1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <regex.h> 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <linux/compiler.h> 13 #include <linux/list.h> 14 #include <linux/kernel.h> 15 #include <linux/bitops.h> 16 #include <linux/string.h> 17 #include <linux/stringify.h> 18 #include <linux/zalloc.h> 19 #include <sys/stat.h> 20 #include <sys/utsname.h> 21 #include <linux/time64.h> 22 #include <dirent.h> 23 #ifdef HAVE_LIBBPF_SUPPORT 24 #include <bpf/libbpf.h> 25 #endif 26 #include <perf/cpumap.h> 27 #include <tools/libc_compat.h> // reallocarray 28 29 #include "dso.h" 30 #include "evlist.h" 31 #include "evsel.h" 32 #include "util/evsel_fprintf.h" 33 #include "header.h" 34 #include "memswap.h" 35 #include "trace-event.h" 36 #include "session.h" 37 #include "symbol.h" 38 #include "debug.h" 39 #include "cpumap.h" 40 #include "pmu.h" 41 #include "pmus.h" 42 #include "vdso.h" 43 #include "strbuf.h" 44 #include "build-id.h" 45 #include "data.h" 46 #include <api/fs/fs.h> 47 #include <api/io_dir.h> 48 #include "asm/bug.h" 49 #include "tool.h" 50 #include "time-utils.h" 51 #include "units.h" 52 #include "util/util.h" // perf_exe() 53 #include "cputopo.h" 54 #include "bpf-event.h" 55 #include "bpf-utils.h" 56 #include "clockid.h" 57 58 #include <linux/ctype.h> 59 #include <internal/lib.h> 60 61 #ifdef HAVE_LIBTRACEEVENT 62 #include <event-parse.h> 63 #endif 64 65 /* 66 * magic2 = "PERFILE2" 67 * must be a numerical value to let the endianness 68 * determine the memory layout. That way we are able 69 * to detect endianness when reading the perf.data file 70 * back. 71 * 72 * we check for legacy (PERFFILE) format. 73 */ 74 static const char *__perf_magic1 = "PERFFILE"; 75 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 76 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 77 78 #define PERF_MAGIC __perf_magic2 79 80 const char perf_version_string[] = PERF_VERSION; 81 82 struct perf_file_attr { 83 struct perf_event_attr attr; 84 struct perf_file_section ids; 85 }; 86 87 void perf_header__set_feat(struct perf_header *header, int feat) 88 { 89 __set_bit(feat, header->adds_features); 90 } 91 92 void perf_header__clear_feat(struct perf_header *header, int feat) 93 { 94 __clear_bit(feat, header->adds_features); 95 } 96 97 bool perf_header__has_feat(const struct perf_header *header, int feat) 98 { 99 return test_bit(feat, header->adds_features); 100 } 101 102 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 103 { 104 ssize_t ret = writen(ff->fd, buf, size); 105 106 if (ret != (ssize_t)size) 107 return ret < 0 ? (int)ret : -1; 108 return 0; 109 } 110 111 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 112 { 113 /* struct perf_event_header::size is u16 */ 114 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 115 size_t new_size = ff->size; 116 void *addr; 117 118 if (size + ff->offset > max_size) 119 return -E2BIG; 120 121 while (size > (new_size - ff->offset)) 122 new_size <<= 1; 123 new_size = min(max_size, new_size); 124 125 if (ff->size < new_size) { 126 addr = realloc(ff->buf, new_size); 127 if (!addr) 128 return -ENOMEM; 129 ff->buf = addr; 130 ff->size = new_size; 131 } 132 133 memcpy(ff->buf + ff->offset, buf, size); 134 ff->offset += size; 135 136 return 0; 137 } 138 139 /* Return: 0 if succeeded, -ERR if failed. */ 140 int do_write(struct feat_fd *ff, const void *buf, size_t size) 141 { 142 if (!ff->buf) 143 return __do_write_fd(ff, buf, size); 144 return __do_write_buf(ff, buf, size); 145 } 146 147 /* Return: 0 if succeeded, -ERR if failed. */ 148 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 149 { 150 u64 *p = (u64 *) set; 151 int i, ret; 152 153 ret = do_write(ff, &size, sizeof(size)); 154 if (ret < 0) 155 return ret; 156 157 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 158 ret = do_write(ff, p + i, sizeof(*p)); 159 if (ret < 0) 160 return ret; 161 } 162 163 return 0; 164 } 165 166 /* Return: 0 if succeeded, -ERR if failed. */ 167 int write_padded(struct feat_fd *ff, const void *bf, 168 size_t count, size_t count_aligned) 169 { 170 static const char zero_buf[NAME_ALIGN]; 171 int err = do_write(ff, bf, count); 172 173 if (!err) 174 err = do_write(ff, zero_buf, count_aligned - count); 175 176 return err; 177 } 178 179 #define string_size(str) \ 180 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 181 182 /* Return: 0 if succeeded, -ERR if failed. */ 183 static int do_write_string(struct feat_fd *ff, const char *str) 184 { 185 u32 len, olen; 186 int ret; 187 188 olen = strlen(str) + 1; 189 len = PERF_ALIGN(olen, NAME_ALIGN); 190 191 /* write len, incl. \0 */ 192 ret = do_write(ff, &len, sizeof(len)); 193 if (ret < 0) 194 return ret; 195 196 return write_padded(ff, str, olen, len); 197 } 198 199 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 200 { 201 ssize_t ret = readn(ff->fd, addr, size); 202 203 if (ret != size) 204 return ret < 0 ? (int)ret : -1; 205 return 0; 206 } 207 208 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 209 { 210 if (size > (ssize_t)ff->size - ff->offset) 211 return -1; 212 213 memcpy(addr, ff->buf + ff->offset, size); 214 ff->offset += size; 215 216 return 0; 217 218 } 219 220 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 221 { 222 if (!ff->buf) 223 return __do_read_fd(ff, addr, size); 224 return __do_read_buf(ff, addr, size); 225 } 226 227 static int do_read_u32(struct feat_fd *ff, u32 *addr) 228 { 229 int ret; 230 231 ret = __do_read(ff, addr, sizeof(*addr)); 232 if (ret) 233 return ret; 234 235 if (ff->ph->needs_swap) 236 *addr = bswap_32(*addr); 237 return 0; 238 } 239 240 static int do_read_u64(struct feat_fd *ff, u64 *addr) 241 { 242 int ret; 243 244 ret = __do_read(ff, addr, sizeof(*addr)); 245 if (ret) 246 return ret; 247 248 if (ff->ph->needs_swap) 249 *addr = bswap_64(*addr); 250 return 0; 251 } 252 253 static char *do_read_string(struct feat_fd *ff) 254 { 255 u32 len; 256 char *buf; 257 258 if (do_read_u32(ff, &len)) 259 return NULL; 260 261 buf = malloc(len); 262 if (!buf) 263 return NULL; 264 265 if (!__do_read(ff, buf, len)) { 266 /* 267 * strings are padded by zeroes 268 * thus the actual strlen of buf 269 * may be less than len 270 */ 271 return buf; 272 } 273 274 free(buf); 275 return NULL; 276 } 277 278 /* Return: 0 if succeeded, -ERR if failed. */ 279 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 280 { 281 unsigned long *set; 282 u64 size, *p; 283 int i, ret; 284 285 ret = do_read_u64(ff, &size); 286 if (ret) 287 return ret; 288 289 set = bitmap_zalloc(size); 290 if (!set) 291 return -ENOMEM; 292 293 p = (u64 *) set; 294 295 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 296 ret = do_read_u64(ff, p + i); 297 if (ret < 0) { 298 free(set); 299 return ret; 300 } 301 } 302 303 *pset = set; 304 *psize = size; 305 return 0; 306 } 307 308 #ifdef HAVE_LIBTRACEEVENT 309 static int write_tracing_data(struct feat_fd *ff, 310 struct evlist *evlist) 311 { 312 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 313 return -1; 314 315 return read_tracing_data(ff->fd, &evlist->core.entries); 316 } 317 #endif 318 319 static int write_build_id(struct feat_fd *ff, 320 struct evlist *evlist __maybe_unused) 321 { 322 struct perf_session *session; 323 int err; 324 325 session = container_of(ff->ph, struct perf_session, header); 326 327 if (!perf_session__read_build_ids(session, true)) 328 return -1; 329 330 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 331 return -1; 332 333 err = perf_session__write_buildid_table(session, ff); 334 if (err < 0) { 335 pr_debug("failed to write buildid table\n"); 336 return err; 337 } 338 perf_session__cache_build_ids(session); 339 340 return 0; 341 } 342 343 static int write_hostname(struct feat_fd *ff, 344 struct evlist *evlist __maybe_unused) 345 { 346 struct utsname uts; 347 int ret; 348 349 ret = uname(&uts); 350 if (ret < 0) 351 return -1; 352 353 return do_write_string(ff, uts.nodename); 354 } 355 356 static int write_osrelease(struct feat_fd *ff, 357 struct evlist *evlist __maybe_unused) 358 { 359 struct utsname uts; 360 int ret; 361 362 ret = uname(&uts); 363 if (ret < 0) 364 return -1; 365 366 return do_write_string(ff, uts.release); 367 } 368 369 static int write_arch(struct feat_fd *ff, 370 struct evlist *evlist __maybe_unused) 371 { 372 struct utsname uts; 373 int ret; 374 375 ret = uname(&uts); 376 if (ret < 0) 377 return -1; 378 379 return do_write_string(ff, uts.machine); 380 } 381 382 static int write_version(struct feat_fd *ff, 383 struct evlist *evlist __maybe_unused) 384 { 385 return do_write_string(ff, perf_version_string); 386 } 387 388 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 389 { 390 FILE *file; 391 char *buf = NULL; 392 char *s, *p; 393 const char *search = cpuinfo_proc; 394 size_t len = 0; 395 int ret = -1; 396 397 if (!search) 398 return -1; 399 400 file = fopen("/proc/cpuinfo", "r"); 401 if (!file) 402 return -1; 403 404 while (getline(&buf, &len, file) > 0) { 405 ret = strncmp(buf, search, strlen(search)); 406 if (!ret) 407 break; 408 } 409 410 if (ret) { 411 ret = -1; 412 goto done; 413 } 414 415 s = buf; 416 417 p = strchr(buf, ':'); 418 if (p && *(p+1) == ' ' && *(p+2)) 419 s = p + 2; 420 p = strchr(s, '\n'); 421 if (p) 422 *p = '\0'; 423 424 /* squash extra space characters (branding string) */ 425 p = s; 426 while (*p) { 427 if (isspace(*p)) { 428 char *r = p + 1; 429 char *q = skip_spaces(r); 430 *p = ' '; 431 if (q != (p+1)) 432 while ((*r++ = *q++)); 433 } 434 p++; 435 } 436 ret = do_write_string(ff, s); 437 done: 438 free(buf); 439 fclose(file); 440 return ret; 441 } 442 443 static int write_cpudesc(struct feat_fd *ff, 444 struct evlist *evlist __maybe_unused) 445 { 446 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 447 #define CPUINFO_PROC { "cpu", } 448 #elif defined(__s390__) 449 #define CPUINFO_PROC { "vendor_id", } 450 #elif defined(__sh__) 451 #define CPUINFO_PROC { "cpu type", } 452 #elif defined(__alpha__) || defined(__mips__) 453 #define CPUINFO_PROC { "cpu model", } 454 #elif defined(__arm__) 455 #define CPUINFO_PROC { "model name", "Processor", } 456 #elif defined(__arc__) 457 #define CPUINFO_PROC { "Processor", } 458 #elif defined(__xtensa__) 459 #define CPUINFO_PROC { "core ID", } 460 #elif defined(__loongarch__) 461 #define CPUINFO_PROC { "Model Name", } 462 #else 463 #define CPUINFO_PROC { "model name", } 464 #endif 465 const char *cpuinfo_procs[] = CPUINFO_PROC; 466 #undef CPUINFO_PROC 467 unsigned int i; 468 469 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 470 int ret; 471 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 472 if (ret >= 0) 473 return ret; 474 } 475 return -1; 476 } 477 478 479 static int write_nrcpus(struct feat_fd *ff, 480 struct evlist *evlist __maybe_unused) 481 { 482 long nr; 483 u32 nrc, nra; 484 int ret; 485 486 nrc = cpu__max_present_cpu().cpu; 487 488 nr = sysconf(_SC_NPROCESSORS_ONLN); 489 if (nr < 0) 490 return -1; 491 492 nra = (u32)(nr & UINT_MAX); 493 494 ret = do_write(ff, &nrc, sizeof(nrc)); 495 if (ret < 0) 496 return ret; 497 498 return do_write(ff, &nra, sizeof(nra)); 499 } 500 501 static int write_event_desc(struct feat_fd *ff, 502 struct evlist *evlist) 503 { 504 struct evsel *evsel; 505 u32 nre, nri, sz; 506 int ret; 507 508 nre = evlist->core.nr_entries; 509 510 /* 511 * write number of events 512 */ 513 ret = do_write(ff, &nre, sizeof(nre)); 514 if (ret < 0) 515 return ret; 516 517 /* 518 * size of perf_event_attr struct 519 */ 520 sz = (u32)sizeof(evsel->core.attr); 521 ret = do_write(ff, &sz, sizeof(sz)); 522 if (ret < 0) 523 return ret; 524 525 evlist__for_each_entry(evlist, evsel) { 526 ret = do_write(ff, &evsel->core.attr, sz); 527 if (ret < 0) 528 return ret; 529 /* 530 * write number of unique id per event 531 * there is one id per instance of an event 532 * 533 * copy into an nri to be independent of the 534 * type of ids, 535 */ 536 nri = evsel->core.ids; 537 ret = do_write(ff, &nri, sizeof(nri)); 538 if (ret < 0) 539 return ret; 540 541 /* 542 * write event string as passed on cmdline 543 */ 544 ret = do_write_string(ff, evsel__name(evsel)); 545 if (ret < 0) 546 return ret; 547 /* 548 * write unique ids for this event 549 */ 550 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 551 if (ret < 0) 552 return ret; 553 } 554 return 0; 555 } 556 557 static int write_cmdline(struct feat_fd *ff, 558 struct evlist *evlist __maybe_unused) 559 { 560 char pbuf[MAXPATHLEN], *buf; 561 int i, ret, n; 562 563 /* actual path to perf binary */ 564 buf = perf_exe(pbuf, MAXPATHLEN); 565 566 /* account for binary path */ 567 n = perf_env.nr_cmdline + 1; 568 569 ret = do_write(ff, &n, sizeof(n)); 570 if (ret < 0) 571 return ret; 572 573 ret = do_write_string(ff, buf); 574 if (ret < 0) 575 return ret; 576 577 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 578 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 579 if (ret < 0) 580 return ret; 581 } 582 return 0; 583 } 584 585 586 static int write_cpu_topology(struct feat_fd *ff, 587 struct evlist *evlist __maybe_unused) 588 { 589 struct cpu_topology *tp; 590 u32 i; 591 int ret, j; 592 593 tp = cpu_topology__new(); 594 if (!tp) 595 return -1; 596 597 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists)); 598 if (ret < 0) 599 goto done; 600 601 for (i = 0; i < tp->package_cpus_lists; i++) { 602 ret = do_write_string(ff, tp->package_cpus_list[i]); 603 if (ret < 0) 604 goto done; 605 } 606 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists)); 607 if (ret < 0) 608 goto done; 609 610 for (i = 0; i < tp->core_cpus_lists; i++) { 611 ret = do_write_string(ff, tp->core_cpus_list[i]); 612 if (ret < 0) 613 break; 614 } 615 616 ret = perf_env__read_cpu_topology_map(&perf_env); 617 if (ret < 0) 618 goto done; 619 620 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 621 ret = do_write(ff, &perf_env.cpu[j].core_id, 622 sizeof(perf_env.cpu[j].core_id)); 623 if (ret < 0) 624 return ret; 625 ret = do_write(ff, &perf_env.cpu[j].socket_id, 626 sizeof(perf_env.cpu[j].socket_id)); 627 if (ret < 0) 628 return ret; 629 } 630 631 if (!tp->die_cpus_lists) 632 goto done; 633 634 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists)); 635 if (ret < 0) 636 goto done; 637 638 for (i = 0; i < tp->die_cpus_lists; i++) { 