1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <stdio.h> 10 #include <stdlib.h> 11 #include <linux/compiler.h> 12 #include <linux/list.h> 13 #include <linux/kernel.h> 14 #include <linux/bitops.h> 15 #include <linux/string.h> 16 #include <linux/stringify.h> 17 #include <linux/zalloc.h> 18 #include <sys/stat.h> 19 #include <sys/utsname.h> 20 #include <linux/time64.h> 21 #include <dirent.h> 22 #ifdef HAVE_LIBBPF_SUPPORT 23 #include <bpf/libbpf.h> 24 #endif 25 #include <perf/cpumap.h> 26 27 #include "dso.h" 28 #include "evlist.h" 29 #include "evsel.h" 30 #include "util/evsel_fprintf.h" 31 #include "header.h" 32 #include "memswap.h" 33 #include "trace-event.h" 34 #include "session.h" 35 #include "symbol.h" 36 #include "debug.h" 37 #include "cpumap.h" 38 #include "pmu.h" 39 #include "vdso.h" 40 #include "strbuf.h" 41 #include "build-id.h" 42 #include "data.h" 43 #include <api/fs/fs.h> 44 #include "asm/bug.h" 45 #include "tool.h" 46 #include "time-utils.h" 47 #include "units.h" 48 #include "util/util.h" // perf_exe() 49 #include "cputopo.h" 50 #include "bpf-event.h" 51 #include "clockid.h" 52 53 #include <linux/ctype.h> 54 #include <internal/lib.h> 55 56 /* 57 * magic2 = "PERFILE2" 58 * must be a numerical value to let the endianness 59 * determine the memory layout. That way we are able 60 * to detect endianness when reading the perf.data file 61 * back. 62 * 63 * we check for legacy (PERFFILE) format. 64 */ 65 static const char *__perf_magic1 = "PERFFILE"; 66 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 67 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 68 69 #define PERF_MAGIC __perf_magic2 70 71 const char perf_version_string[] = PERF_VERSION; 72 73 struct perf_file_attr { 74 struct perf_event_attr attr; 75 struct perf_file_section ids; 76 }; 77 78 void perf_header__set_feat(struct perf_header *header, int feat) 79 { 80 set_bit(feat, header->adds_features); 81 } 82 83 void perf_header__clear_feat(struct perf_header *header, int feat) 84 { 85 clear_bit(feat, header->adds_features); 86 } 87 88 bool perf_header__has_feat(const struct perf_header *header, int feat) 89 { 90 return test_bit(feat, header->adds_features); 91 } 92 93 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 94 { 95 ssize_t ret = writen(ff->fd, buf, size); 96 97 if (ret != (ssize_t)size) 98 return ret < 0 ? (int)ret : -1; 99 return 0; 100 } 101 102 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 103 { 104 /* struct perf_event_header::size is u16 */ 105 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 106 size_t new_size = ff->size; 107 void *addr; 108 109 if (size + ff->offset > max_size) 110 return -E2BIG; 111 112 while (size > (new_size - ff->offset)) 113 new_size <<= 1; 114 new_size = min(max_size, new_size); 115 116 if (ff->size < new_size) { 117 addr = realloc(ff->buf, new_size); 118 if (!addr) 119 return -ENOMEM; 120 ff->buf = addr; 121 ff->size = new_size; 122 } 123 124 memcpy(ff->buf + ff->offset, buf, size); 125 ff->offset += size; 126 127 return 0; 128 } 129 130 /* Return: 0 if succeded, -ERR if failed. */ 131 int do_write(struct feat_fd *ff, const void *buf, size_t size) 132 { 133 if (!ff->buf) 134 return __do_write_fd(ff, buf, size); 135 return __do_write_buf(ff, buf, size); 136 } 137 138 /* Return: 0 if succeded, -ERR if failed. */ 139 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 140 { 141 u64 *p = (u64 *) set; 142 int i, ret; 143 144 ret = do_write(ff, &size, sizeof(size)); 145 if (ret < 0) 146 return ret; 147 148 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 149 ret = do_write(ff, p + i, sizeof(*p)); 150 if (ret < 0) 151 return ret; 152 } 153 154 return 0; 155 } 156 157 /* Return: 0 if succeded, -ERR if failed. */ 158 int write_padded(struct feat_fd *ff, const void *bf, 159 size_t count, size_t count_aligned) 160 { 161 static const char zero_buf[NAME_ALIGN]; 162 int err = do_write(ff, bf, count); 163 164 if (!err) 165 err = do_write(ff, zero_buf, count_aligned - count); 166 167 return err; 168 } 169 170 #define string_size(str) \ 171 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 172 173 /* Return: 0 if succeded, -ERR if failed. */ 174 static int do_write_string(struct feat_fd *ff, const char *str) 175 { 176 u32 len, olen; 177 int ret; 178 179 olen = strlen(str) + 1; 180 len = PERF_ALIGN(olen, NAME_ALIGN); 181 182 /* write len, incl. \0 */ 183 ret = do_write(ff, &len, sizeof(len)); 184 if (ret < 0) 185 return ret; 186 187 return write_padded(ff, str, olen, len); 188 } 189 190 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 191 { 192 ssize_t ret = readn(ff->fd, addr, size); 193 194 if (ret != size) 195 return ret < 0 ? (int)ret : -1; 196 return 0; 197 } 198 199 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 200 { 201 if (size > (ssize_t)ff->size - ff->offset) 202 return -1; 203 204 memcpy(addr, ff->buf + ff->offset, size); 205 ff->offset += size; 206 207 return 0; 208 209 } 210 211 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 212 { 213 if (!ff->buf) 214 return __do_read_fd(ff, addr, size); 215 return __do_read_buf(ff, addr, size); 216 } 217 218 static int do_read_u32(struct feat_fd *ff, u32 *addr) 219 { 220 int ret; 221 222 ret = __do_read(ff, addr, sizeof(*addr)); 223 if (ret) 224 return ret; 225 226 if (ff->ph->needs_swap) 227 *addr = bswap_32(*addr); 228 return 0; 229 } 230 231 static int do_read_u64(struct feat_fd *ff, u64 *addr) 232 { 233 int ret; 234 235 ret = __do_read(ff, addr, sizeof(*addr)); 236 if (ret) 237 return ret; 238 239 if (ff->ph->needs_swap) 240 *addr = bswap_64(*addr); 241 return 0; 242 } 243 244 static char *do_read_string(struct feat_fd *ff) 245 { 246 u32 len; 247 char *buf; 248 249 if (do_read_u32(ff, &len)) 250 return NULL; 251 252 buf = malloc(len); 253 if (!buf) 254 return NULL; 255 256 if (!__do_read(ff, buf, len)) { 257 /* 258 * strings are padded by zeroes 259 * thus the actual strlen of buf 260 * may be less than len 261 */ 262 return buf; 263 } 264 265 free(buf); 266 return NULL; 267 } 268 269 /* Return: 0 if succeded, -ERR if failed. */ 270 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 271 { 272 unsigned long *set; 273 u64 size, *p; 274 int i, ret; 275 276 ret = do_read_u64(ff, &size); 277 if (ret) 278 return ret; 279 280 set = bitmap_alloc(size); 281 if (!set) 282 return -ENOMEM; 283 284 p = (u64 *) set; 285 286 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 287 ret = do_read_u64(ff, p + i); 288 if (ret < 0) { 289 free(set); 290 return ret; 291 } 292 } 293 294 *pset = set; 295 *psize = size; 296 return 0; 297 } 298 299 static int write_tracing_data(struct feat_fd *ff, 300 struct evlist *evlist) 301 { 302 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 303 return -1; 304 305 return read_tracing_data(ff->fd, &evlist->core.entries); 306 } 307 308 static int write_build_id(struct feat_fd *ff, 309 struct evlist *evlist __maybe_unused) 310 { 311 struct perf_session *session; 312 int err; 313 314 session = container_of(ff->ph, struct perf_session, header); 315 316 if (!perf_session__read_build_ids(session, true)) 317 return -1; 318 319 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 320 return -1; 321 322 err = perf_session__write_buildid_table(session, ff); 323 if (err < 0) { 324 pr_debug("failed to write buildid table\n"); 325 return err; 326 } 327 perf_session__cache_build_ids(session); 328 329 return 0; 330 } 331 332 static int write_hostname(struct feat_fd *ff, 333 struct evlist *evlist __maybe_unused) 334 { 335 struct utsname uts; 336 int ret; 337 338 ret = uname(&uts); 339 if (ret < 0) 340 return -1; 341 342 return do_write_string(ff, uts.nodename); 343 } 344 345 static int write_osrelease(struct feat_fd *ff, 346 struct evlist *evlist __maybe_unused) 347 { 348 struct utsname uts; 349 int ret; 350 351 ret = uname(&uts); 352 if (ret < 0) 353 return -1; 354 355 return do_write_string(ff, uts.release); 356 } 357 358 static int write_arch(struct feat_fd *ff, 359 struct evlist *evlist __maybe_unused) 360 { 361 struct utsname uts; 362 int ret; 363 364 ret = uname(&uts); 365 if (ret < 0) 366 return -1; 367 368 return do_write_string(ff, uts.machine); 369 } 370 371 static int write_version(struct feat_fd *ff, 372 struct evlist *evlist __maybe_unused) 373 { 374 return do_write_string(ff, perf_version_string); 375 } 376 377 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 378 { 379 FILE *file; 380 char *buf = NULL; 381 char *s, *p; 382 const char *search = cpuinfo_proc; 383 size_t len = 0; 384 int ret = -1; 385 386 if (!search) 387 return -1; 388 389 file = fopen("/proc/cpuinfo", "r"); 390 if (!file) 391 return -1; 392 393 while (getline(&buf, &len, file) > 0) { 394 ret = strncmp(buf, search, strlen(search)); 395 if (!ret) 396 break; 397 } 398 399 if (ret) { 400 ret = -1; 401 goto done; 402 } 403 404 s = buf; 405 406 p = strchr(buf, ':'); 407 if (p && *(p+1) == ' ' && *(p+2)) 408 s = p + 2; 409 p = strchr(s, '\n'); 410 if (p) 411 *p = '\0'; 412 413 /* squash extra space characters (branding string) */ 414 p = s; 415 while (*p) { 416 if (isspace(*p)) { 417 char *r = p + 1; 418 char *q = skip_spaces(r); 419 *p = ' '; 420 if (q != (p+1)) 421 while ((*r++ = *q++)); 422 } 423 p++; 424 } 425 ret = do_write_string(ff, s); 426 done: 427 free(buf); 428 fclose(file); 429 return ret; 430 } 431 432 static int write_cpudesc(struct feat_fd *ff, 433 struct evlist *evlist __maybe_unused) 434 { 435 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 436 #define CPUINFO_PROC { "cpu", } 437 #elif defined(__s390__) 438 #define CPUINFO_PROC { "vendor_id", } 439 #elif defined(__sh__) 440 #define CPUINFO_PROC { "cpu type", } 441 #elif defined(__alpha__) || defined(__mips__) 442 #define CPUINFO_PROC { "cpu model", } 443 #elif defined(__arm__) 444 #define CPUINFO_PROC { "model name", "Processor", } 445 #elif defined(__arc__) 446 #define CPUINFO_PROC { "Processor", } 447 #elif defined(__xtensa__) 448 #define CPUINFO_PROC { "core ID", } 449 #else 450 #define CPUINFO_PROC { "model name", } 451 #endif 452 const char *cpuinfo_procs[] = CPUINFO_PROC; 453 #undef CPUINFO_PROC 454 unsigned int i; 455 456 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 457 int ret; 458 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 459 if (ret >= 0) 460 return ret; 461 } 462 return -1; 463 } 464 465 466 static int write_nrcpus(struct feat_fd *ff, 467 struct evlist *evlist __maybe_unused) 468 { 469 long nr; 470 u32 nrc, nra; 471 int ret; 472 473 nrc = cpu__max_present_cpu(); 474 475 nr = sysconf(_SC_NPROCESSORS_ONLN); 476 if (nr < 0) 477 return -1; 478 479 nra = (u32)(nr & UINT_MAX); 480 481 ret = do_write(ff, &nrc, sizeof(nrc)); 482 if (ret < 0) 483 return ret; 484 485 return do_write(ff, &nra, sizeof(nra)); 486 } 487 488 static int write_event_desc(struct feat_fd *ff, 489 struct evlist *evlist) 490 { 491 struct evsel *evsel; 492 u32 nre, nri, sz; 493 int ret; 494 495 nre = evlist->core.nr_entries; 496 497 /* 498 * write number of events 499 */ 500 ret = do_write(ff, &nre, sizeof(nre)); 501 if (ret < 0) 502 return ret; 503 504 /* 505 * size of perf_event_attr struct 506 */ 507 sz = (u32)sizeof(evsel->core.attr); 508 ret = do_write(ff, &sz, sizeof(sz)); 509 if (ret < 0) 510 return ret; 511 512 evlist__for_each_entry(evlist, evsel) { 513 ret = do_write(ff, &evsel->core.attr, sz); 514 if (ret < 0) 515 return ret; 516 /* 517 * write number of unique id per event 518 * there is one id per instance of an event 519 * 520 * copy into an nri to be independent of the 521 * type of ids, 522 */ 523 nri = evsel->core.ids; 524 ret = do_write(ff, &nri, sizeof(nri)); 525 if (ret < 0) 526 return ret; 527 528 /* 529 * write event string as passed on cmdline 530 */ 531 ret = do_write_string(ff, evsel__name(evsel)); 532 if (ret < 0) 533 return ret; 534 /* 535 * write unique ids for this event 536 */ 537 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 538 if (ret < 0) 539 return ret; 540 } 541 return 0; 542 } 543 544 static int write_cmdline(struct feat_fd *ff, 545 struct evlist *evlist __maybe_unused) 546 { 547 char pbuf[MAXPATHLEN], *buf; 548 int i, ret, n; 549 550 /* actual path to perf binary */ 551 buf = perf_exe(pbuf, MAXPATHLEN); 552 553 /* account for binary path */ 554 n = perf_env.nr_cmdline + 1; 555 556 ret = do_write(ff, &n, sizeof(n)); 557 if (ret < 0) 558 return ret; 559 560 ret = do_write_string(ff, buf); 561 if (ret < 0) 562 return ret; 563 564 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 565 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 566 if (ret < 0) 567 return ret; 568 } 569 return 0; 570 } 571 572 573 static int write_cpu_topology(struct feat_fd *ff, 574 struct evlist *evlist __maybe_unused) 575 { 576 struct cpu_topology *tp; 577 u32 i; 578 int ret, j; 579 580 tp = cpu_topology__new(); 