1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <stdio.h> 10 #include <stdlib.h> 11 #include <linux/compiler.h> 12 #include <linux/list.h> 13 #include <linux/kernel.h> 14 #include <linux/bitops.h> 15 #include <linux/string.h> 16 #include <linux/stringify.h> 17 #include <linux/zalloc.h> 18 #include <sys/stat.h> 19 #include <sys/utsname.h> 20 #include <linux/time64.h> 21 #include <dirent.h> 22 #ifdef HAVE_LIBBPF_SUPPORT 23 #include <bpf/libbpf.h> 24 #endif 25 #include <perf/cpumap.h> 26 27 #include "dso.h" 28 #include "evlist.h" 29 #include "evsel.h" 30 #include "util/evsel_fprintf.h" 31 #include "header.h" 32 #include "memswap.h" 33 #include "trace-event.h" 34 #include "session.h" 35 #include "symbol.h" 36 #include "debug.h" 37 #include "cpumap.h" 38 #include "pmu.h" 39 #include "vdso.h" 40 #include "strbuf.h" 41 #include "build-id.h" 42 #include "data.h" 43 #include <api/fs/fs.h> 44 #include "asm/bug.h" 45 #include "tool.h" 46 #include "time-utils.h" 47 #include "units.h" 48 #include "util/util.h" // perf_exe() 49 #include "cputopo.h" 50 #include "bpf-event.h" 51 #include "bpf-utils.h" 52 #include "clockid.h" 53 #include "pmu-hybrid.h" 54 55 #include <linux/ctype.h> 56 #include <internal/lib.h> 57 58 /* 59 * magic2 = "PERFILE2" 60 * must be a numerical value to let the endianness 61 * determine the memory layout. That way we are able 62 * to detect endianness when reading the perf.data file 63 * back. 64 * 65 * we check for legacy (PERFFILE) format. 66 */ 67 static const char *__perf_magic1 = "PERFFILE"; 68 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 69 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 70 71 #define PERF_MAGIC __perf_magic2 72 73 const char perf_version_string[] = PERF_VERSION; 74 75 struct perf_file_attr { 76 struct perf_event_attr attr; 77 struct perf_file_section ids; 78 }; 79 80 void perf_header__set_feat(struct perf_header *header, int feat) 81 { 82 set_bit(feat, header->adds_features); 83 } 84 85 void perf_header__clear_feat(struct perf_header *header, int feat) 86 { 87 clear_bit(feat, header->adds_features); 88 } 89 90 bool perf_header__has_feat(const struct perf_header *header, int feat) 91 { 92 return test_bit(feat, header->adds_features); 93 } 94 95 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 96 { 97 ssize_t ret = writen(ff->fd, buf, size); 98 99 if (ret != (ssize_t)size) 100 return ret < 0 ? (int)ret : -1; 101 return 0; 102 } 103 104 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 105 { 106 /* struct perf_event_header::size is u16 */ 107 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 108 size_t new_size = ff->size; 109 void *addr; 110 111 if (size + ff->offset > max_size) 112 return -E2BIG; 113 114 while (size > (new_size - ff->offset)) 115 new_size <<= 1; 116 new_size = min(max_size, new_size); 117 118 if (ff->size < new_size) { 119 addr = realloc(ff->buf, new_size); 120 if (!addr) 121 return -ENOMEM; 122 ff->buf = addr; 123 ff->size = new_size; 124 } 125 126 memcpy(ff->buf + ff->offset, buf, size); 127 ff->offset += size; 128 129 return 0; 130 } 131 132 /* Return: 0 if succeeded, -ERR if failed. */ 133 int do_write(struct feat_fd *ff, const void *buf, size_t size) 134 { 135 if (!ff->buf) 136 return __do_write_fd(ff, buf, size); 137 return __do_write_buf(ff, buf, size); 138 } 139 140 /* Return: 0 if succeeded, -ERR if failed. */ 141 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 142 { 143 u64 *p = (u64 *) set; 144 int i, ret; 145 146 ret = do_write(ff, &size, sizeof(size)); 147 if (ret < 0) 148 return ret; 149 150 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 151 ret = do_write(ff, p + i, sizeof(*p)); 152 if (ret < 0) 153 return ret; 154 } 155 156 return 0; 157 } 158 159 /* Return: 0 if succeeded, -ERR if failed. */ 160 int write_padded(struct feat_fd *ff, const void *bf, 161 size_t count, size_t count_aligned) 162 { 163 static const char zero_buf[NAME_ALIGN]; 164 int err = do_write(ff, bf, count); 165 166 if (!err) 167 err = do_write(ff, zero_buf, count_aligned - count); 168 169 return err; 170 } 171 172 #define string_size(str) \ 173 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 174 175 /* Return: 0 if succeeded, -ERR if failed. */ 176 static int do_write_string(struct feat_fd *ff, const char *str) 177 { 178 u32 len, olen; 179 int ret; 180 181 olen = strlen(str) + 1; 182 len = PERF_ALIGN(olen, NAME_ALIGN); 183 184 /* write len, incl. \0 */ 185 ret = do_write(ff, &len, sizeof(len)); 186 if (ret < 0) 187 return ret; 188 189 return write_padded(ff, str, olen, len); 190 } 191 192 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 193 { 194 ssize_t ret = readn(ff->fd, addr, size); 195 196 if (ret != size) 197 return ret < 0 ? (int)ret : -1; 198 return 0; 199 } 200 201 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 202 { 203 if (size > (ssize_t)ff->size - ff->offset) 204 return -1; 205 206 memcpy(addr, ff->buf + ff->offset, size); 207 ff->offset += size; 208 209 return 0; 210 211 } 212 213 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 214 { 215 if (!ff->buf) 216 return __do_read_fd(ff, addr, size); 217 return __do_read_buf(ff, addr, size); 218 } 219 220 static int do_read_u32(struct feat_fd *ff, u32 *addr) 221 { 222 int ret; 223 224 ret = __do_read(ff, addr, sizeof(*addr)); 225 if (ret) 226 return ret; 227 228 if (ff->ph->needs_swap) 229 *addr = bswap_32(*addr); 230 return 0; 231 } 232 233 static int do_read_u64(struct feat_fd *ff, u64 *addr) 234 { 235 int ret; 236 237 ret = __do_read(ff, addr, sizeof(*addr)); 238 if (ret) 239 return ret; 240 241 if (ff->ph->needs_swap) 242 *addr = bswap_64(*addr); 243 return 0; 244 } 245 246 static char *do_read_string(struct feat_fd *ff) 247 { 248 u32 len; 249 char *buf; 250 251 if (do_read_u32(ff, &len)) 252 return NULL; 253 254 buf = malloc(len); 255 if (!buf) 256 return NULL; 257 258 if (!