639 ret = do_write_string(ff, tp->die_cpus_list[i]); 640 if (ret < 0) 641 goto done; 642 } 643 644 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 645 ret = do_write(ff, &perf_env.cpu[j].die_id, 646 sizeof(perf_env.cpu[j].die_id)); 647 if (ret < 0) 648 return ret; 649 } 650 651 done: 652 cpu_topology__delete(tp); 653 return ret; 654 } 655 656 657 658 static int write_total_mem(struct feat_fd *ff, 659 struct evlist *evlist __maybe_unused) 660 { 661 char *buf = NULL; 662 FILE *fp; 663 size_t len = 0; 664 int ret = -1, n; 665 uint64_t mem; 666 667 fp = fopen("/proc/meminfo", "r"); 668 if (!fp) 669 return -1; 670 671 while (getline(&buf, &len, fp) > 0) { 672 ret = strncmp(buf, "MemTotal:", 9); 673 if (!ret) 674 break; 675 } 676 if (!ret) { 677 n = sscanf(buf, "%*s %"PRIu64, &mem); 678 if (n == 1) 679 ret = do_write(ff, &mem, sizeof(mem)); 680 } else 681 ret = -1; 682 free(buf); 683 fclose(fp); 684 return ret; 685 } 686 687 static int write_numa_topology(struct feat_fd *ff, 688 struct evlist *evlist __maybe_unused) 689 { 690 struct numa_topology *tp; 691 int ret = -1; 692 u32 i; 693 694 tp = numa_topology__new(); 695 if (!tp) 696 return -ENOMEM; 697 698 ret = do_write(ff, &tp->nr, sizeof(u32)); 699 if (ret < 0) 700 goto err; 701 702 for (i = 0; i < tp->nr; i++) { 703 struct numa_topology_node *n = &tp->nodes[i]; 704 705 ret = do_write(ff, &n->node, sizeof(u32)); 706 if (ret < 0) 707 goto err; 708 709 ret = do_write(ff, &n->mem_total, sizeof(u64)); 710 if (ret) 711 goto err; 712 713 ret = do_write(ff, &n->mem_free, sizeof(u64)); 714 if (ret) 715 goto err; 716 717 ret = do_write_string(ff, n->cpus); 718 if (ret < 0) 719 goto err; 720 } 721 722 ret = 0; 723 724 err: 725 numa_topology__delete(tp); 726 return ret; 727 } 728 729 /* 730 * File format: 731 * 732 * struct pmu_mappings { 733 * u32 pmu_num; 734 * struct pmu_map { 735 * u32 type; 736 * char name[]; 737 * }[pmu_num]; 738 * }; 739 */ 740 741 static int write_pmu_mappings(struct feat_fd *ff, 742 struct evlist *evlist __maybe_unused) 743 { 744 struct perf_pmu *pmu = NULL; 745 u32 pmu_num = 0; 746 int ret; 747 748 /* 749 * Do a first pass to count number of pmu to avoid lseek so this 750 * works in pipe mode as well. 751 */ 752 while ((pmu = perf_pmus__scan(pmu))) 753 pmu_num++; 754 755 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 756 if (ret < 0) 757 return ret; 758 759 while ((pmu = perf_pmus__scan(pmu))) { 760 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 761 if (ret < 0) 762 return ret; 763 764 ret = do_write_string(ff, pmu->name); 765 if (ret < 0) 766 return ret; 767 } 768 769 return 0; 770 } 771 772 /* 773 * File format: 774 * 775 * struct group_descs { 776 * u32 nr_groups; 777 * struct group_desc { 778 * char name[]; 779 * u32 leader_idx; 780 * u32 nr_members; 781 * }[nr_groups]; 782 * }; 783 */ 784 static int write_group_desc(struct feat_fd *ff, 785 struct evlist *evlist) 786 { 787 u32 nr_groups = evlist__nr_groups(evlist); 788 struct evsel *evsel; 789 int ret; 790 791 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 792 if (ret < 0) 793 return ret; 794 795 evlist__for_each_entry(evlist, evsel) { 796 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 797 const char *name = evsel->group_name ?: "{anon_group}"; 798 u32 leader_idx = evsel->core.idx; 799 u32 nr_members = evsel->core.nr_members; 800 801 ret = do_write_string(ff, name); 802 if (ret < 0) 803 return ret; 804 805 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 806 if (ret < 0) 807 return ret; 808 809 ret = do_write(ff, &nr_members, sizeof(nr_members)); 810 if (ret < 0) 811 return ret; 812 } 813 } 814 return 0; 815 } 816 817 /* 818 * Return the CPU id as a raw string. 819 * 820 * Each architecture should provide a more precise id string that 821 * can be use to match the architecture's "mapfile". 822 */ 823 char * __weak get_cpuid_str(struct perf_cpu cpu __maybe_unused) 824 { 825 return NULL; 826 } 827 828 char *get_cpuid_allow_env_override(struct perf_cpu cpu) 829 { 830 char *cpuid; 831 static bool printed; 832 833 cpuid = getenv("PERF_CPUID"); 834 if (cpuid) 835 cpuid = strdup(cpuid); 836 if (!cpuid) 837 cpuid = get_cpuid_str(cpu); 838 if (!cpuid) 839 return NULL; 840 841 if (!printed) { 842 pr_debug("Using CPUID %s\n", cpuid); 843 printed = true; 844 } 845 return cpuid; 846 } 847 848 /* Return zero when the cpuid from the mapfile.csv matches the 849 * cpuid string generated on this platform. 850 * Otherwise return non-zero. 851 */ 852 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 853 { 854 regex_t re; 855 regmatch_t pmatch[1]; 856 int match; 857 858 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 859 /* Warn unable to generate match particular string. */ 860 pr_info("Invalid regular expression %s\n", mapcpuid); 861 return 1; 862 } 863 864 match = !regexec(&re, cpuid, 1, pmatch, 0); 865 regfree(&re); 866 if (match) { 867 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 868 869 /* Verify the entire string matched. */ 870 if (match_len == strlen(cpuid)) 871 return 0; 872 } 873 return 1; 874 } 875 876 /* 877 * default get_cpuid(): nothing gets recorded 878 * actual implementation must be in arch/$(SRCARCH)/util/header.c 879 */ 880 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused, 881 struct perf_cpu cpu __maybe_unused) 882 { 883 return ENOSYS; /* Not implemented */ 884 } 885 886 static int write_cpuid(struct feat_fd *ff, struct evlist *evlist) 887 { 888 struct perf_cpu cpu = perf_cpu_map__min(evlist->core.all_cpus); 889 char buffer[64]; 890 int ret; 891 892 ret = get_cpuid(buffer, sizeof(buffer), cpu); 893 if (ret) 894 return -1; 895 896 return do_write_string(ff, buffer); 897 } 898 899 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 900 struct evlist *evlist __maybe_unused) 901 { 902 return 0; 903 } 904 905 static int write_auxtrace(struct feat_fd *ff, 906 struct evlist *evlist __maybe_unused) 907 { 908 struct perf_session *session; 909 int err; 910 911 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 912 return -1; 913 914 session = container_of(ff->ph, struct perf_session, header); 915 916 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 917 if (err < 0) 918 pr_err("Failed to write auxtrace index\n"); 919 return err; 920 } 921 922 static int write_clockid(struct feat_fd *ff, 923 struct evlist *evlist __maybe_unused) 924 { 925 return do_write(ff, &ff->ph->env.clock.clockid_res_ns, 926 sizeof(ff->ph->env.clock.clockid_res_ns)); 927 } 928 929 static int write_clock_data(struct feat_fd *ff, 930 struct evlist *evlist __maybe_unused) 931 { 932 u64 *data64; 933 u32 data32; 934 int ret; 935 936 /* version */ 937 data32 = 1; 938 939 ret = do_write(ff, &data32, sizeof(data32)); 940 if (ret < 0) 941 return ret; 942 943 /* clockid */ 944 data32 = ff->ph->env.clock.clockid; 945 946 ret = do_write(ff, &data32, sizeof(data32)); 947 if (ret < 0) 948 return ret; 949 950 /* TOD ref time */ 951 data64 = &ff->ph->env.clock.tod_ns; 952 953 ret = do_write(ff, data64, sizeof(*data64)); 954 if (ret < 0) 955 return ret; 956 957 /* clockid ref time */ 958 data64 = &ff->ph->env.clock.clockid_ns; 959 960 return do_write(ff, data64, sizeof(*data64)); 961 } 962 963 static int write_hybrid_topology(struct feat_fd *ff, 964 struct evlist *evlist __maybe_unused) 965 { 966 struct hybrid_topology *tp; 967 int ret; 968 u32 i; 969 970 tp = hybrid_topology__new(); 971 if (!tp) 972 return -ENOENT; 973 974 ret = do_write(ff, &tp->nr, sizeof(u32)); 975 if (ret < 0) 976 goto err; 977 978 for (i = 0; i < tp->nr; i++) { 979 struct hybrid_topology_node *n = &tp->nodes[i]; 980 981 ret = do_write_string(ff, n->pmu_name); 982 if (ret < 0) 983 goto err; 984 985 ret = do_write_string(ff, n->cpus); 986 if (ret < 0) 987 goto err; 988 } 989 990 ret = 0; 991 992 err: 993 hybrid_topology__delete(tp); 994 return ret; 995 } 996 997 static int write_dir_format(struct feat_fd *ff, 998 struct evlist *evlist __maybe_unused) 999 { 1000 struct perf_session *session; 1001 struct perf_data *data; 1002 1003 session = container_of(ff->ph, struct perf_session, header); 1004 data = session->data; 1005 1006 if (WARN_ON(!perf_data__is_dir(data))) 1007 return -1; 1008 1009 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 1010 } 1011 1012 #ifdef HAVE_LIBBPF_SUPPORT 1013 static int write_bpf_prog_info(struct feat_fd *ff, 1014 struct evlist *evlist __maybe_unused) 1015 { 1016 struct perf_env *env = &ff->ph->env; 1017 struct rb_root *root; 1018 struct rb_node *next; 1019 int ret; 1020 1021 down_read(&env->bpf_progs.lock); 1022 1023 ret = do_write(ff, &env->bpf_progs.infos_cnt, 1024 sizeof(env->bpf_progs.infos_cnt)); 1025 if (ret < 0) 1026 goto out; 1027 1028 root = &env->bpf_progs.infos; 1029 next = rb_first(root); 1030 while (next) { 1031 struct bpf_prog_info_node *node; 1032 size_t len; 1033 1034 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1035 next = rb_next(&node->rb_node); 1036 len = sizeof(struct perf_bpil) + 1037 node->info_linear->data_len; 1038 1039 /* before writing to file, translate address to offset */ 1040 bpil_addr_to_offs(node->info_linear); 1041 ret = do_write(ff, node->info_linear, len); 1042 /* 1043 * translate back to address even when do_write() fails, 1044 * so that this function never changes the data. 1045 */ 1046 bpil_offs_to_addr(node->info_linear); 1047 if (ret < 0) 1048 goto out; 1049 } 1050 out: 1051 up_read(&env->bpf_progs.lock); 1052 return ret; 1053 } 1054 1055 static int write_bpf_btf(struct feat_fd *ff, 1056 struct evlist *evlist __maybe_unused) 1057 { 1058 struct perf_env *env = &ff->ph->env; 1059 struct rb_root *root; 1060 struct rb_node *next; 1061 int ret; 1062 1063 down_read(&env->bpf_progs.lock); 1064 1065 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 1066 sizeof(env->bpf_progs.btfs_cnt)); 1067 1068 if (ret < 0) 1069 goto out; 1070 1071 root = &env->bpf_progs.btfs; 1072 next = rb_first(root); 1073 while (next) { 1074 struct btf_node *node; 1075 1076 node = rb_entry(next, struct btf_node, rb_node); 1077 next = rb_next(&node->rb_node); 1078 ret = do_write(ff, &node->id, 1079 sizeof(u32) * 2 + node->data_size); 1080 if (ret < 0) 1081 goto out; 1082 } 1083 out: 1084 up_read(&env->bpf_progs.lock); 1085 return ret; 1086 } 1087 #endif // HAVE_LIBBPF_SUPPORT 1088 1089 static int cpu_cache_level__sort(const void *a, const void *b) 1090 { 1091 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1092 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1093 1094 return cache_a->level - cache_b->level; 1095 } 1096 1097 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1098 { 1099 if (a->level != b->level) 1100 return false; 1101 1102 if (a->line_size != b->line_size) 1103 return false; 1104 1105 if (a->sets != b->sets) 1106 return false; 1107 1108 if (a->ways != b->ways) 1109 return false; 1110 1111 if (strcmp(a->type, b->type)) 1112 return false; 1113 1114 if (strcmp(a->size, b->size)) 1115 return false; 1116 1117 if (strcmp(a->map, b->map)) 1118 return false; 1119 1120 return true; 1121 } 1122 1123 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1124 { 1125 char path[PATH_MAX], file[PATH_MAX]; 1126 struct stat st; 1127 size_t len; 1128 1129 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1130 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1131 1132 if (stat(file, &st)) 1133 return 1; 1134 1135 scnprintf(file, PATH_MAX, "%s/level", path); 1136 if (sysfs__read_int(file, (int *) &cache->level)) 1137 return -1; 1138 1139 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1140 if (sysfs__read_int(file, (int *) &cache->line_size)) 1141 return -1; 1142 1143 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1144 if (sysfs__read_int(file, (int *) &cache->sets)) 1145 return -1; 1146 1147 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1148 if (sysfs__read_int(file, (int *) &cache->ways)) 1149 return -1; 1150 1151 scnprintf(file, PATH_MAX, "%s/type", path); 1152 if (sysfs__read_str(file, &cache->type, &len)) 1153 return -1; 1154 1155 cache->type[len] = 0; 1156 cache->type = strim(cache->type); 1157 1158 scnprintf(file, PATH_MAX, "%s/size", path); 1159 if (sysfs__read_str(file, &cache->size, &len)) { 1160 zfree(&cache->type); 1161 return -1; 1162 } 1163 1164 cache->size[len] = 0; 1165 cache->size = strim(cache->size); 1166 1167 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1168 if (sysfs__read_str(file, &cache->map, &len)) { 1169 zfree(&cache->size); 1170 zfree(&cache->type); 1171 return -1; 1172 } 1173 1174 cache->map[len] = 0; 1175 cache->map = strim(cache->map); 1176 return 0; 1177 } 1178 1179 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1180 { 1181 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1182 } 1183 1184 /* 1185 * Build caches levels for a particular CPU from the data in 1186 * /sys/devices/system/cpu/cpu<cpu>/cache/ 1187 * The cache level data is stored in caches[] from index at 1188 * *cntp. 1189 */ 1190 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp) 1191 { 1192 u16 level; 1193 1194 for (level = 0; level < MAX_CACHE_LVL; level++) { 1195 struct cpu_cache_level c; 1196 int err; 1197 u32 i; 1198 1199 err = cpu_cache_level__read(&c, cpu, level); 1200 if (err < 0) 1201 return err; 1202 1203 if (err == 1) 1204 break; 1205 1206 for (i = 0; i < *cntp; i++) { 1207 if (cpu_cache_level__cmp(&c, &caches[i])) 1208 break; 1209 } 1210 1211 if (i == *cntp) { 1212 caches[*cntp] = c; 1213 *cntp = *cntp + 1; 1214 } else 1215 cpu_cache_level__free(&c); 1216 } 1217 1218 return 0; 1219 } 1220 1221 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1222 { 1223 u32 nr, cpu, cnt = 0; 1224 1225 nr = cpu__max_cpu().cpu; 1226 1227 for (cpu = 0; cpu < nr; cpu++) { 1228 int ret = build_caches_for_cpu(cpu, caches, &cnt); 1229 1230 if (ret) 1231 return ret; 1232 } 1233 *cntp = cnt; 1234 return 0; 1235 } 1236 1237 static int write_cache(struct feat_fd *ff, 1238 struct evlist *evlist __maybe_unused) 1239 { 1240 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL; 1241 struct cpu_cache_level caches[max_caches]; 1242 u32 cnt = 0, i, version = 1; 1243 int ret; 1244 1245 ret = build_caches(caches, &cnt); 1246 if (ret) 1247 goto out; 1248 1249 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1250 1251 ret = do_write(ff, &version, sizeof(u32)); 