1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <regex.h> 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <linux/compiler.h> 13 #include <linux/list.h> 14 #include <linux/kernel.h> 15 #include <linux/bitops.h> 16 #include <linux/string.h> 17 #include <linux/stringify.h> 18 #include <linux/zalloc.h> 19 #include <sys/stat.h> 20 #include <sys/utsname.h> 21 #include <linux/time64.h> 22 #include <dirent.h> 23 #ifdef HAVE_LIBBPF_SUPPORT 24 #include <bpf/libbpf.h> 25 #endif 26 #include <perf/cpumap.h> 27 #include <tools/libc_compat.h> // reallocarray 28 29 #include "dso.h" 30 #include "evlist.h" 31 #include "evsel.h" 32 #include "util/evsel_fprintf.h" 33 #include "header.h" 34 #include "memswap.h" 35 #include "trace-event.h" 36 #include "session.h" 37 #include "symbol.h" 38 #include "debug.h" 39 #include "cpumap.h" 40 #include "pmu.h" 41 #include "pmus.h" 42 #include "vdso.h" 43 #include "strbuf.h" 44 #include "build-id.h" 45 #include "data.h" 46 #include <api/fs/fs.h> 47 #include "asm/bug.h" 48 #include "tool.h" 49 #include "time-utils.h" 50 #include "units.h" 51 #include "util/util.h" // perf_exe() 52 #include "cputopo.h" 53 #include "bpf-event.h" 54 #include "bpf-utils.h" 55 #include "clockid.h" 56 57 #include <linux/ctype.h> 58 #include <internal/lib.h> 59 60 #ifdef HAVE_LIBTRACEEVENT 61 #include <traceevent/event-parse.h> 62 #endif 63 64 /* 65 * magic2 = "PERFILE2" 66 * must be a numerical value to let the endianness 67 * determine the memory layout. That way we are able 68 * to detect endianness when reading the perf.data file 69 * back. 70 * 71 * we check for legacy (PERFFILE) format. 72 */ 73 static const char *__perf_magic1 = "PERFFILE"; 74 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 75 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 76 77 #define PERF_MAGIC __perf_magic2 78 79 const char perf_version_string[] = PERF_VERSION; 80 81 struct perf_file_attr { 82 struct perf_event_attr attr; 83 struct perf_file_section ids; 84 }; 85 86 void perf_header__set_feat(struct perf_header *header, int feat) 87 { 88 __set_bit(feat, header->adds_features); 89 } 90 91 void perf_header__clear_feat(struct perf_header *header, int feat) 92 { 93 __clear_bit(feat, header->adds_features); 94 } 95 96 bool perf_header__has_feat(const struct perf_header *header, int feat) 97 { 98 return test_bit(feat, header->adds_features); 99 } 100 101 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 102 { 103 ssize_t ret = writen(ff->fd, buf, size); 104 105 if (ret != (ssize_t)size) 106 return ret < 0 ? (int)ret : -1; 107 return 0; 108 } 109 110 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 111 { 112 /* struct perf_event_header::size is u16 */ 113 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 114 size_t new_size = ff->size; 115 void *addr; 116 117 if (size + ff->offset > max_size) 118 return -E2BIG; 119 120 while (size > (new_size - ff->offset)) 121 new_size <<= 1; 122 new_size = min(max_size, new_size); 123 124 if (ff->size < new_size) { 125 addr = realloc(ff->buf, new_size); 126 if (!addr) 127 return -ENOMEM; 128 ff->buf = addr; 129 ff->size = new_size; 130 } 131 132 memcpy(ff->buf + ff->offset, buf, size); 133 ff->offset += size; 134 135 return 0; 136 } 137 138 /* Return: 0 if succeeded, -ERR if failed. */ 139 int do_write(struct feat_fd *ff, const void *buf, size_t size) 140 { 141 if (!ff->buf) 142 return __do_write_fd(ff, buf, size); 143 return __do_write_buf(ff, buf, size); 144 } 145 146 /* Return: 0 if succeeded, -ERR if failed. */ 147 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 148 { 149 u64 *p = (u64 *) set; 150 int i, ret; 151 152 ret = do_write(ff, &size, sizeof(size)); 153 if (ret < 0) 154 return ret; 155 156 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 157 ret = do_write(ff, p + i, sizeof(*p)); 158 if (ret < 0) 159 return ret; 160 } 161 162 return 0; 163 } 164 165 /* Return: 0 if succeeded, -ERR if failed. */ 166 int write_padded(struct feat_fd *ff, const void *bf, 167 size_t count, size_t count_aligned) 168 { 169 static const char zero_buf[NAME_ALIGN]; 170 int err = do_write(ff, bf, count); 171 172 if (!err) 173 err = do_write(ff, zero_buf, count_aligned - count); 174 175 return err; 176 } 177 178 #define string_size(str) \ 179 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 180 181 /* Return: 0 if succeeded, -ERR if failed. */ 182 static int do_write_string(struct feat_fd *ff, const char *str) 183 { 184 u32 len, olen; 185 int ret; 186 187 olen = strlen(str) + 1; 188 len = PERF_ALIGN(olen, NAME_ALIGN); 189 190 /* write len, incl. \0 */ 191 ret = do_write(ff, &len, sizeof(len)); 192 if (ret < 0) 193 return ret; 194 195 return write_padded(ff, str, olen, len); 196 } 197 198 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 199 { 200 ssize_t ret = readn(ff->fd, addr, size); 201 202 if (ret != size) 203 return ret < 0 ? (int)ret : -1; 204 return 0; 205 } 206 207 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 208 { 209 if (size > (ssize_t)ff->size - ff->offset) 210 return -1; 211 212 memcpy(addr, ff->buf + ff->offset, size); 213 ff->offset += size; 214 215 return 0; 216 217 } 218 219 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 220 { 221 if (!ff->buf) 222 return __do_read_fd(ff, addr, size); 223 return __do_read_buf(ff, addr, size); 224 } 225 226 static int do_read_u32(struct feat_fd *ff, u32 *addr) 227 { 228 int ret; 229 230 ret = __do_read(ff, addr, sizeof(*addr)); 231 if (ret) 232 return ret; 233 234 if (ff->ph->needs_swap) 235 *addr = bswap_32(*addr); 236 return 0; 237 } 238 239 static int do_read_u64(struct feat_fd *ff, u64 *addr) 240 { 241 int ret; 242 243 ret = __do_read(ff, addr, sizeof(*addr)); 244 if (ret) 245 return ret; 246 247 if (ff->ph->needs_swap) 248 *addr = bswap_64(*addr); 249 return 0; 250 } 251 252 static char *do_read_string(struct feat_fd *ff) 253 { 254 u32 len; 255 char *buf; 256 257 if (do_read_u32(ff, &len)) 258 return NULL; 259 260 buf = malloc(len); 261 if (!buf) 262 return NULL; 263 264 if (!__do_read(ff, buf, len)) { 265 /* 266 * strings are padded by zeroes 267 * thus the actual strlen of buf 268 * may be less than len 269 */ 270 return buf; 271 } 272 273 free(buf); 274 return NULL; 275 } 276 277 /* Return: 0 if succeeded, -ERR if failed. */ 278 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 279 { 280 unsigned long *set; 281 u64 size, *p; 282 int i, ret; 283 284 ret = do_read_u64(ff, &size); 285 if (ret) 286 return ret; 287 288 set = bitmap_zalloc(size); 289 if (!set) 290 return -ENOMEM; 291 292 p = (u64 *) set; 293 294 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 295 ret = do_read_u64(ff, p + i); 296 if (ret < 0) { 297 free(set); 298 return ret; 299 } 300 } 301 302 *pset = set; 303 *psize = size; 304 return 0; 305 } 306 307 #ifdef HAVE_LIBTRACEEVENT 308 static int write_tracing_data(struct feat_fd *ff, 309 struct evlist *evlist) 310 { 311 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 312 return -1; 313 314 return read_tracing_data(ff->fd, &evlist->core.entries); 315 } 316 #endif 317 318 static int write_build_id(struct feat_fd *ff, 319 struct evlist *evlist __maybe_unused) 320 { 321 struct perf_session *session; 322 int err; 323 324 session = container_of(ff->ph, struct perf_session, header); 325 326 if (!perf_session__read_build_ids(session, true)) 327 return -1; 328 329 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 330 return -1; 331 332 err = perf_session__write_buildid_table(session, ff); 333 if (err < 0) { 334 pr_debug("failed to write buildid table\n"); 335 return err; 336 } 337 perf_session__cache_build_ids(session); 338 339 return 0; 340 } 341 342 static int write_hostname(struct feat_fd *ff, 343 struct evlist *evlist __maybe_unused) 344 { 345 struct utsname uts; 346 int ret; 347 348 ret = uname(&uts); 349 if (ret < 0) 350 return -1; 351 352 return do_write_string(ff, uts.nodename); 353 } 354 355 static int write_osrelease(struct feat_fd *ff, 356 struct evlist *evlist __maybe_unused) 357 { 358 struct utsname uts; 359 int ret; 360 361 ret = uname(&uts); 362 if (ret < 0) 363 return -1; 364 365 return do_write_string(ff, uts.release); 366 } 367 368 static int write_arch(struct feat_fd *ff, 369 struct evlist *evlist __maybe_unused) 370 { 371 struct utsname uts; 372 int ret; 373 374 ret = uname(&uts); 375 if (ret < 0) 376 return -1; 377 378 return do_write_string(ff, uts.machine); 379 } 380 381 static int write_version(struct feat_fd *ff, 382 struct evlist *evlist __maybe_unused) 383 { 384 return do_write_string(ff, perf_version_string); 385 } 386 387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 388 { 389 FILE *file; 390 char *buf = NULL; 391 char *s, *p; 392 const char *search = cpuinfo_proc; 393 size_t len = 0; 394 int ret = -1; 395 396 if (!search) 397 return -1; 398 399 file = fopen("/proc/cpuinfo", "r"); 400 if (!file) 401 return -1; 402 403 while (getline(&buf, &len, file) > 0) { 404 ret = strncmp(buf, search, strlen(search)); 405 if (!ret) 406 break; 407 } 408 409 if (ret) { 410 ret = -1; 411 goto done; 412 } 413 414 s = buf; 415 416 p = strchr(buf, ':'); 417 if (p && *(p+1) == ' ' && *(p+2)) 418 s = p + 2; 419 p = strchr(s, '\n'); 420 if (p) 421 *p = '\0'; 422 423 /* squash extra space characters (branding string) */ 424 p = s; 425 while (*p) { 426 if (isspace(*p)) { 427 char *r = p + 1; 428 char *q = skip_spaces(r); 429 *p = ' '; 430 if (q != (p+1)) 431 while ((*r++ = *q++)); 432 } 433 p++; 434 } 435 ret = do_write_string(ff, s); 436 done: 437 free(buf); 438 fclose(file); 439 return ret; 440 } 441 442 static int write_cpudesc(struct feat_fd *ff, 443 struct evlist *evlist __maybe_unused) 444 { 445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 446 #define CPUINFO_PROC { "cpu", } 447 #elif defined(__s390__) 448 #define CPUINFO_PROC { "vendor_id", } 449 #elif defined(__sh__) 450 #define CPUINFO_PROC { "cpu type", } 451 #elif defined(__alpha__) || defined(__mips__) 452 #define CPUINFO_PROC { "cpu model", } 453 #elif defined(__arm__) 454 #define CPUINFO_PROC { "model name", "Processor", } 455 #elif defined(__arc__) 456 #define CPUINFO_PROC { "Processor", } 457 #elif defined(__xtensa__) 458 #define CPUINFO_PROC { "core ID", } 459 #elif defined(__loongarch__) 460 #define CPUINFO_PROC { "Model Name", } 461 #else 462 #define CPUINFO_PROC { "model name", } 463 #endif 464 const char *cpuinfo_procs[] = CPUINFO_PROC; 465 #undef CPUINFO_PROC 466 unsigned int i; 467 468 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 469 int ret; 470 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 471 if (ret >= 0) 472 return ret; 473 } 474 return -1; 475 } 476 477 478 static int write_nrcpus(struct feat_fd *ff, 479 struct evlist *evlist __maybe_unused) 480 { 481 long nr; 482 u32 nrc, nra; 483 int ret; 484 485 nrc = cpu__max_present_cpu().cpu; 486 487 nr = sysconf(_SC_NPROCESSORS_ONLN); 488 if (nr < 0) 489 return -1; 490 491 nra = (u32)(nr & UINT_MAX); 492 493 ret = do_write(ff, &nrc, sizeof(nrc)); 494 if (ret < 0) 495 return ret; 496 497 return do_write(ff, &nra, sizeof(nra)); 498 } 499 500 static int write_event_desc(struct feat_fd *ff, 501 struct evlist *evlist) 502 { 503 struct evsel *evsel; 504 u32 nre, nri, sz; 505 int ret; 506 507 nre = evlist->core.nr_entries; 508 509 /* 510 * write number of events 511 */ 512 ret = do_write(ff, &nre, sizeof(nre)); 513 if (ret < 0) 514 return ret; 515 516 /* 517 * size of perf_event_attr struct 518 */ 519 sz = (u32)sizeof(evsel->core.attr); 520 ret = do_write(ff, &sz, sizeof(sz)); 521 if (ret < 0) 522 return ret; 523 524 evlist__for_each_entry(evlist, evsel) { 525 ret = do_write(ff, &evsel->core.attr, sz); 526 if (ret < 0) 527 return ret; 528 /* 529 * write number of unique id per event 530 * there is one id per instance of an event 531 * 532 * copy into an nri to be independent of the 533 * type of ids, 534 */ 535 nri = evsel->core.ids; 536 ret = do_write(ff, &nri, sizeof(nri)); 537 if (ret < 0) 538 return ret; 539 540 /* 541 * write event string as passed on cmdline 542 */ 543 ret = do_write_string(ff, evsel__name(evsel)); 544 if (ret < 0) 545 return ret; 546 /* 547 * write unique ids for this event 548 */ 549 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 550 if (ret < 0) 551 return ret; 552 } 553 return 0; 554 } 555 556 static int write_cmdline(struct feat_fd *ff, 557 struct evlist *evlist __maybe_unused) 558 { 559 char pbuf[MAXPATHLEN], *buf; 560 int i, ret, n; 561 562 /* actual path to perf binary */ 563 buf = perf_exe(pbuf, MAXPATHLEN); 564 565 /* account for binary path */ 566 n = perf_env.nr_cmdline + 1; 567 568 ret = do_write(ff, &n, sizeof(n)); 569 if (ret < 0) 570 return ret; 571 572 ret = do_write_string(ff, buf); 573 if (ret < 0) 574 return ret; 575 576 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 577 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 578 if (ret < 0) 579 return ret; 580 } 581 return 0; 582 } 583 584 585 static int write_cpu_topology(struct feat_fd *ff, 586 struct evlist *evlist __maybe_unused) 587 { 588 struct cpu_topology *tp; 589 u32 i; 590 int ret, j; 591 592 tp = cpu_topology__new(); 593 if (!tp) 594 return -1; 595 596 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists)); 597 if (ret < 0) 598 goto done; 599 600 for (i = 0; i < tp->package_cpus_lists; i++) { 601 ret = do_write_string(ff, tp->package_cpus_list[i]); 602 if (ret < 0) 603 goto done; 604 } 605 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists)); 606 if (ret < 0) 607 goto done; 608 609 for (i = 0; i < tp->core_cpus_lists; i++) { 610 ret = do_write_string(ff, tp->core_cpus_list[i]); 611 if (ret < 0) 612 break; 613 } 614 615 ret = perf_env__read_cpu_topology_map(&perf_env); 616 if (ret < 0) 617 goto done; 618 619 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 620 ret = do_write(ff, &perf_env.cpu[j].core_id, 621 sizeof(perf_env.cpu[j].core_id)); 622 if (ret < 0) 623 return ret; 624 ret = do_write(ff, &perf_env.cpu[j].socket_id, 625 sizeof(perf_env.cpu[j].socket_id)); 