581 if (!tp) 582 return -1; 583 584 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib)); 585 if (ret < 0) 586 goto done; 587 588 for (i = 0; i < tp->core_sib; i++) { 589 ret = do_write_string(ff, tp->core_siblings[i]); 590 if (ret < 0) 591 goto done; 592 } 593 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib)); 594 if (ret < 0) 595 goto done; 596 597 for (i = 0; i < tp->thread_sib; i++) { 598 ret = do_write_string(ff, tp->thread_siblings[i]); 599 if (ret < 0) 600 break; 601 } 602 603 ret = perf_env__read_cpu_topology_map(&perf_env); 604 if (ret < 0) 605 goto done; 606 607 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 608 ret = do_write(ff, &perf_env.cpu[j].core_id, 609 sizeof(perf_env.cpu[j].core_id)); 610 if (ret < 0) 611 return ret; 612 ret = do_write(ff, &perf_env.cpu[j].socket_id, 613 sizeof(perf_env.cpu[j].socket_id)); 614 if (ret < 0) 615 return ret; 616 } 617 618 if (!tp->die_sib) 619 goto done; 620 621 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib)); 622 if (ret < 0) 623 goto done; 624 625 for (i = 0; i < tp->die_sib; i++) { 626 ret = do_write_string(ff, tp->die_siblings[i]); 627 if (ret < 0) 628 goto done; 629 } 630 631 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 632 ret = do_write(ff, &perf_env.cpu[j].die_id, 633 sizeof(perf_env.cpu[j].die_id)); 634 if (ret < 0) 635 return ret; 636 } 637 638 done: 639 cpu_topology__delete(tp); 640 return ret; 641 } 642 643 644 645 static int write_total_mem(struct feat_fd *ff, 646 struct evlist *evlist __maybe_unused) 647 { 648 char *buf = NULL; 649 FILE *fp; 650 size_t len = 0; 651 int ret = -1, n; 652 uint64_t mem; 653 654 fp = fopen("/proc/meminfo", "r"); 655 if (!fp) 656 return -1; 657 658 while (getline(&buf, &len, fp) > 0) { 659 ret = strncmp(buf, "MemTotal:", 9); 660 if (!ret) 661 break; 662 } 663 if (!ret) { 664 n = sscanf(buf, "%*s %"PRIu64, &mem); 665 if (n == 1) 666 ret = do_write(ff, &mem, sizeof(mem)); 667 } else 668 ret = -1; 669 free(buf); 670 fclose(fp); 671 return ret; 672 } 673 674 static int write_numa_topology(struct feat_fd *ff, 675 struct evlist *evlist __maybe_unused) 676 { 677 struct numa_topology *tp; 678 int ret = -1; 679 u32 i; 680 681 tp = numa_topology__new(); 682 if (!tp) 683 return -ENOMEM; 684 685 ret = do_write(ff, &tp->nr, sizeof(u32)); 686 if (ret < 0) 687 goto err; 688 689 for (i = 0; i < tp->nr; i++) { 690 struct numa_topology_node *n = &tp->nodes[i]; 691 692 ret = do_write(ff, &n->node, sizeof(u32)); 693 if (ret < 0) 694 goto err; 695 696 ret = do_write(ff, &n->mem_total, sizeof(u64)); 697 if (ret) 698 goto err; 699 700 ret = do_write(ff, &n->mem_free, sizeof(u64)); 701 if (ret) 702 goto err; 703 704 ret = do_write_string(ff, n->cpus); 705 if (ret < 0) 706 goto err; 707 } 708 709 ret = 0; 710 711 err: 712 numa_topology__delete(tp); 713 return ret; 714 } 715 716 /* 717 * File format: 718 * 719 * struct pmu_mappings { 720 * u32 pmu_num; 721 * struct pmu_map { 722 * u32 type; 723 * char name[]; 724 * }[pmu_num]; 725 * }; 726 */ 727 728 static int write_pmu_mappings(struct feat_fd *ff, 729 struct evlist *evlist __maybe_unused) 730 { 731 struct perf_pmu *pmu = NULL; 732 u32 pmu_num = 0; 733 int ret; 734 735 /* 736 * Do a first pass to count number of pmu to avoid lseek so this 737 * works in pipe mode as well. 738 */ 739 while ((pmu = perf_pmu__scan(pmu))) { 740 if (!pmu->name) 741 continue; 742 pmu_num++; 743 } 744 745 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 746 if (ret < 0) 747 return ret; 748 749 while ((pmu = perf_pmu__scan(pmu))) { 750 if (!pmu->name) 751 continue; 752 753 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 754 if (ret < 0) 755 return ret; 756 757 ret = do_write_string(ff, pmu->name); 758 if (ret < 0) 759 return ret; 760 } 761 762 return 0; 763 } 764 765 /* 766 * File format: 767 * 768 * struct group_descs { 769 * u32 nr_groups; 770 * struct group_desc { 771 * char name[]; 772 * u32 leader_idx; 773 * u32 nr_members; 774 * }[nr_groups]; 775 * }; 776 */ 777 static int write_group_desc(struct feat_fd *ff, 778 struct evlist *evlist) 779 { 780 u32 nr_groups = evlist->nr_groups; 781 struct evsel *evsel; 782 int ret; 783 784 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 785 if (ret < 0) 786 return ret; 787 788 evlist__for_each_entry(evlist, evsel) { 789 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 790 const char *name = evsel->group_name ?: "{anon_group}"; 791 u32 leader_idx = evsel->idx; 792 u32 nr_members = evsel->core.nr_members; 793 794 ret = do_write_string(ff, name); 795 if (ret < 0) 796 return ret; 797 798 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 799 if (ret < 0) 800 return ret; 801 802 ret = do_write(ff, &nr_members, sizeof(nr_members)); 803 if (ret < 0) 804 return ret; 805 } 806 } 807 return 0; 808 } 809 810 /* 811 * Return the CPU id as a raw string. 812 * 813 * Each architecture should provide a more precise id string that 814 * can be use to match the architecture's "mapfile". 815 */ 816 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 817 { 818 return NULL; 819 } 820 821 /* Return zero when the cpuid from the mapfile.csv matches the 822 * cpuid string generated on this platform. 823 * Otherwise return non-zero. 824 */ 825 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 826 { 827 regex_t re; 828 regmatch_t pmatch[1]; 829 int match; 830 831 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 832 /* Warn unable to generate match particular string. */ 833 pr_info("Invalid regular expression %s\n", mapcpuid); 834 return 1; 835 } 836 837 match = !regexec(&re, cpuid, 1, pmatch, 0); 838 regfree(&re); 839 if (match) { 840 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 841 842 /* Verify the entire string matched. */ 843 if (match_len == strlen(cpuid)) 844 return 0; 845 } 846 return 1; 847 } 848 849 /* 850 * default get_cpuid(): nothing gets recorded 851 * actual implementation must be in arch/$(SRCARCH)/util/header.c 852 */ 853 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 854 { 855 return ENOSYS; /* Not implemented */ 856 } 857 858 static int write_cpuid(struct feat_fd *ff, 859 struct evlist *evlist __maybe_unused) 860 { 861 char buffer[64]; 862 int ret; 863 864 ret = get_cpuid(buffer, sizeof(buffer)); 865 if (ret) 866 return -1; 867 868 return do_write_string(ff, buffer); 869 } 870 871 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 872 struct evlist *evlist __maybe_unused) 873 { 874 return 0; 875 } 876 877 static int write_auxtrace(struct feat_fd *ff, 878 struct evlist *evlist __maybe_unused) 879 { 880 struct perf_session *session; 881 int err; 882 883 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 884 return -1; 885 886 session = container_of(ff->ph, struct perf_session, header); 887 888 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 889 if (err < 0) 890 pr_err("Failed to write auxtrace index\n"); 891 return err; 892 } 893 894 static int write_clockid(struct feat_fd *ff, 895 struct evlist *evlist __maybe_unused) 896 { 897 return do_write(ff, &ff->ph->env.clock.clockid_res_ns, 898 sizeof(ff->ph->env.clock.clockid_res_ns)); 899 } 900 901 static int write_clock_data(struct feat_fd *ff, 902 struct evlist *evlist __maybe_unused) 903 { 904 u64 *data64; 905 u32 data32; 906 int ret; 907 908 /* version */ 909 data32 = 1; 910 911 ret = do_write(ff, &data32, sizeof(data32)); 912 if (ret < 0) 913 return ret; 914 915 /* clockid */ 916 data32 = ff->ph->env.clock.clockid; 917 918 ret = do_write(ff, &data32, sizeof(data32)); 919 if (ret < 0) 920 return ret; 921 922 /* TOD ref time */ 923 data64 = &ff->ph->env.clock.tod_ns; 924 925 ret = do_write(ff, data64, sizeof(*data64)); 926 if (ret < 0) 927 return ret; 928 929 /* clockid ref time */ 930 data64 = &ff->ph->env.clock.clockid_ns; 931 932 return do_write(ff, data64, sizeof(*data64)); 933 } 934 935 static int write_dir_format(struct feat_fd *ff, 936 struct evlist *evlist __maybe_unused) 937 { 938 struct perf_session *session; 939 struct perf_data *data; 940 941 session = container_of(ff->ph, struct perf_session, header); 942 data = session->data; 943 944 if (WARN_ON(!perf_data__is_dir(data))) 945 return -1; 946 947 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 948 } 949 950 #ifdef HAVE_LIBBPF_SUPPORT 951 static int write_bpf_prog_info(struct feat_fd *ff, 952 struct evlist *evlist __maybe_unused) 953 { 954 struct perf_env *env = &ff->ph->env; 955 struct rb_root *root; 956 struct rb_node *next; 957 int ret; 958 959 down_read(&env->bpf_progs.lock); 960 961 ret = do_write(ff, &env->bpf_progs.infos_cnt, 962 sizeof(env->bpf_progs.infos_cnt)); 963 if (ret < 0) 964 goto out; 965 966 root = &env->bpf_progs.infos; 967 next = rb_first(root); 968 while (next) { 969 struct bpf_prog_info_node *node; 970 size_t len; 971 972 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 973 next = rb_next(&node->rb_node); 974 len = sizeof(struct bpf_prog_info_linear) + 975 node->info_linear->data_len; 976 977 /* before writing to file, translate address to offset */ 978 bpf_program__bpil_addr_to_offs(node->info_linear); 979 ret = do_write(ff, node->info_linear, len); 980 /* 981 * translate back to address even when do_write() fails, 982 * so that this function never changes the data. 983 */ 984 bpf_program__bpil_offs_to_addr(node->info_linear); 985 if (ret < 0) 986 goto out; 987 } 988 out: 989 up_read(&env->bpf_progs.lock); 990 return ret; 991 } 992 993 static int write_bpf_btf(struct feat_fd *ff, 994 struct evlist *evlist __maybe_unused) 995 { 996 struct perf_env *env = &ff->ph->env; 997 struct rb_root *root; 998 struct rb_node *next; 999 int ret; 1000 1001 down_read(&env->bpf_progs.lock); 1002 1003 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 1004 sizeof(env->bpf_progs.btfs_cnt)); 1005 1006 if (ret < 0) 1007 goto out; 1008 1009 root = &env->bpf_progs.btfs; 1010 next = rb_first(root); 1011 while (next) { 1012 struct btf_node *node; 1013 1014 node = rb_entry(next, struct btf_node, rb_node); 1015 next = rb_next(&node->rb_node); 1016 ret = do_write(ff, &node->id, 1017 sizeof(u32) * 2 + node->data_size); 1018 if (ret < 0) 1019 goto out; 1020 } 1021 out: 1022 up_read(&env->bpf_progs.lock); 1023 return ret; 1024 } 1025 #endif // HAVE_LIBBPF_SUPPORT 1026 1027 static int cpu_cache_level__sort(const void *a, const void *b) 1028 { 1029 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1030 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1031 1032 return cache_a->level - cache_b->level; 1033 } 1034 1035 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1036 { 1037 if (a->level != b->level) 1038 return false; 1039 1040 if (a->line_size != b->line_size) 1041 return false; 1042 1043 if (a->sets != b->sets) 1044 return false; 1045 1046 if (a->ways != b->ways) 1047 return false; 1048 1049 if (strcmp(a->type, b->type)) 1050 return false; 1051 1052 if (strcmp(a->size, b->size)) 1053 return false; 1054 1055 if (strcmp(a->map, b->map)) 1056 return false; 1057 1058 return true; 1059 } 1060 1061 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1062 { 1063 char path[PATH_MAX], file[PATH_MAX]; 1064 struct stat st; 1065 size_t len; 1066 1067 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1068 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1069 1070 if (stat(file, &st)) 1071 return 1; 1072 1073 scnprintf(file, PATH_MAX, "%s/level", path); 1074 if (sysfs__read_int(file, (int *) &cache->level)) 1075 return -1; 1076 1077 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1078 if (sysfs__read_int(file, (int *) &cache->line_size)) 1079 return -1; 1080 1081 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1082 if (sysfs__read_int(file, (int *) &cache->sets)) 1083 return -1; 1084 1085 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1086 if (sysfs__read_int(file, (int *) &cache->ways)) 1087 return -1; 1088 1089 scnprintf(file, PATH_MAX, "%s/type", path); 1090 if (sysfs__read_str(file, &cache->type, &len)) 1091 return -1; 1092 1093 cache->type[len] = 0; 1094 cache->type = strim(cache->type); 1095 1096 scnprintf(file, PATH_MAX, "%s/size", path); 1097 if (sysfs__read_str(file, &cache->size, &len)) { 1098 zfree(&cache->type); 1099 return -1; 1100 } 1101 1102 cache->size[len] = 0; 1103 cache->size = strim(cache->size); 1104 1105 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1106 if (sysfs__read_str(file, &cache->map, &len)) { 1107 zfree(&cache->size); 1108 zfree(&cache->type); 1109 return -1; 1110 } 1111 1112 cache->map[len] = 0; 1113 cache->map = strim(cache->map); 1114 return 0; 1115 } 1116 1117 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1118 { 1119 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1120 } 1121 1122 #define MAX_CACHE_LVL 4 1123 1124 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1125 { 1126 u32 i, cnt = 0; 1127 u32 nr, cpu; 1128 u16 level; 1129 1130 nr = cpu__max_cpu(); 1131 1132 for (cpu = 0; cpu < nr; cpu++) { 1133 for (level = 0; level < MAX_CACHE_LVL; level++) { 1134 struct cpu_cache_level c; 1135 int err; 1136 1137 err = cpu_cache_level__read(&c, cpu, level); 1138 if (err < 0) 1139 return err; 1140 1141 if (err == 1) 1142 break; 1143 1144 for (i = 0; i < cnt; i++) { 1145 if (cpu_cache_level__cmp(&c, &caches[i])) 1146 break; 1147 } 1148 1149 if (i == cnt) 1150 caches[cnt++] = c; 1151 else 1152 cpu_cache_level__free(&c); 1153 } 1154 } 1155 *cntp = cnt; 1156 return 0; 1157 } 1158 1159 static int write_cache(struct feat_fd *ff, 1160 struct evlist *evlist __maybe_unused) 1161 { 1162 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL; 1163 struct cpu_cache_level caches[max_caches]; 1164 u32 cnt = 0, i, version = 1; 1165 int ret; 1166 1167 ret = build_caches(caches, &cnt); 1168 if (ret) 1169 goto out; 1170 1171 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1172 1173 ret = do_write(ff, &version, sizeof(u32)); 1174 if (ret < 0) 1175 goto out; 1176 1177 ret = do_write(ff, &cnt, sizeof(u32)); 1178 if (ret < 0) 1179 goto out; 1180 1181 for (i = 0; i < cnt; i++) { 1182 struct cpu_cache_level *c = &caches[i]; 1183 1184 #define _W(v) \ 1185 ret = do_write(ff, &c->v, sizeof(u32)); \ 1186 if (ret < 0) \ 1187 goto out; 1188 1189 _W(level) 1190 _W(line_size) 1191 _W(sets) 1192 _W(ways) 1193 #undef _W 1194 1195 #define _W(v) \ 1196 ret = do_write_string(ff, (const char *) c->v); \ 1197 if (ret < 0) \ 1198 goto out; 1199 1200 _W(type) 1201 _W(size) 1202 _W(map) 1203 #undef _W 1204 } 1205 1206 out: 1207 for (i = 0; i < cnt; i++) 1208 cpu_cache_level__free(&caches[i]); 1209 return ret; 1210 } 1211 1212 static int write_stat(struct feat_fd *ff __maybe_unused, 1213 struct evlist *evlist __maybe_unused) 1214 { 1215 return 0; 1216 } 1217 1218 static int write_sample_time(struct feat_fd *ff, 1219 struct evlist *evlist) 1220 { 1221 int ret; 1222 1223 ret = do_write(ff, &evlist->first_sample_time, 1224 sizeof(evlist->first_sample_time)); 1225 if (ret < 0) 1226 return ret; 1227 1228 return do_write(ff, &evlist->last_sample_time, 1229 sizeof(evlist->last_sample_time)); 1230 } 1231 1232 1233 static int memory_node__read(struct memory_node *n, unsigned long idx) 1234 { 1235 unsigned int phys, size = 0; 1236 char path[PATH_MAX]; 1237 struct dirent *ent; 1238 DIR *dir; 1239 1240 #define for_each_memory(mem, dir) \ 1241 while ((ent = readdir(dir))) \ 1242 if (strcmp(ent->d_name, ".") && \ 1243 strcmp(ent->d_name, "..") && \ 1244 sscanf(ent->d_name, "memory%u", &mem) == 1) 1245 1246 scnprintf(path, PATH_MAX, 1247 "%s/devices/system/node/node%lu", 1248 sysfs__mountpoint(), idx); 1249 1250 dir = opendir(path); 1251 if (!dir) { 1252 pr_warning("failed: cant' open memory sysfs data\n"); 1253 return -1; 1254 } 1255 1256 for_each_memory(phys, dir) { 1257 size = max(phys, size); 1258 } 1259 1260 size++; 1261 1262 n->set = bitmap_alloc(size); 1263 if (!n->set) { 1264 closedir(dir); 1265 return -ENOMEM; 1266 } 1267 1268 n->node = idx; 1269 n->size = size; 1270 1271 rewinddir(dir); 1272 1273 for_each_memory(phys, dir) { 1274 set_bit(phys, n->set); 1275 } 1276 1277 closedir(dir); 1278 return 0; 1279 } 1280 1281 static int memory_node__sort(const void *a, const void *b) 1282 { 1283 const struct memory_node *na = a; 1284 const struct memory_node *nb = b; 1285 1286 return na->node - nb->node; 1287 } 1288 1289 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1290 { 1291 char path[PATH_MAX]; 1292 struct dirent *ent; 1293 DIR *dir; 1294 u64 cnt = 0; 1295 int ret = 0; 1296 1297 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1298 sysfs__mountpoint()); 1299 1300 dir = opendir(path); 1301 if (!dir) { 1302 pr_debug2("%s: could't read %s, does this arch have topology information?\n", 1303 __func__, path); 1304 return -1; 1305 } 1306 1307 while (!ret && (ent = readdir(dir))) { 1308 unsigned int idx; 1309 int r; 1310 1311 if (!strcmp(ent->d_name, ".") || 1312 !strcmp(ent->d_name, "..")) 1313 continue; 1314 1315 r = sscanf(ent->d_name, "node%u", &idx); 1316 if (r != 1) 1317 continue; 1318 1319 if (WARN_ONCE(cnt >= size, 1320 "failed to write MEM_TOPOLOGY, way too many nodes\n")) { 1321 closedir(dir); 1322 return -1; 1323 } 1324 1325 ret = memory_node__read(&nodes[cnt++], idx); 1326 } 1327 1328 *cntp = cnt; 1329 closedir(dir); 1330 1331 if (!ret) 1332 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1333 1334 return ret; 1335 } 1336 1337 #define MAX_MEMORY_NODES 2000 1338 1339 /* 1340 * The MEM_TOPOLOGY holds physical memory map for every 1341 * node in system. The format of data is as follows: 1342 * 1343 * 0 - version | for future changes 1344 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1345 * 16 - count | number of nodes 1346 * 1347 * For each node we store map of physical indexes for 1348 * each node: 1349 * 1350 * 32 - node id | node index 1351 * 40 - size | size of bitmap 1352 * 48 - bitmap | bitmap of memory indexes that belongs to node 1353 */ 1354 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1355 struct evlist *evlist __maybe_unused) 1356 { 1357 static struct memory_node nodes[MAX_MEMORY_NODES]; 1358 u64 bsize, version = 1, i, nr; 1359 int ret; 1360 1361 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1362 (unsigned long long *) &bsize); 1363 if (ret) 1364 return ret; 1365 1366 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1367 if (ret) 1368 return ret; 1369 1370 ret = do_write(ff, &version, sizeof(version)); 1371 if (ret < 0) 1372 goto out; 1373 1374 ret = do_write(ff, &bsize, sizeof(bsize)); 1375 if (ret < 0) 1376 goto out; 1377 1378 ret = do_write(ff, &nr, sizeof(nr)); 1379 if (ret < 0) 1380 goto out; 1381 1382 for (i = 0; i < nr; i++) { 1383 struct memory_node *n = &nodes[i]; 1384 1385 #define _W(v) \ 1386 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1387 if (ret < 0) \ 1388 goto out; 1389 1390 _W(node) 1391 _W(size) 1392 1393 #undef _W 1394 1395 ret = do_write_bitmap(ff, n->set, n->size); 1396 if (ret < 0) 1397 goto out; 1398 } 1399 1400 out: 1401 return ret; 1402 } 1403 1404 static int write_compressed(struct feat_fd *ff __maybe_unused, 1405 struct evlist *evlist __maybe_unused) 1406 { 1407 int ret; 1408 1409 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1410 if (ret) 1411 return ret; 1412 1413 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1414 if (ret) 1415 return ret; 1416 1417 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1418 if (ret) 1419 return ret; 1420 1421 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1422 if (ret) 1423 return ret; 1424 1425 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1426 } 1427 1428 static int write_cpu_pmu_caps(struct feat_fd *ff, 1429 struct evlist *evlist __maybe_unused) 1430 { 1431 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu"); 1432 struct perf_pmu_caps *caps = NULL; 1433 int nr_caps; 1434 int ret; 1435 1436 if (!cpu_pmu) 1437 return -ENOENT; 1438 1439 nr_caps = perf_pmu__caps_parse(cpu_pmu); 1440 if (nr_caps < 0) 1441 return nr_caps; 1442 1443 ret = do_write(ff, &nr_caps, sizeof(nr_caps)); 1444 if (ret < 0) 1445 return ret; 1446 1447 list_for_each_entry(caps, &cpu_pmu->caps, list) { 1448 ret = do_write_string(ff, caps->name); 1449 if (ret < 0) 1450 return ret; 1451 1452 ret = do_write_string(ff, caps->value); 1453 if (ret < 0) 1454 return ret; 1455 } 1456 1457 return ret; 1458 } 1459 1460 static void print_hostname(struct feat_fd *ff, FILE *fp) 1461 { 1462 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1463 } 1464 1465 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1466 { 1467 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1468 } 1469 1470 static void print_arch(struct feat_fd *ff, FILE *fp) 1471 { 1472 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1473 } 1474 1475 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1476 { 1477 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1478 } 1479 1480 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1481 { 1482 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1483 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1484 } 1485 1486 static void print_version(struct feat_fd *ff, FILE *fp) 1487 { 1488 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1489 } 1490 1491 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1492 { 1493 int nr, i; 1494 1495 nr = ff->ph->env.nr_cmdline; 1496 1497 fprintf(fp, "# cmdline : "); 1498 1499 for (i = 0; i < nr; i++) { 1500 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1501 if (!argv_i) { 1502 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1503 } else { 1504 char *mem = argv_i; 1505 do { 1506 char *quote = strchr(argv_i, '\''); 1507 if (!quote) 1508 break; 1509 *quote++ = '\0'; 1510 fprintf(fp, "%s\\\'", argv_i); 1511 argv_i = quote; 1512 } while (1); 1513 fprintf(fp, "%s ", argv_i); 1514 free(mem); 1515 } 1516 } 1517 fputc('\n', fp); 1518 } 1519 1520 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1521 { 1522 struct perf_header *ph = ff->ph; 1523 int cpu_nr = ph->env.nr_cpus_avail; 1524 int nr, i; 1525 char *str; 1526 1527 nr = ph->env.nr_sibling_cores; 1528 str = ph->env.sibling_cores; 1529 1530 for (i = 0; i < nr; i++) { 1531 fprintf(fp, "# sibling sockets : %s\n", str); 1532 str += strlen(str) + 1; 1533 } 1534 1535 if (ph->env.nr_sibling_dies) { 1536 nr = ph->env.nr_sibling_dies; 1537 str = ph->env.sibling_dies; 1538 1539 for (i = 0; i < nr; i++) { 1540 fprintf(fp, "# sibling dies : %s\n", str); 1541 str += strlen(str) + 1; 1542 } 1543 } 1544 1545 nr = ph->env.nr_sibling_threads; 1546 str = ph->env.sibling_threads; 1547 1548 for (i = 0; i < nr; i++) { 1549 fprintf(fp, "# sibling threads : %s\n", str); 1550 str += strlen(str) + 1; 1551 } 1552 1553 if (ph->env.nr_sibling_dies) { 1554 if (ph->env.cpu != NULL) { 1555 for (i = 0; i < cpu_nr; i++) 1556 fprintf(fp, "# CPU %d: Core ID %d, " 1557 "Die ID %d, Socket ID %d\n", 1558 i, ph->env.cpu[i].core_id, 1559 ph->env.cpu[i].die_id, 1560 ph->env.cpu[i].socket_id); 1561 } else 1562 fprintf(fp, "# Core ID, Die ID and Socket ID " 1563 "information is not available\n"); 1564 } else { 1565 if (ph->env.cpu != NULL) { 1566 for (i = 0; i < cpu_nr; i++) 1567 fprintf(fp, "# CPU %d: Core ID %d, " 1568 "Socket ID %d\n", 1569 i, ph->env.cpu[i].core_id, 1570 ph->env.cpu[i].socket_id); 1571 } else 1572 fprintf(fp, "# Core ID and Socket ID " 1573 "information is not available\n"); 1574 } 1575 } 1576 1577 static void print_clockid(struct feat_fd *ff, FILE *fp) 1578 { 1579 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1580 ff->ph->env.clock.clockid_res_ns * 1000); 1581 } 1582 1583 static void print_clock_data(struct feat_fd *ff, FILE *fp) 1584 { 1585 struct timespec clockid_ns; 1586 char tstr[64], date[64]; 1587 struct timeval tod_ns; 1588 clockid_t clockid; 1589 struct tm ltime; 1590 u64 ref; 1591 1592 if (!ff->ph->env.clock.enabled) { 1593 fprintf(fp, "# reference time disabled\n"); 1594 return; 1595 } 1596 1597 /* Compute TOD time. */ 1598 ref = ff->ph->env.clock.tod_ns; 1599 tod_ns.tv_sec = ref / NSEC_PER_SEC; 1600 ref -= tod_ns.tv_sec * NSEC_PER_SEC; 1601 tod_ns.tv_usec = ref / NSEC_PER_USEC; 1602 1603 /* Compute clockid time. */ 1604 ref = ff->ph->env.clock.clockid_ns; 1605 clockid_ns.tv_sec = ref / NSEC_PER_SEC; 1606 ref -= clockid_ns.tv_sec * NSEC_PER_SEC; 1607 clockid_ns.tv_nsec = ref; 1608 1609 clockid = ff->ph->env.clock.clockid; 1610 1611 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) 1612 snprintf(tstr, sizeof(tstr), "<error>"); 1613 else { 1614 strftime(date, sizeof(date), "%F %T", <ime); 1615 scnprintf(tstr, sizeof(tstr), "%s.