xref: /linux/tools/perf/util/header.c (revision fb71c86cc804b8f490fce1b9140014043ec41858)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
24 
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "header.h"
29 #include "memswap.h"
30 #include "trace-event.h"
31 #include "session.h"
32 #include "symbol.h"
33 #include "debug.h"
34 #include "cpumap.h"
35 #include "pmu.h"
36 #include "vdso.h"
37 #include "strbuf.h"
38 #include "build-id.h"
39 #include "data.h"
40 #include <api/fs/fs.h>
41 #include "asm/bug.h"
42 #include "tool.h"
43 #include "time-utils.h"
44 #include "units.h"
45 #include "util.h" // page_size, perf_exe()
46 #include "cputopo.h"
47 #include "bpf-event.h"
48 
49 #include <linux/ctype.h>
50 #include <internal/lib.h>
51 
52 /*
53  * magic2 = "PERFILE2"
54  * must be a numerical value to let the endianness
55  * determine the memory layout. That way we are able
56  * to detect endianness when reading the perf.data file
57  * back.
58  *
59  * we check for legacy (PERFFILE) format.
60  */
61 static const char *__perf_magic1 = "PERFFILE";
62 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
63 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
64 
65 #define PERF_MAGIC	__perf_magic2
66 
67 const char perf_version_string[] = PERF_VERSION;
68 
69 struct perf_file_attr {
70 	struct perf_event_attr	attr;
71 	struct perf_file_section	ids;
72 };
73 
74 struct feat_fd {
75 	struct perf_header	*ph;
76 	int			fd;
77 	void			*buf;	/* Either buf != NULL or fd >= 0 */
78 	ssize_t			offset;
79 	size_t			size;
80 	struct evsel	*events;
81 };
82 
83 void perf_header__set_feat(struct perf_header *header, int feat)
84 {
85 	set_bit(feat, header->adds_features);
86 }
87 
88 void perf_header__clear_feat(struct perf_header *header, int feat)
89 {
90 	clear_bit(feat, header->adds_features);
91 }
92 
93 bool perf_header__has_feat(const struct perf_header *header, int feat)
94 {
95 	return test_bit(feat, header->adds_features);
96 }
97 
98 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
99 {
100 	ssize_t ret = writen(ff->fd, buf, size);
101 
102 	if (ret != (ssize_t)size)
103 		return ret < 0 ? (int)ret : -1;
104 	return 0;
105 }
106 
107 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
108 {
109 	/* struct perf_event_header::size is u16 */
110 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
111 	size_t new_size = ff->size;
112 	void *addr;
113 
114 	if (size + ff->offset > max_size)
115 		return -E2BIG;
116 
117 	while (size > (new_size - ff->offset))
118 		new_size <<= 1;
119 	new_size = min(max_size, new_size);
120 
121 	if (ff->size < new_size) {
122 		addr = realloc(ff->buf, new_size);
123 		if (!addr)
124 			return -ENOMEM;
125 		ff->buf = addr;
126 		ff->size = new_size;
127 	}
128 
129 	memcpy(ff->buf + ff->offset, buf, size);
130 	ff->offset += size;
131 
132 	return 0;
133 }
134 
135 /* Return: 0 if succeded, -ERR if failed. */
136 int do_write(struct feat_fd *ff, const void *buf, size_t size)
137 {
138 	if (!ff->buf)
139 		return __do_write_fd(ff, buf, size);
140 	return __do_write_buf(ff, buf, size);
141 }
142 
143 /* Return: 0 if succeded, -ERR if failed. */
144 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
145 {
146 	u64 *p = (u64 *) set;
147 	int i, ret;
148 
149 	ret = do_write(ff, &size, sizeof(size));
150 	if (ret < 0)
151 		return ret;
152 
153 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
154 		ret = do_write(ff, p + i, sizeof(*p));
155 		if (ret < 0)
156 			return ret;
157 	}
158 
159 	return 0;
160 }
161 
162 /* Return: 0 if succeded, -ERR if failed. */
163 int write_padded(struct feat_fd *ff, const void *bf,
164 		 size_t count, size_t count_aligned)
165 {
166 	static const char zero_buf[NAME_ALIGN];
167 	int err = do_write(ff, bf, count);
168 
169 	if (!err)
170 		err = do_write(ff, zero_buf, count_aligned - count);
171 
172 	return err;
173 }
174 
175 #define string_size(str)						\
176 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
177 
178 /* Return: 0 if succeded, -ERR if failed. */
179 static int do_write_string(struct feat_fd *ff, const char *str)
180 {
181 	u32 len, olen;
182 	int ret;
183 
184 	olen = strlen(str) + 1;
185 	len = PERF_ALIGN(olen, NAME_ALIGN);
186 
187 	/* write len, incl. \0 */
188 	ret = do_write(ff, &len, sizeof(len));
189 	if (ret < 0)
190 		return ret;
191 
192 	return write_padded(ff, str, olen, len);
193 }
194 
195 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
196 {
197 	ssize_t ret = readn(ff->fd, addr, size);
198 
199 	if (ret != size)
200 		return ret < 0 ? (int)ret : -1;
201 	return 0;
202 }
203 
204 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
205 {
206 	if (size > (ssize_t)ff->size - ff->offset)
207 		return -1;
208 
209 	memcpy(addr, ff->buf + ff->offset, size);
210 	ff->offset += size;
211 
212 	return 0;
213 
214 }
215 
216 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
217 {
218 	if (!ff->buf)
219 		return __do_read_fd(ff, addr, size);
220 	return __do_read_buf(ff, addr, size);
221 }
222 
223 static int do_read_u32(struct feat_fd *ff, u32 *addr)
224 {
225 	int ret;
226 
227 	ret = __do_read(ff, addr, sizeof(*addr));
228 	if (ret)
229 		return ret;
230 
231 	if (ff->ph->needs_swap)
232 		*addr = bswap_32(*addr);
233 	return 0;
234 }
235 
236 static int do_read_u64(struct feat_fd *ff, u64 *addr)
237 {
238 	int ret;
239 
240 	ret = __do_read(ff, addr, sizeof(*addr));
241 	if (ret)
242 		return ret;
243 
244 	if (ff->ph->needs_swap)
245 		*addr = bswap_64(*addr);
246 	return 0;
247 }
248 
249 static char *do_read_string(struct feat_fd *ff)
250 {
251 	u32 len;
252 	char *buf;
253 
254 	if (do_read_u32(ff, &len))
255 		return NULL;
256 
257 	buf = malloc(len);
258 	if (!buf)
259 		return NULL;
260 
261 	if (!__do_read(ff, buf, len)) {
262 		/*
263 		 * strings are padded by zeroes
264 		 * thus the actual strlen of buf
265 		 * may be less than len
266 		 */
267 		return buf;
268 	}
269 
270 	free(buf);
271 	return NULL;
272 }
273 
274 /* Return: 0 if succeded, -ERR if failed. */
275 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
276 {
277 	unsigned long *set;
278 	u64 size, *p;
279 	int i, ret;
280 
281 	ret = do_read_u64(ff, &size);
282 	if (ret)
283 		return ret;
284 
285 	set = bitmap_alloc(size);
286 	if (!set)
287 		return -ENOMEM;
288 
289 	p = (u64 *) set;
290 
291 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
292 		ret = do_read_u64(ff, p + i);
293 		if (ret < 0) {
294 			free(set);
295 			return ret;
296 		}
297 	}
298 
299 	*pset  = set;
300 	*psize = size;
301 	return 0;
302 }
303 
304 static int write_tracing_data(struct feat_fd *ff,
305 			      struct evlist *evlist)
306 {
307 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
308 		return -1;
309 
310 	return read_tracing_data(ff->fd, &evlist->core.entries);
311 }
312 
313 static int write_build_id(struct feat_fd *ff,
314 			  struct evlist *evlist __maybe_unused)
315 {
316 	struct perf_session *session;
317 	int err;
318 
319 	session = container_of(ff->ph, struct perf_session, header);
320 
321 	if (!perf_session__read_build_ids(session, true))
322 		return -1;
323 
324 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
325 		return -1;
326 
327 	err = perf_session__write_buildid_table(session, ff);
328 	if (err < 0) {
329 		pr_debug("failed to write buildid table\n");
330 		return err;
331 	}
332 	perf_session__cache_build_ids(session);
333 
334 	return 0;
335 }
336 
337 static int write_hostname(struct feat_fd *ff,
338 			  struct evlist *evlist __maybe_unused)
339 {
340 	struct utsname uts;
341 	int ret;
342 
343 	ret = uname(&uts);
344 	if (ret < 0)
345 		return -1;
346 
347 	return do_write_string(ff, uts.nodename);
348 }
349 
350 static int write_osrelease(struct feat_fd *ff,
351 			   struct evlist *evlist __maybe_unused)
352 {
353 	struct utsname uts;
354 	int ret;
355 
356 	ret = uname(&uts);
357 	if (ret < 0)
358 		return -1;
359 
360 	return do_write_string(ff, uts.release);
361 }
362 
363 static int write_arch(struct feat_fd *ff,
364 		      struct evlist *evlist __maybe_unused)
365 {
366 	struct utsname uts;
367 	int ret;
368 
369 	ret = uname(&uts);
370 	if (ret < 0)
371 		return -1;
372 
373 	return do_write_string(ff, uts.machine);
374 }
375 
376 static int write_version(struct feat_fd *ff,
377 			 struct evlist *evlist __maybe_unused)
378 {
379 	return do_write_string(ff, perf_version_string);
380 }
381 
382 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
383 {
384 	FILE *file;
385 	char *buf = NULL;
386 	char *s, *p;
387 	const char *search = cpuinfo_proc;
388 	size_t len = 0;
389 	int ret = -1;
390 
391 	if (!search)
392 		return -1;
393 
394 	file = fopen("/proc/cpuinfo", "r");
395 	if (!file)
396 		return -1;
397 
398 	while (getline(&buf, &len, file) > 0) {
399 		ret = strncmp(buf, search, strlen(search));
400 		if (!ret)
401 			break;
402 	}
403 
404 	if (ret) {
405 		ret = -1;
406 		goto done;
407 	}
408 
409 	s = buf;
410 
411 	p = strchr(buf, ':');
412 	if (p && *(p+1) == ' ' && *(p+2))
413 		s = p + 2;
414 	p = strchr(s, '\n');
415 	if (p)
416 		*p = '\0';
417 
418 	/* squash extra space characters (branding string) */
419 	p = s;
420 	while (*p) {
421 		if (isspace(*p)) {
422 			char *r = p + 1;
423 			char *q = skip_spaces(r);
424 			*p = ' ';
425 			if (q != (p+1))
426 				while ((*r++ = *q++));
427 		}
428 		p++;
429 	}
430 	ret = do_write_string(ff, s);
431 done:
432 	free(buf);
433 	fclose(file);
434 	return ret;
435 }
436 
437 static int write_cpudesc(struct feat_fd *ff,
438 		       struct evlist *evlist __maybe_unused)
439 {
440 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
441 #define CPUINFO_PROC	{ "cpu", }
442 #elif defined(__s390__)
443 #define CPUINFO_PROC	{ "vendor_id", }
444 #elif defined(__sh__)
445 #define CPUINFO_PROC	{ "cpu type", }
446 #elif defined(__alpha__) || defined(__mips__)
447 #define CPUINFO_PROC	{ "cpu model", }
448 #elif defined(__arm__)
449 #define CPUINFO_PROC	{ "model name", "Processor", }
450 #elif defined(__arc__)
451 #define CPUINFO_PROC	{ "Processor", }
452 #elif defined(__xtensa__)
453 #define CPUINFO_PROC	{ "core ID", }
454 #else
455 #define CPUINFO_PROC	{ "model name", }
456 #endif
457 	const char *cpuinfo_procs[] = CPUINFO_PROC;
458 #undef CPUINFO_PROC
459 	unsigned int i;
460 
461 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
462 		int ret;
463 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
464 		if (ret >= 0)
465 			return ret;
466 	}
467 	return -1;
468 }
469 
470 
471 static int write_nrcpus(struct feat_fd *ff,
472 			struct evlist *evlist __maybe_unused)
473 {
474 	long nr;
475 	u32 nrc, nra;
476 	int ret;
477 
478 	nrc = cpu__max_present_cpu();
479 
480 	nr = sysconf(_SC_NPROCESSORS_ONLN);
481 	if (nr < 0)
482 		return -1;
483 
484 	nra = (u32)(nr & UINT_MAX);
485 
486 	ret = do_write(ff, &nrc, sizeof(nrc));
487 	if (ret < 0)
488 		return ret;
489 
490 	return do_write(ff, &nra, sizeof(nra));
491 }
492 
493 static int write_event_desc(struct feat_fd *ff,
494 			    struct evlist *evlist)
495 {
496 	struct evsel *evsel;
497 	u32 nre, nri, sz;
498 	int ret;
499 
500 	nre = evlist->core.nr_entries;
501 
502 	/*
503 	 * write number of events
504 	 */
505 	ret = do_write(ff, &nre, sizeof(nre));
506 	if (ret < 0)
507 		return ret;
508 
509 	/*
510 	 * size of perf_event_attr struct
511 	 */
512 	sz = (u32)sizeof(evsel->core.attr);
513 	ret = do_write(ff, &sz, sizeof(sz));
514 	if (ret < 0)
515 		return ret;
516 
517 	evlist__for_each_entry(evlist, evsel) {
518 		ret = do_write(ff, &evsel->core.attr, sz);
519 		if (ret < 0)
520 			return ret;
521 		/*
522 		 * write number of unique id per event
523 		 * there is one id per instance of an event
524 		 *
525 		 * copy into an nri to be independent of the
526 		 * type of ids,
527 		 */
528 		nri = evsel->ids;
529 		ret = do_write(ff, &nri, sizeof(nri));
530 		if (ret < 0)
531 			return ret;
532 
533 		/*
534 		 * write event string as passed on cmdline
535 		 */
536 		ret = do_write_string(ff, perf_evsel__name(evsel));
537 		if (ret < 0)
538 			return ret;
539 		/*
540 		 * write unique ids for this event
541 		 */
542 		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
543 		if (ret < 0)
544 			return ret;
545 	}
546 	return 0;
547 }
548 
549 static int write_cmdline(struct feat_fd *ff,
550 			 struct evlist *evlist __maybe_unused)
551 {
552 	char pbuf[MAXPATHLEN], *buf;
553 	int i, ret, n;
554 
555 	/* actual path to perf binary */
556 	buf = perf_exe(pbuf, MAXPATHLEN);
557 
558 	/* account for binary path */
559 	n = perf_env.nr_cmdline + 1;
560 
561 	ret = do_write(ff, &n, sizeof(n));
562 	if (ret < 0)
563 		return ret;
564 
565 	ret = do_write_string(ff, buf);
566 	if (ret < 0)
567 		return ret;
568 
569 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
570 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
571 		if (ret < 0)
572 			return ret;
573 	}
574 	return 0;
575 }
576 
577 
578 static int write_cpu_topology(struct feat_fd *ff,
579 			      struct evlist *evlist __maybe_unused)
580 {
581 	struct cpu_topology *tp;
582 	u32 i;
583 	int ret, j;
584 
585 	tp = cpu_topology__new();
586 	if (!tp)
587 		return -1;
588 
589 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
590 	if (ret < 0)
591 		goto done;
592 
593 	for (i = 0; i < tp->core_sib; i++) {
594 		ret = do_write_string(ff, tp->core_siblings[i]);
595 		if (ret < 0)
596 			goto done;
597 	}
598 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
599 	if (ret < 0)
600 		goto done;
601 
602 	for (i = 0; i < tp->thread_sib; i++) {
603 		ret = do_write_string(ff, tp->thread_siblings[i]);
604 		if (ret < 0)
605 			break;
606 	}
607 
608 	ret = perf_env__read_cpu_topology_map(&perf_env);
609 	if (ret < 0)
610 		goto done;
611 
612 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
613 		ret = do_write(ff, &perf_env.cpu[j].core_id,
614 			       sizeof(perf_env.cpu[j].core_id));
615 		if (ret < 0)
616 			return ret;
617 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
618 			       sizeof(perf_env.cpu[j].socket_id));
619 		if (ret < 0)
620 			return ret;
621 	}
622 
623 	if (!tp->die_sib)
624 		goto done;
625 
626 	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
627 	if (ret < 0)
628 		goto done;
629 
630 	for (i = 0; i < tp->die_sib; i++) {
631 		ret = do_write_string(ff, tp->die_siblings[i]);
632 		if (ret < 0)
633 			goto done;
634 	}
635 
636 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
637 		ret = do_write(ff, &perf_env.cpu[j].die_id,
638 			       sizeof(perf_env.cpu[j].die_id));
639 		if (ret < 0)
640 			return ret;
641 	}
642 
643 done:
644 	cpu_topology__delete(tp);
645 	return ret;
646 }
647 
648 
649 
650 static int write_total_mem(struct feat_fd *ff,
651 			   struct evlist *evlist __maybe_unused)
652 {
653 	char *buf = NULL;
654 	FILE *fp;
655 	size_t len = 0;
656 	int ret = -1, n;
657 	uint64_t mem;
658 
659 	fp = fopen("/proc/meminfo", "r");
660 	if (!fp)
661 		return -1;
662 
663 	while (getline(&buf, &len, fp) > 0) {
664 		ret = strncmp(buf, "MemTotal:", 9);
665 		if (!ret)
666 			break;
667 	}
668 	if (!ret) {
669 		n = sscanf(buf, "%*s %"PRIu64, &mem);
670 		if (n == 1)
671 			ret = do_write(ff, &mem, sizeof(mem));
672 	} else
673 		ret = -1;
674 	free(buf);
675 	fclose(fp);
676 	return ret;
677 }
678 
679 static int write_numa_topology(struct feat_fd *ff,
680 			       struct evlist *evlist __maybe_unused)
681 {
682 	struct numa_topology *tp;
683 	int ret = -1;
684 	u32 i;
685 
686 	tp = numa_topology__new();
687 	if (!tp)
688 		return -ENOMEM;
689 
690 	ret = do_write(ff, &tp->nr, sizeof(u32));
691 	if (ret < 0)
692 		goto err;
693 
694 	for (i = 0; i < tp->nr; i++) {
695 		struct numa_topology_node *n = &tp->nodes[i];
696 
697 		ret = do_write(ff, &n->node, sizeof(u32));
698 		if (ret < 0)
699 			goto err;
700 
701 		ret = do_write(ff, &n->mem_total, sizeof(u64));
702 		if (ret)
703 			goto err;
704 
705 		ret = do_write(ff, &n->mem_free, sizeof(u64));
706 		if (ret)
707 			goto err;
708 
709 		ret = do_write_string(ff, n->cpus);
710 		if (ret < 0)
711 			goto err;
712 	}
713 
714 	ret = 0;
715 
716 err:
717 	numa_topology__delete(tp);
718 	return ret;
719 }
720 
721 /*
722  * File format:
723  *
724  * struct pmu_mappings {
725  *	u32	pmu_num;
726  *	struct pmu_map {
727  *		u32	type;
728  *		char	name[];
729  *	}[pmu_num];
730  * };
731  */
732 
733 static int write_pmu_mappings(struct feat_fd *ff,
734 			      struct evlist *evlist __maybe_unused)
735 {
736 	struct perf_pmu *pmu = NULL;
737 	u32 pmu_num = 0;
738 	int ret;
739 
740 	/*
741 	 * Do a first pass to count number of pmu to avoid lseek so this
742 	 * works in pipe mode as well.