__do_read(ff, buf, len)) { 259 /* 260 * strings are padded by zeroes 261 * thus the actual strlen of buf 262 * may be less than len 263 */ 264 return buf; 265 } 266 267 free(buf); 268 return NULL; 269 } 270 271 /* Return: 0 if succeeded, -ERR if failed. */ 272 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 273 { 274 unsigned long *set; 275 u64 size, *p; 276 int i, ret; 277 278 ret = do_read_u64(ff, &size); 279 if (ret) 280 return ret; 281 282 set = bitmap_zalloc(size); 283 if (!set) 284 return -ENOMEM; 285 286 p = (u64 *) set; 287 288 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 289 ret = do_read_u64(ff, p + i); 290 if (ret < 0) { 291 free(set); 292 return ret; 293 } 294 } 295 296 *pset = set; 297 *psize = size; 298 return 0; 299 } 300 301 static int write_tracing_data(struct feat_fd *ff, 302 struct evlist *evlist) 303 { 304 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 305 return -1; 306 307 return read_tracing_data(ff->fd, &evlist->core.entries); 308 } 309 310 static int write_build_id(struct feat_fd *ff, 311 struct evlist *evlist __maybe_unused) 312 { 313 struct perf_session *session; 314 int err; 315 316 session = container_of(ff->ph, struct perf_session, header); 317 318 if (!perf_session__read_build_ids(session, true)) 319 return -1; 320 321 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 322 return -1; 323 324 err = perf_session__write_buildid_table(session, ff); 325 if (err < 0) { 326 pr_debug("failed to write buildid table\n"); 327 return err; 328 } 329 perf_session__cache_build_ids(session); 330 331 return 0; 332 } 333 334 static int write_hostname(struct feat_fd *ff, 335 struct evlist *evlist __maybe_unused) 336 { 337 struct utsname uts; 338 int ret; 339 340 ret = uname(&uts); 341 if (ret < 0) 342 return -1; 343 344 return do_write_string(ff, uts.nodename); 345 } 346 347 static int write_osrelease(struct feat_fd *ff, 348 struct evlist *evlist __maybe_unused) 349 { 350 struct utsname uts; 351 int ret; 352 353 ret = uname(&uts); 354 if (ret < 0) 355 return -1; 356 357 return do_write_string(ff, uts.release); 358 } 359 360 static int write_arch(struct feat_fd *ff, 361 struct evlist *evlist __maybe_unused) 362 { 363 struct utsname uts; 364 int ret; 365 366 ret = uname(&uts); 367 if (ret < 0) 368 return -1; 369 370 return do_write_string(ff, uts.machine); 371 } 372 373 static int write_version(struct feat_fd *ff, 374 struct evlist *evlist __maybe_unused) 375 { 376 return do_write_string(ff, perf_version_string); 377 } 378 379 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 380 { 381 FILE *file; 382 char *buf = NULL; 383 char *s, *p; 384 const char *search = cpuinfo_proc; 385 size_t len = 0; 386 int ret = -1; 387 388 if (!search) 389 return -1; 390 391 file = fopen("/proc/cpuinfo", "r"); 392 if (!file) 393 return -1; 394 395 while (getline(&buf, &len, file) > 0) { 396 ret = strncmp(buf, search, strlen(search)); 397 if (!ret) 398 break; 399 } 400 401 if (ret) { 402 ret = -1; 403 goto done; 404 } 405 406 s = buf; 407 408 p = strchr(buf, ':'); 409 if (p && *(p+1) == ' ' && *(p+2)) 410 s = p + 2; 411 p = strchr(s, '\n'); 412 if (p) 413 *p = '\0'; 414 415 /* squash extra space characters (branding string) */ 416 p = s; 417 while (*p) { 418 if (isspace(*p)) { 419 char *r = p + 1; 420 char *q = skip_spaces(r); 421 *p = ' '; 422 if (q != (p+1)) 423 while ((*r++ = *q++)); 424 } 425 p++; 426 } 427 ret = do_write_string(ff, s); 428 done: 429 free(buf); 430 fclose(file); 431 return ret; 432 } 433 434 static int write_cpudesc(struct feat_fd *ff, 435 struct evlist *evlist __maybe_unused) 436 { 437 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 438 #define CPUINFO_PROC { "cpu", } 439 #elif defined(__s390__) 440 #define CPUINFO_PROC { "vendor_id", } 441 #elif defined(__sh__) 442 #define CPUINFO_PROC { "cpu type", } 443 #elif defined(__alpha__) || defined(__mips__) 444 #define CPUINFO_PROC { "cpu model", } 445 #elif defined(__arm__) 446 #define CPUINFO_PROC { "model name", "Processor", } 447 #elif defined(__arc__) 448 #define CPUINFO_PROC { "Processor", } 449 #elif defined(__xtensa__) 450 #define CPUINFO_PROC { "core ID", } 451 #else 452 #define CPUINFO_PROC { "model name", } 453 #endif 454 const char *cpuinfo_procs[] = CPUINFO_PROC; 455 #undef CPUINFO_PROC 456 unsigned int i; 457 458 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 459 int ret; 460 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 461 if (ret >= 0) 462 return ret; 463 } 464 return -1; 465 } 466 467 468 static int write_nrcpus(struct feat_fd *ff, 469 struct evlist *evlist __maybe_unused) 470 { 471 long nr; 472 u32 nrc, nra; 473 int ret; 474 475 nrc = cpu__max_present_cpu().cpu; 476 477 nr = sysconf(_SC_NPROCESSORS_ONLN); 478 if (nr < 0) 479 return -1; 480 481 nra = (u32)(nr & UINT_MAX); 482 483 ret = do_write(ff, &nrc, sizeof(nrc)); 484 if (ret < 0) 485 return ret; 486 487 return do_write(ff, &nra, sizeof(nra)); 488 } 489 490 static int write_event_desc(struct feat_fd *ff, 491 struct evlist *evlist) 492 { 493 struct evsel *evsel; 494 u32 nre, nri, sz; 495 int ret; 496 497 nre = evlist->core.nr_entries; 498 499 /* 500 * write number of events 501 */ 502 ret = do_write(ff, &nre, sizeof(nre)); 503 if (ret < 0) 504 return ret; 505 506 /* 507 * size of perf_event_attr struct 508 */ 509 sz = (u32)sizeof(evsel->core.attr); 510 ret = do_write(ff, &sz, sizeof(sz)); 511 if (ret < 0) 512 return ret; 513 514 evlist__for_each_entry(evlist, evsel) { 515 ret = do_write(ff, &evsel->core.attr, sz); 516 if (ret < 0) 517 return ret; 518 /* 519 * write number of unique id per event 520 * there is one id per instance of an event 521 * 522 * copy into an nri to be independent of the 523 * type of ids, 524 */ 525 nri = evsel->core.ids; 526 ret = do_write(ff, &nri, sizeof(nri)); 527 if (ret < 0) 528 return ret; 529 530 /* 531 * write event string as passed on cmdline 532 */ 533 ret = do_write_string(ff, evsel__name(evsel)); 534 if (ret < 0) 535 return ret; 536 /* 537 * write unique ids for this event 538 */ 539 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 540 if (ret < 0) 541 return ret; 542 } 543 return 