1252 if (ret < 0) 1253 goto out; 1254 1255 ret = do_write(ff, &cnt, sizeof(u32)); 1256 if (ret < 0) 1257 goto out; 1258 1259 for (i = 0; i < cnt; i++) { 1260 struct cpu_cache_level *c = &caches[i]; 1261 1262 #define _W(v) \ 1263 ret = do_write(ff, &c->v, sizeof(u32)); \ 1264 if (ret < 0) \ 1265 goto out; 1266 1267 _W(level) 1268 _W(line_size) 1269 _W(sets) 1270 _W(ways) 1271 #undef _W 1272 1273 #define _W(v) \ 1274 ret = do_write_string(ff, (const char *) c->v); \ 1275 if (ret < 0) \ 1276 goto out; 1277 1278 _W(type) 1279 _W(size) 1280 _W(map) 1281 #undef _W 1282 } 1283 1284 out: 1285 for (i = 0; i < cnt; i++) 1286 cpu_cache_level__free(&caches[i]); 1287 return ret; 1288 } 1289 1290 static int write_stat(struct feat_fd *ff __maybe_unused, 1291 struct evlist *evlist __maybe_unused) 1292 { 1293 return 0; 1294 } 1295 1296 static int write_sample_time(struct feat_fd *ff, 1297 struct evlist *evlist) 1298 { 1299 int ret; 1300 1301 ret = do_write(ff, &evlist->first_sample_time, 1302 sizeof(evlist->first_sample_time)); 1303 if (ret < 0) 1304 return ret; 1305 1306 return do_write(ff, &evlist->last_sample_time, 1307 sizeof(evlist->last_sample_time)); 1308 } 1309 1310 1311 static int memory_node__read(struct memory_node *n, unsigned long idx) 1312 { 1313 unsigned int phys, size = 0; 1314 char path[PATH_MAX]; 1315 struct io_dirent64 *ent; 1316 struct io_dir dir; 1317 1318 #define for_each_memory(mem, dir) \ 1319 while ((ent = io_dir__readdir(&dir)) != NULL) \ 1320 if (strcmp(ent->d_name, ".") && \ 1321 strcmp(ent->d_name, "..") && \ 1322 sscanf(ent->d_name, "memory%u", &mem) == 1) 1323 1324 scnprintf(path, PATH_MAX, 1325 "%s/devices/system/node/node%lu", 1326 sysfs__mountpoint(), idx); 1327 1328 io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY)); 1329 if (dir.dirfd < 0) { 1330 pr_warning("failed: can't open memory sysfs data '%s'\n", path); 1331 return -1; 1332 } 1333 1334 for_each_memory(phys, dir) { 1335 size = max(phys, size); 1336 } 1337 1338 size++; 1339 1340 n->set = bitmap_zalloc(size); 1341 if (!n->set) { 1342 close(dir.dirfd); 1343 return -ENOMEM; 1344 } 1345 1346 n->node = idx; 1347 n->size = size; 1348 1349 io_dir__rewinddir(&dir); 1350 1351 for_each_memory(phys, dir) { 1352 __set_bit(phys, n->set); 1353 } 1354 1355 close(dir.dirfd); 1356 return 0; 1357 } 1358 1359 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt) 1360 { 1361 for (u64 i = 0; i < cnt; i++) 1362 bitmap_free(nodesp[i].set); 1363 1364 free(nodesp); 1365 } 1366 1367 static int memory_node__sort(const void *a, const void *b) 1368 { 1369 const struct memory_node *na = a; 1370 const struct memory_node *nb = b; 1371 1372 return na->node - nb->node; 1373 } 1374 1375 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp) 1376 { 1377 char path[PATH_MAX]; 1378 struct io_dirent64 *ent; 1379 struct io_dir dir; 1380 int ret = 0; 1381 size_t cnt = 0, size = 0; 1382 struct memory_node *nodes = NULL; 1383 1384 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1385 sysfs__mountpoint()); 1386 1387 io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY)); 1388 if (dir.dirfd < 0) { 1389 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n", 1390 __func__, path); 1391 return -1; 1392 } 1393 1394 while (!ret && (ent = io_dir__readdir(&dir))) { 1395 unsigned int idx; 1396 int r; 1397 1398 if (!strcmp(ent->d_name, ".") || 1399 !strcmp(ent->d_name, "..")) 1400 continue; 1401 1402 r = sscanf(ent->d_name, "node%u", &idx); 1403 if (r != 1) 1404 continue; 1405 1406 if (cnt >= size) { 1407 struct memory_node *new_nodes = 1408 reallocarray(nodes, cnt + 4, sizeof(*nodes)); 1409 1410 if (!new_nodes) { 1411 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size); 1412 ret = -ENOMEM; 1413 goto out; 1414 } 1415 nodes = new_nodes; 1416 size += 4; 1417 } 1418 ret = memory_node__read(&nodes[cnt], idx); 1419 if (!ret) 1420 cnt += 1; 1421 } 1422 out: 1423 close(dir.dirfd); 1424 if (!ret) { 1425 *cntp = cnt; 1426 *nodesp = nodes; 1427 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1428 } else 1429 memory_node__delete_nodes(nodes, cnt); 1430 1431 return ret; 1432 } 1433 1434 /* 1435 * The MEM_TOPOLOGY holds physical memory map for every 1436 * node in system. The format of data is as follows: 1437 * 1438 * 0 - version | for future changes 1439 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1440 * 16 - count | number of nodes 1441 * 1442 * For each node we store map of physical indexes for 1443 * each node: 1444 * 1445 * 32 - node id | node index 1446 * 40 - size | size of bitmap 1447 * 48 - bitmap | bitmap of memory indexes that belongs to node 1448 */ 1449 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1450 struct evlist *evlist __maybe_unused) 1451 { 1452 struct memory_node *nodes = NULL; 1453 u64 bsize, version = 1, i, nr = 0; 1454 int ret; 1455 1456 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1457 (unsigned long long *) &bsize); 1458 if (ret) 1459 return ret; 1460 1461 ret = build_mem_topology(&nodes, &nr); 1462 if (ret) 1463 return ret; 1464 1465 ret = do_write(ff, &version, sizeof(version)); 1466 if (ret < 0) 1467 goto out; 1468 1469 ret = do_write(ff, &bsize, sizeof(bsize)); 1470 if (ret < 0) 1471 goto out; 1472 1473 ret = do_write(ff, &nr, sizeof(nr)); 1474 if (ret < 0) 1475 goto out; 1476 1477 for (i = 0; i < nr; i++) { 1478 struct memory_node *n = &nodes[i]; 1479 1480 #define _W(v) \ 1481 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1482 if (ret < 0) \ 1483 goto out; 1484 1485 _W(node) 1486 _W(size) 1487 1488 #undef _W 1489 1490 ret = do_write_bitmap(ff, n->set, n->size); 1491 if (ret < 0) 1492 goto out; 1493 } 1494 1495 out: 1496 memory_node__delete_nodes(nodes, nr); 1497 return ret; 1498 } 1499 1500 static int write_compressed(struct feat_fd *ff __maybe_unused, 1501 struct evlist *evlist __maybe_unused) 1502 { 1503 int ret; 1504 1505 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1506 if (ret) 1507 return ret; 1508 1509 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1510 if (ret) 1511 return ret; 1512 1513 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1514 if (ret) 1515 return ret; 1516 1517 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1518 if (ret) 1519 return ret; 1520 1521 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1522 } 1523 1524 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu, 1525 bool write_pmu) 1526 { 1527 struct perf_pmu_caps *caps = NULL; 1528 int ret; 1529 1530 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps)); 1531 if (ret < 0) 1532 return ret; 1533 1534 list_for_each_entry(caps, &pmu->caps, list) { 1535 ret = do_write_string(ff, caps->name); 1536 if (ret < 0) 1537 return ret; 1538 1539 ret = do_write_string(ff, caps->value); 1540 if (ret < 0) 1541 return ret; 1542 } 1543 1544 if (write_pmu) { 1545 ret = do_write_string(ff, pmu->name); 1546 if (ret < 0) 1547 return ret; 1548 } 1549 1550 return ret; 1551 } 1552 1553 static int write_cpu_pmu_caps(struct feat_fd *ff, 1554 struct evlist *evlist __maybe_unused) 1555 { 1556 struct perf_pmu *cpu_pmu = perf_pmus__find("cpu"); 1557 int ret; 1558 1559 if (!cpu_pmu) 1560 return -ENOENT; 1561 1562 ret = perf_pmu__caps_parse(cpu_pmu); 1563 if (ret < 0) 1564 return ret; 1565 1566 return __write_pmu_caps(ff, cpu_pmu, false); 1567 } 1568 1569 static int write_pmu_caps(struct feat_fd *ff, 1570 struct evlist *evlist __maybe_unused) 1571 { 1572 struct perf_pmu *pmu = NULL; 1573 int nr_pmu = 0; 1574 int ret; 1575 1576 while ((pmu = perf_pmus__scan(pmu))) { 1577 if (!strcmp(pmu->name, "cpu")) { 1578 /* 1579 * The "cpu" PMU is special and covered by 1580 * HEADER_CPU_PMU_CAPS. Note, core PMUs are 1581 * counted/written here for ARM, s390 and Intel hybrid. 1582 */ 1583 continue; 1584 } 1585 if (perf_pmu__caps_parse(pmu) <= 0) 1586 continue; 1587 nr_pmu++; 1588 } 1589 1590 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu)); 1591 if (ret < 0) 1592 return ret; 1593 1594 if (!nr_pmu) 1595 return 0; 1596 1597 /* 1598 * Note older perf tools assume core PMUs come first, this is a property 1599 * of perf_pmus__scan. 1600 */ 1601 pmu = NULL; 1602 while ((pmu = perf_pmus__scan(pmu))) { 1603 if (!strcmp(pmu->name, "cpu")) { 1604 /* Skip as above. */ 1605 continue; 1606 } 1607 if (perf_pmu__caps_parse(pmu) <= 0) 1608 continue; 1609 ret = __write_pmu_caps(ff, pmu, true); 1610 if (ret < 0) 1611 return ret; 1612 } 1613 return 0; 1614 } 1615 1616 static void print_hostname(struct feat_fd *ff, FILE *fp) 1617 { 1618 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1619 } 1620 1621 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1622 { 1623 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1624 } 1625 1626 static void print_arch(struct feat_fd *ff, FILE *fp) 1627 { 1628 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1629 } 1630 1631 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1632 { 1633 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1634 } 1635 1636 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1637 { 1638 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1639 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1640 } 1641 1642 static void print_version(struct feat_fd *ff, FILE *fp) 1643 { 1644 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1645 } 1646 1647 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1648 { 1649 int nr, i; 1650 1651 nr = ff->ph->env.nr_cmdline; 1652 1653 fprintf(fp, "# cmdline : "); 1654 1655 for (i = 0; i < nr; i++) { 1656 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1657 if (!argv_i) { 1658 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1659 } else { 1660 char *mem = argv_i; 1661 do { 1662 char *quote = strchr(argv_i, '\''); 1663 if (!quote) 1664 break; 1665 *quote++ = '\0'; 1666 fprintf(fp, "%s\\\'", argv_i); 1667 argv_i = quote; 1668 } while (1); 1669 fprintf(fp, "%s ", argv_i); 1670 free(mem); 1671 } 1672 } 1673 fputc('\n', fp); 1674 } 1675 1676 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1677 { 1678 struct perf_header *ph = ff->ph; 1679 int cpu_nr = ph->env.nr_cpus_avail; 1680 int nr, i; 1681 char *str; 1682 1683 nr = ph->env.nr_sibling_cores; 1684 str = ph->env.sibling_cores; 1685 1686 for (i = 0; i < nr; i++) { 1687 fprintf(fp, "# sibling sockets : %s\n", str); 1688 str += strlen(str) + 1; 1689 } 1690 1691 if (ph->env.nr_sibling_dies) { 1692 nr = ph->env.nr_sibling_dies; 1693 str = ph->env.sibling_dies; 1694 1695 for (i = 0; i < nr; i++) { 1696 fprintf(fp, "# sibling dies : %s\n", str); 1697 str += strlen(str) + 1; 1698 } 1699 } 1700 1701 nr = ph->env.nr_sibling_threads; 1702 str = ph->env.sibling_threads; 1703 1704 for (i = 0; i < nr; i++) { 1705 fprintf(fp, "# sibling threads : %s\n", str); 1706 str += strlen(str) + 1; 1707 } 1708 1709 if (ph->env.nr_sibling_dies) { 1710 if (ph->env.cpu != NULL) { 1711 for (i = 0; i < cpu_nr; i++) 1712 fprintf(fp, "# CPU %d: Core ID %d, " 1713 "Die ID %d, Socket ID %d\n", 1714 i, ph->env.cpu[i].core_id, 1715 ph->env.cpu[i].die_id, 1716 ph->env.cpu[i].socket_id); 1717 } else 1718 fprintf(fp, "# Core ID, Die ID and Socket ID " 1719 "information is not available\n"); 1720 } else { 1721 if (ph->env.cpu != NULL) { 1722 for (i = 0; i < cpu_nr; i++) 1723 fprintf(fp, "# CPU %d: Core ID %d, " 1724 "Socket ID %d\n", 1725 i, ph->env.cpu[i].core_id, 1726 ph->env.cpu[i].socket_id); 1727 } else 1728 fprintf(fp, "# Core ID and Socket ID " 1729 "information is not available\n"); 1730 } 1731 } 1732 1733 static void print_clockid(struct feat_fd *ff, FILE *fp) 1734 { 1735 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1736 ff->ph->env.clock.clockid_res_ns * 1000); 1737 } 1738 1739 static void print_clock_data(struct feat_fd *ff, FILE *fp) 1740 { 1741 struct timespec clockid_ns; 1742 char tstr[64], date[64]; 1743 struct timeval tod_ns; 1744 clockid_t clockid; 1745 struct tm ltime; 1746 u64 ref; 1747 1748 if (!ff->ph->env.clock.enabled) { 1749 fprintf(fp, "# reference time disabled\n"); 1750 return; 1751 } 1752 1753 /* Compute TOD time. */ 1754 ref = ff->ph->env.clock.tod_ns; 1755 tod_ns.tv_sec = ref / NSEC_PER_SEC; 1756 ref -= tod_ns.tv_sec * NSEC_PER_SEC; 1757 tod_ns.tv_usec = ref / NSEC_PER_USEC; 1758 1759 /* Compute clockid time. */ 1760 ref = ff->ph->env.clock.clockid_ns; 1761 clockid_ns.tv_sec = ref / NSEC_PER_SEC; 1762 ref -= clockid_ns.tv_sec * NSEC_PER_SEC; 1763 clockid_ns.tv_nsec = ref; 1764 1765 clockid = ff->ph->env.clock.clockid; 1766 1767 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) 1768 snprintf(tstr, sizeof(tstr), "<error>"); 1769 else { 1770 strftime(date, sizeof(date), "%F %T", <ime); 1771 scnprintf(tstr, sizeof(tstr), "%s.%06d", 1772 date, (int) tod_ns.tv_usec); 1773 } 1774 1775 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); 1776 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", 1777 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec, 1778 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec, 1779 clockid_name(clockid)); 1780 } 1781 1782 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp) 1783 { 1784 int i; 1785 struct hybrid_node *n; 1786 1787 fprintf(fp, "# hybrid cpu system:\n"); 1788 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) { 1789 n = &ff->ph->env.hybrid_nodes[i]; 1790 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus); 1791 } 1792 } 1793 1794 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1795 { 1796 struct perf_session *session; 1797 struct perf_data *data; 1798 1799 session = container_of(ff->ph, struct perf_session, header); 1800 data = session->data; 1801 1802 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1803 } 1804 1805 #ifdef HAVE_LIBBPF_SUPPORT 1806 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1807 { 1808 struct perf_env *env = &ff->ph->env; 1809 struct rb_root *root; 1810 struct rb_node *next; 1811 1812 down_read(&env->bpf_progs.lock); 1813 1814 root = &env->bpf_progs.infos; 1815 next = rb_first(root); 1816 1817 while (next) { 1818 struct bpf_prog_info_node *node; 1819 1820 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1821 next = rb_next(&node->rb_node); 1822 1823 __bpf_event__print_bpf_prog_info(&node->info_linear->info, 1824 env, fp); 1825 } 1826 1827 up_read(&env->bpf_progs.lock); 1828 } 1829 1830 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1831 { 1832 struct perf_env *env = &ff->ph->env; 1833 struct rb_root *root; 1834 struct rb_node *next; 1835 1836 down_read(&env->bpf_progs.lock); 1837 1838 root = &env->bpf_progs.btfs; 1839 next = rb_first(root); 1840 1841 while (next) { 1842 struct btf_node *node; 1843 1844 node = rb_entry(next, struct btf_node, rb_node); 1845 next = rb_next(&node->rb_node); 1846 fprintf(fp, "# btf info of id %u\n", node->id); 1847 } 1848 1849 up_read(&env->bpf_progs.lock); 1850 } 1851 #endif // HAVE_LIBBPF_SUPPORT 1852 1853 static void free_event_desc(struct evsel *events) 1854 { 1855 struct evsel *evsel; 1856 1857 if (!events) 1858 return; 1859 1860 for (evsel = events; evsel->core.attr.size; evsel++) { 1861 zfree(&evsel->name); 1862 zfree(&evsel->core.id); 1863 } 1864 1865 free(events); 1866 } 1867 1868 static bool perf_attr_check(struct perf_event_attr *attr) 1869 { 1870 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1871 pr_warning("Reserved bits are set unexpectedly. " 1872 "Please update perf tool.