct to
1963 		 * sync up with layout.
1964 		 */
1965 		if (__do_read(ff, buf, sz))
1966 			goto error;
1967 
1968 		if (ff->ph->needs_swap)
1969 			perf_event__attr_swap(buf);
1970 
1971 		memcpy(&evsel->core.attr, buf, msz);
1972 
1973 		if (!perf_attr_check(&evsel->core.attr))
1974 			goto error;
1975 
1976 		if (do_read_u32(ff, &nr))
1977 			goto error;
1978 
1979 		if (ff->ph->needs_swap)
1980 			evsel->needs_swap = true;
1981 
1982 		evsel->name = do_read_string(ff);
1983 		if (!evsel->name)
1984 			goto error;
1985 
1986 		if (!nr)
1987 			continue;
1988 
1989 		id = calloc(nr, sizeof(*id));
1990 		if (!id)
1991 			goto error;
1992 		evsel->core.ids = nr;
1993 		evsel->core.id = id;
1994 
1995 		for (j = 0 ; j < nr; j++) {
1996 			if (do_read_u64(ff, id))
1997 				goto error;
1998 			id++;
1999 		}
2000 	}
2001 out:
2002 	free(buf);
2003 	return events;
2004 error:
2005 	free_event_desc(events);
2006 	events = NULL;
2007 	goto out;
2008 }
2009 
2010 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
2011 				void *priv __maybe_unused)
2012 {
2013 	return fprintf(fp, ", %s = %s", name, val);
2014 }
2015 
2016 static void print_event_desc(struct feat_fd *ff, FILE *fp)
2017 {
2018 	struct evsel *evsel, *events;
2019 	u32 j;
2020 	u64 *id;
2021 
2022 	if (ff->events)
2023 		events = ff->events;
2024 	else
2025 		events = read_event_desc(ff);
2026 
2027 	if (!events) {
2028 		fprintf(fp, "# event desc: not available or unable to read\n");
2029 		return;
2030 	}
2031 
2032 	for (evsel = events; evsel->core.attr.size; evsel++) {
2033 		fprintf(fp, "# event : name = %s, ", evsel->name);
2034 
2035 		if (evsel->core.ids) {
2036 			fprintf(fp, ", id = {");
2037 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2038 				if (j)
2039 					fputc(',', fp);
2040 				fprintf(fp, " %"PRIu64, *id);
2041 			}
2042 			fprintf(fp, " }");
2043 		}
2044 
2045 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2046 
2047 		fputc('\n', fp);
2048 	}
2049 
2050 	free_event_desc(events);
2051 	ff->events = NULL;
2052 }
2053 
2054 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2055 {
2056 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2057 }
2058 
2059 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2060 {
2061 	int i;
2062 	struct numa_node *n;
2063 
2064 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2065 		n = &ff->ph->env.numa_nodes[i];
2066 
2067 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2068 			    " free = %"PRIu64" kB\n",
2069 			n->node, n->mem_total, n->mem_free);
2070 
2071 		fprintf(fp, "# node%u cpu list : ", n->node);
2072 		cpu_map__fprintf(n->map, fp);
2073 	}
2074 }
2075 
2076 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2077 {
2078 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2079 }
2080 
2081 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2082 {
2083 	fprintf(fp, "# contains samples with branch stack\n");
2084 }
2085 
2086 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2087 {
2088 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2089 }
2090 
2091 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2092 {
2093 	fprintf(fp, "# contains stat data\n");
2094 }
2095 
2096 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2097 {
2098 	int i;
2099 
2100 	fprintf(fp, "# CPU cache info:\n");
2101 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2102 		fprintf(fp, "#  ");
2103 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2104 	}
2105 }
2106 
2107 static void print_compressed(struct feat_fd *ff, FILE *fp)
2108 {
2109 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2110 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2111 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2112 }
2113 
2114 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2115 {
2116 	const char *delimiter = "";
2117 	int i;
2118 
2119 	if (!nr_caps) {
2120 		fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2121 		return;
2122 	}
2123 
2124 	fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2125 	for (i = 0; i < nr_caps; i++) {
2126 		fprintf(fp, "%s%s", delimiter, caps[i]);
2127 		delimiter = ", ";
2128 	}
2129 
2130 	fprintf(fp, "\n");
2131 }
2132 
2133 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2134 {
2135 	__print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2136 			 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2137 }
2138 
2139 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2140 {
2141 	struct pmu_caps *pmu_caps;
2142 
2143 	for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2144 		pmu_caps = &ff->ph->env.pmu_caps[i];
2145 		__print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2146 				 pmu_caps->pmu_name);
2147 	}
2148 
2149 	if (strcmp(perf_env__arch(&ff->ph->env), "x86") == 0 &&
2150 	    perf_env__has_pmu_mapping(&ff->ph->env, "ibs_op")) {
2151 		char *max_precise = perf_env__find_pmu_cap(&ff->ph->env, "cpu", "max_precise");
2152 
2153 		if (max_precise != NULL && atoi(max_precise) == 0)
2154 			fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n");
2155 	}
2156 }
2157 
2158 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2159 {
2160 	const char *delimiter = "# pmu mappings: ";
2161 	char *str, *tmp;
2162 	u32 pmu_num;
2163 	u32 type;
2164 
2165 	pmu_num = ff->ph->env.nr_pmu_mappings;
2166 	if (!pmu_num) {
2167 		fprintf(fp, "# pmu mappings: not available\n");
2168 		return;
2169 	}
2170 
2171 	str = ff->ph->env.pmu_mappings;
2172 
2173 	while (pmu_num) {
2174 		type = strtoul(str, &tmp, 0);
2175 		if (*tmp != ':')
2176 			goto error;
2177 
2178 		str = tmp + 1;
2179 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2180 
2181 		delimiter = ", ";
2182 		str += strlen(str) + 1;
2183 		pmu_num--;
2184 	}
2185 
2186 	fprintf(fp, "\n");
2187 
2188 	if (!pmu_num)
2189 		return;
2190 error:
2191 	fprintf(fp, "# pmu mappings: unable to read\n");
2192 }
2193 
2194 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2195 {
2196 	struct perf_session *session;
2197 	struct evsel *evsel;
2198 	u32 nr = 0;
2199 
2200 	session = container_of(ff->ph, struct perf_session, header);
2201 
2202 	evlist__for_each_entry(session->evlist, evsel) {
2203 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2204 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2205 
2206 			nr = evsel->core.nr_members - 1;
2207 		} else if (nr) {
2208 			fprintf(fp, ",%s", evsel__name(evsel));
2209 
2210 			if (--nr == 0)
2211 				fprintf(fp, "}\n");
2212 		}
2213 	}
2214 }
2215 
2216 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2217 {
2218 	struct perf_session *session;
2219 	char time_buf[32];
2220 	double d;
2221 
2222 	session = container_of(ff->ph, struct perf_session, header);
2223 
2224 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2225 				  time_buf, sizeof(time_buf));
2226 	fprintf(fp, "# time of first sample : %s\n", time_buf);
2227 
2228 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2229 				  time_buf, sizeof(time_buf));
2230 	fprintf(fp, "# time of last sample : %s\n", time_buf);
2231 
2232 	d = (double)(session->evlist->last_sample_time -
2233 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2234 
2235 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2236 }
2237 
2238 static void memory_node__fprintf(struct memory_node *n,
2239 				 unsigned long long bsize, FILE *fp)
2240 {
2241 	char buf_map[100], buf_size[50];
2242 	unsigned long long size;
2243 
2244 	size = bsize * bitmap_weight(n->set, n->size);
2245 	unit_number__scnprintf(buf_size, 50, size);
2246 
2247 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2248 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2249 }
2250 
2251 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2252 {
2253 	struct memory_node *nodes;
2254 	int i, nr;
2255 
2256 	nodes = ff->ph->env.memory_nodes;
2257 	nr    = ff->ph->env.nr_memory_nodes;
2258 
2259 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2260 		nr, ff->ph->env.memory_bsize);
2261 
2262 	for (i = 0; i < nr; i++) {
2263 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2264 	}
2265 }
2266 
2267 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2268 				    char *filename,
2269 				    struct perf_session *session)
2270 {
2271 	int err = -1;
2272 	struct machine *machine;
2273 	u16 cpumode;
2274 	struct dso *dso;
2275 	enum dso_space_type dso_space;
2276 
2277 	machine = perf_session__findnew_machine(session, bev->pid);
2278 	if (!machine)
2279 		goto out;
2280 
2281 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2282 
2283 	switch (cpumode) {
2284 	case PERF_RECORD_MISC_KERNEL:
2285 		dso_space = DSO_SPACE__KERNEL;
2286 		break;
2287 	case PERF_RECORD_MISC_GUEST_KERNEL:
2288 		dso_space = DSO_SPACE__KERNEL_GUEST;
2289 		break;
2290 	case PERF_RECORD_MISC_USER:
2291 	case PERF_RECORD_MISC_GUEST_USER:
2292 		dso_space = DSO_SPACE__USER;
2293 		break;
2294 	default:
2295 		goto out;
2296 	}
2297 
2298 	dso = machine__findnew_dso(machine, filename);
2299 	if (dso != NULL) {
2300 		char sbuild_id[SBUILD_ID_SIZE];
2301 		struct build_id bid;
2302 		size_t size = BUILD_ID_SIZE;
2303 
2304 		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2305 			size = bev->size;
2306 
2307 		build_id__init(&bid, bev->data, size);
2308 		dso__set_build_id(dso, &bid);
2309 		dso->header_build_id = 1;
2310 
2311 		if (dso_space != DSO_SPACE__USER) {
2312 			struct kmod_path m = { .name = NULL, };
2313 
2314 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2315 				dso__set_module_info(dso, &m, machine);
2316 
2317 			dso->kernel = dso_space;
2318 			free(m.name);
2319 		}
2320 
2321 		build_id__sprintf(&dso->bid, sbuild_id);
2322 		pr_debug("build id event received for %s: %s [%zu]\n",
2323 			 dso->long_name, sbuild_id, size);
2324 		dso__put(dso);
2325 	}
2326 
2327 	err = 0;
2328 out:
2329 	return err;
2330 }
2331 
2332 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2333 						 int input, u64 offset, u64 size)
2334 {
2335 	struct perf_session *session = container_of(header, struct perf_session, header);
2336 	struct {
2337 		struct perf_event_header   header;
2338 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2339 		char			   filename[0];
2340 	} old_bev;
2341 	struct perf_record_header_build_id bev;
2342 	char filename[PATH_MAX];
2343 	u64 limit = offset + size;
2344 
2345 	while (offset < limit) {
2346 		ssize_t len;
2347 
2348 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2349 			return -1;
2350 
2351 		if (header->needs_swap)
2352 			perf_event_header__bswap(&old_bev.header);
2353 
2354 		len = old_bev.header.size - sizeof(old_bev);
2355 		if (readn(input, filename, len) != len)
2356 			return -1;
2357 
2358 		bev.header = old_bev.header;
2359 
2360 		/*
2361 		 * As the pid is the missing value, we need to fill
2362 		 * it properly. The header.misc value give us nice hint.