0; 544 } 545 546 static int write_cmdline(struct feat_fd *ff, 547 struct evlist *evlist __maybe_unused) 548 { 549 char pbuf[MAXPATHLEN], *buf; 550 int i, ret, n; 551 552 /* actual path to perf binary */ 553 buf = perf_exe(pbuf, MAXPATHLEN); 554 555 /* account for binary path */ 556 n = perf_env.nr_cmdline + 1; 557 558 ret = do_write(ff, &n, sizeof(n)); 559 if (ret < 0) 560 return ret; 561 562 ret = do_write_string(ff, buf); 563 if (ret < 0) 564 return ret; 565 566 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 567 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 568 if (ret < 0) 569 return ret; 570 } 571 return 0; 572 } 573 574 575 static int write_cpu_topology(struct feat_fd *ff, 576 struct evlist *evlist __maybe_unused) 577 { 578 struct cpu_topology *tp; 579 u32 i; 580 int ret, j; 581 582 tp = cpu_topology__new(); 583 if (!tp) 584 return -1; 585 586 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists)); 587 if (ret < 0) 588 goto done; 589 590 for (i = 0; i < tp->package_cpus_lists; i++) { 591 ret = do_write_string(ff, tp->package_cpus_list[i]); 592 if (ret < 0) 593 goto done; 594 } 595 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists)); 596 if (ret < 0) 597 goto done; 598 599 for (i = 0; i < tp->core_cpus_lists; i++) { 600 ret = do_write_string(ff, tp->core_cpus_list[i]); 601 if (ret < 0) 602 break; 603 } 604 605 ret = perf_env__read_cpu_topology_map(&perf_env); 606 if (ret < 0) 607 goto done; 608 609 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 610 ret = do_write(ff, &perf_env.cpu[j].core_id, 611 sizeof(perf_env.cpu[j].core_id)); 612 if (ret < 0) 613 return ret; 614 ret = do_write(ff, &perf_env.cpu[j].socket_id, 615 sizeof(perf_env.cpu[j].socket_id)); 616 if (ret < 0) 617 return ret; 618 } 619 620 if (!tp->die_cpus_lists) 621 goto done; 622 623 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists)); 624 if (ret < 0) 625 goto done; 626 627 for (i = 0; i < tp->die_cpus_lists; i++) { 628 ret = do_write_string(ff, tp->die_cpus_list[i]); 629 if (ret < 0) 630 goto done; 631 } 632 633 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 634 ret = do_write(ff, &perf_env.cpu[j].die_id, 635 sizeof(perf_env.cpu[j].die_id)); 636 if (ret < 0) 637 return ret; 638 } 639 640 done: 641 cpu_topology__delete(tp); 642 return ret; 643 } 644 645 646 647 static int write_total_mem(struct feat_fd *ff, 648 struct evlist *evlist __maybe_unused) 649 { 650 char *buf = NULL; 651 FILE *fp; 652 size_t len = 0; 653 int ret = -1, n; 654 uint64_t mem; 655 656 fp = fopen("/proc/meminfo", "r"); 657 if (!fp) 658 return -1; 659 660 while (getline(&buf, &len, fp) > 0) { 661 ret = strncmp(buf, "MemTotal:", 9); 662 if (!ret) 663 break; 664 } 665 if (!ret) { 666 n = sscanf(buf, "%*s %"PRIu64, &mem); 667 if (n == 1) 668 ret = do_write(ff, &mem, sizeof(mem)); 669 } else 670 ret = -1; 671 free(buf); 672 fclose(fp); 673 return ret; 674 } 675 676 static int write_numa_topology(struct feat_fd *ff, 677 struct evlist *evlist __maybe_unused) 678 { 679 struct numa_topology *tp; 680 int ret = -1; 681 u32 i; 682 683 tp = numa_topology__new(); 684 if (!tp) 685 return -ENOMEM; 686 687 ret = do_write(ff, &tp->nr, sizeof(u32)); 688 if (ret < 0) 689 goto err; 690 691 for (i = 0; i < tp->nr; i++) { 692 struct numa_topology_node *n = &tp->nodes[i]; 693 694 ret = do_write(ff, &n->node, sizeof(u32)); 695 if (ret < 0) 696 goto err; 697 698 ret = do_write(ff, &n->mem_total, sizeof(u64)); 699 if (ret) 700 goto err; 701 702 ret = do_write(ff, &n->mem_free, sizeof(u64)); 703 if (ret) 704 goto err; 705 706 ret = do_write_string(ff, n->cpus); 707 if (ret < 0) 708 goto err; 709 } 710 711 ret = 0; 712 713 err: 714 numa_topology__delete(tp); 715 return ret; 716 } 717 718 /* 719 * File format: 720 * 721 * struct pmu_mappings { 722 * u32 pmu_num; 723 * struct pmu_map { 724 * u32 type; 725 * char name[]; 726 * }[pmu_num]; 727 * }; 728 */ 729 730 static int write_pmu_mappings(struct feat_fd *ff, 731 struct evlist *evlist __maybe_unused) 732 { 733 struct perf_pmu *pmu = NULL; 734 u32 pmu_num = 0; 735 int ret; 736 737 /* 738 * Do a first pass to count number of pmu to avoid lseek so this 739 * works in pipe mode as well. 740 */ 741 while ((pmu = perf_pmu__scan(pmu))) { 742 if (!pmu->name) 743 continue; 744 pmu_num++; 745 } 746 747 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 748 if (ret < 0) 749 return ret; 750 751 while ((pmu = perf_pmu__scan(pmu))) { 752 if (!pmu->name) 753 continue; 754 755 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 756 if (ret < 0) 757 return ret; 758 759 ret = do_write_string(ff, pmu->name); 760 if (ret < 0) 761 return ret; 762 } 763 764 return 0; 765 } 766 767 /* 768 * File format: 769 * 770 * struct group_descs { 771 * u32 nr_groups; 772 * struct group_desc { 773 * char name[]; 774 * u32 leader_idx; 775 * u32 nr_members; 776 * }[nr_groups]; 777 * }; 778 */ 779 static int write_group_desc(struct feat_fd *ff, 780 struct evlist *evlist) 781 { 782 u32 nr_groups = evlist->core.nr_groups; 783 struct evsel *evsel; 784 int ret; 785 786 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 787 if (ret < 0) 788 return ret; 789 790 evlist__for_each_entry(evlist, evsel) { 791 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 792 const char *name = evsel->group_name ?: "{anon_group}"; 793 u32 leader_idx = evsel->core.idx; 794 u32 nr_members = evsel->core.nr_members; 795 796 ret = do_write_string(ff, name); 797 if (ret < 0) 798 return ret; 799 800 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 801 if (ret < 0) 802 return ret; 803 804 ret = do_write(ff, &nr_members, sizeof(nr_members)); 805 if (ret < 0) 806 return ret; 807 } 808 } 809 return 0; 810 } 811 812 /* 813 * Return the CPU id as a raw string. 814 * 815 * Each architecture should provide a more precise id string that 816 * can be use to match the architecture's "mapfile". 817 */ 818 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 819 { 820 return NULL; 821 } 822 823 /* Return zero when the cpuid from the mapfile.csv matches the 824 * cpuid string generated on this platform. 