xref: /linux/tools/perf/util/header.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "util.h"
5 #include "string2.h"
6 #include <sys/param.h>
7 #include <sys/types.h>
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/stringify.h>
17 #include <sys/stat.h>
18 #include <sys/utsname.h>
19 #include <linux/time64.h>
20 #include <dirent.h>
21 
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "header.h"
25 #include "memswap.h"
26 #include "../perf.h"
27 #include "trace-event.h"
28 #include "session.h"
29 #include "symbol.h"
30 #include "debug.h"
31 #include "cpumap.h"
32 #include "pmu.h"
33 #include "vdso.h"
34 #include "strbuf.h"
35 #include "build-id.h"
36 #include "data.h"
37 #include <api/fs/fs.h>
38 #include "asm/bug.h"
39 #include "tool.h"
40 #include "time-utils.h"
41 #include "units.h"
42 
43 #include "sane_ctype.h"
44 
45 /*
46  * magic2 = "PERFILE2"
47  * must be a numerical value to let the endianness
48  * determine the memory layout. That way we are able
49  * to detect endianness when reading the perf.data file
50  * back.
51  *
52  * we check for legacy (PERFFILE) format.
53  */
54 static const char *__perf_magic1 = "PERFFILE";
55 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
56 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
57 
58 #define PERF_MAGIC	__perf_magic2
59 
60 const char perf_version_string[] = PERF_VERSION;
61 
62 struct perf_file_attr {
63 	struct perf_event_attr	attr;
64 	struct perf_file_section	ids;
65 };
66 
67 struct feat_fd {
68 	struct perf_header	*ph;
69 	int			fd;
70 	void			*buf;	/* Either buf != NULL or fd >= 0 */
71 	ssize_t			offset;
72 	size_t			size;
73 	struct perf_evsel	*events;
74 };
75 
76 void perf_header__set_feat(struct perf_header *header, int feat)
77 {
78 	set_bit(feat, header->adds_features);
79 }
80 
81 void perf_header__clear_feat(struct perf_header *header, int feat)
82 {
83 	clear_bit(feat, header->adds_features);
84 }
85 
86 bool perf_header__has_feat(const struct perf_header *header, int feat)
87 {
88 	return test_bit(feat, header->adds_features);
89 }
90 
91 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92 {
93 	ssize_t ret = writen(ff->fd, buf, size);
94 
95 	if (ret != (ssize_t)size)
96 		return ret < 0 ? (int)ret : -1;
97 	return 0;
98 }
99 
100 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
101 {
102 	/* struct perf_event_header::size is u16 */
103 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
104 	size_t new_size = ff->size;
105 	void *addr;
106 
107 	if (size + ff->offset > max_size)
108 		return -E2BIG;
109 
110 	while (size > (new_size - ff->offset))
111 		new_size <<= 1;
112 	new_size = min(max_size, new_size);
113 
114 	if (ff->size < new_size) {
115 		addr = realloc(ff->buf, new_size);
116 		if (!addr)
117 			return -ENOMEM;
118 		ff->buf = addr;
119 		ff->size = new_size;
120 	}
121 
122 	memcpy(ff->buf + ff->offset, buf, size);
123 	ff->offset += size;
124 
125 	return 0;
126 }
127 
128 /* Return: 0 if succeded, -ERR if failed. */
129 int do_write(struct feat_fd *ff, const void *buf, size_t size)
130 {
131 	if (!ff->buf)
132 		return __do_write_fd(ff, buf, size);
133 	return __do_write_buf(ff, buf, size);
134 }
135 
136 /* Return: 0 if succeded, -ERR if failed. */
137 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
138 {
139 	u64 *p = (u64 *) set;
140 	int i, ret;
141 
142 	ret = do_write(ff, &size, sizeof(size));
143 	if (ret < 0)
144 		return ret;
145 
146 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
147 		ret = do_write(ff, p + i, sizeof(*p));
148 		if (ret < 0)
149 			return ret;
150 	}
151 
152 	return 0;
153 }
154 
155 /* Return: 0 if succeded, -ERR if failed. */
156 int write_padded(struct feat_fd *ff, const void *bf,
157 		 size_t count, size_t count_aligned)
158 {
159 	static const char zero_buf[NAME_ALIGN];
160 	int err = do_write(ff, bf, count);
161 
162 	if (!err)
163 		err = do_write(ff, zero_buf, count_aligned - count);
164 
165 	return err;
166 }
167 
168 #define string_size(str)						\
169 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
170 
171 /* Return: 0 if succeded, -ERR if failed. */
172 static int do_write_string(struct feat_fd *ff, const char *str)
173 {
174 	u32 len, olen;
175 	int ret;
176 
177 	olen = strlen(str) + 1;
178 	len = PERF_ALIGN(olen, NAME_ALIGN);
179 
180 	/* write len, incl. \0 */
181 	ret = do_write(ff, &len, sizeof(len));
182 	if (ret < 0)
183 		return ret;
184 
185 	return write_padded(ff, str, olen, len);
186 }
187 
188 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189 {
190 	ssize_t ret = readn(ff->fd, addr, size);
191 
192 	if (ret != size)
193 		return ret < 0 ? (int)ret : -1;
194 	return 0;
195 }
196 
197 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
198 {
199 	if (size > (ssize_t)ff->size - ff->offset)
200 		return -1;
201 
202 	memcpy(addr, ff->buf + ff->offset, size);
203 	ff->offset += size;
204 
205 	return 0;
206 
207 }
208 
209 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
210 {
211 	if (!ff->buf)
212 		return __do_read_fd(ff, addr, size);
213 	return __do_read_buf(ff, addr, size);
214 }
215 
216 static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 {
218 	int ret;
219 
220 	ret = __do_read(ff, addr, sizeof(*addr));
221 	if (ret)
222 		return ret;
223 
224 	if (ff->ph->needs_swap)
225 		*addr = bswap_32(*addr);
226 	return 0;
227 }
228 
229 static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 {
231 	int ret;
232 
233 	ret = __do_read(ff, addr, sizeof(*addr));
234 	if (ret)
235 		return ret;
236 
237 	if (ff->ph->needs_swap)
238 		*addr = bswap_64(*addr);
239 	return 0;
240 }
241 
242 static char *do_read_string(struct feat_fd *ff)
243 {
244 	u32 len;
245 	char *buf;
246 
247 	if (do_read_u32(ff, &len))
248 		return NULL;
249 
250 	buf = malloc(len);
251 	if (!buf)
252 		return NULL;
253 
254 	if (!__do_read(ff, buf, len)) {
255 		/*
256 		 * strings are padded by zeroes
257 		 * thus the actual strlen of buf
258 		 * may be less than len
259 		 */
260 		return buf;
261 	}
262 
263 	free(buf);
264 	return NULL;
265 }
266 
267 /* Return: 0 if succeded, -ERR if failed. */
268 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
269 {
270 	unsigned long *set;
271 	u64 size, *p;
272 	int i, ret;
273 
274 	ret = do_read_u64(ff, &size);
275 	if (ret)
276 		return ret;
277 
278 	set = bitmap_alloc(size);
279 	if (!set)
280 		return -ENOMEM;
281 
282 	bitmap_zero(set, size);
283 
284 	p = (u64 *) set;
285 
286 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
287 		ret = do_read_u64(ff, p + i);
288 		if (ret < 0) {
289 			free(set);
290 			return ret;
291 		}
292 	}
293 
294 	*pset  = set;
295 	*psize = size;
296 	return 0;
297 }
298 
299 static int write_tracing_data(struct feat_fd *ff,
300 			      struct perf_evlist *evlist)
301 {
302 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
303 		return -1;
304 
305 	return read_tracing_data(ff->fd, &evlist->entries);
306 }
307 
308 static int write_build_id(struct feat_fd *ff,
309 			  struct perf_evlist *evlist __maybe_unused)
310 {
311 	struct perf_session *session;
312 	int err;
313 
314 	session = container_of(ff->ph, struct perf_session, header);
315 
316 	if (!perf_session__read_build_ids(session, true))
317 		return -1;
318 
319 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
320 		return -1;
321 
322 	err = perf_session__write_buildid_table(session, ff);
323 	if (err < 0) {
324 		pr_debug("failed to write buildid table\n");
325 		return err;
326 	}
327 	perf_session__cache_build_ids(session);
328 
329 	return 0;
330 }
331 
332 static int write_hostname(struct feat_fd *ff,
333 			  struct perf_evlist *evlist __maybe_unused)
334 {
335 	struct utsname uts;
336 	int ret;
337 
338 	ret = uname(&uts);
339 	if (ret < 0)
340 		return -1;
341 
342 	return do_write_string(ff, uts.nodename);
343 }
344 
345 static int write_osrelease(struct feat_fd *ff,
346 			   struct perf_evlist *evlist __maybe_unused)
347 {
348 	struct utsname uts;
349 	int ret;
350 
351 	ret = uname(&uts);
352 	if (ret < 0)
353 		return -1;
354 
355 	return do_write_string(ff, uts.release);
356 }
357 
358 static int write_arch(struct feat_fd *ff,
359 		      struct perf_evlist *evlist __maybe_unused)
360 {
361 	struct utsname uts;
362 	int ret;
363 
364 	ret = uname(&uts);
365 	if (ret < 0)
366 		return -1;
367 
368 	return do_write_string(ff, uts.machine);
369 }
370 
371 static int write_version(struct feat_fd *ff,
372 			 struct perf_evlist *evlist __maybe_unused)
373 {
374 	return do_write_string(ff, perf_version_string);
375 }
376 
377 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
378 {
379 	FILE *file;
380 	char *buf = NULL;
381 	char *s, *p;
382 	const char *search = cpuinfo_proc;
383 	size_t len = 0;
384 	int ret = -1;
385 
386 	if (!search)
387 		return -1;
388 
389 	file = fopen("/proc/cpuinfo", "r");
390 	if (!file)
391 		return -1;
392 
393 	while (getline(&buf, &len, file) > 0) {
394 		ret = strncmp(buf, search, strlen(search));
395 		if (!ret)
396 			break;
397 	}
398 
399 	if (ret) {
400 		ret = -1;
401 		goto done;
402 	}
403 
404 	s = buf;
405 
406 	p = strchr(buf, ':');
407 	if (p && *(p+1) == ' ' && *(p+2))
408 		s = p + 2;
409 	p = strchr(s, '\n');
410 	if (p)
411 		*p = '\0';
412 
413 	/* squash extra space characters (branding string) */
414 	p = s;
415 	while (*p) {
416 		if (isspace(*p)) {
417 			char *r = p + 1;
418 			char *q = r;
419 			*p = ' ';
420 			while (*q && isspace(*q))
421 				q++;
422 			if (q != (p+1))
423 				while ((*r++ = *q++));
424 		}
425 		p++;
426 	}
427 	ret = do_write_string(ff, s);
428 done:
429 	free(buf);
430 	fclose(file);
431 	return ret;
432 }
433 
434 static int write_cpudesc(struct feat_fd *ff,
435 		       struct perf_evlist *evlist __maybe_unused)
436 {
437 	const char *cpuinfo_procs[] = CPUINFO_PROC;
438 	unsigned int i;
439 
440 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
441 		int ret;
442 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
443 		if (ret >= 0)
444 			return ret;
445 	}
446 	return -1;
447 }
448 
449 
450 static int write_nrcpus(struct feat_fd *ff,
451 			struct perf_evlist *evlist __maybe_unused)
452 {