626 if (ret < 0) 627 return ret; 628 } 629 630 if (!tp->die_cpus_lists) 631 goto done; 632 633 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists)); 634 if (ret < 0) 635 goto done; 636 637 for (i = 0; i < tp->die_cpus_lists; i++) { 638 ret = do_write_string(ff, tp->die_cpus_list[i]); 639 if (ret < 0) 640 goto done; 641 } 642 643 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 644 ret = do_write(ff, &perf_env.cpu[j].die_id, 645 sizeof(perf_env.cpu[j].die_id)); 646 if (ret < 0) 647 return ret; 648 } 649 650 done: 651 cpu_topology__delete(tp); 652 return ret; 653 } 654 655 656 657 static int write_total_mem(struct feat_fd *ff, 658 struct evlist *evlist __maybe_unused) 659 { 660 char *buf = NULL; 661 FILE *fp; 662 size_t len = 0; 663 int ret = -1, n; 664 uint64_t mem; 665 666 fp = fopen("/proc/meminfo", "r"); 667 if (!fp) 668 return -1; 669 670 while (getline(&buf, &len, fp) > 0) { 671 ret = strncmp(buf, "MemTotal:", 9); 672 if (!ret) 673 break; 674 } 675 if (!ret) { 676 n = sscanf(buf, "%*s %"PRIu64, &mem); 677 if (n == 1) 678 ret = do_write(ff, &mem, sizeof(mem)); 679 } else 680 ret = -1; 681 free(buf); 682 fclose(fp); 683 return ret; 684 } 685 686 static int write_numa_topology(struct feat_fd *ff, 687 struct evlist *evlist __maybe_unused) 688 { 689 struct numa_topology *tp; 690 int ret = -1; 691 u32 i; 692 693 tp = numa_topology__new(); 694 if (!tp) 695 return -ENOMEM; 696 697 ret = do_write(ff, &tp->nr, sizeof(u32)); 698 if (ret < 0) 699 goto err; 700 701 for (i = 0; i < tp->nr; i++) { 702 struct numa_topology_node *n = &tp->nodes[i]; 703 704 ret = do_write(ff, &n->node, sizeof(u32)); 705 if (ret < 0) 706 goto err; 707 708 ret = do_write(ff, &n->mem_total, sizeof(u64)); 709 if (ret) 710 goto err; 711 712 ret = do_write(ff, &n->mem_free, sizeof(u64)); 713 if (ret) 714 goto err; 715 716 ret = do_write_string(ff, n->cpus); 717 if (ret < 0) 718 goto err; 719 } 720 721 ret = 0; 722 723 err: 724 numa_topology__delete(tp); 725 return ret; 726 } 727 728 /* 729 * File format: 730 * 731 * struct pmu_mappings { 732 * u32 pmu_num; 733 * struct pmu_map { 734 * u32 type; 735 * char name[]; 736 * }[pmu_num]; 737 * }; 738 */ 739 740 static int write_pmu_mappings(struct feat_fd *ff, 741 struct evlist *evlist __maybe_unused) 742 { 743 struct perf_pmu *pmu = NULL; 744 u32 pmu_num = 0; 745 int ret; 746 747 /* 748 * Do a first pass to count number of pmu to avoid lseek so this 749 * works in pipe mode as well. 750 */ 751 while ((pmu = perf_pmus__scan(pmu))) 752 pmu_num++; 753 754 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 755 if (ret < 0) 756 return ret; 757 758 while ((pmu = perf_pmus__scan(pmu))) { 759 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 760 if (ret < 0) 761 return ret; 762 763 ret = do_write_string(ff, pmu->name); 764 if (ret < 0) 765 return ret; 766 } 767 768 return 0; 769 } 770 771 /* 772 * File format: 773 * 774 * struct group_descs { 775 * u32 nr_groups; 776 * struct group_desc { 777 * char name[]; 778 * u32 leader_idx; 779 * u32 nr_members; 780 * }[nr_groups]; 781 * }; 782 */ 783 static int write_group_desc(struct feat_fd *ff, 784 struct evlist *evlist) 785 { 786 u32 nr_groups = evlist__nr_groups(evlist); 787 struct evsel *evsel; 788 int ret; 789 790 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 791 if (ret < 0) 792 return ret; 793 794 evlist__for_each_entry(evlist, evsel) { 795 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 796 const char *name = evsel->group_name ?: "{anon_group}"; 797 u32 leader_idx = evsel->core.idx; 798 u32 nr_members = evsel->core.nr_members; 799 800 ret = do_write_string(ff, name); 801 if (ret < 0) 802 return ret; 803 804 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 805 if (ret < 0) 806 return ret; 807 808 ret = do_write(ff, &nr_members, sizeof(nr_members)); 809 if (ret < 0) 810 return ret; 811 } 812 } 813 return 0; 814 } 815 816 /* 817 * Return the CPU id as a raw string. 818 * 819 * Each architecture should provide a more precise id string that 820 * can be use to match the architecture's "mapfile". 821 */ 822 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 823 { 824 return NULL; 825 } 826 827 /* Return zero when the cpuid from the mapfile.csv matches the 828 * cpuid string generated on this platform. 829 * Otherwise return non-zero. 830 */ 831 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 832 { 833 regex_t re; 834 regmatch_t pmatch[1]; 835 int match; 836 837 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 838 /* Warn unable to generate match particular string. */ 839 pr_info("Invalid regular expression %s\n", mapcpuid); 840 return 1; 841 } 842 843 match = !regexec(&re, cpuid, 1, pmatch, 0); 844 regfree(&re); 845 if (match) { 846 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 847 848 /* Verify the entire string matched. */ 849 if (match_len == strlen(cpuid)) 850 return 0; 851 } 852 return 1; 853 } 854 855 /* 856 * default get_cpuid(): nothing gets recorded 857 * actual implementation must be in arch/$(SRCARCH)/util/header.c 858 */ 859 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 860 { 861 return ENOSYS; /* Not implemented */ 862 } 863 864 static int write_cpuid(struct feat_fd *ff, 865 struct evlist *evlist __maybe_unused) 866 { 867 char buffer[64]; 868 int ret; 869 870 ret = get_cpuid(buffer, sizeof(buffer)); 871 if (ret) 872 return -1; 873 874 return do_write_string(ff, buffer); 875 } 876 877 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 878 struct evlist *evlist __maybe_unused) 879 { 880 return 0; 881 } 882 883 static int write_auxtrace(struct feat_fd *ff, 884 struct evlist *evlist __maybe_unused) 885 { 886 struct perf_session *session; 887 int err; 888 889 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 890 return -1; 891 892 session = container_of(ff->ph, struct perf_session, header); 893 894 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 895 if (err < 0) 896 pr_err("Failed to write auxtrace index\n"); 897 return err; 898 } 899 900 static int write_clockid(struct feat_fd *ff, 901 struct evlist *evlist __maybe_unused) 902 { 903 return do_write(ff, &ff->ph->env.clock.clockid_res_ns, 904 sizeof(ff->ph->env.clock.clockid_res_ns)); 905 } 906 907 static int write_clock_data(struct feat_fd *ff, 908 struct evlist *evlist __maybe_unused) 909 { 910 u64 *data64; 911 u32 data32; 912 int ret; 913 914 /* version */ 915 data32 = 1; 916 917 ret = do_write(ff, &data32, sizeof(data32)); 918 if (ret < 0) 919 return ret; 920 921 /* clockid */ 922 data32 = ff->ph->env.clock.clockid; 923 924 ret = do_write(ff, &data32, sizeof(data32)); 925 if (ret < 0) 926 return ret; 927 928 /* TOD ref time */ 929 data64 = &ff->ph->env.clock.tod_ns; 930 931 ret = do_write(ff, data64, sizeof(*data64)); 932 if (ret < 0) 933 return ret; 934 935 /* clockid ref time */ 936 data64 = &ff->ph->env.clock.clockid_ns; 937 938 return do_write(ff, data64, sizeof(*data64)); 939 } 940 941 static int write_hybrid_topology(struct feat_fd *ff, 942 struct evlist *evlist __maybe_unused) 943 { 944 struct hybrid_topology *tp; 945 int ret; 946 u32 i; 947 948 tp = hybrid_topology__new(); 949 if (!tp) 950 return -ENOENT; 951 952 ret = do_write(ff, &tp->nr, sizeof(u32)); 953 if (ret < 0) 954 goto err; 955 956 for (i = 0; i < tp->nr; i++) { 957 struct hybrid_topology_node *n = &tp->nodes[i]; 958 959 ret = do_write_string(ff, n->pmu_name); 960 if (ret < 0) 961 goto err; 962 963 ret = do_write_string(ff, n->cpus); 964 if (ret < 0) 965 goto err; 966 } 967 968 ret = 0; 969 970 err: 971 hybrid_topology__delete(tp); 972 return ret; 973 } 974 975 static int write_dir_format(struct feat_fd *ff, 976 struct evlist *evlist __maybe_unused) 977 { 978 struct perf_session *session; 979 struct perf_data *data; 980 981 session = container_of(ff->ph, struct perf_session, header); 982 data = session->data; 983 984 if (WARN_ON(!perf_data__is_dir(data))) 985 return -1; 986 987 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 988 } 989 990 /* 991 * Check whether a CPU is online 992 * 993 * Returns: 994 * 1 -> if CPU is online 995 * 0 -> if CPU is offline 996 * -1 -> error case 997 */ 998 int is_cpu_online(unsigned int cpu) 999 { 1000 char *str; 1001 size_t strlen; 1002 char buf[256]; 1003 int status = -1; 1004 struct stat statbuf; 1005 1006 snprintf(buf, sizeof(buf), 1007 "/sys/devices/system/cpu/cpu%d", cpu); 1008 if (stat(buf, &statbuf) != 0) 1009 return 0; 1010 1011 /* 1012 * Check if /sys/devices/system/cpu/cpux/online file 1013 * exists. Some cases cpu0 won't have online file since 1014 * it is not expected to be turned off generally. 1015 * In kernels without CONFIG_HOTPLUG_CPU, this 1016 * file won't exist 1017 */ 1018 snprintf(buf, sizeof(buf), 1019 "/sys/devices/system/cpu/cpu%d/online", cpu); 1020 if (stat(buf, &statbuf) != 0) 1021 return 1; 1022 1023 /* 1024 * Read online file using sysfs__read_str. 1025 * If read or open fails, return -1. 1026 * If read succeeds, return value from file 1027 * which gets stored in "str" 1028 */ 1029 snprintf(buf, sizeof(buf), 1030 "devices/system/cpu/cpu%d/online", cpu); 1031 1032 if (sysfs__read_str(buf, &str, &strlen) < 0) 1033 return status; 1034 1035 status = atoi(str); 1036 1037 free(str); 1038 return status; 1039 } 1040 1041 #ifdef HAVE_LIBBPF_SUPPORT 1042 static int write_bpf_prog_info(struct feat_fd *ff, 1043 struct evlist *evlist __maybe_unused) 1044 { 1045 struct perf_env *env = &ff->ph->env; 1046 struct rb_root *root; 1047 struct rb_node *next; 1048 int ret; 1049 1050 down_read(&env->bpf_progs.lock); 1051 1052 ret = do_write(ff, &env->bpf_progs.infos_cnt, 1053 sizeof(env->bpf_progs.infos_cnt)); 1054 if (ret < 0) 1055 goto out; 1056 1057 root = &env->bpf_progs.infos; 1058 next = rb_first(root); 1059 while (next) { 1060 struct bpf_prog_info_node *node; 1061 size_t len; 1062 1063 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1064 next = rb_next(&node->rb_node); 1065 len = sizeof(struct perf_bpil) + 1066 node->info_linear->data_len; 1067 1068 /* before writing to file, translate address to offset */ 1069 bpil_addr_to_offs(node->info_linear); 1070 ret = do_write(ff, node->info_linear, len); 1071 /* 1072 * translate back to address even when do_write() fails, 1073 * so that this function never changes the data. 1074 */ 1075 bpil_offs_to_addr(node->info_linear); 1076 if (ret < 0) 1077 goto out; 1078 } 1079 out: 1080 up_read(&env->bpf_progs.lock); 1081 return ret; 1082 } 1083 1084 static int write_bpf_btf(struct feat_fd *ff, 1085 struct evlist *evlist __maybe_unused) 1086 { 1087 struct perf_env *env = &ff->ph->env; 1088 struct rb_root *root; 1089 struct rb_node *next; 1090 int ret; 1091 1092 down_read(&env->bpf_progs.lock); 1093 1094 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 1095 sizeof(env->bpf_progs.btfs_cnt)); 1096 1097 if (ret < 0) 1098 goto out; 1099 1100 root = &env->bpf_progs.btfs; 1101 next = rb_first(root); 1102 while (next) { 1103 struct btf_node *node; 1104 1105 node = rb_entry(next, struct btf_node, rb_node); 1106 next = rb_next(&node->rb_node); 1107 ret = do_write(ff, &node->id, 1108 sizeof(u32) * 2 + node->data_size); 1109 if (ret < 0) 1110 goto out; 1111 } 1112 out: 1113 up_read(&env->bpf_progs.lock); 1114 return ret; 1115 } 1116 #endif // HAVE_LIBBPF_SUPPORT 1117 1118 static int cpu_cache_level__sort(const void *a, const void *b) 1119 { 1120 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1121 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1122 1123 return cache_a->level - cache_b->level; 1124 } 1125 1126 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1127 { 1128 if (a->level != b->level) 1129 return false; 1130 1131 if (a->line_size != b->line_size) 1132 return false; 1133 1134 if (a->sets != b->sets) 1135 return false; 1136 1137 if (a->ways != b->ways) 1138 return false; 1139 1140 if (strcmp(a->type, b->type)) 1141 return false; 1142 1143 if (strcmp(a->size, b->size)) 1144 return false; 1145 1146 if (strcmp(a->map, b->map)) 1147 return false; 1148 1149 return true; 1150 } 1151 1152 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1153 { 1154 char path[PATH_MAX], file[PATH_MAX]; 1155 struct stat st; 1156 size_t len; 1157 1158 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1159 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1160 1161 if (stat(file, &st)) 1162 return 1; 1163 1164 scnprintf(file, PATH_MAX, "%s/level", path); 1165 if (sysfs__read_int(file, (int *) &cache->level)) 1166 return -1; 1167 1168 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1169 if (sysfs__read_int(file, (int *) &cache->line_size)) 1170 return -1; 1171 1172 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1173 if (sysfs__read_int(file, (int *) &cache->sets)) 1174 return -1; 1175 1176 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1177 if (sysfs__read_int(file, (int *) &cache->ways)) 1178 return -1; 1179 1180 scnprintf(file, PATH_MAX, "%s/type", path); 1181 if (sysfs__read_str(file, &cache->type, &len)) 1182 return -1; 1183 1184 cache->type[len] = 0; 1185 cache->type = strim(cache->type); 1186 1187 scnprintf(file, PATH_MAX, "%s/size", path); 1188 if (sysfs__read_str(file, &cache->size, &len)) { 1189 zfree(&cache->type); 1190 return -1; 1191 } 1192 1193 cache->size[len] = 0; 1194 cache->size = strim(cache->size); 1195 1196 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1197 if (sysfs__read_str(file, &cache->map, &len)) { 1198 zfree(&cache->size); 1199 zfree(&cache->type); 1200 return -1; 1201 } 1202 1203 cache->map[len] = 0; 1204 cache->map = strim(cache->map); 1205 return 0; 1206 } 1207 1208 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1209 { 1210 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1211 } 1212 1213 /* 1214 * Build caches levels for a particular CPU from the data in 1215 * /sys/devices/system/cpu/cpu<cpu>/cache/ 1216 * The cache level data is stored in caches[] from index at 1217 * *cntp. 1218 */ 1219 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp) 1220 { 1221 u16 