743 	 */
744 	while ((pmu = perf_pmu__scan(pmu))) {
745 		if (!pmu->name)
746 			continue;
747 		pmu_num++;
748 	}
749 
750 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
751 	if (ret < 0)
752 		return ret;
753 
754 	while ((pmu = perf_pmu__scan(pmu))) {
755 		if (!pmu->name)
756 			continue;
757 
758 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
759 		if (ret < 0)
760 			return ret;
761 
762 		ret = do_write_string(ff, pmu->name);
763 		if (ret < 0)
764 			return ret;
765 	}
766 
767 	return 0;
768 }
769 
770 /*
771  * File format:
772  *
773  * struct group_descs {
774  *	u32	nr_groups;
775  *	struct group_desc {
776  *		char	name[];
777  *		u32	leader_idx;
778  *		u32	nr_members;
779  *	}[nr_groups];
780  * };
781  */
782 static int write_group_desc(struct feat_fd *ff,
783 			    struct evlist *evlist)
784 {
785 	u32 nr_groups = evlist->nr_groups;
786 	struct evsel *evsel;
787 	int ret;
788 
789 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
790 	if (ret < 0)
791 		return ret;
792 
793 	evlist__for_each_entry(evlist, evsel) {
794 		if (perf_evsel__is_group_leader(evsel) &&
795 		    evsel->core.nr_members > 1) {
796 			const char *name = evsel->group_name ?: "{anon_group}";
797 			u32 leader_idx = evsel->idx;
798 			u32 nr_members = evsel->core.nr_members;
799 
800 			ret = do_write_string(ff, name);
801 			if (ret < 0)
802 				return ret;
803 
804 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
805 			if (ret < 0)
806 				return ret;
807 
808 			ret = do_write(ff, &nr_members, sizeof(nr_members));
809 			if (ret < 0)
810 				return ret;
811 		}
812 	}
813 	return 0;
814 }
815 
816 /*
817  * Return the CPU id as a raw string.
818  *
819  * Each architecture should provide a more precise id string that
820  * can be use to match the architecture's "mapfile".
821  */
822 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
823 {
824 	return NULL;
825 }
826 
827 /* Return zero when the cpuid from the mapfile.csv matches the
828  * cpuid string generated on this platform.
829  * Otherwise return non-zero.
830  */
831 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
832 {
833 	regex_t re;
834 	regmatch_t pmatch[1];
835 	int match;
836 
837 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
838 		/* Warn unable to generate match particular string. */
839 		pr_info("Invalid regular expression %s\n", mapcpuid);
840 		return 1;
841 	}
842 
843 	match = !regexec(&re, cpuid, 1, pmatch, 0);
844 	regfree(&re);
845 	if (match) {
846 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
847 
848 		/* Verify the entire string matched. */
849 		if (match_len == strlen(cpuid))
850 			return 0;
851 	}
852 	return 1;
853 }
854 
855 /*
856  * default get_cpuid(): nothing gets recorded
857  * actual implementation must be in arch/$(SRCARCH)/util/header.c
858  */
859 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
860 {
861 	return -1;
862 }
863 
864 static int write_cpuid(struct feat_fd *ff,
865 		       struct evlist *evlist __maybe_unused)
866 {
867 	char buffer[64];
868 	int ret;
869 
870 	ret = get_cpuid(buffer, sizeof(buffer));
871 	if (ret)
872 		return -1;
873 
874 	return do_write_string(ff, buffer);
875 }
876 
877 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
878 			      struct evlist *evlist __maybe_unused)
879 {
880 	return 0;
881 }
882 
883 static int write_auxtrace(struct feat_fd *ff,
884 			  struct evlist *evlist __maybe_unused)
885 {
886 	struct perf_session *session;
887 	int err;
888 
889 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
890 		return -1;
891 
892 	session = container_of(ff->ph, struct perf_session, header);
893 
894 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
895 	if (err < 0)
896 		pr_err("Failed to write auxtrace index\n");
897 	return err;
898 }
899 
900 static int write_clockid(struct feat_fd *ff,
901 			 struct evlist *evlist __maybe_unused)
902 {
903 	return do_write(ff, &ff->ph->env.clockid_res_ns,
904 			sizeof(ff->ph->env.clockid_res_ns));
905 }
906 
907 static int write_dir_format(struct feat_fd *ff,
908 			    struct evlist *evlist __maybe_unused)
909 {
910 	struct perf_session *session;
911 	struct perf_data *data;
912 
913 	session = container_of(ff->ph, struct perf_session, header);
914 	data = session->data;
915 
916 	if (WARN_ON(!perf_data__is_dir(data)))
917 		return -1;
918 
919 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
920 }
921 
922 #ifdef HAVE_LIBBPF_SUPPORT
923 static int write_bpf_prog_info(struct feat_fd *ff,
924 			       struct evlist *evlist __maybe_unused)
925 {
926 	struct perf_env *env = &ff->ph->env;
927 	struct rb_root *root;
928 	struct rb_node *next;
929 	int ret;
930 
931 	down_read(&env->bpf_progs.lock);
932 
933 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
934 		       sizeof(env->bpf_progs.infos_cnt));
935 	if (ret < 0)
936 		goto out;
937 
938 	root = &env->bpf_progs.infos;
939 	next = rb_first(root);
940 	while (next) {
941 		struct bpf_prog_info_node *node;
942 		size_t len;
943 
944 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
945 		next = rb_next(&node->rb_node);
946 		len = sizeof(struct bpf_prog_info_linear) +
947 			node->info_linear->data_len;
948 
949 		/* before writing to file, translate address to offset */
950 		bpf_program__bpil_addr_to_offs(node->info_linear);
951 		ret = do_write(ff, node->info_linear, len);
952 		/*
953 		 * translate back to address even when do_write() fails,
954 		 * so that this function never changes the data.
955 		 */
956 		bpf_program__bpil_offs_to_addr(node->info_linear);
957 		if (ret < 0)
958 			goto out;
959 	}
960 out:
961 	up_read(&env->bpf_progs.lock);
962 	return ret;
963 }
964 #else // HAVE_LIBBPF_SUPPORT
965 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
966 			       struct evlist *evlist __maybe_unused)
967 {
968 	return 0;
969 }
970 #endif // HAVE_LIBBPF_SUPPORT
971 
972 static int write_bpf_btf(struct feat_fd *ff,
973 			 struct evlist *evlist __maybe_unused)
974 {
975 	struct perf_env *env = &ff->ph->env;
976 	struct rb_root *root;
977 	struct rb_node *next;
978 	int ret;
979 
980 	down_read(&env->bpf_progs.lock);
981 
982 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
983 		       sizeof(env->bpf_progs.btfs_cnt));
984 
985 	if (ret < 0)
986 		goto out;
987 
988 	root = &env->bpf_progs.btfs;
989 	next = rb_first(root);
990 	while (next) {
991 		struct btf_node *node;
992 
993 		node = rb_entry(next, struct btf_node, rb_node);
994 		next = rb_next(&node->rb_node);
995 		ret = do_write(ff, &node->id,
996 			       sizeof(u32) * 2 + node->data_size);
997 		if (ret < 0)
998 			goto out;
999 	}
1000 out:
1001 	up_read(&env->bpf_progs.lock);
1002 	return ret;
1003 }
1004 
1005 static int cpu_cache_level__sort(const void *a, const void *b)
1006 {
1007 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1008 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1009 
1010 	return cache_a->level - cache_b->level;
1011 }
1012 
1013 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1014 {
1015 	if (a->level != b->level)
1016 		return false;
1017 
1018 	if (a->line_size != b->line_size)
1019 		return false;
1020 
1021 	if (a->sets != b->sets)
1022 		return false;
1023 
1024 	if (a->ways != b->ways)
1025 		return false;
1026 
1027 	if (strcmp(a->type, b->type))
1028 		return false;
1029 
1030 	if (strcmp(a->size, b->size))
1031 		return false;
1032 
1033 	if (strcmp(a->map, b->map))
1034 		return false;
1035 
1036 	return true;
1037 }
1038 
1039 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1040 {
1041 	char path[PATH_MAX], file[PATH_MAX];
1042 	struct stat st;
1043 	size_t len;
1044 
1045 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1046 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1047 
1048 	if (stat(file, &st))
1049 		return 1;
1050 
1051 	scnprintf(file, PATH_MAX, "%s/level", path);
1052 	if (sysfs__read_int(file, (int *) &cache->level))
1053 		return -1;
1054 
1055 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1056 	if (sysfs__read_int(file, (int *) &cache->line_size))
1057 		return -1;
1058 
1059 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1060 	if (sysfs__read_int(file, (int *) &cache->sets))
1061 		return -1;
1062 
1063 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1064 	if (sysfs__read_int(file, (int *) &cache->ways))
1065 		return -1;
1066 
1067 	scnprintf(file, PATH_MAX, "%s/type", path);
1068 	if (sysfs__read_str(file, &cache->type, &len))
1069 		return -1;
1070 
1071 	cache->type[len] = 0;
1072 	cache->type = strim(cache->type);
1073 
1074 	scnprintf(file, PATH_MAX, "%s/size", path);
1075 	if (sysfs__read_str(file, &cache->size, &len)) {
1076 		zfree(&cache->type);
1077 		return -1;
1078 	}
1079 
1080 	cache->size[len] = 0;
1081 	cache->size = strim(cache->size);
1082 
1083 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1084 	if (sysfs__read_str(file, &cache->map, &len)) {
1085 		zfree(&cache->map);
1086 		zfree(&cache->type);
1087 		return -1;
1088 	}
1089 
1090 	cache->map[len] = 0;
1091 	cache->map = strim(cache->map);
1092 	return 0;
1093 }
1094 
1095 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1096 {
1097 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1098 }
1099 
1100 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1101 {
1102 	u32 i, cnt = 0;
1103 	long ncpus;
1104 	u32 nr, cpu;
1105 	u16 level;
1106 
1107 	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1108 	if (ncpus < 0)
1109 		return -1;
1110 
1111 	nr = (u32)(ncpus & UINT_MAX);
1112 
1113 	for (cpu = 0; cpu < nr; cpu++) {
1114 		for (level = 0; level < 10; level++) {
1115 			struct cpu_cache_level c;
1116 			int err;
1117 
1118 			err = cpu_cache_level__read(&c, cpu, level);
1119 			if (err < 0)
1120 				return err;
1121 
1122 			if (err == 1)
1123 				break;
1124 
1125 			for (i = 0; i < cnt; i++) {
1126 				if (cpu_cache_level__cmp(&c, &caches[i]))
1127 					break;
1128 			}
1129 
1130 			if (i == cnt)
1131 				caches[cnt++] = c;
1132 			else
1133 				cpu_cache_level__free(&c);
1134 
1135 			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1136 				goto out;
1137 		}
1138 	}
1139  out:
1140 	*cntp = cnt;
1141 	return 0;
1142 }
1143 
1144 #define MAX_CACHE_LVL 4
1145 
1146 static int write_cache(struct feat_fd *ff,
1147 		       struct evlist *evlist __maybe_unused)
1148 {
1149 	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1150 	struct cpu_cache_level caches[max_caches];
1151 	u32 cnt = 0, i, version = 1;
1152 	int ret;
1153 
1154 	ret = build_caches(caches, max_caches, &cnt);
1155 	if (ret)
1156 		goto out;
1157 
1158 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1159 
1160 	ret = do_write(ff, &version, sizeof(u32));
1161 	if (ret < 0)
1162 		goto out;
1163 
1164 	ret = do_write(ff, &cnt, sizeof(u32));
1165 	if (ret < 0)
1166 		goto out;
1167 
1168 	for (i = 0; i < cnt; i++) {
1169 		struct cpu_cache_level *c = &caches[i];
1170 
1171 		#define _W(v)					\
1172 			ret = do_write(ff, &c->v, sizeof(u32));	\
1173 			if (ret < 0)				\
1174 				goto out;
1175 
1176 		_W(level)
1177 		_W(line_size)
1178 		_W(sets)
1179 		_W(ways)
1180 		#undef _W
1181 
1182 		#define _W(v)						\
1183 			ret = do_write_string(ff, (const char *) c->v);	\
1184 			if (ret < 0)					\
1185 				goto out;
1186 
1187 		_W(type)
1188 		_W(size)
1189 		_W(map)
1190 		#undef _W
1191 	}
1192 
1193 out:
1194 	for (i = 0; i < cnt; i++)