453 	long nr;
454 	u32 nrc, nra;
455 	int ret;
456 
457 	nrc = cpu__max_present_cpu();
458 
459 	nr = sysconf(_SC_NPROCESSORS_ONLN);
460 	if (nr < 0)
461 		return -1;
462 
463 	nra = (u32)(nr & UINT_MAX);
464 
465 	ret = do_write(ff, &nrc, sizeof(nrc));
466 	if (ret < 0)
467 		return ret;
468 
469 	return do_write(ff, &nra, sizeof(nra));
470 }
471 
472 static int write_event_desc(struct feat_fd *ff,
473 			    struct perf_evlist *evlist)
474 {
475 	struct perf_evsel *evsel;
476 	u32 nre, nri, sz;
477 	int ret;
478 
479 	nre = evlist->nr_entries;
480 
481 	/*
482 	 * write number of events
483 	 */
484 	ret = do_write(ff, &nre, sizeof(nre));
485 	if (ret < 0)
486 		return ret;
487 
488 	/*
489 	 * size of perf_event_attr struct
490 	 */
491 	sz = (u32)sizeof(evsel->attr);
492 	ret = do_write(ff, &sz, sizeof(sz));
493 	if (ret < 0)
494 		return ret;
495 
496 	evlist__for_each_entry(evlist, evsel) {
497 		ret = do_write(ff, &evsel->attr, sz);
498 		if (ret < 0)
499 			return ret;
500 		/*
501 		 * write number of unique id per event
502 		 * there is one id per instance of an event
503 		 *
504 		 * copy into an nri to be independent of the
505 		 * type of ids,
506 		 */
507 		nri = evsel->ids;
508 		ret = do_write(ff, &nri, sizeof(nri));
509 		if (ret < 0)
510 			return ret;
511 
512 		/*
513 		 * write event string as passed on cmdline
514 		 */
515 		ret = do_write_string(ff, perf_evsel__name(evsel));
516 		if (ret < 0)
517 			return ret;
518 		/*
519 		 * write unique ids for this event
520 		 */
521 		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
522 		if (ret < 0)
523 			return ret;
524 	}
525 	return 0;
526 }
527 
528 static int write_cmdline(struct feat_fd *ff,
529 			 struct perf_evlist *evlist __maybe_unused)
530 {
531 	char buf[MAXPATHLEN];
532 	u32 n;
533 	int i, ret;
534 
535 	/* actual path to perf binary */
536 	ret = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
537 	if (ret <= 0)
538 		return -1;
539 
540 	/* readlink() does not add null termination */
541 	buf[ret] = '\0';
542 
543 	/* account for binary path */
544 	n = perf_env.nr_cmdline + 1;
545 
546 	ret = do_write(ff, &n, sizeof(n));
547 	if (ret < 0)
548 		return ret;
549 
550 	ret = do_write_string(ff, buf);
551 	if (ret < 0)
552 		return ret;
553 
554 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
555 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
556 		if (ret < 0)
557 			return ret;
558 	}
559 	return 0;
560 }
561 
562 #define CORE_SIB_FMT \
563 	"/sys/devices/system/cpu/cpu%d/topology/core_siblings_list"
564 #define THRD_SIB_FMT \
565 	"/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list"
566 
567 struct cpu_topo {
568 	u32 cpu_nr;
569 	u32 core_sib;
570 	u32 thread_sib;
571 	char **core_siblings;
572 	char **thread_siblings;
573 };
574 
575 static int build_cpu_topo(struct cpu_topo *tp, int cpu)
576 {
577 	FILE *fp;
578 	char filename[MAXPATHLEN];
579 	char *buf = NULL, *p;
580 	size_t len = 0;
581 	ssize_t sret;
582 	u32 i = 0;
583 	int ret = -1;
584 
585 	sprintf(filename, CORE_SIB_FMT, cpu);
586 	fp = fopen(filename, "r");
587 	if (!fp)
588 		goto try_threads;
589 
590 	sret = getline(&buf, &len, fp);
591 	fclose(fp);
592 	if (sret <= 0)
593 		goto try_threads;
594 
595 	p = strchr(buf, '\n');
596 	if (p)
597 		*p = '\0';
598 
599 	for (i = 0; i < tp->core_sib; i++) {
600 		if (!strcmp(buf, tp->core_siblings[i]))
601 			break;
602 	}
603 	if (i == tp->core_sib) {
604 		tp->core_siblings[i] = buf;
605 		tp->core_sib++;
606 		buf = NULL;
607 		len = 0;
608 	}
609 	ret = 0;
610 
611 try_threads:
612 	sprintf(filename, THRD_SIB_FMT, cpu);
613 	fp = fopen(filename, "r");
614 	if (!fp)
615 		goto done;
616 
617 	if (getline(&buf, &len, fp) <= 0)
618 		goto done;
619 
620 	p = strchr(buf, '\n');
621 	if (p)
622 		*p = '\0';
623 
624 	for (i = 0; i < tp->thread_sib; i++) {
625 		if (!strcmp(buf, tp->thread_siblings[i]))
626 			break;
627 	}
628 	if (i == tp->thread_sib) {
629 		tp->thread_siblings[i] = buf;
630 		tp->thread_sib++;
631 		buf = NULL;
632 	}
633 	ret = 0;
634 done:
635 	if(fp)
636 		fclose(fp);
637 	free(buf);
638 	return ret;
639 }
640 
641 static void free_cpu_topo(struct cpu_topo *tp)
642 {
643 	u32 i;
644 
645 	if (!tp)
646 		return;
647 
648 	for (i = 0 ; i < tp->core_sib; i++)
649 		zfree(&tp->core_siblings[i]);
650 
651 	for (i = 0 ; i < tp->thread_sib; i++)
652 		zfree(&tp->thread_siblings[i]);
653 
654 	free(tp);
655 }
656 
657 static struct cpu_topo *build_cpu_topology(void)
658 {
659 	struct cpu_topo *tp = NULL;
660 	void *addr;
661 	u32 nr, i;
662 	size_t sz;
663 	long ncpus;
664 	int ret = -1;
665 	struct cpu_map *map;
666 
667 	ncpus = cpu__max_present_cpu();
668 
669 	/* build online CPU map */
670 	map = cpu_map__new(NULL);
671 	if (map == NULL) {
672 		pr_debug("failed to get system cpumap\n");
673 		return NULL;
674 	}
675 
676 	nr = (u32)(ncpus & UINT_MAX);
677 
678 	sz = nr * sizeof(char *);
679 	addr = calloc(1, sizeof(*tp) + 2 * sz);
680 	if (!addr)
681 		goto out_free;
682 
683 	tp = addr;
684 	tp->cpu_nr = nr;
685 	addr += sizeof(*tp);
686 	tp->core_siblings = addr;
687 	addr += sz;
688 	tp->thread_siblings = addr;
689 
690 	for (i = 0; i < nr; i++) {
691 		if (!cpu_map__has(map, i))
692 			continue;
693 
694 		ret = build_cpu_topo(tp, i);
695 		if (ret < 0)
696 			break;
697 	}
698 
699 out_free:
700 	cpu_map__put(map);
701 	if (ret) {
702 		free_cpu_topo(tp);
703 		tp = NULL;
704 	}
705 	return tp;
706 }
707 
708 static int write_cpu_topology(struct feat_fd *ff,
709 			      struct perf_evlist *evlist __maybe_unused)
710 {
711 	struct cpu_topo *tp;
712 	u32 i;
713 	int ret, j;
714 
715 	tp = build_cpu_topology();
716 	if (!tp)
717 		return -1;
718 
719 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
720 	if (ret < 0)
721 		goto done;
722 
723 	for (i = 0; i < tp->core_sib; i++) {
724 		ret = do_write_string(ff, tp->core_siblings[i]);
725 		if (ret < 0)
726 			goto done;
727 	}
728 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
729 	if (ret < 0)
730 		goto done;
731 
732 	for (i = 0; i < tp->thread_sib; i++) {
733 		ret = do_write_string(ff, tp->thread_siblings[i]);
734 		if (ret < 0)
735 			break;
736 	}
737 
738 	ret = perf_env__read_cpu_topology_map(&perf_env);
739 	if (ret < 0)
740 		goto done;
741 
742 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
743 		ret = do_write(ff, &perf_env.cpu[j].core_id,
744 			       sizeof(perf_env.cpu[j].core_id));
745 		if (ret < 0)
746 			return ret;
747 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
748 			       sizeof(perf_env.cpu[j].socket_id));
749 		if (ret < 0)
750 			return ret;
751 	}
752 done:
753 	free_cpu_topo(tp);
754 	return ret;
755 }
756 
757 
758 
759 static int write_total_mem(struct feat_fd *ff,
760 			   struct perf_evlist *evlist __maybe_unused)
761 {
762 	char *buf = NULL;
763 	FILE *fp;
764 	size_t len = 0;
765 	int ret = -1, n;
766 	uint64_t mem;
767 
768 	fp = fopen("/proc/meminfo", "r");
769 	if (!fp)
770 		return -1;
771 
772 	while (getline(&buf, &len, fp) > 0) {
773 		ret = strncmp(buf, "MemTotal:", 9);
774 		if (!ret)
775 			break;
776 	}
777 	if (!ret) {
778 		n = sscanf(buf, "%*s %"PRIu64, &mem);
779 		if (n == 1)
780 			ret = do_write(ff, &mem, sizeof(mem));
781 	} else
782 		ret = -1;
783 	free(buf);
784 	fclose(fp);
785 	return ret;
786 }
787 
788 static int write_topo_node(struct feat_fd *ff, int node)
789 {
790 	char str[MAXPATHLEN];
791 	char field[32];
792 	char *buf = NULL, *p;
793 	size_t len = 0;
794 	FILE *fp;
795 	u64 mem_total, mem_free, mem;
796 	int ret = -1;
797 
798 	sprintf(str, "/sys/devices/system/node/node%d/meminfo", node);
799 	fp = fopen(str, "r");
800 	if (!fp)
801 		return -1;
802 
803 	while (getline(&buf, &len, fp) > 0) {
804 		/* skip over invalid lines */
805 		if (!strchr(buf, ':'))
806 			continue;
807 		if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2)
808 			goto done;
809 		if (!strcmp(field, "MemTotal:"))
810 			mem_total = mem;
811 		if (!strcmp(field, "MemFree:"))
812 			mem_free = mem;
813 	}
814 
815 	fclose(fp);
816 	fp = NULL;
817 
818 	ret = do_write(ff, &mem_total, sizeof(u64));
819 	if (ret)
820 		goto done;
821 
822 	ret = do_write(ff, &mem_free, sizeof(u64));
823 	if (ret)
824 		goto done;
825 
826 	ret = -1;
827 	sprintf(str, "/sys/devices/system/node/node%d/cpulist", node);
828 
829 	fp = fopen(str, "r");
830 	if (!fp)
831 		goto done;
832 
833 	if (getline(&buf, &len, fp) <= 0)
834 		goto done;
835 
836 	p = strchr(buf, '\n');
837 	if (p)
838 		*p = '\0';
839 
840 	ret = do_write_string(ff, buf);
841 done:
842 	free(buf);
843 	if (fp)
844 		fclose(fp);
845 	return ret;
846 }
847 
848 static int write_numa_topology(struct feat_fd *ff,
849 			       struct perf_evlist *evlist __maybe_unused)
850 {
851 	char *buf = NULL;
852 	size_t len = 0;
853 	FILE *fp;
854 	struct cpu_map *node_map = NULL;
855 	char *c;
856 	u32 nr, i, j;
857 	int ret = -1;
858 
859 	fp = fopen("/sys/devices/system/node/online", "r");
860 	if (!fp)
861 		return -1;
862 
863 	if (getline(&buf, &len, fp) <= 0)
864 		goto done;
865 
866 	c = strchr(buf, '\n');
867 	if (c)
868 		*c = '\0';
869 
870 	node_map = cpu_map__new(buf);
871 	if (!node_map)
872 		goto done;
873 
874 	nr = (u32)node_map->nr;
875 
876 	ret = do_write(ff, &nr, sizeof(nr));
877 	if (ret < 0)
878 		goto done;
879 
880 	for (i = 0; i < nr; i++) {
881 		j = (u32)node_map->map[i];
882 		ret = do_write(ff, &j, sizeof(j));
883 		if (ret < 0)
884 			break;
885 
886 		ret = write_topo_node(ff, i);
887 		if (ret < 0)
888 			break;
889 	}
890 done:
891 	free(buf);
892 	fclose(fp);
893 	cpu_map__put(node_map);
894 	return ret;
895 }
896 
897 /*
898  * File format:
899  *
900  * struct pmu_mappings {
901  *	u32	pmu_num;
902  *	struct pmu_map {
903  *		u32	type;
904  *		char	name[];
905  *	}[pmu_num];
906  * };
907  */
908 
909 static int write_pmu_mappings(struct feat_fd *ff,
910 			      struct perf_evlist *evlist __maybe_unused)
911 {
912 	struct perf_pmu *pmu = NULL;
913 	u32 pmu_num = 0;
914 	int ret;
915 
916 	/*
917 	 * Do a first pass to count number of pmu to avoid lseek so this
918 	 * works in pipe mode as well.