\n"); 1873 return false; 1874 } 1875 1876 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1877 pr_warning("Unknown sample type (0x%llx) is detected. " 1878 "Please update perf tool.\n", 1879 attr->sample_type); 1880 return false; 1881 } 1882 1883 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1884 pr_warning("Unknown read format (0x%llx) is detected. " 1885 "Please update perf tool.\n", 1886 attr->read_format); 1887 return false; 1888 } 1889 1890 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1891 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1892 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1893 "Please update perf tool.\n", 1894 attr->branch_sample_type); 1895 1896 return false; 1897 } 1898 1899 return true; 1900 } 1901 1902 static struct evsel *read_event_desc(struct feat_fd *ff) 1903 { 1904 struct evsel *evsel, *events = NULL; 1905 u64 *id; 1906 void *buf = NULL; 1907 u32 nre, sz, nr, i, j; 1908 size_t msz; 1909 1910 /* number of events */ 1911 if (do_read_u32(ff, &nre)) 1912 goto error; 1913 1914 if (do_read_u32(ff, &sz)) 1915 goto error; 1916 1917 /* buffer to hold on file attr struct */ 1918 buf = malloc(sz); 1919 if (!buf) 1920 goto error; 1921 1922 /* the last event terminates with evsel->core.attr.size == 0: */ 1923 events = calloc(nre + 1, sizeof(*events)); 1924 if (!events) 1925 goto error; 1926 1927 msz = sizeof(evsel->core.attr); 1928 if (sz < msz) 1929 msz = sz; 1930 1931 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1932 evsel->core.idx = i; 1933 1934 /* 1935 * must read entire on-file attr struct to 1936 * sync up with layout. 1937 */ 1938 if (__do_read(ff, buf, sz)) 1939 goto error; 1940 1941 if (ff->ph->needs_swap) 1942 perf_event__attr_swap(buf); 1943 1944 memcpy(&evsel->core.attr, buf, msz); 1945 1946 if (!perf_attr_check(&evsel->core.attr)) 1947 goto error; 1948 1949 if (do_read_u32(ff, &nr)) 1950 goto error; 1951 1952 if (ff->ph->needs_swap) 1953 evsel->needs_swap = true; 1954 1955 evsel->name = do_read_string(ff); 1956 if (!evsel->name) 1957 goto error; 1958 1959 if (!nr) 1960 continue; 1961 1962 id = calloc(nr, sizeof(*id)); 1963 if (!id) 1964 goto error; 1965 evsel->core.ids = nr; 1966 evsel->core.id = id; 1967 1968 for (j = 0 ; j < nr; j++) { 1969 if (do_read_u64(ff, id)) 1970 goto error; 1971 id++; 1972 } 1973 } 1974 out: 1975 free(buf); 1976 return events; 1977 error: 1978 free_event_desc(events); 1979 events = NULL; 1980 goto out; 1981 } 1982 1983 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1984 void *priv __maybe_unused) 1985 { 1986 return fprintf(fp, ", %s = %s", name, val); 1987 } 1988 1989 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1990 { 1991 struct evsel *evsel, *events; 1992 u32 j; 1993 u64 *id; 1994 1995 if (ff->events) 1996 events = ff->events; 1997 else 1998 events = read_event_desc(ff); 1999 2000 if (!events) { 2001 fprintf(fp, "# event desc: not available or unable to read\n"); 2002 return; 2003 } 2004 2005 for (evsel = events; evsel->core.attr.size; evsel++) { 2006 fprintf(fp, "# event : name = %s, ", evsel->name); 2007 2008 if (evsel->core.ids) { 2009 fprintf(fp, ", id = {"); 2010 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 2011 if (j) 2012 fputc(',', fp); 2013 fprintf(fp, " %"PRIu64, *id); 2014 } 2015 fprintf(fp, " }"); 2016 } 2017 2018 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 2019 2020 fputc('\n', fp); 2021 } 2022 2023 free_event_desc(events); 2024 ff->events = NULL; 2025 } 2026 2027 static void print_total_mem(struct feat_fd *ff, FILE *fp) 2028 { 2029 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 2030 } 2031 2032 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 2033 { 2034 int i; 2035 struct numa_node *n; 2036 2037 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 2038 n = &ff->ph->env.numa_nodes[i]; 2039 2040 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 2041 " free = %"PRIu64" kB\n", 2042 n->node, n->mem_total, n->mem_free); 2043 2044 fprintf(fp, "# node%u cpu list : ", n->node); 2045 cpu_map__fprintf(n->map, fp); 2046 } 2047 } 2048 2049 static void print_cpuid(struct feat_fd *ff, FILE *fp) 2050 { 2051 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 2052 } 2053 2054 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 2055 { 2056 fprintf(fp, "# contains samples with branch stack\n"); 2057 } 2058 2059 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 2060 { 2061 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 2062 } 2063 2064 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 2065 { 2066 fprintf(fp, "# contains stat data\n"); 2067 } 2068 2069 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 2070 { 2071 int i; 2072 2073 fprintf(fp, "# CPU cache info:\n"); 2074 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 2075 fprintf(fp, "# "); 2076 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 2077 } 2078 } 2079 2080 static void print_compressed(struct feat_fd *ff, FILE *fp) 2081 { 2082 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 2083 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 2084 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 2085 } 2086 2087 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name) 2088 { 2089 const char *delimiter = ""; 2090 int i; 2091 2092 if (!nr_caps) { 2093 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name); 2094 return; 2095 } 2096 2097 fprintf(fp, "# %s pmu capabilities: ", pmu_name); 2098 for (i = 0; i < nr_caps; i++) { 2099 fprintf(fp, "%s%s", delimiter, caps[i]); 2100 delimiter = ", "; 2101 } 2102 2103 fprintf(fp, "\n"); 2104 } 2105 2106 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2107 { 2108 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps, 2109 ff->ph->env.cpu_pmu_caps, (char *)"cpu"); 2110 } 2111 2112 static void print_pmu_caps(struct feat_fd *ff, FILE *fp) 2113 { 2114 struct pmu_caps *pmu_caps; 2115 2116 for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) { 2117 pmu_caps = &ff->ph->env.pmu_caps[i]; 2118 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps, 2119 pmu_caps->pmu_name); 2120 } 2121 2122 if (strcmp(perf_env__arch(&ff->ph->env), "x86") == 0 && 2123 perf_env__has_pmu_mapping(&ff->ph->env, "ibs_op")) { 2124 char *max_precise = perf_env__find_pmu_cap(&ff->ph->env, "cpu", "max_precise"); 2125 2126 if (max_precise != NULL && atoi(max_precise) == 0) 2127 fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n"); 2128 } 2129 } 2130 2131 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 2132 { 2133 const char *delimiter = "# pmu mappings: "; 2134 char *str, *tmp; 2135 u32 pmu_num; 2136 u32 type; 2137 2138 pmu_num = ff->ph->env.nr_pmu_mappings; 2139 if (!pmu_num) { 2140 fprintf(fp, "# pmu mappings: not available\n"); 2141 return; 2142 } 2143 2144 str = ff->ph->env.pmu_mappings; 2145 2146 while (pmu_num) { 2147 type = strtoul(str, &tmp, 0); 2148 if (*tmp != ':') 2149 goto error; 2150 2151 str = tmp + 1; 2152 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 2153 2154 delimiter = ", "; 2155 str += strlen(str) + 1; 2156 pmu_num--; 2157 } 2158 2159 fprintf(fp, "\n"); 2160 2161 if (!pmu_num) 2162 return; 2163 error: 2164 fprintf(fp, "# pmu mappings: unable to read\n"); 2165 } 2166 2167 static void print_group_desc(struct feat_fd *ff, FILE *fp) 2168 { 2169 struct perf_session *session; 2170 struct evsel *evsel; 2171 u32 nr = 0; 2172 2173 session = container_of(ff->ph, struct perf_session, header); 2174 2175 evlist__for_each_entry(session->evlist, evsel) { 2176 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 2177 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); 2178 2179 nr = evsel->core.nr_members - 1; 2180 } else if (nr) { 2181 fprintf(fp, ",%s", evsel__name(evsel)); 2182 2183 if (--nr == 0) 2184 fprintf(fp, "}\n"); 2185 } 2186 } 2187 } 2188 2189 static void print_sample_time(struct feat_fd *ff, FILE *fp) 2190 { 2191 struct perf_session *session; 2192 char time_buf[32]; 2193 double d; 2194 2195 session = container_of(ff->ph, struct perf_session, header); 2196 2197 timestamp__scnprintf_usec(session->evlist->first_sample_time, 2198 time_buf, sizeof(time_buf)); 2199 fprintf(fp, "# time of first sample : %s\n", time_buf); 2200 2201 timestamp__scnprintf_usec(session->evlist->last_sample_time, 2202 time_buf, sizeof(time_buf)); 2203 fprintf(fp, "# time of last sample : %s\n", time_buf); 2204 2205 d = (double)(session->evlist->last_sample_time - 2206 session->evlist->first_sample_time) / NSEC_PER_MSEC; 2207 2208 fprintf(fp, "# sample duration : %10.3f ms\n", d); 2209 } 2210 2211 static void memory_node__fprintf(struct memory_node *n, 2212 unsigned long long bsize, FILE *fp) 2213 { 2214 char buf_map[100], buf_size[50]; 2215 unsigned long long size; 2216 2217 size = bsize * bitmap_weight(n->set, n->size); 2218 unit_number__scnprintf(buf_size, 50, size); 2219 2220 bitmap_scnprintf(n->set, n->size, buf_map, 100); 2221 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 2222 } 2223 2224 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 2225 { 2226 struct memory_node *nodes; 2227 int i, nr; 2228 2229 nodes = ff->ph->env.memory_nodes; 2230 nr = ff->ph->env.nr_memory_nodes; 2231 2232 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 2233 nr, ff->ph->env.memory_bsize); 2234 2235 for (i = 0; i < nr; i++) { 2236 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 2237 } 2238 } 2239 2240 static int __event_process_build_id(struct perf_record_header_build_id *bev, 2241 char *filename, 2242 struct perf_session *session) 2243 { 2244 int err = -1; 2245 struct machine *machine; 2246 u16 cpumode; 2247 struct dso *dso; 2248 enum dso_space_type dso_space; 2249 2250 machine = perf_session__findnew_machine(session, bev->pid); 2251 if (!machine) 2252 goto out; 2253 2254 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2255 2256 switch (cpumode) { 2257 case PERF_RECORD_MISC_KERNEL: 2258 dso_space = DSO_SPACE__KERNEL; 2259 break; 2260 case PERF_RECORD_MISC_GUEST_KERNEL: 2261 dso_space = DSO_SPACE__KERNEL_GUEST; 2262 break; 2263 case PERF_RECORD_MISC_USER: 2264 case PERF_RECORD_MISC_GUEST_USER: 2265 dso_space = DSO_SPACE__USER; 2266 break; 2267 default: 2268 goto out; 2269 } 2270 2271 dso = machine__findnew_dso(machine, filename); 2272 if (dso != NULL) { 2273 char sbuild_id[SBUILD_ID_SIZE]; 2274 struct build_id bid; 2275 size_t size = BUILD_ID_SIZE; 2276 2277 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) 2278 size = bev->size; 2279 2280 build_id__init(&bid, bev->data, size); 2281 dso__set_build_id(dso, &bid); 2282 dso__set_header_build_id(dso, true); 2283 2284 if (dso_space != DSO_SPACE__USER) { 2285 struct kmod_path m = { .name = NULL, }; 2286 2287 if (!kmod_path__parse_name(&m, filename) && m.kmod) 2288 dso__set_module_info(dso, &m, machine); 2289 2290 dso__set_kernel(dso, dso_space); 2291 free(m.name); 2292 } 2293 2294 build_id__sprintf(dso__bid(dso), sbuild_id); 2295 pr_debug("build id event received for %s: %s [%zu]\n", 2296 dso__long_name(dso), sbuild_id, size); 2297 dso__put(dso); 2298 } 2299 2300 err = 0; 2301 out: 2302 return err; 2303 } 2304 2305 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 2306 int input, u64 offset, u64 size) 2307 { 2308 struct perf_session *session = container_of(header, struct perf_session, header); 2309 struct { 2310 struct perf_event_header header; 2311 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 2312 char filename[0]; 2313 } old_bev; 2314 struct perf_record_header_build_id bev; 2315 char filename[PATH_MAX]; 2316 u64 limit = offset + size; 2317 2318 while (offset < limit) { 2319 ssize_t len; 2320 2321 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2322 return -1; 2323 2324 if (header->needs_swap) 2325 perf_event_header__bswap(&old_bev.header); 2326 2327 len = old_bev.header.size - sizeof(old_bev); 2328 if (readn(input, filename, len) != len) 2329 return -1; 2330 2331 bev.header = old_bev.header; 2332 2333 /* 2334 * As the pid is the missing value, we need to fill 2335 * it properly. The header.misc value give us nice hint. 2336 */ 2337 bev.pid = HOST_KERNEL_ID; 2338 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2339 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2340 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2341 2342 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2343 __event_process_build_id(&bev, filename, session); 2344 2345 offset += bev.header.size; 2346 } 2347 2348 return 0; 2349 } 2350 2351 static int perf_header__read_build_ids(struct perf_header *header, 2352 int input, u64 offset, u64 size) 2353 { 2354 struct perf_session *session = container_of(header, struct perf_session, header); 2355 struct perf_record_header_build_id bev; 2356 char filename[PATH_MAX]; 2357 u64 limit = offset + size, orig_offset = offset; 2358 int err = -1; 2359 2360 while (offset < limit) { 2361 ssize_t len; 2362 2363 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2364 goto out; 2365 2366 if (header->needs_swap) 2367 perf_event_header__bswap(&bev.header); 2368 2369 len = bev.header.size - sizeof(bev); 2370 if (readn(input, filename, len) != len) 2371 goto out; 2372 /* 2373 * The a1645ce1 changeset: 2374 * 2375 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2376 * 2377 * Added a field to struct perf_record_header_build_id that broke the file 2378 * format. 