2363 		 */
2364 		bev.pid	= HOST_KERNEL_ID;
2365 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2366 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2367 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2368 
2369 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2370 		__event_process_build_id(&bev, filename, session);
2371 
2372 		offset += bev.header.size;
2373 	}
2374 
2375 	return 0;
2376 }
2377 
2378 static int perf_header__read_build_ids(struct perf_header *header,
2379 				       int input, u64 offset, u64 size)
2380 {
2381 	struct perf_session *session = container_of(header, struct perf_session, header);
2382 	struct perf_record_header_build_id bev;
2383 	char filename[PATH_MAX];
2384 	u64 limit = offset + size, orig_offset = offset;
2385 	int err = -1;
2386 
2387 	while (offset < limit) {
2388 		ssize_t len;
2389 
2390 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2391 			goto out;
2392 
2393 		if (header->needs_swap)
2394 			perf_event_header__bswap(&bev.header);
2395 
2396 		len = bev.header.size - sizeof(bev);
2397 		if (readn(input, filename, len) != len)
2398 			goto out;
2399 		/*
2400 		 * The a1645ce1 changeset:
2401 		 *
2402 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2403 		 *
2404 		 * Added a field to struct perf_record_header_build_id that broke the file
2405 		 * format.
2406 		 *
2407 		 * Since the kernel build-id is the first entry, process the
2408 		 * table using the old format if the well known
2409 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2410 		 * first 4 characters chopped off (where the pid_t sits).
2411 		 */
2412 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2413 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2414 				return -1;
2415 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2416 		}
2417 
2418 		__event_process_build_id(&bev, filename, session);
2419 
2420 		offset += bev.header.size;
2421 	}
2422 	err = 0;
2423 out:
2424 	return err;
2425 }
2426 
2427 /* Macro for features that simply need to read and store a string. */
2428 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2429 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2430 {\
2431 	free(ff->ph->env.__feat_env);		     \
2432 	ff->ph->env.__feat_env = do_read_string(ff); \
2433 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2434 }
2435 
2436 FEAT_PROCESS_STR_FUN(hostname, hostname);
2437 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2438 FEAT_PROCESS_STR_FUN(version, version);
2439 FEAT_PROCESS_STR_FUN(arch, arch);
2440 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2441 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2442 
2443 #ifdef HAVE_LIBTRACEEVENT
2444 static int process_tracing_data(struct feat_fd *ff, void *data)
2445 {
2446 	ssize_t ret = trace_report(ff->fd, data, false);
2447 
2448 	return ret < 0 ? -1 : 0;
2449 }
2450 #endif
2451 
2452 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2453 {
2454 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2455 		pr_debug("Failed to read buildids, continuing...\n");
2456 	return 0;
2457 }
2458 
2459 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2460 {
2461 	int ret;
2462 	u32 nr_cpus_avail, nr_cpus_online;
2463 
2464 	ret = do_read_u32(ff, &nr_cpus_avail);
2465 	if (ret)
2466 		return ret;
2467 
2468 	ret = do_read_u32(ff, &nr_cpus_online);
2469 	if (ret)
2470 		return ret;
2471 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2472 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2473 	return 0;
2474 }
2475 
2476 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2477 {
2478 	u64 total_mem;
2479 	int ret;
2480 
2481 	ret = do_read_u64(ff, &total_mem);
2482 	if (ret)
2483 		return -1;
2484 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2485 	return 0;
2486 }
2487 
2488 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2489 {
2490 	struct evsel *evsel;
2491 
2492 	evlist__for_each_entry(evlist, evsel) {
2493 		if (evsel->core.idx == idx)
2494 			return evsel;
2495 	}
2496 
2497 	return NULL;
2498 }
2499 
2500 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2501 {
2502 	struct evsel *evsel;
2503 
2504 	if (!event->name)
2505 		return;
2506 
2507 	evsel = evlist__find_by_index(evlist, event->core.idx);
2508 	if (!evsel)
2509 		return;
2510 
2511 	if (evsel->name)
2512 		return;
2513 
2514 	evsel->name = strdup(event->name);
2515 }
2516 
2517 static int
2518 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2519 {
2520 	struct perf_session *session;
2521 	struct evsel *evsel, *events = read_event_desc(ff);
2522 
2523 	if (!events)
2524 		return 0;
2525 
2526 	session = container_of(ff->ph, struct perf_session, header);
2527 
2528 	if (session->data->is_pipe) {
2529 		/* Save events for reading later by print_event_desc,
2530 		 * since they can't be read again in pipe mode. */
2531 		ff->events = events;
2532 	}
2533 
2534 	for (evsel = events; evsel->core.attr.size; evsel++)
2535 		evlist__set_event_name(session->evlist, evsel);
2536 
2537 	if (!session->data->is_pipe)
2538 		free_event_desc(events);
2539 
2540 	return 0;
2541 }
2542 
2543 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2544 {
2545 	char *str, *cmdline = NULL, **argv = NULL;
2546 	u32 nr, i, len = 0;
2547 
2548 	if (do_read_u32(ff, &nr))
2549 		return -1;
2550 
2551 	ff->ph->env.nr_cmdline = nr;
2552 
2553 	cmdline = zalloc(ff->size + nr + 1);
2554 	if (!cmdline)
2555 		return -1;
2556 
2557 	argv = zalloc(sizeof(char *) * (nr + 1));
2558 	if (!argv)
2559 		goto error;
2560 
2561 	for (i = 0; i < nr; i++) {
2562 		str = do_read_string(ff);
2563 		if (!str)
2564 			goto error;
2565 
2566 		argv[i] = cmdline + len;
2567 		memcpy(argv[i], str, strlen(str) + 1);
2568 		len += strlen(str) + 1;
2569 		free(str);
2570 	}
2571 	ff->ph->env.cmdline = cmdline;
2572 	ff->ph->env.cmdline_argv = (const char **) argv;
2573 	return 0;
2574 
2575 error:
2576 	free(argv);
2577 	free(cmdline);
2578 	return -1;
2579 }
2580 
2581 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2582 {
2583 	u32 nr, i;
2584 	char *str = NULL;
2585 	struct strbuf sb;
2586 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2587 	u64 size = 0;
2588 	struct perf_header *ph = ff->ph;
2589 	bool do_core_id_test = true;
2590 
2591 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2592 	if (!ph->env.cpu)
2593 		return -1;
2594 
2595 	if (do_read_u32(ff, &nr))
2596 		goto free_cpu;
2597 
2598 	ph->env.nr_sibling_cores = nr;
2599 	size += sizeof(u32);
2600 	if (strbuf_init(&sb, 128) < 0)
2601 		goto free_cpu;
2602 
2603 	for (i = 0; i < nr; i++) {
2604 		str = do_read_string(ff);
2605 		if (!str)
2606 			goto error;
2607 
2608 		/* include a NULL character at the end */
2609 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2610 			goto error;
2611 		size += string_size(str);
2612 		zfree(&str);
2613 	}
2614 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2615 
2616 	if (do_read_u32(ff, &nr))
2617 		return -1;
2618 
2619 	ph->env.nr_sibling_threads = nr;
2620 	size += sizeof(u32);
2621 
2622 	for (i = 0; i < nr; i++) {
2623 		str = do_read_string(ff);
2624 		if (!str)
2625 			goto error;
2626 
2627 		/* include a NULL character at the end */
2628 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2629 			goto error;
2630 		size += string_size(str);
2631 		zfree(&str);
2632 	}
2633 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2634 
2635 	/*
2636 	 * The header may be from old perf,
2637 	 * which doesn't include core id and socket id information.
2638 	 */
2639 	if (ff->size <= size) {
2640 		zfree(&ph->env.cpu);
2641 		return 0;
2642 	}
2643 
2644 	/* On s390 the socket_id number is not related to the numbers of cpus.
2645 	 * The socket_id number might be higher than the numbers of cpus.
2646 	 * This depends on the configuration.
2647 	 * AArch64 is the same.
2648 	 */
2649 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2650 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2651 		do_core_id_test = false;
2652 
2653 	for (i = 0; i < (u32)cpu_nr; i++) {
2654 		if (do_read_u32(ff, &nr))
2655 			goto free_cpu;
2656 
2657 		ph->env.cpu[i].core_id = nr;
2658 		size += sizeof(u32);
2659 
2660 		if (do_read_u32(ff, &nr))
2661 			goto free_cpu;
2662 
2663 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2664 			pr_debug("socket_id number is too big."