919 	 */
920 	while ((pmu = perf_pmu__scan(pmu))) {
921 		if (!pmu->name)
922 			continue;
923 		pmu_num++;
924 	}
925 
926 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
927 	if (ret < 0)
928 		return ret;
929 
930 	while ((pmu = perf_pmu__scan(pmu))) {
931 		if (!pmu->name)
932 			continue;
933 
934 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
935 		if (ret < 0)
936 			return ret;
937 
938 		ret = do_write_string(ff, pmu->name);
939 		if (ret < 0)
940 			return ret;
941 	}
942 
943 	return 0;
944 }
945 
946 /*
947  * File format:
948  *
949  * struct group_descs {
950  *	u32	nr_groups;
951  *	struct group_desc {
952  *		char	name[];
953  *		u32	leader_idx;
954  *		u32	nr_members;
955  *	}[nr_groups];
956  * };
957  */
958 static int write_group_desc(struct feat_fd *ff,
959 			    struct perf_evlist *evlist)
960 {
961 	u32 nr_groups = evlist->nr_groups;
962 	struct perf_evsel *evsel;
963 	int ret;
964 
965 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
966 	if (ret < 0)
967 		return ret;
968 
969 	evlist__for_each_entry(evlist, evsel) {
970 		if (perf_evsel__is_group_leader(evsel) &&
971 		    evsel->nr_members > 1) {
972 			const char *name = evsel->group_name ?: "{anon_group}";
973 			u32 leader_idx = evsel->idx;
974 			u32 nr_members = evsel->nr_members;
975 
976 			ret = do_write_string(ff, name);
977 			if (ret < 0)
978 				return ret;
979 
980 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
981 			if (ret < 0)
982 				return ret;
983 
984 			ret = do_write(ff, &nr_members, sizeof(nr_members));
985 			if (ret < 0)
986 				return ret;
987 		}
988 	}
989 	return 0;
990 }
991 
992 /*
993  * default get_cpuid(): nothing gets recorded
994  * actual implementation must be in arch/$(SRCARCH)/util/header.c
995  */
996 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
997 {
998 	return -1;
999 }
1000 
1001 static int write_cpuid(struct feat_fd *ff,
1002 		       struct perf_evlist *evlist __maybe_unused)
1003 {
1004 	char buffer[64];
1005 	int ret;
1006 
1007 	ret = get_cpuid(buffer, sizeof(buffer));
1008 	if (!ret)
1009 		goto write_it;
1010 
1011 	return -1;
1012 write_it:
1013 	return do_write_string(ff, buffer);
1014 }
1015 
1016 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
1017 			      struct perf_evlist *evlist __maybe_unused)
1018 {
1019 	return 0;
1020 }
1021 
1022 static int write_auxtrace(struct feat_fd *ff,
1023 			  struct perf_evlist *evlist __maybe_unused)
1024 {
1025 	struct perf_session *session;
1026 	int err;
1027 
1028 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
1029 		return -1;
1030 
1031 	session = container_of(ff->ph, struct perf_session, header);
1032 
1033 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
1034 	if (err < 0)
1035 		pr_err("Failed to write auxtrace index\n");
1036 	return err;
1037 }
1038 
1039 static int cpu_cache_level__sort(const void *a, const void *b)
1040 {
1041 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1042 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1043 
1044 	return cache_a->level - cache_b->level;
1045 }
1046 
1047 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1048 {
1049 	if (a->level != b->level)
1050 		return false;
1051 
1052 	if (a->line_size != b->line_size)
1053 		return false;
1054 
1055 	if (a->sets != b->sets)
1056 		return false;
1057 
1058 	if (a->ways != b->ways)
1059 		return false;
1060 
1061 	if (strcmp(a->type, b->type))
1062 		return false;
1063 
1064 	if (strcmp(a->size, b->size))
1065 		return false;
1066 
1067 	if (strcmp(a->map, b->map))
1068 		return false;
1069 
1070 	return true;
1071 }
1072 
1073 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1074 {
1075 	char path[PATH_MAX], file[PATH_MAX];
1076 	struct stat st;
1077 	size_t len;
1078 
1079 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1080 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1081 
1082 	if (stat(file, &st))
1083 		return 1;
1084 
1085 	scnprintf(file, PATH_MAX, "%s/level", path);
1086 	if (sysfs__read_int(file, (int *) &cache->level))
1087 		return -1;
1088 
1089 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1090 	if (sysfs__read_int(file, (int *) &cache->line_size))
1091 		return -1;
1092 
1093 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1094 	if (sysfs__read_int(file, (int *) &cache->sets))
1095 		return -1;
1096 
1097 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1098 	if (sysfs__read_int(file, (int *) &cache->ways))
1099 		return -1;
1100 
1101 	scnprintf(file, PATH_MAX, "%s/type", path);
1102 	if (sysfs__read_str(file, &cache->type, &len))
1103 		return -1;
1104 
1105 	cache->type[len] = 0;
1106 	cache->type = rtrim(cache->type);
1107 
1108 	scnprintf(file, PATH_MAX, "%s/size", path);
1109 	if (sysfs__read_str(file, &cache->size, &len)) {
1110 		free(cache->type);
1111 		return -1;
1112 	}
1113 
1114 	cache->size[len] = 0;
1115 	cache->size = rtrim(cache->size);
1116 
1117 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1118 	if (sysfs__read_str(file, &cache->map, &len)) {
1119 		free(cache->map);
1120 		free(cache->type);
1121 		return -1;
1122 	}
1123 
1124 	cache->map[len] = 0;
1125 	cache->map = rtrim(cache->map);
1126 	return 0;
1127 }
1128 
1129 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1130 {
1131 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1132 }
1133 
1134 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1135 {
1136 	u32 i, cnt = 0;
1137 	long ncpus;
1138 	u32 nr, cpu;
1139 	u16 level;
1140 
1141 	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1142 	if (ncpus < 0)
1143 		return -1;
1144 
1145 	nr = (u32)(ncpus & UINT_MAX);
1146 
1147 	for (cpu = 0; cpu < nr; cpu++) {
1148 		for (level = 0; level < 10; level++) {
1149 			struct cpu_cache_level c;
1150 			int err;
1151 
1152 			err = cpu_cache_level__read(&c, cpu, level);
1153 			if (err < 0)
1154 				return err;
1155 
1156 			if (err == 1)
1157 				break;
1158 
1159 			for (i = 0; i < cnt; i++) {
1160 				if (cpu_cache_level__cmp(&c, &caches[i]))
1161 					break;
1162 			}
1163 
1164 			if (i == cnt)
1165 				caches[cnt++] = c;
1166 			else
1167 				cpu_cache_level__free(&c);
1168 
1169 			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1170 				goto out;
1171 		}
1172 	}
1173  out:
1174 	*cntp = cnt;
1175 	return 0;
1176 }
1177 
1178 #define MAX_CACHES 2000
1179 
1180 static int write_cache(struct feat_fd *ff,
1181 		       struct perf_evlist *evlist __maybe_unused)
1182 {
1183 	struct cpu_cache_level caches[MAX_CACHES];
1184 	u32 cnt = 0, i, version = 1;
1185 	int ret;
1186 
1187 	ret = build_caches(caches, MAX_CACHES, &cnt);
1188 	if (ret)
1189 		goto out;
1190 
1191 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1192 
1193 	ret = do_write(ff, &version, sizeof(u32));
1194 	if (ret < 0)
1195 		goto out;
1196 
1197 	ret = do_write(ff, &cnt, sizeof(u32));
1198 	if (ret < 0)
1199 		goto out;
1200 
1201 	for (i = 0; i < cnt; i++) {
1202 		struct cpu_cache_level *c = &caches[i];
1203 
1204 		#define _W(v)					\
1205 			ret = do_write(ff, &c->v, sizeof(u32));	\
1206 			if (ret < 0)				\
1207 				goto out;
1208 
1209 		_W(level)
1210 		_W(line_size)
1211 		_W(sets)
1212 		_W(ways)
1213 		#undef _W
1214 
1215 		#define _W(v)						\
1216 			ret = do_write_string(ff, (const char *) c->v);	\
1217 			if (ret < 0)					\
1218 				goto out;
1219 
1220 		_W(type)
1221 		_W(size)
1222 		_W(map)
1223 		#undef _W
1224 	}
1225 
1226 out:
1227 	for (i = 0; i < cnt; i++)
1228 		cpu_cache_level__free(&caches[i]);
1229 	return ret;
1230 }
1231 
1232 static int write_stat(struct feat_fd *ff __maybe_unused,
1233 		      struct perf_evlist *evlist __maybe_unused)
1234 {
1235 	return 0;
1236 }
1237 
1238 static int write_sample_time(struct feat_fd *ff,
1239 			     struct perf_evlist *evlist)
1240 {
1241 	int ret;
1242 
1243 	ret = do_write(ff, &evlist->first_sample_time,
1244 		       sizeof(evlist->first_sample_time));
1245 	if (ret < 0)
1246 		return ret;
1247 
1248 	return do_write(ff, &evlist->last_sample_time,
1249 			sizeof(evlist->last_sample_time));
1250 }
1251 
1252 
1253 static int memory_node__read(struct memory_node *n, unsigned long idx)
1254 {
1255 	unsigned int phys, size = 0;
1256 	char path[PATH_MAX];
1257 	struct dirent *ent;
1258 	DIR *dir;
1259 
1260 #define for_each_memory(mem, dir)					\
1261 	while ((ent = readdir(dir)))					\
1262 		if (strcmp(ent->d_name, ".") &&				\
1263 		    strcmp(ent->d_name, "..") &&			\
1264 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1265 
1266 	scnprintf(path, PATH_MAX,
1267 		  "%s/devices/system/node/node%lu",
1268 		  sysfs__mountpoint(), idx);
1269 
1270 	dir = opendir(path);
1271 	if (!dir) {
1272 		pr_warning("failed: cant' open memory sysfs data\n");
1273 		return -1;
1274 	}
1275 
1276 	for_each_memory(phys, dir) {
1277 		size = max(phys, size);
1278 	}
1279 
1280 	size++;
1281 
1282 	n->set = bitmap_alloc(size);
1283 	if (!n->set) {
1284 		closedir(dir);
1285 		return -ENOMEM;
1286 	}
1287 
1288 	bitmap_zero(n->set, size);
1289 	n->node = idx;
1290 	n->size = size;
1291 
1292 	rewinddir(dir);
1293 
1294 	for_each_memory(phys, dir) {
1295 		set_bit(phys, n->set);
1296 	}
1297 
1298 	closedir(dir);
1299 	return 0;
1300 }
1301 
1302 static int memory_node__sort(const void *a, const void *b)
1303 {
1304 	const struct memory_node *na = a;
1305 	const struct memory_node *nb = b;
1306 
1307 	return na->node - nb->node;
1308 }
1309 
1310 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1311 {
1312 	char path[PATH_MAX];
1313 	struct dirent *ent;
1314 	DIR *dir;
1315 	u64 cnt = 0;
1316 	int ret = 0;
1317 
1318 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1319 		  sysfs__mountpoint());
1320 
1321 	dir = opendir(path);
1322 	if (!dir) {
1323 		pr_warning("failed: can't open node sysfs data\n");
1324 		return -1;
1325 	}
1326 
1327 	while (!ret && (ent = readdir(dir))) {
1328 		unsigned int idx;
1329 		int r;
1330 
1331 		if (!strcmp(ent->d_name, ".") ||
1332 		    !strcmp(ent->d_name, ".."))
1333 			continue;
1334 
1335 		r = sscanf(ent->d_name, "node%u", &idx);
1336 		if (r != 1)
1337 			continue;
1338 
1339 		if (WARN_ONCE(cnt >= size,
1340 			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1341 			return -1;
1342 
1343 		ret = memory_node__read(&nodes[cnt++], idx);
1344 	}
1345 
1346 	*cntp = cnt;
1347 	closedir(dir);
1348 
1349 	if (!ret)
1350 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1351 
1352 	return ret;
1353 }
1354 
1355 #define MAX_MEMORY_NODES 2000
1356 
1357 /*
1358  * The MEM_TOPOLOGY holds physical memory map for every
1359  * node in system. The format of data is as follows:
1360  *
1361  *  0 - version          | for future changes
1362  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1363  * 16 - count            | number of nodes
1364  *
1365  * For each node we store map of physical indexes for
1366  * each node:
1367  *
1368  * 32 - node id          | node index
1369  * 40 - size             | size of bitmap
1370  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1371  */
1372 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1373 			      struct perf_evlist *evlist __maybe_unused)
1374 {
1375 	static struct memory_node nodes[MAX_MEMORY_NODES];
1376 	u64 bsize, version = 1, i, nr;
1377 	int ret;
1378 
1379 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1380 			      (unsigned long long *) &bsize);
1381 	if (ret)
1382 		return ret;
1383 
1384 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1385 	if (ret)
1386 		return ret;
1387 
1388 	ret = do_write(ff, &version, sizeof(version));
1389 	if (ret < 0)
1390 		goto out;
1391 
1392 	ret = do_write(ff, &bsize, sizeof(bsize));
1393 	if (ret < 0)
1394 		goto out;
1395 
1396 	ret = do_write(ff, &nr, sizeof(nr));
1397 	if (ret < 0)
1398 		goto out;
1399 
1400 	for (i = 0; i < nr; i++) {
1401 		struct memory_node *n = &nodes[i];
1402 
1403 		#define _W(v)						\
1404 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1405 			if (ret < 0)					\
1406 				goto out;
1407 
1408 		_W(node)
1409 		_W(size)
1410 
1411 		#undef _W
1412 
1413 		ret = do_write_bitmap(ff, n->set, n->size);
1414 		if (ret < 0)
1415 			goto out;
1416 	}
1417 
1418 out:
1419 	return ret;
1420 }
1421 
1422 static void print_hostname(struct feat_fd *ff, FILE *fp)
1423 {
1424 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1425 }
1426 
1427 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1428 {
1429 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1430 }
1431 
1432 static void print_arch(struct feat_fd *ff, FILE *fp)
1433 {
1434 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1435 }
1436 
1437 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1438 {
1439 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1440 }
1441 
1442 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1443 {
1444 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1445 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1446 }
1447 
1448 static void print_version(struct feat_fd *ff, FILE *fp)
1449 {
1450 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1451 }
1452 
1453 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1454 {
1455 	int nr, i;
1456 
1457 	nr = ff->ph->env.nr_cmdline;
1458 
1459 	fprintf(fp, "# cmdline : ");
1460 
1461 	for (i = 0; i < nr; i++)
1462 		fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1463 	fputc('\n', fp);
1464 }
1465 
1466 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1467 {
1468 	struct perf_header *ph = ff->ph;
1469 	int cpu_nr = ph->env.nr_cpus_avail;
1470 	int nr, i;
1471 	char *str;
1472 
1473 	nr = ph->env.nr_sibling_cores;
1474 	str = ph->env.sibling_cores;
1475 
1476 	for (i = 0; i < nr; i++) {
1477 		fprintf(fp, "# sibling cores   : %s\n", str);
1478 		str += strlen(str) + 1;
1479 	}
1480 
1481 	nr = ph->env.nr_sibling_threads;
1482 	str = ph->env.sibling_threads;
1483 
1484 	for (i = 0; i < nr; i++) {
1485 		fprintf(fp, "# sibling threads : %s\n", str);
1486 		str += strlen(str) + 1;
1487 	}
1488 
1489 	if (ph->env.cpu != NULL) {
1490 		for (i = 0; i < cpu_nr; i++)
1491 			fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1492 				ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1493 	} else
1494 		fprintf(fp, "# Core ID and Socket ID information is not available\n");
1495 }
1496 
1497 static void free_event_desc(struct perf_evsel *events)
1498 {
1499 	struct perf_evsel *evsel;
1500 
1501 	if (!events)
1502 		return;
1503 
1504 	for (evsel = events; evsel->attr.size; evsel++) {
1505 		zfree(&evsel->name);
1506 		zfree(&evsel->id);
1507 	}
1508 
1509 	free(events);
1510 }
1511 
1512 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1513 {
1514 	struct perf_evsel *evsel, *events = NULL;
1515 	u64 *id;
1516 	void *buf = NULL;
1517 	u32 nre, sz, nr, i, j;
1518 	size_t msz;
1519 
1520 	/* number of events */
1521 	if (do_read_u32(ff, &nre))
1522 		goto error;
1523 
1524 	if (do_read_u32(ff, &sz))
1525 		goto error;
1526 
1527 	/* buffer to hold on file attr struct */
1528 	buf = malloc(sz);
1529 	if (!buf)
1530 		goto error;
1531 
1532 	/* the last event terminates with evsel->attr.size == 0: */
1533 	events = calloc(nre + 1, sizeof(*events));
1534 	if (!events)
1535 		goto error;
1536 
1537 	msz = sizeof(evsel->attr);
1538 	if (sz < msz)
1539 		msz = sz;
1540 
1541 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1542 		evsel->idx = i;
1543 
1544 		/*
1545 		 * must read entire on-file attr struct to
1546 		 * sync up with layout.