2379 * 2380 * Since the kernel build-id is the first entry, process the 2381 * table using the old format if the well known 2382 * '[kernel.kallsyms]' string for the kernel build-id has the 2383 * first 4 characters chopped off (where the pid_t sits). 2384 */ 2385 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2386 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2387 return -1; 2388 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2389 } 2390 2391 __event_process_build_id(&bev, filename, session); 2392 2393 offset += bev.header.size; 2394 } 2395 err = 0; 2396 out: 2397 return err; 2398 } 2399 2400 /* Macro for features that simply need to read and store a string. */ 2401 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2402 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2403 {\ 2404 free(ff->ph->env.__feat_env); \ 2405 ff->ph->env.__feat_env = do_read_string(ff); \ 2406 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2407 } 2408 2409 FEAT_PROCESS_STR_FUN(hostname, hostname); 2410 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2411 FEAT_PROCESS_STR_FUN(version, version); 2412 FEAT_PROCESS_STR_FUN(arch, arch); 2413 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2414 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2415 2416 #ifdef HAVE_LIBTRACEEVENT 2417 static int process_tracing_data(struct feat_fd *ff, void *data) 2418 { 2419 ssize_t ret = trace_report(ff->fd, data, false); 2420 2421 return ret < 0 ? -1 : 0; 2422 } 2423 #endif 2424 2425 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2426 { 2427 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2428 pr_debug("Failed to read buildids, continuing...\n"); 2429 return 0; 2430 } 2431 2432 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2433 { 2434 int ret; 2435 u32 nr_cpus_avail, nr_cpus_online; 2436 2437 ret = do_read_u32(ff, &nr_cpus_avail); 2438 if (ret) 2439 return ret; 2440 2441 ret = do_read_u32(ff, &nr_cpus_online); 2442 if (ret) 2443 return ret; 2444 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2445 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2446 return 0; 2447 } 2448 2449 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2450 { 2451 u64 total_mem; 2452 int ret; 2453 2454 ret = do_read_u64(ff, &total_mem); 2455 if (ret) 2456 return -1; 2457 ff->ph->env.total_mem = (unsigned long long)total_mem; 2458 return 0; 2459 } 2460 2461 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) 2462 { 2463 struct evsel *evsel; 2464 2465 evlist__for_each_entry(evlist, evsel) { 2466 if (evsel->core.idx == idx) 2467 return evsel; 2468 } 2469 2470 return NULL; 2471 } 2472 2473 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event) 2474 { 2475 struct evsel *evsel; 2476 2477 if (!event->name) 2478 return; 2479 2480 evsel = evlist__find_by_index(evlist, event->core.idx); 2481 if (!evsel) 2482 return; 2483 2484 if (evsel->name) 2485 return; 2486 2487 evsel->name = strdup(event->name); 2488 } 2489 2490 static int 2491 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2492 { 2493 struct perf_session *session; 2494 struct evsel *evsel, *events = read_event_desc(ff); 2495 2496 if (!events) 2497 return 0; 2498 2499 session = container_of(ff->ph, struct perf_session, header); 2500 2501 if (session->data->is_pipe) { 2502 /* Save events for reading later by print_event_desc, 2503 * since they can't be read again in pipe mode. */ 2504 ff->events = events; 2505 } 2506 2507 for (evsel = events; evsel->core.attr.size; evsel++) 2508 evlist__set_event_name(session->evlist, evsel); 2509 2510 if (!session->data->is_pipe) 2511 free_event_desc(events); 2512 2513 return 0; 2514 } 2515 2516 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2517 { 2518 char *str, *cmdline = NULL, **argv = NULL; 2519 u32 nr, i, len = 0; 2520 2521 if (do_read_u32(ff, &nr)) 2522 return -1; 2523 2524 ff->ph->env.nr_cmdline = nr; 2525 2526 cmdline = zalloc(ff->size + nr + 1); 2527 if (!cmdline) 2528 return -1; 2529 2530 argv = zalloc(sizeof(char *) * (nr + 1)); 2531 if (!argv) 2532 goto error; 2533 2534 for (i = 0; i < nr; i++) { 2535 str = do_read_string(ff); 2536 if (!str) 2537 goto error; 2538 2539 argv[i] = cmdline + len; 2540 memcpy(argv[i], str, strlen(str) + 1); 2541 len += strlen(str) + 1; 2542 free(str); 2543 } 2544 ff->ph->env.cmdline = cmdline; 2545 ff->ph->env.cmdline_argv = (const char **) argv; 2546 return 0; 2547 2548 error: 2549 free(argv); 2550 free(cmdline); 2551 return -1; 2552 } 2553 2554 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2555 { 2556 u32 nr, i; 2557 char *str = NULL; 2558 struct strbuf sb; 2559 int cpu_nr = ff->ph->env.nr_cpus_avail; 2560 u64 size = 0; 2561 struct perf_header *ph = ff->ph; 2562 bool do_core_id_test = true; 2563 2564 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2565 if (!ph->env.cpu) 2566 return -1; 2567 2568 if (do_read_u32(ff, &nr)) 2569 goto free_cpu; 2570 2571 ph->env.nr_sibling_cores = nr; 2572 size += sizeof(u32); 2573 if (strbuf_init(&sb, 128) < 0) 2574 goto free_cpu; 2575 2576 for (i = 0; i < nr; i++) { 2577 str = do_read_string(ff); 2578 if (!str) 2579 goto error; 2580 2581 /* include a NULL character at the end */ 2582 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2583 goto error; 2584 size += string_size(str); 2585 zfree(&str); 2586 } 2587 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2588 2589 if (do_read_u32(ff, &nr)) 2590 return -1; 2591 2592 ph->env.nr_sibling_threads = nr; 2593 size += sizeof(u32); 2594 2595 for (i = 0; i < nr; i++) { 2596 str = do_read_string(ff); 2597 if (!str) 2598 goto error; 2599 2600 /* include a NULL character at the end */ 2601 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2602 goto error; 2603 size += string_size(str); 2604 zfree(&str); 2605 } 2606 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2607 2608 /* 2609 * The header may be from old perf, 2610 * which doesn't include core id and socket id information. 2611 */ 2612 if (ff->size <= size) { 2613 zfree(&ph->env.cpu); 2614 return 0; 2615 } 2616 2617 /* On s390 the socket_id number is not related to the numbers of cpus. 2618 * The socket_id number might be higher than the numbers of cpus. 2619 * This depends on the configuration. 2620 * AArch64 is the same. 2621 */ 2622 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2623 || !strncmp(ph->env.arch, "aarch64", 7))) 2624 do_core_id_test = false; 2625 2626 for (i = 0; i < (u32)cpu_nr; i++) { 2627 if (do_read_u32(ff, &nr)) 2628 goto free_cpu; 2629 2630 ph->env.cpu[i].core_id = nr; 2631 size += sizeof(u32); 2632 2633 if (do_read_u32(ff, &nr)) 2634 goto free_cpu; 2635 2636 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2637 pr_debug("socket_id number is too big." 2638 "You may need to upgrade the perf tool.\n"); 2639 goto free_cpu; 2640 } 2641 2642 ph->env.cpu[i].socket_id = nr; 2643 size += sizeof(u32); 2644 } 2645 2646 /* 2647 * The header may be from old perf, 2648 * which doesn't include die information. 2649 */ 2650 if (ff->size <= size) 2651 return 0; 2652 2653 if (do_read_u32(ff, &nr)) 2654 return -1; 2655 2656 ph->env.nr_sibling_dies = nr; 2657 size += sizeof(u32); 2658 2659 for (i = 0; i < nr; i++) { 2660 str = do_read_string(ff); 2661 if (!str) 2662 goto error; 2663 2664 /* include a NULL character at the end */ 2665 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2666 goto error; 2667 size += string_size(str); 2668 zfree(&str); 2669 } 2670 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2671 2672 for (i = 0; i < (u32)cpu_nr; i++) { 2673 if (do_read_u32(ff, &nr)) 2674 goto free_cpu; 2675 2676 ph->env.cpu[i].die_id = nr; 2677 } 2678 2679 return 0; 2680 2681 error: 2682 strbuf_release(&sb); 2683 zfree(&str); 2684 free_cpu: 2685 zfree(&ph->env.cpu); 2686 return -1; 2687 } 2688 2689 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2690 { 2691 struct numa_node *nodes, *n; 2692 u32 nr, i; 2693 char *str; 2694 2695 /* nr nodes */ 2696 if (do_read_u32(ff, &nr)) 2697 return -1; 2698 2699 nodes = zalloc(sizeof(*nodes) * nr); 2700 if (!nodes) 2701 return -ENOMEM; 2702 2703 for (i = 0; i < nr; i++) { 2704 n = &nodes[i]; 2705 2706 /* node number */ 2707 if (do_read_u32(ff, &n->node)) 2708 goto error; 2709 2710 if (do_read_u64(ff, &n->mem_total)) 2711 goto error; 2712 2713 if (do_read_u64(ff, &n->mem_free)) 2714 goto error; 2715 2716 str = do_read_string(ff); 2717 if (!str) 2718 goto error; 2719 2720 n->map = perf_cpu_map__new(str); 2721 free(str); 2722 if (!n->map) 2723 goto error; 2724 } 2725 ff->ph->env.nr_numa_nodes = nr; 2726 ff->ph->env.numa_nodes = nodes; 2727 return 0; 2728 2729 error: 2730 free(nodes); 2731 return -1; 2732 } 2733 2734 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2735 { 2736 char *name; 2737 u32 pmu_num; 2738 u32 type; 2739 struct strbuf sb; 2740 2741 if (do_read_u32(ff, &pmu_num)) 2742 return -1; 2743 2744 if (!pmu_num) { 2745 pr_debug("pmu mappings not available\n"); 2746 return 0; 2747 } 2748 2749 ff->ph->env.nr_pmu_mappings = pmu_num; 2750 if (strbuf_init(&sb, 128) < 0) 2751 return -1; 2752 2753 while (pmu_num) { 2754 if (do_read_u32(ff, &type)) 2755 goto error; 2756 2757 name = do_read_string(ff); 2758 if (!name) 2759 goto error; 2760 2761 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2762 goto error; 2763 /* include a NULL character at the end */ 2764 if (strbuf_add(&sb, "", 1) < 0) 2765 goto error; 2766 2767 if (!strcmp(name, "msr")) 2768 ff->ph->env.msr_pmu_type = type; 2769 2770 free(name); 2771 pmu_num--; 2772 } 2773 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2774 return 0; 2775 2776 error: 2777 strbuf_release(&sb); 2778 return -1; 2779 } 2780 2781 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2782 { 2783 size_t ret = -1; 2784 u32 i, nr, nr_groups; 2785 struct perf_session *session; 2786 struct evsel *evsel, *leader = NULL; 2787 struct group_desc { 2788 char *name; 2789 u32 leader_idx; 2790 u32 nr_members; 2791 } *desc; 2792 2793 if (do_read_u32(ff, &nr_groups)) 2794 return -1; 2795 2796 ff->ph->env.nr_groups = nr_groups; 2797 if (!nr_groups) { 2798 pr_debug("group desc not available\n"); 2799 return 0; 2800 } 2801 2802 desc = calloc(nr_groups, sizeof(*desc)); 2803 if (!desc) 2804 return -1; 2805 2806 for (i = 0; i < nr_groups; i++) { 2807 desc[i].name = do_read_string(ff); 2808 if (!desc[i].name) 2809 goto out_free; 2810 2811 if (do_read_u32(ff, &desc[i].leader_idx)) 2812 goto out_free; 2813 2814 if (do_read_u32(ff, &desc[i].nr_members)) 2815 goto out_free; 2816 } 2817 2818 /* 2819 * Rebuild group relationship based on the group_desc 2820 */ 2821 session = container_of(ff->ph, struct perf_session, header); 2822 2823 i = nr = 0; 2824 evlist__for_each_entry(session->evlist, evsel) { 2825 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) { 2826 evsel__set_leader(evsel, evsel); 2827 /* {anon_group} is a dummy name */ 2828 if (strcmp(desc[i].name, "{anon_group}")) { 2829 evsel->group_name = desc[i].name; 2830 desc[i].name = NULL; 2831 } 2832 evsel->core.nr_members = desc[i].nr_members; 2833 2834 if (i >= nr_groups || nr > 0) { 2835 pr_debug("invalid group desc\n"); 2836 goto out_free; 2837 } 2838 2839 leader = evsel; 2840 nr = evsel->core.nr_members - 1; 2841 i++; 2842 } else if (nr) { 2843 /* This is a group member */ 2844 evsel__set_leader(evsel, leader); 2845 2846 nr--; 2847 } 2848 } 2849 2850 if (i != nr_groups || nr != 0) { 2851 pr_debug("invalid group desc\n"); 2852 goto out_free; 2853 } 2854 2855 ret = 0; 2856 out_free: 2857 for (i = 0; i < nr_groups; i++) 2858 zfree(&desc[i].name); 2859 free(desc); 2860 2861 return ret; 2862 } 2863 2864 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2865 { 2866 struct perf_session *session; 2867 int err; 2868 2869 session = container_of(ff->ph, struct perf_session, header); 2870 2871 err = auxtrace_index__process(ff->fd, ff->size, session, 2872 ff->ph->needs_swap); 2873 if (err < 0) 2874 pr_err("Failed to process auxtrace index\n"); 2875 return err; 2876 } 2877 2878 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2879 { 2880 struct cpu_cache_level *caches; 2881 u32 cnt, i, version; 2882 2883 if (do_read_u32(ff, &version)) 2884 return -1; 2885 2886 if (version != 1) 2887 return -1; 2888 2889 if (do_read_u32(ff, &cnt)) 2890 return -1; 2891 2892 caches = zalloc(sizeof(*caches) * cnt); 2893 if (!caches) 2894 return -1; 2895 2896 for (i = 0; i < cnt; i++) { 2897 struct cpu_cache_level *c = &caches[i]; 2898 2899 #define _R(v) \ 2900 if (do_read_u32(ff, &c->v)) \ 2901 goto out_free_caches; \ 2902 2903 _R(level) 2904 _R(line_size) 2905 _R(sets) 2906 _R(ways) 2907 #undef _R 2908 2909 #define _R(v) \ 2910 c->v = do_read_string(ff); \ 2911 if (!c->v) \ 2912 goto out_free_caches; \ 2913 2914 _R(type) 2915 _R(size) 2916 _R(map) 2917 #undef _R 2918 } 2919 2920 ff->ph->env.caches = caches; 2921 ff->ph->env.caches_cnt = cnt; 2922 return 0; 2923 out_free_caches: 2924 for (i = 0; i < cnt; i++) { 2925 free(caches[i].type); 2926 free(caches[i].size); 2927 free(caches[i].map); 2928 } 2929 free(caches); 2930 return -1; 2931 } 2932 2933 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2934 { 2935 struct perf_session *session; 2936 u64 first_sample_time, last_sample_time; 2937 int ret; 2938 2939 session = container_of(ff->ph, struct perf_session, header); 2940 2941 ret = do_read_u64(ff, &first_sample_time); 2942 if (ret) 2943 return -1; 2944 2945 ret = do_read_u64(ff, &last_sample_time); 2946 if (ret) 2947 return -1; 2948 2949 session->evlist->first_sample_time = first_sample_time; 2950 session->evlist->last_sample_time = last_sample_time; 2951 return 0; 2952 } 2953 2954 static int process_mem_topology(struct feat_fd *ff, 2955 void *data __maybe_unused) 2956 { 2957 struct memory_node *nodes; 2958 u64 version, i, nr, bsize; 2959 int ret = -1; 2960 2961 if (do_read_u64(ff, &version)) 2962 return -1; 2963 2964 if (version != 1) 2965 return -1; 2966 2967 if (do_read_u64(ff, &bsize)) 2968 return -1; 2969 2970 if (do_read_u64(ff, &nr)) 2971 return -1; 2972 2973 nodes = zalloc(sizeof(*nodes) * nr); 2974 if (!nodes) 2975 return -1; 2976 2977 for (i = 0; i < nr; i++) { 2978 struct