825 * Otherwise return non-zero. 826 */ 827 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 828 { 829 regex_t re; 830 regmatch_t pmatch[1]; 831 int match; 832 833 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 834 /* Warn unable to generate match particular string. */ 835 pr_info("Invalid regular expression %s\n", mapcpuid); 836 return 1; 837 } 838 839 match = !regexec(&re, cpuid, 1, pmatch, 0); 840 regfree(&re); 841 if (match) { 842 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 843 844 /* Verify the entire string matched. */ 845 if (match_len == strlen(cpuid)) 846 return 0; 847 } 848 return 1; 849 } 850 851 /* 852 * default get_cpuid(): nothing gets recorded 853 * actual implementation must be in arch/$(SRCARCH)/util/header.c 854 */ 855 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 856 { 857 return ENOSYS; /* Not implemented */ 858 } 859 860 static int write_cpuid(struct feat_fd *ff, 861 struct evlist *evlist __maybe_unused) 862 { 863 char buffer[64]; 864 int ret; 865 866 ret = get_cpuid(buffer, sizeof(buffer)); 867 if (ret) 868 return -1; 869 870 return do_write_string(ff, buffer); 871 } 872 873 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 874 struct evlist *evlist __maybe_unused) 875 { 876 return 0; 877 } 878 879 static int write_auxtrace(struct feat_fd *ff, 880 struct evlist *evlist __maybe_unused) 881 { 882 struct perf_session *session; 883 int err; 884 885 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 886 return -1; 887 888 session = container_of(ff->ph, struct perf_session, header); 889 890 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 891 if (err < 0) 892 pr_err("Failed to write auxtrace index\n"); 893 return err; 894 } 895 896 static int write_clockid(struct feat_fd *ff, 897 struct evlist *evlist __maybe_unused) 898 { 899 return do_write(ff, &ff->ph->env.clock.clockid_res_ns, 900 sizeof(ff->ph->env.clock.clockid_res_ns)); 901 } 902 903 static int write_clock_data(struct feat_fd *ff, 904 struct evlist *evlist __maybe_unused) 905 { 906 u64 *data64; 907 u32 data32; 908 int ret; 909 910 /* version */ 911 data32 = 1; 912 913 ret = do_write(ff, &data32, sizeof(data32)); 914 if (ret < 0) 915 return ret; 916 917 /* clockid */ 918 data32 = ff->ph->env.clock.clockid; 919 920 ret = do_write(ff, &data32, sizeof(data32)); 921 if (ret < 0) 922 return ret; 923 924 /* TOD ref time */ 925 data64 = &ff->ph->env.clock.tod_ns; 926 927 ret = do_write(ff, data64, sizeof(*data64)); 928 if (ret < 0) 929 return ret; 930 931 /* clockid ref time */ 932 data64 = &ff->ph->env.clock.clockid_ns; 933 934 return do_write(ff, data64, sizeof(*data64)); 935 } 936 937 static int write_hybrid_topology(struct feat_fd *ff, 938 struct evlist *evlist __maybe_unused) 939 { 940 struct hybrid_topology *tp; 941 int ret; 942 u32 i; 943 944 tp = hybrid_topology__new(); 945 if (!tp) 946 return -ENOENT; 947 948 ret = do_write(ff, &tp->nr, sizeof(u32)); 949 if (ret < 0) 950 goto err; 951 952 for (i = 0; i < tp->nr; i++) { 953 struct hybrid_topology_node *n = &tp->nodes[i]; 954 955 ret = do_write_string(ff, n->pmu_name); 956 if (ret < 0) 957 goto err; 958 959 ret = do_write_string(ff, n->cpus); 960 if (ret < 0) 961 goto err; 962 } 963 964 ret = 0; 965 966 err: 967 hybrid_topology__delete(tp); 968 return ret; 969 } 970 971 static int write_dir_format(struct feat_fd *ff, 972 struct evlist *evlist __maybe_unused) 973 { 974 struct perf_session *session; 975 struct perf_data *data; 976 977 session = container_of(ff->ph, struct perf_session, header); 978 data = session->data; 979 980 if (WARN_ON(!perf_data__is_dir(data))) 981 return -1; 982 983 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 984 } 985 986 /* 987 * Check whether a CPU is online 988 * 989 * Returns: 990 * 1 -> if CPU is online 991 * 0 -> if CPU is offline 992 * -1 -> error case 993 */ 994 int is_cpu_online(unsigned int cpu) 995 { 996 char *str; 997 size_t strlen; 998 char buf[256]; 999 int status = -1; 1000 struct stat statbuf; 1001 1002 snprintf(buf, sizeof(buf), 1003 "/sys/devices/system/cpu/cpu%d", cpu); 1004 if (stat(buf, &statbuf) != 0) 1005 return 0; 1006 1007 /* 1008 * Check if /sys/devices/system/cpu/cpux/online file 1009 * exists. Some cases cpu0 won't have online file since 1010 * it is not expected to be turned off generally. 1011 * In kernels without CONFIG_HOTPLUG_CPU, this 1012 * file won't exist 1013 */ 1014 snprintf(buf, sizeof(buf), 1015 "/sys/devices/system/cpu/cpu%d/online", cpu); 1016 if (stat(buf, &statbuf) != 0) 1017 return 1; 1018 1019 /* 1020 * Read online file using sysfs__read_str. 1021 * If read or open fails, return -1. 1022 * If read succeeds, return value from file 1023 * which gets stored in "str" 1024 */ 1025 snprintf(buf, sizeof(buf), 1026 "devices/system/cpu/cpu%d/online", cpu); 1027 1028 if (sysfs__read_str(buf, &str, &strlen) < 0) 1029 return status; 1030 1031 status = atoi(str); 1032 1033 free(str); 1034 return status; 1035 } 1036 1037 #ifdef HAVE_LIBBPF_SUPPORT 1038 static int write_bpf_prog_info(struct feat_fd *ff, 1039 struct evlist *evlist __maybe_unused) 1040 { 1041 struct perf_env *env = &ff->ph->env; 1042 struct rb_root *root; 1043 struct rb_node *next; 1044 int ret; 1045 1046 down_read(&env->bpf_progs.lock); 1047 1048 ret = do_write(ff, &env->bpf_progs.infos_cnt, 1049 sizeof(env->bpf_progs.infos_cnt)); 1050 if (ret < 0) 1051 goto out; 1052 1053 root = &env->bpf_progs.infos; 1054 next = rb_first(root); 1055 while (next) { 1056 struct bpf_prog_info_node *node; 1057 size_t len; 1058 1059 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1060 next = rb_next(&node->rb_node); 1061 len = sizeof(struct perf_bpil) + 1062 node->info_linear->data_len; 1063 1064 /* before writing to file, translate address to offset */ 1065 bpil_addr_to_offs(node->info_linear); 1066 ret = do_write(ff, node->info_linear, len); 1067 /* 1068 * translate back to address even when do_write() fails, 