1195 		cpu_cache_level__free(&caches[i]);
1196 	return ret;
1197 }
1198 
1199 static int write_stat(struct feat_fd *ff __maybe_unused,
1200 		      struct evlist *evlist __maybe_unused)
1201 {
1202 	return 0;
1203 }
1204 
1205 static int write_sample_time(struct feat_fd *ff,
1206 			     struct evlist *evlist)
1207 {
1208 	int ret;
1209 
1210 	ret = do_write(ff, &evlist->first_sample_time,
1211 		       sizeof(evlist->first_sample_time));
1212 	if (ret < 0)
1213 		return ret;
1214 
1215 	return do_write(ff, &evlist->last_sample_time,
1216 			sizeof(evlist->last_sample_time));
1217 }
1218 
1219 
1220 static int memory_node__read(struct memory_node *n, unsigned long idx)
1221 {
1222 	unsigned int phys, size = 0;
1223 	char path[PATH_MAX];
1224 	struct dirent *ent;
1225 	DIR *dir;
1226 
1227 #define for_each_memory(mem, dir)					\
1228 	while ((ent = readdir(dir)))					\
1229 		if (strcmp(ent->d_name, ".") &&				\
1230 		    strcmp(ent->d_name, "..") &&			\
1231 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1232 
1233 	scnprintf(path, PATH_MAX,
1234 		  "%s/devices/system/node/node%lu",
1235 		  sysfs__mountpoint(), idx);
1236 
1237 	dir = opendir(path);
1238 	if (!dir) {
1239 		pr_warning("failed: cant' open memory sysfs data\n");
1240 		return -1;
1241 	}
1242 
1243 	for_each_memory(phys, dir) {
1244 		size = max(phys, size);
1245 	}
1246 
1247 	size++;
1248 
1249 	n->set = bitmap_alloc(size);
1250 	if (!n->set) {
1251 		closedir(dir);
1252 		return -ENOMEM;
1253 	}
1254 
1255 	n->node = idx;
1256 	n->size = size;
1257 
1258 	rewinddir(dir);
1259 
1260 	for_each_memory(phys, dir) {
1261 		set_bit(phys, n->set);
1262 	}
1263 
1264 	closedir(dir);
1265 	return 0;
1266 }
1267 
1268 static int memory_node__sort(const void *a, const void *b)
1269 {
1270 	const struct memory_node *na = a;
1271 	const struct memory_node *nb = b;
1272 
1273 	return na->node - nb->node;
1274 }
1275 
1276 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1277 {
1278 	char path[PATH_MAX];
1279 	struct dirent *ent;
1280 	DIR *dir;
1281 	u64 cnt = 0;
1282 	int ret = 0;
1283 
1284 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1285 		  sysfs__mountpoint());
1286 
1287 	dir = opendir(path);
1288 	if (!dir) {
1289 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1290 			  __func__, path);
1291 		return -1;
1292 	}
1293 
1294 	while (!ret && (ent = readdir(dir))) {
1295 		unsigned int idx;
1296 		int r;
1297 
1298 		if (!strcmp(ent->d_name, ".") ||
1299 		    !strcmp(ent->d_name, ".."))
1300 			continue;
1301 
1302 		r = sscanf(ent->d_name, "node%u", &idx);
1303 		if (r != 1)
1304 			continue;
1305 
1306 		if (WARN_ONCE(cnt >= size,
1307 			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1308 			return -1;
1309 
1310 		ret = memory_node__read(&nodes[cnt++], idx);
1311 	}
1312 
1313 	*cntp = cnt;
1314 	closedir(dir);
1315 
1316 	if (!ret)
1317 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1318 
1319 	return ret;
1320 }
1321 
1322 #define MAX_MEMORY_NODES 2000
1323 
1324 /*
1325  * The MEM_TOPOLOGY holds physical memory map for every
1326  * node in system. The format of data is as follows:
1327  *
1328  *  0 - version          | for future changes
1329  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1330  * 16 - count            | number of nodes
1331  *
1332  * For each node we store map of physical indexes for
1333  * each node:
1334  *
1335  * 32 - node id          | node index
1336  * 40 - size             | size of bitmap
1337  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1338  */
1339 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1340 			      struct evlist *evlist __maybe_unused)
1341 {
1342 	static struct memory_node nodes[MAX_MEMORY_NODES];
1343 	u64 bsize, version = 1, i, nr;
1344 	int ret;
1345 
1346 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1347 			      (unsigned long long *) &bsize);
1348 	if (ret)
1349 		return ret;
1350 
1351 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1352 	if (ret)
1353 		return ret;
1354 
1355 	ret = do_write(ff, &version, sizeof(version));
1356 	if (ret < 0)
1357 		goto out;
1358 
1359 	ret = do_write(ff, &bsize, sizeof(bsize));
1360 	if (ret < 0)
1361 		goto out;
1362 
1363 	ret = do_write(ff, &nr, sizeof(nr));
1364 	if (ret < 0)
1365 		goto out;
1366 
1367 	for (i = 0; i < nr; i++) {
1368 		struct memory_node *n = &nodes[i];
1369 
1370 		#define _W(v)						\
1371 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1372 			if (ret < 0)					\
1373 				goto out;
1374 
1375 		_W(node)
1376 		_W(size)
1377 
1378 		#undef _W
1379 
1380 		ret = do_write_bitmap(ff, n->set, n->size);
1381 		if (ret < 0)
1382 			goto out;
1383 	}
1384 
1385 out:
1386 	return ret;
1387 }
1388 
1389 static int write_compressed(struct feat_fd *ff __maybe_unused,
1390 			    struct evlist *evlist __maybe_unused)
1391 {
1392 	int ret;
1393 
1394 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1395 	if (ret)
1396 		return ret;
1397 
1398 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1399 	if (ret)
1400 		return ret;
1401 
1402 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1403 	if (ret)
1404 		return ret;
1405 
1406 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1407 	if (ret)
1408 		return ret;
1409 
1410 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1411 }
1412 
1413 static void print_hostname(struct feat_fd *ff, FILE *fp)
1414 {
1415 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1416 }
1417 
1418 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1419 {
1420 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1421 }
1422 
1423 static void print_arch(struct feat_fd *ff, FILE *fp)
1424 {
1425 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1426 }
1427 
1428 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1429 {
1430 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1431 }
1432 
1433 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1434 {
1435 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1436 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1437 }
1438 
1439 static void print_version(struct feat_fd *ff, FILE *fp)
1440 {
1441 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1442 }
1443 
1444 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1445 {
1446 	int nr, i;
1447 
1448 	nr = ff->ph->env.nr_cmdline;
1449 
1450 	fprintf(fp, "# cmdline : ");
1451 
1452 	for (i = 0; i < nr; i++) {
1453 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1454 		if (!argv_i) {
1455 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1456 		} else {
1457 			char *mem = argv_i;
1458 			do {
1459 				char *quote = strchr(argv_i, '\'');
1460 				if (!quote)
1461 					break;
1462 				*quote++ = '\0';
1463 				fprintf(fp, "%s\\\'", argv_i);
1464 				argv_i = quote;
1465 			} while (1);
1466 			fprintf(fp, "%s ", argv_i);
1467 			free(mem);
1468 		}
1469 	}
1470 	fputc('\n', fp);
1471 }
1472 
1473 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1474 {
1475 	struct perf_header *ph = ff->ph;
1476 	int cpu_nr = ph->env.nr_cpus_avail;
1477 	int nr, i;
1478 	char *str;
1479 
1480 	nr = ph->env.nr_sibling_cores;
1481 	str = ph->env.sibling_cores;
1482 
1483 	for (i = 0; i < nr; i++) {
1484 		fprintf(fp, "# sibling sockets : %s\n", str);
1485 		str += strlen(str) + 1;
1486 	}
1487 
1488 	if (ph->env.nr_sibling_dies) {
1489 		nr = ph->env.nr_sibling_dies;
1490 		str = ph->env.sibling_dies;
1491 
1492 		for (i = 0; i < nr; i++) {
1493 			fprintf(fp, "# sibling dies    : %s\n", str);
1494 			str += strlen(str) + 1;
1495 		}
1496 	}
1497 
1498 	nr = ph->env.nr_sibling_threads;
1499 	str = ph->env.sibling_threads;
1500 
1501 	for (i = 0; i < nr; i++) {
1502 		fprintf(fp, "# sibling threads : %s\n", str);
1503 		str += strlen(str) + 1;
1504 	}
1505 
1506 	if (ph->env.nr_sibling_dies) {
1507 		if (ph->env.cpu != NULL) {
1508 			for (i = 0; i < cpu_nr; i++)
1509 				fprintf(fp, "# CPU %d: Core ID %d, "
1510 					    "Die ID %d, Socket ID %d\n",
1511 					    i, ph->env.cpu[i].core_id,
1512 					    ph->env.cpu[i].die_id,
1513 					    ph->env.cpu[i].socket_id);
1514 		} else
1515 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1516 				    "information is not available\n");
1517 	} else {
1518 		if (ph->env.cpu != NULL) {
1519 			for (i = 0; i < cpu_nr; i++)
1520 				fprintf(fp, "# CPU %d: Core ID %d, "
1521 					    "Socket ID %d\n",
1522 					    i, ph->env.cpu[i].core_id,
1523 					    ph->env.cpu[i].socket_id);
1524 		} else
1525 			fprintf(fp, "# Core ID and Socket ID "
1526 				    "information is not available\n");
1527 	}
1528 }
1529 
1530 static void print_clockid(struct feat_fd *ff, FILE *fp)
1531 {
1532 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1533 		ff->ph->env.clockid_res_ns * 1000);
1534 }
1535 
1536 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1537 {
1538 	struct perf_session *session;
1539 	struct perf_data *data;
1540 
1541 	session = container_of(ff->ph, struct perf_session, header);
1542 	data = session->data;
1543 
1544 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1545 }
1546 
1547 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1548 {
1549 	struct perf_env *env = &ff->ph->env;
1550 	struct rb_root *root;
1551 	struct rb_node *next;
1552 
1553 	down_read(&env->bpf_progs.lock);
1554 
1555 	root = &env->bpf_progs.infos;
1556 	next = rb_first(root);
1557 
1558 	while (next) {
1559 		struct bpf_prog_info_node *node;
1560 
1561 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1562 		next = rb_next(&node->rb_node);
1563 
1564 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1565 					       env, fp);
1566 	}
1567 
1568 	up_read(&env->bpf_progs.lock);
1569 }
1570 
1571 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1572 {
1573 	struct perf_env *env = &ff->ph->env;
1574 	struct rb_root *root;
1575 	struct rb_node *next;
1576 
1577 	down_read(&env->bpf_progs.lock);
1578 
1579 	root = &env->bpf_progs.btfs;
1580 	next = rb_first(root);
1581 
1582 	while (next) {
1583 		struct btf_node *node;
1584 
1585 		node = rb_entry(next, struct btf_node, rb_node);
1586 		next = rb_next(&node->rb_node);
1587 		fprintf(fp, "# btf info of id %u\n", node->id);
1588 	}
1589 
1590 	up_read(&env->bpf_progs.lock);
1591 }
1592 
1593 static void free_event_desc(struct evsel *events)
1594 {
1595 	struct evsel *evsel;
1596 
1597 	if (!events)
1598 		return;
1599 
1600 	for (evsel = events; evsel->core.attr.size; evsel++) {
1601 		zfree(&evsel->name);
1602 		zfree(&evsel->id);
1603 	}
1604 
1605 	free(events);
1606 }
1607 
1608 static struct evsel *read_event_desc(struct feat_fd *ff)
1609 {
1610 	struct evsel *evsel, *events = NULL;
1611 	u64 *id;
1612 	void *buf = NULL;
1613 	u32 nre, sz, nr, i, j;
1614 	size_t msz;
1615 
1616 	/* number of events */
1617 	if (do_read_u32(ff, &nre))
1618 		goto error;
1619 
1620 	if (do_read_u32(ff, &sz))
1621 		goto error;
1622 
1623 	/* buffer to hold on file attr struct */
1624 	buf = malloc(sz);
1625 	if (!buf)
1626 		goto error;
1627 
1628 	/* the last event terminates with evsel->core.attr.size == 0: */
1629 	events = calloc(nre + 1, sizeof(*events));
1630 	if (!events)
1631 		goto error;
1632 
1633 	msz = sizeof(evsel->core.attr);
1634 	if (sz < msz)
1635 		msz = sz;
1636 
1637 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1638 		evsel->idx = i;
1639 
1640 		/*
1641 		 * must read entire on-file attr struct to
1642 		 * sync up with layout.