memory_node n; 2979 2980 #define _R(v) \ 2981 if (do_read_u64(ff, &n.v)) \ 2982 goto out; \ 2983 2984 _R(node) 2985 _R(size) 2986 2987 #undef _R 2988 2989 if (do_read_bitmap(ff, &n.set, &n.size)) 2990 goto out; 2991 2992 nodes[i] = n; 2993 } 2994 2995 ff->ph->env.memory_bsize = bsize; 2996 ff->ph->env.memory_nodes = nodes; 2997 ff->ph->env.nr_memory_nodes = nr; 2998 ret = 0; 2999 3000 out: 3001 if (ret) 3002 free(nodes); 3003 return ret; 3004 } 3005 3006 static int process_clockid(struct feat_fd *ff, 3007 void *data __maybe_unused) 3008 { 3009 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns)) 3010 return -1; 3011 3012 return 0; 3013 } 3014 3015 static int process_clock_data(struct feat_fd *ff, 3016 void *_data __maybe_unused) 3017 { 3018 u32 data32; 3019 u64 data64; 3020 3021 /* version */ 3022 if (do_read_u32(ff, &data32)) 3023 return -1; 3024 3025 if (data32 != 1) 3026 return -1; 3027 3028 /* clockid */ 3029 if (do_read_u32(ff, &data32)) 3030 return -1; 3031 3032 ff->ph->env.clock.clockid = data32; 3033 3034 /* TOD ref time */ 3035 if (do_read_u64(ff, &data64)) 3036 return -1; 3037 3038 ff->ph->env.clock.tod_ns = data64; 3039 3040 /* clockid ref time */ 3041 if (do_read_u64(ff, &data64)) 3042 return -1; 3043 3044 ff->ph->env.clock.clockid_ns = data64; 3045 ff->ph->env.clock.enabled = true; 3046 return 0; 3047 } 3048 3049 static int process_hybrid_topology(struct feat_fd *ff, 3050 void *data __maybe_unused) 3051 { 3052 struct hybrid_node *nodes, *n; 3053 u32 nr, i; 3054 3055 /* nr nodes */ 3056 if (do_read_u32(ff, &nr)) 3057 return -1; 3058 3059 nodes = zalloc(sizeof(*nodes) * nr); 3060 if (!nodes) 3061 return -ENOMEM; 3062 3063 for (i = 0; i < nr; i++) { 3064 n = &nodes[i]; 3065 3066 n->pmu_name = do_read_string(ff); 3067 if (!n->pmu_name) 3068 goto error; 3069 3070 n->cpus = do_read_string(ff); 3071 if (!n->cpus) 3072 goto error; 3073 } 3074 3075 ff->ph->env.nr_hybrid_nodes = nr; 3076 ff->ph->env.hybrid_nodes = nodes; 3077 return 0; 3078 3079 error: 3080 for (i = 0; i < nr; i++) { 3081 free(nodes[i].pmu_name); 3082 free(nodes[i].cpus); 3083 } 3084 3085 free(nodes); 3086 return -1; 3087 } 3088 3089 static int process_dir_format(struct feat_fd *ff, 3090 void *_data __maybe_unused) 3091 { 3092 struct perf_session *session; 3093 struct perf_data *data; 3094 3095 session = container_of(ff->ph, struct perf_session, header); 3096 data = session->data; 3097 3098 if (WARN_ON(!perf_data__is_dir(data))) 3099 return -1; 3100 3101 return do_read_u64(ff, &data->dir.version); 3102 } 3103 3104 #ifdef HAVE_LIBBPF_SUPPORT 3105 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 3106 { 3107 struct bpf_prog_info_node *info_node; 3108 struct perf_env *env = &ff->ph->env; 3109 struct perf_bpil *info_linear; 3110 u32 count, i; 3111 int err = -1; 3112 3113 if (ff->ph->needs_swap) { 3114 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n"); 3115 return 0; 3116 } 3117 3118 if (do_read_u32(ff, &count)) 3119 return -1; 3120 3121 down_write(&env->bpf_progs.lock); 3122 3123 for (i = 0; i < count; ++i) { 3124 u32 info_len, data_len; 3125 3126 info_linear = NULL; 3127 info_node = NULL; 3128 if (do_read_u32(ff, &info_len)) 3129 goto out; 3130 if (do_read_u32(ff, &data_len)) 3131 goto out; 3132 3133 if (info_len > sizeof(struct bpf_prog_info)) { 3134 pr_warning("detected invalid bpf_prog_info\n"); 3135 goto out; 3136 } 3137 3138 info_linear = malloc(sizeof(struct perf_bpil) + 3139 data_len); 3140 if (!info_linear) 3141 goto out; 3142 info_linear->info_len = sizeof(struct bpf_prog_info); 3143 info_linear->data_len = data_len; 3144 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 3145 goto out; 3146 if (__do_read(ff, &info_linear->info, info_len)) 3147 goto out; 3148 if (info_len < sizeof(struct bpf_prog_info)) 3149 memset(((void *)(&info_linear->info)) + info_len, 0, 3150 sizeof(struct bpf_prog_info) - info_len); 3151 3152 if (__do_read(ff, info_linear->data, data_len)) 3153 goto out; 3154 3155 info_node = malloc(sizeof(struct bpf_prog_info_node)); 3156 if (!info_node) 3157 goto out; 3158 3159 /* after reading from file, translate offset to address */ 3160 bpil_offs_to_addr(info_linear); 3161 info_node->info_linear = info_linear; 3162 if (!__perf_env__insert_bpf_prog_info(env, info_node)) { 3163 free(info_linear); 3164 free(info_node); 3165 } 3166 } 3167 3168 up_write(&env->bpf_progs.lock); 3169 return 0; 3170 out: 3171 free(info_linear); 3172 free(info_node); 3173 up_write(&env->bpf_progs.lock); 3174 return err; 3175 } 3176 3177 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 3178 { 3179 struct perf_env *env = &ff->ph->env; 3180 struct btf_node *node = NULL; 3181 u32 count, i; 3182 int err = -1; 3183 3184 if (ff->ph->needs_swap) { 3185 pr_warning("interpreting btf from systems with endianness is not yet supported\n"); 3186 return 0; 3187 } 3188 3189 if (do_read_u32(ff, &count)) 3190 return -1; 3191 3192 down_write(&env->bpf_progs.lock); 3193 3194 for (i = 0; i < count; ++i) { 3195 u32 id, data_size; 3196 3197 if (do_read_u32(ff, &id)) 3198 goto out; 3199 if (do_read_u32(ff, &data_size)) 3200 goto out; 3201 3202 node = malloc(sizeof(struct btf_node) + data_size); 3203 if (!node) 3204 goto out; 3205 3206 node->id = id; 3207 node->data_size = data_size; 3208 3209 if (__do_read(ff, node->data, data_size)) 3210 goto out; 3211 3212 if (!__perf_env__insert_btf(env, node)) 3213 free(node); 3214 node = NULL; 3215 } 3216 3217 err = 0; 3218 out: 3219 up_write(&env->bpf_progs.lock); 3220 free(node); 3221 return err; 3222 } 3223 #endif // HAVE_LIBBPF_SUPPORT 3224 3225 static int process_compressed(struct feat_fd *ff, 3226 void *data __maybe_unused) 3227 { 3228 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 3229 return -1; 3230 3231 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 3232 return -1; 3233 3234 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 3235 return -1; 3236 3237 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 3238 return -1; 3239 3240 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 3241 return -1; 3242 3243 return 0; 3244 } 3245 3246 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps, 3247 char ***caps, unsigned int *max_branches, 3248 unsigned int *br_cntr_nr, 3249 unsigned int *br_cntr_width) 3250 { 3251 char *name, *value, *ptr; 3252 u32 nr_pmu_caps, i; 3253 3254 *nr_caps = 0; 3255 *caps = NULL; 3256 3257 if (do_read_u32(ff, &nr_pmu_caps)) 3258 return -1; 3259 3260 if (!nr_pmu_caps) 3261 return 0; 3262 3263 *caps = zalloc(sizeof(char *) * nr_pmu_caps); 3264 if (!*caps) 3265 return -1; 3266 3267 for (i = 0; i < nr_pmu_caps; i++) { 3268 name = do_read_string(ff); 3269 if (!name) 3270 goto error; 3271 3272 value = do_read_string(ff); 3273 if (!value) 3274 goto free_name; 3275 3276 if (asprintf(&ptr, "%s=%s", name, value) < 0) 3277 goto free_value; 3278 3279 (*caps)[i] = ptr; 3280 3281 if (!strcmp(name, "branches")) 3282 *max_branches = atoi(value); 3283 3284 if (!strcmp(name, "branch_counter_nr")) 3285 *br_cntr_nr = atoi(value); 3286 3287 if (!strcmp(name, "branch_counter_width")) 3288 *br_cntr_width = atoi(value); 3289 3290 free(value); 3291 free(name); 3292 } 3293 *nr_caps = nr_pmu_caps; 3294 return 0; 3295 3296 free_value: 3297 free(value); 3298 free_name: 3299 free(name); 3300 error: 3301 for (; i > 0; i--) 3302 free((*caps)[i - 1]); 3303 free(*caps); 3304 *caps = NULL; 3305 *nr_caps = 0; 3306 return -1; 3307 } 3308 3309 static int process_cpu_pmu_caps(struct feat_fd *ff, 3310 void *data __maybe_unused) 3311 { 3312 int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps, 3313 &ff->ph->env.cpu_pmu_caps, 3314 &ff->ph->env.max_branches, 3315 &ff->ph->env.br_cntr_nr, 3316 &ff->ph->env.br_cntr_width); 3317 3318 if (!ret && !ff->ph->env.cpu_pmu_caps) 3319 pr_debug("cpu pmu capabilities not available\n"); 3320 return ret; 3321 } 3322 3323 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused) 3324 { 3325 struct pmu_caps *pmu_caps; 3326 u32 nr_pmu, i; 3327 int ret; 3328 int j; 3329 3330 if (do_read_u32(ff, &nr_pmu)) 3331 return -1; 3332 3333 if (!nr_pmu) { 3334 pr_debug("pmu capabilities not available\n"); 3335 return 0; 3336 } 3337 3338 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu); 3339 if (!pmu_caps) 3340 return -ENOMEM; 3341 3342 for (i = 0; i < nr_pmu; i++) { 3343 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps, 3344 &pmu_caps[i].caps, 3345 &pmu_caps[i].max_branches, 3346 &pmu_caps[i].br_cntr_nr, 3347 &pmu_caps[i].br_cntr_width); 3348 if (ret) 3349 goto err; 3350 3351 pmu_caps[i].pmu_name = do_read_string(ff); 3352 if (!pmu_caps[i].pmu_name) { 3353 ret = -1; 3354 goto err; 3355 } 3356 if (!pmu_caps[i].nr_caps) { 3357 pr_debug("%s pmu capabilities not available\n", 3358 pmu_caps[i].pmu_name); 3359 } 3360 } 3361 3362 ff->ph->env.nr_pmus_with_caps = nr_pmu; 3363 ff->ph->env.pmu_caps = pmu_caps; 3364 return 0; 3365 3366 err: 3367 for (i = 0; i < nr_pmu; i++) { 3368 for (j = 0; j < pmu_caps[i].nr_caps; j++) 3369 free(pmu_caps[i].caps[j]); 3370 free(pmu_caps[i].caps); 3371 free(pmu_caps[i].pmu_name); 3372 } 3373 3374 free(pmu_caps); 3375 return ret; 3376 } 3377 3378 #define FEAT_OPR(n, func, __full_only) \ 3379 [HEADER_##n] = { \ 3380 .name = __stringify(n), \ 3381 .write = write_##func, \ 3382 .print = print_##func, \ 3383 .full_only = __full_only, \ 3384 .process = process_##func, \ 3385 .synthesize = true \ 3386 } 3387 3388 #define FEAT_OPN(n, func, __full_only) \ 3389 [HEADER_##n] = { \ 3390 .name = __stringify(n), \ 3391 .write = write_##func, \ 3392 .print = print_##func, \ 3393 .full_only = __full_only, \ 3394 .process = process_##func \ 3395 } 3396 3397 /* feature_ops not implemented: */ 3398 #define print_tracing_data NULL 3399 #define print_build_id NULL 3400 3401 #define process_branch_stack NULL 3402 #define process_stat NULL 3403 3404 // Only used in util/synthetic-events.c 3405 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 3406 3407 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 3408 #ifdef HAVE_LIBTRACEEVENT 3409 FEAT_OPN(TRACING_DATA, tracing_data, false), 3410 #endif 3411 FEAT_OPN(BUILD_ID, build_id, false), 3412 FEAT_OPR(HOSTNAME, hostname, false), 3413 FEAT_OPR(OSRELEASE, osrelease, false), 3414 FEAT_OPR(VERSION, version, false), 3415 FEAT_OPR(ARCH, arch, false), 3416 FEAT_OPR(NRCPUS, nrcpus, false), 3417 FEAT_OPR(CPUDESC, cpudesc, false), 3418 FEAT_OPR(CPUID, cpuid, false), 3419 FEAT_OPR(TOTAL_MEM, total_mem, false), 3420 FEAT_OPR(EVENT_DESC, event_desc, false), 3421 FEAT_OPR(CMDLINE, cmdline, false), 3422 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 3423 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 3424 FEAT_OPN(BRANCH_STACK, branch_stack, false), 3425 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 3426 FEAT_OPR(GROUP_DESC, group_desc, false), 3427 FEAT_OPN(AUXTRACE, auxtrace, false), 3428 FEAT_OPN(STAT, stat, false), 3429 FEAT_OPN(CACHE, cache, true), 3430 FEAT_OPR(SAMPLE_TIME, sample_time, false), 3431 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 3432 FEAT_OPR(CLOCKID, clockid, false), 3433 FEAT_OPN(DIR_FORMAT, dir_format, false), 3434 #ifdef HAVE_LIBBPF_SUPPORT 3435 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 3436 FEAT_OPR(BPF_BTF, bpf_btf, false), 3437 #endif 3438 FEAT_OPR(COMPRESSED, compressed, false), 3439 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), 3440 FEAT_OPR(CLOCK_DATA, clock_data, false), 3441 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true), 3442 FEAT_OPR(PMU_CAPS, pmu_caps, false), 3443 }; 3444 3445 struct header_print_data { 3446 FILE *fp; 3447 bool full; /* extended list of headers */ 3448 }; 3449 3450 static int perf_file_section__fprintf_info(struct perf_file_section *section, 3451 struct perf_header *ph, 3452 int feat, int fd, void *data) 3453 { 3454 struct header_print_data *hd = data; 3455 struct feat_fd ff; 3456 3457 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3458 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3459 "%d, continuing...\n", section->offset, feat); 3460 return 0; 3461 } 3462 if (feat >= HEADER_LAST_FEATURE) { 3463 pr_warning("unknown feature %d\n", feat); 3464 return 0; 3465 } 3466 if (!feat_ops[feat].print) 3467 return 0; 3468 3469 ff = (struct feat_fd) { 3470 .fd = fd, 3471 .ph = ph, 3472 }; 3473 3474 if (!feat_ops[feat].full_only || hd->full) 3475 feat_ops[feat].print(&ff, hd->fp); 3476 else 3477 fprintf(hd->fp, "# %s info available, use -I to display\n", 3478 feat_ops[feat].name); 3479 3480 return 0; 3481 } 3482 3483 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 3484 { 3485 struct header_print_data hd; 3486 struct perf_header *header = &session->header; 3487 int fd = perf_data__fd(session->data); 3488 struct stat st; 3489 time_t stctime; 3490 int ret, bit; 3491 3492 hd.fp = fp; 3493 hd.full = full; 3494 3495 ret = fstat(fd, &st); 3496 if (ret == -1) 3497 return -1; 3498 3499 stctime = st.st_mtime; 3500 fprintf(fp, "# captured on : %s", ctime(&stctime)); 3501 3502 fprintf(fp, "# header version : %u\n", header->version); 3503 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 3504 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 3505 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 3506 3507 perf_header__process_sections(header, fd, &hd, 3508 perf_file_section__fprintf_info); 3509 3510 if (session->data->is_pipe) 3511 return 0; 3512 3513 fprintf(fp, "# missing features: "); 3514 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 3515 if (bit) 3516 fprintf(fp, "%s ", feat_ops[bit].name); 3517 } 3518 3519 fprintf(fp, "\n"); 3520 return 0; 3521 } 3522 3523 struct header_fw { 3524 struct feat_writer fw; 3525 struct feat_fd *ff; 3526 }; 3527 3528 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz) 3529 { 3530 struct header_fw *h = container_of(fw, struct header_fw, fw); 3531 3532 return do_write(h->ff, buf, sz); 3533 } 3534 3535 static int do_write_feat(struct feat_fd *ff, int type, 3536 struct perf_file_section **p, 3537 struct evlist *evlist, 3538 struct feat_copier *fc) 3539 { 3540 int err; 3541 int ret = 0; 3542 3543 if (perf_header__has_feat(ff->ph, type)) { 3544 if (!feat_ops[type].write) 3545 return -1; 3546 3547 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 3548 return -1; 3549 3550 