%06d", 1616 date, (int) tod_ns.tv_usec); 1617 } 1618 1619 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); 1620 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", 1621 tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec, 1622 clockid_ns.tv_sec, clockid_ns.tv_nsec, 1623 clockid_name(clockid)); 1624 } 1625 1626 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1627 { 1628 struct perf_session *session; 1629 struct perf_data *data; 1630 1631 session = container_of(ff->ph, struct perf_session, header); 1632 data = session->data; 1633 1634 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1635 } 1636 1637 #ifdef HAVE_LIBBPF_SUPPORT 1638 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1639 { 1640 struct perf_env *env = &ff->ph->env; 1641 struct rb_root *root; 1642 struct rb_node *next; 1643 1644 down_read(&env->bpf_progs.lock); 1645 1646 root = &env->bpf_progs.infos; 1647 next = rb_first(root); 1648 1649 while (next) { 1650 struct bpf_prog_info_node *node; 1651 1652 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1653 next = rb_next(&node->rb_node); 1654 1655 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1656 env, fp); 1657 } 1658 1659 up_read(&env->bpf_progs.lock); 1660 } 1661 1662 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1663 { 1664 struct perf_env *env = &ff->ph->env; 1665 struct rb_root *root; 1666 struct rb_node *next; 1667 1668 down_read(&env->bpf_progs.lock); 1669 1670 root = &env->bpf_progs.btfs; 1671 next = rb_first(root); 1672 1673 while (next) { 1674 struct btf_node *node; 1675 1676 node = rb_entry(next, struct btf_node, rb_node); 1677 next = rb_next(&node->rb_node); 1678 fprintf(fp, "# btf info of id %u\n", node->id); 1679 } 1680 1681 up_read(&env->bpf_progs.lock); 1682 } 1683 #endif // HAVE_LIBBPF_SUPPORT 1684 1685 static void free_event_desc(struct evsel *events) 1686 { 1687 struct evsel *evsel; 1688 1689 if (!events) 1690 return; 1691 1692 for (evsel = events; evsel->core.attr.size; evsel++) { 1693 zfree(&evsel->name); 1694 zfree(&evsel->core.id); 1695 } 1696 1697 free(events); 1698 } 1699 1700 static bool perf_attr_check(struct perf_event_attr *attr) 1701 { 1702 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1703 pr_warning("Reserved bits are set unexpectedly. " 1704 "Please update perf tool.\n"); 1705 return false; 1706 } 1707 1708 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1709 pr_warning("Unknown sample type (0x%llx) is detected. " 1710 "Please update perf tool.\n", 1711 attr->sample_type); 1712 return false; 1713 } 1714 1715 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1716 pr_warning("Unknown read format (0x%llx) is detected. " 1717 "Please update perf tool.\n", 1718 attr->read_format); 1719 return false; 1720 } 1721 1722 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1723 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1724 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1725 "Please update perf tool.\n", 1726 attr->branch_sample_type); 1727 1728 return false; 1729 } 1730 1731 return true; 1732 } 1733 1734 static struct evsel *read_event_desc(struct feat_fd *ff) 1735 { 1736 struct evsel *evsel, *events = NULL; 1737 u64 *id; 1738 void *buf = NULL; 1739 u32 nre, sz, nr, i, j; 1740 size_t msz; 1741 1742 /* number of events */ 1743 if (do_read_u32(ff, &nre)) 1744 goto error; 1745 1746 if (do_read_u32(ff, &sz)) 1747 goto error; 1748 1749 /* buffer to hold on file attr struct */ 1750 buf = malloc(sz); 1751 if (!buf) 1752 goto error; 1753 1754 /* the last event terminates with evsel->core.attr.size == 0: */ 1755 events = calloc(nre + 1, sizeof(*events)); 1756 if (!events) 1757 goto error; 1758 1759 msz = sizeof(evsel->core.attr); 1760 if (sz < msz) 1761 msz = sz; 1762 1763 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1764 evsel->idx = i; 1765 1766 /* 1767 * must read entire on-file attr struct to 1768 * sync up with layout. 1769 */ 1770 if (__do_read(ff, buf, sz)) 1771 goto error; 1772 1773 if (ff->ph->needs_swap) 1774 perf_event__attr_swap(buf); 1775 1776 memcpy(&evsel->core.attr, buf, msz); 1777 1778 if (!perf_attr_check(&evsel->core.attr)) 1779 goto error; 1780 1781 if (do_read_u32(ff, &nr)) 1782 goto error; 1783 1784 if (ff->ph->needs_swap) 1785 evsel->needs_swap = true; 1786 1787 evsel->name = do_read_string(ff); 1788 if (!evsel->name) 1789 goto error; 1790 1791 if (!nr) 1792 continue; 1793 1794 id = calloc(nr, sizeof(*id)); 1795 if (!id) 1796 goto error; 1797 evsel->core.ids = nr; 1798 evsel->core.id = id; 1799 1800 for (j = 0 ; j < nr; j++) { 1801 if (do_read_u64(ff, id)) 1802 goto error; 1803 id++; 1804 } 1805 } 1806 out: 1807 free(buf); 1808 return events; 1809 error: 1810 free_event_desc(events); 1811 events = NULL; 1812 goto out; 1813 } 1814 1815 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1816 void *priv __maybe_unused) 1817 { 1818 return fprintf(fp, ", %s = %s", name, val); 1819 } 1820 1821 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1822 { 1823 struct evsel *evsel, *events; 1824 u32 j; 1825 u64 *id; 1826 1827 if (ff->events) 1828 events = ff->events; 1829 else 1830 events = read_event_desc(ff); 1831 1832 if (!events) { 1833 fprintf(fp, "# event desc: not available or unable to read\n"); 1834 return; 1835 } 1836 1837 for (evsel = events; evsel->core.attr.size; evsel++) { 1838 fprintf(fp, "# event : name = %s, ", evsel->name); 1839 1840 if (evsel->core.ids) { 1841 fprintf(fp, ", id = {"); 1842 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 1843 if (j) 1844 fputc(',', fp); 1845 fprintf(fp, " %"PRIu64, *id); 1846 } 1847 fprintf(fp, " }"); 1848 } 1849 1850 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 1851 1852 fputc('\n', fp); 1853 } 1854 1855 free_event_desc(events); 1856 ff->events = NULL; 1857 } 1858 1859 static void print_total_mem(struct feat_fd *ff, FILE *fp) 1860 { 1861 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 1862 } 1863 1864 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 1865 { 1866 int i; 1867 struct numa_node *n; 1868 1869 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 1870 n = &ff->ph->env.numa_nodes[i]; 1871 1872 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 1873 " free = %"PRIu64" kB\n", 1874 n->node, n->mem_total, n->mem_free); 1875 1876 fprintf(fp, "# node%u cpu list : ", n->node); 1877 cpu_map__fprintf(n->map, fp); 1878 } 1879 } 1880 1881 static void print_cpuid(struct feat_fd *ff, FILE *fp) 1882 { 1883 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 1884 } 1885 1886 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 1887 { 1888 fprintf(fp, "# contains samples with branch stack\n"); 1889 } 1890 1891 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 1892 { 1893 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 1894 } 1895 1896 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 1897 { 1898 fprintf(fp, "# contains stat data\n"); 1899 } 1900 1901 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 1902 { 1903 int i; 1904 1905 fprintf(fp, "# CPU cache info:\n"); 1906 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 1907 fprintf(fp, "# "); 1908 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 1909 } 1910 } 1911 1912 static void print_compressed(struct feat_fd *ff, FILE *fp) 1913 { 1914 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 1915 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 1916 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 1917 } 1918 1919 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 1920 { 1921 const char *delimiter = "# cpu pmu capabilities: "; 1922 u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps; 1923 char *str; 1924 1925 if (!nr_caps) { 1926 fprintf(fp, "# cpu pmu capabilities: not available\n"); 1927 return; 1928 } 1929 1930 str = ff->ph->env.cpu_pmu_caps; 1931 while (nr_caps--) { 1932 fprintf(fp, "%s%s", delimiter, str); 1933 delimiter = ", "; 1934 str += strlen(str) + 1; 1935 } 1936 1937 fprintf(fp, "\n"); 1938 } 1939 1940 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 1941 { 1942 const char *delimiter = "# pmu mappings: "; 1943 char *str, *tmp; 1944 u32 pmu_num; 1945 u32 type; 1946 1947 pmu_num = ff->ph->env.nr_pmu_mappings; 1948 if (!pmu_num) { 1949 fprintf(fp, "# pmu mappings: not available\n"); 1950 return; 1951 } 1952 1953 str = ff->ph->env.pmu_mappings; 1954 1955 while (pmu_num) { 1956 type = strtoul(str, &tmp, 0); 1957 if (*tmp != ':') 1958 goto error; 1959 1960 str = tmp + 1; 1961 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 1962 1963 delimiter = ", "; 1964 str += strlen(str) + 1; 1965 pmu_num--; 1966 } 1967 1968 fprintf(fp, "\n"); 1969 1970 if (!pmu_num) 1971 return; 1972 error: 1973 fprintf(fp, "# pmu mappings: unable to read\n"); 1974 } 1975 1976 static void print_group_desc(struct feat_fd *ff, FILE *fp) 1977 { 1978 struct perf_session *session; 1979 struct evsel *evsel; 1980 u32 nr = 0; 1981 1982 session = container_of(ff->ph, struct perf_session, header); 1983 1984 evlist__for_each_entry(session->evlist, evsel) { 1985 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 1986 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); 1987 1988 nr = evsel->core.nr_members - 1; 1989 } else if (nr) { 1990 fprintf(fp, ",%s", evsel__name(evsel)); 1991 1992 if (--nr == 0) 1993 fprintf(fp, "}\n"); 1994 } 1995 } 1996 } 1997 1998 static void print_sample_time(struct feat_fd *ff, FILE *fp) 1999 { 2000 struct perf_session *session; 2001 char time_buf[32]; 2002 double d; 2003 2004 session = container_of(ff->ph, struct perf_session, header); 2005 2006 timestamp__scnprintf_usec(session->evlist->first_sample_time, 2007 time_buf, sizeof(time_buf)); 2008 fprintf(fp, "# time of first sample : %s\n", time_buf); 2009 2010 timestamp__scnprintf_usec(session->evlist->last_sample_time, 2011 time_buf, sizeof(time_buf)); 2012 fprintf(fp, "# time of last sample : %s\n", time_buf); 2013 2014 d = (double)(session->evlist->last_sample_time - 2015 session->evlist->first_sample_time) / NSEC_PER_MSEC; 2016 2017 fprintf(fp, "# sample duration : %10.3f ms\n", d); 2018 } 2019 2020 static void memory_node__fprintf(struct memory_node *n, 2021 unsigned long long bsize, FILE *fp) 2022 { 2023 char buf_map[100], buf_size[50]; 2024 unsigned long long size; 2025 2026 size = bsize * bitmap_weight(n->set, n->size); 2027 unit_number__scnprintf(buf_size, 50, size); 2028 2029 bitmap_scnprintf(n->set, n->size, buf_map, 100); 2030 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 2031 } 2032 2033 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 2034 { 2035 struct memory_node *nodes; 2036 int i, nr; 2037 2038 nodes = ff->ph->env.memory_nodes; 2039 nr = ff->ph->env.nr_memory_nodes; 2040 2041 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 2042 nr, ff->ph->env.memory_bsize); 2043 2044 for (i = 0; i < nr; i++) { 2045 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 2046 } 2047 } 2048 2049 static int __event_process_build_id(struct perf_record_header_build_id *bev, 2050 char *filename, 2051 struct perf_session *session) 2052 { 2053 int err = -1; 2054 struct machine *machine; 2055 u16 cpumode; 2056 struct dso *dso; 2057 enum dso_space_type dso_space; 2058 2059 machine = perf_session__findnew_machine(session, bev->pid); 2060 if (!machine) 2061 goto out; 2062 2063 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2064 2065 switch (cpumode) { 2066 case PERF_RECORD_MISC_KERNEL: 2067 dso_space = DSO_SPACE__KERNEL; 2068 break; 2069 case PERF_RECORD_MISC_GUEST_KERNEL: 2070 dso_space = DSO_SPACE__KERNEL_GUEST; 2071 break; 2072 case PERF_RECORD_MISC_USER: 2073 case PERF_RECORD_MISC_GUEST_USER: 2074 dso_space = DSO_SPACE__USER; 2075 break; 2076 default: 2077 goto out; 2078 } 2079 2080 dso = machine__findnew_dso(machine, filename); 2081 if (dso != NULL) { 2082 char sbuild_id[SBUILD_ID_SIZE]; 2083 struct build_id bid; 2084 size_t size = BUILD_ID_SIZE; 2085 2086 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) 2087 size = bev->size; 2088 2089 build_id__init(&bid, bev->data, size); 2090 dso__set_build_id(dso, &bid); 2091 2092 if (dso_space != DSO_SPACE__USER) { 2093 struct kmod_path m = { .name = NULL, }; 2094 2095 if (!kmod_path__parse_name(&m, filename) && m.kmod) 2096 dso__set_module_info(dso, &m, machine); 2097 2098 dso->kernel = dso_space; 2099 free(m.name); 2100 } 2101 2102 build_id__sprintf(&dso->bid, sbuild_id); 2103 pr_debug("build id event received for %s: %s [%zu]\n", 2104 dso->long_name, sbuild_id, size); 2105 dso__put(dso); 2106 } 2107 2108 err = 0; 2109 out: 2110 return err; 2111 } 2112 2113 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 2114 int input, u64 offset, u64 size) 2115 { 2116 struct perf_session *session = container_of(header, struct perf_session, header); 2117 struct { 2118 struct perf_event_header header; 2119 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 2120 char filename[0]; 2121 } old_bev; 2122 struct perf_record_header_build_id bev; 2123 char filename[PATH_MAX]; 2124 u64 limit = offset + size; 2125 2126 while (offset < limit) { 2127 ssize_t len; 2128 2129 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2130 return -1; 2131 2132 if (header->needs_swap) 2133 perf_event_header__bswap(&old_bev.header); 2134 2135 len = old_bev.header.size - sizeof(old_bev); 2136 if (readn(input, filename, len) != len) 2137 return -1; 2138 2139 bev.header = old_bev.header; 2140 2141 /* 2142 * As the pid is the missing value, we need to fill 2143 * it properly. The header.misc value give us nice hint. 2144 */ 2145 bev.pid = HOST_KERNEL_ID; 2146 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2147 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2148 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2149 2150 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2151 __event_process_build_id(&bev, filename, session); 2152 2153 offset += bev.header.size; 2154 } 2155 2156 return 0; 2157 } 2158 2159 static int perf_header__read_build_ids(struct perf_header *header, 2160 int input, u64 offset, u64 size) 2161 { 2162 struct perf_session *session = container_of(header, struct perf_session, header); 2163 struct perf_record_header_build_id bev; 2164 char filename[PATH_MAX]; 2165 u64 limit = offset + size, orig_offset = offset; 2166 int err = -1; 2167 2168 while (offset < limit) { 2169 ssize_t len; 2170 2171 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2172 goto out; 2173 2174 if (header->needs_swap) 2175 perf_event_header__bswap(&bev.header); 2176 2177 len = bev.header.size - sizeof(bev); 2178 if (readn(input, filename, len) != len) 2179 goto out; 2180 /* 2181 * The a1645ce1 changeset: 2182 * 2183 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2184 * 2185 * Added a field to struct perf_record_header_build_id that broke the file 2186 * format. 