1643 		 */
1644 		if (__do_read(ff, buf, sz))
1645 			goto error;
1646 
1647 		if (ff->ph->needs_swap)
1648 			perf_event__attr_swap(buf);
1649 
1650 		memcpy(&evsel->core.attr, buf, msz);
1651 
1652 		if (do_read_u32(ff, &nr))
1653 			goto error;
1654 
1655 		if (ff->ph->needs_swap)
1656 			evsel->needs_swap = true;
1657 
1658 		evsel->name = do_read_string(ff);
1659 		if (!evsel->name)
1660 			goto error;
1661 
1662 		if (!nr)
1663 			continue;
1664 
1665 		id = calloc(nr, sizeof(*id));
1666 		if (!id)
1667 			goto error;
1668 		evsel->ids = nr;
1669 		evsel->id = id;
1670 
1671 		for (j = 0 ; j < nr; j++) {
1672 			if (do_read_u64(ff, id))
1673 				goto error;
1674 			id++;
1675 		}
1676 	}
1677 out:
1678 	free(buf);
1679 	return events;
1680 error:
1681 	free_event_desc(events);
1682 	events = NULL;
1683 	goto out;
1684 }
1685 
1686 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1687 				void *priv __maybe_unused)
1688 {
1689 	return fprintf(fp, ", %s = %s", name, val);
1690 }
1691 
1692 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1693 {
1694 	struct evsel *evsel, *events;
1695 	u32 j;
1696 	u64 *id;
1697 
1698 	if (ff->events)
1699 		events = ff->events;
1700 	else
1701 		events = read_event_desc(ff);
1702 
1703 	if (!events) {
1704 		fprintf(fp, "# event desc: not available or unable to read\n");
1705 		return;
1706 	}
1707 
1708 	for (evsel = events; evsel->core.attr.size; evsel++) {
1709 		fprintf(fp, "# event : name = %s, ", evsel->name);
1710 
1711 		if (evsel->ids) {
1712 			fprintf(fp, ", id = {");
1713 			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1714 				if (j)
1715 					fputc(',', fp);
1716 				fprintf(fp, " %"PRIu64, *id);
1717 			}
1718 			fprintf(fp, " }");
1719 		}
1720 
1721 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1722 
1723 		fputc('\n', fp);
1724 	}
1725 
1726 	free_event_desc(events);
1727 	ff->events = NULL;
1728 }
1729 
1730 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1731 {
1732 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1733 }
1734 
1735 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1736 {
1737 	int i;
1738 	struct numa_node *n;
1739 
1740 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1741 		n = &ff->ph->env.numa_nodes[i];
1742 
1743 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1744 			    " free = %"PRIu64" kB\n",
1745 			n->node, n->mem_total, n->mem_free);
1746 
1747 		fprintf(fp, "# node%u cpu list : ", n->node);
1748 		cpu_map__fprintf(n->map, fp);
1749 	}
1750 }
1751 
1752 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1753 {
1754 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1755 }
1756 
1757 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1758 {
1759 	fprintf(fp, "# contains samples with branch stack\n");
1760 }
1761 
1762 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1763 {
1764 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1765 }
1766 
1767 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1768 {
1769 	fprintf(fp, "# contains stat data\n");
1770 }
1771 
1772 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1773 {
1774 	int i;
1775 
1776 	fprintf(fp, "# CPU cache info:\n");
1777 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1778 		fprintf(fp, "#  ");
1779 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1780 	}
1781 }
1782 
1783 static void print_compressed(struct feat_fd *ff, FILE *fp)
1784 {
1785 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1786 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1787 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1788 }
1789 
1790 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1791 {
1792 	const char *delimiter = "# pmu mappings: ";
1793 	char *str, *tmp;
1794 	u32 pmu_num;
1795 	u32 type;
1796 
1797 	pmu_num = ff->ph->env.nr_pmu_mappings;
1798 	if (!pmu_num) {
1799 		fprintf(fp, "# pmu mappings: not available\n");
1800 		return;
1801 	}
1802 
1803 	str = ff->ph->env.pmu_mappings;
1804 
1805 	while (pmu_num) {
1806 		type = strtoul(str, &tmp, 0);
1807 		if (*tmp != ':')
1808 			goto error;
1809 
1810 		str = tmp + 1;
1811 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1812 
1813 		delimiter = ", ";
1814 		str += strlen(str) + 1;
1815 		pmu_num--;
1816 	}
1817 
1818 	fprintf(fp, "\n");
1819 
1820 	if (!pmu_num)
1821 		return;
1822 error:
1823 	fprintf(fp, "# pmu mappings: unable to read\n");
1824 }
1825 
1826 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1827 {
1828 	struct perf_session *session;
1829 	struct evsel *evsel;
1830 	u32 nr = 0;
1831 
1832 	session = container_of(ff->ph, struct perf_session, header);
1833 
1834 	evlist__for_each_entry(session->evlist, evsel) {
1835 		if (perf_evsel__is_group_leader(evsel) &&
1836 		    evsel->core.nr_members > 1) {
1837 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1838 				perf_evsel__name(evsel));
1839 
1840 			nr = evsel->core.nr_members - 1;
1841 		} else if (nr) {
1842 			fprintf(fp, ",%s", perf_evsel__name(evsel));
1843 
1844 			if (--nr == 0)
1845 				fprintf(fp, "}\n");
1846 		}
1847 	}
1848 }
1849 
1850 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1851 {
1852 	struct perf_session *session;
1853 	char time_buf[32];
1854 	double d;
1855 
1856 	session = container_of(ff->ph, struct perf_session, header);
1857 
1858 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1859 				  time_buf, sizeof(time_buf));
1860 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1861 
1862 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1863 				  time_buf, sizeof(time_buf));
1864 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1865 
1866 	d = (double)(session->evlist->last_sample_time -
1867 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1868 
1869 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1870 }
1871 
1872 static void memory_node__fprintf(struct memory_node *n,
1873 				 unsigned long long bsize, FILE *fp)
1874 {
1875 	char buf_map[100], buf_size[50];
1876 	unsigned long long size;
1877 
1878 	size = bsize * bitmap_weight(n->set, n->size);
1879 	unit_number__scnprintf(buf_size, 50, size);
1880 
1881 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1882 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1883 }
1884 
1885 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1886 {
1887 	struct memory_node *nodes;
1888 	int i, nr;
1889 
1890 	nodes = ff->ph->env.memory_nodes;
1891 	nr    = ff->ph->env.nr_memory_nodes;
1892 
1893 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1894 		nr, ff->ph->env.memory_bsize);
1895 
1896 	for (i = 0; i < nr; i++) {
1897 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1898 	}
1899 }
1900 
1901 static int __event_process_build_id(struct perf_record_header_build_id *bev,
1902 				    char *filename,
1903 				    struct perf_session *session)
1904 {
1905 	int err = -1;
1906 	struct machine *machine;
1907 	u16 cpumode;
1908 	struct dso *dso;
1909 	enum dso_kernel_type dso_type;
1910 
1911 	machine = perf_session__findnew_machine(session, bev->pid);
1912 	if (!machine)
1913 		goto out;
1914 
1915 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1916 
1917 	switch (cpumode) {
1918 	case PERF_RECORD_MISC_KERNEL:
1919 		dso_type = DSO_TYPE_KERNEL;
1920 		break;
1921 	case PERF_RECORD_MISC_GUEST_KERNEL:
1922 		dso_type = DSO_TYPE_GUEST_KERNEL;
1923 		break;
1924 	case PERF_RECORD_MISC_USER:
1925 	case PERF_RECORD_MISC_GUEST_USER:
1926 		dso_type = DSO_TYPE_USER;
1927 		break;
1928 	default:
1929 		goto out;
1930 	}
1931 
1932 	dso = machine__findnew_dso(machine, filename);
1933 	if (dso != NULL) {
1934 		char sbuild_id[SBUILD_ID_SIZE];
1935 
1936 		dso__set_build_id(dso, &bev->build_id);
1937 
1938 		if (dso_type != DSO_TYPE_USER) {
1939 			struct kmod_path m = { .name = NULL, };
1940 
1941 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1942 				dso__set_module_info(dso, &m, machine);
1943 			else
1944 				dso->kernel = dso_type;
1945 
1946 			free(m.name);
1947 		}
1948 
1949 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1950 				  sbuild_id);
1951 		pr_debug("build id event received for %s: %s\n",
1952 			 dso->long_name, sbuild_id);
1953 		dso__put(dso);
1954 	}
1955 
1956 	err = 0;
1957 out:
1958 	return err;
1959 }
1960 
1961 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1962 						 int input, u64 offset, u64 size)
1963 {
1964 	struct perf_session *session = container_of(header, struct perf_session, header);
1965 	struct {
1966 		struct perf_event_header   header;
1967 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1968 		char			   filename[0];
1969 	} old_bev;
1970 	struct perf_record_header_build_id bev;
1971 	char filename[PATH_MAX];
1972 	u64 limit = offset + size;
1973 
1974 	while (offset < limit) {
1975 		ssize_t len;
1976 
1977 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1978 			return -1;
1979 
1980 		if (header->needs_swap)
1981 			perf_event_header__bswap(&old_bev.header);
1982 
1983 		len = old_bev.header.size - sizeof(old_bev);
1984 		if (readn(input, filename, len) != len)
1985 			return -1;
1986 
1987 		bev.header = old_bev.header;
1988 
1989 		/*
1990 		 * As the pid is the missing value, we need to fill
1991 		 * it properly. The header.misc value give us nice hint.
1992 		 */
1993 		bev.pid	= HOST_KERNEL_ID;
1994 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1995 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1996 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1997 
1998 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1999 		__event_process_build_id(&bev, filename, session);
2000 
2001 		offset += bev.header.size;
2002 	}
2003 
2004 	return 0;
2005 }
2006 
2007 static int perf_header__read_build_ids(struct perf_header *header,
2008 				       int input, u64 offset, u64 size)
2009 {
2010 	struct perf_session *session = container_of(header, struct perf_session, header);
2011 	struct perf_record_header_build_id bev;
2012 	char filename[PATH_MAX];
2013 	u64 limit = offset + size, orig_offset = offset;
2014 	int err = -1;
2015 
2016 	while (offset < limit) {
2017 		ssize_t len;
2018 
2019 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2020 			goto out;
2021 
2022 		if (header->needs_swap)
2023 			perf_event_header__bswap(&bev.header);
2024 
2025 		len = bev.header.size - sizeof(bev);
2026 		if (readn(input, filename, len) != len)
2027 			goto out;
2028 		/*
2029 		 * The a1645ce1 changeset:
2030 		 *
2031 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2032 		 *
2033 		 * Added a field to struct perf_record_header_build_id that broke the file
2034 		 * format.
2035 		 *
2036 		 * Since the kernel build-id is the first entry, process the
2037 		 * table using the old format if the well known
2038 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2039 		 * first 4 characters chopped off (where the pid_t sits).
2040 		 */
2041 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2042 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2043 				return -1;
2044 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2045 		}
2046 
2047 		__event_process_build_id(&bev, filename, session);
2048 
2049 		offset += bev.header.size;
2050 	}
2051 	err = 0;
2052 out:
2053 	return err;
2054 }
2055 
2056 /* Macro for features that simply need to read and store a string. */
2057 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2058 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2059 {\
2060 	ff->ph->env.__feat_env = do_read_string(ff); \
2061 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2062 }
2063 
2064 FEAT_PROCESS_STR_FUN(hostname, hostname);
2065 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2066 FEAT_PROCESS_STR_FUN(version, version);
2067 FEAT_PROCESS_STR_FUN(arch, arch);
2068 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2069 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2070 
2071 static int process_tracing_data(struct feat_fd *ff, void *data)
2072 {
2073 	ssize_t ret = trace_report(ff->fd, data, false);
2074 
2075 	return ret < 0 ? -1 : 0;
2076 }
2077 
2078 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2079 {
2080 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2081 		pr_debug("Failed to read buildids, continuing...\n");
2082 	return 0;
2083 }
2084 
2085 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2086 {
2087 	int ret;
2088 	u32 nr_cpus_avail, nr_cpus_online;
2089 
2090 	ret = do_read_u32(ff, &nr_cpus_avail);
2091 	if (ret)
2092 		return ret;
2093 
2094 	ret = do_read_u32(ff, &nr_cpus_online);
2095 	if (ret)
2096 		return ret;
2097 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2098 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2099 	return 0;
2100 }
2101 
2102 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2103 {
2104 	u64 total_mem;
2105 	int ret;
2106 
2107 	ret = do_read_u64(ff, &total_mem);
2108 	if (ret)
2109 		return -1;
2110 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2111 	return 0;
2112 }
2113 
2114 static struct evsel *
2115 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2116 {
2117 	struct evsel *evsel;
2118 
2119 	evlist__for_each_entry(evlist, evsel) {
2120 		if (evsel->idx == idx)
2121 			return evsel;
2122 	}
2123 
2124 	return NULL;
2125 }
2126 
2127 static void
2128 perf_evlist__set_event_name(struct evlist *evlist,
2129 			    struct evsel *event)
2130 {
2131 	struct evsel *evsel;
2132 
2133 	if (!event->name)
2134 		return;
2135 
2136 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2137 	if (!evsel)
2138 		return;
2139 
2140 	if (evsel->name)
2141 		return;
2142 
2143 	evsel->name = strdup(event->name);
2144 }
2145 
2146 static int
2147 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2148 {
2149 	struct perf_session *session;
2150 	struct evsel *evsel, *events = read_event_desc(ff);
2151 
2152 	if (!events)
2153 		return 0;
2154 
2155 	session = container_of(ff->ph, struct perf_session, header);
2156 
2157 	if (session->data->is_pipe) {
2158 		/* Save events for reading later by print_event_desc,
2159 		 * since they can't be read again in pipe mode. */
2160 		ff->events = events;
2161 	}
2162 
2163 	for (evsel = events; evsel->core.attr.size; evsel++)
2164 		perf_evlist__set_event_name(session->evlist, evsel);
2165 
2166 	if (!session->data->is_pipe)
2167 		free_event_desc(events);
2168 
2169 	return 0;
2170 }
2171 
2172 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2173 {
2174 	char *str, *cmdline = NULL, **argv = NULL;
2175 	u32 nr, i, len = 0;
2176 
2177 	if (do_read_u32(ff, &nr))
2178 		return -1;
2179 
2180 	ff->ph->env.nr_cmdline = nr;
2181 
2182 	cmdline = zalloc(ff->size + nr + 1);
2183 	if (!cmdline)
2184 		return -1;
2185 
2186 	argv = zalloc(sizeof(char *) * (nr + 1));
2187 	if (!argv)
2188 		goto error;
2189 
2190 	for (i = 0; i < nr; i++) {
2191 		str = do_read_string(ff);
2192 		if (!str)
2193 			goto error;
2194 
2195 		argv[i] = cmdline + len;
2196 		memcpy(argv[i], str, strlen(str) + 1);
2197 		len += strlen(str) + 1;
2198 		free(str);
2199 	}
2200 	ff->ph->env.cmdline = cmdline;
2201 	ff->ph->env.cmdline_argv = (const char **) argv;
2202 	return 0;
2203 
2204 error:
2205 	free(argv);
2206 	free(cmdline);
2207 	return -1;
2208 }
2209 
2210 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2211 {
2212 	u32 nr, i;
2213 	char *str;
2214 	struct strbuf sb;
2215 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2216 	u64 size = 0;
2217 	struct perf_header *ph = ff->ph;
2218 	bool do_core_id_test = true;
2219 
2220 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2221 	if (!ph->env.cpu)
2222 		return -1;
2223 
2224 	if (do_read_u32(ff, &nr))
2225 		goto free_cpu;
2226 
2227 	ph->env.nr_sibling_cores = nr;
2228 	size += sizeof(u32);
2229 	if (strbuf_init(&sb, 128) < 0)
2230 		goto free_cpu;
2231 
2232 	for (i = 0; i < nr; i++) {
2233 		str = do_read_string(ff);
2234 		if (!str)
2235 			goto error;
2236 
2237 		/* include a NULL character at the end */
2238 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2239 			goto error;
2240 		size += string_size(str);
2241 		free(str);
2242 	}
2243 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2244 
2245 	if (do_read_u32(ff, &nr))
2246 		return -1;
2247 
2248 	ph->env.nr_sibling_threads = nr;
2249 	size += sizeof(u32);
2250 
2251 	for (i = 0; i < nr; i++) {
2252 		str = do_read_string(ff);
2253 		if (!str)
2254 			goto error;
2255 
2256 		/* include a NULL character at the end */
2257 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2258 			goto error;
2259 		size += string_size(str);
2260 		free(str);
2261 	}
2262 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2263 
2264 	/*
2265 	 * The header may be from old perf,
2266 	 * which doesn't include core id and socket id information.