1547 		 */
1548 		if (__do_read(ff, buf, sz))
1549 			goto error;
1550 
1551 		if (ff->ph->needs_swap)
1552 			perf_event__attr_swap(buf);
1553 
1554 		memcpy(&evsel->attr, buf, msz);
1555 
1556 		if (do_read_u32(ff, &nr))
1557 			goto error;
1558 
1559 		if (ff->ph->needs_swap)
1560 			evsel->needs_swap = true;
1561 
1562 		evsel->name = do_read_string(ff);
1563 		if (!evsel->name)
1564 			goto error;
1565 
1566 		if (!nr)
1567 			continue;
1568 
1569 		id = calloc(nr, sizeof(*id));
1570 		if (!id)
1571 			goto error;
1572 		evsel->ids = nr;
1573 		evsel->id = id;
1574 
1575 		for (j = 0 ; j < nr; j++) {
1576 			if (do_read_u64(ff, id))
1577 				goto error;
1578 			id++;
1579 		}
1580 	}
1581 out:
1582 	free(buf);
1583 	return events;
1584 error:
1585 	free_event_desc(events);
1586 	events = NULL;
1587 	goto out;
1588 }
1589 
1590 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1591 				void *priv __maybe_unused)
1592 {
1593 	return fprintf(fp, ", %s = %s", name, val);
1594 }
1595 
1596 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1597 {
1598 	struct perf_evsel *evsel, *events;
1599 	u32 j;
1600 	u64 *id;
1601 
1602 	if (ff->events)
1603 		events = ff->events;
1604 	else
1605 		events = read_event_desc(ff);
1606 
1607 	if (!events) {
1608 		fprintf(fp, "# event desc: not available or unable to read\n");
1609 		return;
1610 	}
1611 
1612 	for (evsel = events; evsel->attr.size; evsel++) {
1613 		fprintf(fp, "# event : name = %s, ", evsel->name);
1614 
1615 		if (evsel->ids) {
1616 			fprintf(fp, ", id = {");
1617 			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1618 				if (j)
1619 					fputc(',', fp);
1620 				fprintf(fp, " %"PRIu64, *id);
1621 			}
1622 			fprintf(fp, " }");
1623 		}
1624 
1625 		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1626 
1627 		fputc('\n', fp);
1628 	}
1629 
1630 	free_event_desc(events);
1631 	ff->events = NULL;
1632 }
1633 
1634 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1635 {
1636 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1637 }
1638 
1639 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1640 {
1641 	int i;
1642 	struct numa_node *n;
1643 
1644 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1645 		n = &ff->ph->env.numa_nodes[i];
1646 
1647 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1648 			    " free = %"PRIu64" kB\n",
1649 			n->node, n->mem_total, n->mem_free);
1650 
1651 		fprintf(fp, "# node%u cpu list : ", n->node);
1652 		cpu_map__fprintf(n->map, fp);
1653 	}
1654 }
1655 
1656 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1657 {
1658 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1659 }
1660 
1661 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1662 {
1663 	fprintf(fp, "# contains samples with branch stack\n");
1664 }
1665 
1666 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1667 {
1668 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1669 }
1670 
1671 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1672 {
1673 	fprintf(fp, "# contains stat data\n");
1674 }
1675 
1676 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1677 {
1678 	int i;
1679 
1680 	fprintf(fp, "# CPU cache info:\n");
1681 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1682 		fprintf(fp, "#  ");
1683 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1684 	}
1685 }
1686 
1687 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1688 {
1689 	const char *delimiter = "# pmu mappings: ";
1690 	char *str, *tmp;
1691 	u32 pmu_num;
1692 	u32 type;
1693 
1694 	pmu_num = ff->ph->env.nr_pmu_mappings;
1695 	if (!pmu_num) {
1696 		fprintf(fp, "# pmu mappings: not available\n");
1697 		return;
1698 	}
1699 
1700 	str = ff->ph->env.pmu_mappings;
1701 
1702 	while (pmu_num) {
1703 		type = strtoul(str, &tmp, 0);
1704 		if (*tmp != ':')
1705 			goto error;
1706 
1707 		str = tmp + 1;
1708 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1709 
1710 		delimiter = ", ";
1711 		str += strlen(str) + 1;
1712 		pmu_num--;
1713 	}
1714 
1715 	fprintf(fp, "\n");
1716 
1717 	if (!pmu_num)
1718 		return;
1719 error:
1720 	fprintf(fp, "# pmu mappings: unable to read\n");
1721 }
1722 
1723 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1724 {
1725 	struct perf_session *session;
1726 	struct perf_evsel *evsel;
1727 	u32 nr = 0;
1728 
1729 	session = container_of(ff->ph, struct perf_session, header);
1730 
1731 	evlist__for_each_entry(session->evlist, evsel) {
1732 		if (perf_evsel__is_group_leader(evsel) &&
1733 		    evsel->nr_members > 1) {
1734 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1735 				perf_evsel__name(evsel));
1736 
1737 			nr = evsel->nr_members - 1;
1738 		} else if (nr) {
1739 			fprintf(fp, ",%s", perf_evsel__name(evsel));
1740 
1741 			if (--nr == 0)
1742 				fprintf(fp, "}\n");
1743 		}
1744 	}
1745 }
1746 
1747 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1748 {
1749 	struct perf_session *session;
1750 	char time_buf[32];
1751 	double d;
1752 
1753 	session = container_of(ff->ph, struct perf_session, header);
1754 
1755 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1756 				  time_buf, sizeof(time_buf));
1757 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1758 
1759 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1760 				  time_buf, sizeof(time_buf));
1761 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1762 
1763 	d = (double)(session->evlist->last_sample_time -
1764 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1765 
1766 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1767 }
1768 
1769 static void memory_node__fprintf(struct memory_node *n,
1770 				 unsigned long long bsize, FILE *fp)
1771 {
1772 	char buf_map[100], buf_size[50];
1773 	unsigned long long size;
1774 
1775 	size = bsize * bitmap_weight(n->set, n->size);
1776 	unit_number__scnprintf(buf_size, 50, size);
1777 
1778 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1779 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1780 }
1781 
1782 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1783 {
1784 	struct memory_node *nodes;
1785 	int i, nr;
1786 
1787 	nodes = ff->ph->env.memory_nodes;
1788 	nr    = ff->ph->env.nr_memory_nodes;
1789 
1790 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1791 		nr, ff->ph->env.memory_bsize);
1792 
1793 	for (i = 0; i < nr; i++) {
1794 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1795 	}
1796 }
1797 
1798 static int __event_process_build_id(struct build_id_event *bev,
1799 				    char *filename,
1800 				    struct perf_session *session)
1801 {
1802 	int err = -1;
1803 	struct machine *machine;
1804 	u16 cpumode;
1805 	struct dso *dso;
1806 	enum dso_kernel_type dso_type;
1807 
1808 	machine = perf_session__findnew_machine(session, bev->pid);
1809 	if (!machine)
1810 		goto out;
1811 
1812 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1813 
1814 	switch (cpumode) {
1815 	case PERF_RECORD_MISC_KERNEL:
1816 		dso_type = DSO_TYPE_KERNEL;
1817 		break;
1818 	case PERF_RECORD_MISC_GUEST_KERNEL:
1819 		dso_type = DSO_TYPE_GUEST_KERNEL;
1820 		break;
1821 	case PERF_RECORD_MISC_USER:
1822 	case PERF_RECORD_MISC_GUEST_USER:
1823 		dso_type = DSO_TYPE_USER;
1824 		break;
1825 	default:
1826 		goto out;
1827 	}
1828 
1829 	dso = machine__findnew_dso(machine, filename);
1830 	if (dso != NULL) {
1831 		char sbuild_id[SBUILD_ID_SIZE];
1832 
1833 		dso__set_build_id(dso, &bev->build_id);
1834 
1835 		if (dso_type != DSO_TYPE_USER) {
1836 			struct kmod_path m = { .name = NULL, };
1837 
1838 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1839 				dso__set_module_info(dso, &m, machine);
1840 			else
1841 				dso->kernel = dso_type;
1842 
1843 			free(m.name);
1844 		}
1845 
1846 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1847 				  sbuild_id);
1848 		pr_debug("build id event received for %s: %s\n",
1849 			 dso->long_name, sbuild_id);
1850 		dso__put(dso);
1851 	}
1852 
1853 	err = 0;
1854 out:
1855 	return err;
1856 }
1857 
1858 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1859 						 int input, u64 offset, u64 size)
1860 {
1861 	struct perf_session *session = container_of(header, struct perf_session, header);
1862 	struct {
1863 		struct perf_event_header   header;
1864 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1865 		char			   filename[0];
1866 	} old_bev;
1867 	struct build_id_event bev;
1868 	char filename[PATH_MAX];
1869 	u64 limit = offset + size;
1870 
1871 	while (offset < limit) {
1872 		ssize_t len;
1873 
1874 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1875 			return -1;
1876 
1877 		if (header->needs_swap)
1878 			perf_event_header__bswap(&old_bev.header);
1879 
1880 		len = old_bev.header.size - sizeof(old_bev);
1881 		if (readn(input, filename, len) != len)
1882 			return -1;
1883 
1884 		bev.header = old_bev.header;
1885 
1886 		/*
1887 		 * As the pid is the missing value, we need to fill
1888 		 * it properly. The header.misc value give us nice hint.
1889 		 */
1890 		bev.pid	= HOST_KERNEL_ID;
1891 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1892 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1893 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1894 
1895 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1896 		__event_process_build_id(&bev, filename, session);
1897 
1898 		offset += bev.header.size;
1899 	}
1900 
1901 	return 0;
1902 }
1903 
1904 static int perf_header__read_build_ids(struct perf_header *header,
1905 				       int input, u64 offset, u64 size)
1906 {
1907 	struct perf_session *session = container_of(header, struct perf_session, header);
1908 	struct build_id_event bev;
1909 	char filename[PATH_MAX];
1910 	u64 limit = offset + size, orig_offset = offset;
1911 	int err = -1;
1912 
1913 	while (offset < limit) {
1914 		ssize_t len;
1915 
1916 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1917 			goto out;
1918 
1919 		if (header->needs_swap)
1920 			perf_event_header__bswap(&bev.header);
1921 
1922 		len = bev.header.size - sizeof(bev);
1923 		if (readn(input, filename, len) != len)
1924 			goto out;
1925 		/*
1926 		 * The a1645ce1 changeset:
1927 		 *
1928 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
1929 		 *
1930 		 * Added a field to struct build_id_event that broke the file
1931 		 * format.
1932 		 *
1933 		 * Since the kernel build-id is the first entry, process the
1934 		 * table using the old format if the well known
1935 		 * '[kernel.kallsyms]' string for the kernel build-id has the
1936 		 * first 4 characters chopped off (where the pid_t sits).
1937 		 */
1938 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1939 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1940 				return -1;
1941 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1942 		}
1943 
1944 		__event_process_build_id(&bev, filename, session);
1945 
1946 		offset += bev.header.size;
1947 	}
1948 	err = 0;
1949 out:
1950 	return err;
1951 }
1952 
1953 /* Macro for features that simply need to read and store a string. */
1954 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1955 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1956 {\
1957 	ff->ph->env.__feat_env = do_read_string(ff); \
1958 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1959 }
1960 
1961 FEAT_PROCESS_STR_FUN(hostname, hostname);
1962 FEAT_PROCESS_STR_FUN(osrelease, os_release);
1963 FEAT_PROCESS_STR_FUN(version, version);
1964 FEAT_PROCESS_STR_FUN(arch, arch);
1965 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
1966 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
1967 
1968 static int process_tracing_data(struct feat_fd *ff, void *data)
1969 {
1970 	ssize_t ret = trace_report(ff->fd, data, false);
1971 
1972 	return ret < 0 ? -1 : 0;
1973 }
1974 
1975 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
1976 {
1977 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
1978 		pr_debug("Failed to read buildids, continuing...\n");
1979 	return 0;
1980 }
1981 
1982 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
1983 {
1984 	int ret;
1985 	u32 nr_cpus_avail, nr_cpus_online;
1986 
1987 	ret = do_read_u32(ff, &nr_cpus_avail);
1988 	if (ret)
1989 		return ret;
1990 
1991 	ret = do_read_u32(ff, &nr_cpus_online);
1992 	if (ret)
1993 		return ret;
1994 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
1995 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
1996 	return 0;
1997 }
1998 
1999 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2000 {
2001 	u64 total_mem;
2002 	int ret;
2003 
2004 	ret = do_read_u64(ff, &total_mem);
2005 	if (ret)
2006 		return -1;
2007 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2008 	return 0;
2009 }
2010 
2011 static struct perf_evsel *
2012 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2013 {
2014 	struct perf_evsel *evsel;
2015 
2016 	evlist__for_each_entry(evlist, evsel) {
2017 		if (evsel->idx == idx)
2018 			return evsel;
2019 	}
2020 
2021 	return NULL;
2022 }
2023 
2024 static void
2025 perf_evlist__set_event_name(struct perf_evlist *evlist,
2026 			    struct perf_evsel *event)
2027 {
2028 	struct perf_evsel *evsel;
2029 
2030 	if (!event->name)
2031 		return;
2032 
2033 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2034 	if (!evsel)
2035 		return;
2036 
2037 	if (evsel->name)
2038 		return;
2039 
2040 	evsel->name = strdup(event->name);
2041 }
2042 
2043 static int
2044 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2045 {
2046 	struct perf_session *session;
2047 	struct perf_evsel *evsel, *events = read_event_desc(ff);
2048 
2049 	if (!events)
2050 		return 0;
2051 
2052 	session = container_of(ff->ph, struct perf_session, header);
2053 
2054 	if (session->data->is_pipe) {
2055 		/* Save events for reading later by print_event_desc,
2056 		 * since they can't be read again in pipe mode. */
2057 		ff->events = events;
2058 	}
2059 
2060 	for (evsel = events; evsel->attr.size; evsel++)
2061 		perf_evlist__set_event_name(session->evlist, evsel);
2062 
2063 	if (!session->data->is_pipe)
2064 		free_event_desc(events);
2065 
2066 	return 0;
2067 }
2068 
2069 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2070 {
2071 	char *str, *cmdline = NULL, **argv = NULL;
2072 	u32 nr, i, len = 0;
2073 
2074 	if (do_read_u32(ff, &nr))
2075 		return -1;
2076 
2077 	ff->ph->env.nr_cmdline = nr;
2078 
2079 	cmdline = zalloc(ff->size + nr + 1);
2080 	if (!cmdline)
2081 		return -1;
2082 
2083 	argv = zalloc(sizeof(char *) * (nr + 1));
2084 	if (!argv)
2085 		goto error;
2086 
2087 	for (i = 0; i < nr; i++) {
2088 		str = do_read_string(ff);
2089 		if (!str)
2090 			goto error;
2091 
2092 		argv[i] = cmdline + len;
2093 		memcpy(argv[i], str, strlen(str) + 1);
2094 		len += strlen(str) + 1;
2095 		free(str);
2096 	}
2097 	ff->ph->env.cmdline = cmdline;
2098 	ff->ph->env.cmdline_argv = (const char **) argv;
2099 	return 0;
2100 
2101 error:
2102 	free(argv);
2103 	free(cmdline);
2104 	return -1;
2105 }
2106 
2107 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2108 {
2109 	u32 nr, i;
2110 	char *str;
2111 	struct strbuf sb;
2112 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2113 	u64 size = 0;
2114 	struct perf_header *ph = ff->ph;
2115 
2116 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2117 	if (!ph->env.cpu)
2118 		return -1;
2119 
2120 	if (do_read_u32(ff, &nr))
2121 		goto free_cpu;
2122 
2123 	ph->env.nr_sibling_cores = nr;
2124 	size += sizeof(u32);
2125 	if (strbuf_init(&sb, 128) < 0)
2126 		goto free_cpu;
2127 
2128 	for (i = 0; i < nr; i++) {
2129 		str = do_read_string(ff);
2130 		if (!str)
2131 			goto error;
2132 
2133 		/* include a NULL character at the end */
2134 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2135 			goto error;
2136 		size += string_size(str);
2137 		free(str);
2138 	}
2139 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2140 
2141 	if (do_read_u32(ff, &nr))
2142 		return -1;
2143 
2144 	ph->env.nr_sibling_threads = nr;
2145 	size += sizeof(u32);
2146 
2147 	for (i = 0; i < nr; i++) {
2148 		str = do_read_string(ff);
2149 		if (!str)
2150 			goto error;
2151 
2152 		/* include a NULL character at the end */
2153 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2154 			goto error;
2155 		size += string_size(str);
2156 		free(str);
2157 	}
2158 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2159 
2160 	/*
2161 	 * The header may be from old perf,
2162 	 * which doesn't include core id and socket id information.