level; 1222 1223 for (level = 0; level < MAX_CACHE_LVL; level++) { 1224 struct cpu_cache_level c; 1225 int err; 1226 u32 i; 1227 1228 err = cpu_cache_level__read(&c, cpu, level); 1229 if (err < 0) 1230 return err; 1231 1232 if (err == 1) 1233 break; 1234 1235 for (i = 0; i < *cntp; i++) { 1236 if (cpu_cache_level__cmp(&c, &caches[i])) 1237 break; 1238 } 1239 1240 if (i == *cntp) { 1241 caches[*cntp] = c; 1242 *cntp = *cntp + 1; 1243 } else 1244 cpu_cache_level__free(&c); 1245 } 1246 1247 return 0; 1248 } 1249 1250 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1251 { 1252 u32 nr, cpu, cnt = 0; 1253 1254 nr = cpu__max_cpu().cpu; 1255 1256 for (cpu = 0; cpu < nr; cpu++) { 1257 int ret = build_caches_for_cpu(cpu, caches, &cnt); 1258 1259 if (ret) 1260 return ret; 1261 } 1262 *cntp = cnt; 1263 return 0; 1264 } 1265 1266 static int write_cache(struct feat_fd *ff, 1267 struct evlist *evlist __maybe_unused) 1268 { 1269 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL; 1270 struct cpu_cache_level caches[max_caches]; 1271 u32 cnt = 0, i, version = 1; 1272 int ret; 1273 1274 ret = build_caches(caches, &cnt); 1275 if (ret) 1276 goto out; 1277 1278 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1279 1280 ret = do_write(ff, &version, sizeof(u32)); 1281 if (ret < 0) 1282 goto out; 1283 1284 ret = do_write(ff, &cnt, sizeof(u32)); 1285 if (ret < 0) 1286 goto out; 1287 1288 for (i = 0; i < cnt; i++) { 1289 struct cpu_cache_level *c = &caches[i]; 1290 1291 #define _W(v) \ 1292 ret = do_write(ff, &c->v, sizeof(u32)); \ 1293 if (ret < 0) \ 1294 goto out; 1295 1296 _W(level) 1297 _W(line_size) 1298 _W(sets) 1299 _W(ways) 1300 #undef _W 1301 1302 #define _W(v) \ 1303 ret = do_write_string(ff, (const char *) c->v); \ 1304 if (ret < 0) \ 1305 goto out; 1306 1307 _W(type) 1308 _W(size) 1309 _W(map) 1310 #undef _W 1311 } 1312 1313 out: 1314 for (i = 0; i < cnt; i++) 1315 cpu_cache_level__free(&caches[i]); 1316 return ret; 1317 } 1318 1319 static int write_stat(struct feat_fd *ff __maybe_unused, 1320 struct evlist *evlist __maybe_unused) 1321 { 1322 return 0; 1323 } 1324 1325 static int write_sample_time(struct feat_fd *ff, 1326 struct evlist *evlist) 1327 { 1328 int ret; 1329 1330 ret = do_write(ff, &evlist->first_sample_time, 1331 sizeof(evlist->first_sample_time)); 1332 if (ret < 0) 1333 return ret; 1334 1335 return do_write(ff, &evlist->last_sample_time, 1336 sizeof(evlist->last_sample_time)); 1337 } 1338 1339 1340 static int memory_node__read(struct memory_node *n, unsigned long idx) 1341 { 1342 unsigned int phys, size = 0; 1343 char path[PATH_MAX]; 1344 struct dirent *ent; 1345 DIR *dir; 1346 1347 #define for_each_memory(mem, dir) \ 1348 while ((ent = readdir(dir))) \ 1349 if (strcmp(ent->d_name, ".") && \ 1350 strcmp(ent->d_name, "..") && \ 1351 sscanf(ent->d_name, "memory%u", &mem) == 1) 1352 1353 scnprintf(path, PATH_MAX, 1354 "%s/devices/system/node/node%lu", 1355 sysfs__mountpoint(), idx); 1356 1357 dir = opendir(path); 1358 if (!dir) { 1359 pr_warning("failed: can't open memory sysfs data\n"); 1360 return -1; 1361 } 1362 1363 for_each_memory(phys, dir) { 1364 size = max(phys, size); 1365 } 1366 1367 size++; 1368 1369 n->set = bitmap_zalloc(size); 1370 if (!n->set) { 1371 closedir(dir); 1372 return -ENOMEM; 1373 } 1374 1375 n->node = idx; 1376 n->size = size; 1377 1378 rewinddir(dir); 1379 1380 for_each_memory(phys, dir) { 1381 __set_bit(phys, n->set); 1382 } 1383 1384 closedir(dir); 1385 return 0; 1386 } 1387 1388 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt) 1389 { 1390 for (u64 i = 0; i < cnt; i++) 1391 bitmap_free(nodesp[i].set); 1392 1393 free(nodesp); 1394 } 1395 1396 static int memory_node__sort(const void *a, const void *b) 1397 { 1398 const struct memory_node *na = a; 1399 const struct memory_node *nb = b; 1400 1401 return na->node - nb->node; 1402 } 1403 1404 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp) 1405 { 1406 char path[PATH_MAX]; 1407 struct dirent *ent; 1408 DIR *dir; 1409 int ret = 0; 1410 size_t cnt = 0, size = 0; 1411 struct memory_node *nodes = NULL; 1412 1413 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1414 sysfs__mountpoint()); 1415 1416 dir = opendir(path); 1417 if (!dir) { 1418 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n", 1419 __func__, path); 1420 return -1; 1421 } 1422 1423 while (!ret && (ent = readdir(dir))) { 1424 unsigned int idx; 1425 int r; 1426 1427 if (!strcmp(ent->d_name, ".") || 1428 !strcmp(ent->d_name, "..")) 1429 continue; 1430 1431 r = sscanf(ent->d_name, "node%u", &idx); 1432 if (r != 1) 1433 continue; 1434 1435 if (cnt >= size) { 1436 struct memory_node *new_nodes = 1437 reallocarray(nodes, cnt + 4, sizeof(*nodes)); 1438 1439 if (!new_nodes) { 1440 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size); 1441 ret = -ENOMEM; 1442 goto out; 1443 } 1444 nodes = new_nodes; 1445 size += 4; 1446 } 1447 ret = memory_node__read(&nodes[cnt++], idx); 1448 } 1449 out: 1450 closedir(dir); 1451 if (!ret) { 1452 *cntp = cnt; 1453 *nodesp = nodes; 1454 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1455 } else 1456 memory_node__delete_nodes(nodes, cnt); 1457 1458 return ret; 1459 } 1460 1461 /* 1462 * The MEM_TOPOLOGY holds physical memory map for every 1463 * node in system. The format of data is as follows: 1464 * 1465 * 0 - version | for future changes 1466 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1467 * 16 - count | number of nodes 1468 * 1469 * For each node we store map of physical indexes for 1470 * each node: 1471 * 1472 * 32 - node id | node index 1473 * 40 - size | size of bitmap 1474 * 48 - bitmap | bitmap of memory indexes that belongs to node 1475 */ 1476 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1477 struct evlist *evlist __maybe_unused) 1478 { 1479 struct memory_node *nodes = NULL; 1480 u64 bsize, version = 1, i, nr = 0; 1481 int ret; 1482 1483 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1484 (unsigned long long *) &bsize); 1485 if (ret) 1486 return ret; 1487 1488 ret = build_mem_topology(&nodes, &nr); 1489 if (ret) 1490 return ret; 1491 1492 ret = do_write(ff, &version, sizeof(version)); 1493 if (ret < 0) 1494 goto out; 1495 1496 ret = do_write(ff, &bsize, sizeof(bsize)); 1497 if (ret < 0) 1498 goto out; 1499 1500 ret = do_write(ff, &nr, sizeof(nr)); 1501 if (ret < 0) 1502 goto out; 1503 1504 for (i = 0; i < nr; i++) { 1505 struct memory_node *n = &nodes[i]; 1506 1507 #define _W(v) \ 1508 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1509 if (ret < 0) \ 1510 goto out; 1511 1512 _W(node) 1513 _W(size) 1514 1515 #undef _W 1516 1517 ret = do_write_bitmap(ff, n->set, n->size); 1518 if (ret < 0) 1519 goto out; 1520 } 1521 1522 out: 1523 memory_node__delete_nodes(nodes, nr); 1524 return ret; 1525 } 1526 1527 static int write_compressed(struct feat_fd *ff __maybe_unused, 1528 struct evlist *evlist __maybe_unused) 1529 { 1530 int ret; 1531 1532 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1533 if (ret) 1534 return ret; 1535 1536 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1537 if (ret) 1538 return ret; 1539 1540 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1541 if (ret) 1542 return ret; 1543 1544 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1545 if (ret) 1546 return ret; 1547 1548 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1549 } 1550 1551 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu, 1552 bool write_pmu) 1553 { 1554 struct perf_pmu_caps *caps = NULL; 1555 int ret; 1556 1557 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps)); 1558 if (ret < 0) 1559 return ret; 1560 1561 list_for_each_entry(caps, &pmu->caps, list) { 1562 ret = do_write_string(ff, caps->name); 1563 if (ret < 0) 1564 return ret; 1565 1566 ret = do_write_string(ff, caps->value); 1567 if (ret < 0) 1568 return ret; 1569 } 1570 1571 if (write_pmu) { 1572 ret = do_write_string(ff, pmu->name); 1573 if (ret < 0) 1574 return ret; 1575 } 1576 1577 return ret; 1578 } 1579 1580 static int write_cpu_pmu_caps(struct feat_fd *ff, 1581 struct evlist *evlist __maybe_unused) 1582 { 1583 struct perf_pmu *cpu_pmu = perf_pmus__find("cpu"); 1584 int ret; 1585 1586 if (!cpu_pmu) 1587 return -ENOENT; 1588 1589 ret = perf_pmu__caps_parse(cpu_pmu); 1590 if (ret < 0) 1591 return ret; 1592 1593 return __write_pmu_caps(ff, cpu_pmu, false); 1594 } 1595 1596 static int write_pmu_caps(struct feat_fd *ff, 1597 struct evlist *evlist __maybe_unused) 1598 { 1599 struct perf_pmu *pmu = NULL; 1600 int nr_pmu = 0; 1601 int ret; 1602 1603 while ((pmu = perf_pmus__scan(pmu))) { 1604 if (!strcmp(pmu->name, "cpu")) { 1605 /* 1606 * The "cpu" PMU is special and covered by 1607 * HEADER_CPU_PMU_CAPS. Note, core PMUs are 1608 * counted/written here for ARM, s390 and Intel hybrid. 1609 */ 1610 continue; 1611 } 1612 if (perf_pmu__caps_parse(pmu) <= 0) 1613 continue; 1614 nr_pmu++; 1615 } 1616 1617 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu)); 1618 if (ret < 0) 1619 return ret; 1620 1621 if (!nr_pmu) 1622 return 0; 1623 1624 /* 1625 * Note older perf tools assume core PMUs come first, this is a property 1626 * of perf_pmus__scan. 1627 */ 1628 pmu = NULL; 1629 while ((pmu = perf_pmus__scan(pmu))) { 1630 if (!strcmp(pmu->name, "cpu")) { 1631 /* Skip as above. */ 1632 continue; 1633 } 1634 if (perf_pmu__caps_parse(pmu) <= 0) 1635 continue; 1636 ret = __write_pmu_caps(ff, pmu, true); 1637 if (ret < 0) 1638 return ret; 1639 } 1640 return 0; 1641 } 1642 1643 static void print_hostname(struct feat_fd *ff, FILE *fp) 1644 { 1645 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1646 } 1647 1648 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1649 { 1650 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1651 } 1652 1653 static void print_arch(struct feat_fd *ff, FILE *fp) 1654 { 1655 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1656 } 1657 1658 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1659 { 1660 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1661 } 1662 1663 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1664 { 1665 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1666 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1667 } 1668 1669 static void print_version(struct feat_fd *ff, FILE *fp) 1670 { 1671 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1672 } 1673 1674 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1675 { 1676 int nr, i; 1677 1678 nr = ff->ph->env.nr_cmdline; 1679 1680 fprintf(fp, "# cmdline : "); 1681 1682 for (i = 0; i < nr; i++) { 1683 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1684 if (!argv_i) { 1685 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1686 } else { 1687 char *mem = argv_i; 1688 do { 1689 char *quote = strchr(argv_i, '\''); 1690 if (!quote) 1691 break; 1692 *quote++ = '\0'; 1693 fprintf(fp, "%s\\\'", argv_i); 1694 argv_i = quote; 1695 } while (1); 1696 fprintf(fp, "%s ", argv_i); 1697 free(mem); 1698 } 1699 } 1700 fputc('\n', fp); 1701 } 1702 1703 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1704 { 1705 struct perf_header *ph = ff->ph; 1706 int cpu_nr = ph->env.nr_cpus_avail; 1707 int nr, i; 1708 char *str; 1709 1710 nr = ph->env.nr_sibling_cores; 1711 str = ph->env.sibling_cores; 1712 1713 for (i = 0; i < nr; i++) { 1714 fprintf(fp, "# sibling sockets : %s\n", str); 1715 str += strlen(str) + 1; 1716 } 1717 1718 if (ph->env.nr_sibling_dies) { 1719 nr = ph->env.nr_sibling_dies; 1720 str = ph->env.sibling_dies; 1721 1722 for (i = 0; i < nr; i++) { 1723 fprintf(fp, "# sibling dies : %s\n", str); 1724 str += strlen(str) + 1; 1725 } 1726 } 1727 1728 nr = ph->env.nr_sibling_threads; 1729 str = ph->env.sibling_threads; 1730 1731 for (i = 0; i < nr; i++) { 1732 fprintf(fp, "# sibling threads : %s\n", str); 1733 str += strlen(str) + 1; 1734 } 1735 1736 if (ph->env.nr_sibling_dies) { 1737 if (ph->env.cpu != NULL) { 1738 for (i = 0; i < cpu_nr; i++) 1739 fprintf(fp, "# CPU %d: Core ID %d, " 1740 "Die ID %d, Socket ID %d\n", 1741 i, ph->env.cpu[i].core_id, 1742 ph->env.cpu[i].die_id, 1743 ph->env.cpu[i].socket_id); 1744 } else 1745 fprintf(fp, "# Core ID, Die ID and Socket ID " 1746 "information is not available\n"); 1747 } else { 1748 if (ph->env.cpu != NULL) { 1749 for (i = 0; i < cpu_nr; i++) 1750 fprintf(fp, "# CPU %d: Core ID %d, " 1751 "Socket ID %d\n", 1752 i, ph->env.cpu[i].core_id, 1753 ph->env.cpu[i].socket_id); 1754 } else 1755 fprintf(fp, "# Core ID and Socket ID " 1756 "information is not available\n"); 1757 } 1758 } 1759 1760 static void print_clockid(struct feat_fd *ff, FILE *fp) 1761 { 1762 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1763 ff->ph->env.clock.clockid_res_ns * 1000); 1764 } 1765 1766 static void print_clock_data(struct feat_fd *ff, FILE *fp) 1767 { 1768 struct timespec clockid_ns; 1769 char tstr[64], date[64]; 1770 struct timeval tod_ns; 1771 clockid_t clockid; 1772 struct tm ltime; 1773 u64 ref; 1774 1775 if (!ff->ph->env.clock.enabled) { 1776 fprintf(fp, "# reference time disabled\n"); 1777 return; 1778 } 1779 1780 /* Compute TOD time. */ 1781 ref = ff->ph->env.clock.tod_ns; 1782 tod_ns.tv_sec = ref / NSEC_PER_SEC; 1783 ref -= tod_ns.tv_sec * NSEC_PER_SEC; 1784 tod_ns.tv_usec = ref / NSEC_PER_USEC; 1785 1786 /* Compute clockid time. */ 1787 ref = ff->ph->env.clock.clockid_ns; 1788 clockid_ns.tv_sec = ref / NSEC_PER_SEC; 1789 ref -= clockid_ns.tv_sec * NSEC_PER_SEC; 1790 clockid_ns.tv_nsec = ref; 1791 1792 clockid = ff->ph->env.clock.clockid; 1793 1794 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) 1795 snprintf(tstr, sizeof(tstr), "<error>"); 1796 else { 1797 strftime(date, sizeof(date), "%F %T", <ime); 1798 scnprintf(tstr, sizeof(tstr), "%s.