2665 				 "You may need to upgrade the perf tool.\n");
2666 			goto free_cpu;
2667 		}
2668 
2669 		ph->env.cpu[i].socket_id = nr;
2670 		size += sizeof(u32);
2671 	}
2672 
2673 	/*
2674 	 * The header may be from old perf,
2675 	 * which doesn't include die information.
2676 	 */
2677 	if (ff->size <= size)
2678 		return 0;
2679 
2680 	if (do_read_u32(ff, &nr))
2681 		return -1;
2682 
2683 	ph->env.nr_sibling_dies = nr;
2684 	size += sizeof(u32);
2685 
2686 	for (i = 0; i < nr; i++) {
2687 		str = do_read_string(ff);
2688 		if (!str)
2689 			goto error;
2690 
2691 		/* include a NULL character at the end */
2692 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2693 			goto error;
2694 		size += string_size(str);
2695 		zfree(&str);
2696 	}
2697 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2698 
2699 	for (i = 0; i < (u32)cpu_nr; i++) {
2700 		if (do_read_u32(ff, &nr))
2701 			goto free_cpu;
2702 
2703 		ph->env.cpu[i].die_id = nr;
2704 	}
2705 
2706 	return 0;
2707 
2708 error:
2709 	strbuf_release(&sb);
2710 	zfree(&str);
2711 free_cpu:
2712 	zfree(&ph->env.cpu);
2713 	return -1;
2714 }
2715 
2716 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2717 {
2718 	struct numa_node *nodes, *n;
2719 	u32 nr, i;
2720 	char *str;
2721 
2722 	/* nr nodes */
2723 	if (do_read_u32(ff, &nr))
2724 		return -1;
2725 
2726 	nodes = zalloc(sizeof(*nodes) * nr);
2727 	if (!nodes)
2728 		return -ENOMEM;
2729 
2730 	for (i = 0; i < nr; i++) {
2731 		n = &nodes[i];
2732 
2733 		/* node number */
2734 		if (do_read_u32(ff, &n->node))
2735 			goto error;
2736 
2737 		if (do_read_u64(ff, &n->mem_total))
2738 			goto error;
2739 
2740 		if (do_read_u64(ff, &n->mem_free))
2741 			goto error;
2742 
2743 		str = do_read_string(ff);
2744 		if (!str)
2745 			goto error;
2746 
2747 		n->map = perf_cpu_map__new(str);
2748 		free(str);
2749 		if (!n->map)
2750 			goto error;
2751 	}
2752 	ff->ph->env.nr_numa_nodes = nr;
2753 	ff->ph->env.numa_nodes = nodes;
2754 	return 0;
2755 
2756 error:
2757 	free(nodes);
2758 	return -1;
2759 }
2760 
2761 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2762 {
2763 	char *name;
2764 	u32 pmu_num;
2765 	u32 type;
2766 	struct strbuf sb;
2767 
2768 	if (do_read_u32(ff, &pmu_num))
2769 		return -1;
2770 
2771 	if (!pmu_num) {
2772 		pr_debug("pmu mappings not available\n");
2773 		return 0;
2774 	}
2775 
2776 	ff->ph->env.nr_pmu_mappings = pmu_num;
2777 	if (strbuf_init(&sb, 128) < 0)
2778 		return -1;
2779 
2780 	while (pmu_num) {
2781 		if (do_read_u32(ff, &type))
2782 			goto error;
2783 
2784 		name = do_read_string(ff);
2785 		if (!name)
2786 			goto error;
2787 
2788 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2789 			goto error;
2790 		/* include a NULL character at the end */
2791 		if (strbuf_add(&sb, "", 1) < 0)
2792 			goto error;
2793 
2794 		if (!strcmp(name, "msr"))
2795 			ff->ph->env.msr_pmu_type = type;
2796 
2797 		free(name);
2798 		pmu_num--;
2799 	}
2800 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2801 	return 0;
2802 
2803 error:
2804 	strbuf_release(&sb);
2805 	return -1;
2806 }
2807 
2808 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2809 {
2810 	size_t ret = -1;
2811 	u32 i, nr, nr_groups;
2812 	struct perf_session *session;
2813 	struct evsel *evsel, *leader = NULL;
2814 	struct group_desc {
2815 		char *name;
2816 		u32 leader_idx;
2817 		u32 nr_members;
2818 	} *desc;
2819 
2820 	if (do_read_u32(ff, &nr_groups))
2821 		return -1;
2822 
2823 	ff->ph->env.nr_groups = nr_groups;
2824 	if (!nr_groups) {
2825 		pr_debug("group desc not available\n");
2826 		return 0;
2827 	}
2828 
2829 	desc = calloc(nr_groups, sizeof(*desc));
2830 	if (!desc)
2831 		return -1;
2832 
2833 	for (i = 0; i < nr_groups; i++) {
2834 		desc[i].name = do_read_string(ff);
2835 		if (!desc[i].name)
2836 			goto out_free;
2837 
2838 		if (do_read_u32(ff, &desc[i].leader_idx))
2839 			goto out_free;
2840 
2841 		if (do_read_u32(ff, &desc[i].nr_members))
2842 			goto out_free;
2843 	}
2844 
2845 	/*
2846 	 * Rebuild group relationship based on the group_desc
2847 	 */
2848 	session = container_of(ff->ph, struct perf_session, header);
2849 
2850 	i = nr = 0;
2851 	evlist__for_each_entry(session->evlist, evsel) {
2852 		if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2853 			evsel__set_leader(evsel, evsel);
2854 			/* {anon_group} is a dummy name */
2855 			if (strcmp(desc[i].name, "{anon_group}")) {
2856 				evsel->group_name = desc[i].name;
2857 				desc[i].name = NULL;
2858 			}
2859 			evsel->core.nr_members = desc[i].nr_members;
2860 
2861 			if (i >= nr_groups || nr > 0) {
2862 				pr_debug("invalid group desc\n");
2863 				goto out_free;
2864 			}
2865 
2866 			leader = evsel;
2867 			nr = evsel->core.nr_members - 1;
2868 			i++;
2869 		} else if (nr) {
2870 			/* This is a group member */
2871 			evsel__set_leader(evsel, leader);
2872 
2873 			nr--;
2874 		}
2875 	}
2876 
2877 	if (i != nr_groups || nr != 0) {
2878 		pr_debug("invalid group desc\n");
2879 		goto out_free;
2880 	}
2881 
2882 	ret = 0;
2883 out_free:
2884 	for (i = 0; i < nr_groups; i++)
2885 		zfree(&desc[i].name);
2886 	free(desc);
2887 
2888 	return ret;
2889 }
2890 
2891 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2892 {
2893 	struct perf_session *session;
2894 	int err;
2895 
2896 	session = container_of(ff->ph, struct perf_session, header);
2897 
2898 	err = auxtrace_index__process(ff->fd, ff->size, session,
2899 				      ff->ph->needs_swap);
2900 	if (err < 0)
2901 		pr_err("Failed to process auxtrace index\n");
2902 	return err;
2903 }
2904 
2905 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2906 {
2907 	struct cpu_cache_level *caches;
2908 	u32 cnt, i, version;
2909 
2910 	if (do_read_u32(ff, &version))
2911 		return -1;
2912 
2913 	if (version != 1)
2914 		return -1;
2915 
2916 	if (do_read_u32(ff, &cnt))
2917 		return -1;
2918 
2919 	caches = zalloc(sizeof(*caches) * cnt);
2920 	if (!caches)
2921 		return -1;
2922 
2923 	for (i = 0; i < cnt; i++) {
2924 		struct cpu_cache_level *c = &caches[i];
2925 
2926 		#define _R(v)						\
2927 			if (do_read_u32(ff, &c->v))			\
2928 				goto out_free_caches;			\
2929 
2930 		_R(level)
2931 		_R(line_size)
2932 		_R(sets)
2933 		_R(ways)
2934 		#undef _R
2935 
2936 		#define _R(v)					\
2937 			c->v = do_read_string(ff);		\
2938 			if (!c->v)				\
2939 				goto out_free_caches;		\
2940 
2941 		_R(type)
2942 		_R(size)
2943 		_R(map)
2944 		#undef _R
2945 	}
2946 
2947 	ff->ph->env.caches = caches;
2948 	ff->ph->env.caches_cnt = cnt;
2949 	return 0;
2950 out_free_caches:
2951 	for (i = 0; i < cnt; i++) {
2952 		free(caches[i].type);
2953 		free(caches[i].size);
2954 		free(caches[i].map);
2955 	}
2956 	free(caches);
2957 	return -1;
2958 }
2959 
2960 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2961 {
2962 	struct perf_session *session;
2963 	u64 first_sample_time, last_sample_time;
2964 	int ret;
2965 
2966 	session = container_of(ff->ph, struct perf_session, header);
2967 
2968 	ret = do_read_u64(ff, &first_sample_time);
2969 	if (ret)
2970 		return -1;
2971 
2972 	ret = do_read_u64(ff, &last_sample_time);
2973 	if (ret)
2974 		return -1;
2975 
2976 	session->evlist->first_sample_time = first_sample_time;
2977 	session->evlist->last_sample_time = last_sample_time;
2978 	return 0;
2979 }
2980 
2981 static int process_mem_topology(struct feat_fd *ff,
2982 				void *data __maybe_unused)
2983 {
2984 	struct memory_node *nodes;
2985 	u64 version, i, nr, bsize;
2986 	int ret = -1;
2987 
2988 	if (do_read_u64(ff, &version))
2989 		return -1;
2990 
2991 	if (version != 1)
2992 		return -1;
2993 
2994 	if (do_read_u64(ff, &bsize))
2995 		return -1;
2996 