2163 	 */
2164 	if (ff->size <= size) {
2165 		zfree(&ph->env.cpu);
2166 		return 0;
2167 	}
2168 
2169 	for (i = 0; i < (u32)cpu_nr; i++) {
2170 		if (do_read_u32(ff, &nr))
2171 			goto free_cpu;
2172 
2173 		ph->env.cpu[i].core_id = nr;
2174 
2175 		if (do_read_u32(ff, &nr))
2176 			goto free_cpu;
2177 
2178 		if (nr != (u32)-1 && nr > (u32)cpu_nr) {
2179 			pr_debug("socket_id number is too big."
2180 				 "You may need to upgrade the perf tool.\n");
2181 			goto free_cpu;
2182 		}
2183 
2184 		ph->env.cpu[i].socket_id = nr;
2185 	}
2186 
2187 	return 0;
2188 
2189 error:
2190 	strbuf_release(&sb);
2191 free_cpu:
2192 	zfree(&ph->env.cpu);
2193 	return -1;
2194 }
2195 
2196 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2197 {
2198 	struct numa_node *nodes, *n;
2199 	u32 nr, i;
2200 	char *str;
2201 
2202 	/* nr nodes */
2203 	if (do_read_u32(ff, &nr))
2204 		return -1;
2205 
2206 	nodes = zalloc(sizeof(*nodes) * nr);
2207 	if (!nodes)
2208 		return -ENOMEM;
2209 
2210 	for (i = 0; i < nr; i++) {
2211 		n = &nodes[i];
2212 
2213 		/* node number */
2214 		if (do_read_u32(ff, &n->node))
2215 			goto error;
2216 
2217 		if (do_read_u64(ff, &n->mem_total))
2218 			goto error;
2219 
2220 		if (do_read_u64(ff, &n->mem_free))
2221 			goto error;
2222 
2223 		str = do_read_string(ff);
2224 		if (!str)
2225 			goto error;
2226 
2227 		n->map = cpu_map__new(str);
2228 		if (!n->map)
2229 			goto error;
2230 
2231 		free(str);
2232 	}
2233 	ff->ph->env.nr_numa_nodes = nr;
2234 	ff->ph->env.numa_nodes = nodes;
2235 	return 0;
2236 
2237 error:
2238 	free(nodes);
2239 	return -1;
2240 }
2241 
2242 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2243 {
2244 	char *name;
2245 	u32 pmu_num;
2246 	u32 type;
2247 	struct strbuf sb;
2248 
2249 	if (do_read_u32(ff, &pmu_num))
2250 		return -1;
2251 
2252 	if (!pmu_num) {
2253 		pr_debug("pmu mappings not available\n");
2254 		return 0;
2255 	}
2256 
2257 	ff->ph->env.nr_pmu_mappings = pmu_num;
2258 	if (strbuf_init(&sb, 128) < 0)
2259 		return -1;
2260 
2261 	while (pmu_num) {
2262 		if (do_read_u32(ff, &type))
2263 			goto error;
2264 
2265 		name = do_read_string(ff);
2266 		if (!name)
2267 			goto error;
2268 
2269 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2270 			goto error;
2271 		/* include a NULL character at the end */
2272 		if (strbuf_add(&sb, "", 1) < 0)
2273 			goto error;
2274 
2275 		if (!strcmp(name, "msr"))
2276 			ff->ph->env.msr_pmu_type = type;
2277 
2278 		free(name);
2279 		pmu_num--;
2280 	}
2281 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2282 	return 0;
2283 
2284 error:
2285 	strbuf_release(&sb);
2286 	return -1;
2287 }
2288 
2289 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2290 {
2291 	size_t ret = -1;
2292 	u32 i, nr, nr_groups;
2293 	struct perf_session *session;
2294 	struct perf_evsel *evsel, *leader = NULL;
2295 	struct group_desc {
2296 		char *name;
2297 		u32 leader_idx;
2298 		u32 nr_members;
2299 	} *desc;
2300 
2301 	if (do_read_u32(ff, &nr_groups))
2302 		return -1;
2303 
2304 	ff->ph->env.nr_groups = nr_groups;
2305 	if (!nr_groups) {
2306 		pr_debug("group desc not available\n");
2307 		return 0;
2308 	}
2309 
2310 	desc = calloc(nr_groups, sizeof(*desc));
2311 	if (!desc)
2312 		return -1;
2313 
2314 	for (i = 0; i < nr_groups; i++) {
2315 		desc[i].name = do_read_string(ff);
2316 		if (!desc[i].name)
2317 			goto out_free;
2318 
2319 		if (do_read_u32(ff, &desc[i].leader_idx))
2320 			goto out_free;
2321 
2322 		if (do_read_u32(ff, &desc[i].nr_members))
2323 			goto out_free;
2324 	}
2325 
2326 	/*
2327 	 * Rebuild group relationship based on the group_desc
2328 	 */
2329 	session = container_of(ff->ph, struct perf_session, header);
2330 	session->evlist->nr_groups = nr_groups;
2331 
2332 	i = nr = 0;
2333 	evlist__for_each_entry(session->evlist, evsel) {
2334 		if (evsel->idx == (int) desc[i].leader_idx) {
2335 			evsel->leader = evsel;
2336 			/* {anon_group} is a dummy name */
2337 			if (strcmp(desc[i].name, "{anon_group}")) {
2338 				evsel->group_name = desc[i].name;
2339 				desc[i].name = NULL;
2340 			}
2341 			evsel->nr_members = desc[i].nr_members;
2342 
2343 			if (i >= nr_groups || nr > 0) {
2344 				pr_debug("invalid group desc\n");
2345 				goto out_free;
2346 			}
2347 
2348 			leader = evsel;
2349 			nr = evsel->nr_members - 1;
2350 			i++;
2351 		} else if (nr) {
2352 			/* This is a group member */
2353 			evsel->leader = leader;
2354 
2355 			nr--;
2356 		}
2357 	}
2358 
2359 	if (i != nr_groups || nr != 0) {
2360 		pr_debug("invalid group desc\n");
2361 		goto out_free;
2362 	}
2363 
2364 	ret = 0;
2365 out_free:
2366 	for (i = 0; i < nr_groups; i++)
2367 		zfree(&desc[i].name);
2368 	free(desc);
2369 
2370 	return ret;
2371 }
2372 
2373 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2374 {
2375 	struct perf_session *session;
2376 	int err;
2377 
2378 	session = container_of(ff->ph, struct perf_session, header);
2379 
2380 	err = auxtrace_index__process(ff->fd, ff->size, session,
2381 				      ff->ph->needs_swap);
2382 	if (err < 0)
2383 		pr_err("Failed to process auxtrace index\n");
2384 	return err;
2385 }
2386 
2387 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2388 {
2389 	struct cpu_cache_level *caches;
2390 	u32 cnt, i, version;
2391 
2392 	if (do_read_u32(ff, &version))
2393 		return -1;
2394 
2395 	if (version != 1)
2396 		return -1;
2397 
2398 	if (do_read_u32(ff, &cnt))
2399 		return -1;
2400 
2401 	caches = zalloc(sizeof(*caches) * cnt);
2402 	if (!caches)
2403 		return -1;
2404 
2405 	for (i = 0; i < cnt; i++) {
2406 		struct cpu_cache_level c;
2407 
2408 		#define _R(v)						\
2409 			if (do_read_u32(ff, &c.v))\
2410 				goto out_free_caches;			\
2411 
2412 		_R(level)
2413 		_R(line_size)
2414 		_R(sets)
2415 		_R(ways)
2416 		#undef _R
2417 
2418 		#define _R(v)					\
2419 			c.v = do_read_string(ff);		\
2420 			if (!c.v)				\
2421 				goto out_free_caches;
2422 
2423 		_R(type)
2424 		_R(size)
2425 		_R(map)
2426 		#undef _R
2427 
2428 		caches[i] = c;
2429 	}
2430 
2431 	ff->ph->env.caches = caches;
2432 	ff->ph->env.caches_cnt = cnt;
2433 	return 0;
2434 out_free_caches:
2435 	free(caches);
2436 	return -1;
2437 }
2438 
2439 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2440 {
2441 	struct perf_session *session;
2442 	u64 first_sample_time, last_sample_time;
2443 	int ret;
2444 
2445 	session = container_of(ff->ph, struct perf_session, header);
2446 
2447 	ret = do_read_u64(ff, &first_sample_time);
2448 	if (ret)
2449 		return -1;
2450 
2451 	ret = do_read_u64(ff, &last_sample_time);
2452 	if (ret)
2453 		return -1;
2454 
2455 	session->evlist->first_sample_time = first_sample_time;
2456 	session->evlist->last_sample_time = last_sample_time;
2457 	return 0;
2458 }
2459 
2460 static int process_mem_topology(struct feat_fd *ff,
2461 				void *data __maybe_unused)
2462 {
2463 	struct memory_node *nodes;
2464 	u64 version, i, nr, bsize;
2465 	int ret = -1;
2466 
2467 	if (do_read_u64(ff, &version))
2468 		return -1;
2469 
2470 	if (version != 1)
2471 		return -1;
2472 
2473 	if (do_read_u64(ff, &bsize))
2474 		return -1;
2475 
2476 	if (do_read_u64(ff, &nr))
2477 		return -1;
2478 
2479 	nodes = zalloc(sizeof(*nodes) * nr);
2480 	if (!nodes)
2481 		return -1;
2482 
2483 	for (i = 0; i < nr; i++) {
2484 		struct memory_node n;
2485 
2486 		#define _R(v)				\
2487 			if (do_read_u64(ff, &n.v))	\
2488 				goto out;		\
2489 
2490 		_R(node)
2491 		_R(size)
2492 
2493 		#undef _R
2494 
2495 		if (do_read_bitmap(ff, &n.set, &n.size))
2496 			goto out;
2497 
2498 		nodes[i] = n;
2499 	}
2500 
2501 	ff->ph->env.memory_bsize    = bsize;
2502 	ff->ph->env.memory_nodes    = nodes;
2503 	ff->ph->env.nr_memory_nodes = nr;
2504 	ret = 0;
2505 
2506 out:
2507 	if (ret)
2508 		free(nodes);
2509 	return ret;
2510 }
2511 
2512 struct feature_ops {
2513 	int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2514 	void (*print)(struct feat_fd *ff, FILE *fp);
2515 	int (*process)(struct feat_fd *ff, void *data);
2516 	const char *name;
2517 	bool full_only;
2518 	bool synthesize;
2519 };
2520 
2521 #define FEAT_OPR(n, func, __full_only) \
2522 	[HEADER_##n] = {					\
2523 		.name	    = __stringify(n),			\
2524 		.write	    = write_##func,			\
2525 		.print	    = print_##func,			\
2526 		.full_only  = __full_only,			\
2527 		.process    = process_##func,			\
2528 		.synthesize = true				\
2529 	}
2530 
2531 #define FEAT_OPN(n, func, __full_only) \
2532 	[HEADER_##n] = {					\
2533 		.name	    = __stringify(n),			\
2534 		.write	    = write_##func,			\
2535 		.print	    = print_##func,			\
2536 		.full_only  = __full_only,			\
2537 		.process    = process_##func			\
2538 	}
2539 
2540 /* feature_ops not implemented: */
2541 #define print_tracing_data	NULL
2542 #define print_build_id		NULL
2543 
2544 #define process_branch_stack	NULL
2545 #define process_stat		NULL
2546 
2547 
2548 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2549 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2550 	FEAT_OPN(BUILD_ID,	build_id,	false),
2551 	FEAT_OPR(HOSTNAME,	hostname,	false),
2552 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2553 	FEAT_OPR(VERSION,	version,	false),
2554 	FEAT_OPR(ARCH,		arch,		false),
2555 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2556 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2557 	FEAT_OPR(CPUID,		cpuid,		false),
2558 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2559 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2560 	FEAT_OPR(CMDLINE,	cmdline,	false),
2561 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2562 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2563 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2564 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2565 	FEAT_OPN(GROUP_DESC,	group_desc,	false),
2566 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2567 	FEAT_OPN(STAT,		stat,		false),
2568 	FEAT_OPN(CACHE,		cache,		true),
2569 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2570 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2571 };
2572 
2573 struct header_print_data {
2574 	FILE *fp;
2575 	bool full; /* extended list of headers */
2576 };
2577 
2578 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2579 					   struct perf_header *ph,
2580 					   int feat, int fd, void *data)
2581 {
2582 	struct header_print_data *hd = data;
2583 	struct feat_fd ff;
2584 
2585 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2586 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2587 				"%d, continuing...\n", section->offset, feat);
2588 		return 0;
2589 	}
2590 	if (feat >= HEADER_LAST_FEATURE) {
2591 		pr_warning("unknown feature %d\n", feat);
2592 		return 0;
2593 	}
2594 	if (!feat_ops[feat].print)
2595 		return 0;
2596 
2597 	ff = (struct  feat_fd) {
2598 		.fd = fd,
2599 		.ph = ph,
2600 	};
2601 
2602 	if (!feat_ops[feat].full_only || hd->full)
2603 		feat_ops[feat].print(&ff, hd->fp);
2604 	else
2605 		fprintf(hd->fp, "# %s info available, use -I to display\n",
2606 			feat_ops[feat].name);
2607 
2608 	return 0;
2609 }
2610 
2611 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2612 {
2613 	struct header_print_data hd;
2614 	struct perf_header *header = &session->header;
2615 	int fd = perf_data__fd(session->data);
2616 	struct stat st;
2617 	int ret, bit;
2618 
2619 	hd.fp = fp;
2620 	hd.full = full;
2621 
2622 	ret = fstat(fd, &st);