%06d", 1799 date, (int) tod_ns.tv_usec); 1800 } 1801 1802 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); 1803 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", 1804 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec, 1805 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec, 1806 clockid_name(clockid)); 1807 } 1808 1809 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp) 1810 { 1811 int i; 1812 struct hybrid_node *n; 1813 1814 fprintf(fp, "# hybrid cpu system:\n"); 1815 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) { 1816 n = &ff->ph->env.hybrid_nodes[i]; 1817 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus); 1818 } 1819 } 1820 1821 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1822 { 1823 struct perf_session *session; 1824 struct perf_data *data; 1825 1826 session = container_of(ff->ph, struct perf_session, header); 1827 data = session->data; 1828 1829 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1830 } 1831 1832 #ifdef HAVE_LIBBPF_SUPPORT 1833 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1834 { 1835 struct perf_env *env = &ff->ph->env; 1836 struct rb_root *root; 1837 struct rb_node *next; 1838 1839 down_read(&env->bpf_progs.lock); 1840 1841 root = &env->bpf_progs.infos; 1842 next = rb_first(root); 1843 1844 while (next) { 1845 struct bpf_prog_info_node *node; 1846 1847 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1848 next = rb_next(&node->rb_node); 1849 1850 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1851 env, fp); 1852 } 1853 1854 up_read(&env->bpf_progs.lock); 1855 } 1856 1857 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1858 { 1859 struct perf_env *env = &ff->ph->env; 1860 struct rb_root *root; 1861 struct rb_node *next; 1862 1863 down_read(&env->bpf_progs.lock); 1864 1865 root = &env->bpf_progs.btfs; 1866 next = rb_first(root); 1867 1868 while (next) { 1869 struct btf_node *node; 1870 1871 node = rb_entry(next, struct btf_node, rb_node); 1872 next = rb_next(&node->rb_node); 1873 fprintf(fp, "# btf info of id %u\n", node->id); 1874 } 1875 1876 up_read(&env->bpf_progs.lock); 1877 } 1878 #endif // HAVE_LIBBPF_SUPPORT 1879 1880 static void free_event_desc(struct evsel *events) 1881 { 1882 struct evsel *evsel; 1883 1884 if (!events) 1885 return; 1886 1887 for (evsel = events; evsel->core.attr.size; evsel++) { 1888 zfree(&evsel->name); 1889 zfree(&evsel->core.id); 1890 } 1891 1892 free(events); 1893 } 1894 1895 static bool perf_attr_check(struct perf_event_attr *attr) 1896 { 1897 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1898 pr_warning("Reserved bits are set unexpectedly. " 1899 "Please update perf tool.\n"); 1900 return false; 1901 } 1902 1903 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1904 pr_warning("Unknown sample type (0x%llx) is detected. " 1905 "Please update perf tool.\n", 1906 attr->sample_type); 1907 return false; 1908 } 1909 1910 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1911 pr_warning("Unknown read format (0x%llx) is detected. " 1912 "Please update perf tool.\n", 1913 attr->read_format); 1914 return false; 1915 } 1916 1917 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1918 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1919 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1920 "Please update perf tool.\n", 1921 attr->branch_sample_type); 1922 1923 return false; 1924 } 1925 1926 return true; 1927 } 1928 1929 static struct evsel *read_event_desc(struct feat_fd *ff) 1930 { 1931 struct evsel *evsel, *events = NULL; 1932 u64 *id; 1933 void *buf = NULL; 1934 u32 nre, sz, nr, i, j; 1935 size_t msz; 1936 1937 /* number of events */ 1938 if (do_read_u32(ff, &nre)) 1939 goto error; 1940 1941 if (do_read_u32(ff, &sz)) 1942 goto error; 1943 1944 /* buffer to hold on file attr struct */ 1945 buf = malloc(sz); 1946 if (!buf) 1947 goto error; 1948 1949 /* the last event terminates with evsel->core.attr.size == 0: */ 1950 events = calloc(nre + 1, sizeof(*events)); 1951 if (!events) 1952 goto error; 1953 1954 msz = sizeof(evsel->core.attr); 1955 if (sz < msz) 1956 msz = sz; 1957 1958 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1959 evsel->core.idx = i; 1960 1961 /* 1962 * must read entire on-file attr struct to 1963 * sync up with layout. 1964 */ 1965 if (__do_read(ff, buf, sz)) 1966 goto error; 1967 1968 if (ff->ph->needs_swap) 1969 perf_event__attr_swap(buf); 1970 1971 memcpy(&evsel->core.attr, buf, msz); 1972 1973 if (!perf_attr_check(&evsel->core.attr)) 1974 goto error; 1975 1976 if (do_read_u32(ff, &nr)) 1977 goto error; 1978 1979 if (ff->ph->needs_swap) 1980 evsel->needs_swap = true; 1981 1982 evsel->name = do_read_string(ff); 1983 if (!evsel->name) 1984 goto error; 1985 1986 if (!nr) 1987 continue; 1988 1989 id = calloc(nr, sizeof(*id)); 1990 if (!id) 1991 goto error; 1992 evsel->core.ids = nr; 1993 evsel->core.id = id; 1994 1995 for (j = 0 ; j < nr; j++) { 1996 if (do_read_u64(ff, id)) 1997 goto error; 1998 id++; 1999 } 2000 } 2001 out: 2002 free(buf); 2003 return events; 2004 error: 2005 free_event_desc(events); 2006 events = NULL; 2007 goto out; 2008 } 2009 2010 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 2011 void *priv __maybe_unused) 2012 { 2013 return fprintf(fp, ", %s = %s", name, val); 2014 } 2015 2016 static void print_event_desc(struct feat_fd *ff, FILE *fp) 2017 { 2018 struct evsel *evsel, *events; 2019 u32 j; 2020 u64 *id; 2021 2022 if (ff->events) 2023 events = ff->events; 2024 else 2025 events = read_event_desc(ff); 2026 2027 if (!events) { 2028 fprintf(fp, "# event desc: not available or unable to read\n"); 2029 return; 2030 } 2031 2032 for (evsel = events; evsel->core.attr.size; evsel++) { 2033 fprintf(fp, "# event : name = %s, ", evsel->name); 2034 2035 if (evsel->core.ids) { 2036 fprintf(fp, ", id = {"); 2037 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 2038 if (j) 2039 fputc(',', fp); 2040 fprintf(fp, " %"PRIu64, *id); 2041 } 2042 fprintf(fp, " }"); 2043 } 2044 2045 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 2046 2047 fputc('\n', fp); 2048 } 2049 2050 free_event_desc(events); 2051 ff->events = NULL; 2052 } 2053 2054 static void print_total_mem(struct feat_fd *ff, FILE *fp) 2055 { 2056 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 2057 } 2058 2059 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 2060 { 2061 int i; 2062 struct numa_node *n; 2063 2064 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 2065 n = &ff->ph->env.numa_nodes[i]; 2066 2067 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 2068 " free = %"PRIu64" kB\n", 2069 n->node, n->mem_total, n->mem_free); 2070 2071 fprintf(fp, "# node%u cpu list : ", n->node); 2072 cpu_map__fprintf(n->map, fp); 2073 } 2074 } 2075 2076 static void print_cpuid(struct feat_fd *ff, FILE *fp) 2077 { 2078 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 2079 } 2080 2081 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 2082 { 2083 fprintf(fp, "# contains samples with branch stack\n"); 2084 } 2085 2086 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 2087 { 2088 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 2089 } 2090 2091 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 2092 { 2093 fprintf(fp, "# contains stat data\n"); 2094 } 2095 2096 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 2097 { 2098 int i; 2099 2100 fprintf(fp, "# CPU cache info:\n"); 2101 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 2102 fprintf(fp, "# "); 2103 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 2104 } 2105 } 2106 2107 static void print_compressed(struct feat_fd *ff, FILE *fp) 2108 { 2109 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 2110 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 2111 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 2112 } 2113 2114 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name) 2115 { 2116 const char *delimiter = ""; 2117 int i; 2118 2119 if (!nr_caps) { 2120 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name); 2121 return; 2122 } 2123 2124 fprintf(fp, "# %s pmu capabilities: ", pmu_name); 2125 for (i = 0; i < nr_caps; i++) { 2126 fprintf(fp, "%s%s", delimiter, caps[i]); 2127 delimiter = ", "; 2128 } 2129 2130 fprintf(fp, "\n"); 2131 } 2132 2133 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2134 { 2135 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps, 2136 ff->ph->env.cpu_pmu_caps, (char *)"cpu"); 2137 } 2138 2139 static void print_pmu_caps(struct feat_fd *ff, FILE *fp) 2140 { 2141 struct pmu_caps *pmu_caps; 2142 2143 for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) { 2144 pmu_caps = &ff->ph->env.pmu_caps[i]; 2145 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps, 2146 pmu_caps->pmu_name); 2147 } 2148 } 2149 2150 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 2151 { 2152 const char *delimiter = "# pmu mappings: "; 2153 char *str, *tmp; 2154 u32 pmu_num; 2155 u32 type; 2156 2157 pmu_num = ff->ph->env.nr_pmu_mappings; 2158 if (!pmu_num) { 2159 fprintf(fp, "# pmu mappings: not available\n"); 2160 return; 2161 } 2162 2163 str = ff->ph->env.pmu_mappings; 2164 2165 while (pmu_num) { 2166 type = strtoul(str, &tmp, 0); 2167 if (*tmp != ':') 2168 goto error; 2169 2170 str = tmp + 1; 2171 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 2172 2173 delimiter = ", "; 2174 str += strlen(str) + 1; 2175 pmu_num--; 2176 } 2177 2178 fprintf(fp, "\n"); 2179 2180 if (!pmu_num) 2181 return; 2182 error: 2183 fprintf(fp, "# pmu mappings: unable to read\n"); 2184 } 2185 2186 static void print_group_desc(struct feat_fd *ff, FILE *fp) 2187 { 2188 struct perf_session *session; 2189 struct evsel *evsel; 2190 u32 nr = 0; 2191 2192 session = container_of(ff->ph, struct perf_session, header); 2193 2194 evlist__for_each_entry(session->evlist, evsel) { 2195 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 2196 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); 2197 2198 nr = evsel->core.nr_members - 1; 2199 } else if (nr) { 2200 fprintf(fp, ",%s", evsel__name(evsel)); 2201 2202 if (--nr == 0) 2203 fprintf(fp, "}\n"); 2204 } 2205 } 2206 } 2207 2208 static void print_sample_time(struct feat_fd *ff, FILE *fp) 2209 { 2210 struct perf_session *session; 2211 char time_buf[32]; 2212 double d; 2213 2214 session = container_of(ff->ph, struct perf_session, header); 2215 2216 timestamp__scnprintf_usec(session->evlist->first_sample_time, 2217 time_buf, sizeof(time_buf)); 2218 fprintf(fp, "# time of first sample : %s\n", time_buf); 2219 2220 timestamp__scnprintf_usec(session->evlist->last_sample_time, 2221 time_buf, sizeof(time_buf)); 2222 fprintf(fp, "# time of last sample : %s\n", time_buf); 2223 2224 d = (double)(session->evlist->last_sample_time - 2225 session->evlist->first_sample_time) / NSEC_PER_MSEC; 2226 2227 fprintf(fp, "# sample duration : %10.3f ms\n", d); 2228 } 2229 2230 static void memory_node__fprintf(struct memory_node *n, 2231 unsigned long long bsize, FILE *fp) 2232 { 2233 char buf_map[100], buf_size[50]; 2234 unsigned long long size; 2235 2236 size = bsize * bitmap_weight(n->set, n->size); 2237 unit_number__scnprintf(buf_size, 50, size); 2238 2239 bitmap_scnprintf(n->set, n->size, buf_map, 100); 2240 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 2241 } 2242 2243 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 2244 { 2245 struct memory_node *nodes; 2246 int i, nr; 2247 2248 nodes = ff->ph->env.memory_nodes; 2249 nr = ff->ph->env.nr_memory_nodes; 2250 2251 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 2252 nr, ff->ph->env.memory_bsize); 2253 2254 for (i = 0; i < nr; i++) { 2255 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 2256 } 2257 } 2258 2259 static int __event_process_build_id(struct perf_record_header_build_id *bev, 2260 char *filename, 2261 struct perf_session *session) 2262 { 2263 int err = -1; 2264 struct machine *machine; 2265 u16 cpumode; 2266 struct dso *dso; 2267 enum dso_space_type dso_space; 2268 2269 machine = perf_session__findnew_machine(session, bev->pid); 2270 if (!machine) 2271 goto out; 2272 2273 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2274 2275 switch (cpumode) { 2276 case PERF_RECORD_MISC_KERNEL: 2277 dso_space = DSO_SPACE__KERNEL; 2278 break; 2279 case PERF_RECORD_MISC_GUEST_KERNEL: 2280 dso_space = DSO_SPACE__KERNEL_GUEST; 2281 break; 2282 case PERF_RECORD_MISC_USER: 2283 case PERF_RECORD_MISC_GUEST_USER: 2284 dso_space = DSO_SPACE__USER; 2285 break; 2286 default: 2287 goto out; 2288 } 2289 2290 dso = machine__findnew_dso(machine, filename); 2291 if (dso != NULL) { 2292 char sbuild_id[SBUILD_ID_SIZE]; 2293 struct build_id bid; 2294 size_t size = BUILD_ID_SIZE; 2295 2296 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) 2297 size = bev->size; 2298 2299 build_id__init(&bid, bev->data, size); 2300 dso__set_build_id(dso, &bid); 2301 dso->header_build_id = 1; 2302 2303 if (dso_space != DSO_SPACE__USER) { 2304 struct kmod_path m = { .name = NULL, }; 2305 2306 if (!kmod_path__parse_name(&m, filename) && m.kmod) 2307 dso__set_module_info(dso, &m, machine); 2308 2309 dso->kernel = dso_space; 2310 free(m.name); 2311 } 2312 2313 build_id__sprintf(&dso->bid, sbuild_id); 2314 pr_debug("build id event received for %s: %s [%zu]\n", 2315 dso->long_name, sbuild_id, size); 2316 dso__put(dso); 2317 } 2318 2319 err = 0; 2320 out: 2321 return err; 2322 } 2323 2324 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 2325 int input, u64 offset, u64 size) 2326 { 2327 struct perf_session *session = container_of(header, struct perf_session, header); 2328 struct { 2329 struct perf_event_header header; 2330 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 2331 char filename[0]; 2332 } old_bev; 2333 struct perf_record_header_build_id bev; 2334 char filename[PATH_MAX]; 2335 u64 limit = offset + size; 2336 2337 while (offset < limit) { 2338 ssize_t len; 2339 2340 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2341 return -1; 2342 2343 if (header->needs_swap) 2344 perf_event_header__bswap(&old_bev.header); 2345 2346 len = old_bev.header.size - sizeof(old_bev); 2347 if (readn(input, filename, len) != len) 2348 return -1; 2349 2350 bev.header = old_bev.header; 2351 2352 /* 2353 * As the pid is the missing value, we need to fill 2354 * it properly. The header.misc value give us nice hint. 2355 */ 2356 bev.pid = HOST_KERNEL_ID; 2357 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2358 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2359 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2360 2361 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2362 __event_process_build_id(&bev, filename, session); 2363 2364 offset += bev.header.size; 2365 } 2366 2367 return 0; 2368 } 2369 2370 static int perf_header__read_build_ids(struct perf_header *header, 2371 int input, u64 offset, u64 size) 2372 { 2373 struct perf_session *session = container_of(header, struct perf_session, header); 2374 struct perf_record_header_build_id bev; 2375 char filename[PATH_MAX]; 2376 u64 limit = offset + size, orig_offset = offset; 2377 int err = -1; 2378 2379 while (offset < limit) { 2380 ssize_t len; 2381 2382 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2383 goto out; 2384 2385 if (header->needs_swap) 2386 perf_event_header__bswap(&bev.header); 2387 2388 len = bev.header.size - sizeof(bev); 2389 if (readn(input, filename, len) != len) 2390 goto out; 2391 /* 2392 * The a1645ce1 changeset: 2393 * 2394 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2395 * 2396 * Added a field to struct perf_record_header_build_id that broke the file 2397 * format. 