2997 	if (do_read_u64(ff, &nr))
2998 		return -1;
2999 
3000 	nodes = zalloc(sizeof(*nodes) * nr);
3001 	if (!nodes)
3002 		return -1;
3003 
3004 	for (i = 0; i < nr; i++) {
3005 		struct memory_node n;
3006 
3007 		#define _R(v)				\
3008 			if (do_read_u64(ff, &n.v))	\
3009 				goto out;		\
3010 
3011 		_R(node)
3012 		_R(size)
3013 
3014 		#undef _R
3015 
3016 		if (do_read_bitmap(ff, &n.set, &n.size))
3017 			goto out;
3018 
3019 		nodes[i] = n;
3020 	}
3021 
3022 	ff->ph->env.memory_bsize    = bsize;
3023 	ff->ph->env.memory_nodes    = nodes;
3024 	ff->ph->env.nr_memory_nodes = nr;
3025 	ret = 0;
3026 
3027 out:
3028 	if (ret)
3029 		free(nodes);
3030 	return ret;
3031 }
3032 
3033 static int process_clockid(struct feat_fd *ff,
3034 			   void *data __maybe_unused)
3035 {
3036 	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3037 		return -1;
3038 
3039 	return 0;
3040 }
3041 
3042 static int process_clock_data(struct feat_fd *ff,
3043 			      void *_data __maybe_unused)
3044 {
3045 	u32 data32;
3046 	u64 data64;
3047 
3048 	/* version */
3049 	if (do_read_u32(ff, &data32))
3050 		return -1;
3051 
3052 	if (data32 != 1)
3053 		return -1;
3054 
3055 	/* clockid */
3056 	if (do_read_u32(ff, &data32))
3057 		return -1;
3058 
3059 	ff->ph->env.clock.clockid = data32;
3060 
3061 	/* TOD ref time */
3062 	if (do_read_u64(ff, &data64))
3063 		return -1;
3064 
3065 	ff->ph->env.clock.tod_ns = data64;
3066 
3067 	/* clockid ref time */
3068 	if (do_read_u64(ff, &data64))
3069 		return -1;
3070 
3071 	ff->ph->env.clock.clockid_ns = data64;
3072 	ff->ph->env.clock.enabled = true;
3073 	return 0;
3074 }
3075 
3076 static int process_hybrid_topology(struct feat_fd *ff,
3077 				   void *data __maybe_unused)
3078 {
3079 	struct hybrid_node *nodes, *n;
3080 	u32 nr, i;
3081 
3082 	/* nr nodes */
3083 	if (do_read_u32(ff, &nr))
3084 		return -1;
3085 
3086 	nodes = zalloc(sizeof(*nodes) * nr);
3087 	if (!nodes)
3088 		return -ENOMEM;
3089 
3090 	for (i = 0; i < nr; i++) {
3091 		n = &nodes[i];
3092 
3093 		n->pmu_name = do_read_string(ff);
3094 		if (!n->pmu_name)
3095 			goto error;
3096 
3097 		n->cpus = do_read_string(ff);
3098 		if (!n->cpus)
3099 			goto error;
3100 	}
3101 
3102 	ff->ph->env.nr_hybrid_nodes = nr;
3103 	ff->ph->env.hybrid_nodes = nodes;
3104 	return 0;
3105 
3106 error:
3107 	for (i = 0; i < nr; i++) {
3108 		free(nodes[i].pmu_name);
3109 		free(nodes[i].cpus);
3110 	}
3111 
3112 	free(nodes);
3113 	return -1;
3114 }
3115 
3116 static int process_dir_format(struct feat_fd *ff,
3117 			      void *_data __maybe_unused)
3118 {
3119 	struct perf_session *session;
3120 	struct perf_data *data;
3121 
3122 	session = container_of(ff->ph, struct perf_session, header);
3123 	data = session->data;
3124 
3125 	if (WARN_ON(!perf_data__is_dir(data)))
3126 		return -1;
3127 
3128 	return do_read_u64(ff, &data->dir.version);
3129 }
3130 
3131 #ifdef HAVE_LIBBPF_SUPPORT
3132 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3133 {
3134 	struct bpf_prog_info_node *info_node;
3135 	struct perf_env *env = &ff->ph->env;
3136 	struct perf_bpil *info_linear;
3137 	u32 count, i;
3138 	int err = -1;
3139 
3140 	if (ff->ph->needs_swap) {
3141 		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3142 		return 0;
3143 	}
3144 
3145 	if (do_read_u32(ff, &count))
3146 		return -1;
3147 
3148 	down_write(&env->bpf_progs.lock);
3149 
3150 	for (i = 0; i < count; ++i) {
3151 		u32 info_len, data_len;
3152 
3153 		info_linear = NULL;
3154 		info_node = NULL;
3155 		if (do_read_u32(ff, &info_len))
3156 			goto out;
3157 		if (do_read_u32(ff, &data_len))
3158 			goto out;
3159 
3160 		if (info_len > sizeof(struct bpf_prog_info)) {
3161 			pr_warning("detected invalid bpf_prog_info\n");
3162 			goto out;
3163 		}
3164 
3165 		info_linear = malloc(sizeof(struct perf_bpil) +
3166 				     data_len);
3167 		if (!info_linear)
3168 			goto out;
3169 		info_linear->info_len = sizeof(struct bpf_prog_info);
3170 		info_linear->data_len = data_len;
3171 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3172 			goto out;
3173 		if (__do_read(ff, &info_linear->info, info_len))
3174 			goto out;
3175 		if (info_len < sizeof(struct bpf_prog_info))
3176 			memset(((void *)(&info_linear->info)) + info_len, 0,
3177 			       sizeof(struct bpf_prog_info) - info_len);
3178 
3179 		if (__do_read(ff, info_linear->data, data_len))
3180 			goto out;
3181 
3182 		info_node = malloc(sizeof(struct bpf_prog_info_node));
3183 		if (!info_node)
3184 			goto out;
3185 
3186 		/* after reading from file, translate offset to address */
3187 		bpil_offs_to_addr(info_linear);
3188 		info_node->info_linear = info_linear;
3189 		perf_env__insert_bpf_prog_info(env, info_node);
3190 	}
3191 
3192 	up_write(&env->bpf_progs.lock);
3193 	return 0;
3194 out:
3195 	free(info_linear);
3196 	free(info_node);
3197 	up_write(&env->bpf_progs.lock);
3198 	return err;
3199 }
3200 
3201 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3202 {
3203 	struct perf_env *env = &ff->ph->env;
3204 	struct btf_node *node = NULL;
3205 	u32 count, i;
3206 	int err = -1;
3207 
3208 	if (ff->ph->needs_swap) {
3209 		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3210 		return 0;
3211 	}
3212 
3213 	if (do_read_u32(ff, &count))
3214 		return -1;
3215 
3216 	down_write(&env->bpf_progs.lock);
3217 
3218 	for (i = 0; i < count; ++i) {
3219 		u32 id, data_size;
3220 
3221 		if (do_read_u32(ff, &id))
3222 			goto out;
3223 		if (do_read_u32(ff, &data_size))
3224 			goto out;
3225 
3226 		node = malloc(sizeof(struct btf_node) + data_size);
3227 		if (!node)
3228 			goto out;
3229 
3230 		node->id = id;
3231 		node->data_size = data_size;
3232 
3233 		if (__do_read(ff, node->data, data_size))
3234 			goto out;
3235 
3236 		perf_env__insert_btf(env, node);
3237 		node = NULL;
3238 	}
3239 
3240 	err = 0;
3241 out:
3242 	up_write(&env->bpf_progs.lock);
3243 	free(node);
3244 	return err;
3245 }
3246 #endif // HAVE_LIBBPF_SUPPORT
3247 
3248 static int process_compressed(struct feat_fd *ff,
3249 			      void *data __maybe_unused)
3250 {
3251 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3252 		return -1;
3253 
3254 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3255 		return -1;
3256 
3257 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3258 		return -1;
3259 
3260 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3261 		return -1;
3262 
3263 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3264 		return -1;
3265 
3266 	return 0;
3267 }
3268 
3269 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3270 			      char ***caps, unsigned int *max_branches,
3271 			      unsigned int *br_cntr_nr,
3272 			      unsigned int *br_cntr_width)
3273 {
3274 	char *name, *value, *ptr;
3275 	u32 nr_pmu_caps, i;
3276 
3277 	*nr_caps = 0;
3278 	*caps = NULL;
3279 
3280 	if (do_read_u32(ff, &nr_pmu_caps))
3281 		return -1;
3282 
3283 	if (!nr_pmu_caps)
3284 		return 0;
3285 
3286 	*caps = zalloc(sizeof(char *) * nr_pmu_caps);
3287 	if (!*caps)
3288 		return -1;
3289 
3290 	for (i = 0; i < nr_pmu_caps; i++) {
3291 		name = do_read_string(ff);
3292 		if (!name)
3293 			goto error;
3294 
3295 		value = do_read_string(ff);
3296 		if (!value)
3297 			goto free_name;
3298 
3299 		if (asprintf(&ptr, "%s=%s", name, value) < 0)
3300 			goto free_value;
3301 
3302 		(*caps)[i] = ptr;
3303 
3304 		if (!strcmp(name, "branches"))
3305 			*max_branches = atoi(value);
3306 
3307 		if (!strcmp(name, "branch_counter_nr"))
3308 			*br_cntr_nr = atoi(value);
3309 
3310 		if (!strcmp(name, "branch_counter_width"))
3311 			*br_cntr_width = atoi(value);
3312 
3313 		free(value);
3314 		free(name);
3315 	}
3316 	*nr_caps = nr_pmu_caps;