2187 * 2188 * Since the kernel build-id is the first entry, process the 2189 * table using the old format if the well known 2190 * '[kernel.kallsyms]' string for the kernel build-id has the 2191 * first 4 characters chopped off (where the pid_t sits). 2192 */ 2193 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2194 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2195 return -1; 2196 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2197 } 2198 2199 __event_process_build_id(&bev, filename, session); 2200 2201 offset += bev.header.size; 2202 } 2203 err = 0; 2204 out: 2205 return err; 2206 } 2207 2208 /* Macro for features that simply need to read and store a string. */ 2209 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2210 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2211 {\ 2212 ff->ph->env.__feat_env = do_read_string(ff); \ 2213 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2214 } 2215 2216 FEAT_PROCESS_STR_FUN(hostname, hostname); 2217 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2218 FEAT_PROCESS_STR_FUN(version, version); 2219 FEAT_PROCESS_STR_FUN(arch, arch); 2220 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2221 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2222 2223 static int process_tracing_data(struct feat_fd *ff, void *data) 2224 { 2225 ssize_t ret = trace_report(ff->fd, data, false); 2226 2227 return ret < 0 ? -1 : 0; 2228 } 2229 2230 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2231 { 2232 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2233 pr_debug("Failed to read buildids, continuing...\n"); 2234 return 0; 2235 } 2236 2237 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2238 { 2239 int ret; 2240 u32 nr_cpus_avail, nr_cpus_online; 2241 2242 ret = do_read_u32(ff, &nr_cpus_avail); 2243 if (ret) 2244 return ret; 2245 2246 ret = do_read_u32(ff, &nr_cpus_online); 2247 if (ret) 2248 return ret; 2249 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2250 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2251 return 0; 2252 } 2253 2254 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2255 { 2256 u64 total_mem; 2257 int ret; 2258 2259 ret = do_read_u64(ff, &total_mem); 2260 if (ret) 2261 return -1; 2262 ff->ph->env.total_mem = (unsigned long long)total_mem; 2263 return 0; 2264 } 2265 2266 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) 2267 { 2268 struct evsel *evsel; 2269 2270 evlist__for_each_entry(evlist, evsel) { 2271 if (evsel->idx == idx) 2272 return evsel; 2273 } 2274 2275 return NULL; 2276 } 2277 2278 static void 2279 perf_evlist__set_event_name(struct evlist *evlist, 2280 struct evsel *event) 2281 { 2282 struct evsel *evsel; 2283 2284 if (!event->name) 2285 return; 2286 2287 evsel = evlist__find_by_index(evlist, event->idx); 2288 if (!evsel) 2289 return; 2290 2291 if (evsel->name) 2292 return; 2293 2294 evsel->name = strdup(event->name); 2295 } 2296 2297 static int 2298 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2299 { 2300 struct perf_session *session; 2301 struct evsel *evsel, *events = read_event_desc(ff); 2302 2303 if (!events) 2304 return 0; 2305 2306 session = container_of(ff->ph, struct perf_session, header); 2307 2308 if (session->data->is_pipe) { 2309 /* Save events for reading later by print_event_desc, 2310 * since they can't be read again in pipe mode. */ 2311 ff->events = events; 2312 } 2313 2314 for (evsel = events; evsel->core.attr.size; evsel++) 2315 perf_evlist__set_event_name(session->evlist, evsel); 2316 2317 if (!session->data->is_pipe) 2318 free_event_desc(events); 2319 2320 return 0; 2321 } 2322 2323 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2324 { 2325 char *str, *cmdline = NULL, **argv = NULL; 2326 u32 nr, i, len = 0; 2327 2328 if (do_read_u32(ff, &nr)) 2329 return -1; 2330 2331 ff->ph->env.nr_cmdline = nr; 2332 2333 cmdline = zalloc(ff->size + nr + 1); 2334 if (!cmdline) 2335 return -1; 2336 2337 argv = zalloc(sizeof(char *) * (nr + 1)); 2338 if (!argv) 2339 goto error; 2340 2341 for (i = 0; i < nr; i++) { 2342 str = do_read_string(ff); 2343 if (!str) 2344 goto error; 2345 2346 argv[i] = cmdline + len; 2347 memcpy(argv[i], str, strlen(str) + 1); 2348 len += strlen(str) + 1; 2349 free(str); 2350 } 2351 ff->ph->env.cmdline = cmdline; 2352 ff->ph->env.cmdline_argv = (const char **) argv; 2353 return 0; 2354 2355 error: 2356 free(argv); 2357 free(cmdline); 2358 return -1; 2359 } 2360 2361 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2362 { 2363 u32 nr, i; 2364 char *str; 2365 struct strbuf sb; 2366 int cpu_nr = ff->ph->env.nr_cpus_avail; 2367 u64 size = 0; 2368 struct perf_header *ph = ff->ph; 2369 bool do_core_id_test = true; 2370 2371 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2372 if (!ph->env.cpu) 2373 return -1; 2374 2375 if (do_read_u32(ff, &nr)) 2376 goto free_cpu; 2377 2378 ph->env.nr_sibling_cores = nr; 2379 size += sizeof(u32); 2380 if (strbuf_init(&sb, 128) < 0) 2381 goto free_cpu; 2382 2383 for (i = 0; i < nr; i++) { 2384 str = do_read_string(ff); 2385 if (!str) 2386 goto error; 2387 2388 /* include a NULL character at the end */ 2389 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2390 goto error; 2391 size += string_size(str); 2392 free(str); 2393 } 2394 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2395 2396 if (do_read_u32(ff, &nr)) 2397 return -1; 2398 2399 ph->env.nr_sibling_threads = nr; 2400 size += sizeof(u32); 2401 2402 for (i = 0; i < nr; i++) { 2403 str = do_read_string(ff); 2404 if (!str) 2405 goto error; 2406 2407 /* include a NULL character at the end */ 2408 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2409 goto error; 2410 size += string_size(str); 2411 free(str); 2412 } 2413 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2414 2415 /* 2416 * The header may be from old perf, 2417 * which doesn't include core id and socket id information. 2418 */ 2419 if (ff->size <= size) { 2420 zfree(&ph->env.cpu); 2421 return 0; 2422 } 2423 2424 /* On s390 the socket_id number is not related to the numbers of cpus. 2425 * The socket_id number might be higher than the numbers of cpus. 2426 * This depends on the configuration. 2427 * AArch64 is the same. 2428 */ 2429 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2430 || !strncmp(ph->env.arch, "aarch64", 7))) 2431 do_core_id_test = false; 2432 2433 for (i = 0; i < (u32)cpu_nr; i++) { 2434 if (do_read_u32(ff, &nr)) 2435 goto free_cpu; 2436 2437 ph->env.cpu[i].core_id = nr; 2438 size += sizeof(u32); 2439 2440 if (do_read_u32(ff, &nr)) 2441 goto free_cpu; 2442 2443 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2444 pr_debug("socket_id number is too big." 2445 "You may need to upgrade the perf tool.\n"); 2446 goto free_cpu; 2447 } 2448 2449 ph->env.cpu[i].socket_id = nr; 2450 size += sizeof(u32); 2451 } 2452 2453 /* 2454 * The header may be from old perf, 2455 * which doesn't include die information. 2456 */ 2457 if (ff->size <= size) 2458 return 0; 2459 2460 if (do_read_u32(ff, &nr)) 2461 return -1; 2462 2463 ph->env.nr_sibling_dies = nr; 2464 size += sizeof(u32); 2465 2466 for (i = 0; i < nr; i++) { 2467 str = do_read_string(ff); 2468 if (!str) 2469 goto error; 2470 2471 /* include a NULL character at the end */ 2472 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2473 goto error; 2474 size += string_size(str); 2475 free(str); 2476 } 2477 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2478 2479 for (i = 0; i < (u32)cpu_nr; i++) { 2480 if (do_read_u32(ff, &nr)) 2481 goto free_cpu; 2482 2483 ph->env.cpu[i].die_id = nr; 2484 } 2485 2486 return 0; 2487 2488 error: 2489 strbuf_release(&sb); 2490 free_cpu: 2491 zfree(&ph->env.cpu); 2492 return -1; 2493 } 2494 2495 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2496 { 2497 struct numa_node *nodes, *n; 2498 u32 nr, i; 2499 char *str; 2500 2501 /* nr nodes */ 2502 if (do_read_u32(ff, &nr)) 2503 return -1; 2504 2505 nodes = zalloc(sizeof(*nodes) * nr); 2506 if (!nodes) 2507 return -ENOMEM; 2508 2509 for (i = 0; i < nr; i++) { 2510 n = &nodes[i]; 2511 2512 /* node number */ 2513 if (do_read_u32(ff, &n->node)) 2514 goto error; 2515 2516 if (do_read_u64(ff, &n->mem_total)) 2517 goto error; 2518 2519 if (do_read_u64(ff, &n->mem_free)) 2520 goto error; 2521 2522 str = do_read_string(ff); 2523 if (!str) 2524 goto error; 2525 2526 n->map = perf_cpu_map__new(str); 2527 if (!n->map) 2528 goto error; 2529 2530 free(str); 2531 } 2532 ff->ph->env.nr_numa_nodes = nr; 2533 ff->ph->env.numa_nodes = nodes; 2534 return 0; 2535 2536 error: 2537 free(nodes); 2538 return -1; 2539 } 2540 2541 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2542 { 2543 char *name; 2544 u32 pmu_num; 2545 u32 type; 2546 struct strbuf sb; 2547 2548 if (do_read_u32(ff, &pmu_num)) 2549 return -1; 2550 2551 if (!pmu_num) { 2552 pr_debug("pmu mappings not available\n"); 2553 return 0; 2554 } 2555 2556 ff->ph->env.nr_pmu_mappings = pmu_num; 2557 if (strbuf_init(&sb, 128) < 0) 2558 return -1; 2559 2560 while (pmu_num) { 2561 if (do_read_u32(ff, &type)) 2562 goto error; 2563 2564 name = do_read_string(ff); 2565 if (!name) 2566 goto error; 2567 2568 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2569 goto error; 2570 /* include a NULL character at the end */ 2571 if (strbuf_add(&sb, "", 1) < 0) 2572 goto error; 2573 2574 if (!strcmp(name, "msr")) 2575 ff->ph->env.msr_pmu_type = type; 2576 2577 free(name); 2578 pmu_num--; 2579 } 2580 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2581 return 0; 2582 2583 error: 2584 strbuf_release(&sb); 2585 return -1; 2586 } 2587 2588 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2589 { 2590 size_t ret = -1; 2591 u32 i, nr, nr_groups; 2592 struct perf_session *session; 2593 struct evsel *evsel, *leader = NULL; 2594 struct group_desc { 2595 char *name; 2596 u32 leader_idx; 2597 u32 nr_members; 2598 } *desc; 2599 2600 if (do_read_u32(ff, &nr_groups)) 2601 return -1; 2602 2603 ff->ph->env.nr_groups = nr_groups; 2604 if (!nr_groups) { 2605 pr_debug("group desc not available\n"); 2606 return 0; 2607 } 2608 2609 desc = calloc(nr_groups, sizeof(*desc)); 2610 if (!desc) 2611 return -1; 2612 2613 for (i = 0; i < nr_groups; i++) { 2614 desc[i].name = do_read_string(ff); 2615 if (!desc[i].name) 2616 goto out_free; 2617 2618 if (do_read_u32(ff, &desc[i].leader_idx)) 2619 goto out_free; 2620 2621 if (do_read_u32(ff, &desc[i].nr_members)) 2622 goto out_free; 2623 } 2624 2625 /* 2626 * Rebuild group relationship based on the group_desc 2627 */ 2628 session = container_of(ff->ph, struct perf_session, header); 2629 session->evlist->nr_groups = nr_groups; 2630 2631 i = nr = 0; 2632 evlist__for_each_entry(session->evlist, evsel) { 2633 if (evsel->idx == (int) desc[i].leader_idx) { 2634 evsel->leader = evsel; 2635 /* {anon_group} is a dummy name */ 2636 if (strcmp(desc[i].name, "{anon_group}")) { 2637 evsel->group_name = desc[i].name; 2638 desc[i].name = NULL; 2639 } 2640 evsel->core.nr_members = desc[i].nr_members; 2641 2642 if (i >= nr_groups || nr > 0) { 2643 pr_debug("invalid group desc\n"); 2644 goto out_free; 2645 } 2646 2647 leader = evsel; 2648 nr = evsel->core.nr_members - 1; 2649 i++; 2650 } else if (nr) { 2651 /* This is a group member */ 2652 evsel->leader = leader; 2653 2654 nr--; 2655 } 2656 } 2657 2658 if (i != nr_groups || nr != 0) { 2659 pr_debug("invalid group desc\n"); 2660 goto out_free; 2661 } 2662 2663 ret = 0; 2664 out_free: 2665 for (i = 0; i < nr_groups; i++) 2666 zfree(&desc[i].name); 2667 free(desc); 2668 2669 return ret; 2670 } 2671 2672 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2673 { 2674 struct perf_session *session; 2675 int err; 2676 2677 session = container_of(ff->ph, struct perf_session, header); 2678 2679 err = auxtrace_index__process(ff->fd, ff->size, session, 2680 