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3551 3552 /* 3553 * Hook to let perf inject copy features sections from the input 3554 * file. 3555 */ 3556 if (fc && fc->copy) { 3557 struct header_fw h = { 3558 .fw.write = feat_writer_cb, 3559 .ff = ff, 3560 }; 3561 3562 /* ->copy() returns 0 if the feature was not copied */ 3563 err = fc->copy(fc, type, &h.fw); 3564 } else { 3565 err = 0; 3566 } 3567 if (!err) 3568 err = feat_ops[type].write(ff, evlist); 3569 if (err < 0) { 3570 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3571 3572 /* undo anything written */ 3573 lseek(ff->fd, (*p)->offset, SEEK_SET); 3574 3575 return -1; 3576 } 3577 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3578 (*p)++; 3579 } 3580 return ret; 3581 } 3582 3583 static int perf_header__adds_write(struct perf_header *header, 3584 struct evlist *evlist, int fd, 3585 struct feat_copier *fc) 3586 { 3587 int nr_sections; 3588 struct feat_fd ff = { 3589 .fd = fd, 3590 .ph = header, 3591 }; 3592 struct perf_file_section *feat_sec, *p; 3593 int sec_size; 3594 u64 sec_start; 3595 int feat; 3596 int err; 3597 3598 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3599 if (!nr_sections) 3600 return 0; 3601 3602 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3603 if (feat_sec == NULL) 3604 return -ENOMEM; 3605 3606 sec_size = sizeof(*feat_sec) * nr_sections; 3607 3608 sec_start = header->feat_offset; 3609 lseek(fd, sec_start + sec_size, SEEK_SET); 3610 3611 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3612 if (do_write_feat(&ff, feat, &p, evlist, fc)) 3613 perf_header__clear_feat(header, feat); 3614 } 3615 3616 lseek(fd, sec_start, SEEK_SET); 3617 /* 3618 * may write more than needed due to dropped feature, but 3619 * this is okay, reader will skip the missing entries 3620 */ 3621 err = do_write(&ff, feat_sec, sec_size); 3622 if (err < 0) 3623 pr_debug("failed to write feature section\n"); 3624 free(ff.buf); /* TODO: added to silence clang-tidy. */ 3625 free(feat_sec); 3626 return err; 3627 } 3628 3629 int perf_header__write_pipe(int fd) 3630 { 3631 struct perf_pipe_file_header f_header; 3632 struct feat_fd ff = { 3633 .fd = fd, 3634 }; 3635 int err; 3636 3637 f_header = (struct perf_pipe_file_header){ 3638 .magic = PERF_MAGIC, 3639 .size = sizeof(f_header), 3640 }; 3641 3642 err = do_write(&ff, &f_header, sizeof(f_header)); 3643 if (err < 0) { 3644 pr_debug("failed to write perf pipe header\n"); 3645 return err; 3646 } 3647 free(ff.buf); 3648 return 0; 3649 } 3650 3651 static int perf_session__do_write_header(struct perf_session *session, 3652 struct evlist *evlist, 3653 int fd, bool at_exit, 3654 struct feat_copier *fc, 3655 bool write_attrs_after_data) 3656 { 3657 struct perf_file_header f_header; 3658 struct perf_header *header = &session->header; 3659 struct evsel *evsel; 3660 struct feat_fd ff = { 3661 .fd = fd, 3662 }; 3663 u64 attr_offset = sizeof(f_header), attr_size = 0; 3664 int err; 3665 3666 if (write_attrs_after_data && at_exit) { 3667 /* 3668 * Write features at the end of the file first so that 3669 * attributes may come after them. 3670 */ 3671 if (!header->data_offset && header->data_size) { 3672 pr_err("File contains data but offset unknown\n"); 3673 err = -1; 3674 goto err_out; 3675 } 3676 header->feat_offset = header->data_offset + header->data_size; 3677 err = perf_header__adds_write(header, evlist, fd, fc); 3678 if (err < 0) 3679 goto err_out; 3680 attr_offset = lseek(fd, 0, SEEK_CUR); 3681 } else { 3682 lseek(fd, attr_offset, SEEK_SET); 3683 } 3684 3685 evlist__for_each_entry(session->evlist, evsel) { 3686 evsel->id_offset = attr_offset; 3687 /* Avoid writing at the end of the file until the session is exiting. */ 3688 if (!write_attrs_after_data || at_exit) { 3689 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3690 if (err < 0) { 3691 pr_debug("failed to write perf header\n"); 3692 goto err_out; 3693 } 3694 } 3695 attr_offset += evsel->core.ids * sizeof(u64); 3696 } 3697 3698 evlist__for_each_entry(evlist, evsel) { 3699 if (evsel->core.attr.size < sizeof(evsel->core.attr)) { 3700 /* 3701 * We are likely in "perf inject" and have read 3702 * from an older file. Update attr size so that 3703 * reader gets the right offset to the ids. 3704 */ 3705 evsel->core.attr.size = sizeof(evsel->core.attr); 3706 } 3707 /* Avoid writing at the end of the file until the session is exiting. */ 3708 if (!write_attrs_after_data || at_exit) { 3709 struct perf_file_attr f_attr = { 3710 .attr = evsel->core.attr, 3711 .ids = { 3712 .offset = evsel->id_offset, 3713 .size = evsel->core.ids * sizeof(u64), 3714 } 3715 }; 3716 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3717 if (err < 0) { 3718 pr_debug("failed to write perf header attribute\n"); 3719 goto err_out; 3720 } 3721 } 3722 attr_size += sizeof(struct perf_file_attr); 3723 } 3724 3725 if (!header->data_offset) { 3726 if (write_attrs_after_data) 3727 header->data_offset = sizeof(f_header); 3728 else 3729 header->data_offset = attr_offset + attr_size; 3730 } 3731 header->feat_offset = header->data_offset + header->data_size; 3732 3733 if (!write_attrs_after_data && at_exit) { 3734 /* Write features now feat_offset is known. */ 3735 err = perf_header__adds_write(header, evlist, fd, fc); 3736 if (err < 0) 3737 goto err_out; 3738 } 3739 3740 f_header = (struct perf_file_header){ 3741 .magic = PERF_MAGIC, 3742 .size = sizeof(f_header), 3743 .attr_size = sizeof(struct perf_file_attr), 3744 .attrs = { 3745 .offset = attr_offset, 3746 .size = attr_size, 3747 }, 3748 .data = { 3749 .offset = header->data_offset, 3750 .size = header->data_size, 3751 }, 3752 /* event_types is ignored, store zeros */ 3753 }; 3754 3755 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3756 3757 lseek(fd, 0, SEEK_SET); 3758 err = do_write(&ff, &f_header, sizeof(f_header)); 3759 if (err < 0) { 3760 pr_debug("failed to write perf header\n"); 3761 goto err_out; 3762 } else { 3763 lseek(fd, 0, SEEK_END); 3764 err = 0; 3765 } 3766 err_out: 3767 free(ff.buf); 3768 return err; 3769 } 3770 3771 int perf_session__write_header(struct perf_session *session, 3772 struct evlist *evlist, 3773 int fd, bool at_exit) 3774 { 3775 return perf_session__do_write_header(session, evlist, fd, at_exit, /*fc=*/NULL, 3776 /*write_attrs_after_data=*/false); 3777 } 3778 3779 size_t perf_session__data_offset(const struct evlist *evlist) 3780 { 3781 struct evsel *evsel; 3782 size_t data_offset; 3783 3784 data_offset = sizeof(struct perf_file_header); 3785 evlist__for_each_entry(evlist, evsel) { 3786 data_offset += evsel->core.ids * sizeof(u64); 3787 } 3788 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr); 3789 3790 return data_offset; 3791 } 3792 3793 int perf_session__inject_header(struct perf_session *session, 3794 struct evlist *evlist, 3795 int fd, 3796 struct feat_copier *fc, 3797 bool write_attrs_after_data) 3798 { 3799 return perf_session__do_write_header(session, evlist, fd, true, fc, 3800 write_attrs_after_data); 3801 } 3802 3803 static int perf_header__getbuffer64(struct perf_header *header, 3804 int fd, void *buf, size_t size) 3805 { 3806 if (readn(fd, buf, size) <= 0) 3807 return -1; 3808 3809 if (header->needs_swap) 3810 mem_bswap_64(buf, size); 3811 3812 return 0; 3813 } 3814 3815 int perf_header__process_sections(struct perf_header *header, int fd, 3816 void *data, 3817 int (*process)(struct perf_file_section *section, 3818 struct perf_header *ph, 3819 int feat, int fd, void *data)) 3820 { 3821 struct perf_file_section *feat_sec, *sec; 3822 int nr_sections; 3823 int sec_size; 3824 int feat; 3825 int err; 3826 3827 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3828 if (!nr_sections) 3829 return 0; 3830 3831 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3832 if (!feat_sec) 3833 return -1; 3834 3835 sec_size = sizeof(*feat_sec) * nr_sections; 3836 3837 lseek(fd, header->feat_offset, SEEK_SET); 3838 3839 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3840 if (err < 0) 3841 goto out_free; 3842 3843 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3844 err = process(sec++, header, feat, fd, data); 3845 if (err < 0) 3846 goto out_free; 3847 } 3848 err = 0; 3849 out_free: 3850 free(feat_sec); 3851 return err; 3852 } 3853 3854 static const int attr_file_abi_sizes[] = { 3855 [0] = PERF_ATTR_SIZE_VER0, 3856 [1] = PERF_ATTR_SIZE_VER1, 3857 [2] = PERF_ATTR_SIZE_VER2, 3858 [3] = PERF_ATTR_SIZE_VER3, 3859 [4] = PERF_ATTR_SIZE_VER4, 3860 0, 3861 }; 3862 3863 /* 3864 * In the legacy file format, the magic number is not used to encode endianness. 3865 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3866 * on ABI revisions, we need to try all combinations for all endianness to 3867 * detect the endianness. 3868 */ 3869 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3870 { 3871 uint64_t ref_size, attr_size; 3872 int i; 3873 3874 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3875 ref_size = attr_file_abi_sizes[i] 3876 + sizeof(struct perf_file_section); 3877 if (hdr_sz != ref_size) { 3878 attr_size = bswap_64(hdr_sz); 3879 if (attr_size != ref_size) 3880 continue; 3881 3882 ph->needs_swap = true; 3883 } 3884 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3885 i, 3886 ph->needs_swap); 3887 return 0; 3888 } 3889 /* could not determine endianness */ 3890 return -1; 3891 } 3892 3893 #define PERF_PIPE_HDR_VER0 16 3894 3895 static const size_t attr_pipe_abi_sizes[] = { 3896 [0] = PERF_PIPE_HDR_VER0, 3897 0, 3898 }; 3899 3900 /* 3901 * In the legacy pipe format, there is an implicit assumption that endianness 3902 * between host recording the samples, and host parsing the samples is the 3903 * same. This is not always the case given that the pipe output may always be 3904 * redirected into a file and analyzed on a different machine with possibly a 3905 * different endianness and perf_event ABI revisions in the perf tool itself. 3906 */ 3907 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3908 { 3909 u64 attr_size; 3910 int i; 3911 3912 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3913 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3914 attr_size = bswap_64(hdr_sz); 3915 if (attr_size != hdr_sz) 3916 continue; 3917 3918 ph->needs_swap = true; 3919 } 3920 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3921 return 0; 3922 } 3923 return -1; 3924 } 3925 3926 bool is_perf_magic(u64 magic) 3927 { 3928 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3929 || magic == __perf_magic2 3930 || magic == __perf_magic2_sw) 3931 return true; 3932 3933 return false; 3934 } 3935 3936 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3937 bool is_pipe, struct perf_header *ph) 3938 { 3939 int ret; 3940 3941 /* check for legacy format */ 3942 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3943 if (ret == 0) { 3944 ph->version = PERF_HEADER_VERSION_1; 3945 pr_debug("legacy perf.data format\n"); 3946 if (is_pipe) 3947 return try_all_pipe_abis(hdr_sz, ph); 3948 3949 return try_all_file_abis(hdr_sz, ph); 3950 } 3951 /* 3952 * the new magic number serves two purposes: 3953 * - unique number to identify actual perf.data files 3954 * - encode endianness of file 3955 */ 3956 ph->version = PERF_HEADER_VERSION_2; 3957 3958 /* check magic number with one endianness */ 3959 if (magic == __perf_magic2) 3960 return 0; 3961 3962 /* check magic number with opposite endianness */ 3963 if (magic != __perf_magic2_sw) 3964 return -1; 3965 3966 ph->needs_swap = true; 3967 3968 return 0; 3969 } 3970 3971 int perf_file_header__read(struct perf_file_header *header, 3972 struct perf_header *ph, int fd) 3973 { 3974 ssize_t ret; 3975 3976 lseek(fd, 0, SEEK_SET); 3977 3978 ret = readn(fd, header, sizeof(*header)); 3979 if (ret <= 0) 3980 return -1; 3981 3982 if (check_magic_endian(header->magic, 3983 header->attr_size, false, ph) < 0) { 3984 pr_debug("magic/endian check failed\n"); 3985 return -1; 3986 } 3987 3988 if (ph->needs_swap) { 3989 mem_bswap_64(header, offsetof(struct perf_file_header, 3990 adds_features)); 3991 } 3992 3993 if (header->size > header->attrs.offset) { 3994 pr_err("Perf file header corrupt: header overlaps attrs\n"); 3995 return -1; 3996 } 3997 3998 if (header->size > header->data.offset) { 3999 pr_err("Perf file header corrupt: header overlaps data\n"); 4000 return -1; 4001 } 4002 4003 if ((header->attrs.offset <= header->data.offset && 4004 header->attrs.offset + header->attrs.size > header->data.offset) || 4005 (header->attrs.offset > header->data.offset && 4006 header->data.offset + header->data.size > header->attrs.offset)) { 4007 pr_err("Perf file header corrupt: Attributes and data overlap\n"); 4008 return -1; 4009 } 4010 4011 if (header->size != sizeof(*header)) { 4012 /* Support the previous format */ 4013 if (header->size == offsetof(typeof(*header), adds_features)) 4014 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 4015 else 4016 return -1; 4017 } else if (ph->needs_swap) { 4018 /* 4019 * feature bitmap is declared as an array of unsigned longs -- 4020 * not good since its size can differ between the host that 4021 * generated the data file and the host analyzing the file. 4022 * 4023 * We need to handle endianness, but we don't know the size of 4024 * the unsigned long where the file was generated. Take a best 4025 * guess at determining it: try 64-bit swap first (ie., file 4026 * created on a 64-bit host), and check if the hostname feature 4027 * bit is set (this feature bit is forced on as of fbe96f2). 4028 * If the bit is not, undo the 64-bit swap and try a 32-bit 4029 * swap. If the hostname bit is still not set (e.g., older data 4030 * file), punt and fallback to the original behavior -- 4031 * clearing all feature bits and setting buildid. 