3317 	return 0;
3318 
3319 free_value:
3320 	free(value);
3321 free_name:
3322 	free(name);
3323 error:
3324 	for (; i > 0; i--)
3325 		free((*caps)[i - 1]);
3326 	free(*caps);
3327 	*caps = NULL;
3328 	*nr_caps = 0;
3329 	return -1;
3330 }
3331 
3332 static int process_cpu_pmu_caps(struct feat_fd *ff,
3333 				void *data __maybe_unused)
3334 {
3335 	int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3336 				     &ff->ph->env.cpu_pmu_caps,
3337 				     &ff->ph->env.max_branches,
3338 				     &ff->ph->env.br_cntr_nr,
3339 				     &ff->ph->env.br_cntr_width);
3340 
3341 	if (!ret && !ff->ph->env.cpu_pmu_caps)
3342 		pr_debug("cpu pmu capabilities not available\n");
3343 	return ret;
3344 }
3345 
3346 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3347 {
3348 	struct pmu_caps *pmu_caps;
3349 	u32 nr_pmu, i;
3350 	int ret;
3351 	int j;
3352 
3353 	if (do_read_u32(ff, &nr_pmu))
3354 		return -1;
3355 
3356 	if (!nr_pmu) {
3357 		pr_debug("pmu capabilities not available\n");
3358 		return 0;
3359 	}
3360 
3361 	pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3362 	if (!pmu_caps)
3363 		return -ENOMEM;
3364 
3365 	for (i = 0; i < nr_pmu; i++) {
3366 		ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3367 					 &pmu_caps[i].caps,
3368 					 &pmu_caps[i].max_branches,
3369 					 &pmu_caps[i].br_cntr_nr,
3370 					 &pmu_caps[i].br_cntr_width);
3371 		if (ret)
3372 			goto err;
3373 
3374 		pmu_caps[i].pmu_name = do_read_string(ff);
3375 		if (!pmu_caps[i].pmu_name) {
3376 			ret = -1;
3377 			goto err;
3378 		}
3379 		if (!pmu_caps[i].nr_caps) {
3380 			pr_debug("%s pmu capabilities not available\n",
3381 				 pmu_caps[i].pmu_name);
3382 		}
3383 	}
3384 
3385 	ff->ph->env.nr_pmus_with_caps = nr_pmu;
3386 	ff->ph->env.pmu_caps = pmu_caps;
3387 	return 0;
3388 
3389 err:
3390 	for (i = 0; i < nr_pmu; i++) {
3391 		for (j = 0; j < pmu_caps[i].nr_caps; j++)
3392 			free(pmu_caps[i].caps[j]);
3393 		free(pmu_caps[i].caps);
3394 		free(pmu_caps[i].pmu_name);
3395 	}
3396 
3397 	free(pmu_caps);
3398 	return ret;
3399 }
3400 
3401 #define FEAT_OPR(n, func, __full_only) \
3402 	[HEADER_##n] = {					\
3403 		.name	    = __stringify(n),			\
3404 		.write	    = write_##func,			\
3405 		.print	    = print_##func,			\
3406 		.full_only  = __full_only,			\
3407 		.process    = process_##func,			\
3408 		.synthesize = true				\
3409 	}
3410 
3411 #define FEAT_OPN(n, func, __full_only) \
3412 	[HEADER_##n] = {					\
3413 		.name	    = __stringify(n),			\
3414 		.write	    = write_##func,			\
3415 		.print	    = print_##func,			\
3416 		.full_only  = __full_only,			\
3417 		.process    = process_##func			\
3418 	}
3419 
3420 /* feature_ops not implemented: */
3421 #define print_tracing_data	NULL
3422 #define print_build_id		NULL
3423 
3424 #define process_branch_stack	NULL
3425 #define process_stat		NULL
3426 
3427 // Only used in util/synthetic-events.c
3428 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3429 
3430 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3431 #ifdef HAVE_LIBTRACEEVENT
3432 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3433 #endif
3434 	FEAT_OPN(BUILD_ID,	build_id,	false),
3435 	FEAT_OPR(HOSTNAME,	hostname,	false),
3436 	FEAT_OPR(OSRELEASE,	osrelease,	false),
3437 	FEAT_OPR(VERSION,	version,	false),
3438 	FEAT_OPR(ARCH,		arch,		false),
3439 	FEAT_OPR(NRCPUS,	nrcpus,		false),
3440 	FEAT_OPR(CPUDESC,	cpudesc,	false),
3441 	FEAT_OPR(CPUID,		cpuid,		false),
3442 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3443 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3444 	FEAT_OPR(CMDLINE,	cmdline,	false),
3445 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3446 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3447 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3448 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3449 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3450 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3451 	FEAT_OPN(STAT,		stat,		false),
3452 	FEAT_OPN(CACHE,		cache,		true),
3453 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3454 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3455 	FEAT_OPR(CLOCKID,	clockid,	false),
3456 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3457 #ifdef HAVE_LIBBPF_SUPPORT
3458 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3459 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3460 #endif
3461 	FEAT_OPR(COMPRESSED,	compressed,	false),
3462 	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3463 	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3464 	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3465 	FEAT_OPR(PMU_CAPS,	pmu_caps,	false),
3466 };
3467 
3468 struct header_print_data {
3469 	FILE *fp;
3470 	bool full; /* extended list of headers */
3471 };
3472 
3473 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3474 					   struct perf_header *ph,
3475 					   int feat, int fd, void *data)
3476 {
3477 	struct header_print_data *hd = data;
3478 	struct feat_fd ff;
3479 
3480 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3481 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3482 				"%d, continuing...\n", section->offset, feat);
3483 		return 0;
3484 	}
3485 	if (feat >= HEADER_LAST_FEATURE) {
3486 		pr_warning("unknown feature %d\n", feat);
3487 		return 0;
3488 	}
3489 	if (!feat_ops[feat].print)
3490 		return 0;
3491 
3492 	ff = (struct  feat_fd) {
3493 		.fd = fd,
3494 		.ph = ph,
3495 	};
3496 
3497 	if (!feat_ops[feat].full_only || hd->full)
3498 		feat_ops[feat].print(&ff, hd->fp);
3499 	else
3500 		fprintf(hd->fp, "# %s info available, use -I to display\n",
3501 			feat_ops[feat].name);
3502 
3503 	return 0;
3504 }
3505 
3506 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3507 {
3508 	struct header_print_data hd;
3509 	struct perf_header *header = &session->header;
3510 	int fd = perf_data__fd(session->data);
3511 	struct stat st;
3512 	time_t stctime;
3513 	int ret, bit;
3514 
3515 	hd.fp = fp;
3516 	hd.full = full;
3517 
3518 	ret = fstat(fd, &st);
3519 	if (ret == -1)
3520 		return -1;
3521 
3522 	stctime = st.st_mtime;
3523 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3524 
3525 	fprintf(fp, "# header version : %u\n", header->version);
3526 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3527 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3528 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3529 
3530 	perf_header__process_sections(header, fd, &hd,
3531 				      perf_file_section__fprintf_info);
3532 
3533 	if (session->data->is_pipe)
3534 		return 0;
3535 
3536 	fprintf(fp, "# missing features: ");
3537 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3538 		if (bit)
3539 			fprintf(fp, "%s ", feat_ops[bit].name);
3540 	}
3541 
3542 	fprintf(fp, "\n");
3543 	return 0;
3544 }
3545 
3546 struct header_fw {
3547 	struct feat_writer	fw;
3548 	struct feat_fd		*ff;
3549 };
3550 
3551 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3552 {
3553 	struct header_fw *h = container_of(fw, struct header_fw, fw);
3554 
3555 	return do_write(h->ff, buf, sz);
3556 }
3557 
3558 static int do_write_feat(struct feat_fd *ff, int type,
3559 			 struct perf_file_section **p,
3560 			 struct evlist *evlist,
3561 			 struct feat_copier *fc)
3562 {
3563 	int err;
3564 	int ret = 0;
3565 
3566 	if (perf_header__has_feat(ff->ph, type)) {
3567 		if (!feat_ops[type].write)
3568 			return -1;
3569 
3570 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3571 			return -1;
3572 
3573 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3574 
3575 		/*
3576 		 * Hook to let perf inject copy features sections from the input
3577 		 * file.