ff->ph->needs_swap); 2681 if (err < 0) 2682 pr_err("Failed to process auxtrace index\n"); 2683 return err; 2684 } 2685 2686 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2687 { 2688 struct cpu_cache_level *caches; 2689 u32 cnt, i, version; 2690 2691 if (do_read_u32(ff, &version)) 2692 return -1; 2693 2694 if (version != 1) 2695 return -1; 2696 2697 if (do_read_u32(ff, &cnt)) 2698 return -1; 2699 2700 caches = zalloc(sizeof(*caches) * cnt); 2701 if (!caches) 2702 return -1; 2703 2704 for (i = 0; i < cnt; i++) { 2705 struct cpu_cache_level c; 2706 2707 #define _R(v) \ 2708 if (do_read_u32(ff, &c.v))\ 2709 goto out_free_caches; \ 2710 2711 _R(level) 2712 _R(line_size) 2713 _R(sets) 2714 _R(ways) 2715 #undef _R 2716 2717 #define _R(v) \ 2718 c.v = do_read_string(ff); \ 2719 if (!c.v) \ 2720 goto out_free_caches; 2721 2722 _R(type) 2723 _R(size) 2724 _R(map) 2725 #undef _R 2726 2727 caches[i] = c; 2728 } 2729 2730 ff->ph->env.caches = caches; 2731 ff->ph->env.caches_cnt = cnt; 2732 return 0; 2733 out_free_caches: 2734 free(caches); 2735 return -1; 2736 } 2737 2738 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2739 { 2740 struct perf_session *session; 2741 u64 first_sample_time, last_sample_time; 2742 int ret; 2743 2744 session = container_of(ff->ph, struct perf_session, header); 2745 2746 ret = do_read_u64(ff, &first_sample_time); 2747 if (ret) 2748 return -1; 2749 2750 ret = do_read_u64(ff, &last_sample_time); 2751 if (ret) 2752 return -1; 2753 2754 session->evlist->first_sample_time = first_sample_time; 2755 session->evlist->last_sample_time = last_sample_time; 2756 return 0; 2757 } 2758 2759 static int process_mem_topology(struct feat_fd *ff, 2760 void *data __maybe_unused) 2761 { 2762 struct memory_node *nodes; 2763 u64 version, i, nr, bsize; 2764 int ret = -1; 2765 2766 if (do_read_u64(ff, &version)) 2767 return -1; 2768 2769 if (version != 1) 2770 return -1; 2771 2772 if (do_read_u64(ff, &bsize)) 2773 return -1; 2774 2775 if (do_read_u64(ff, &nr)) 2776 return -1; 2777 2778 nodes = zalloc(sizeof(*nodes) * nr); 2779 if (!nodes) 2780 return -1; 2781 2782 for (i = 0; i < nr; i++) { 2783 struct memory_node n; 2784 2785 #define _R(v) \ 2786 if (do_read_u64(ff, &n.v)) \ 2787 goto out; \ 2788 2789 _R(node) 2790 _R(size) 2791 2792 #undef _R 2793 2794 if (do_read_bitmap(ff, &n.set, &n.size)) 2795 goto out; 2796 2797 nodes[i] = n; 2798 } 2799 2800 ff->ph->env.memory_bsize = bsize; 2801 ff->ph->env.memory_nodes = nodes; 2802 ff->ph->env.nr_memory_nodes = nr; 2803 ret = 0; 2804 2805 out: 2806 if (ret) 2807 free(nodes); 2808 return ret; 2809 } 2810 2811 static int process_clockid(struct feat_fd *ff, 2812 void *data __maybe_unused) 2813 { 2814 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns)) 2815 return -1; 2816 2817 return 0; 2818 } 2819 2820 static int process_clock_data(struct feat_fd *ff, 2821 void *_data __maybe_unused) 2822 { 2823 u32 data32; 2824 u64 data64; 2825 2826 /* version */ 2827 if (do_read_u32(ff, &data32)) 2828 return -1; 2829 2830 if (data32 != 1) 2831 return -1; 2832 2833 /* clockid */ 2834 if (do_read_u32(ff, &data32)) 2835 return -1; 2836 2837 ff->ph->env.clock.clockid = data32; 2838 2839 /* TOD ref time */ 2840 if (do_read_u64(ff, &data64)) 2841 return -1; 2842 2843 ff->ph->env.clock.tod_ns = data64; 2844 2845 /* clockid ref time */ 2846 if (do_read_u64(ff, &data64)) 2847 return -1; 2848 2849 ff->ph->env.clock.clockid_ns = data64; 2850 ff->ph->env.clock.enabled = true; 2851 return 0; 2852 } 2853 2854 static int process_dir_format(struct feat_fd *ff, 2855 void *_data __maybe_unused) 2856 { 2857 struct perf_session *session; 2858 struct perf_data *data; 2859 2860 session = container_of(ff->ph, struct perf_session, header); 2861 data = session->data; 2862 2863 if (WARN_ON(!perf_data__is_dir(data))) 2864 return -1; 2865 2866 return do_read_u64(ff, &data->dir.version); 2867 } 2868 2869 #ifdef HAVE_LIBBPF_SUPPORT 2870 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 2871 { 2872 struct bpf_prog_info_linear *info_linear; 2873 struct bpf_prog_info_node *info_node; 2874 struct perf_env *env = &ff->ph->env; 2875 u32 count, i; 2876 int err = -1; 2877 2878 if (ff->ph->needs_swap) { 2879 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n"); 2880 return 0; 2881 } 2882 2883 if (do_read_u32(ff, &count)) 2884 return -1; 2885 2886 down_write(&env->bpf_progs.lock); 2887 2888 for (i = 0; i < count; ++i) { 2889 u32 info_len, data_len; 2890 2891 info_linear = NULL; 2892 info_node = NULL; 2893 if (do_read_u32(ff, &info_len)) 2894 goto out; 2895 if (do_read_u32(ff, &data_len)) 2896 goto out; 2897 2898 if (info_len > sizeof(struct bpf_prog_info)) { 2899 pr_warning("detected invalid bpf_prog_info\n"); 2900 goto out; 2901 } 2902 2903 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + 2904 data_len); 2905 if (!info_linear) 2906 goto out; 2907 info_linear->info_len = sizeof(struct bpf_prog_info); 2908 info_linear->data_len = data_len; 2909 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 2910 goto out; 2911 if (__do_read(ff, &info_linear->info, info_len)) 2912 goto out; 2913 if (info_len < sizeof(struct bpf_prog_info)) 2914 memset(((void *)(&info_linear->info)) + info_len, 0, 2915 sizeof(struct bpf_prog_info) - info_len); 2916 2917 if (__do_read(ff, info_linear->data, data_len)) 2918 goto out; 2919 2920 info_node = malloc(sizeof(struct bpf_prog_info_node)); 2921 if (!info_node) 2922 goto out; 2923 2924 /* after reading from file, translate offset to address */ 2925 bpf_program__bpil_offs_to_addr(info_linear); 2926 info_node->info_linear = info_linear; 2927 perf_env__insert_bpf_prog_info(env, info_node); 2928 } 2929 2930 up_write(&env->bpf_progs.lock); 2931 return 0; 2932 out: 2933 free(info_linear); 2934 free(info_node); 2935 up_write(&env->bpf_progs.lock); 2936 return err; 2937 } 2938 2939 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 2940 { 2941 struct perf_env *env = &ff->ph->env; 2942 struct btf_node *node = NULL; 2943 u32 count, i; 2944 int err = -1; 2945 2946 if (ff->ph->needs_swap) { 2947 pr_warning("interpreting btf from systems with endianity is not yet supported\n"); 2948 return 0; 2949 } 2950 2951 if (do_read_u32(ff, &count)) 2952 return -1; 2953 2954 down_write(&env->bpf_progs.lock); 2955 2956 for (i = 0; i < count; ++i) { 2957 u32 id, data_size; 2958 2959 if (do_read_u32(ff, &id)) 2960 goto out; 2961 if (do_read_u32(ff, &data_size)) 2962 goto out; 2963 2964 node = malloc(sizeof(struct btf_node) + data_size); 2965 if (!node) 2966 goto out; 2967 2968 node->id = id; 2969 node->data_size = data_size; 2970 2971 if (__do_read(ff, node->data, data_size)) 2972 goto out; 2973 2974 perf_env__insert_btf(env, node); 2975 node = NULL; 2976 } 2977 2978 err = 0; 2979 out: 2980 up_write(&env->bpf_progs.lock); 2981 free(node); 2982 return err; 2983 } 2984 #endif // HAVE_LIBBPF_SUPPORT 2985 2986 static int process_compressed(struct feat_fd *ff, 2987 void *data __maybe_unused) 2988 { 2989 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 2990 return -1; 2991 2992 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 2993 return -1; 2994 2995 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 2996 return -1; 2997 2998 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 2999 return -1; 3000 3001 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 3002 return -1; 3003 3004 return 0; 3005 } 3006 3007 static int process_cpu_pmu_caps(struct feat_fd *ff, 3008 void *data __maybe_unused) 3009 { 3010 char *name, *value; 3011 struct strbuf sb; 3012 u32 nr_caps; 3013 3014 if (do_read_u32(ff, &nr_caps)) 3015 return -1; 3016 3017 if (!nr_caps) { 3018 pr_debug("cpu pmu capabilities not available\n"); 3019 return 0; 3020 } 3021 3022 ff->ph->env.nr_cpu_pmu_caps = nr_caps; 3023 3024 if (strbuf_init(&sb, 128) < 0) 3025 return -1; 3026 3027 while (nr_caps--) { 3028 name = do_read_string(ff); 3029 if (!name) 3030 goto error; 3031 3032 value = do_read_string(ff); 3033 if (!value) 3034 goto free_name; 3035 3036 if (strbuf_addf(&sb, "%s=%s", name, value) < 0) 3037 goto free_value; 3038 3039 /* include a NULL character at the end */ 3040 if (strbuf_add(&sb, "", 1) < 0) 3041 goto free_value; 3042 3043 if (!strcmp(name, "branches")) 3044 ff->ph->env.max_branches = atoi(value); 3045 3046 free(value); 3047 free(name); 3048 } 3049 ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL); 3050 return 0; 3051 3052 free_value: 3053 free(value); 3054 free_name: 3055 free(name); 3056 error: 3057 strbuf_release(&sb); 3058 return -1; 3059 } 3060 3061 #define FEAT_OPR(n, func, __full_only) \ 3062 [HEADER_##n] = { \ 3063 .name = __stringify(n), \ 3064 .write = write_##func, \ 3065 .print = print_##func, \ 3066 .full_only = __full_only, \ 3067 .process = process_##func, \ 3068 .synthesize = true \ 3069 } 3070 3071 #define FEAT_OPN(n, func, __full_only) \ 3072 [HEADER_##n] = { \ 3073 .name = __stringify(n), \ 3074 .write = write_##func, \ 3075 .print = print_##func, \ 3076 .full_only = __full_only, \ 3077 .process = process_##func \ 3078 } 3079 3080 /* feature_ops not implemented: */ 3081 #define print_tracing_data NULL 3082 #define print_build_id NULL 3083 3084 #define process_branch_stack NULL 3085 #define process_stat NULL 3086 3087 // Only used in util/synthetic-events.c 3088 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 3089 3090 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 3091 FEAT_OPN(TRACING_DATA, tracing_data, false), 3092 FEAT_OPN(BUILD_ID, build_id, false), 3093 FEAT_OPR(HOSTNAME, hostname, false), 3094 FEAT_OPR(OSRELEASE, osrelease, false), 3095 FEAT_OPR(VERSION, version, false), 3096 FEAT_OPR(ARCH, arch, false), 3097 FEAT_OPR(NRCPUS, nrcpus, false), 3098 FEAT_OPR(CPUDESC, cpudesc, false), 3099 FEAT_OPR(CPUID, cpuid, false), 3100 FEAT_OPR(TOTAL_MEM, total_mem, false), 3101 FEAT_OPR(EVENT_DESC, event_desc, false), 3102 FEAT_OPR(CMDLINE, cmdline, false), 3103 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 3104 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 3105 FEAT_OPN(BRANCH_STACK, branch_stack, false), 3106 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 3107 FEAT_OPR(GROUP_DESC, group_desc, false), 3108 FEAT_OPN(AUXTRACE, auxtrace, false), 3109 FEAT_OPN(STAT, stat, false), 3110 FEAT_OPN(CACHE, cache, true), 3111 FEAT_OPR(SAMPLE_TIME, sample_time, false), 3112 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 3113 FEAT_OPR(CLOCKID, clockid, false), 3114 FEAT_OPN(DIR_FORMAT, dir_format, false), 3115 #ifdef HAVE_LIBBPF_SUPPORT 3116 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 3117 FEAT_OPR(BPF_BTF, bpf_btf, false), 3118 #endif 3119 FEAT_OPR(COMPRESSED, compressed, false), 3120 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), 3121 FEAT_OPR(CLOCK_DATA, clock_data, false), 3122 }; 3123 3124 struct header_print_data { 3125 FILE *fp; 3126 bool full; /* extended list of headers */ 3127 }; 3128 3129 static int perf_file_section__fprintf_info(struct perf_file_section *section, 3130 struct perf_header *ph, 3131 int feat, int fd, void *data) 3132 { 3133 struct header_print_data *hd = data; 3134 struct feat_fd ff; 3135 3136 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3137 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3138 "%d, continuing...