1069 * so that this function never changes the data. 1070 */ 1071 bpil_offs_to_addr(node->info_linear); 1072 if (ret < 0) 1073 goto out; 1074 } 1075 out: 1076 up_read(&env->bpf_progs.lock); 1077 return ret; 1078 } 1079 1080 static int write_bpf_btf(struct feat_fd *ff, 1081 struct evlist *evlist __maybe_unused) 1082 { 1083 struct perf_env *env = &ff->ph->env; 1084 struct rb_root *root; 1085 struct rb_node *next; 1086 int ret; 1087 1088 down_read(&env->bpf_progs.lock); 1089 1090 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 1091 sizeof(env->bpf_progs.btfs_cnt)); 1092 1093 if (ret < 0) 1094 goto out; 1095 1096 root = &env->bpf_progs.btfs; 1097 next = rb_first(root); 1098 while (next) { 1099 struct btf_node *node; 1100 1101 node = rb_entry(next, struct btf_node, rb_node); 1102 next = rb_next(&node->rb_node); 1103 ret = do_write(ff, &node->id, 1104 sizeof(u32) * 2 + node->data_size); 1105 if (ret < 0) 1106 goto out; 1107 } 1108 out: 1109 up_read(&env->bpf_progs.lock); 1110 return ret; 1111 } 1112 #endif // HAVE_LIBBPF_SUPPORT 1113 1114 static int cpu_cache_level__sort(const void *a, const void *b) 1115 { 1116 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1117 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1118 1119 return cache_a->level - cache_b->level; 1120 } 1121 1122 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1123 { 1124 if (a->level != b->level) 1125 return false; 1126 1127 if (a->line_size != b->line_size) 1128 return false; 1129 1130 if (a->sets != b->sets) 1131 return false; 1132 1133 if (a->ways != b->ways) 1134 return false; 1135 1136 if (strcmp(a->type, b->type)) 1137 return false; 1138 1139 if (strcmp(a->size, b->size)) 1140 return false; 1141 1142 if (strcmp(a->map, b->map)) 1143 return false; 1144 1145 return true; 1146 } 1147 1148 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1149 { 1150 char path[PATH_MAX], file[PATH_MAX]; 1151 struct stat st; 1152 size_t len; 1153 1154 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1155 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1156 1157 if (stat(file, &st)) 1158 return 1; 1159 1160 scnprintf(file, PATH_MAX, "%s/level", path); 1161 if (sysfs__read_int(file, (int *) &cache->level)) 1162 return -1; 1163 1164 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1165 if (sysfs__read_int(file, (int *) &cache->line_size)) 1166 return -1; 1167 1168 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1169 if (sysfs__read_int(file, (int *) &cache->sets)) 1170 return -1; 1171 1172 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1173 if (sysfs__read_int(file, (int *) &cache->ways)) 1174 return -1; 1175 1176 scnprintf(file, PATH_MAX, "%s/type", path); 1177 if (sysfs__read_str(file, &cache->type, &len)) 1178 return -1; 1179 1180 cache->type[len] = 0; 1181 cache->type = strim(cache->type); 1182 1183 scnprintf(file, PATH_MAX, "%s/size", path); 1184 if (sysfs__read_str(file, &cache->size, &len)) { 1185 zfree(&cache->type); 1186 return -1; 1187 } 1188 1189 cache->size[len] = 0; 1190 cache->size = strim(cache->size); 1191 1192 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1193 if (sysfs__read_str(file, &cache->map, &len)) { 1194 zfree(&cache->size); 1195 zfree(&cache->type); 1196 return -1; 1197 } 1198 1199 cache->map[len] = 0; 1200 cache->map = strim(cache->map); 1201 return 0; 1202 } 1203 1204 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1205 { 1206 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1207 } 1208 1209 #define MAX_CACHE_LVL 4 1210 1211 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1212 { 1213 u32 i, cnt = 0; 1214 u32 nr, cpu; 1215 u16 level; 1216 1217 nr = cpu__max_cpu().cpu; 1218 1219 for (cpu = 0; cpu < nr; cpu++) { 1220 for (level = 0; level < MAX_CACHE_LVL; level++) { 1221 struct cpu_cache_level c; 1222 int err; 1223 1224 err = cpu_cache_level__read(&c, cpu, level); 1225 if (err < 0) 1226 return err; 1227 1228 if (err == 1) 1229 break; 1230 1231 for (i = 0; i < cnt; i++) { 1232 if (cpu_cache_level__cmp(&c, &caches[i])) 1233 break; 1234 } 1235 1236 if (i == cnt) 1237 caches[cnt++] = c; 1238 else 1239 cpu_cache_level__free(&c); 1240 } 1241 } 1242 *cntp = cnt; 1243 return 0; 1244 } 1245 1246 static int write_cache(struct feat_fd *ff, 1247 struct evlist *evlist __maybe_unused) 1248 { 1249 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL; 1250 struct cpu_cache_level caches[max_caches]; 1251 u32 cnt = 0, i, version = 1; 1252 int ret; 1253 1254 ret = build_caches(caches, &cnt); 1255 if (ret) 1256 goto out; 1257 1258 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1259 1260 ret = do_write(ff, &version, sizeof(u32)); 1261 if (ret < 0) 1262 goto out; 1263 1264 ret = do_write(ff, &cnt, sizeof(u32)); 1265 if (ret < 0) 1266 goto out; 1267 1268 for (i = 0; i < cnt; i++) { 1269 struct cpu_cache_level *c = &caches[i]; 1270 1271 #define _W(v) \ 1272 ret = do_write(ff, &c->v, sizeof(u32)); \ 1273 if (ret < 0) \ 1274 goto out; 1275 1276 _W(level) 1277 _W(line_size) 1278 _W(sets) 1279 _W(ways) 1280 #undef _W 1281 1282 #define _W(v) \ 1283 ret = do_write_string(ff, (const char *) c->v); \ 1284 if (ret < 0) \ 1285 goto out; 1286 1287 _W(type) 1288 _W(size) 1289 _W(map) 1290 #undef _W 1291 } 1292 1293 out: 1294 for (i = 0; i < cnt; i++) 1295 cpu_cache_level__free(&caches[i]); 1296 return ret; 1297 } 1298 1299 static int write_stat(struct feat_fd *ff __maybe_unused, 1300 struct evlist *evlist __maybe_unused) 1301 { 1302 return 0; 1303 } 1304 1305 static int write_sample_time(struct feat_fd *ff, 1306 struct evlist *evlist) 1307 { 1308 int ret; 1309 1310 ret = do_write(ff, &evlist->first_sample_time, 1311 sizeof(evlist->first_sample_time)); 1312 if (ret < 0) 1313 return ret; 1314 1315 return do_write(ff, &evlist->last_sample_time, 1316 sizeof(evlist->last_sample_time)); 1317 } 1318 1319 1320 static int memory_node__read(struct memory_node *n, unsigned long idx) 1321 { 1322 unsigned int phys, size = 0; 1323 char path[PATH_MAX]; 1324 struct