3578 		 */
3579 		if (fc && fc->copy) {
3580 			struct header_fw h = {
3581 				.fw.write = feat_writer_cb,
3582 				.ff = ff,
3583 			};
3584 
3585 			/* ->copy() returns 0 if the feature was not copied */
3586 			err = fc->copy(fc, type, &h.fw);
3587 		} else {
3588 			err = 0;
3589 		}
3590 		if (!err)
3591 			err = feat_ops[type].write(ff, evlist);
3592 		if (err < 0) {
3593 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3594 
3595 			/* undo anything written */
3596 			lseek(ff->fd, (*p)->offset, SEEK_SET);
3597 
3598 			return -1;
3599 		}
3600 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3601 		(*p)++;
3602 	}
3603 	return ret;
3604 }
3605 
3606 static int perf_header__adds_write(struct perf_header *header,
3607 				   struct evlist *evlist, int fd,
3608 				   struct feat_copier *fc)
3609 {
3610 	int nr_sections;
3611 	struct feat_fd ff = {
3612 		.fd  = fd,
3613 		.ph = header,
3614 	};
3615 	struct perf_file_section *feat_sec, *p;
3616 	int sec_size;
3617 	u64 sec_start;
3618 	int feat;
3619 	int err;
3620 
3621 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3622 	if (!nr_sections)
3623 		return 0;
3624 
3625 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3626 	if (feat_sec == NULL)
3627 		return -ENOMEM;
3628 
3629 	sec_size = sizeof(*feat_sec) * nr_sections;
3630 
3631 	sec_start = header->feat_offset;
3632 	lseek(fd, sec_start + sec_size, SEEK_SET);
3633 
3634 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3635 		if (do_write_feat(&ff, feat, &p, evlist, fc))
3636 			perf_header__clear_feat(header, feat);
3637 	}
3638 
3639 	lseek(fd, sec_start, SEEK_SET);
3640 	/*
3641 	 * may write more than needed due to dropped feature, but
3642 	 * this is okay, reader will skip the missing entries
3643 	 */
3644 	err = do_write(&ff, feat_sec, sec_size);
3645 	if (err < 0)
3646 		pr_debug("failed to write feature section\n");
3647 	free(ff.buf); /* TODO: added to silence clang-tidy. */
3648 	free(feat_sec);
3649 	return err;
3650 }
3651 
3652 int perf_header__write_pipe(int fd)
3653 {
3654 	struct perf_pipe_file_header f_header;
3655 	struct feat_fd ff = {
3656 		.fd = fd,
3657 	};
3658 	int err;
3659 
3660 	f_header = (struct perf_pipe_file_header){
3661 		.magic	   = PERF_MAGIC,
3662 		.size	   = sizeof(f_header),
3663 	};
3664 
3665 	err = do_write(&ff, &f_header, sizeof(f_header));
3666 	if (err < 0) {
3667 		pr_debug("failed to write perf pipe header\n");
3668 		return err;
3669 	}
3670 	free(ff.buf);
3671 	return 0;
3672 }
3673 
3674 static int perf_session__do_write_header(struct perf_session *session,
3675 					 struct evlist *evlist,
3676 					 int fd, bool at_exit,
3677 					 struct feat_copier *fc)
3678 {
3679 	struct perf_file_header f_header;
3680 	struct perf_file_attr   f_attr;
3681 	struct perf_header *header = &session->header;
3682 	struct evsel *evsel;
3683 	struct feat_fd ff = {
3684 		.fd = fd,
3685 	};
3686 	u64 attr_offset;
3687 	int err;
3688 
3689 	lseek(fd, sizeof(f_header), SEEK_SET);
3690 
3691 	evlist__for_each_entry(session->evlist, evsel) {
3692 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3693 		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3694 		if (err < 0) {
3695 			pr_debug("failed to write perf header\n");
3696 			free(ff.buf);
3697 			return err;
3698 		}
3699 	}
3700 
3701 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3702 
3703 	evlist__for_each_entry(evlist, evsel) {
3704 		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3705 			/*
3706 			 * We are likely in "perf inject" and have read
3707 			 * from an older file. Update attr size so that
3708 			 * reader gets the right offset to the ids.
3709 			 */
3710 			evsel->core.attr.size = sizeof(evsel->core.attr);
3711 		}
3712 		f_attr = (struct perf_file_attr){
3713 			.attr = evsel->core.attr,
3714 			.ids  = {
3715 				.offset = evsel->id_offset,
3716 				.size   = evsel->core.ids * sizeof(u64),
3717 			}
3718 		};
3719 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3720 		if (err < 0) {
3721 			pr_debug("failed to write perf header attribute\n");
3722 			free(ff.buf);
3723 			return err;
3724 		}
3725 	}
3726 
3727 	if (!header->data_offset)
3728 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3729 	header->feat_offset = header->data_offset + header->data_size;
3730 
3731 	if (at_exit) {
3732 		err = perf_header__adds_write(header, evlist, fd, fc);
3733 		if (err < 0) {
3734 			free(ff.buf);
3735 			return err;
3736 		}
3737 	}
3738 
3739 	f_header = (struct perf_file_header){
3740 		.magic	   = PERF_MAGIC,
3741 		.size	   = sizeof(f_header),
3742 		.attr_size = sizeof(f_attr),
3743 		.attrs = {
3744 			.offset = attr_offset,
3745 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3746 		},
3747 		.data = {
3748 			.offset = header->data_offset,
3749 			.size	= header->data_size,
3750 		},
3751 		/* event_types is ignored, store zeros */
3752 	};
3753 
3754 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3755 
3756 	lseek(fd, 0, SEEK_SET);
3757 	err = do_write(&ff, &f_header, sizeof(f_header));
3758 	free(ff.buf);
3759 	if (err < 0) {
3760 		pr_debug("failed to write perf header\n");
3761 		return err;
3762 	}
3763 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3764 
3765 	return 0;
3766 }
3767 
3768 int perf_session__write_header(struct perf_session *session,
3769 			       struct evlist *evlist,
3770 			       int fd, bool at_exit)
3771 {
3772 	return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3773 }
3774 
3775 size_t perf_session__data_offset(const struct evlist *evlist)
3776 {
3777 	struct evsel *evsel;
3778 	size_t data_offset;
3779 
3780 	data_offset = sizeof(struct perf_file_header);
3781 	evlist__for_each_entry(evlist, evsel) {
3782 		data_offset += evsel->core.ids * sizeof(u64);
3783 	}
3784 	data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3785 
3786 	return data_offset;
3787 }
3788 
3789 int perf_session__inject_header(struct perf_session *session,
3790 				struct evlist *evlist,
3791 				int fd,
3792 				struct feat_copier *fc)
3793 {
3794 	return perf_session__do_write_header(session, evlist, fd, true, fc);
3795 }
3796 
3797 static int perf_header__getbuffer64(struct perf_header *header,
3798 				    int fd, void *buf, size_t size)
3799 {
3800 	if (readn(fd, buf, size) <= 0)
3801 		return -1;
3802 
3803 	if (header->needs_swap)
3804 		mem_bswap_64(buf, size);
3805 
3806 	return 0;
3807 }
3808 
3809 int perf_header__process_sections(struct perf_header *header, int fd,
3810 				  void *data,
3811 				  int (*process)(struct perf_file_section *section,
3812 						 struct perf_header *ph,
3813 						 int feat, int fd, void *data))
3814 {
3815 	struct perf_file_section *feat_sec, *sec;
3816 	int nr_sections;
3817 	int sec_size;
3818 	int feat;
3819 	int err;
3820 
3821 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3822 	if (!nr_sections)
3823 		return 0;
3824 
3825 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3826 	if (!feat_sec)
3827 		return -1;
3828 
3829 	sec_size = sizeof(*feat_sec) * nr_sections;
3830 
3831 	lseek(fd, header->feat_offset, SEEK_SET);
3832 
3833 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3834 	if (err < 0)
3835 		goto out_free;
3836 
3837 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3838 		err = process(sec++, header, feat, fd, data);
3839 		if (err < 0)
3840 			goto out_free;
3841 	}
3842 	err = 0;
3843 out_free:
3844 	free(feat_sec);
3845 	return err;
3846 }
3847 
3848 static const int attr_file_abi_sizes[] = {
3849 	[0] = PERF_ATTR_SIZE_VER0,
3850 	[1] = PERF_ATTR_SIZE_VER1,
3851 	[2] = PERF_ATTR_SIZE_VER2,
3852 	[3] = PERF_ATTR_SIZE_VER3,
3853 	[4] = PERF_ATTR_SIZE_VER4,
3854 	0,
3855 };
3856 
3857 /*
3858  * In the legacy file format, the magic number is not used to encode endianness.
3859  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3860  * on ABI revisions, we need to try all combinations for all endianness to
3861  * detect the endianness.
3862  */
3863 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3864 {
3865 	uint64_t ref_size, attr_size;
3866 	int i;
3867 
3868 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3869 		ref_size = attr_file_abi_sizes[i]
3870 			 + sizeof(struct perf_file_section);
3871 		if (hdr_sz != ref_size) {
3872 			attr_size = bswap_64(hdr_sz);
3873 			if (attr_size != ref_size)
3874 				continue;
3875 
3876 			ph->needs_swap = true;
3877 		}
3878 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3879 			 i,
3880 			 ph->needs_swap);
3881 		return 0;
3882 	}
3883 	/* could not determine endianness */
3884 	return -1;
3885 }
3886 
3887 #define PERF_PIPE_HDR_VER0	16
3888 
3889 static const size_t attr_pipe_abi_sizes[] = {
3890 	[0] = PERF_PIPE_HDR_VER0,
3891 	0,
3892 };
3893 
3894 /*
3895  * In the legacy pipe format, there is an implicit assumption that endianness
3896  * between host recording the samples, and host parsing the samples is the
3897  * same. This is not always the case given that the pipe output may always be
3898  * redirected into a file and analyzed on a different machine with possibly a
3899  * different endianness and perf_event ABI revisions in the perf tool itself.