2267 	 */
2268 	if (ff->size <= size) {
2269 		zfree(&ph->env.cpu);
2270 		return 0;
2271 	}
2272 
2273 	/* On s390 the socket_id number is not related to the numbers of cpus.
2274 	 * The socket_id number might be higher than the numbers of cpus.
2275 	 * This depends on the configuration.
2276 	 * AArch64 is the same.
2277 	 */
2278 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2279 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2280 		do_core_id_test = false;
2281 
2282 	for (i = 0; i < (u32)cpu_nr; i++) {
2283 		if (do_read_u32(ff, &nr))
2284 			goto free_cpu;
2285 
2286 		ph->env.cpu[i].core_id = nr;
2287 		size += sizeof(u32);
2288 
2289 		if (do_read_u32(ff, &nr))
2290 			goto free_cpu;
2291 
2292 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2293 			pr_debug("socket_id number is too big."
2294 				 "You may need to upgrade the perf tool.\n");
2295 			goto free_cpu;
2296 		}
2297 
2298 		ph->env.cpu[i].socket_id = nr;
2299 		size += sizeof(u32);
2300 	}
2301 
2302 	/*
2303 	 * The header may be from old perf,
2304 	 * which doesn't include die information.
2305 	 */
2306 	if (ff->size <= size)
2307 		return 0;
2308 
2309 	if (do_read_u32(ff, &nr))
2310 		return -1;
2311 
2312 	ph->env.nr_sibling_dies = nr;
2313 	size += sizeof(u32);
2314 
2315 	for (i = 0; i < nr; i++) {
2316 		str = do_read_string(ff);
2317 		if (!str)
2318 			goto error;
2319 
2320 		/* include a NULL character at the end */
2321 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2322 			goto error;
2323 		size += string_size(str);
2324 		free(str);
2325 	}
2326 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2327 
2328 	for (i = 0; i < (u32)cpu_nr; i++) {
2329 		if (do_read_u32(ff, &nr))
2330 			goto free_cpu;
2331 
2332 		ph->env.cpu[i].die_id = nr;
2333 	}
2334 
2335 	return 0;
2336 
2337 error:
2338 	strbuf_release(&sb);
2339 free_cpu:
2340 	zfree(&ph->env.cpu);
2341 	return -1;
2342 }
2343 
2344 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2345 {
2346 	struct numa_node *nodes, *n;
2347 	u32 nr, i;
2348 	char *str;
2349 
2350 	/* nr nodes */
2351 	if (do_read_u32(ff, &nr))
2352 		return -1;
2353 
2354 	nodes = zalloc(sizeof(*nodes) * nr);
2355 	if (!nodes)
2356 		return -ENOMEM;
2357 
2358 	for (i = 0; i < nr; i++) {
2359 		n = &nodes[i];
2360 
2361 		/* node number */
2362 		if (do_read_u32(ff, &n->node))
2363 			goto error;
2364 
2365 		if (do_read_u64(ff, &n->mem_total))
2366 			goto error;
2367 
2368 		if (do_read_u64(ff, &n->mem_free))
2369 			goto error;
2370 
2371 		str = do_read_string(ff);
2372 		if (!str)
2373 			goto error;
2374 
2375 		n->map = perf_cpu_map__new(str);
2376 		if (!n->map)
2377 			goto error;
2378 
2379 		free(str);
2380 	}
2381 	ff->ph->env.nr_numa_nodes = nr;
2382 	ff->ph->env.numa_nodes = nodes;
2383 	return 0;
2384 
2385 error:
2386 	free(nodes);
2387 	return -1;
2388 }
2389 
2390 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2391 {
2392 	char *name;
2393 	u32 pmu_num;
2394 	u32 type;
2395 	struct strbuf sb;
2396 
2397 	if (do_read_u32(ff, &pmu_num))
2398 		return -1;
2399 
2400 	if (!pmu_num) {
2401 		pr_debug("pmu mappings not available\n");
2402 		return 0;
2403 	}
2404 
2405 	ff->ph->env.nr_pmu_mappings = pmu_num;
2406 	if (strbuf_init(&sb, 128) < 0)
2407 		return -1;
2408 
2409 	while (pmu_num) {
2410 		if (do_read_u32(ff, &type))
2411 			goto error;
2412 
2413 		name = do_read_string(ff);
2414 		if (!name)
2415 			goto error;
2416 
2417 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2418 			goto error;
2419 		/* include a NULL character at the end */
2420 		if (strbuf_add(&sb, "", 1) < 0)
2421 			goto error;
2422 
2423 		if (!strcmp(name, "msr"))
2424 			ff->ph->env.msr_pmu_type = type;
2425 
2426 		free(name);
2427 		pmu_num--;
2428 	}
2429 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2430 	return 0;
2431 
2432 error:
2433 	strbuf_release(&sb);
2434 	return -1;
2435 }
2436 
2437 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2438 {
2439 	size_t ret = -1;
2440 	u32 i, nr, nr_groups;
2441 	struct perf_session *session;
2442 	struct evsel *evsel, *leader = NULL;
2443 	struct group_desc {
2444 		char *name;
2445 		u32 leader_idx;
2446 		u32 nr_members;
2447 	} *desc;
2448 
2449 	if (do_read_u32(ff, &nr_groups))
2450 		return -1;
2451 
2452 	ff->ph->env.nr_groups = nr_groups;
2453 	if (!nr_groups) {
2454 		pr_debug("group desc not available\n");
2455 		return 0;
2456 	}
2457 
2458 	desc = calloc(nr_groups, sizeof(*desc));
2459 	if (!desc)
2460 		return -1;
2461 
2462 	for (i = 0; i < nr_groups; i++) {
2463 		desc[i].name = do_read_string(ff);
2464 		if (!desc[i].name)
2465 			goto out_free;
2466 
2467 		if (do_read_u32(ff, &desc[i].leader_idx))
2468 			goto out_free;
2469 
2470 		if (do_read_u32(ff, &desc[i].nr_members))
2471 			goto out_free;
2472 	}
2473 
2474 	/*
2475 	 * Rebuild group relationship based on the group_desc
2476 	 */
2477 	session = container_of(ff->ph, struct perf_session, header);
2478 	session->evlist->nr_groups = nr_groups;
2479 
2480 	i = nr = 0;
2481 	evlist__for_each_entry(session->evlist, evsel) {
2482 		if (evsel->idx == (int) desc[i].leader_idx) {
2483 			evsel->leader = evsel;
2484 			/* {anon_group} is a dummy name */
2485 			if (strcmp(desc[i].name, "{anon_group}")) {
2486 				evsel->group_name = desc[i].name;
2487 				desc[i].name = NULL;
2488 			}
2489 			evsel->core.nr_members = desc[i].nr_members;
2490 
2491 			if (i >= nr_groups || nr > 0) {
2492 				pr_debug("invalid group desc\n");
2493 				goto out_free;
2494 			}
2495 
2496 			leader = evsel;
2497 			nr = evsel->core.nr_members - 1;
2498 			i++;
2499 		} else if (nr) {
2500 			/* This is a group member */
2501 			evsel->leader = leader;
2502 
2503 			nr--;
2504 		}
2505 	}
2506 
2507 	if (i != nr_groups || nr != 0) {
2508 		pr_debug("invalid group desc\n");
2509 		goto out_free;
2510 	}
2511 
2512 	ret = 0;
2513 out_free:
2514 	for (i = 0; i < nr_groups; i++)
2515 		zfree(&desc[i].name);
2516 	free(desc);
2517 
2518 	return ret;
2519 }
2520 
2521 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2522 {
2523 	struct perf_session *session;
2524 	int err;
2525 
2526 	session = container_of(ff->ph, struct perf_session, header);
2527 
2528 	err = auxtrace_index__process(ff->fd, ff->size, session,
2529 				      ff->ph->needs_swap);
2530 	if (err < 0)
2531 		pr_err("Failed to process auxtrace index\n");
2532 	return err;
2533 }
2534 
2535 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2536 {
2537 	struct cpu_cache_level *caches;
2538 	u32 cnt, i, version;
2539 
2540 	if (do_read_u32(ff, &version))
2541 		return -1;
2542 
2543 	if (version != 1)
2544 		return -1;
2545 
2546 	if (do_read_u32(ff, &cnt))
2547 		return -1;
2548 
2549 	caches = zalloc(sizeof(*caches) * cnt);
2550 	if (!caches)
2551 		return -1;
2552 
2553 	for (i = 0; i < cnt; i++) {
2554 		struct cpu_cache_level c;
2555 
2556 		#define _R(v)						\
2557 			if (do_read_u32(ff, &c.v))\
2558 				goto out_free_caches;			\
2559 
2560 		_R(level)
2561 		_R(line_size)
2562 		_R(sets)
2563 		_R(ways)
2564 		#undef _R
2565 
2566 		#define _R(v)					\
2567 			c.v = do_read_string(ff);		\
2568 			if (!c.v)				\
2569 				goto out_free_caches;
2570 
2571 		_R(type)
2572 		_R(size)
2573 		_R(map)
2574 		#undef _R
2575 
2576 		caches[i] = c;
2577 	}
2578 
2579 	ff->ph->env.caches = caches;
2580 	ff->ph->env.caches_cnt = cnt;
2581 	return 0;
2582 out_free_caches:
2583 	free(caches);
2584 	return -1;
2585 }
2586 
2587 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2588 {
2589 	struct perf_session *session;
2590 	u64 first_sample_time, last_sample_time;
2591 	int ret;
2592 
2593 	session = container_of(ff->ph, struct perf_session, header);
2594 
2595 	ret = do_read_u64(ff, &first_sample_time);
2596 	if (ret)
2597 		return -1;
2598 
2599 	ret = do_read_u64(ff, &last_sample_time);
2600 	if (ret)
2601 		return -1;
2602 
2603 	session->evlist->first_sample_time = first_sample_time;
2604 	session->evlist->last_sample_time = last_sample_time;
2605 	return 0;
2606 }
2607 
2608 static int process_mem_topology(struct feat_fd *ff,
2609 				void *data __maybe_unused)
2610 {
2611 	struct memory_node *nodes;
2612 	u64 version, i, nr, bsize;
2613 	int ret = -1;
2614 
2615 	if (do_read_u64(ff, &version))
2616 		return -1;
2617 
2618 	if (version != 1)
2619 		return -1;
2620 
2621 	if (do_read_u64(ff, &bsize))
2622 		return -1;
2623 
2624 	if (do_read_u64(ff, &nr))
2625 		return -1;
2626 
2627 	nodes = zalloc(sizeof(*nodes) * nr);
2628 	if (!nodes)
2629 		return -1;
2630 
2631 	for (i = 0; i < nr; i++) {
2632 		struct memory_node n;
2633 
2634 		#define _R(v)				\
2635 			if (do_read_u64(ff, &n.v))	\
2636 				goto out;		\
2637 
2638 		_R(node)
2639 		_R(size)
2640 
2641 		#undef _R
2642 
2643 		if (do_read_bitmap(ff, &n.set, &n.size))
2644 			goto out;
2645 
2646 		nodes[i] = n;
2647 	}
2648 
2649 	ff->ph->env.memory_bsize    = bsize;
2650 	ff->ph->env.memory_nodes    = nodes;
2651 	ff->ph->env.nr_memory_nodes = nr;
2652 	ret = 0;
2653 
2654 out:
2655 	if (ret)
2656 		free(nodes);
2657 	return ret;
2658 }
2659 
2660 static int process_clockid(struct feat_fd *ff,
2661 			   void *data __maybe_unused)
2662 {
2663 	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2664 		return -1;
2665 
2666 	return 0;
2667 }
2668 
2669 static int process_dir_format(struct feat_fd *ff,
2670 			      void *_data __maybe_unused)
2671 {
2672 	struct perf_session *session;
2673 	struct perf_data *data;
2674 
2675 	session = container_of(ff->ph, struct perf_session, header);
2676 	data = session->data;
2677 
2678 	if (WARN_ON(!perf_data__is_dir(data)))
2679 		return -1;
2680 
2681 	return do_read_u64(ff, &data->dir.version);
2682 }
2683 
2684 #ifdef HAVE_LIBBPF_SUPPORT
2685 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2686 {
2687 	struct bpf_prog_info_linear *info_linear;
2688 	struct bpf_prog_info_node *info_node;
2689 	struct perf_env *env = &ff->ph->env;
2690 	u32 count, i;
2691 	int err = -1;
2692 
2693 	if (ff->ph->needs_swap) {
2694 		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2695 		return 0;
2696 	}
2697 
2698 	if (do_read_u32(ff, &count))
2699 		return -1;
2700 
2701 	down_write(&env->bpf_progs.lock);
2702 
2703 	for (i = 0; i < count; ++i) {
2704 		u32 info_len, data_len;
2705 
2706 		info_linear = NULL;
2707 		info_node = NULL;
2708 		if (do_read_u32(ff, &info_len))
2709 			goto out;
2710 		if (do_read_u32(ff, &data_len))
2711 			goto out;
2712 
2713 		if (info_len > sizeof(struct bpf_prog_info)) {
2714 			pr_warning("detected invalid bpf_prog_info\n");
2715 			goto out;
2716 		}
2717 
2718 		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2719 				     data_len);
2720 		if (!info_linear)
2721 			goto out;
2722 		info_linear->info_len = sizeof(struct bpf_prog_info);
2723 		info_linear->data_len = data_len;
2724 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2725 			goto out;
2726 		if (__do_read(ff, &info_linear->info, info_len))
2727 			goto out;
2728 		if (info_len < sizeof(struct bpf_prog_info))
2729 			memset(((void *)(&info_linear->info)) + info_len, 0,
2730 			       sizeof(struct bpf_prog_info) - info_len);
2731 
2732 		if (__do_read(ff, info_linear->data, data_len))
2733 			goto out;
2734 
2735 		info_node = malloc(sizeof(struct bpf_prog_info_node));
2736 		if (!info_node)
2737 			goto out;
2738 
2739 		/* after reading from file, translate offset to address */
2740 		bpf_program__bpil_offs_to_addr(info_linear);
2741 		info_node->info_linear = info_linear;
2742 		perf_env__insert_bpf_prog_info(env, info_node);
2743 	}
2744 
2745 	up_write(&env->bpf_progs.lock);
2746 	return 0;
2747 out:
2748 	free(info_linear);
2749 	free(info_node);
2750 	up_write(&env->bpf_progs.lock);
2751 	return err;
2752 }
2753 #else // HAVE_LIBBPF_SUPPORT
2754 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2755 {
2756 	return 0;
2757 }
2758 #endif // HAVE_LIBBPF_SUPPORT
2759 
2760 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2761 {
2762 	struct perf_env *env = &ff->ph->env;
2763 	struct btf_node *node = NULL;
2764 	u32 count, i;
2765 	int err = -1;
2766 
2767 	if (ff->ph->needs_swap) {
2768 		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2769 		return 0;
2770 	}
2771 
2772 	if (do_read_u32(ff, &count))
2773 		return -1;
2774 
2775 	down_write(&env->bpf_progs.lock);
2776 
2777 	for (i = 0; i < count; ++i) {
2778 		u32 id, data_size;
2779 
2780 		if (do_read_u32(ff, &id))
2781 			goto out;
2782 		if (do_read_u32(ff, &data_size))
2783 			goto out;
2784 
2785 		node = malloc(sizeof(struct btf_node) + data_size);
2786 		if (!node)
2787 			goto out;
2788 
2789 		node->id = id;
2790 		node->data_size = data_size;
2791 
2792 		if (__do_read(ff, node->data, data_size))
2793 			goto out;
2794 
2795 		perf_env__insert_btf(env, node);
2796 		node = NULL;
2797 	}
2798 
2799 	err = 0;
2800 out:
2801 	up_write(&env->bpf_progs.lock);
2802 	free(node);
2803 	return err;
2804 }
2805 
2806 static int process_compressed(struct feat_fd *ff,
2807 			      void *data __maybe_unused)