4032 */ 4033 mem_bswap_64(&header->adds_features, 4034 BITS_TO_U64(HEADER_FEAT_BITS)); 4035 4036 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 4037 /* unswap as u64 */ 4038 mem_bswap_64(&header->adds_features, 4039 BITS_TO_U64(HEADER_FEAT_BITS)); 4040 4041 /* unswap as u32 */ 4042 mem_bswap_32(&header->adds_features, 4043 BITS_TO_U32(HEADER_FEAT_BITS)); 4044 } 4045 4046 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 4047 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 4048 __set_bit(HEADER_BUILD_ID, header->adds_features); 4049 } 4050 } 4051 4052 memcpy(&ph->adds_features, &header->adds_features, 4053 sizeof(ph->adds_features)); 4054 4055 ph->data_offset = header->data.offset; 4056 ph->data_size = header->data.size; 4057 ph->feat_offset = header->data.offset + header->data.size; 4058 return 0; 4059 } 4060 4061 static int perf_file_section__process(struct perf_file_section *section, 4062 struct perf_header *ph, 4063 int feat, int fd, void *data) 4064 { 4065 struct feat_fd fdd = { 4066 .fd = fd, 4067 .ph = ph, 4068 .size = section->size, 4069 .offset = section->offset, 4070 }; 4071 4072 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 4073 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 4074 "%d, continuing...\n", section->offset, feat); 4075 return 0; 4076 } 4077 4078 if (feat >= HEADER_LAST_FEATURE) { 4079 pr_debug("unknown feature %d, continuing...\n", feat); 4080 return 0; 4081 } 4082 4083 if (!feat_ops[feat].process) 4084 return 0; 4085 4086 return feat_ops[feat].process(&fdd, data); 4087 } 4088 4089 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 4090 struct perf_header *ph, 4091 struct perf_data *data) 4092 { 4093 ssize_t ret; 4094 4095 ret = perf_data__read(data, header, sizeof(*header)); 4096 if (ret <= 0) 4097 return -1; 4098 4099 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 4100 pr_debug("endian/magic failed\n"); 4101 return -1; 4102 } 4103 4104 if (ph->needs_swap) 4105 header->size = bswap_64(header->size); 4106 4107 return 0; 4108 } 4109 4110 static int perf_header__read_pipe(struct perf_session *session) 4111 { 4112 struct perf_header *header = &session->header; 4113 struct perf_pipe_file_header f_header; 4114 4115 if (perf_file_header__read_pipe(&f_header, header, session->data) < 0) { 4116 pr_debug("incompatible file format\n"); 4117 return -EINVAL; 4118 } 4119 4120 return f_header.size == sizeof(f_header) ? 0 : -1; 4121 } 4122 4123 static int read_attr(int fd, struct perf_header *ph, 4124 struct perf_file_attr *f_attr) 4125 { 4126 struct perf_event_attr *attr = &f_attr->attr; 4127 size_t sz, left; 4128 size_t our_sz = sizeof(f_attr->attr); 4129 ssize_t ret; 4130 4131 memset(f_attr, 0, sizeof(*f_attr)); 4132 4133 /* read minimal guaranteed structure */ 4134 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 4135 if (ret <= 0) { 4136 pr_debug("cannot read %d bytes of header attr\n", 4137 PERF_ATTR_SIZE_VER0); 4138 return -1; 4139 } 4140 4141 /* on file perf_event_attr size */ 4142 sz = attr->size; 4143 4144 if (ph->needs_swap) 4145 sz = bswap_32(sz); 4146 4147 if (sz == 0) { 4148 /* assume ABI0 */ 4149 sz = PERF_ATTR_SIZE_VER0; 4150 } else if (sz > our_sz) { 4151 pr_debug("file uses a more recent and unsupported ABI" 4152 " (%zu bytes extra)\n", sz - our_sz); 4153 return -1; 4154 } 4155 /* what we have not yet read and that we know about */ 4156 left = sz - PERF_ATTR_SIZE_VER0; 4157 if (left) { 4158 void *ptr = attr; 4159 ptr += PERF_ATTR_SIZE_VER0; 4160 4161 ret = readn(fd, ptr, left); 4162 } 4163 /* read perf_file_section, ids are read in caller */ 4164 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 4165 4166 return ret <= 0 ? -1 : 0; 4167 } 4168 4169 #ifdef HAVE_LIBTRACEEVENT 4170 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) 4171 { 4172 struct tep_event *event; 4173 char bf[128]; 4174 4175 /* already prepared */ 4176 if (evsel->tp_format) 4177 return 0; 4178 4179 if (pevent == NULL) { 4180 pr_debug("broken or missing trace data\n"); 4181 return -1; 4182 } 4183 4184 event = tep_find_event(pevent, evsel->core.attr.config); 4185 if (event == NULL) { 4186 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 4187 return -1; 4188 } 4189 4190 if (!evsel->name) { 4191 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 4192 evsel->name = strdup(bf); 4193 if (evsel->name == NULL) 4194 return -1; 4195 } 4196 4197 evsel->tp_format = event; 4198 return 0; 4199 } 4200 4201 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent) 4202 { 4203 struct evsel *pos; 4204 4205 evlist__for_each_entry(evlist, pos) { 4206 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 4207 evsel__prepare_tracepoint_event(pos, pevent)) 4208 return -1; 4209 } 4210 4211 return 0; 4212 } 4213 #endif 4214 4215 int perf_session__read_header(struct perf_session *session) 4216 { 4217 struct perf_data *data = session->data; 4218 struct perf_header *header = &session->header; 4219 struct perf_file_header f_header; 4220 struct perf_file_attr f_attr; 4221 u64 f_id; 4222 int nr_attrs, nr_ids, i, j, err; 4223 int fd = perf_data__fd(data); 4224 4225 session->evlist = evlist__new(); 4226 if (session->evlist == NULL) 4227 return -ENOMEM; 4228 4229 session->evlist->env = &header->env; 4230 session->machines.host.env = &header->env; 4231 4232 /* 4233 * We can read 'pipe' data event from regular file, 4234 * check for the pipe header regardless of source. 4235 */ 4236 err = perf_header__read_pipe(session); 4237 if (!err || perf_data__is_pipe(data)) { 4238 data->is_pipe = true; 4239 return err; 4240 } 4241 4242 if (perf_file_header__read(&f_header, header, fd) < 0) 4243 return -EINVAL; 4244 4245 if (header->needs_swap && data->in_place_update) { 4246 pr_err("In-place update not supported when byte-swapping is required\n"); 4247 return -EINVAL; 4248 } 4249 4250 /* 4251 * Sanity check that perf.data was written cleanly; data size is 4252 * initialized to 0 and updated only if the on_exit function is run. 4253 * If data size is still 0 then the file contains only partial 4254 * information. Just warn user and process it as much as it can. 4255 */ 4256 if (f_header.data.size == 0) { 4257 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 4258 "Was the 'perf record' command properly terminated?\n", 4259 data->file.path); 4260 } 4261 4262 if (f_header.attr_size == 0) { 4263 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 4264 "Was the 'perf record' command properly terminated?\n", 4265 data->file.path); 4266 return -EINVAL; 4267 } 4268 4269 nr_attrs = f_header.attrs.size / f_header.attr_size; 4270 lseek(fd, f_header.attrs.offset, SEEK_SET); 4271 4272 for (i = 0; i < nr_attrs; i++) { 4273 struct evsel *evsel; 4274 off_t tmp; 4275 4276 if (read_attr(fd, header, &f_attr) < 0) 4277 goto out_errno; 4278 4279 if (header->needs_swap) { 4280 f_attr.ids.size = bswap_64(f_attr.ids.size); 4281 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 4282 perf_event__attr_swap(&f_attr.attr); 4283 } 4284 4285 tmp = lseek(fd, 0, SEEK_CUR); 4286 evsel = evsel__new(&f_attr.attr); 4287 4288 if (evsel == NULL) 4289 goto out_delete_evlist; 4290 4291 evsel->needs_swap = header->needs_swap; 4292 /* 4293 * Do it before so that if perf_evsel__alloc_id fails, this 4294 * entry gets purged too at evlist__delete(). 4295 */ 4296 evlist__add(session->evlist, evsel); 4297 4298 nr_ids = f_attr.ids.size / sizeof(u64); 4299 /* 4300 * We don't have the cpu and thread maps on the header, so 4301 * for allocating the perf_sample_id table we fake 1 cpu and 4302 * hattr->ids threads. 4303 */ 4304 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 4305 goto out_delete_evlist; 4306 4307 lseek(fd, f_attr.ids.offset, SEEK_SET); 4308 4309 for (j = 0; j < nr_ids; j++) { 4310 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 4311 goto out_errno; 4312 4313 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 4314 } 4315 4316 lseek(fd, tmp, SEEK_SET); 4317 } 4318 4319 #ifdef HAVE_LIBTRACEEVENT 4320 perf_header__process_sections(header, fd, &session->tevent, 4321 perf_file_section__process); 4322 4323 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) 4324 goto out_delete_evlist; 4325 #else 4326 perf_header__process_sections(header, fd, NULL, perf_file_section__process); 4327 #endif 4328 4329 return 0; 4330 out_errno: 4331 return -errno; 4332 4333 out_delete_evlist: 4334 evlist__delete(session->evlist); 4335 session->evlist = NULL; 4336 return -ENOMEM; 4337 } 4338 4339 int perf_event__process_feature(struct perf_session *session, 4340 union perf_event *event) 4341 { 4342 const struct perf_tool *tool = session->tool; 4343 struct feat_fd ff = { .fd = 0 }; 4344 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 4345 int type = fe->header.type; 4346 u64 feat = fe->feat_id; 4347 int ret = 0; 4348 4349 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 4350 pr_warning("invalid record type %d in pipe-mode\n", type); 4351 return 0; 4352 } 4353 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 4354 pr_warning("invalid record type %d in pipe-mode\n", type); 4355 return -1; 4356 } 4357 4358 if (!feat_ops[feat].process) 4359 return 0; 4360 4361 ff.buf = (void *)fe->data; 4362 ff.size = event->header.size - sizeof(*fe); 4363 ff.ph = &session->header; 4364 4365 if (feat_ops[feat].process(&ff, NULL)) { 4366 ret = -1; 4367 goto out; 4368 } 4369 4370 if (!feat_ops[feat].print || !tool->show_feat_hdr) 4371 goto out; 4372 4373 if (!feat_ops[feat].full_only || 4374 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 4375 feat_ops[feat].print(&ff, stdout); 4376 } else { 4377 fprintf(stdout, "# %s info available, use -I to display\n", 4378 feat_ops[feat].name); 4379 } 4380 out: 4381 free_event_desc(ff.events); 4382 return ret; 4383 } 4384 4385 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 4386 { 4387 struct perf_record_event_update *ev = &event->event_update; 4388 struct perf_cpu_map *map; 4389 size_t ret; 4390 4391 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 4392 4393 switch (ev->type) { 4394 case PERF_EVENT_UPDATE__SCALE: 4395 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale); 4396 break; 4397 case PERF_EVENT_UPDATE__UNIT: 4398 ret += fprintf(fp, "... unit: %s\n", ev->unit); 4399 break; 4400 case PERF_EVENT_UPDATE__NAME: 4401 ret += fprintf(fp, "... name: %s\n", ev->name); 4402 break; 4403 case PERF_EVENT_UPDATE__CPUS: 4404 ret += fprintf(fp, "... "); 4405 4406 map = cpu_map__new_data(&ev->cpus.cpus); 4407 if (map) { 4408 ret += cpu_map__fprintf(map, fp); 4409 perf_cpu_map__put(map); 4410 } else 4411 ret += fprintf(fp, "failed to get cpus\n"); 4412 break; 4413 default: 4414 ret += fprintf(fp, "... unknown type\n"); 4415 break; 4416 } 4417 4418 return ret; 4419 } 4420 4421 int perf_event__process_attr(const struct perf_tool *tool __maybe_unused, 4422 union perf_event *event, 4423 struct evlist **pevlist) 4424 { 4425 u32 i, n_ids; 4426 u64 *ids; 4427 struct evsel *evsel; 4428 struct evlist *evlist = *pevlist; 4429 4430 if (evlist == NULL) { 4431 *pevlist = evlist = evlist__new(); 4432 if (evlist == NULL) 4433 return -ENOMEM; 4434 } 4435 4436 evsel = evsel__new(&event->attr.attr); 4437 if (evsel == NULL) 4438 return -ENOMEM; 4439 4440 evlist__add(evlist, evsel); 4441 4442 n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size; 4443 n_ids = n_ids / sizeof(u64); 4444 /* 4445 * We don't have the cpu and thread maps on the header, so 4446 * for allocating the perf_sample_id table we fake 1 cpu and 4447 * hattr->ids threads. 4448 */ 4449 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 4450 return -ENOMEM; 4451 4452 ids = perf_record_header_attr_id(event); 4453 for (i = 0; i < n_ids; i++) { 4454 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]); 4455 } 4456 4457 return 0; 4458 } 4459 4460 int perf_event__process_event_update(const struct perf_tool *tool __maybe_unused, 4461 union perf_event *event, 4462 struct evlist **pevlist) 4463 { 4464 struct perf_record_event_update *ev = &event->event_update; 4465 struct evlist *evlist; 4466 struct evsel *evsel; 4467 struct perf_cpu_map *map; 4468 4469 if (dump_trace) 4470 perf_event__fprintf_event_update(event, stdout); 4471 4472 if (!pevlist || *pevlist == NULL) 4473 return -EINVAL; 4474 4475 evlist = *pevlist; 4476 4477 evsel = evlist__id2evsel(evlist, ev->id); 4478 if (evsel == NULL) 4479 return -EINVAL; 4480 4481 switch (ev->type) { 4482 case PERF_EVENT_UPDATE__UNIT: 4483 free((char *)evsel->unit); 4484 evsel->unit = strdup(ev->unit); 4485 break; 4486 case PERF_EVENT_UPDATE__NAME: 4487 free(evsel->name); 4488 evsel->name = strdup(ev->name); 4489 break; 4490 case PERF_EVENT_UPDATE__SCALE: 4491 evsel->scale = ev->scale.scale; 4492 break; 4493 case PERF_EVENT_UPDATE__CPUS: 4494 map = cpu_map__new_data(&ev->cpus.cpus); 4495 if (map) { 4496 perf_cpu_map__put(evsel->core.own_cpus); 4497 evsel->core.own_cpus = map; 4498 } else 4499 pr_err("failed to get event_update cpus\n"); 4500 default: 4501 break; 4502 } 4503 4504 return 0; 4505 } 4506 4507 #ifdef HAVE_LIBTRACEEVENT 4508 int perf_event__process_tracing_data(struct perf_session *session, 4509 union perf_event *event) 4510 { 4511 ssize_t size_read, padding, size = event->tracing_data.size; 4512 int fd = perf_data__fd(session->data); 4513 char buf[BUFSIZ]; 4514 4515 /* 4516 * The pipe fd is already in proper place and in any case 4517 * we can't move it, and we'd screw the case where we read 4518 * 'pipe' data from regular file. The trace_report reads 4519 * data from 'fd' so we need to set it directly behind the 4520 * event, where the tracing data starts. 4521 */ 4522 if (!perf_data__is_pipe(session->data)) { 4523 off_t offset = lseek(fd, 0, SEEK_CUR); 4524 4525 /* setup for reading amidst mmap */ 4526 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 4527 SEEK_SET); 4528 } 4529 4530 size_read = trace_report(fd, &session->tevent, session->trace_event_repipe); 4531 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4532 4533 if (readn(fd, buf, padding) < 0) { 4534 pr_err("%s: reading input file", __func__); 4535 return -1; 4536 } 4537 if (session->trace_event_repipe) { 4538 int retw = write(STDOUT_FILENO, buf, padding); 4539 if (retw <= 0 || retw != padding) { 4540 pr_err("%s: repiping tracing data padding", __func__); 4541 return -1; 4542 } 4543 } 4544 4545 if (size_read + padding != size) { 4546 pr_err("%s: tracing data size mismatch", __func__); 4547 return -1; 4548 } 4549 4550 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); 4551 4552 return size_read + padding; 4553 } 4554 #endif 4555 4556 int perf_event__process_build_id(struct perf_session *session, 4557 union perf_event *event) 4558 { 4559 __event_process_build_id(&event->build_id, 4560 event->build_id.filename, 4561 session); 4562 return 0; 4563 } 4564