2398 * 2399 * Since the kernel build-id is the first entry, process the 2400 * table using the old format if the well known 2401 * '[kernel.kallsyms]' string for the kernel build-id has the 2402 * first 4 characters chopped off (where the pid_t sits). 2403 */ 2404 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2405 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2406 return -1; 2407 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2408 } 2409 2410 __event_process_build_id(&bev, filename, session); 2411 2412 offset += bev.header.size; 2413 } 2414 err = 0; 2415 out: 2416 return err; 2417 } 2418 2419 /* Macro for features that simply need to read and store a string. */ 2420 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2421 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2422 {\ 2423 free(ff->ph->env.__feat_env); \ 2424 ff->ph->env.__feat_env = do_read_string(ff); \ 2425 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2426 } 2427 2428 FEAT_PROCESS_STR_FUN(hostname, hostname); 2429 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2430 FEAT_PROCESS_STR_FUN(version, version); 2431 FEAT_PROCESS_STR_FUN(arch, arch); 2432 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2433 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2434 2435 #ifdef HAVE_LIBTRACEEVENT 2436 static int process_tracing_data(struct feat_fd *ff, void *data) 2437 { 2438 ssize_t ret = trace_report(ff->fd, data, false); 2439 2440 return ret < 0 ? -1 : 0; 2441 } 2442 #endif 2443 2444 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2445 { 2446 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2447 pr_debug("Failed to read buildids, continuing...\n"); 2448 return 0; 2449 } 2450 2451 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2452 { 2453 int ret; 2454 u32 nr_cpus_avail, nr_cpus_online; 2455 2456 ret = do_read_u32(ff, &nr_cpus_avail); 2457 if (ret) 2458 return ret; 2459 2460 ret = do_read_u32(ff, &nr_cpus_online); 2461 if (ret) 2462 return ret; 2463 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2464 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2465 return 0; 2466 } 2467 2468 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2469 { 2470 u64 total_mem; 2471 int ret; 2472 2473 ret = do_read_u64(ff, &total_mem); 2474 if (ret) 2475 return -1; 2476 ff->ph->env.total_mem = (unsigned long long)total_mem; 2477 return 0; 2478 } 2479 2480 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) 2481 { 2482 struct evsel *evsel; 2483 2484 evlist__for_each_entry(evlist, evsel) { 2485 if (evsel->core.idx == idx) 2486 return evsel; 2487 } 2488 2489 return NULL; 2490 } 2491 2492 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event) 2493 { 2494 struct evsel *evsel; 2495 2496 if (!event->name) 2497 return; 2498 2499 evsel = evlist__find_by_index(evlist, event->core.idx); 2500 if (!evsel) 2501 return; 2502 2503 if (evsel->name) 2504 return; 2505 2506 evsel->name = strdup(event->name); 2507 } 2508 2509 static int 2510 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2511 { 2512 struct perf_session *session; 2513 struct evsel *evsel, *events = read_event_desc(ff); 2514 2515 if (!events) 2516 return 0; 2517 2518 session = container_of(ff->ph, struct perf_session, header); 2519 2520 if (session->data->is_pipe) { 2521 /* Save events for reading later by print_event_desc, 2522 * since they can't be read again in pipe mode. */ 2523 ff->events = events; 2524 } 2525 2526 for (evsel = events; evsel->core.attr.size; evsel++) 2527 evlist__set_event_name(session->evlist, evsel); 2528 2529 if (!session->data->is_pipe) 2530 free_event_desc(events); 2531 2532 return 0; 2533 } 2534 2535 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2536 { 2537 char *str, *cmdline = NULL, **argv = NULL; 2538 u32 nr, i, len = 0; 2539 2540 if (do_read_u32(ff, &nr)) 2541 return -1; 2542 2543 ff->ph->env.nr_cmdline = nr; 2544 2545 cmdline = zalloc(ff->size + nr + 1); 2546 if (!cmdline) 2547 return -1; 2548 2549 argv = zalloc(sizeof(char *) * (nr + 1)); 2550 if (!argv) 2551 goto error; 2552 2553 for (i = 0; i < nr; i++) { 2554 str = do_read_string(ff); 2555 if (!str) 2556 goto error; 2557 2558 argv[i] = cmdline + len; 2559 memcpy(argv[i], str, strlen(str) + 1); 2560 len += strlen(str) + 1; 2561 free(str); 2562 } 2563 ff->ph->env.cmdline = cmdline; 2564 ff->ph->env.cmdline_argv = (const char **) argv; 2565 return 0; 2566 2567 error: 2568 free(argv); 2569 free(cmdline); 2570 return -1; 2571 } 2572 2573 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2574 { 2575 u32 nr, i; 2576 char *str; 2577 struct strbuf sb; 2578 int cpu_nr = ff->ph->env.nr_cpus_avail; 2579 u64 size = 0; 2580 struct perf_header *ph = ff->ph; 2581 bool do_core_id_test = true; 2582 2583 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2584 if (!ph->env.cpu) 2585 return -1; 2586 2587 if (do_read_u32(ff, &nr)) 2588 goto free_cpu; 2589 2590 ph->env.nr_sibling_cores = nr; 2591 size += sizeof(u32); 2592 if (strbuf_init(&sb, 128) < 0) 2593 goto free_cpu; 2594 2595 for (i = 0; i < nr; i++) { 2596 str = do_read_string(ff); 2597 if (!str) 2598 goto error; 2599 2600 /* include a NULL character at the end */ 2601 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2602 goto error; 2603 size += string_size(str); 2604 free(str); 2605 } 2606 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2607 2608 if (do_read_u32(ff, &nr)) 2609 return -1; 2610 2611 ph->env.nr_sibling_threads = nr; 2612 size += sizeof(u32); 2613 2614 for (i = 0; i < nr; i++) { 2615 str = do_read_string(ff); 2616 if (!str) 2617 goto error; 2618 2619 /* include a NULL character at the end */ 2620 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2621 goto error; 2622 size += string_size(str); 2623 free(str); 2624 } 2625 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2626 2627 /* 2628 * The header may be from old perf, 2629 * which doesn't include core id and socket id information. 2630 */ 2631 if (ff->size <= size) { 2632 zfree(&ph->env.cpu); 2633 return 0; 2634 } 2635 2636 /* On s390 the socket_id number is not related to the numbers of cpus. 2637 * The socket_id number might be higher than the numbers of cpus. 2638 * This depends on the configuration. 2639 * AArch64 is the same. 2640 */ 2641 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2642 || !strncmp(ph->env.arch, "aarch64", 7))) 2643 do_core_id_test = false; 2644 2645 for (i = 0; i < (u32)cpu_nr; i++) { 2646 if (do_read_u32(ff, &nr)) 2647 goto free_cpu; 2648 2649 ph->env.cpu[i].core_id = nr; 2650 size += sizeof(u32); 2651 2652 if (do_read_u32(ff, &nr)) 2653 goto free_cpu; 2654 2655 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2656 pr_debug("socket_id number is too big." 2657 "You may need to upgrade the perf tool.\n"); 2658 goto free_cpu; 2659 } 2660 2661 ph->env.cpu[i].socket_id = nr; 2662 size += sizeof(u32); 2663 } 2664 2665 /* 2666 * The header may be from old perf, 2667 * which doesn't include die information. 2668 */ 2669 if (ff->size <= size) 2670 return 0; 2671 2672 if (do_read_u32(ff, &nr)) 2673 return -1; 2674 2675 ph->env.nr_sibling_dies = nr; 2676 size += sizeof(u32); 2677 2678 for (i = 0; i < nr; i++) { 2679 str = do_read_string(ff); 2680 if (!str) 2681 goto error; 2682 2683 /* include a NULL character at the end */ 2684 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2685 goto error; 2686 size += string_size(str); 2687 free(str); 2688 } 2689 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2690 2691 for (i = 0; i < (u32)cpu_nr; i++) { 2692 if (do_read_u32(ff, &nr)) 2693 goto free_cpu; 2694 2695 ph->env.cpu[i].die_id = nr; 2696 } 2697 2698 return 0; 2699 2700 error: 2701 strbuf_release(&sb); 2702 free_cpu: 2703 zfree(&ph->env.cpu); 2704 return -1; 2705 } 2706 2707 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2708 { 2709 struct numa_node *nodes, *n; 2710 u32 nr, i; 2711 char *str; 2712 2713 /* nr nodes */ 2714 if (do_read_u32(ff, &nr)) 2715 return -1; 2716 2717 nodes = zalloc(sizeof(*nodes) * nr); 2718 if (!nodes) 2719 return -ENOMEM; 2720 2721 for (i = 0; i < nr; i++) { 2722 n = &nodes[i]; 2723 2724 /* node number */ 2725 if (do_read_u32(ff, &n->node)) 2726 goto error; 2727 2728 if (do_read_u64(ff, &n->mem_total)) 2729 goto error; 2730 2731 if (do_read_u64(ff, &n->mem_free)) 2732 goto error; 2733 2734 str = do_read_string(ff); 2735 if (!str) 2736 goto error; 2737 2738 n->map = perf_cpu_map__new(str); 2739 if (!n->map) 2740 goto error; 2741 2742 free(str); 2743 } 2744 ff->ph->env.nr_numa_nodes = nr; 2745 ff->ph->env.numa_nodes = nodes; 2746 return 0; 2747 2748 error: 2749 free(nodes); 2750 return -1; 2751 } 2752 2753 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2754 { 2755 char *name; 2756 u32 pmu_num; 2757 u32 type; 2758 struct strbuf sb; 2759 2760 if (do_read_u32(ff, &pmu_num)) 2761 return -1; 2762 2763 if (!pmu_num) { 2764 pr_debug("pmu mappings not available\n"); 2765 return 0; 2766 } 2767 2768 ff->ph->env.nr_pmu_mappings = pmu_num; 2769 if (strbuf_init(&sb, 128) < 0) 2770 return -1; 2771 2772 while (pmu_num) { 2773 if (do_read_u32(ff, &type)) 2774 goto error; 2775 2776 name = do_read_string(ff); 2777 if (!name) 2778 goto error; 2779 2780 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2781 goto error; 2782 /* include a NULL character at the end */ 2783 if (strbuf_add(&sb, "", 1) < 0) 2784 goto error; 2785 2786 if (!strcmp(name, "msr")) 2787 ff->ph->env.msr_pmu_type = type; 2788 2789 free(name); 2790 pmu_num--; 2791 } 2792 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2793 return 0; 2794 2795 error: 2796 strbuf_release(&sb); 2797 return -1; 2798 } 2799 2800 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2801 { 2802 size_t ret = -1; 2803 u32 i, nr, nr_groups; 2804 struct perf_session *session; 2805 struct evsel *evsel, *leader = NULL; 2806 struct group_desc { 2807 char *name; 2808 u32 leader_idx; 2809 u32 nr_members; 2810 } *desc; 2811 2812 if (do_read_u32(ff, &nr_groups)) 2813 return -1; 2814 2815 ff->ph->env.nr_groups = nr_groups; 2816 if (!nr_groups) { 2817 pr_debug("group desc not available\n"); 2818 return 0; 2819 } 2820 2821 desc = calloc(nr_groups, sizeof(*desc)); 2822 if (!desc) 2823 return -1; 2824 2825 for (i = 0; i < nr_groups; i++) { 2826 desc[i].name = do_read_string(ff); 2827 if (!desc[i].name) 2828 goto out_free; 2829 2830 if (do_read_u32(ff, &desc[i].leader_idx)) 2831 goto out_free; 2832 2833 if (do_read_u32(ff, &desc[i].nr_members)) 2834 goto out_free; 2835 } 2836 2837 /* 2838 * Rebuild group relationship based on the group_desc 2839 */ 2840 session = container_of(ff->ph, struct perf_session, header); 2841 2842 i = nr = 0; 2843 evlist__for_each_entry(session->evlist, evsel) { 2844 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) { 2845 evsel__set_leader(evsel, evsel); 2846 /* {anon_group} is a dummy name */ 2847 if (strcmp(desc[i].name, "{anon_group}")) { 2848 evsel->group_name = desc[i].name; 2849 desc[i].name = NULL; 2850 } 2851 evsel->core.nr_members = desc[i].nr_members; 2852 2853 if (i >= nr_groups || nr > 0) { 2854 pr_debug("invalid group desc\n"); 2855 goto out_free; 2856 } 2857 2858 leader = evsel; 2859 nr = evsel->core.nr_members - 1; 2860 i++; 2861 } else if (nr) { 2862 /* This is a group member */ 2863 evsel__set_leader(evsel, leader); 2864 2865 nr--; 2866 } 2867 } 2868 2869 if (i != nr_groups || nr != 0) { 2870 pr_debug("invalid group desc\n"); 2871 goto out_free; 2872 } 2873 2874 ret = 0; 2875 out_free: 2876 for (i = 0; i < nr_groups; i++) 2877 zfree(&desc[i].name); 2878 free(desc); 2879 2880 return ret; 2881 } 2882 2883 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2884 { 2885 struct perf_session *session; 2886 int err; 2887 2888 session = container_of(ff->ph, struct perf_session, header); 2889 2890 err = auxtrace_index__process(ff->fd, ff->size, session, 2891 ff->ph->needs_swap); 2892 if (err < 0) 2893 pr_err("Failed to process auxtrace index\n"); 2894 return err; 2895 } 2896 2897 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2898 { 2899 struct cpu_cache_level *caches; 2900 u32 cnt, i, version; 2901 2902 if (do_read_u32(ff, &version)) 2903 return -1; 2904 2905 if (version != 1) 2906 return -1; 2907 2908 if (do_read_u32(ff, &cnt)) 2909 return -1; 2910 2911 caches = zalloc(sizeof(*caches) * cnt); 2912 if (!caches) 2913 return -1; 2914 2915 for (i = 0; i < cnt; i++) { 2916 struct cpu_cache_level c; 2917 2918 #define _R(v) \ 2919 if (do_read_u32(ff, &c.v))\ 2920 goto out_free_caches; \ 2921 2922 _R(level) 2923 _R(line_size) 2924 _R(sets) 2925 _R(ways) 2926 #undef _R 2927 2928 #define _R(v) \ 2929 c.v = do_read_string(ff); \ 2930 if (!c.v) \ 2931 goto