2623 	if (ret == -1)
2624 		return -1;
2625 
2626 	fprintf(fp, "# captured on    : %s", ctime(&st.st_ctime));
2627 
2628 	fprintf(fp, "# header version : %u\n", header->version);
2629 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2630 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2631 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2632 
2633 	perf_header__process_sections(header, fd, &hd,
2634 				      perf_file_section__fprintf_info);
2635 
2636 	if (session->data->is_pipe)
2637 		return 0;
2638 
2639 	fprintf(fp, "# missing features: ");
2640 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2641 		if (bit)
2642 			fprintf(fp, "%s ", feat_ops[bit].name);
2643 	}
2644 
2645 	fprintf(fp, "\n");
2646 	return 0;
2647 }
2648 
2649 static int do_write_feat(struct feat_fd *ff, int type,
2650 			 struct perf_file_section **p,
2651 			 struct perf_evlist *evlist)
2652 {
2653 	int err;
2654 	int ret = 0;
2655 
2656 	if (perf_header__has_feat(ff->ph, type)) {
2657 		if (!feat_ops[type].write)
2658 			return -1;
2659 
2660 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2661 			return -1;
2662 
2663 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2664 
2665 		err = feat_ops[type].write(ff, evlist);
2666 		if (err < 0) {
2667 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2668 
2669 			/* undo anything written */
2670 			lseek(ff->fd, (*p)->offset, SEEK_SET);
2671 
2672 			return -1;
2673 		}
2674 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2675 		(*p)++;
2676 	}
2677 	return ret;
2678 }
2679 
2680 static int perf_header__adds_write(struct perf_header *header,
2681 				   struct perf_evlist *evlist, int fd)
2682 {
2683 	int nr_sections;
2684 	struct feat_fd ff;
2685 	struct perf_file_section *feat_sec, *p;
2686 	int sec_size;
2687 	u64 sec_start;
2688 	int feat;
2689 	int err;
2690 
2691 	ff = (struct feat_fd){
2692 		.fd  = fd,
2693 		.ph = header,
2694 	};
2695 
2696 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2697 	if (!nr_sections)
2698 		return 0;
2699 
2700 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2701 	if (feat_sec == NULL)
2702 		return -ENOMEM;
2703 
2704 	sec_size = sizeof(*feat_sec) * nr_sections;
2705 
2706 	sec_start = header->feat_offset;
2707 	lseek(fd, sec_start + sec_size, SEEK_SET);
2708 
2709 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2710 		if (do_write_feat(&ff, feat, &p, evlist))
2711 			perf_header__clear_feat(header, feat);
2712 	}
2713 
2714 	lseek(fd, sec_start, SEEK_SET);
2715 	/*
2716 	 * may write more than needed due to dropped feature, but
2717 	 * this is okay, reader will skip the mising entries
2718 	 */
2719 	err = do_write(&ff, feat_sec, sec_size);
2720 	if (err < 0)
2721 		pr_debug("failed to write feature section\n");
2722 	free(feat_sec);
2723 	return err;
2724 }
2725 
2726 int perf_header__write_pipe(int fd)
2727 {
2728 	struct perf_pipe_file_header f_header;
2729 	struct feat_fd ff;
2730 	int err;
2731 
2732 	ff = (struct feat_fd){ .fd = fd };
2733 
2734 	f_header = (struct perf_pipe_file_header){
2735 		.magic	   = PERF_MAGIC,
2736 		.size	   = sizeof(f_header),
2737 	};
2738 
2739 	err = do_write(&ff, &f_header, sizeof(f_header));
2740 	if (err < 0) {
2741 		pr_debug("failed to write perf pipe header\n");
2742 		return err;
2743 	}
2744 
2745 	return 0;
2746 }
2747 
2748 int perf_session__write_header(struct perf_session *session,
2749 			       struct perf_evlist *evlist,
2750 			       int fd, bool at_exit)
2751 {
2752 	struct perf_file_header f_header;
2753 	struct perf_file_attr   f_attr;
2754 	struct perf_header *header = &session->header;
2755 	struct perf_evsel *evsel;
2756 	struct feat_fd ff;
2757 	u64 attr_offset;
2758 	int err;
2759 
2760 	ff = (struct feat_fd){ .fd = fd};
2761 	lseek(fd, sizeof(f_header), SEEK_SET);
2762 
2763 	evlist__for_each_entry(session->evlist, evsel) {
2764 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2765 		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2766 		if (err < 0) {
2767 			pr_debug("failed to write perf header\n");
2768 			return err;
2769 		}
2770 	}
2771 
2772 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2773 
2774 	evlist__for_each_entry(evlist, evsel) {
2775 		f_attr = (struct perf_file_attr){
2776 			.attr = evsel->attr,
2777 			.ids  = {
2778 				.offset = evsel->id_offset,
2779 				.size   = evsel->ids * sizeof(u64),
2780 			}
2781 		};
2782 		err = do_write(&ff, &f_attr, sizeof(f_attr));
2783 		if (err < 0) {
2784 			pr_debug("failed to write perf header attribute\n");
2785 			return err;
2786 		}
2787 	}
2788 
2789 	if (!header->data_offset)
2790 		header->data_offset = lseek(fd, 0, SEEK_CUR);
2791 	header->feat_offset = header->data_offset + header->data_size;
2792 
2793 	if (at_exit) {
2794 		err = perf_header__adds_write(header, evlist, fd);
2795 		if (err < 0)
2796 			return err;
2797 	}
2798 
2799 	f_header = (struct perf_file_header){
2800 		.magic	   = PERF_MAGIC,
2801 		.size	   = sizeof(f_header),
2802 		.attr_size = sizeof(f_attr),
2803 		.attrs = {
2804 			.offset = attr_offset,
2805 			.size   = evlist->nr_entries * sizeof(f_attr),
2806 		},
2807 		.data = {
2808 			.offset = header->data_offset,
2809 			.size	= header->data_size,
2810 		},
2811 		/* event_types is ignored, store zeros */
2812 	};
2813 
2814 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2815 
2816 	lseek(fd, 0, SEEK_SET);
2817 	err = do_write(&ff, &f_header, sizeof(f_header));
2818 	if (err < 0) {
2819 		pr_debug("failed to write perf header\n");
2820 		return err;
2821 	}
2822 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2823 
2824 	return 0;
2825 }
2826 
2827 static int perf_header__getbuffer64(struct perf_header *header,
2828 				    int fd, void *buf, size_t size)
2829 {
2830 	if (readn(fd, buf, size) <= 0)
2831 		return -1;
2832 
2833 	if (header->needs_swap)
2834 		mem_bswap_64(buf, size);
2835 
2836 	return 0;
2837 }
2838 
2839 int perf_header__process_sections(struct perf_header *header, int fd,
2840 				  void *data,
2841 				  int (*process)(struct perf_file_section *section,
2842 						 struct perf_header *ph,
2843 						 int feat, int fd, void *data))
2844 {
2845 	struct perf_file_section *feat_sec, *sec;
2846 	int nr_sections;
2847 	int sec_size;
2848 	int feat;
2849 	int err;
2850 
2851 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2852 	if (!nr_sections)
2853 		return 0;
2854 
2855 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
2856 	if (!feat_sec)
2857 		return -1;
2858 
2859 	sec_size = sizeof(*feat_sec) * nr_sections;
2860 
2861 	lseek(fd, header->feat_offset, SEEK_SET);
2862 
2863 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
2864 	if (err < 0)
2865 		goto out_free;
2866 
2867 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
2868 		err = process(sec++, header, feat, fd, data);
2869 		if (err < 0)
2870 			goto out_free;
2871 	}
2872 	err = 0;
2873 out_free:
2874 	free(feat_sec);
2875 	return err;
2876 }
2877 
2878 static const int attr_file_abi_sizes[] = {
2879 	[0] = PERF_ATTR_SIZE_VER0,
2880 	[1] = PERF_ATTR_SIZE_VER1,
2881 	[2] = PERF_ATTR_SIZE_VER2,
2882 	[3] = PERF_ATTR_SIZE_VER3,
2883 	[4] = PERF_ATTR_SIZE_VER4,
2884 	0,
2885 };
2886 
2887 /*
2888  * In the legacy file format, the magic number is not used to encode endianness.
2889  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
2890  * on ABI revisions, we need to try all combinations for all endianness to
2891  * detect the endianness.
2892  */
2893 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
2894 {
2895 	uint64_t ref_size, attr_size;
2896 	int i;
2897 
2898 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
2899 		ref_size = attr_file_abi_sizes[i]
2900 			 + sizeof(struct perf_file_section);
2901 		if (hdr_sz != ref_size) {
2902 			attr_size = bswap_64(hdr_sz);
2903 			if (attr_size != ref_size)
2904 				continue;
2905 
2906 			ph->needs_swap = true;
2907 		}
2908 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
2909 			 i,
2910 			 ph->needs_swap);
2911 		return 0;
2912 	}
2913 	/* could not determine endianness */
2914 	return -1;
2915 }
2916 
2917 #define PERF_PIPE_HDR_VER0	16
2918 
2919 static const size_t attr_pipe_abi_sizes[] = {
2920 	[0] = PERF_PIPE_HDR_VER0,
2921 	0,
2922 };
2923 
2924 /*
2925  * In the legacy pipe format, there is an implicit assumption that endiannesss
2926  * between host recording the samples, and host parsing the samples is the
2927  * same. This is not always the case given that the pipe output may always be
2928  * redirected into a file and analyzed on a different machine with possibly a
2929  * different endianness and perf_event ABI revsions in the perf tool itself.
2930  */
2931 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
2932 {
2933 	u64 attr_size;
2934 	int i;
2935 
2936 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
2937 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
2938 			attr_size = bswap_64(hdr_sz);
2939 			if (attr_size != hdr_sz)
2940 				continue;
2941 
2942 			ph->needs_swap = true;
2943 		}
2944 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
2945 		return 0;
2946 	}
2947 	return -1;
2948 }
2949 
2950 bool is_perf_magic(u64 magic)
2951 {
2952 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
2953 		|| magic == __perf_magic2
2954 		|| magic == __perf_magic2_sw)
2955 		return true;
2956 
2957 	return false;
2958 }
2959 
2960 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
2961 			      bool is_pipe, struct perf_header *ph)
2962 {
2963 	int ret;
2964 
2965 	/* check for legacy format */
2966 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
2967 	if (ret == 0) {
2968 		ph->version = PERF_HEADER_VERSION_1;
2969 		pr_debug("legacy perf.data format\n");
2970 		if (is_pipe)
2971 			return try_all_pipe_abis(hdr_sz, ph);
2972 
2973 		return try_all_file_abis(hdr_sz, ph);
2974 	}
2975 	/*
2976 	 * the new magic number serves two purposes:
2977 	 * - unique number to identify actual perf.data files
2978 	 * - encode endianness of file
2979 	 */
2980 	ph->version = PERF_HEADER_VERSION_2;
2981 
2982 	/* check magic number with one endianness */
2983 	if (magic == __perf_magic2)
2984 		return 0;
2985 
2986 	/* check magic number with opposite endianness */
2987 	if (magic != __perf_magic2_sw)
2988 		return -1;
2989 
2990 	ph->needs_swap = true;
2991 
2992 	return 0;
2993 }
2994 
2995 int perf_file_header__read(struct perf_file_header *header,
2996 			   struct perf_header *ph, int fd)
2997 {
2998 	ssize_t ret;
2999 
3000 	lseek(fd, 0, SEEK_SET);
3001 
3002 	ret = readn(fd, header, sizeof(*header));
3003 	if (ret <= 0)
3004 		return -1;
3005 
3006 	if (check_magic_endian(header->magic,
3007 			       header->attr_size, false, ph) < 0) {
3008 		pr_debug("magic/endian check failed\n");
3009 		return -1;
3010 	}
3011 
3012 	if (ph->needs_swap) {
3013 		mem_bswap_64(header, offsetof(struct perf_file_header,
3014 			     adds_features));
3015 	}
3016 
3017 	if (header->size != sizeof(*header)) {
3018 		/* Support the previous format */
3019 		if (header->size == offsetof(typeof(*header), adds_features))
3020 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3021 		else
3022 			return -1;
3023 	} else if (ph->needs_swap) {
3024 		/*
3025 		 * feature bitmap is declared as an array of unsigned longs --
3026 		 * not good since its size can differ between the host that
3027 		 * generated the data file and the host analyzing the file.