3900  */
3901 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3902 {
3903 	u64 attr_size;
3904 	int i;
3905 
3906 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3907 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3908 			attr_size = bswap_64(hdr_sz);
3909 			if (attr_size != hdr_sz)
3910 				continue;
3911 
3912 			ph->needs_swap = true;
3913 		}
3914 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3915 		return 0;
3916 	}
3917 	return -1;
3918 }
3919 
3920 bool is_perf_magic(u64 magic)
3921 {
3922 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3923 		|| magic == __perf_magic2
3924 		|| magic == __perf_magic2_sw)
3925 		return true;
3926 
3927 	return false;
3928 }
3929 
3930 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3931 			      bool is_pipe, struct perf_header *ph)
3932 {
3933 	int ret;
3934 
3935 	/* check for legacy format */
3936 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3937 	if (ret == 0) {
3938 		ph->version = PERF_HEADER_VERSION_1;
3939 		pr_debug("legacy perf.data format\n");
3940 		if (is_pipe)
3941 			return try_all_pipe_abis(hdr_sz, ph);
3942 
3943 		return try_all_file_abis(hdr_sz, ph);
3944 	}
3945 	/*
3946 	 * the new magic number serves two purposes:
3947 	 * - unique number to identify actual perf.data files
3948 	 * - encode endianness of file
3949 	 */
3950 	ph->version = PERF_HEADER_VERSION_2;
3951 
3952 	/* check magic number with one endianness */
3953 	if (magic == __perf_magic2)
3954 		return 0;
3955 
3956 	/* check magic number with opposite endianness */
3957 	if (magic != __perf_magic2_sw)
3958 		return -1;
3959 
3960 	ph->needs_swap = true;
3961 
3962 	return 0;
3963 }
3964 
3965 int perf_file_header__read(struct perf_file_header *header,
3966 			   struct perf_header *ph, int fd)
3967 {
3968 	ssize_t ret;
3969 
3970 	lseek(fd, 0, SEEK_SET);
3971 
3972 	ret = readn(fd, header, sizeof(*header));
3973 	if (ret <= 0)
3974 		return -1;
3975 
3976 	if (check_magic_endian(header->magic,
3977 			       header->attr_size, false, ph) < 0) {
3978 		pr_debug("magic/endian check failed\n");
3979 		return -1;
3980 	}
3981 
3982 	if (ph->needs_swap) {
3983 		mem_bswap_64(header, offsetof(struct perf_file_header,
3984 			     adds_features));
3985 	}
3986 
3987 	if (header->size != sizeof(*header)) {
3988 		/* Support the previous format */
3989 		if (header->size == offsetof(typeof(*header), adds_features))
3990 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3991 		else
3992 			return -1;
3993 	} else if (ph->needs_swap) {
3994 		/*
3995 		 * feature bitmap is declared as an array of unsigned longs --
3996 		 * not good since its size can differ between the host that
3997 		 * generated the data file and the host analyzing the file.
3998 		 *
3999 		 * We need to handle endianness, but we don't know the size of
4000 		 * the unsigned long where the file was generated. Take a best
4001 		 * guess at determining it: try 64-bit swap first (ie., file
4002 		 * created on a 64-bit host), and check if the hostname feature
4003 		 * bit is set (this feature bit is forced on as of fbe96f2).
4004 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
4005 		 * swap. If the hostname bit is still not set (e.g., older data
4006 		 * file), punt and fallback to the original behavior --
4007 		 * clearing all feature bits and setting buildid.
4008 		 */
4009 		mem_bswap_64(&header->adds_features,
4010 			    BITS_TO_U64(HEADER_FEAT_BITS));
4011 
4012 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4013 			/* unswap as u64 */
4014 			mem_bswap_64(&header->adds_features,
4015 				    BITS_TO_U64(HEADER_FEAT_BITS));
4016 
4017 			/* unswap as u32 */
4018 			mem_bswap_32(&header->adds_features,
4019 				    BITS_TO_U32(HEADER_FEAT_BITS));
4020 		}
4021 
4022 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4023 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4024 			__set_bit(HEADER_BUILD_ID, header->adds_features);
4025 		}
4026 	}
4027 
4028 	memcpy(&ph->adds_features, &header->adds_features,
4029 	       sizeof(ph->adds_features));
4030 
4031 	ph->data_offset  = header->data.offset;
4032 	ph->data_size	 = header->data.size;
4033 	ph->feat_offset  = header->data.offset + header->data.size;
4034 	return 0;
4035 }
4036 
4037 static int perf_file_section__process(struct perf_file_section *section,
4038 				      struct perf_header *ph,
4039 				      int feat, int fd, void *data)
4040 {
4041 	struct feat_fd fdd = {
4042 		.fd	= fd,
4043 		.ph	= ph,
4044 		.size	= section->size,
4045 		.offset	= section->offset,
4046 	};
4047 
4048 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4049 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4050 			  "%d, continuing...\n", section->offset, feat);
4051 		return 0;
4052 	}
4053 
4054 	if (feat >= HEADER_LAST_FEATURE) {
4055 		pr_debug("unknown feature %d, continuing...\n", feat);
4056 		return 0;
4057 	}
4058 
4059 	if (!feat_ops[feat].process)
4060 		return 0;
4061 
4062 	return feat_ops[feat].process(&fdd, data);
4063 }
4064 
4065 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4066 				       struct perf_header *ph,
4067 				       struct perf_data* data,
4068 				       bool repipe, int repipe_fd)
4069 {
4070 	struct feat_fd ff = {
4071 		.fd = repipe_fd,
4072 		.ph = ph,
4073 	};
4074 	ssize_t ret;
4075 
4076 	ret = perf_data__read(data, header, sizeof(*header));
4077 	if (ret <= 0)
4078 		return -1;
4079 
4080 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4081 		pr_debug("endian/magic failed\n");
4082 		return -1;
4083 	}
4084 
4085 	if (ph->needs_swap)
4086 		header->size = bswap_64(header->size);
4087 
4088 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4089 		return -1;
4090 
4091 	return 0;
4092 }
4093 
4094 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4095 {
4096 	struct perf_header *header = &session->header;
4097 	struct perf_pipe_file_header f_header;
4098 
4099 	if (perf_file_header__read_pipe(&f_header, header, session->data,
4100 					session->repipe, repipe_fd) < 0) {
4101 		pr_debug("incompatible file format\n");
4102 		return -EINVAL;
4103 	}
4104 
4105 	return f_header.size == sizeof(f_header) ? 0 : -1;
4106 }
4107 
4108 static int read_attr(int fd, struct perf_header *ph,
4109 		     struct perf_file_attr *f_attr)
4110 {
4111 	struct perf_event_attr *attr = &f_attr->attr;
4112 	size_t sz, left;
4113 	size_t our_sz = sizeof(f_attr->attr);
4114 	ssize_t ret;
4115 
4116 	memset(f_attr, 0, sizeof(*f_attr));
4117 
4118 	/* read minimal guaranteed structure */
4119 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4120 	if (ret <= 0) {
4121 		pr_debug("cannot read %d bytes of header attr\n",
4122 			 PERF_ATTR_SIZE_VER0);
4123 		return -1;
4124 	}
4125 
4126 	/* on file perf_event_attr size */
4127 	sz = attr->size;
4128 
4129 	if (ph->needs_swap)
4130 		sz = bswap_32(sz);
4131 
4132 	if (sz == 0) {
4133 		/* assume ABI0 */
4134 		sz =  PERF_ATTR_SIZE_VER0;
4135 	} else if (sz > our_sz) {
4136 		pr_debug("file uses a more recent and unsupported ABI"
4137 			 " (%zu bytes extra)\n", sz - our_sz);
4138 		return -1;
4139 	}
4140 	/* what we have not yet read and that we know about */
4141 	left = sz - PERF_ATTR_SIZE_VER0;
4142 	if (left) {
4143 		void *ptr = attr;
4144 		ptr += PERF_ATTR_SIZE_VER0;
4145 
4146 		ret = readn(fd, ptr, left);
4147 	}
4148 	/* read perf_file_section, ids are read in caller */
4149 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4150 
4151 	return ret <= 0 ? -1 : 0;
4152 }
4153 
4154 #ifdef HAVE_LIBTRACEEVENT
4155 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4156 {
4157 	struct tep_event *event;
4158 	char bf[128];
4159 
4160 	/* already prepared */
4161 	if (evsel->tp_format)
4162 		return 0;
4163 
4164 	if (pevent == NULL) {
4165 		pr_debug("broken or missing trace data\n");
4166 		return -1;
4167 	}
4168 
4169 	event = tep_find_event(pevent, evsel->core.attr.config);
4170 	if (event == NULL) {
4171 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4172 		return -1;
4173 	}
4174 
4175 	if (!evsel->name) {
4176 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4177 		evsel->name = strdup(bf);
4178 		if (evsel->name == NULL)
4179 			return -1;
4180 	}
4181 
4182 	evsel->tp_format = event;
4183 	return 0;
4184 }
4185 
4186 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4187 {
4188 	struct evsel *pos;
4189 
4190 	evlist__for_each_entry(evlist, pos) {
4191 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4192 		    evsel__prepare_tracepoint_event(pos, pevent))
4193 			return -1;
4194 	}
4195 
4196 	return 0;
4197 }
4198 #endif
4199 
4200 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4201 {
4202 	struct perf_data *data = session->data;
4203 	struct perf_header *header = &session->header;
4204 	struct perf_file_header	f_header;
4205 	struct perf_file_attr	f_attr;
4206 	u64			f_id;
4207 	int nr_attrs, nr_ids, i, j, err;
4208 	int fd = perf_data__fd(data);
4209 
4210 	session->evlist = evlist__new();
4211 	if (session->evlist == NULL)
4212 		return -ENOMEM;
4213 
4214 	session->evlist->env = &header->env;
4215 	session->machines.host.env = &header->env;
4216 
4217 	/*
4218 	 * We can read 'pipe' data event from regular file,
4219 	 * check for the pipe header regardless of source.
4220 	 */
4221 	err = perf_header__read_pipe(session, repipe_fd);
4222 	if (!err || perf_data__is_pipe(data)) {
4223 		data->is_pipe = true;
4224 		return err;
4225 	}
4226 
4227 	if (perf_file_header__read(&f_header, header, fd) < 0)
4228 		return -EINVAL;
4229 
4230 	if (header->needs_swap && data->in_place_update) {
4231 		pr_err("In-place update not supported when byte-swapping is required\n");
4232 		return -EINVAL;
4233 	}
4234 
4235 	/*
4236 	 * Sanity check that perf.data was written cleanly; data size is
4237 	 * initialized to 0 and updated only if the on_exit function is run.
4238 	 * If data size is still 0 then the file contains only partial
4239 	 * information.  Just warn user and process it as much as it can.