out_free_caches; 2932 2933 _R(type) 2934 _R(size) 2935 _R(map) 2936 #undef _R 2937 2938 caches[i] = c; 2939 } 2940 2941 ff->ph->env.caches = caches; 2942 ff->ph->env.caches_cnt = cnt; 2943 return 0; 2944 out_free_caches: 2945 free(caches); 2946 return -1; 2947 } 2948 2949 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2950 { 2951 struct perf_session *session; 2952 u64 first_sample_time, last_sample_time; 2953 int ret; 2954 2955 session = container_of(ff->ph, struct perf_session, header); 2956 2957 ret = do_read_u64(ff, &first_sample_time); 2958 if (ret) 2959 return -1; 2960 2961 ret = do_read_u64(ff, &last_sample_time); 2962 if (ret) 2963 return -1; 2964 2965 session->evlist->first_sample_time = first_sample_time; 2966 session->evlist->last_sample_time = last_sample_time; 2967 return 0; 2968 } 2969 2970 static int process_mem_topology(struct feat_fd *ff, 2971 void *data __maybe_unused) 2972 { 2973 struct memory_node *nodes; 2974 u64 version, i, nr, bsize; 2975 int ret = -1; 2976 2977 if (do_read_u64(ff, &version)) 2978 return -1; 2979 2980 if (version != 1) 2981 return -1; 2982 2983 if (do_read_u64(ff, &bsize)) 2984 return -1; 2985 2986 if (do_read_u64(ff, &nr)) 2987 return -1; 2988 2989 nodes = zalloc(sizeof(*nodes) * nr); 2990 if (!nodes) 2991 return -1; 2992 2993 for (i = 0; i < nr; i++) { 2994 struct memory_node n; 2995 2996 #define _R(v) \ 2997 if (do_read_u64(ff, &n.v)) \ 2998 goto out; \ 2999 3000 _R(node) 3001 _R(size) 3002 3003 #undef _R 3004 3005 if (do_read_bitmap(ff, &n.set, &n.size)) 3006 goto out; 3007 3008 nodes[i] = n; 3009 } 3010 3011 ff->ph->env.memory_bsize = bsize; 3012 ff->ph->env.memory_nodes = nodes; 3013 ff->ph->env.nr_memory_nodes = nr; 3014 ret = 0; 3015 3016 out: 3017 if (ret) 3018 free(nodes); 3019 return ret; 3020 } 3021 3022 static int process_clockid(struct feat_fd *ff, 3023 void *data __maybe_unused) 3024 { 3025 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns)) 3026 return -1; 3027 3028 return 0; 3029 } 3030 3031 static int process_clock_data(struct feat_fd *ff, 3032 void *_data __maybe_unused) 3033 { 3034 u32 data32; 3035 u64 data64; 3036 3037 /* version */ 3038 if (do_read_u32(ff, &data32)) 3039 return -1; 3040 3041 if (data32 != 1) 3042 return -1; 3043 3044 /* clockid */ 3045 if (do_read_u32(ff, &data32)) 3046 return -1; 3047 3048 ff->ph->env.clock.clockid = data32; 3049 3050 /* TOD ref time */ 3051 if (do_read_u64(ff, &data64)) 3052 return -1; 3053 3054 ff->ph->env.clock.tod_ns = data64; 3055 3056 /* clockid ref time */ 3057 if (do_read_u64(ff, &data64)) 3058 return -1; 3059 3060 ff->ph->env.clock.clockid_ns = data64; 3061 ff->ph->env.clock.enabled = true; 3062 return 0; 3063 } 3064 3065 static int process_hybrid_topology(struct feat_fd *ff, 3066 void *data __maybe_unused) 3067 { 3068 struct hybrid_node *nodes, *n; 3069 u32 nr, i; 3070 3071 /* nr nodes */ 3072 if (do_read_u32(ff, &nr)) 3073 return -1; 3074 3075 nodes = zalloc(sizeof(*nodes) * nr); 3076 if (!nodes) 3077 return -ENOMEM; 3078 3079 for (i = 0; i < nr; i++) { 3080 n = &nodes[i]; 3081 3082 n->pmu_name = do_read_string(ff); 3083 if (!n->pmu_name) 3084 goto error; 3085 3086 n->cpus = do_read_string(ff); 3087 if (!n->cpus) 3088 goto error; 3089 } 3090 3091 ff->ph->env.nr_hybrid_nodes = nr; 3092 ff->ph->env.hybrid_nodes = nodes; 3093 return 0; 3094 3095 error: 3096 for (i = 0; i < nr; i++) { 3097 free(nodes[i].pmu_name); 3098 free(nodes[i].cpus); 3099 } 3100 3101 free(nodes); 3102 return -1; 3103 } 3104 3105 static int process_dir_format(struct feat_fd *ff, 3106 void *_data __maybe_unused) 3107 { 3108 struct perf_session *session; 3109 struct perf_data *data; 3110 3111 session = container_of(ff->ph, struct perf_session, header); 3112 data = session->data; 3113 3114 if (WARN_ON(!perf_data__is_dir(data))) 3115 return -1; 3116 3117 return do_read_u64(ff, &data->dir.version); 3118 } 3119 3120 #ifdef HAVE_LIBBPF_SUPPORT 3121 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 3122 { 3123 struct bpf_prog_info_node *info_node; 3124 struct perf_env *env = &ff->ph->env; 3125 struct perf_bpil *info_linear; 3126 u32 count, i; 3127 int err = -1; 3128 3129 if (ff->ph->needs_swap) { 3130 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n"); 3131 return 0; 3132 } 3133 3134 if (do_read_u32(ff, &count)) 3135 return -1; 3136 3137 down_write(&env->bpf_progs.lock); 3138 3139 for (i = 0; i < count; ++i) { 3140 u32 info_len, data_len; 3141 3142 info_linear = NULL; 3143 info_node = NULL; 3144 if (do_read_u32(ff, &info_len)) 3145 goto out; 3146 if (do_read_u32(ff, &data_len)) 3147 goto out; 3148 3149 if (info_len > sizeof(struct bpf_prog_info)) { 3150 pr_warning("detected invalid bpf_prog_info\n"); 3151 goto out; 3152 } 3153 3154 info_linear = malloc(sizeof(struct perf_bpil) + 3155 data_len); 3156 if (!info_linear) 3157 goto out; 3158 info_linear->info_len = sizeof(struct bpf_prog_info); 3159 info_linear->data_len = data_len; 3160 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 3161 goto out; 3162 if (__do_read(ff, &info_linear->info, info_len)) 3163 goto out; 3164 if (info_len < sizeof(struct bpf_prog_info)) 3165 memset(((void *)(&info_linear->info)) + info_len, 0, 3166 sizeof(struct bpf_prog_info) - info_len); 3167 3168 if (__do_read(ff, info_linear->data, data_len)) 3169 goto out; 3170 3171 info_node = malloc(sizeof(struct bpf_prog_info_node)); 3172 if (!info_node) 3173 goto out; 3174 3175 /* after reading from file, translate offset to address */ 3176 bpil_offs_to_addr(info_linear); 3177 info_node->info_linear = info_linear; 3178 perf_env__insert_bpf_prog_info(env, info_node); 3179 } 3180 3181 up_write(&env->bpf_progs.lock); 3182 return 0; 3183 out: 3184 free(info_linear); 3185 free(info_node); 3186 up_write(&env->bpf_progs.lock); 3187 return err; 3188 } 3189 3190 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 3191 { 3192 struct perf_env *env = &ff->ph->env; 3193 struct btf_node *node = NULL; 3194 u32 count, i; 3195 int err = -1; 3196 3197 if (ff->ph->needs_swap) { 3198 pr_warning("interpreting btf from systems with endianness is not yet supported\n"); 3199 return 0; 3200 } 3201 3202 if (do_read_u32(ff, &count)) 3203 return -1; 3204 3205 down_write(&env->bpf_progs.lock); 3206 3207 for (i = 0; i < count; ++i) { 3208 u32 id, data_size; 3209 3210 if (do_read_u32(ff, &id)) 3211 goto out; 3212 if (do_read_u32(ff, &data_size)) 3213 goto out; 3214 3215 node = malloc(sizeof(struct btf_node) + data_size); 3216 if (!node) 3217 goto out; 3218 3219 node->id = id; 3220 node->data_size = data_size; 3221 3222 if (__do_read(ff, node->data, data_size)) 3223 goto out; 3224 3225 perf_env__insert_btf(env, node); 3226 node = NULL; 3227 } 3228 3229 err = 0; 3230 out: 3231 up_write(&env->bpf_progs.lock); 3232 free(node); 3233 return err; 3234 } 3235 #endif // HAVE_LIBBPF_SUPPORT 3236 3237 static int process_compressed(struct feat_fd *ff, 3238 void *data __maybe_unused) 3239 { 3240 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 3241 return -1; 3242 3243 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 3244 return -1; 3245 3246 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 3247 return -1; 3248 3249 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 3250 return -1; 3251 3252 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 3253 return -1; 3254 3255 return 0; 3256 } 3257 3258 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps, 3259 char ***caps, unsigned int *max_branches) 3260 { 3261 char *name, *value, *ptr; 3262 u32 nr_pmu_caps, i; 3263 3264 *nr_caps = 0; 3265 *caps = NULL; 3266 3267 if (do_read_u32(ff, &nr_pmu_caps)) 3268 return -1; 3269 3270 if (!nr_pmu_caps) 3271 return 0; 3272 3273 *caps = zalloc(sizeof(char *) * nr_pmu_caps); 3274 if (!*caps) 3275 return -1; 3276 3277 for (i = 0; i < nr_pmu_caps; i++) { 3278 name = do_read_string(ff); 3279 if (!name) 3280 goto error; 3281 3282 value = do_read_string(ff); 3283 if (!value) 3284 goto free_name; 3285 3286 if (asprintf(&ptr, "%s=%s", name, value) < 0) 3287 goto free_value; 3288 3289 (*caps)[i] = ptr; 3290 3291 if (!strcmp(name, "branches")) 3292 *max_branches = atoi(value); 3293 3294 free(value); 3295 free(name); 3296 } 3297 *nr_caps = nr_pmu_caps; 3298 return 0; 3299 3300 free_value: 3301 free(value); 3302 free_name: 3303 free(name); 3304 error: 3305 for (; i > 0; i--) 3306 free((*caps)[i - 1]); 3307 free(*caps); 3308 *caps = NULL; 3309 *nr_caps = 0; 3310 return -1; 3311 } 3312 3313 static int process_cpu_pmu_caps(struct feat_fd *ff, 3314 void *data __maybe_unused) 3315 { 3316 int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps, 3317 &ff->ph->env.cpu_pmu_caps, 3318 &ff->ph->env.max_branches); 3319 3320 if (!ret && !ff->ph->env.cpu_pmu_caps) 3321 pr_debug("cpu pmu capabilities not available\n"); 3322 return ret; 3323 } 3324 3325 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused) 3326 { 3327 struct pmu_caps *pmu_caps; 3328 u32 nr_pmu, i; 3329 int ret; 3330 int j; 3331 3332 if (do_read_u32(ff, &nr_pmu)) 3333 return -1; 3334 3335 if (!nr_pmu) { 3336 pr_debug("pmu capabilities not available\n"); 3337 return 0; 3338 } 3339 3340 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu); 3341 if (!pmu_caps) 3342 return -ENOMEM; 3343 3344 for (i = 0; i < nr_pmu; i++) { 3345 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps, 3346 &pmu_caps[i].caps, 3347 &pmu_caps[i].max_branches); 3348 if (ret) 3349 goto err; 3350 3351 pmu_caps[i].pmu_name = do_read_string(ff); 3352 if (!pmu_caps[i].pmu_name) { 3353 ret = -1; 3354 goto err; 3355 } 3356 if (!pmu_caps[i].nr_caps) { 3357 pr_debug("%s pmu capabilities not available\n", 3358 pmu_caps[i].pmu_name); 3359 } 3360 } 3361 3362 ff->ph->env.nr_pmus_with_caps = nr_pmu; 3363 ff->ph->env.pmu_caps = pmu_caps; 3364 return 0; 3365 3366 err: 3367 for (i = 0; i < nr_pmu; i++) { 3368 for (j = 0; j < pmu_caps[i].nr_caps; j++) 3369 free(pmu_caps[i].caps[j]); 3370 free(pmu_caps[i].caps); 3371 free(pmu_caps[i].pmu_name); 3372 } 3373 3374 free(pmu_caps); 3375 return ret; 3376 } 3377 3378 #define FEAT_OPR(n, func, __full_only) \ 3379 [HEADER_##n] = { \ 3380 .name = __stringify(n), \ 3381 .write = write_##func, \ 3382 .print = print_##func, \ 3383 .full_only = __full_only, \ 3384 .process = process_##func, \ 3385 .synthesize = true \ 3386 } 3387 3388 #define FEAT_OPN(n, func, __full_only) \ 3389 [HEADER_##n] = { \ 3390 .name = __stringify(n), \ 3391 .write = write_##func, \ 3392 .print = print_##func, \ 3393 .full_only = __full_only, \ 3394 .process = process_##func \ 3395 } 3396 3397 /* feature_ops not implemented: */ 3398 #define print_tracing_data NULL 3399 #define print_build_id NULL 3400 3401 #define process_branch_stack NULL 3402 #define process_stat NULL 3403 3404 // Only used in util/synthetic-events.c 3405 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 3406 3407 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 3408 #ifdef HAVE_LIBTRACEEVENT 3409 FEAT_OPN(TRACING_DATA, tracing_data, false), 3410 #endif 3411 FEAT_OPN(BUILD_ID, build_id, false), 3412 FEAT_OPR(HOSTNAME, hostname, false), 3413 FEAT_OPR(OSRELEASE, osrelease, false), 3414 FEAT_OPR(VERSION, version, false), 3415 FEAT_OPR(ARCH, arch, false), 3416 FEAT_OPR(NRCPUS, nrcpus, false), 3417 FEAT_OPR(CPUDESC, cpudesc, false), 3418 FEAT_OPR(CPUID, cpuid, false), 3419 FEAT_OPR(TOTAL_MEM, total_mem, false), 3420 FEAT_OPR(EVENT_DESC, event_desc, false), 3421 FEAT_OPR(CMDLINE, cmdline, false), 3422 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 3423 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 3424 FEAT_OPN(BRANCH_STACK, branch_stack, false), 3425 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 3426 FEAT_OPR(GROUP_DESC, group_desc, false), 3427 FEAT_OPN(AUXTRACE, auxtrace, false), 3428 FEAT_OPN(STAT, stat, false), 3429 FEAT_OPN(CACHE, cache, true), 3430 FEAT_OPR(SAMPLE_TIME, sample_time, false), 3431 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 3432 FEAT_OPR(CLOCKID, clockid, false), 3433 FEAT_OPN(DIR_FORMAT, dir_format, false), 3434 #ifdef HAVE_LIBBPF_SUPPORT 3435 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 3436 FEAT_OPR(BPF_BTF, bpf_btf, false), 3437 #endif 3438 FEAT_OPR(COMPRESSED, compressed, false), 3439 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), 3440 FEAT_OPR(CLOCK_DATA, clock_data, false), 3441 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true), 3442 FEAT_OPR(PMU_CAPS, pmu_caps, false), 3443 }; 3444 3445 struct header_print_data { 3446 FILE *fp; 3447 bool full; /* extended list of headers */ 3448 }; 3449 3450 static int perf_file_section__fprintf_info(struct perf_file_section *section, 3451 struct perf_header *ph, 3452 int feat, int fd, void *data) 3453 { 3454 struct header_print_data *hd = data; 3455 struct feat_fd ff; 3456 3457 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3458 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3459 "%d, continuing...