3028 		 *
3029 		 * We need to handle endianness, but we don't know the size of
3030 		 * the unsigned long where the file was generated. Take a best
3031 		 * guess at determining it: try 64-bit swap first (ie., file
3032 		 * created on a 64-bit host), and check if the hostname feature
3033 		 * bit is set (this feature bit is forced on as of fbe96f2).
3034 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3035 		 * swap. If the hostname bit is still not set (e.g., older data
3036 		 * file), punt and fallback to the original behavior --
3037 		 * clearing all feature bits and setting buildid.
3038 		 */
3039 		mem_bswap_64(&header->adds_features,
3040 			    BITS_TO_U64(HEADER_FEAT_BITS));
3041 
3042 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3043 			/* unswap as u64 */
3044 			mem_bswap_64(&header->adds_features,
3045 				    BITS_TO_U64(HEADER_FEAT_BITS));
3046 
3047 			/* unswap as u32 */
3048 			mem_bswap_32(&header->adds_features,
3049 				    BITS_TO_U32(HEADER_FEAT_BITS));
3050 		}
3051 
3052 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3053 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3054 			set_bit(HEADER_BUILD_ID, header->adds_features);
3055 		}
3056 	}
3057 
3058 	memcpy(&ph->adds_features, &header->adds_features,
3059 	       sizeof(ph->adds_features));
3060 
3061 	ph->data_offset  = header->data.offset;
3062 	ph->data_size	 = header->data.size;
3063 	ph->feat_offset  = header->data.offset + header->data.size;
3064 	return 0;
3065 }
3066 
3067 static int perf_file_section__process(struct perf_file_section *section,
3068 				      struct perf_header *ph,
3069 				      int feat, int fd, void *data)
3070 {
3071 	struct feat_fd fdd = {
3072 		.fd	= fd,
3073 		.ph	= ph,
3074 		.size	= section->size,
3075 		.offset	= section->offset,
3076 	};
3077 
3078 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3079 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3080 			  "%d, continuing...\n", section->offset, feat);
3081 		return 0;
3082 	}
3083 
3084 	if (feat >= HEADER_LAST_FEATURE) {
3085 		pr_debug("unknown feature %d, continuing...\n", feat);
3086 		return 0;
3087 	}
3088 
3089 	if (!feat_ops[feat].process)
3090 		return 0;
3091 
3092 	return feat_ops[feat].process(&fdd, data);
3093 }
3094 
3095 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3096 				       struct perf_header *ph, int fd,
3097 				       bool repipe)
3098 {
3099 	struct feat_fd ff = {
3100 		.fd = STDOUT_FILENO,
3101 		.ph = ph,
3102 	};
3103 	ssize_t ret;
3104 
3105 	ret = readn(fd, header, sizeof(*header));
3106 	if (ret <= 0)
3107 		return -1;
3108 
3109 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3110 		pr_debug("endian/magic failed\n");
3111 		return -1;
3112 	}
3113 
3114 	if (ph->needs_swap)
3115 		header->size = bswap_64(header->size);
3116 
3117 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3118 		return -1;
3119 
3120 	return 0;
3121 }
3122 
3123 static int perf_header__read_pipe(struct perf_session *session)
3124 {
3125 	struct perf_header *header = &session->header;
3126 	struct perf_pipe_file_header f_header;
3127 
3128 	if (perf_file_header__read_pipe(&f_header, header,
3129 					perf_data__fd(session->data),
3130 					session->repipe) < 0) {
3131 		pr_debug("incompatible file format\n");
3132 		return -EINVAL;
3133 	}
3134 
3135 	return 0;
3136 }
3137 
3138 static int read_attr(int fd, struct perf_header *ph,
3139 		     struct perf_file_attr *f_attr)
3140 {
3141 	struct perf_event_attr *attr = &f_attr->attr;
3142 	size_t sz, left;
3143 	size_t our_sz = sizeof(f_attr->attr);
3144 	ssize_t ret;
3145 
3146 	memset(f_attr, 0, sizeof(*f_attr));
3147 
3148 	/* read minimal guaranteed structure */
3149 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3150 	if (ret <= 0) {
3151 		pr_debug("cannot read %d bytes of header attr\n",
3152 			 PERF_ATTR_SIZE_VER0);
3153 		return -1;
3154 	}
3155 
3156 	/* on file perf_event_attr size */
3157 	sz = attr->size;
3158 
3159 	if (ph->needs_swap)
3160 		sz = bswap_32(sz);
3161 
3162 	if (sz == 0) {
3163 		/* assume ABI0 */
3164 		sz =  PERF_ATTR_SIZE_VER0;
3165 	} else if (sz > our_sz) {
3166 		pr_debug("file uses a more recent and unsupported ABI"
3167 			 " (%zu bytes extra)\n", sz - our_sz);
3168 		return -1;
3169 	}
3170 	/* what we have not yet read and that we know about */
3171 	left = sz - PERF_ATTR_SIZE_VER0;
3172 	if (left) {
3173 		void *ptr = attr;
3174 		ptr += PERF_ATTR_SIZE_VER0;
3175 
3176 		ret = readn(fd, ptr, left);
3177 	}
3178 	/* read perf_file_section, ids are read in caller */
3179 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3180 
3181 	return ret <= 0 ? -1 : 0;
3182 }
3183 
3184 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3185 						struct pevent *pevent)
3186 {
3187 	struct event_format *event;
3188 	char bf[128];
3189 
3190 	/* already prepared */
3191 	if (evsel->tp_format)
3192 		return 0;
3193 
3194 	if (pevent == NULL) {
3195 		pr_debug("broken or missing trace data\n");
3196 		return -1;
3197 	}
3198 
3199 	event = pevent_find_event(pevent, evsel->attr.config);
3200 	if (event == NULL) {
3201 		pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3202 		return -1;
3203 	}
3204 
3205 	if (!evsel->name) {
3206 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3207 		evsel->name = strdup(bf);
3208 		if (evsel->name == NULL)
3209 			return -1;
3210 	}
3211 
3212 	evsel->tp_format = event;
3213 	return 0;
3214 }
3215 
3216 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3217 						  struct pevent *pevent)
3218 {
3219 	struct perf_evsel *pos;
3220 
3221 	evlist__for_each_entry(evlist, pos) {
3222 		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3223 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3224 			return -1;
3225 	}
3226 
3227 	return 0;
3228 }
3229 
3230 int perf_session__read_header(struct perf_session *session)
3231 {
3232 	struct perf_data *data = session->data;
3233 	struct perf_header *header = &session->header;
3234 	struct perf_file_header	f_header;
3235 	struct perf_file_attr	f_attr;
3236 	u64			f_id;
3237 	int nr_attrs, nr_ids, i, j;
3238 	int fd = perf_data__fd(data);
3239 
3240 	session->evlist = perf_evlist__new();
3241 	if (session->evlist == NULL)
3242 		return -ENOMEM;
3243 
3244 	session->evlist->env = &header->env;
3245 	session->machines.host.env = &header->env;
3246 	if (perf_data__is_pipe(data))
3247 		return perf_header__read_pipe(session);
3248 
3249 	if (perf_file_header__read(&f_header, header, fd) < 0)
3250 		return -EINVAL;
3251 
3252 	/*
3253 	 * Sanity check that perf.data was written cleanly; data size is
3254 	 * initialized to 0 and updated only if the on_exit function is run.
3255 	 * If data size is still 0 then the file contains only partial
3256 	 * information.  Just warn user and process it as much as it can.
3257 	 */
3258 	if (f_header.data.size == 0) {
3259 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3260 			   "Was the 'perf record' command properly terminated?\n",
3261 			   data->file.path);
3262 	}
3263 
3264 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3265 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3266 
3267 	for (i = 0; i < nr_attrs; i++) {
3268 		struct perf_evsel *evsel;
3269 		off_t tmp;
3270 
3271 		if (read_attr(fd, header, &f_attr) < 0)
3272 			goto out_errno;
3273 
3274 		if (header->needs_swap) {
3275 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3276 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3277 			perf_event__attr_swap(&f_attr.attr);
3278 		}
3279 
3280 		tmp = lseek(fd, 0, SEEK_CUR);
3281 		evsel = perf_evsel__new(&f_attr.attr);
3282 
3283 		if (evsel == NULL)
3284 			goto out_delete_evlist;
3285 
3286 		evsel->needs_swap = header->needs_swap;
3287 		/*
3288 		 * Do it before so that if perf_evsel__alloc_id fails, this
3289 		 * entry gets purged too at perf_evlist__delete().
3290 		 */
3291 		perf_evlist__add(session->evlist, evsel);
3292 
3293 		nr_ids = f_attr.ids.size / sizeof(u64);
3294 		/*
3295 		 * We don't have the cpu and thread maps on the header, so
3296 		 * for allocating the perf_sample_id table we fake 1 cpu and
3297 		 * hattr->ids threads.
3298 		 */
3299 		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3300 			goto out_delete_evlist;
3301 
3302 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3303 
3304 		for (j = 0; j < nr_ids; j++) {
3305 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3306 				goto out_errno;
3307 
3308 			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3309 		}
3310 
3311 		lseek(fd, tmp, SEEK_SET);
3312 	}
3313 
3314 	symbol_conf.nr_events = nr_attrs;
3315 
3316 	perf_header__process_sections(header, fd, &session->tevent,
3317 				      perf_file_section__process);
3318 
3319 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3320 						   session->tevent.pevent))
3321 		goto out_delete_evlist;
3322 
3323 	return 0;
3324 out_errno:
3325 	return -errno;
3326 
3327 out_delete_evlist:
3328 	perf_evlist__delete(session->evlist);
3329 	session->evlist = NULL;
3330 	return -ENOMEM;
3331 }
3332 
3333 int perf_event__synthesize_attr(struct perf_tool *tool,
3334 				struct perf_event_attr *attr, u32 ids, u64 *id,
3335 				perf_event__handler_t process)
3336 {
3337 	union perf_event *ev;
3338 	size_t size;
3339 	int err;
3340 
3341 	size = sizeof(struct perf_event_attr);
3342 	size = PERF_ALIGN(size, sizeof(u64));
3343 	size += sizeof(struct perf_event_header);
3344 	size += ids * sizeof(u64);
3345 
3346 	ev = malloc(size);
3347 
3348 	if (ev == NULL)
3349 		return -ENOMEM;
3350 
3351 	ev->attr.attr = *attr;
3352 	memcpy(ev->attr.id, id, ids * sizeof(u64));
3353 
3354 	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3355 	ev->attr.header.size = (u16)size;
3356 
3357 	if (ev->attr.header.size == size)
3358 		err = process(tool, ev, NULL, NULL);
3359 	else
3360 		err = -E2BIG;
3361 
3362 	free(ev);
3363 
3364 	return err;
3365 }
3366 
3367 int perf_event__synthesize_features(struct perf_tool *tool,
3368 				    struct perf_session *session,
3369 				    struct perf_evlist *evlist,
3370 				    perf_event__handler_t process)
3371 {
3372 	struct perf_header *header = &session->header;
3373 	struct feat_fd ff;
3374 	struct feature_event *fe;
3375 	size_t sz, sz_hdr;
3376 	int feat, ret;
3377 
3378 	sz_hdr = sizeof(fe->header);
3379 	sz = sizeof(union perf_event);
3380 	/* get a nice alignment */
3381 	sz = PERF_ALIGN(sz, page_size);
3382 
3383 	memset(&ff, 0, sizeof(ff));
3384 
3385 	ff.buf = malloc(sz);
3386 	if (!ff.buf)
3387 		return -ENOMEM;
3388 
3389 	ff.size = sz - sz_hdr;
3390 
3391 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3392 		if (!feat_ops[feat].synthesize) {
3393 			pr_debug("No record header feature for header :%d\n", feat);
3394 			continue;
3395 		}
3396 
3397 		ff.offset = sizeof(*fe);
3398 
3399 		ret = feat_ops[feat].write(&ff, evlist);
3400 		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3401 			pr_debug("Error writing feature\n");
3402 			continue;
3403 		}
3404 		/* ff.buf may have changed due to realloc in do_write() */
3405 		fe = ff.buf;
3406 		memset(fe, 0, sizeof(*fe));
3407 
3408 		fe->feat_id = feat;
3409 		fe->header.type = PERF_RECORD_HEADER_FEATURE;
3410 		fe->header.size = ff.offset;
3411 
3412 		ret = process(tool, ff.buf, NULL, NULL);
3413 		if (ret) {
3414 			free(ff.buf);
3415 			return ret;
3416 		}
3417 	}
3418 	free(ff.buf);
3419 	return 0;
3420 }
3421 
3422 int perf_event__process_feature(struct perf_tool *tool,
3423 				union perf_event *event,
3424 				struct perf_session *session __maybe_unused)
3425 {
3426 	struct feat_fd ff = { .fd = 0 };
3427 	struct feature_event *fe = (struct feature_event *)event;
3428 	int type = fe->header.type;
3429 	u64 feat = fe->feat_id;
3430 
3431 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3432 		pr_warning("invalid record type %d in pipe-mode\n", type);
3433 		return 0;
3434 	}
3435 	if (feat == HEADER_RESERVED || feat > HEADER_LAST_FEATURE) {
3436 		pr_warning("invalid record type %d in pipe-mode\n", type);
3437 		return -1;
3438 	}
3439 
3440 	if (!feat_ops[feat].process)
3441 		return 0;
3442 
3443 	ff.buf  = (void *)fe->data;
3444 	ff.size = event->header.size - sizeof(event->header);
3445 	ff.ph = &session->header;
3446 
3447 	if (feat_ops[feat].process(&ff, NULL))
3448 		return -1;
3449 
3450 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3451 		return 0;
3452 
3453 	if (!feat_ops[feat].full_only ||
3454 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3455 		feat_ops[feat].print(&ff, stdout);
3456 	} else {
3457 		fprintf(stdout, "# %s info available, use -I to display\n",
3458 			feat_ops[feat].name);
3459 	}
3460 
3461 	return 0;
3462 }
3463 