2808 {
2809 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2810 		return -1;
2811 
2812 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2813 		return -1;
2814 
2815 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2816 		return -1;
2817 
2818 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2819 		return -1;
2820 
2821 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2822 		return -1;
2823 
2824 	return 0;
2825 }
2826 
2827 struct feature_ops {
2828 	int (*write)(struct feat_fd *ff, struct evlist *evlist);
2829 	void (*print)(struct feat_fd *ff, FILE *fp);
2830 	int (*process)(struct feat_fd *ff, void *data);
2831 	const char *name;
2832 	bool full_only;
2833 	bool synthesize;
2834 };
2835 
2836 #define FEAT_OPR(n, func, __full_only) \
2837 	[HEADER_##n] = {					\
2838 		.name	    = __stringify(n),			\
2839 		.write	    = write_##func,			\
2840 		.print	    = print_##func,			\
2841 		.full_only  = __full_only,			\
2842 		.process    = process_##func,			\
2843 		.synthesize = true				\
2844 	}
2845 
2846 #define FEAT_OPN(n, func, __full_only) \
2847 	[HEADER_##n] = {					\
2848 		.name	    = __stringify(n),			\
2849 		.write	    = write_##func,			\
2850 		.print	    = print_##func,			\
2851 		.full_only  = __full_only,			\
2852 		.process    = process_##func			\
2853 	}
2854 
2855 /* feature_ops not implemented: */
2856 #define print_tracing_data	NULL
2857 #define print_build_id		NULL
2858 
2859 #define process_branch_stack	NULL
2860 #define process_stat		NULL
2861 
2862 
2863 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2864 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2865 	FEAT_OPN(BUILD_ID,	build_id,	false),
2866 	FEAT_OPR(HOSTNAME,	hostname,	false),
2867 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2868 	FEAT_OPR(VERSION,	version,	false),
2869 	FEAT_OPR(ARCH,		arch,		false),
2870 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2871 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2872 	FEAT_OPR(CPUID,		cpuid,		false),
2873 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2874 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2875 	FEAT_OPR(CMDLINE,	cmdline,	false),
2876 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2877 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2878 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2879 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2880 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2881 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2882 	FEAT_OPN(STAT,		stat,		false),
2883 	FEAT_OPN(CACHE,		cache,		true),
2884 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2885 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2886 	FEAT_OPR(CLOCKID,	clockid,	false),
2887 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2888 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2889 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2890 	FEAT_OPR(COMPRESSED,	compressed,	false),
2891 };
2892 
2893 struct header_print_data {
2894 	FILE *fp;
2895 	bool full; /* extended list of headers */
2896 };
2897 
2898 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2899 					   struct perf_header *ph,
2900 					   int feat, int fd, void *data)
2901 {
2902 	struct header_print_data *hd = data;
2903 	struct feat_fd ff;
2904 
2905 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2906 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2907 				"%d, continuing...\n", section->offset, feat);
2908 		return 0;
2909 	}
2910 	if (feat >= HEADER_LAST_FEATURE) {
2911 		pr_warning("unknown feature %d\n", feat);
2912 		return 0;
2913 	}
2914 	if (!feat_ops[feat].print)
2915 		return 0;
2916 
2917 	ff = (struct  feat_fd) {
2918 		.fd = fd,
2919 		.ph = ph,
2920 	};
2921 
2922 	if (!feat_ops[feat].full_only || hd->full)
2923 		feat_ops[feat].print(&ff, hd->fp);
2924 	else
2925 		fprintf(hd->fp, "# %s info available, use -I to display\n",
2926 			feat_ops[feat].name);
2927 
2928 	return 0;
2929 }
2930 
2931 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2932 {
2933 	struct header_print_data hd;
2934 	struct perf_header *header = &session->header;
2935 	int fd = perf_data__fd(session->data);
2936 	struct stat st;
2937 	time_t stctime;
2938 	int ret, bit;
2939 
2940 	hd.fp = fp;
2941 	hd.full = full;
2942 
2943 	ret = fstat(fd, &st);
2944 	if (ret == -1)
2945 		return -1;
2946 
2947 	stctime = st.st_ctime;
2948 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2949 
2950 	fprintf(fp, "# header version : %u\n", header->version);
2951 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2952 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2953 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2954 
2955 	perf_header__process_sections(header, fd, &hd,
2956 				      perf_file_section__fprintf_info);
2957 
2958 	if (session->data->is_pipe)
2959 		return 0;
2960 
2961 	fprintf(fp, "# missing features: ");
2962 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2963 		if (bit)
2964 			fprintf(fp, "%s ", feat_ops[bit].name);
2965 	}
2966 
2967 	fprintf(fp, "\n");
2968 	return 0;
2969 }
2970 
2971 static int do_write_feat(struct feat_fd *ff, int type,
2972 			 struct perf_file_section **p,
2973 			 struct evlist *evlist)
2974 {
2975 	int err;
2976 	int ret = 0;
2977 
2978 	if (perf_header__has_feat(ff->ph, type)) {
2979 		if (!feat_ops[type].write)
2980 			return -1;
2981 
2982 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2983 			return -1;
2984 
2985 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2986 
2987 		err = feat_ops[type].write(ff, evlist);
2988 		if (err < 0) {
2989 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2990 
2991 			/* undo anything written */
2992 			lseek(ff->fd, (*p)->offset, SEEK_SET);
2993 
2994 			return -1;
2995 		}
2996 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2997 		(*p)++;
2998 	}
2999 	return ret;
3000 }
3001 
3002 static int perf_header__adds_write(struct perf_header *header,
3003 				   struct evlist *evlist, int fd)
3004 {
3005 	int nr_sections;
3006 	struct feat_fd ff;
3007 	struct perf_file_section *feat_sec, *p;
3008 	int sec_size;
3009 	u64 sec_start;
3010 	int feat;
3011 	int err;
3012 
3013 	ff = (struct feat_fd){
3014 		.fd  = fd,
3015 		.ph = header,
3016 	};
3017 
3018 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3019 	if (!nr_sections)
3020 		return 0;
3021 
3022 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3023 	if (feat_sec == NULL)
3024 		return -ENOMEM;
3025 
3026 	sec_size = sizeof(*feat_sec) * nr_sections;
3027 
3028 	sec_start = header->feat_offset;
3029 	lseek(fd, sec_start + sec_size, SEEK_SET);
3030 
3031 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3032 		if (do_write_feat(&ff, feat, &p, evlist))
3033 			perf_header__clear_feat(header, feat);
3034 	}
3035 
3036 	lseek(fd, sec_start, SEEK_SET);
3037 	/*
3038 	 * may write more than needed due to dropped feature, but
3039 	 * this is okay, reader will skip the missing entries
3040 	 */
3041 	err = do_write(&ff, feat_sec, sec_size);
3042 	if (err < 0)
3043 		pr_debug("failed to write feature section\n");
3044 	free(feat_sec);
3045 	return err;
3046 }
3047 
3048 int perf_header__write_pipe(int fd)
3049 {
3050 	struct perf_pipe_file_header f_header;
3051 	struct feat_fd ff;
3052 	int err;
3053 
3054 	ff = (struct feat_fd){ .fd = fd };
3055 
3056 	f_header = (struct perf_pipe_file_header){
3057 		.magic	   = PERF_MAGIC,
3058 		.size	   = sizeof(f_header),
3059 	};
3060 
3061 	err = do_write(&ff, &f_header, sizeof(f_header));
3062 	if (err < 0) {
3063 		pr_debug("failed to write perf pipe header\n");
3064 		return err;
3065 	}
3066 
3067 	return 0;
3068 }
3069 
3070 int perf_session__write_header(struct perf_session *session,
3071 			       struct evlist *evlist,
3072 			       int fd, bool at_exit)
3073 {
3074 	struct perf_file_header f_header;
3075 	struct perf_file_attr   f_attr;
3076 	struct perf_header *header = &session->header;
3077 	struct evsel *evsel;
3078 	struct feat_fd ff;
3079 	u64 attr_offset;
3080 	int err;
3081 
3082 	ff = (struct feat_fd){ .fd = fd};
3083 	lseek(fd, sizeof(f_header), SEEK_SET);
3084 
3085 	evlist__for_each_entry(session->evlist, evsel) {
3086 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3087 		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
3088 		if (err < 0) {
3089 			pr_debug("failed to write perf header\n");
3090 			return err;
3091 		}
3092 	}
3093 
3094 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3095 
3096 	evlist__for_each_entry(evlist, evsel) {
3097 		f_attr = (struct perf_file_attr){
3098 			.attr = evsel->core.attr,
3099 			.ids  = {
3100 				.offset = evsel->id_offset,
3101 				.size   = evsel->ids * sizeof(u64),
3102 			}
3103 		};
3104 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3105 		if (err < 0) {
3106 			pr_debug("failed to write perf header attribute\n");
3107 			return err;
3108 		}
3109 	}
3110 
3111 	if (!header->data_offset)
3112 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3113 	header->feat_offset = header->data_offset + header->data_size;
3114 
3115 	if (at_exit) {
3116 		err = perf_header__adds_write(header, evlist, fd);
3117 		if (err < 0)
3118 			return err;
3119 	}
3120 
3121 	f_header = (struct perf_file_header){
3122 		.magic	   = PERF_MAGIC,
3123 		.size	   = sizeof(f_header),
3124 		.attr_size = sizeof(f_attr),
3125 		.attrs = {
3126 			.offset = attr_offset,
3127 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3128 		},
3129 		.data = {
3130 			.offset = header->data_offset,
3131 			.size	= header->data_size,
3132 		},
3133 		/* event_types is ignored, store zeros */
3134 	};
3135 
3136 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3137 
3138 	lseek(fd, 0, SEEK_SET);
3139 	err = do_write(&ff, &f_header, sizeof(f_header));
3140 	if (err < 0) {
3141 		pr_debug("failed to write perf header\n");
3142 		return err;
3143 	}
3144 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3145 
3146 	return 0;
3147 }
3148 
3149 static int perf_header__getbuffer64(struct perf_header *header,
3150 				    int fd, void *buf, size_t size)
3151 {
3152 	if (readn(fd, buf, size) <= 0)
3153 		return -1;
3154 
3155 	if (header->needs_swap)
3156 		mem_bswap_64(buf, size);
3157 
3158 	return 0;
3159 }
3160 
3161 int perf_header__process_sections(struct perf_header *header, int fd,
3162 				  void *data,
3163 				  int (*process)(struct perf_file_section *section,
3164 						 struct perf_header *ph,
3165 						 int feat, int fd, void *data))
3166 {
3167 	struct perf_file_section *feat_sec, *sec;
3168 	int nr_sections;
3169 	int sec_size;
3170 	int feat;
3171 	int err;
3172 
3173 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3174 	if (!nr_sections)
3175 		return 0;
3176 
3177 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3178 	if (!feat_sec)
3179 		return -1;
3180 
3181 	sec_size = sizeof(*feat_sec) * nr_sections;
3182 
3183 	lseek(fd, header->feat_offset, SEEK_SET);
3184 
3185 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3186 	if (err < 0)
3187 		goto out_free;
3188 
3189 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3190 		err = process(sec++, header, feat, fd, data);
3191 		if (err < 0)
3192 			goto out_free;
3193 	}
3194 	err = 0;
3195 out_free:
3196 	free(feat_sec);
3197 	return err;
3198 }
3199 
3200 static const int attr_file_abi_sizes[] = {
3201 	[0] = PERF_ATTR_SIZE_VER0,
3202 	[1] = PERF_ATTR_SIZE_VER1,
3203 	[2] = PERF_ATTR_SIZE_VER2,
3204 	[3] = PERF_ATTR_SIZE_VER3,
3205 	[4] = PERF_ATTR_SIZE_VER4,
3206 	0,
3207 };
3208 
3209 /*
3210  * In the legacy file format, the magic number is not used to encode endianness.
3211  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3212  * on ABI revisions, we need to try all combinations for all endianness to
3213  * detect the endianness.
3214  */
3215 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3216 {
3217 	uint64_t ref_size, attr_size;
3218 	int i;
3219 
3220 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3221 		ref_size = attr_file_abi_sizes[i]
3222 			 + sizeof(struct perf_file_section);
3223 		if (hdr_sz != ref_size) {
3224 			attr_size = bswap_64(hdr_sz);
3225 			if (attr_size != ref_size)
3226 				continue;
3227 
3228 			ph->needs_swap = true;
3229 		}
3230 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3231 			 i,
3232 			 ph->needs_swap);
3233 		return 0;
3234 	}
3235 	/* could not determine endianness */
3236 	return -1;
3237 }
3238 
3239 #define PERF_PIPE_HDR_VER0	16
3240 
3241 static const size_t attr_pipe_abi_sizes[] = {
3242 	[0] = PERF_PIPE_HDR_VER0,
3243 	0,
3244 };
3245 
3246 /*
3247  * In the legacy pipe format, there is an implicit assumption that endiannesss
3248  * between host recording the samples, and host parsing the samples is the
3249  * same. This is not always the case given that the pipe output may always be
3250  * redirected into a file and analyzed on a different machine with possibly a
3251  * different endianness and perf_event ABI revsions in the perf tool itself.