dirent *ent; 1325 DIR *dir; 1326 1327 #define for_each_memory(mem, dir) \ 1328 while ((ent = readdir(dir))) \ 1329 if (strcmp(ent->d_name, ".") && \ 1330 strcmp(ent->d_name, "..") && \ 1331 sscanf(ent->d_name, "memory%u", &mem) == 1) 1332 1333 scnprintf(path, PATH_MAX, 1334 "%s/devices/system/node/node%lu", 1335 sysfs__mountpoint(), idx); 1336 1337 dir = opendir(path); 1338 if (!dir) { 1339 pr_warning("failed: can't open memory sysfs data\n"); 1340 return -1; 1341 } 1342 1343 for_each_memory(phys, dir) { 1344 size = max(phys, size); 1345 } 1346 1347 size++; 1348 1349 n->set = bitmap_zalloc(size); 1350 if (!n->set) { 1351 closedir(dir); 1352 return -ENOMEM; 1353 } 1354 1355 n->node = idx; 1356 n->size = size; 1357 1358 rewinddir(dir); 1359 1360 for_each_memory(phys, dir) { 1361 set_bit(phys, n->set); 1362 } 1363 1364 closedir(dir); 1365 return 0; 1366 } 1367 1368 static int memory_node__sort(const void *a, const void *b) 1369 { 1370 const struct memory_node *na = a; 1371 const struct memory_node *nb = b; 1372 1373 return na->node - nb->node; 1374 } 1375 1376 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1377 { 1378 char path[PATH_MAX]; 1379 struct dirent *ent; 1380 DIR *dir; 1381 u64 cnt = 0; 1382 int ret = 0; 1383 1384 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1385 sysfs__mountpoint()); 1386 1387 dir = opendir(path); 1388 if (!dir) { 1389 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n", 1390 __func__, path); 1391 return -1; 1392 } 1393 1394 while (!ret && (ent = readdir(dir))) { 1395 unsigned int idx; 1396 int r; 1397 1398 if (!strcmp(ent->d_name, ".") || 1399 !strcmp(ent->d_name, "..")) 1400 continue; 1401 1402 r = sscanf(ent->d_name, "node%u", &idx); 1403 if (r != 1) 1404 continue; 1405 1406 if (WARN_ONCE(cnt >= size, 1407 "failed to write MEM_TOPOLOGY, way too many nodes\n")) { 1408 closedir(dir); 1409 return -1; 1410 } 1411 1412 ret = memory_node__read(&nodes[cnt++], idx); 1413 } 1414 1415 *cntp = cnt; 1416 closedir(dir); 1417 1418 if (!ret) 1419 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1420 1421 return ret; 1422 } 1423 1424 #define MAX_MEMORY_NODES 2000 1425 1426 /* 1427 * The MEM_TOPOLOGY holds physical memory map for every 1428 * node in system. The format of data is as follows: 1429 * 1430 * 0 - version | for future changes 1431 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1432 * 16 - count | number of nodes 1433 * 1434 * For each node we store map of physical indexes for 1435 * each node: 1436 * 1437 * 32 - node id | node index 1438 * 40 - size | size of bitmap 1439 * 48 - bitmap | bitmap of memory indexes that belongs to node 1440 */ 1441 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1442 struct evlist *evlist __maybe_unused) 1443 { 1444 static struct memory_node nodes[MAX_MEMORY_NODES]; 1445 u64 bsize, version = 1, i, nr; 1446 int ret; 1447 1448 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1449 (unsigned long long *) &bsize); 1450 if (ret) 1451 return ret; 1452 1453 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1454 if (ret) 1455 return ret; 1456 1457 ret = do_write(ff, &version, sizeof(version)); 1458 if (ret < 0) 1459 goto out; 1460 1461 ret = do_write(ff, &bsize, sizeof(bsize)); 1462 if (ret < 0) 1463 goto out; 1464 1465 ret = do_write(ff, &nr, sizeof(nr)); 1466 if (ret < 0) 1467 goto out; 1468 1469 for (i = 0; i < nr; i++) { 1470 struct memory_node *n = &nodes[i]; 1471 1472 #define _W(v) \ 1473 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1474 if (ret < 0) \ 1475 goto out; 1476 1477 _W(node) 1478 _W(size) 1479 1480 #undef _W 1481 1482 ret = do_write_bitmap(ff, n->set, n->size); 1483 if (ret < 0) 1484 goto out; 1485 } 1486 1487 out: 1488 return ret; 1489 } 1490 1491 static int write_compressed(struct feat_fd *ff __maybe_unused, 1492 struct evlist *evlist __maybe_unused) 1493 { 1494 int ret; 1495 1496 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1497 if (ret) 1498 return ret; 1499 1500 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1501 if (ret) 1502 return ret; 1503 1504 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1505 if (ret) 1506 return ret; 1507 1508 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1509 if (ret) 1510 return ret; 1511 1512 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1513 } 1514 1515 static int write_per_cpu_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu, 1516 bool write_pmu) 1517 { 1518 struct perf_pmu_caps *caps = NULL; 1519 int nr_caps; 1520 int ret; 1521 1522 nr_caps = perf_pmu__caps_parse(pmu); 1523 if (nr_caps < 0) 1524 return nr_caps; 1525 1526 ret = do_write(ff, &nr_caps, sizeof(nr_caps)); 1527 if (ret < 0) 1528 return ret; 1529 1530 list_for_each_entry(caps, &pmu->caps, list) { 1531 ret = do_write_string(ff, caps->name); 1532 if (ret < 0) 1533 return ret; 1534 1535 ret = do_write_string(ff, caps->value); 1536 if (ret < 0) 1537 return ret; 1538 } 1539 1540 if (write_pmu) { 1541 ret = do_write_string(ff, pmu->name); 1542 if (ret < 0) 1543 return ret; 1544 } 1545 1546 return ret; 1547 } 1548 1549 static int write_cpu_pmu_caps(struct feat_fd *ff, 1550 struct evlist *evlist __maybe_unused) 1551 { 1552 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu"); 1553 1554 if (!cpu_pmu) 1555 return -ENOENT; 1556 1557 return write_per_cpu_pmu_caps(ff, cpu_pmu, false); 1558 } 1559 1560 static int write_hybrid_cpu_pmu_caps(struct feat_fd *ff, 1561 struct evlist *evlist __maybe_unused) 1562 { 1563 struct perf_pmu *pmu; 1564 u32 nr_pmu = perf_pmu__hybrid_pmu_num(); 1565 int ret; 1566 1567 if (nr_pmu == 0) 1568 return -ENOENT; 1569 1570 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu)); 1571 if (ret < 0) 1572 return ret; 1573 1574 perf_pmu__for_each_hybrid_pmu(pmu) { 1575 ret = write_per_cpu_pmu_caps(ff, pmu, true); 1576 if (ret < 0) 1577 return ret; 1578 } 1579 1580 return 0; 1581 } 1582 1583 static void print_hostname(struct feat_fd *ff, FILE *fp) 1584 { 1585 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1586 } 1587 1588 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1589 { 1590 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1591 } 1592 1593 static void print_arch(struct feat_fd *ff, FILE *fp) 1594 { 1595 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1596 } 1597 1598 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1599 { 1600 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1601 } 1602 1603 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1604 { 1605 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1606 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1607 } 1608 1609 static void print_version(struct feat_fd *ff, FILE *fp) 1610 { 1611 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1612 } 1613 1614 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1615 { 1616 int nr, i; 1617 1618 nr = ff->ph->env.nr_cmdline; 1619 1620 fprintf(fp, "# cmdline : "); 1621 1622 for (i = 0; i < nr; i++) { 1623 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1624 if (!argv_i) { 1625 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1626 } else { 1627 char *mem = argv_i; 1628 do { 1629 char *quote = strchr(argv_i, '\''); 1630 if (!quote) 1631 break; 1632 *quote++ = '\0'; 1633 fprintf(fp, "%s\\\'", argv_i); 1634 argv_i = quote; 1635 } while (1); 1636 fprintf(fp, "%s ", argv_i); 1637 free(mem); 1638 } 1639 } 1640 fputc('\n', fp); 1641 } 1642 1643 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1644 { 1645 struct perf_header *ph = ff->ph; 1646 int cpu_nr = ph->env.nr_cpus_avail; 1647 int nr, i; 1648 char *str; 1649 1650 nr = ph->env.nr_sibling_cores; 1651 str = ph->env.sibling_cores; 1652 1653 for (i = 0; i < nr; i++) { 1654 fprintf(fp, "# sibling sockets : %s\n", str); 1655 str += strlen(str) + 1; 1656 } 1657 1658 if (ph->env.nr_sibling_dies) { 1659 nr = ph->env.nr_sibling_dies; 1660 str = ph->env.sibling_dies; 1661 1662 for (i = 0; i < nr; i++) { 1663 fprintf(fp, "# sibling dies : %s\n", str); 1664 str += strlen(str) + 1; 1665 } 1666 } 1667 1668 nr = ph->env.nr_sibling_threads; 1669 str = ph->env.sibling_threads; 1670 1671 for (i = 0; i < nr; i++) { 1672 fprintf(fp, "# sibling threads : %s\n", str); 1673 str += strlen(str) + 1; 1674 } 1675 1676 if (ph->env.nr_sibling_dies) { 1677 if (ph->env.cpu != NULL) { 1678 for (i = 0; i < cpu_nr; i++) 1679 fprintf(fp, "# CPU %d: Core ID %d, " 1680 "Die ID %d, Socket ID %d\n", 1681 i, ph->env.cpu[i].core_id, 1682 ph->env.cpu[i].die_id, 1683 ph->env.cpu[i].socket_id); 1684 } else 1685 fprintf(fp, "# Core ID, Die ID and Socket ID " 1686 "information is not available\n"); 1687 } else { 1688 if (ph->env.cpu != NULL) { 1689 for (i = 0; i < cpu_nr; i++) 1690 fprintf(fp, "# CPU %d: Core ID %d, " 1691 "Socket ID %d\n", 1692 i, ph->env.cpu[i].core_id, 1693 ph->env.cpu[i].socket_id); 1694 } else 1695 fprintf(fp, "# Core ID and Socket ID " 1696 "information is not available\n"); 1697 } 1698 } 1699 1700 static void print_clockid(struct feat_fd *ff, FILE *fp) 1701 { 1702 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1703 ff->ph->env.clock.clockid_res_ns * 1000); 1704 } 1705 1706 static void print_clock_data(struct feat_fd *ff, FILE *fp) 1707 { 1708 struct timespec clockid_ns; 1709 char tstr[64], date[64]; 1710 struct timeval tod_ns; 1711 clockid_t clockid; 1712 struct tm ltime; 1713 u64 ref; 1714 1715 if (!ff->ph->env.clock.enabled) { 1716 fprintf(fp, "# reference time disabled\n"); 1717 return; 1718 } 1719 1720 /* Compute TOD time. */ 1721 ref = ff->ph->env.clock.tod_ns; 1722 tod_ns.tv_sec = ref / NSEC_PER_SEC; 1723 ref -= tod_ns.tv_sec * NSEC_PER_SEC; 1724 tod_ns.tv_usec = ref / NSEC_PER_USEC; 1725 1726 /* Compute clockid time. */ 1727 ref = ff->ph->env.clock.clockid_ns; 1728 clockid_ns.tv_sec = ref / NSEC_PER_SEC; 1729 ref -= clockid_ns.tv_sec * NSEC_PER_SEC; 1730 clockid_ns.tv_nsec = ref; 1731 1732 clockid = ff->ph->env.clock.clockid; 1733 1734 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) 1735 snprintf(tstr, sizeof(tstr), "<error>"); 1736 else { 1737 strftime(date, sizeof(date), "%F %T", <ime); 1738 scnprintf(tstr, sizeof(tstr), "%s.%06d", 1739 date, (int) tod_ns.tv_usec); 1740 } 1741 1742 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); 1743 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", 1744 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec, 1745 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec, 1746 clockid_name(clockid)); 1747 } 1748 1749 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp) 1750 { 1751 int i; 1752 struct hybrid_node *n; 1753 1754 fprintf(fp, "# hybrid cpu system:\n"); 1755 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) { 1756 n = &ff->ph->env.hybrid_nodes[i]; 1757 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus); 1758 } 1759 } 1760 1761 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1762 { 1763 struct perf_session *session; 1764 struct perf_data *data; 1765 1766 session = container_of(ff->ph, struct perf_session, header); 1767 data = session->data; 1768 1769 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1770 } 1771 1772 #ifdef HAVE_LIBBPF_SUPPORT 1773 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1774 { 1775 struct perf_env *env = &ff->ph->env; 1776 struct rb_root *root; 1777 struct rb_node *next; 1778 1779 down_read(&env->bpf_progs.lock); 1780 1781 root = &env->bpf_progs.infos; 1782 next = rb_first(root); 1783 1784 while (next) { 1785 struct bpf_prog_info_node *node; 1786 1787 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1788 next = rb_next(&node->rb_node); 1789 1790 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1791 env, fp); 1792 } 1793 1794 up_read(&env->bpf_progs.lock); 1795 } 1796 1797 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1798 { 1799 struct perf_env *env = &ff->ph->env; 1800 struct rb_root *root; 1801 struct rb_node *next; 1802 1803 down_read(&env->bpf_progs.lock); 1804 1805 root = &env->bpf_progs.btfs; 1806 next = rb_first(root); 1807 1808 while (next) { 1809 struct btf_node *node; 1810 1811 node = rb_entry(next, struct btf_node, rb_node); 1812 next = rb_next(&node->rb_node); 1813 fprintf(fp, "# btf info of id %u\n", node->id); 1814 } 1815 1816 up_read(&env->bpf_progs.lock); 1817 } 1818 #endif // HAVE_LIBBPF_SUPPORT 1819 1820 static void free_event_desc(struct evsel *events) 1821 { 1822 struct evsel *evsel; 1823 1824 if (!events) 1825 return; 1826 1827 for (evsel = events; evsel->core.attr.size; evsel++) { 1828 zfree(&evsel->name); 1829 zfree(&evsel->core.id); 1830 } 1831 1832 free(events); 1833 } 1834 1835 static bool perf_attr_check(struct perf_event_attr *attr) 1836 { 1837 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1838 pr_warning("Reserved bits are set unexpectedly. " 1839 "Please update perf tool.