\n", section->offset, feat); 3460 return 0; 3461 } 3462 if (feat >= HEADER_LAST_FEATURE) { 3463 pr_warning("unknown feature %d\n", feat); 3464 return 0; 3465 } 3466 if (!feat_ops[feat].print) 3467 return 0; 3468 3469 ff = (struct feat_fd) { 3470 .fd = fd, 3471 .ph = ph, 3472 }; 3473 3474 if (!feat_ops[feat].full_only || hd->full) 3475 feat_ops[feat].print(&ff, hd->fp); 3476 else 3477 fprintf(hd->fp, "# %s info available, use -I to display\n", 3478 feat_ops[feat].name); 3479 3480 return 0; 3481 } 3482 3483 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 3484 { 3485 struct header_print_data hd; 3486 struct perf_header *header = &session->header; 3487 int fd = perf_data__fd(session->data); 3488 struct stat st; 3489 time_t stctime; 3490 int ret, bit; 3491 3492 hd.fp = fp; 3493 hd.full = full; 3494 3495 ret = fstat(fd, &st); 3496 if (ret == -1) 3497 return -1; 3498 3499 stctime = st.st_mtime; 3500 fprintf(fp, "# captured on : %s", ctime(&stctime)); 3501 3502 fprintf(fp, "# header version : %u\n", header->version); 3503 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 3504 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 3505 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 3506 3507 perf_header__process_sections(header, fd, &hd, 3508 perf_file_section__fprintf_info); 3509 3510 if (session->data->is_pipe) 3511 return 0; 3512 3513 fprintf(fp, "# missing features: "); 3514 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 3515 if (bit) 3516 fprintf(fp, "%s ", feat_ops[bit].name); 3517 } 3518 3519 fprintf(fp, "\n"); 3520 return 0; 3521 } 3522 3523 struct header_fw { 3524 struct feat_writer fw; 3525 struct feat_fd *ff; 3526 }; 3527 3528 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz) 3529 { 3530 struct header_fw *h = container_of(fw, struct header_fw, fw); 3531 3532 return do_write(h->ff, buf, sz); 3533 } 3534 3535 static int do_write_feat(struct feat_fd *ff, int type, 3536 struct perf_file_section **p, 3537 struct evlist *evlist, 3538 struct feat_copier *fc) 3539 { 3540 int err; 3541 int ret = 0; 3542 3543 if (perf_header__has_feat(ff->ph, type)) { 3544 if (!feat_ops[type].write) 3545 return -1; 3546 3547 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 3548 return -1; 3549 3550 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3551 3552 /* 3553 * Hook to let perf inject copy features sections from the input 3554 * file. 3555 */ 3556 if (fc && fc->copy) { 3557 struct header_fw h = { 3558 .fw.write = feat_writer_cb, 3559 .ff = ff, 3560 }; 3561 3562 /* ->copy() returns 0 if the feature was not copied */ 3563 err = fc->copy(fc, type, &h.fw); 3564 } else { 3565 err = 0; 3566 } 3567 if (!err) 3568 err = feat_ops[type].write(ff, evlist); 3569 if (err < 0) { 3570 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3571 3572 /* undo anything written */ 3573 lseek(ff->fd, (*p)->offset, SEEK_SET); 3574 3575 return -1; 3576 } 3577 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3578 (*p)++; 3579 } 3580 return ret; 3581 } 3582 3583 static int perf_header__adds_write(struct perf_header *header, 3584 struct evlist *evlist, int fd, 3585 struct feat_copier *fc) 3586 { 3587 int nr_sections; 3588 struct feat_fd ff; 3589 struct perf_file_section *feat_sec, *p; 3590 int sec_size; 3591 u64 sec_start; 3592 int feat; 3593 int err; 3594 3595 ff = (struct feat_fd){ 3596 .fd = fd, 3597 .ph = header, 3598 }; 3599 3600 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3601 if (!nr_sections) 3602 return 0; 3603 3604 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3605 if (feat_sec == NULL) 3606 return -ENOMEM; 3607 3608 sec_size = sizeof(*feat_sec) * nr_sections; 3609 3610 sec_start = header->feat_offset; 3611 lseek(fd, sec_start + sec_size, SEEK_SET); 3612 3613 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3614 if (do_write_feat(&ff, feat, &p, evlist, fc)) 3615 perf_header__clear_feat(header, feat); 3616 } 3617 3618 lseek(fd, sec_start, SEEK_SET); 3619 /* 3620 * may write more than needed due to dropped feature, but 3621 * this is okay, reader will skip the missing entries 3622 */ 3623 err = do_write(&ff, feat_sec, sec_size); 3624 if (err < 0) 3625 pr_debug("failed to write feature section\n"); 3626 free(feat_sec); 3627 return err; 3628 } 3629 3630 int perf_header__write_pipe(int fd) 3631 { 3632 struct perf_pipe_file_header f_header; 3633 struct feat_fd ff; 3634 int err; 3635 3636 ff = (struct feat_fd){ .fd = fd }; 3637 3638 f_header = (struct perf_pipe_file_header){ 3639 .magic = PERF_MAGIC, 3640 .size = sizeof(f_header), 3641 }; 3642 3643 err = do_write(&ff, &f_header, sizeof(f_header)); 3644 if (err < 0) { 3645 pr_debug("failed to write perf pipe header\n"); 3646 return err; 3647 } 3648 3649 return 0; 3650 } 3651 3652 static int perf_session__do_write_header(struct perf_session *session, 3653 struct evlist *evlist, 3654 int fd, bool at_exit, 3655 struct feat_copier *fc) 3656 { 3657 struct perf_file_header f_header; 3658 struct perf_file_attr f_attr; 3659 struct perf_header *header = &session->header; 3660 struct evsel *evsel; 3661 struct feat_fd ff; 3662 u64 attr_offset; 3663 int err; 3664 3665 ff = (struct feat_fd){ .fd = fd}; 3666 lseek(fd, sizeof(f_header), SEEK_SET); 3667 3668 evlist__for_each_entry(session->evlist, evsel) { 3669 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3670 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3671 if (err < 0) { 3672 pr_debug("failed to write perf header\n"); 3673 return err; 3674 } 3675 } 3676 3677 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3678 3679 evlist__for_each_entry(evlist, evsel) { 3680 if (evsel->core.attr.size < sizeof(evsel->core.attr)) { 3681 /* 3682 * We are likely in "perf inject" and have read 3683 * from an older file. Update attr size so that 3684 * reader gets the right offset to the ids. 3685 */ 3686 evsel->core.attr.size = sizeof(evsel->core.attr); 3687 } 3688 f_attr = (struct perf_file_attr){ 3689 .attr = evsel->core.attr, 3690 .ids = { 3691 .offset = evsel->id_offset, 3692 .size = evsel->core.ids * sizeof(u64), 3693 } 3694 }; 3695 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3696 if (err < 0) { 3697 pr_debug("failed to write perf header attribute\n"); 3698 return err; 3699 } 3700 } 3701 3702 if (!header->data_offset) 3703 header->data_offset = lseek(fd, 0, SEEK_CUR); 3704 header->feat_offset = header->data_offset + header->data_size; 3705 3706 if (at_exit) { 3707 err = perf_header__adds_write(header, evlist, fd, fc); 3708 if (err < 0) 3709 return err; 3710 } 3711 3712 f_header = (struct perf_file_header){ 3713 .magic = PERF_MAGIC, 3714 .size = sizeof(f_header), 3715 .attr_size = sizeof(f_attr), 3716 .attrs = { 3717 .offset = attr_offset, 3718 .size = evlist->core.nr_entries * sizeof(f_attr), 3719 }, 3720 .data = { 3721 .offset = header->data_offset, 3722 .size = header->data_size, 3723 }, 3724 /* event_types is ignored, store zeros */ 3725 }; 3726 3727 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3728 3729 lseek(fd, 0, SEEK_SET); 3730 err = do_write(&ff, &f_header, sizeof(f_header)); 3731 if (err < 0) { 3732 pr_debug("failed to write perf header\n"); 3733 return err; 3734 } 3735 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3736 3737 return 0; 3738 } 3739 3740 int perf_session__write_header(struct perf_session *session, 3741 struct evlist *evlist, 3742 int fd, bool at_exit) 3743 { 3744 return perf_session__do_write_header(session, evlist, fd, at_exit, NULL); 3745 } 3746 3747 size_t perf_session__data_offset(const struct evlist *evlist) 3748 { 3749 struct evsel *evsel; 3750 size_t data_offset; 3751 3752 data_offset = sizeof(struct perf_file_header); 3753 evlist__for_each_entry(evlist, evsel) { 3754 data_offset += evsel->core.ids * sizeof(u64); 3755 } 3756 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr); 3757 3758 return data_offset; 3759 } 3760 3761 int perf_session__inject_header(struct perf_session *session, 3762 struct evlist *evlist, 3763 int fd, 3764 struct feat_copier *fc) 3765 { 3766 return perf_session__do_write_header(session, evlist, fd, true, fc); 3767 } 3768 3769 static int perf_header__getbuffer64(struct perf_header *header, 3770 int fd, void *buf, size_t size) 3771 { 3772 if (readn(fd, buf, size) <= 0) 3773 return -1; 3774 3775 if (header->needs_swap) 3776 mem_bswap_64(buf, size); 3777 3778 return 0; 3779 } 3780 3781 int perf_header__process_sections(struct perf_header *header, int fd, 3782 void *data, 3783 int (*process)(struct perf_file_section *section, 3784 struct perf_header *ph, 3785 int feat, int fd, void *data)) 3786 { 3787 struct perf_file_section *feat_sec, *sec; 3788 int nr_sections; 3789 int sec_size; 3790 int feat; 3791 int err; 3792 3793 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3794 if (!nr_sections) 3795 return 0; 3796 3797 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3798 if (!feat_sec) 3799 return -1; 3800 3801 sec_size = sizeof(*feat_sec) * nr_sections; 3802 3803 lseek(fd, header->feat_offset, SEEK_SET); 3804 3805 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3806 if (err < 0) 3807 goto out_free; 3808 3809 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3810 err = process(sec++, header, feat, fd, data); 3811 if (err < 0) 3812 goto out_free; 3813 } 3814 err = 0; 3815 out_free: 3816 free(feat_sec); 3817 return err; 3818 } 3819 3820 static const int attr_file_abi_sizes[] = { 3821 [0] = PERF_ATTR_SIZE_VER0, 3822 [1] = PERF_ATTR_SIZE_VER1, 3823 [2] = PERF_ATTR_SIZE_VER2, 3824 [3] = PERF_ATTR_SIZE_VER3, 3825 [4] = PERF_ATTR_SIZE_VER4, 3826 0, 3827 }; 3828 3829 /* 3830 * In the legacy file format, the magic number is not used to encode endianness. 3831 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3832 * on ABI revisions, we need to try all combinations for all endianness to 3833 * detect the endianness. 3834 */ 3835 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3836 { 3837 uint64_t ref_size, attr_size; 3838 int i; 3839 3840 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3841 ref_size = attr_file_abi_sizes[i] 3842 + sizeof(struct perf_file_section); 3843 if (hdr_sz != ref_size) { 3844 attr_size = bswap_64(hdr_sz); 3845 if (attr_size != ref_size) 3846 continue; 3847 3848 ph->needs_swap = true; 3849 } 3850 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3851 i, 3852 ph->needs_swap); 3853 return 0; 3854 } 3855 /* could not determine endianness */ 3856 return -1; 3857 } 3858 3859 #define PERF_PIPE_HDR_VER0 16 3860 3861 static const size_t attr_pipe_abi_sizes[] = { 3862 [0] = PERF_PIPE_HDR_VER0, 3863 0, 3864 }; 3865 3866 /* 3867 * In the legacy pipe format, there is an implicit assumption that endianness 3868 * between host recording the samples, and host parsing the samples is the 3869 * same. This is not always the case given that the pipe output may always be 3870 * redirected into a file and analyzed on a different machine with possibly a 3871 * different endianness and perf_event ABI revisions in the perf tool itself. 3872 */ 3873 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3874 { 3875 u64 attr_size; 3876 int i; 3877 3878 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3879 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3880 attr_size = bswap_64(hdr_sz); 3881 if (attr_size != hdr_sz) 3882 continue; 3883 3884 ph->needs_swap = true; 3885 } 3886 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3887 return 0; 3888 } 3889 return -1; 3890 } 3891 3892 bool is_perf_magic(u64 magic) 3893 { 3894 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3895 || magic == __perf_magic2 3896 || magic == __perf_magic2_sw) 3897 return true; 3898 3899 return false; 3900 } 3901 3902 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3903 bool is_pipe, struct perf_header *ph) 3904 { 3905 int ret; 3906 3907 /* check for legacy format */ 3908 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3909 if (ret == 0) { 3910 ph->version = PERF_HEADER_VERSION_1; 3911 pr_debug("legacy perf.data format\n"); 3912 if (is_pipe) 3913 return try_all_pipe_abis(hdr_sz, ph); 3914 3915 return try_all_file_abis(hdr_sz, ph); 3916 } 3917 /* 3918 * the new magic number serves two purposes: 3919 * - unique number to identify actual perf.data files 3920 * - encode endianness of file 3921 */ 3922 ph->version = PERF_HEADER_VERSION_2; 3923 3924 /* check magic number with one endianness */ 3925 if (magic == __perf_magic2) 3926 return 0; 3927 3928 /* check magic number with opposite endianness */ 3929 if (magic != __perf_magic2_sw) 3930 return -1; 3931 3932 ph->needs_swap = true; 3933 3934 return 0; 3935 } 3936 3937 int perf_file_header__read(struct perf_file_header *header, 3938 struct perf_header *ph, int fd) 3939 { 3940 ssize_t ret; 3941 3942 lseek(fd, 0, SEEK_SET); 3943 3944 ret = readn(fd, header, sizeof(*header)); 3945 if (ret <= 0) 3946 return -1; 3947 3948 if (check_magic_endian(header->magic, 3949 header->attr_size, false, ph) < 0) { 3950 pr_debug("magic/endian check failed\n"); 3951 return -1; 3952 } 3953 3954 if (ph->needs_swap) { 3955 mem_bswap_64(header, offsetof(struct perf_file_header, 3956 adds_features)); 3957 } 3958 3959 if (header->size != sizeof(*header)) { 3960 /* Support the previous format */ 3961 if (header->size == offsetof(typeof(*header), adds_features)) 3962 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3963 else 3964 return -1; 3965 } else if (ph->needs_swap) { 3966 /* 3967 * feature bitmap is declared as an array of unsigned longs -- 3968 * not good since its size can differ between the host that 3969 * generated the data file and the host analyzing the file. 3970 * 3971 * We need to handle endianness, but we don't know the size of 3972 * the unsigned long where the file was generated. Take a best 3973 * guess at determining it: try 64-bit swap first (ie., file 3974 * created on a 64-bit host), and check if the hostname feature 3975 * bit is set (this feature bit is forced on as of fbe96f2). 3976 * If the bit is not, undo the 64-bit swap and try a 32-bit 3977 * swap. If the hostname bit is still not set (e.g., older data 3978 * file), punt and fallback to the original behavior -- 3979 * clearing all feature bits and setting buildid. 3980 */ 3981 mem_bswap_64(&header->adds_features, 3982 BITS_TO_U64(HEADER_FEAT_BITS)); 3983 3984 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3985 /* unswap as u64 */ 3986 mem_bswap_64(&header->adds_features, 3987 BITS_TO_U64(HEADER_FEAT_BITS)); 3988 3989 /* unswap as u32 */ 3990 mem_bswap_32(&header->adds_features, 3991 BITS_TO_U32(HEADER_FEAT_BITS)); 3992 } 3993 3994 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3995 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3996 __set_bit(HEADER_BUILD_ID, header->adds_features); 3997 } 3998 } 3999 4000 memcpy(&ph->adds_features, &header->adds_features, 4001 sizeof(ph->adds_features)); 4002 4003 ph->data_offset = header->data.offset; 4004 ph->data_size = header->data.size; 4005 ph->feat_offset = header->data.offset + header->data.size; 4006 return 0; 4007 } 4008 4009 static int perf_file_section__process(struct perf_file_section *section, 4010 struct perf_header *ph, 4011 int feat, int fd, void *data) 4012 { 4013 struct feat_fd fdd = { 4014 .fd = fd, 4015 .ph = ph, 4016 .size = section->size, 4017 .offset = section->offset, 4018 }; 4019 4020 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 4021 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 4022 "%d, continuing...