4240 	 */
4241 	if (f_header.data.size == 0) {
4242 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4243 			   "Was the 'perf record' command properly terminated?\n",
4244 			   data->file.path);
4245 	}
4246 
4247 	if (f_header.attr_size == 0) {
4248 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4249 		       "Was the 'perf record' command properly terminated?\n",
4250 		       data->file.path);
4251 		return -EINVAL;
4252 	}
4253 
4254 	nr_attrs = f_header.attrs.size / f_header.attr_size;
4255 	lseek(fd, f_header.attrs.offset, SEEK_SET);
4256 
4257 	for (i = 0; i < nr_attrs; i++) {
4258 		struct evsel *evsel;
4259 		off_t tmp;
4260 
4261 		if (read_attr(fd, header, &f_attr) < 0)
4262 			goto out_errno;
4263 
4264 		if (header->needs_swap) {
4265 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4266 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4267 			perf_event__attr_swap(&f_attr.attr);
4268 		}
4269 
4270 		tmp = lseek(fd, 0, SEEK_CUR);
4271 		evsel = evsel__new(&f_attr.attr);
4272 
4273 		if (evsel == NULL)
4274 			goto out_delete_evlist;
4275 
4276 		evsel->needs_swap = header->needs_swap;
4277 		/*
4278 		 * Do it before so that if perf_evsel__alloc_id fails, this
4279 		 * entry gets purged too at evlist__delete().
4280 		 */
4281 		evlist__add(session->evlist, evsel);
4282 
4283 		nr_ids = f_attr.ids.size / sizeof(u64);
4284 		/*
4285 		 * We don't have the cpu and thread maps on the header, so
4286 		 * for allocating the perf_sample_id table we fake 1 cpu and
4287 		 * hattr->ids threads.
4288 		 */
4289 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4290 			goto out_delete_evlist;
4291 
4292 		lseek(fd, f_attr.ids.offset, SEEK_SET);
4293 
4294 		for (j = 0; j < nr_ids; j++) {
4295 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4296 				goto out_errno;
4297 
4298 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4299 		}
4300 
4301 		lseek(fd, tmp, SEEK_SET);
4302 	}
4303 
4304 #ifdef HAVE_LIBTRACEEVENT
4305 	perf_header__process_sections(header, fd, &session->tevent,
4306 				      perf_file_section__process);
4307 
4308 	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4309 		goto out_delete_evlist;
4310 #else
4311 	perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4312 #endif
4313 
4314 	return 0;
4315 out_errno:
4316 	return -errno;
4317 
4318 out_delete_evlist:
4319 	evlist__delete(session->evlist);
4320 	session->evlist = NULL;
4321 	return -ENOMEM;
4322 }
4323 
4324 int perf_event__process_feature(struct perf_session *session,
4325 				union perf_event *event)
4326 {
4327 	struct perf_tool *tool = session->tool;
4328 	struct feat_fd ff = { .fd = 0 };
4329 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4330 	int type = fe->header.type;
4331 	u64 feat = fe->feat_id;
4332 	int ret = 0;
4333 
4334 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4335 		pr_warning("invalid record type %d in pipe-mode\n", type);
4336 		return 0;
4337 	}
4338 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4339 		pr_warning("invalid record type %d in pipe-mode\n", type);
4340 		return -1;
4341 	}
4342 
4343 	if (!feat_ops[feat].process)
4344 		return 0;
4345 
4346 	ff.buf  = (void *)fe->data;
4347 	ff.size = event->header.size - sizeof(*fe);
4348 	ff.ph = &session->header;
4349 
4350 	if (feat_ops[feat].process(&ff, NULL)) {
4351 		ret = -1;
4352 		goto out;
4353 	}
4354 
4355 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
4356 		goto out;
4357 
4358 	if (!feat_ops[feat].full_only ||
4359 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4360 		feat_ops[feat].print(&ff, stdout);
4361 	} else {
4362 		fprintf(stdout, "# %s info available, use -I to display\n",
4363 			feat_ops[feat].name);
4364 	}
4365 out:
4366 	free_event_desc(ff.events);
4367 	return ret;
4368 }
4369 
4370 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4371 {
4372 	struct perf_record_event_update *ev = &event->event_update;
4373 	struct perf_cpu_map *map;
4374 	size_t ret;
4375 
4376 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4377 
4378 	switch (ev->type) {
4379 	case PERF_EVENT_UPDATE__SCALE:
4380 		ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4381 		break;
4382 	case PERF_EVENT_UPDATE__UNIT:
4383 		ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4384 		break;
4385 	case PERF_EVENT_UPDATE__NAME:
4386 		ret += fprintf(fp, "... name:  %s\n", ev->name);
4387 		break;
4388 	case PERF_EVENT_UPDATE__CPUS:
4389 		ret += fprintf(fp, "... ");
4390 
4391 		map = cpu_map__new_data(&ev->cpus.cpus);
4392 		if (map)
4393 			ret += cpu_map__fprintf(map, fp);
4394 		else
4395 			ret += fprintf(fp, "failed to get cpus\n");
4396 		break;
4397 	default:
4398 		ret += fprintf(fp, "... unknown type\n");
4399 		break;
4400 	}
4401 
4402 	return ret;
4403 }
4404 
4405 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4406 			     union perf_event *event,
4407 			     struct evlist **pevlist)
4408 {
4409 	u32 i, n_ids;
4410 	u64 *ids;
4411 	struct evsel *evsel;
4412 	struct evlist *evlist = *pevlist;
4413 
4414 	if (evlist == NULL) {
4415 		*pevlist = evlist = evlist__new();
4416 		if (evlist == NULL)
4417 			return -ENOMEM;
4418 	}
4419 
4420 	evsel = evsel__new(&event->attr.attr);
4421 	if (evsel == NULL)
4422 		return -ENOMEM;
4423 
4424 	evlist__add(evlist, evsel);
4425 
4426 	n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4427 	n_ids = n_ids / sizeof(u64);
4428 	/*
4429 	 * We don't have the cpu and thread maps on the header, so
4430 	 * for allocating the perf_sample_id table we fake 1 cpu and
4431 	 * hattr->ids threads.
4432 	 */
4433 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4434 		return -ENOMEM;
4435 
4436 	ids = perf_record_header_attr_id(event);
4437 	for (i = 0; i < n_ids; i++) {
4438 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4439 	}
4440 
4441 	return 0;
4442 }
4443 
4444 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4445 				     union perf_event *event,
4446 				     struct evlist **pevlist)
4447 {
4448 	struct perf_record_event_update *ev = &event->event_update;
4449 	struct evlist *evlist;
4450 	struct evsel *evsel;
4451 	struct perf_cpu_map *map;
4452 
4453 	if (dump_trace)
4454 		perf_event__fprintf_event_update(event, stdout);
4455 
4456 	if (!pevlist || *pevlist == NULL)
4457 		return -EINVAL;
4458 
4459 	evlist = *pevlist;
4460 
4461 	evsel = evlist__id2evsel(evlist, ev->id);
4462 	if (evsel == NULL)
4463 		return -EINVAL;
4464 
4465 	switch (ev->type) {
4466 	case PERF_EVENT_UPDATE__UNIT:
4467 		free((char *)evsel->unit);
4468 		evsel->unit = strdup(ev->unit);
4469 		break;
4470 	case PERF_EVENT_UPDATE__NAME:
4471 		free(evsel->name);
4472 		evsel->name = strdup(ev->name);
4473 		break;
4474 	case PERF_EVENT_UPDATE__SCALE:
4475 		evsel->scale = ev->scale.scale;
4476 		break;
4477 	case PERF_EVENT_UPDATE__CPUS:
4478 		map = cpu_map__new_data(&ev->cpus.cpus);
4479 		if (map) {
4480 			perf_cpu_map__put(evsel->core.own_cpus);
4481 			evsel->core.own_cpus = map;
4482 		} else
4483 			pr_err("failed to get event_update cpus\n");
4484 	default:
4485 		break;
4486 	}
4487 
4488 	return 0;
4489 }
4490 
4491 #ifdef HAVE_LIBTRACEEVENT
4492 int perf_event__process_tracing_data(struct perf_session *session,
4493 				     union perf_event *event)
4494 {
4495 	ssize_t size_read, padding, size = event->tracing_data.size;
4496 	int fd = perf_data__fd(session->data);
4497 	char buf[BUFSIZ];
4498 
4499 	/*
4500 	 * The pipe fd is already in proper place and in any case
4501 	 * we can't move it, and we'd screw the case where we read
4502 	 * 'pipe' data from regular file. The trace_report reads
4503 	 * data from 'fd' so we need to set it directly behind the
4504 	 * event, where the tracing data starts.
4505 	 */
4506 	if (!perf_data__is_pipe(session->data)) {
4507 		off_t offset = lseek(fd, 0, SEEK_CUR);
4508 
4509 		/* setup for reading amidst mmap */
4510 		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4511 		      SEEK_SET);
4512 	}
4513 
4514 	size_read = trace_report(fd, &session->tevent,
4515 				 session->repipe);
4516 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4517 
4518 	if (readn(fd, buf, padding) < 0) {
4519 		pr_err("%s: reading input file", __func__);
4520 		return -1;
4521 	}
4522 	if (session->repipe) {
4523 		int retw = write(STDOUT_FILENO, buf, padding);
4524 		if (retw <= 0 || retw != padding) {
4525 			pr_err("%s: repiping tracing data padding", __func__);
4526 			return -1;
4527 		}
4528 	}
4529 
4530 	if (size_read + padding != size) {
4531 		pr_err("%s: tracing data size mismatch", __func__);
4532 		return -1;
4533 	}
4534 
4535 	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4536 
4537 	return size_read + padding;
4538 }
4539 #endif
4540 
4541 int perf_event__process_build_id(struct perf_session *session,
4542 				 union perf_event *event)
4543 {
4544 	__event_process_build_id(&event->build_id,
4545 				 event->build_id.filename,
4546 				 session);
4547 	return 0;
4548 }
4549