\n", section->offset, feat); 3139 return 0; 3140 } 3141 if (feat >= HEADER_LAST_FEATURE) { 3142 pr_warning("unknown feature %d\n", feat); 3143 return 0; 3144 } 3145 if (!feat_ops[feat].print) 3146 return 0; 3147 3148 ff = (struct feat_fd) { 3149 .fd = fd, 3150 .ph = ph, 3151 }; 3152 3153 if (!feat_ops[feat].full_only || hd->full) 3154 feat_ops[feat].print(&ff, hd->fp); 3155 else 3156 fprintf(hd->fp, "# %s info available, use -I to display\n", 3157 feat_ops[feat].name); 3158 3159 return 0; 3160 } 3161 3162 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 3163 { 3164 struct header_print_data hd; 3165 struct perf_header *header = &session->header; 3166 int fd = perf_data__fd(session->data); 3167 struct stat st; 3168 time_t stctime; 3169 int ret, bit; 3170 3171 hd.fp = fp; 3172 hd.full = full; 3173 3174 ret = fstat(fd, &st); 3175 if (ret == -1) 3176 return -1; 3177 3178 stctime = st.st_mtime; 3179 fprintf(fp, "# captured on : %s", ctime(&stctime)); 3180 3181 fprintf(fp, "# header version : %u\n", header->version); 3182 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 3183 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 3184 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 3185 3186 perf_header__process_sections(header, fd, &hd, 3187 perf_file_section__fprintf_info); 3188 3189 if (session->data->is_pipe) 3190 return 0; 3191 3192 fprintf(fp, "# missing features: "); 3193 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 3194 if (bit) 3195 fprintf(fp, "%s ", feat_ops[bit].name); 3196 } 3197 3198 fprintf(fp, "\n"); 3199 return 0; 3200 } 3201 3202 static int do_write_feat(struct feat_fd *ff, int type, 3203 struct perf_file_section **p, 3204 struct evlist *evlist) 3205 { 3206 int err; 3207 int ret = 0; 3208 3209 if (perf_header__has_feat(ff->ph, type)) { 3210 if (!feat_ops[type].write) 3211 return -1; 3212 3213 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 3214 return -1; 3215 3216 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3217 3218 err = feat_ops[type].write(ff, evlist); 3219 if (err < 0) { 3220 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3221 3222 /* undo anything written */ 3223 lseek(ff->fd, (*p)->offset, SEEK_SET); 3224 3225 return -1; 3226 } 3227 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3228 (*p)++; 3229 } 3230 return ret; 3231 } 3232 3233 static int perf_header__adds_write(struct perf_header *header, 3234 struct evlist *evlist, int fd) 3235 { 3236 int nr_sections; 3237 struct feat_fd ff; 3238 struct perf_file_section *feat_sec, *p; 3239 int sec_size; 3240 u64 sec_start; 3241 int feat; 3242 int err; 3243 3244 ff = (struct feat_fd){ 3245 .fd = fd, 3246 .ph = header, 3247 }; 3248 3249 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3250 if (!nr_sections) 3251 return 0; 3252 3253 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3254 if (feat_sec == NULL) 3255 return -ENOMEM; 3256 3257 sec_size = sizeof(*feat_sec) * nr_sections; 3258 3259 sec_start = header->feat_offset; 3260 lseek(fd, sec_start + sec_size, SEEK_SET); 3261 3262 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3263 if (do_write_feat(&ff, feat, &p, evlist)) 3264 perf_header__clear_feat(header, feat); 3265 } 3266 3267 lseek(fd, sec_start, SEEK_SET); 3268 /* 3269 * may write more than needed due to dropped feature, but 3270 * this is okay, reader will skip the missing entries 3271 */ 3272 err = do_write(&ff, feat_sec, sec_size); 3273 if (err < 0) 3274 pr_debug("failed to write feature section\n"); 3275 free(feat_sec); 3276 return err; 3277 } 3278 3279 int perf_header__write_pipe(int fd) 3280 { 3281 struct perf_pipe_file_header f_header; 3282 struct feat_fd ff; 3283 int err; 3284 3285 ff = (struct feat_fd){ .fd = fd }; 3286 3287 f_header = (struct perf_pipe_file_header){ 3288 .magic = PERF_MAGIC, 3289 .size = sizeof(f_header), 3290 }; 3291 3292 err = do_write(&ff, &f_header, sizeof(f_header)); 3293 if (err < 0) { 3294 pr_debug("failed to write perf pipe header\n"); 3295 return err; 3296 } 3297 3298 return 0; 3299 } 3300 3301 int perf_session__write_header(struct perf_session *session, 3302 struct evlist *evlist, 3303 int fd, bool at_exit) 3304 { 3305 struct perf_file_header f_header; 3306 struct perf_file_attr f_attr; 3307 struct perf_header *header = &session->header; 3308 struct evsel *evsel; 3309 struct feat_fd ff; 3310 u64 attr_offset; 3311 int err; 3312 3313 ff = (struct feat_fd){ .fd = fd}; 3314 lseek(fd, sizeof(f_header), SEEK_SET); 3315 3316 evlist__for_each_entry(session->evlist, evsel) { 3317 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3318 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3319 if (err < 0) { 3320 pr_debug("failed to write perf header\n"); 3321 return err; 3322 } 3323 } 3324 3325 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3326 3327 evlist__for_each_entry(evlist, evsel) { 3328 f_attr = (struct perf_file_attr){ 3329 .attr = evsel->core.attr, 3330 .ids = { 3331 .offset = evsel->id_offset, 3332 .size = evsel->core.ids * sizeof(u64), 3333 } 3334 }; 3335 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3336 if (err < 0) { 3337 pr_debug("failed to write perf header attribute\n"); 3338 return err; 3339 } 3340 } 3341 3342 if (!header->data_offset) 3343 header->data_offset = lseek(fd, 0, SEEK_CUR); 3344 header->feat_offset = header->data_offset + header->data_size; 3345 3346 if (at_exit) { 3347 err = perf_header__adds_write(header, evlist, fd); 3348 if (err < 0) 3349 return err; 3350 } 3351 3352 f_header = (struct perf_file_header){ 3353 .magic = PERF_MAGIC, 3354 .size = sizeof(f_header), 3355 .attr_size = sizeof(f_attr), 3356 .attrs = { 3357 .offset = attr_offset, 3358 .size = evlist->core.nr_entries * sizeof(f_attr), 3359 }, 3360 .data = { 3361 .offset = header->data_offset, 3362 .size = header->data_size, 3363 }, 3364 /* event_types is ignored, store zeros */ 3365 }; 3366 3367 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3368 3369 lseek(fd, 0, SEEK_SET); 3370 err = do_write(&ff, &f_header, sizeof(f_header)); 3371 if (err < 0) { 3372 pr_debug("failed to write perf header\n"); 3373 return err; 3374 } 3375 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3376 3377 return 0; 3378 } 3379 3380 static int perf_header__getbuffer64(struct perf_header *header, 3381 int fd, void *buf, size_t size) 3382 { 3383 if (readn(fd, buf, size) <= 0) 3384 return -1; 3385 3386 if (header->needs_swap) 3387 mem_bswap_64(buf, size); 3388 3389 return 0; 3390 } 3391 3392 int perf_header__process_sections(struct perf_header *header, int fd, 3393 void *data, 3394 int (*process)(struct perf_file_section *section, 3395 struct perf_header *ph, 3396 int feat, int fd, void *data)) 3397 { 3398 struct perf_file_section *feat_sec, *sec; 3399 int nr_sections; 3400 int sec_size; 3401 int feat; 3402 int err; 3403 3404 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3405 if (!nr_sections) 3406 return 0; 3407 3408 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3409 if (!feat_sec) 3410 return -1; 3411 3412 sec_size = sizeof(*feat_sec) * nr_sections; 3413 3414 lseek(fd, header->feat_offset, SEEK_SET); 3415 3416 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3417 if (err < 0) 3418 goto out_free; 3419 3420 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3421 err = process(sec++, header, feat, fd, data); 3422 if (err < 0) 3423 goto out_free; 3424 } 3425 err = 0; 3426 out_free: 3427 free(feat_sec); 3428 return err; 3429 } 3430 3431 static const int attr_file_abi_sizes[] = { 3432 [0] = PERF_ATTR_SIZE_VER0, 3433 [1] = PERF_ATTR_SIZE_VER1, 3434 [2] = PERF_ATTR_SIZE_VER2, 3435 [3] = PERF_ATTR_SIZE_VER3, 3436 [4] = PERF_ATTR_SIZE_VER4, 3437 0, 3438 }; 3439 3440 /* 3441 * In the legacy file format, the magic number is not used to encode endianness. 3442 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3443 * on ABI revisions, we need to try all combinations for all endianness to 3444 * detect the endianness. 3445 */ 3446 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3447 { 3448 uint64_t ref_size, attr_size; 3449 int i; 3450 3451 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3452 ref_size = attr_file_abi_sizes[i] 3453 + sizeof(struct perf_file_section); 3454 if (hdr_sz != ref_size) { 3455 attr_size = bswap_64(hdr_sz); 3456 if (attr_size != ref_size) 3457 continue; 3458 3459 ph->needs_swap = true; 3460 } 3461 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3462 i, 3463 ph->needs_swap); 3464 return 0; 3465 } 3466 /* could not determine endianness */ 3467 return -1; 3468 } 3469 3470 #define PERF_PIPE_HDR_VER0 16 3471 3472 static const size_t attr_pipe_abi_sizes[] = { 3473 [0] = PERF_PIPE_HDR_VER0, 3474 0, 3475 }; 3476 3477 /* 3478 * In the legacy pipe format, there is an implicit assumption that endiannesss 3479 * between host recording the samples, and host parsing the samples is the 3480 * same. This is not always the case given that the pipe output may always be 3481 * redirected into a file and analyzed on a different machine with possibly a 3482 * different endianness and perf_event ABI revsions in the perf tool itself. 3483 */ 3484 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3485 { 3486 u64 attr_size; 3487 int i; 3488 3489 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3490 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3491 attr_size = bswap_64(hdr_sz); 3492 if (attr_size != hdr_sz) 3493 continue; 3494 3495 ph->needs_swap = true; 3496 } 3497 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3498 return 0; 3499 } 3500 return -1; 3501 } 3502 3503 bool is_perf_magic(u64 magic) 3504 { 3505 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3506 || magic == __perf_magic2 3507 || magic == __perf_magic2_sw) 3508 return true; 3509 3510 return false; 3511 } 3512 3513 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3514 bool is_pipe, struct perf_header *ph) 3515 { 3516 int ret; 3517 3518 /* check for legacy format */ 3519 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3520 if (ret == 0) { 3521 ph->version = PERF_HEADER_VERSION_1; 3522 pr_debug("legacy perf.data format\n"); 3523 if (is_pipe) 3524 return try_all_pipe_abis(hdr_sz, ph); 3525 3526 return try_all_file_abis(hdr_sz, ph); 3527 } 3528 /* 3529 * the new magic number serves two purposes: 3530 * - unique number to identify actual perf.data files 3531 * - encode endianness of file 3532 */ 3533 ph->version = PERF_HEADER_VERSION_2; 3534 3535 /* check magic number with one endianness */ 3536 if (magic == __perf_magic2) 3537 return 0; 3538 3539 /* check magic number with opposite endianness */ 3540 if (magic != __perf_magic2_sw) 3541 return -1; 3542 3543 ph->needs_swap = true; 3544 3545 return 0; 3546 } 3547 3548 int perf_file_header__read(struct perf_file_header *header, 3549 struct perf_header *ph, int fd) 3550 { 3551 ssize_t ret; 3552 3553 lseek(fd, 0, SEEK_SET); 3554 3555 ret = readn(fd, header, sizeof(*header)); 3556 if (ret <= 0) 3557 return -1; 3558 3559 if (check_magic_endian(header->magic, 3560 header->attr_size, false, ph) < 0) { 3561 pr_debug("magic/endian check failed\n"); 3562 return -1; 3563 } 3564 3565 if (ph->needs_swap) { 3566 mem_bswap_64(header, offsetof(struct perf_file_header, 3567 adds_features)); 3568 } 3569 3570 if (header->size != sizeof(*header)) { 3571 /* Support the previous format */ 3572 if (header->size == offsetof(typeof(*header), adds_features)) 3573 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3574 else 3575 return -1; 3576 } else if (ph->needs_swap) { 3577 /* 3578 * feature bitmap is declared as an array of unsigned longs -- 3579 * not good since its size can differ between the host that 3580 * generated the data file and the host analyzing the file. 3581 * 3582 * We need to handle endianness, but we don't know the size of 3583 * the unsigned long where the file was generated. Take a best 3584 * guess at determining it: try 64-bit swap first (ie., file 3585 * created on a 64-bit host), and check if the hostname feature 3586 * bit is set (this feature bit is forced on as of fbe96f2). 3587 * If the bit is not, undo the 64-bit swap and try a 32-bit 3588 * swap. If the hostname bit is still not set (e.g., older data 3589 * file), punt and fallback to the original behavior -- 3590 * clearing all feature bits and setting buildid. 3591 */ 3592 mem_bswap_64(&header->adds_features, 3593 BITS_TO_U64(HEADER_FEAT_BITS)); 3594 3595 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3596 /* unswap as u64 */ 3597 mem_bswap_64(&header->adds_features, 3598 BITS_TO_U64(HEADER_FEAT_BITS)); 3599 3600 /* unswap as u32 */ 3601 mem_bswap_32(&header->adds_features, 3602 BITS_TO_U32(HEADER_FEAT_BITS)); 3603 } 3604 3605 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3606 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3607 set_bit(HEADER_BUILD_ID, header->adds_features); 3608 } 3609 } 3610 3611 memcpy(&ph->adds_features, &header->adds_features, 3612 sizeof(ph->adds_features)); 3613 3614 ph->data_offset = header->data.offset; 3615 ph->data_size = header->data.size; 3616 ph->feat_offset = header->data.offset + header->data.size; 3617 return 0; 3618 } 3619 3620 static int perf_file_section__process(struct perf_file_section *section, 3621 struct perf_header *ph, 3622 int feat, int fd, void *data) 3623 { 3624 struct feat_fd fdd = { 3625 .fd = fd, 3626 .ph = ph, 3627 .size = section->size, 3628 .offset = section->offset, 3629 }; 3630 3631 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3632 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3633 "%d, continuing...\n", section->offset, feat); 3634 return 0; 3635 } 3636 3637 if (feat >= HEADER_LAST_FEATURE) { 3638 pr_debug("unknown feature %d, continuing...