\n", section->offset, feat); 4023 return 0; 4024 } 4025 4026 if (feat >= HEADER_LAST_FEATURE) { 4027 pr_debug("unknown feature %d, continuing...\n", feat); 4028 return 0; 4029 } 4030 4031 if (!feat_ops[feat].process) 4032 return 0; 4033 4034 return feat_ops[feat].process(&fdd, data); 4035 } 4036 4037 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 4038 struct perf_header *ph, 4039 struct perf_data* data, 4040 bool repipe, int repipe_fd) 4041 { 4042 struct feat_fd ff = { 4043 .fd = repipe_fd, 4044 .ph = ph, 4045 }; 4046 ssize_t ret; 4047 4048 ret = perf_data__read(data, header, sizeof(*header)); 4049 if (ret <= 0) 4050 return -1; 4051 4052 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 4053 pr_debug("endian/magic failed\n"); 4054 return -1; 4055 } 4056 4057 if (ph->needs_swap) 4058 header->size = bswap_64(header->size); 4059 4060 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 4061 return -1; 4062 4063 return 0; 4064 } 4065 4066 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd) 4067 { 4068 struct perf_header *header = &session->header; 4069 struct perf_pipe_file_header f_header; 4070 4071 if (perf_file_header__read_pipe(&f_header, header, session->data, 4072 session->repipe, repipe_fd) < 0) { 4073 pr_debug("incompatible file format\n"); 4074 return -EINVAL; 4075 } 4076 4077 return f_header.size == sizeof(f_header) ? 0 : -1; 4078 } 4079 4080 static int read_attr(int fd, struct perf_header *ph, 4081 struct perf_file_attr *f_attr) 4082 { 4083 struct perf_event_attr *attr = &f_attr->attr; 4084 size_t sz, left; 4085 size_t our_sz = sizeof(f_attr->attr); 4086 ssize_t ret; 4087 4088 memset(f_attr, 0, sizeof(*f_attr)); 4089 4090 /* read minimal guaranteed structure */ 4091 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 4092 if (ret <= 0) { 4093 pr_debug("cannot read %d bytes of header attr\n", 4094 PERF_ATTR_SIZE_VER0); 4095 return -1; 4096 } 4097 4098 /* on file perf_event_attr size */ 4099 sz = attr->size; 4100 4101 if (ph->needs_swap) 4102 sz = bswap_32(sz); 4103 4104 if (sz == 0) { 4105 /* assume ABI0 */ 4106 sz = PERF_ATTR_SIZE_VER0; 4107 } else if (sz > our_sz) { 4108 pr_debug("file uses a more recent and unsupported ABI" 4109 " (%zu bytes extra)\n", sz - our_sz); 4110 return -1; 4111 } 4112 /* what we have not yet read and that we know about */ 4113 left = sz - PERF_ATTR_SIZE_VER0; 4114 if (left) { 4115 void *ptr = attr; 4116 ptr += PERF_ATTR_SIZE_VER0; 4117 4118 ret = readn(fd, ptr, left); 4119 } 4120 /* read perf_file_section, ids are read in caller */ 4121 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 4122 4123 return ret <= 0 ? -1 : 0; 4124 } 4125 4126 #ifdef HAVE_LIBTRACEEVENT 4127 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) 4128 { 4129 struct tep_event *event; 4130 char bf[128]; 4131 4132 /* already prepared */ 4133 if (evsel->tp_format) 4134 return 0; 4135 4136 if (pevent == NULL) { 4137 pr_debug("broken or missing trace data\n"); 4138 return -1; 4139 } 4140 4141 event = tep_find_event(pevent, evsel->core.attr.config); 4142 if (event == NULL) { 4143 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 4144 return -1; 4145 } 4146 4147 if (!evsel->name) { 4148 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 4149 evsel->name = strdup(bf); 4150 if (evsel->name == NULL) 4151 return -1; 4152 } 4153 4154 evsel->tp_format = event; 4155 return 0; 4156 } 4157 4158 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent) 4159 { 4160 struct evsel *pos; 4161 4162 evlist__for_each_entry(evlist, pos) { 4163 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 4164 evsel__prepare_tracepoint_event(pos, pevent)) 4165 return -1; 4166 } 4167 4168 return 0; 4169 } 4170 #endif 4171 4172 int perf_session__read_header(struct perf_session *session, int repipe_fd) 4173 { 4174 struct perf_data *data = session->data; 4175 struct perf_header *header = &session->header; 4176 struct perf_file_header f_header; 4177 struct perf_file_attr f_attr; 4178 u64 f_id; 4179 int nr_attrs, nr_ids, i, j, err; 4180 int fd = perf_data__fd(data); 4181 4182 session->evlist = evlist__new(); 4183 if (session->evlist == NULL) 4184 return -ENOMEM; 4185 4186 session->evlist->env = &header->env; 4187 session->machines.host.env = &header->env; 4188 4189 /* 4190 * We can read 'pipe' data event from regular file, 4191 * check for the pipe header regardless of source. 4192 */ 4193 err = perf_header__read_pipe(session, repipe_fd); 4194 if (!err || perf_data__is_pipe(data)) { 4195 data->is_pipe = true; 4196 return err; 4197 } 4198 4199 if (perf_file_header__read(&f_header, header, fd) < 0) 4200 return -EINVAL; 4201 4202 if (header->needs_swap && data->in_place_update) { 4203 pr_err("In-place update not supported when byte-swapping is required\n"); 4204 return -EINVAL; 4205 } 4206 4207 /* 4208 * Sanity check that perf.data was written cleanly; data size is 4209 * initialized to 0 and updated only if the on_exit function is run. 4210 * If data size is still 0 then the file contains only partial 4211 * information. Just warn user and process it as much as it can. 4212 */ 4213 if (f_header.data.size == 0) { 4214 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 4215 "Was the 'perf record' command properly terminated?\n", 4216 data->file.path); 4217 } 4218 4219 if (f_header.attr_size == 0) { 4220 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 4221 "Was the 'perf record' command properly terminated?\n", 4222 data->file.path); 4223 return -EINVAL; 4224 } 4225 4226 nr_attrs = f_header.attrs.size / f_header.attr_size; 4227 lseek(fd, f_header.attrs.offset, SEEK_SET); 4228 4229 for (i = 0; i < nr_attrs; i++) { 4230 struct evsel *evsel; 4231 off_t tmp; 4232 4233 if (read_attr(fd, header, &f_attr) < 0) 4234 goto out_errno; 4235 4236 if (header->needs_swap) { 4237 f_attr.ids.size = bswap_64(f_attr.ids.size); 4238 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 4239 perf_event__attr_swap(&f_attr.attr); 4240 } 4241 4242 tmp = lseek(fd, 0, SEEK_CUR); 4243 evsel = evsel__new(&f_attr.attr); 4244 4245 if (evsel == NULL) 4246 goto out_delete_evlist; 4247 4248 evsel->needs_swap = header->needs_swap; 4249 /* 4250 * Do it before so that if perf_evsel__alloc_id fails, this 4251 * entry gets purged too at evlist__delete(). 4252 */ 4253 evlist__add(session->evlist, evsel); 4254 4255 nr_ids = f_attr.ids.size / sizeof(u64); 4256 /* 4257 * We don't have the cpu and thread maps on the header, so 4258 * for allocating the perf_sample_id table we fake 1 cpu and 4259 * hattr->ids threads. 4260 */ 4261 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 4262 goto out_delete_evlist; 4263 4264 lseek(fd, f_attr.ids.offset, SEEK_SET); 4265 4266 for (j = 0; j < nr_ids; j++) { 4267 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 4268 goto out_errno; 4269 4270 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 4271 } 4272 4273 lseek(fd, tmp, SEEK_SET); 4274 } 4275 4276 #ifdef HAVE_LIBTRACEEVENT 4277 perf_header__process_sections(header, fd, &session->tevent, 4278 perf_file_section__process); 4279 4280 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) 4281 goto out_delete_evlist; 4282 #else 4283 perf_header__process_sections(header, fd, NULL, perf_file_section__process); 4284 #endif 4285 4286 return 0; 4287 out_errno: 4288 return -errno; 4289 4290 out_delete_evlist: 4291 evlist__delete(session->evlist); 4292 session->evlist = NULL; 4293 return -ENOMEM; 4294 } 4295 4296 int perf_event__process_feature(struct perf_session *session, 4297 union perf_event *event) 4298 { 4299 struct perf_tool *tool = session->tool; 4300 struct feat_fd ff = { .fd = 0 }; 4301 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 4302 int type = fe->header.type; 4303 u64 feat = fe->feat_id; 4304 int ret = 0; 4305 4306 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 4307 pr_warning("invalid record type %d in pipe-mode\n", type); 4308 return 0; 4309 } 4310 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 4311 pr_warning("invalid record type %d in pipe-mode\n", type); 4312 return -1; 4313 } 4314 4315 if (!feat_ops[feat].process) 4316 return 0; 4317 4318 ff.buf = (void *)fe->data; 4319 ff.size = event->header.size - sizeof(*fe); 4320 ff.ph = &session->header; 4321 4322 if (feat_ops[feat].process(&ff, NULL)) { 4323 ret = -1; 4324 goto out; 4325 } 4326 4327 if (!feat_ops[feat].print || !tool->show_feat_hdr) 4328 goto out; 4329 4330 if (!feat_ops[feat].full_only || 4331 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 4332 feat_ops[feat].print(&ff, stdout); 4333 } else { 4334 fprintf(stdout, "# %s info available, use -I to display\n", 4335 feat_ops[feat].name); 4336 } 4337 out: 4338 free_event_desc(ff.events); 4339 return ret; 4340 } 4341 4342 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 4343 { 4344 struct perf_record_event_update *ev = &event->event_update; 4345 struct perf_cpu_map *map; 4346 size_t ret; 4347 4348 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 4349 4350 switch (ev->type) { 4351 case PERF_EVENT_UPDATE__SCALE: 4352 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale); 4353 break; 4354 case PERF_EVENT_UPDATE__UNIT: 4355 ret += fprintf(fp, "... unit: %s\n", ev->unit); 4356 break; 4357 case PERF_EVENT_UPDATE__NAME: 4358 ret += fprintf(fp, "... name: %s\n", ev->name); 4359 break; 4360 case PERF_EVENT_UPDATE__CPUS: 4361 ret += fprintf(fp, "... "); 4362 4363 map = cpu_map__new_data(&ev->cpus.cpus); 4364 if (map) 4365 ret += cpu_map__fprintf(map, fp); 4366 else 4367 ret += fprintf(fp, "failed to get cpus\n"); 4368 break; 4369 default: 4370 ret += fprintf(fp, "... unknown type\n"); 4371 break; 4372 } 4373 4374 return ret; 4375 } 4376 4377 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 4378 union perf_event *event, 4379 struct evlist **pevlist) 4380 { 4381 u32 i, n_ids; 4382 u64 *ids; 4383 struct evsel *evsel; 4384 struct evlist *evlist = *pevlist; 4385 4386 if (evlist == NULL) { 4387 *pevlist = evlist = evlist__new(); 4388 if (evlist == NULL) 4389 return -ENOMEM; 4390 } 4391 4392 evsel = evsel__new(&event->attr.attr); 4393 if (evsel == NULL) 4394 return -ENOMEM; 4395 4396 evlist__add(evlist, evsel); 4397 4398 n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size; 4399 n_ids = n_ids / sizeof(u64); 4400 /* 4401 * We don't have the cpu and thread maps on the header, so 4402 * for allocating the perf_sample_id table we fake 1 cpu and 4403 * hattr->ids threads. 4404 */ 4405 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 4406 return -ENOMEM; 4407 4408 ids = perf_record_header_attr_id(event); 4409 for (i = 0; i < n_ids; i++) { 4410 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]); 4411 } 4412 4413 return 0; 4414 } 4415 4416 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 4417 union perf_event *event, 4418 struct evlist **pevlist) 4419 { 4420 struct perf_record_event_update *ev = &event->event_update; 4421 struct evlist *evlist; 4422 struct evsel *evsel; 4423 struct perf_cpu_map *map; 4424 4425 if (dump_trace) 4426 perf_event__fprintf_event_update(event, stdout); 4427 4428 if (!pevlist || *pevlist == NULL) 4429 return -EINVAL; 4430 4431 evlist = *pevlist; 4432 4433 evsel = evlist__id2evsel(evlist, ev->id); 4434 if (evsel == NULL) 4435 return -EINVAL; 4436 4437 switch (ev->type) { 4438 case PERF_EVENT_UPDATE__UNIT: 4439 free((char *)evsel->unit); 4440 evsel->unit = strdup(ev->unit); 4441 break; 4442 case PERF_EVENT_UPDATE__NAME: 4443 free(evsel->name); 4444 evsel->name = strdup(ev->name); 4445 break; 4446 case PERF_EVENT_UPDATE__SCALE: 4447 evsel->scale = ev->scale.scale; 4448 break; 4449 case PERF_EVENT_UPDATE__CPUS: 4450 map = cpu_map__new_data(&ev->cpus.cpus); 4451 if (map) { 4452 perf_cpu_map__put(evsel->core.own_cpus); 4453 evsel->core.own_cpus = map; 4454 } else 4455 pr_err("failed to get event_update cpus\n"); 4456 default: 4457 break; 4458 } 4459 4460 return 0; 4461 } 4462 4463 #ifdef HAVE_LIBTRACEEVENT 4464 int perf_event__process_tracing_data(struct perf_session *session, 4465 union perf_event *event) 4466 { 4467 ssize_t size_read, padding, size = event->tracing_data.size; 4468 int fd = perf_data__fd(session->data); 4469 char buf[BUFSIZ]; 4470 4471 /* 4472 * The pipe fd is already in proper place and in any case 4473 * we can't move it, and we'd screw the case where we read 4474 * 'pipe' data from regular file. The trace_report reads 4475 * data from 'fd' so we need to set it directly behind the 4476 * event, where the tracing data starts. 4477 */ 4478 if (!perf_data__is_pipe(session->data)) { 4479 off_t offset = lseek(fd, 0, SEEK_CUR); 4480 4481 /* setup for reading amidst mmap */ 4482 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 4483 SEEK_SET); 4484 } 4485 4486 size_read = trace_report(fd, &session->tevent, 4487 session->repipe); 4488 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4489 4490 if (readn(fd, buf, padding) < 0) { 4491 pr_err("%s: reading input file", __func__); 4492 return -1; 4493 } 4494 if (session->repipe) { 4495 int retw = write(STDOUT_FILENO, buf, padding); 4496 if (retw <= 0 || retw != padding) { 4497 pr_err("%s: repiping tracing data padding", __func__); 4498 return -1; 4499 } 4500 } 4501 4502 if (size_read + padding != size) { 4503 pr_err("%s: tracing data size mismatch", __func__); 4504 return -1; 4505 } 4506 4507 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); 4508 4509 return size_read + padding; 4510 } 4511 #endif 4512 4513 int perf_event__process_build_id(struct perf_session *session, 4514 union perf_event *event) 4515 { 4516 __event_process_build_id(&event->build_id, 4517 event->build_id.filename, 4518 session); 4519 return 0; 4520 } 4521