3252  */
3253 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3254 {
3255 	u64 attr_size;
3256 	int i;
3257 
3258 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3259 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3260 			attr_size = bswap_64(hdr_sz);
3261 			if (attr_size != hdr_sz)
3262 				continue;
3263 
3264 			ph->needs_swap = true;
3265 		}
3266 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3267 		return 0;
3268 	}
3269 	return -1;
3270 }
3271 
3272 bool is_perf_magic(u64 magic)
3273 {
3274 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3275 		|| magic == __perf_magic2
3276 		|| magic == __perf_magic2_sw)
3277 		return true;
3278 
3279 	return false;
3280 }
3281 
3282 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3283 			      bool is_pipe, struct perf_header *ph)
3284 {
3285 	int ret;
3286 
3287 	/* check for legacy format */
3288 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3289 	if (ret == 0) {
3290 		ph->version = PERF_HEADER_VERSION_1;
3291 		pr_debug("legacy perf.data format\n");
3292 		if (is_pipe)
3293 			return try_all_pipe_abis(hdr_sz, ph);
3294 
3295 		return try_all_file_abis(hdr_sz, ph);
3296 	}
3297 	/*
3298 	 * the new magic number serves two purposes:
3299 	 * - unique number to identify actual perf.data files
3300 	 * - encode endianness of file
3301 	 */
3302 	ph->version = PERF_HEADER_VERSION_2;
3303 
3304 	/* check magic number with one endianness */
3305 	if (magic == __perf_magic2)
3306 		return 0;
3307 
3308 	/* check magic number with opposite endianness */
3309 	if (magic != __perf_magic2_sw)
3310 		return -1;
3311 
3312 	ph->needs_swap = true;
3313 
3314 	return 0;
3315 }
3316 
3317 int perf_file_header__read(struct perf_file_header *header,
3318 			   struct perf_header *ph, int fd)
3319 {
3320 	ssize_t ret;
3321 
3322 	lseek(fd, 0, SEEK_SET);
3323 
3324 	ret = readn(fd, header, sizeof(*header));
3325 	if (ret <= 0)
3326 		return -1;
3327 
3328 	if (check_magic_endian(header->magic,
3329 			       header->attr_size, false, ph) < 0) {
3330 		pr_debug("magic/endian check failed\n");
3331 		return -1;
3332 	}
3333 
3334 	if (ph->needs_swap) {
3335 		mem_bswap_64(header, offsetof(struct perf_file_header,
3336 			     adds_features));
3337 	}
3338 
3339 	if (header->size != sizeof(*header)) {
3340 		/* Support the previous format */
3341 		if (header->size == offsetof(typeof(*header), adds_features))
3342 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3343 		else
3344 			return -1;
3345 	} else if (ph->needs_swap) {
3346 		/*
3347 		 * feature bitmap is declared as an array of unsigned longs --
3348 		 * not good since its size can differ between the host that
3349 		 * generated the data file and the host analyzing the file.
3350 		 *
3351 		 * We need to handle endianness, but we don't know the size of
3352 		 * the unsigned long where the file was generated. Take a best
3353 		 * guess at determining it: try 64-bit swap first (ie., file
3354 		 * created on a 64-bit host), and check if the hostname feature
3355 		 * bit is set (this feature bit is forced on as of fbe96f2).
3356 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3357 		 * swap. If the hostname bit is still not set (e.g., older data
3358 		 * file), punt and fallback to the original behavior --
3359 		 * clearing all feature bits and setting buildid.
3360 		 */
3361 		mem_bswap_64(&header->adds_features,
3362 			    BITS_TO_U64(HEADER_FEAT_BITS));
3363 
3364 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3365 			/* unswap as u64 */
3366 			mem_bswap_64(&header->adds_features,
3367 				    BITS_TO_U64(HEADER_FEAT_BITS));
3368 
3369 			/* unswap as u32 */
3370 			mem_bswap_32(&header->adds_features,
3371 				    BITS_TO_U32(HEADER_FEAT_BITS));
3372 		}
3373 
3374 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3375 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3376 			set_bit(HEADER_BUILD_ID, header->adds_features);
3377 		}
3378 	}
3379 
3380 	memcpy(&ph->adds_features, &header->adds_features,
3381 	       sizeof(ph->adds_features));
3382 
3383 	ph->data_offset  = header->data.offset;
3384 	ph->data_size	 = header->data.size;
3385 	ph->feat_offset  = header->data.offset + header->data.size;
3386 	return 0;
3387 }
3388 
3389 static int perf_file_section__process(struct perf_file_section *section,
3390 				      struct perf_header *ph,
3391 				      int feat, int fd, void *data)
3392 {
3393 	struct feat_fd fdd = {
3394 		.fd	= fd,
3395 		.ph	= ph,
3396 		.size	= section->size,
3397 		.offset	= section->offset,
3398 	};
3399 
3400 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3401 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3402 			  "%d, continuing...\n", section->offset, feat);
3403 		return 0;
3404 	}
3405 
3406 	if (feat >= HEADER_LAST_FEATURE) {
3407 		pr_debug("unknown feature %d, continuing...\n", feat);
3408 		return 0;
3409 	}
3410 
3411 	if (!feat_ops[feat].process)
3412 		return 0;
3413 
3414 	return feat_ops[feat].process(&fdd, data);
3415 }
3416 
3417 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3418 				       struct perf_header *ph, int fd,
3419 				       bool repipe)
3420 {
3421 	struct feat_fd ff = {
3422 		.fd = STDOUT_FILENO,
3423 		.ph = ph,
3424 	};
3425 	ssize_t ret;
3426 
3427 	ret = readn(fd, header, sizeof(*header));
3428 	if (ret <= 0)
3429 		return -1;
3430 
3431 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3432 		pr_debug("endian/magic failed\n");
3433 		return -1;
3434 	}
3435 
3436 	if (ph->needs_swap)
3437 		header->size = bswap_64(header->size);
3438 
3439 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3440 		return -1;
3441 
3442 	return 0;
3443 }
3444 
3445 static int perf_header__read_pipe(struct perf_session *session)
3446 {
3447 	struct perf_header *header = &session->header;
3448 	struct perf_pipe_file_header f_header;
3449 
3450 	if (perf_file_header__read_pipe(&f_header, header,
3451 					perf_data__fd(session->data),
3452 					session->repipe) < 0) {
3453 		pr_debug("incompatible file format\n");
3454 		return -EINVAL;
3455 	}
3456 
3457 	return 0;
3458 }
3459 
3460 static int read_attr(int fd, struct perf_header *ph,
3461 		     struct perf_file_attr *f_attr)
3462 {
3463 	struct perf_event_attr *attr = &f_attr->attr;
3464 	size_t sz, left;
3465 	size_t our_sz = sizeof(f_attr->attr);
3466 	ssize_t ret;
3467 
3468 	memset(f_attr, 0, sizeof(*f_attr));
3469 
3470 	/* read minimal guaranteed structure */
3471 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3472 	if (ret <= 0) {
3473 		pr_debug("cannot read %d bytes of header attr\n",
3474 			 PERF_ATTR_SIZE_VER0);
3475 		return -1;
3476 	}
3477 
3478 	/* on file perf_event_attr size */
3479 	sz = attr->size;
3480 
3481 	if (ph->needs_swap)
3482 		sz = bswap_32(sz);
3483 
3484 	if (sz == 0) {
3485 		/* assume ABI0 */
3486 		sz =  PERF_ATTR_SIZE_VER0;
3487 	} else if (sz > our_sz) {
3488 		pr_debug("file uses a more recent and unsupported ABI"
3489 			 " (%zu bytes extra)\n", sz - our_sz);
3490 		return -1;
3491 	}
3492 	/* what we have not yet read and that we know about */
3493 	left = sz - PERF_ATTR_SIZE_VER0;
3494 	if (left) {
3495 		void *ptr = attr;
3496 		ptr += PERF_ATTR_SIZE_VER0;
3497 
3498 		ret = readn(fd, ptr, left);
3499 	}
3500 	/* read perf_file_section, ids are read in caller */
3501 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3502 
3503 	return ret <= 0 ? -1 : 0;
3504 }
3505 
3506 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3507 						struct tep_handle *pevent)
3508 {
3509 	struct tep_event *event;
3510 	char bf[128];
3511 
3512 	/* already prepared */
3513 	if (evsel->tp_format)
3514 		return 0;
3515 
3516 	if (pevent == NULL) {
3517 		pr_debug("broken or missing trace data\n");
3518 		return -1;
3519 	}
3520 
3521 	event = tep_find_event(pevent, evsel->core.attr.config);
3522 	if (event == NULL) {
3523 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3524 		return -1;
3525 	}
3526 
3527 	if (!evsel->name) {
3528 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3529 		evsel->name = strdup(bf);
3530 		if (evsel->name == NULL)
3531 			return -1;
3532 	}
3533 
3534 	evsel->tp_format = event;
3535 	return 0;
3536 }
3537 
3538 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3539 						  struct tep_handle *pevent)
3540 {
3541 	struct evsel *pos;
3542 
3543 	evlist__for_each_entry(evlist, pos) {
3544 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3545 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3546 			return -1;
3547 	}
3548 
3549 	return 0;
3550 }
3551 
3552 int perf_session__read_header(struct perf_session *session)
3553 {
3554 	struct perf_data *data = session->data;
3555 	struct perf_header *header = &session->header;
3556 	struct perf_file_header	f_header;
3557 	struct perf_file_attr	f_attr;
3558 	u64			f_id;
3559 	int nr_attrs, nr_ids, i, j;
3560 	int fd = perf_data__fd(data);
3561 
3562 	session->evlist = evlist__new();
3563 	if (session->evlist == NULL)
3564 		return -ENOMEM;
3565 
3566 	session->evlist->env = &header->env;
3567 	session->machines.host.env = &header->env;
3568 	if (perf_data__is_pipe(data))
3569 		return perf_header__read_pipe(session);
3570 
3571 	if (perf_file_header__read(&f_header, header, fd) < 0)
3572 		return -EINVAL;
3573 
3574 	/*
3575 	 * Sanity check that perf.data was written cleanly; data size is
3576 	 * initialized to 0 and updated only if the on_exit function is run.
3577 	 * If data size is still 0 then the file contains only partial
3578 	 * information.  Just warn user and process it as much as it can.
3579 	 */
3580 	if (f_header.data.size == 0) {
3581 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3582 			   "Was the 'perf record' command properly terminated?\n",
3583 			   data->file.path);
3584 	}
3585 
3586 	if (f_header.attr_size == 0) {
3587 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3588 		       "Was the 'perf record' command properly terminated?\n",
3589 		       data->file.path);
3590 		return -EINVAL;
3591 	}
3592 
3593 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3594 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3595 
3596 	for (i = 0; i < nr_attrs; i++) {
3597 		struct evsel *evsel;
3598 		off_t tmp;
3599 
3600 		if (read_attr(fd, header, &f_attr) < 0)
3601 			goto out_errno;
3602 
3603 		if (header->needs_swap) {
3604 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3605 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3606 			perf_event__attr_swap(&f_attr.attr);
3607 		}
3608 
3609 		tmp = lseek(fd, 0, SEEK_CUR);
3610 		evsel = evsel__new(&f_attr.attr);
3611 
3612 		if (evsel == NULL)
3613 			goto out_delete_evlist;
3614 
3615 		evsel->needs_swap = header->needs_swap;
3616 		/*
3617 		 * Do it before so that if perf_evsel__alloc_id fails, this
3618 		 * entry gets purged too at evlist__delete().
3619 		 */
3620 		evlist__add(session->evlist, evsel);
3621 
3622 		nr_ids = f_attr.ids.size / sizeof(u64);
3623 		/*
3624 		 * We don't have the cpu and thread maps on the header, so
3625 		 * for allocating the perf_sample_id table we fake 1 cpu and
3626 		 * hattr->ids threads.