3464 static struct event_update_event *
3465 event_update_event__new(size_t size, u64 type, u64 id)
3466 {
3467 	struct event_update_event *ev;
3468 
3469 	size += sizeof(*ev);
3470 	size  = PERF_ALIGN(size, sizeof(u64));
3471 
3472 	ev = zalloc(size);
3473 	if (ev) {
3474 		ev->header.type = PERF_RECORD_EVENT_UPDATE;
3475 		ev->header.size = (u16)size;
3476 		ev->type = type;
3477 		ev->id = id;
3478 	}
3479 	return ev;
3480 }
3481 
3482 int
3483 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3484 					 struct perf_evsel *evsel,
3485 					 perf_event__handler_t process)
3486 {
3487 	struct event_update_event *ev;
3488 	size_t size = strlen(evsel->unit);
3489 	int err;
3490 
3491 	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3492 	if (ev == NULL)
3493 		return -ENOMEM;
3494 
3495 	strncpy(ev->data, evsel->unit, size);
3496 	err = process(tool, (union perf_event *)ev, NULL, NULL);
3497 	free(ev);
3498 	return err;
3499 }
3500 
3501 int
3502 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3503 					  struct perf_evsel *evsel,
3504 					  perf_event__handler_t process)
3505 {
3506 	struct event_update_event *ev;
3507 	struct event_update_event_scale *ev_data;
3508 	int err;
3509 
3510 	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3511 	if (ev == NULL)
3512 		return -ENOMEM;
3513 
3514 	ev_data = (struct event_update_event_scale *) ev->data;
3515 	ev_data->scale = evsel->scale;
3516 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3517 	free(ev);
3518 	return err;
3519 }
3520 
3521 int
3522 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3523 					 struct perf_evsel *evsel,
3524 					 perf_event__handler_t process)
3525 {
3526 	struct event_update_event *ev;
3527 	size_t len = strlen(evsel->name);
3528 	int err;
3529 
3530 	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3531 	if (ev == NULL)
3532 		return -ENOMEM;
3533 
3534 	strncpy(ev->data, evsel->name, len);
3535 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3536 	free(ev);
3537 	return err;
3538 }
3539 
3540 int
3541 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3542 					struct perf_evsel *evsel,
3543 					perf_event__handler_t process)
3544 {
3545 	size_t size = sizeof(struct event_update_event);
3546 	struct event_update_event *ev;
3547 	int max, err;
3548 	u16 type;
3549 
3550 	if (!evsel->own_cpus)
3551 		return 0;
3552 
3553 	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3554 	if (!ev)
3555 		return -ENOMEM;
3556 
3557 	ev->header.type = PERF_RECORD_EVENT_UPDATE;
3558 	ev->header.size = (u16)size;
3559 	ev->type = PERF_EVENT_UPDATE__CPUS;
3560 	ev->id   = evsel->id[0];
3561 
3562 	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3563 				 evsel->own_cpus,
3564 				 type, max);
3565 
3566 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3567 	free(ev);
3568 	return err;
3569 }
3570 
3571 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3572 {
3573 	struct event_update_event *ev = &event->event_update;
3574 	struct event_update_event_scale *ev_scale;
3575 	struct event_update_event_cpus *ev_cpus;
3576 	struct cpu_map *map;
3577 	size_t ret;
3578 
3579 	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3580 
3581 	switch (ev->type) {
3582 	case PERF_EVENT_UPDATE__SCALE:
3583 		ev_scale = (struct event_update_event_scale *) ev->data;
3584 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3585 		break;
3586 	case PERF_EVENT_UPDATE__UNIT:
3587 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3588 		break;
3589 	case PERF_EVENT_UPDATE__NAME:
3590 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3591 		break;
3592 	case PERF_EVENT_UPDATE__CPUS:
3593 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3594 		ret += fprintf(fp, "... ");
3595 
3596 		map = cpu_map__new_data(&ev_cpus->cpus);
3597 		if (map)
3598 			ret += cpu_map__fprintf(map, fp);
3599 		else
3600 			ret += fprintf(fp, "failed to get cpus\n");
3601 		break;
3602 	default:
3603 		ret += fprintf(fp, "... unknown type\n");
3604 		break;
3605 	}
3606 
3607 	return ret;
3608 }
3609 
3610 int perf_event__synthesize_attrs(struct perf_tool *tool,
3611 				   struct perf_session *session,
3612 				   perf_event__handler_t process)
3613 {
3614 	struct perf_evsel *evsel;
3615 	int err = 0;
3616 
3617 	evlist__for_each_entry(session->evlist, evsel) {
3618 		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3619 						  evsel->id, process);
3620 		if (err) {
3621 			pr_debug("failed to create perf header attribute\n");
3622 			return err;
3623 		}
3624 	}
3625 
3626 	return err;
3627 }
3628 
3629 static bool has_unit(struct perf_evsel *counter)
3630 {
3631 	return counter->unit && *counter->unit;
3632 }
3633 
3634 static bool has_scale(struct perf_evsel *counter)
3635 {
3636 	return counter->scale != 1;
3637 }
3638 
3639 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3640 				      struct perf_evlist *evsel_list,
3641 				      perf_event__handler_t process,
3642 				      bool is_pipe)
3643 {
3644 	struct perf_evsel *counter;
3645 	int err;
3646 
3647 	/*
3648 	 * Synthesize other events stuff not carried within
3649 	 * attr event - unit, scale, name
3650 	 */
3651 	evlist__for_each_entry(evsel_list, counter) {
3652 		if (!counter->supported)
3653 			continue;
3654 
3655 		/*
3656 		 * Synthesize unit and scale only if it's defined.
3657 		 */
3658 		if (has_unit(counter)) {
3659 			err = perf_event__synthesize_event_update_unit(tool, counter, process);
3660 			if (err < 0) {
3661 				pr_err("Couldn't synthesize evsel unit.\n");
3662 				return err;
3663 			}
3664 		}
3665 
3666 		if (has_scale(counter)) {
3667 			err = perf_event__synthesize_event_update_scale(tool, counter, process);
3668 			if (err < 0) {
3669 				pr_err("Couldn't synthesize evsel counter.\n");
3670 				return err;
3671 			}
3672 		}
3673 
3674 		if (counter->own_cpus) {
3675 			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3676 			if (err < 0) {
3677 				pr_err("Couldn't synthesize evsel cpus.\n");
3678 				return err;
3679 			}
3680 		}
3681 
3682 		/*
3683 		 * Name is needed only for pipe output,
3684 		 * perf.data carries event names.
3685 		 */
3686 		if (is_pipe) {
3687 			err = perf_event__synthesize_event_update_name(tool, counter, process);
3688 			if (err < 0) {
3689 				pr_err("Couldn't synthesize evsel name.\n");
3690 				return err;
3691 			}
3692 		}
3693 	}
3694 	return 0;
3695 }
3696 
3697 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3698 			     union perf_event *event,
3699 			     struct perf_evlist **pevlist)
3700 {
3701 	u32 i, ids, n_ids;
3702 	struct perf_evsel *evsel;
3703 	struct perf_evlist *evlist = *pevlist;
3704 
3705 	if (evlist == NULL) {
3706 		*pevlist = evlist = perf_evlist__new();
3707 		if (evlist == NULL)
3708 			return -ENOMEM;
3709 	}
3710 
3711 	evsel = perf_evsel__new(&event->attr.attr);
3712 	if (evsel == NULL)
3713 		return -ENOMEM;
3714 
3715 	perf_evlist__add(evlist, evsel);
3716 
3717 	ids = event->header.size;
3718 	ids -= (void *)&event->attr.id - (void *)event;
3719 	n_ids = ids / sizeof(u64);
3720 	/*
3721 	 * We don't have the cpu and thread maps on the header, so
3722 	 * for allocating the perf_sample_id table we fake 1 cpu and
3723 	 * hattr->ids threads.
3724 	 */
3725 	if (perf_evsel__alloc_id(evsel, 1, n_ids))
3726 		return -ENOMEM;
3727 
3728 	for (i = 0; i < n_ids; i++) {
3729 		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3730 	}
3731 
3732 	symbol_conf.nr_events = evlist->nr_entries;
3733 
3734 	return 0;
3735 }
3736 
3737 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3738 				     union perf_event *event,
3739 				     struct perf_evlist **pevlist)
3740 {
3741 	struct event_update_event *ev = &event->event_update;
3742 	struct event_update_event_scale *ev_scale;
3743 	struct event_update_event_cpus *ev_cpus;
3744 	struct perf_evlist *evlist;
3745 	struct perf_evsel *evsel;
3746 	struct cpu_map *map;
3747 
3748 	if (!pevlist || *pevlist == NULL)
3749 		return -EINVAL;
3750 
3751 	evlist = *pevlist;
3752 
3753 	evsel = perf_evlist__id2evsel(evlist, ev->id);
3754 	if (evsel == NULL)
3755 		return -EINVAL;
3756 
3757 	switch (ev->type) {
3758 	case PERF_EVENT_UPDATE__UNIT:
3759 		evsel->unit = strdup(ev->data);
3760 		break;
3761 	case PERF_EVENT_UPDATE__NAME:
3762 		evsel->name = strdup(ev->data);
3763 		break;
3764 	case PERF_EVENT_UPDATE__SCALE:
3765 		ev_scale = (struct event_update_event_scale *) ev->data;
3766 		evsel->scale = ev_scale->scale;
3767 		break;
3768 	case PERF_EVENT_UPDATE__CPUS:
3769 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3770 
3771 		map = cpu_map__new_data(&ev_cpus->cpus);
3772 		if (map)
3773 			evsel->own_cpus = map;
3774 		else
3775 			pr_err("failed to get event_update cpus\n");
3776 	default:
3777 		break;
3778 	}
3779 
3780 	return 0;
3781 }
3782 
3783 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3784 					struct perf_evlist *evlist,
3785 					perf_event__handler_t process)
3786 {
3787 	union perf_event ev;
3788 	struct tracing_data *tdata;
3789 	ssize_t size = 0, aligned_size = 0, padding;
3790 	struct feat_fd ff;
3791 	int err __maybe_unused = 0;
3792 
3793 	/*
3794 	 * We are going to store the size of the data followed
3795 	 * by the data contents. Since the fd descriptor is a pipe,
3796 	 * we cannot seek back to store the size of the data once
3797 	 * we know it. Instead we:
3798 	 *
3799 	 * - write the tracing data to the temp file
3800 	 * - get/write the data size to pipe
3801 	 * - write the tracing data from the temp file
3802 	 *   to the pipe
3803 	 */
3804 	tdata = tracing_data_get(&evlist->entries, fd, true);
3805 	if (!tdata)
3806 		return -1;
3807 
3808 	memset(&ev, 0, sizeof(ev));
3809 
3810 	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3811 	size = tdata->size;
3812 	aligned_size = PERF_ALIGN(size, sizeof(u64));
3813 	padding = aligned_size - size;
3814 	ev.tracing_data.header.size = sizeof(ev.tracing_data);
3815 	ev.tracing_data.size = aligned_size;
3816 
3817 	process(tool, &ev, NULL, NULL);
3818 
3819 	/*
3820 	 * The put function will copy all the tracing data
3821 	 * stored in temp file to the pipe.
3822 	 */
3823 	tracing_data_put(tdata);
3824 
3825 	ff = (struct feat_fd){ .fd = fd };
3826 	if (write_padded(&ff, NULL, 0, padding))
3827 		return -1;
3828 
3829 	return aligned_size;
3830 }
3831 
3832 int perf_event__process_tracing_data(struct perf_tool *tool __maybe_unused,
3833 				     union perf_event *event,
3834 				     struct perf_session *session)
3835 {
3836 	ssize_t size_read, padding, size = event->tracing_data.size;
3837 	int fd = perf_data__fd(session->data);
3838 	off_t offset = lseek(fd, 0, SEEK_CUR);
3839 	char buf[BUFSIZ];
3840 
3841 	/* setup for reading amidst mmap */
3842 	lseek(fd, offset + sizeof(struct tracing_data_event),
3843 	      SEEK_SET);
3844 
3845 	size_read = trace_report(fd, &session->tevent,
3846 				 session->repipe);
3847 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3848 
3849 	if (readn(fd, buf, padding) < 0) {
3850 		pr_err("%s: reading input file", __func__);
3851 		return -1;
3852 	}
3853 	if (session->repipe) {
3854 		int retw = write(STDOUT_FILENO, buf, padding);
3855 		if (retw <= 0 || retw != padding) {
3856 			pr_err("%s: repiping tracing data padding", __func__);
3857 			return -1;
3858 		}
3859 	}
3860 
3861 	if (size_read + padding != size) {
3862 		pr_err("%s: tracing data size mismatch", __func__);
3863 		return -1;
3864 	}
3865 
3866 	perf_evlist__prepare_tracepoint_events(session->evlist,
3867 					       session->tevent.pevent);
3868 
3869 	return size_read + padding;
3870 }
3871 
3872 int perf_event__synthesize_build_id(struct perf_tool *tool,
3873 				    struct dso *pos, u16 misc,
3874 				    perf_event__handler_t process,
3875 				    struct machine *machine)
3876 {
3877 	union perf_event ev;
3878 	size_t len;
3879 	int err = 0;
3880 
3881 	if (!pos->hit)
3882 		return err;
3883 
3884 	memset(&ev, 0, sizeof(ev));
3885 
3886 	len = pos->long_name_len + 1;
3887 	len = PERF_ALIGN(len, NAME_ALIGN);
3888 	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
3889 	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
3890 	ev.build_id.header.misc = misc;
3891 	ev.build_id.pid = machine->pid;
3892 	ev.build_id.header.size = sizeof(ev.build_id) + len;
3893 	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
3894 
3895 	err = process(tool, &ev, NULL, machine);
3896 
3897 	return err;
3898 }
3899 
3900 int perf_event__process_build_id(struct perf_tool *tool __maybe_unused,
3901 				 union perf_event *event,
3902 				 struct perf_session *session)
3903 {
3904 	__event_process_build_id(&event->build_id,
3905 				 event->build_id.filename,
3906 				 session);
3907 	return 0;
3908 }
3909