\n", feat); 3639 return 0; 3640 } 3641 3642 if (!feat_ops[feat].process) 3643 return 0; 3644 3645 return feat_ops[feat].process(&fdd, data); 3646 } 3647 3648 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 3649 struct perf_header *ph, 3650 struct perf_data* data, 3651 bool repipe) 3652 { 3653 struct feat_fd ff = { 3654 .fd = STDOUT_FILENO, 3655 .ph = ph, 3656 }; 3657 ssize_t ret; 3658 3659 ret = perf_data__read(data, header, sizeof(*header)); 3660 if (ret <= 0) 3661 return -1; 3662 3663 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 3664 pr_debug("endian/magic failed\n"); 3665 return -1; 3666 } 3667 3668 if (ph->needs_swap) 3669 header->size = bswap_64(header->size); 3670 3671 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 3672 return -1; 3673 3674 return 0; 3675 } 3676 3677 static int perf_header__read_pipe(struct perf_session *session) 3678 { 3679 struct perf_header *header = &session->header; 3680 struct perf_pipe_file_header f_header; 3681 3682 if (perf_file_header__read_pipe(&f_header, header, session->data, 3683 session->repipe) < 0) { 3684 pr_debug("incompatible file format\n"); 3685 return -EINVAL; 3686 } 3687 3688 return f_header.size == sizeof(f_header) ? 0 : -1; 3689 } 3690 3691 static int read_attr(int fd, struct perf_header *ph, 3692 struct perf_file_attr *f_attr) 3693 { 3694 struct perf_event_attr *attr = &f_attr->attr; 3695 size_t sz, left; 3696 size_t our_sz = sizeof(f_attr->attr); 3697 ssize_t ret; 3698 3699 memset(f_attr, 0, sizeof(*f_attr)); 3700 3701 /* read minimal guaranteed structure */ 3702 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 3703 if (ret <= 0) { 3704 pr_debug("cannot read %d bytes of header attr\n", 3705 PERF_ATTR_SIZE_VER0); 3706 return -1; 3707 } 3708 3709 /* on file perf_event_attr size */ 3710 sz = attr->size; 3711 3712 if (ph->needs_swap) 3713 sz = bswap_32(sz); 3714 3715 if (sz == 0) { 3716 /* assume ABI0 */ 3717 sz = PERF_ATTR_SIZE_VER0; 3718 } else if (sz > our_sz) { 3719 pr_debug("file uses a more recent and unsupported ABI" 3720 " (%zu bytes extra)\n", sz - our_sz); 3721 return -1; 3722 } 3723 /* what we have not yet read and that we know about */ 3724 left = sz - PERF_ATTR_SIZE_VER0; 3725 if (left) { 3726 void *ptr = attr; 3727 ptr += PERF_ATTR_SIZE_VER0; 3728 3729 ret = readn(fd, ptr, left); 3730 } 3731 /* read perf_file_section, ids are read in caller */ 3732 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 3733 3734 return ret <= 0 ? -1 : 0; 3735 } 3736 3737 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) 3738 { 3739 struct tep_event *event; 3740 char bf[128]; 3741 3742 /* already prepared */ 3743 if (evsel->tp_format) 3744 return 0; 3745 3746 if (pevent == NULL) { 3747 pr_debug("broken or missing trace data\n"); 3748 return -1; 3749 } 3750 3751 event = tep_find_event(pevent, evsel->core.attr.config); 3752 if (event == NULL) { 3753 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 3754 return -1; 3755 } 3756 3757 if (!evsel->name) { 3758 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 3759 evsel->name = strdup(bf); 3760 if (evsel->name == NULL) 3761 return -1; 3762 } 3763 3764 evsel->tp_format = event; 3765 return 0; 3766 } 3767 3768 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist, 3769 struct tep_handle *pevent) 3770 { 3771 struct evsel *pos; 3772 3773 evlist__for_each_entry(evlist, pos) { 3774 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 3775 evsel__prepare_tracepoint_event(pos, pevent)) 3776 return -1; 3777 } 3778 3779 return 0; 3780 } 3781 3782 int perf_session__read_header(struct perf_session *session) 3783 { 3784 struct perf_data *data = session->data; 3785 struct perf_header *header = &session->header; 3786 struct perf_file_header f_header; 3787 struct perf_file_attr f_attr; 3788 u64 f_id; 3789 int nr_attrs, nr_ids, i, j, err; 3790 int fd = perf_data__fd(data); 3791 3792 session->evlist = evlist__new(); 3793 if (session->evlist == NULL) 3794 return -ENOMEM; 3795 3796 session->evlist->env = &header->env; 3797 session->machines.host.env = &header->env; 3798 3799 /* 3800 * We can read 'pipe' data event from regular file, 3801 * check for the pipe header regardless of source. 3802 */ 3803 err = perf_header__read_pipe(session); 3804 if (!err || (err && perf_data__is_pipe(data))) { 3805 data->is_pipe = true; 3806 return err; 3807 } 3808 3809 if (perf_file_header__read(&f_header, header, fd) < 0) 3810 return -EINVAL; 3811 3812 /* 3813 * Sanity check that perf.data was written cleanly; data size is 3814 * initialized to 0 and updated only if the on_exit function is run. 3815 * If data size is still 0 then the file contains only partial 3816 * information. Just warn user and process it as much as it can. 3817 */ 3818 if (f_header.data.size == 0) { 3819 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 3820 "Was the 'perf record' command properly terminated?\n", 3821 data->file.path); 3822 } 3823 3824 if (f_header.attr_size == 0) { 3825 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 3826 "Was the 'perf record' command properly terminated?\n", 3827 data->file.path); 3828 return -EINVAL; 3829 } 3830 3831 nr_attrs = f_header.attrs.size / f_header.attr_size; 3832 lseek(fd, f_header.attrs.offset, SEEK_SET); 3833 3834 for (i = 0; i < nr_attrs; i++) { 3835 struct evsel *evsel; 3836 off_t tmp; 3837 3838 if (read_attr(fd, header, &f_attr) < 0) 3839 goto out_errno; 3840 3841 if (header->needs_swap) { 3842 f_attr.ids.size = bswap_64(f_attr.ids.size); 3843 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 3844 perf_event__attr_swap(&f_attr.attr); 3845 } 3846 3847 tmp = lseek(fd, 0, SEEK_CUR); 3848 evsel = evsel__new(&f_attr.attr); 3849 3850 if (evsel == NULL) 3851 goto out_delete_evlist; 3852 3853 evsel->needs_swap = header->needs_swap; 3854 /* 3855 * Do it before so that if perf_evsel__alloc_id fails, this 3856 * entry gets purged too at evlist__delete(). 3857 */ 3858 evlist__add(session->evlist, evsel); 3859 3860 nr_ids = f_attr.ids.size / sizeof(u64); 3861 /* 3862 * We don't have the cpu and thread maps on the header, so 3863 * for allocating the perf_sample_id table we fake 1 cpu and 3864 * hattr->ids threads. 3865 */ 3866 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 3867 goto out_delete_evlist; 3868 3869 lseek(fd, f_attr.ids.offset, SEEK_SET); 3870 3871 for (j = 0; j < nr_ids; j++) { 3872 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 3873 goto out_errno; 3874 3875 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 3876 } 3877 3878 lseek(fd, tmp, SEEK_SET); 3879 } 3880 3881 perf_header__process_sections(header, fd, &session->tevent, 3882 perf_file_section__process); 3883 3884 if (perf_evlist__prepare_tracepoint_events(session->evlist, 3885 session->tevent.pevent)) 3886 goto out_delete_evlist; 3887 3888 return 0; 3889 out_errno: 3890 return -errno; 3891 3892 out_delete_evlist: 3893 evlist__delete(session->evlist); 3894 session->evlist = NULL; 3895 return -ENOMEM; 3896 } 3897 3898 int perf_event__process_feature(struct perf_session *session, 3899 union perf_event *event) 3900 { 3901 struct perf_tool *tool = session->tool; 3902 struct feat_fd ff = { .fd = 0 }; 3903 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 3904 int type = fe->header.type; 3905 u64 feat = fe->feat_id; 3906 3907 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 3908 pr_warning("invalid record type %d in pipe-mode\n", type); 3909 return 0; 3910 } 3911 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 3912 pr_warning("invalid record type %d in pipe-mode\n", type); 3913 return -1; 3914 } 3915 3916 if (!feat_ops[feat].process) 3917 return 0; 3918 3919 ff.buf = (void *)fe->data; 3920 ff.size = event->header.size - sizeof(*fe); 3921 ff.ph = &session->header; 3922 3923 if (feat_ops[feat].process(&ff, NULL)) 3924 return -1; 3925 3926 if (!feat_ops[feat].print || !tool->show_feat_hdr) 3927 return 0; 3928 3929 if (!feat_ops[feat].full_only || 3930 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 3931 feat_ops[feat].print(&ff, stdout); 3932 } else { 3933 fprintf(stdout, "# %s info available, use -I to display\n", 3934 feat_ops[feat].name); 3935 } 3936 3937 return 0; 3938 } 3939 3940 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 3941 { 3942 struct perf_record_event_update *ev = &event->event_update; 3943 struct perf_record_event_update_scale *ev_scale; 3944 struct perf_record_event_update_cpus *ev_cpus; 3945 struct perf_cpu_map *map; 3946 size_t ret; 3947 3948 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 3949 3950 switch (ev->type) { 3951 case PERF_EVENT_UPDATE__SCALE: 3952 ev_scale = (struct perf_record_event_update_scale *)ev->data; 3953 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale); 3954 break; 3955 case PERF_EVENT_UPDATE__UNIT: 3956 ret += fprintf(fp, "... unit: %s\n", ev->data); 3957 break; 3958 case PERF_EVENT_UPDATE__NAME: 3959 ret += fprintf(fp, "... name: %s\n", ev->data); 3960 break; 3961 case PERF_EVENT_UPDATE__CPUS: 3962 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 3963 ret += fprintf(fp, "... "); 3964 3965 map = cpu_map__new_data(&ev_cpus->cpus); 3966 if (map) 3967 ret += cpu_map__fprintf(map, fp); 3968 else 3969 ret += fprintf(fp, "failed to get cpus\n"); 3970 break; 3971 default: 3972 ret += fprintf(fp, "... unknown type\n"); 3973 break; 3974 } 3975 3976 return ret; 3977 } 3978 3979 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 3980 union perf_event *event, 3981 struct evlist **pevlist) 3982 { 3983 u32 i, ids, n_ids; 3984 struct evsel *evsel; 3985 struct evlist *evlist = *pevlist; 3986 3987 if (evlist == NULL) { 3988 *pevlist = evlist = evlist__new(); 3989 if (evlist == NULL) 3990 return -ENOMEM; 3991 } 3992 3993 evsel = evsel__new(&event->attr.attr); 3994 if (evsel == NULL) 3995 return -ENOMEM; 3996 3997 evlist__add(evlist, evsel); 3998 3999 ids = event->header.size; 4000 ids -= (void *)&event->attr.id - (void *)event; 4001 n_ids = ids / sizeof(u64); 4002 /* 4003 * We don't have the cpu and thread maps on the header, so 4004 * for allocating the perf_sample_id table we fake 1 cpu and 4005 * hattr->ids threads. 4006 */ 4007 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 4008 return -ENOMEM; 4009 4010 for (i = 0; i < n_ids; i++) { 4011 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]); 4012 } 4013 4014 return 0; 4015 } 4016 4017 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 4018 union perf_event *event, 4019 struct evlist **pevlist) 4020 { 4021 struct perf_record_event_update *ev = &event->event_update; 4022 struct perf_record_event_update_scale *ev_scale; 4023 struct perf_record_event_update_cpus *ev_cpus; 4024 struct evlist *evlist; 4025 struct evsel *evsel; 4026 struct perf_cpu_map *map; 4027 4028 if (!pevlist || *pevlist == NULL) 4029 return -EINVAL; 4030 4031 evlist = *pevlist; 4032 4033 evsel = evlist__id2evsel(evlist, ev->id); 4034 if (evsel == NULL) 4035 return -EINVAL; 4036 4037 switch (ev->type) { 4038 case PERF_EVENT_UPDATE__UNIT: 4039 evsel->unit = strdup(ev->data); 4040 break; 4041 case PERF_EVENT_UPDATE__NAME: 4042 evsel->name = strdup(ev->data); 4043 break; 4044 case PERF_EVENT_UPDATE__SCALE: 4045 ev_scale = (struct perf_record_event_update_scale *)ev->data; 4046 evsel->scale = ev_scale->scale; 4047 break; 4048 case PERF_EVENT_UPDATE__CPUS: 4049 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 4050 4051 map = cpu_map__new_data(&ev_cpus->cpus); 4052 if (map) 4053 evsel->core.own_cpus = map; 4054 else 4055 pr_err("failed to get event_update cpus\n"); 4056 default: 4057 break; 4058 } 4059 4060 return 0; 4061 } 4062 4063 int perf_event__process_tracing_data(struct perf_session *session, 4064 union perf_event *event) 4065 { 4066 ssize_t size_read, padding, size = event->tracing_data.size; 4067 int fd = perf_data__fd(session->data); 4068 char buf[BUFSIZ]; 4069 4070 /* 4071 * The pipe fd is already in proper place and in any case 4072 * we can't move it, and we'd screw the case where we read 4073 * 'pipe' data from regular file. The trace_report reads 4074 * data from 'fd' so we need to set it directly behind the 4075 * event, where the tracing data starts. 4076 */ 4077 if (!perf_data__is_pipe(session->data)) { 4078 off_t offset = lseek(fd, 0, SEEK_CUR); 4079 4080 /* setup for reading amidst mmap */ 4081 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 4082 SEEK_SET); 4083 } 4084 4085 size_read = trace_report(fd, &session->tevent, 4086 session->repipe); 4087 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4088 4089 if (readn(fd, buf, padding) < 0) { 4090 pr_err("%s: reading input file", __func__); 4091 return -1; 4092 } 4093 if (session->repipe) { 4094 int retw = write(STDOUT_FILENO, buf, padding); 4095 if (retw <= 0 || retw != padding) { 4096 pr_err("%s: repiping tracing data padding", __func__); 4097 return -1; 4098 } 4099 } 4100 4101 if (size_read + padding != size) { 4102 pr_err("%s: tracing data size mismatch", __func__); 4103 return -1; 4104 } 4105 4106 perf_evlist__prepare_tracepoint_events(session->evlist, 4107 session->tevent.pevent); 4108 4109 return size_read + padding; 4110 } 4111 4112 int perf_event__process_build_id(struct perf_session *session, 4113 union perf_event *event) 4114 { 4115 __event_process_build_id(&event->build_id, 4116 event->build_id.filename, 4117 session); 4118 return 0; 4119 } 4120