3627 		 */
3628 		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3629 			goto out_delete_evlist;
3630 
3631 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3632 
3633 		for (j = 0; j < nr_ids; j++) {
3634 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3635 				goto out_errno;
3636 
3637 			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3638 		}
3639 
3640 		lseek(fd, tmp, SEEK_SET);
3641 	}
3642 
3643 	perf_header__process_sections(header, fd, &session->tevent,
3644 				      perf_file_section__process);
3645 
3646 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3647 						   session->tevent.pevent))
3648 		goto out_delete_evlist;
3649 
3650 	return 0;
3651 out_errno:
3652 	return -errno;
3653 
3654 out_delete_evlist:
3655 	evlist__delete(session->evlist);
3656 	session->evlist = NULL;
3657 	return -ENOMEM;
3658 }
3659 
3660 int perf_event__synthesize_attr(struct perf_tool *tool,
3661 				struct perf_event_attr *attr, u32 ids, u64 *id,
3662 				perf_event__handler_t process)
3663 {
3664 	union perf_event *ev;
3665 	size_t size;
3666 	int err;
3667 
3668 	size = sizeof(struct perf_event_attr);
3669 	size = PERF_ALIGN(size, sizeof(u64));
3670 	size += sizeof(struct perf_event_header);
3671 	size += ids * sizeof(u64);
3672 
3673 	ev = zalloc(size);
3674 
3675 	if (ev == NULL)
3676 		return -ENOMEM;
3677 
3678 	ev->attr.attr = *attr;
3679 	memcpy(ev->attr.id, id, ids * sizeof(u64));
3680 
3681 	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3682 	ev->attr.header.size = (u16)size;
3683 
3684 	if (ev->attr.header.size == size)
3685 		err = process(tool, ev, NULL, NULL);
3686 	else
3687 		err = -E2BIG;
3688 
3689 	free(ev);
3690 
3691 	return err;
3692 }
3693 
3694 int perf_event__synthesize_features(struct perf_tool *tool,
3695 				    struct perf_session *session,
3696 				    struct evlist *evlist,
3697 				    perf_event__handler_t process)
3698 {
3699 	struct perf_header *header = &session->header;
3700 	struct feat_fd ff;
3701 	struct perf_record_header_feature *fe;
3702 	size_t sz, sz_hdr;
3703 	int feat, ret;
3704 
3705 	sz_hdr = sizeof(fe->header);
3706 	sz = sizeof(union perf_event);
3707 	/* get a nice alignment */
3708 	sz = PERF_ALIGN(sz, page_size);
3709 
3710 	memset(&ff, 0, sizeof(ff));
3711 
3712 	ff.buf = malloc(sz);
3713 	if (!ff.buf)
3714 		return -ENOMEM;
3715 
3716 	ff.size = sz - sz_hdr;
3717 	ff.ph = &session->header;
3718 
3719 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3720 		if (!feat_ops[feat].synthesize) {
3721 			pr_debug("No record header feature for header :%d\n", feat);
3722 			continue;
3723 		}
3724 
3725 		ff.offset = sizeof(*fe);
3726 
3727 		ret = feat_ops[feat].write(&ff, evlist);
3728 		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3729 			pr_debug("Error writing feature\n");
3730 			continue;
3731 		}
3732 		/* ff.buf may have changed due to realloc in do_write() */
3733 		fe = ff.buf;
3734 		memset(fe, 0, sizeof(*fe));
3735 
3736 		fe->feat_id = feat;
3737 		fe->header.type = PERF_RECORD_HEADER_FEATURE;
3738 		fe->header.size = ff.offset;
3739 
3740 		ret = process(tool, ff.buf, NULL, NULL);
3741 		if (ret) {
3742 			free(ff.buf);
3743 			return ret;
3744 		}
3745 	}
3746 
3747 	/* Send HEADER_LAST_FEATURE mark. */
3748 	fe = ff.buf;
3749 	fe->feat_id     = HEADER_LAST_FEATURE;
3750 	fe->header.type = PERF_RECORD_HEADER_FEATURE;
3751 	fe->header.size = sizeof(*fe);
3752 
3753 	ret = process(tool, ff.buf, NULL, NULL);
3754 
3755 	free(ff.buf);
3756 	return ret;
3757 }
3758 
3759 int perf_event__process_feature(struct perf_session *session,
3760 				union perf_event *event)
3761 {
3762 	struct perf_tool *tool = session->tool;
3763 	struct feat_fd ff = { .fd = 0 };
3764 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3765 	int type = fe->header.type;
3766 	u64 feat = fe->feat_id;
3767 
3768 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3769 		pr_warning("invalid record type %d in pipe-mode\n", type);
3770 		return 0;
3771 	}
3772 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3773 		pr_warning("invalid record type %d in pipe-mode\n", type);
3774 		return -1;
3775 	}
3776 
3777 	if (!feat_ops[feat].process)
3778 		return 0;
3779 
3780 	ff.buf  = (void *)fe->data;
3781 	ff.size = event->header.size - sizeof(*fe);
3782 	ff.ph = &session->header;
3783 
3784 	if (feat_ops[feat].process(&ff, NULL))
3785 		return -1;
3786 
3787 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3788 		return 0;
3789 
3790 	if (!feat_ops[feat].full_only ||
3791 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3792 		feat_ops[feat].print(&ff, stdout);
3793 	} else {
3794 		fprintf(stdout, "# %s info available, use -I to display\n",
3795 			feat_ops[feat].name);
3796 	}
3797 
3798 	return 0;
3799 }
3800 
3801 static struct perf_record_event_update *
3802 event_update_event__new(size_t size, u64 type, u64 id)
3803 {
3804 	struct perf_record_event_update *ev;
3805 
3806 	size += sizeof(*ev);
3807 	size  = PERF_ALIGN(size, sizeof(u64));
3808 
3809 	ev = zalloc(size);
3810 	if (ev) {
3811 		ev->header.type = PERF_RECORD_EVENT_UPDATE;
3812 		ev->header.size = (u16)size;
3813 		ev->type = type;
3814 		ev->id = id;
3815 	}
3816 	return ev;
3817 }
3818 
3819 int
3820 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3821 					 struct evsel *evsel,
3822 					 perf_event__handler_t process)
3823 {
3824 	struct perf_record_event_update *ev;
3825 	size_t size = strlen(evsel->unit);
3826 	int err;
3827 
3828 	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3829 	if (ev == NULL)
3830 		return -ENOMEM;
3831 
3832 	strlcpy(ev->data, evsel->unit, size + 1);
3833 	err = process(tool, (union perf_event *)ev, NULL, NULL);
3834 	free(ev);
3835 	return err;
3836 }
3837 
3838 int
3839 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3840 					  struct evsel *evsel,
3841 					  perf_event__handler_t process)
3842 {
3843 	struct perf_record_event_update *ev;
3844 	struct perf_record_event_update_scale *ev_data;
3845 	int err;
3846 
3847 	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3848 	if (ev == NULL)
3849 		return -ENOMEM;
3850 
3851 	ev_data = (struct perf_record_event_update_scale *)ev->data;
3852 	ev_data->scale = evsel->scale;
3853 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3854 	free(ev);
3855 	return err;
3856 }
3857 
3858 int
3859 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3860 					 struct evsel *evsel,
3861 					 perf_event__handler_t process)
3862 {
3863 	struct perf_record_event_update *ev;
3864 	size_t len = strlen(evsel->name);
3865 	int err;
3866 
3867 	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3868 	if (ev == NULL)
3869 		return -ENOMEM;
3870 
3871 	strlcpy(ev->data, evsel->name, len + 1);
3872 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3873 	free(ev);
3874 	return err;
3875 }
3876 
3877 int
3878 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3879 					struct evsel *evsel,
3880 					perf_event__handler_t process)
3881 {
3882 	size_t size = sizeof(struct perf_record_event_update);
3883 	struct perf_record_event_update *ev;
3884 	int max, err;
3885 	u16 type;
3886 
3887 	if (!evsel->core.own_cpus)
3888 		return 0;
3889 
3890 	ev = cpu_map_data__alloc(evsel->core.own_cpus, &size, &type, &max);
3891 	if (!ev)
3892 		return -ENOMEM;
3893 
3894 	ev->header.type = PERF_RECORD_EVENT_UPDATE;
3895 	ev->header.size = (u16)size;
3896 	ev->type = PERF_EVENT_UPDATE__CPUS;
3897 	ev->id   = evsel->id[0];
3898 
3899 	cpu_map_data__synthesize((struct perf_record_cpu_map_data *)ev->data,
3900 				 evsel->core.own_cpus,
3901 				 type, max);
3902 
3903 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3904 	free(ev);
3905 	return err;
3906 }
3907 
3908 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3909 {
3910 	struct perf_record_event_update *ev = &event->event_update;
3911 	struct perf_record_event_update_scale *ev_scale;
3912 	struct perf_record_event_update_cpus *ev_cpus;
3913 	struct perf_cpu_map *map;
3914 	size_t ret;
3915 
3916 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3917 
3918 	switch (ev->type) {
3919 	case PERF_EVENT_UPDATE__SCALE:
3920 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3921 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3922 		break;
3923 	case PERF_EVENT_UPDATE__UNIT:
3924 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3925 		break;
3926 	case PERF_EVENT_UPDATE__NAME:
3927 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3928 		break;
3929 	case PERF_EVENT_UPDATE__CPUS:
3930 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3931 		ret += fprintf(fp, "... ");
3932 
3933 		map = cpu_map__new_data(&ev_cpus->cpus);
3934 		if (map)
3935 			ret += cpu_map__fprintf(map, fp);
3936 		else
3937 			ret += fprintf(fp, "failed to get cpus\n");
3938 		break;
3939 	default:
3940 		ret += fprintf(fp, "... unknown type\n");
3941 		break;
3942 	}
3943 
3944 	return ret;
3945 }
3946 
3947 int perf_event__synthesize_attrs(struct perf_tool *tool,
3948 				 struct evlist *evlist,
3949 				 perf_event__handler_t process)
3950 {
3951 	struct evsel *evsel;
3952 	int err = 0;
3953 
3954 	evlist__for_each_entry(evlist, evsel) {
3955 		err = perf_event__synthesize_attr(tool, &evsel->core.attr, evsel->ids,
3956 						  evsel->id, process);
3957 		if (err) {
3958 			pr_debug("failed to create perf header attribute\n");
3959 			return err;
3960 		}
3961 	}
3962 
3963 	return err;
3964 }
3965 
3966 static bool has_unit(struct evsel *counter)
3967 {
3968 	return counter->unit && *counter->unit;
3969 }
3970 
3971 static bool has_scale(struct evsel *counter)
3972 {
3973 	return counter->scale != 1;
3974 }
3975 
3976 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3977 				      struct evlist *evsel_list,
3978 				      perf_event__handler_t process,
3979 				      bool is_pipe)
3980 {
3981 	struct evsel *counter;
3982 	int err;
3983 
3984 	/*
3985 	 * Synthesize other events stuff not carried within
3986 	 * attr event - unit, scale, name
3987 	 */
3988 	evlist__for_each_entry(evsel_list, counter) {
3989 		if (!counter->supported)
3990 			continue;
3991 
3992 		/*
3993 		 * Synthesize unit and scale only if it's defined.
3994 		 */
3995 		if (has_unit(counter)) {
3996 			err = perf_event__synthesize_event_update_unit(tool, counter, process);
3997 			if (err < 0) {
3998 				pr_err("Couldn't synthesize evsel unit.\n");
3999 				return err;
4000 			}
4001 		}
4002 
4003 		if (has_scale(counter)) {
4004 			err = perf_event__synthesize_event_update_scale(tool, counter, process);
4005 			if (err < 0) {
4006 				pr_err("Couldn't synthesize evsel counter.\n");
4007 				return err;
4008 			}
4009 		}
4010 
4011 		if (counter->core.own_cpus) {
4012 			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
4013 			if (err < 0) {
4014 				pr_err("Couldn't synthesize evsel cpus.\n");
4015 				return err;
4016 			}
4017 		}
4018 
4019 		/*
4020 		 * Name is needed only for pipe output,
4021 		 * perf.data carries event names.
4022 		 */
4023 		if (is_pipe) {
4024 			err = perf_event__synthesize_event_update_name(tool, counter, process);
4025 			if (err < 0) {
4026 				pr_err("Couldn't synthesize evsel name.\n");
4027 				return err;
4028 			}
4029 		}
4030 	}
4031 	return 0;
4032 }
4033 
4034 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4035 			     union perf_event *event,
4036 			     struct evlist **pevlist)
4037 {
4038 	u32 i, ids, n_ids;
4039 	struct evsel *evsel;
4040 	struct evlist *evlist = *pevlist;
4041 
4042 	if (evlist == NULL) {
4043 		*pevlist = evlist = evlist__new();
4044 		if (evlist == NULL)
4045 			return -ENOMEM;
4046 	}
4047 
4048 	evsel = evsel__new(&event->attr.attr);
4049 	if (evsel == NULL)
4050 		return -ENOMEM;
4051 
4052 	evlist__add(evlist, evsel);
4053 
4054 	ids = event->header.size;
4055 	ids -= (void *)&event->attr.id - (void *)event;
4056 	n_ids = ids / sizeof(u64);
4057 	/*
4058 	 * We don't have the cpu and thread maps on the header, so
4059 	 * for allocating the perf_sample_id table we fake 1 cpu and
4060 	 * hattr->ids threads.
4061 	 */
4062 	if (perf_evsel__alloc_id(evsel, 1, n_ids))
4063 		return -ENOMEM;
4064 
4065 	for (i = 0; i < n_ids; i++) {
4066 		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
4067 	}
4068 
4069 	return 0;
4070 }
4071 
4072 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4073 				     union perf_event *event,
4074 				     struct evlist **pevlist)
4075 {
4076 	struct perf_record_event_update *ev = &event->event_update;
4077 	struct perf_record_event_update_scale *ev_scale;
4078 	struct perf_record_event_update_cpus *ev_cpus;
4079 	struct evlist *evlist;
4080 	struct evsel *evsel;
4081 	struct perf_cpu_map *map;
4082 
4083 	if (!pevlist || *pevlist == NULL)
4084 		return -EINVAL;
4085 
4086 	evlist = *pevlist;
4087 
4088 	evsel = perf_evlist__id2evsel(evlist, ev->id);
4089 	if (evsel == NULL)
4090 		return -EINVAL;
4091 
4092 	switch (ev->type) {
4093 	case PERF_EVENT_UPDATE__UNIT:
4094 		evsel->unit = strdup(ev->data);
4095 		break;
4096 	case PERF_EVENT_UPDATE__NAME:
4097 		evsel->name = strdup(ev->data);
4098 		break;
4099 	case PERF_EVENT_UPDATE__SCALE:
4100 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4101 		evsel->scale = ev_scale->scale;
4102 		break;
4103 	case PERF_EVENT_UPDATE__CPUS:
4104 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4105 
4106 		map = cpu_map__new_data(&ev_cpus->cpus);
4107 		if (map)
4108 			evsel->core.own_cpus = map;
4109 		else
4110 			pr_err("failed to get event_update cpus\n");
4111 	default:
4112 		break;
4113 	}
4114 
4115 	return 0;
4116 }
4117 
4118 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
4119 					struct evlist *evlist,
4120 					perf_event__handler_t process)
4121 {
4122 	union perf_event ev;
4123 	struct tracing_data *tdata;
4124 	ssize_t size = 0, aligned_size = 0, padding;
4125 	struct feat_fd ff;
4126 	int err __maybe_unused = 0;
4127 
4128 	/*
4129 	 * We are going to store the size of the data followed
4130 	 * by the data contents. Since the fd descriptor is a pipe,
4131 	 * we cannot seek back to store the size of the data once
4132 	 * we know it. Instead we:
4133 	 *
4134 	 * - write the tracing data to the temp file
4135 	 * - get/write the data size to pipe
4136 	 * - write the tracing data from the temp file
4137 	 *   to the pipe
4138 	 */
4139 	tdata = tracing_data_get(&evlist->core.entries, fd, true);
4140 	if (!tdata)
4141 		return -1;
4142 
4143 	memset(&ev, 0, sizeof(ev));
4144 
4145 	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
4146 	size = tdata->size;
4147 	aligned_size = PERF_ALIGN(size, sizeof(u64));
4148 	padding = aligned_size - size;
4149 	ev.tracing_data.header.size = sizeof(ev.tracing_data);
4150 	ev.tracing_data.size = aligned_size;
4151 
4152 	process(tool, &ev, NULL, NULL);
4153 
4154 	/*
4155 	 * The put function will copy all the tracing data
4156 	 * stored in temp file to the pipe.
4157 	 */
4158 	tracing_data_put(tdata);
4159 
4160 	ff = (struct feat_fd){ .fd = fd };
4161 	if (write_padded(&ff, NULL, 0, padding))
4162 		return -1;
4163 
4164 	return aligned_size;
4165 }
4166 
4167 int perf_event__process_tracing_data(struct perf_session *session,
4168 				     union perf_event *event)
4169 {
4170 	ssize_t size_read, padding, size = event->tracing_data.size;
4171 	int fd = perf_data__fd(session->data);
4172 	off_t offset = lseek(fd, 0, SEEK_CUR);
4173 	char buf[BUFSIZ];
4174 
4175 	/* setup for reading amidst mmap */
4176 	lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4177 	      SEEK_SET);
4178 
4179 	size_read = trace_report(fd, &session->tevent,
4180 				 session->repipe);
4181 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4182 
4183 	if (readn(fd, buf, padding) < 0) {
4184 		pr_err("%s: reading input file", __func__);
4185 		return -1;
4186 	}
4187 	if (session->repipe) {
4188 		int retw = write(STDOUT_FILENO, buf, padding);
4189 		if (retw <= 0 || retw != padding) {
4190 			pr_err("%s: repiping tracing data padding", __func__);
4191 			return -1;
4192 		}
4193 	}
4194 
4195 	if (size_read + padding != size) {
4196 		pr_err("%s: tracing data size mismatch", __func__);
4197 		return -1;
4198 	}
4199 
4200 	perf_evlist__prepare_tracepoint_events(session->evlist,
4201 					       session->tevent.pevent);
4202 
4203 	return size_read + padding;
4204 }
4205 
4206 int perf_event__synthesize_build_id(struct perf_tool *tool,
4207 				    struct dso *pos, u16 misc,
4208 				    perf_event__handler_t process,
4209 				    struct machine *machine)
4210 {
4211 	union perf_event ev;
4212 	size_t len;
4213 	int err = 0;
4214 
4215 	if (!pos->hit)
4216 		return err;
4217 
4218 	memset(&ev, 0, sizeof(ev));
4219 
4220 	len = pos->long_name_len + 1;
4221 	len = PERF_ALIGN(len, NAME_ALIGN);
4222 	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
4223 	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
4224 	ev.build_id.header.misc = misc;
4225 	ev.build_id.pid = machine->pid;
4226 	ev.build_id.header.size = sizeof(ev.build_id) + len;
4227 	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
4228 
4229 	err = process(tool, &ev, NULL, machine);
4230 
4231 	return err;
4232 }
4233 
4234 int perf_event__process_build_id(struct perf_session *session,
4235 				 union perf_event *event)
4236 {
4237 	__event_process_build_id(&event->build_id,
4238 				 event->build_id.filename,
4239 				 session);
4240 	return 0;
4241 }
4242