\n"); 1840 return false; 1841 } 1842 1843 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1844 pr_warning("Unknown sample type (0x%llx) is detected. " 1845 "Please update perf tool.\n", 1846 attr->sample_type); 1847 return false; 1848 } 1849 1850 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1851 pr_warning("Unknown read format (0x%llx) is detected. " 1852 "Please update perf tool.\n", 1853 attr->read_format); 1854 return false; 1855 } 1856 1857 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1858 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1859 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1860 "Please update perf tool.\n", 1861 attr->branch_sample_type); 1862 1863 return false; 1864 } 1865 1866 return true; 1867 } 1868 1869 static struct evsel *read_event_desc(struct feat_fd *ff) 1870 { 1871 struct evsel *evsel, *events = NULL; 1872 u64 *id; 1873 void *buf = NULL; 1874 u32 nre, sz, nr, i, j; 1875 size_t msz; 1876 1877 /* number of events */ 1878 if (do_read_u32(ff, &nre)) 1879 goto error; 1880 1881 if (do_read_u32(ff, &sz)) 1882 goto error; 1883 1884 /* buffer to hold on file attr struct */ 1885 buf = malloc(sz); 1886 if (!buf) 1887 goto error; 1888 1889 /* the last event terminates with evsel->core.attr.size == 0: */ 1890 events = calloc(nre + 1, sizeof(*events)); 1891 if (!events) 1892 goto error; 1893 1894 msz = sizeof(evsel->core.attr); 1895 if (sz < msz) 1896 msz = sz; 1897 1898 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1899 evsel->core.idx = i; 1900 1901 /* 1902 * must read entire on-file attr struct to 1903 * sync up with layout. 1904 */ 1905 if (__do_read(ff, buf, sz)) 1906 goto error; 1907 1908 if (ff->ph->needs_swap) 1909 perf_event__attr_swap(buf); 1910 1911 memcpy(&evsel->core.attr, buf, msz); 1912 1913 if (!perf_attr_check(&evsel->core.attr)) 1914 goto error; 1915 1916 if (do_read_u32(ff, &nr)) 1917 goto error; 1918 1919 if (ff->ph->needs_swap) 1920 evsel->needs_swap = true; 1921 1922 evsel->name = do_read_string(ff); 1923 if (!evsel->name) 1924 goto error; 1925 1926 if (!nr) 1927 continue; 1928 1929 id = calloc(nr, sizeof(*id)); 1930 if (!id) 1931 goto error; 1932 evsel->core.ids = nr; 1933 evsel->core.id = id; 1934 1935 for (j = 0 ; j < nr; j++) { 1936 if (do_read_u64(ff, id)) 1937 goto error; 1938 id++; 1939 } 1940 } 1941 out: 1942 free(buf); 1943 return events; 1944 error: 1945 free_event_desc(events); 1946 events = NULL; 1947 goto out; 1948 } 1949 1950 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1951 void *priv __maybe_unused) 1952 { 1953 return fprintf(fp, ", %s = %s", name, val); 1954 } 1955 1956 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1957 { 1958 struct evsel *evsel, *events; 1959 u32 j; 1960 u64 *id; 1961 1962 if (ff->events) 1963 events = ff->events; 1964 else 1965 events = read_event_desc(ff); 1966 1967 if (!events) { 1968 fprintf(fp, "# event desc: not available or unable to read\n"); 1969 return; 1970 } 1971 1972 for (evsel = events; evsel->core.attr.size; evsel++) { 1973 fprintf(fp, "# event : name = %s, ", evsel->name); 1974 1975 if (evsel->core.ids) { 1976 fprintf(fp, ", id = {"); 1977 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 1978 if (j) 1979 fputc(',', fp); 1980 fprintf(fp, " %"PRIu64, *id); 1981 } 1982 fprintf(fp, " }"); 1983 } 1984 1985 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 1986 1987 fputc('\n', fp); 1988 } 1989 1990 free_event_desc(events); 1991 ff->events = NULL; 1992 } 1993 1994 static void print_total_mem(struct feat_fd *ff, FILE *fp) 1995 { 1996 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 1997 } 1998 1999 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 2000 { 2001 int i; 2002 struct numa_node *n; 2003 2004 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 2005 n = &ff->ph->env.numa_nodes[i]; 2006 2007 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 2008 " free = %"PRIu64" kB\n", 2009 n->node, n->mem_total, n->mem_free); 2010 2011 fprintf(fp, "# node%u cpu list : ", n->node); 2012 cpu_map__fprintf(n->map, fp); 2013 } 2014 } 2015 2016 static void print_cpuid(struct feat_fd *ff, FILE *fp) 2017 { 2018 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 2019 } 2020 2021 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 2022 { 2023 fprintf(fp, "# contains samples with branch stack\n"); 2024 } 2025 2026 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 2027 { 2028 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 2029 } 2030 2031 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 2032 { 2033 fprintf(fp, "# contains stat data\n"); 2034 } 2035 2036 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 2037 { 2038 int i; 2039 2040 fprintf(fp, "# CPU cache info:\n"); 2041 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 2042 fprintf(fp, "# "); 2043 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 2044 } 2045 } 2046 2047 static void print_compressed(struct feat_fd *ff, FILE *fp) 2048 { 2049 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 2050 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 2051 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 2052 } 2053 2054 static void print_per_cpu_pmu_caps(FILE *fp, int nr_caps, char *cpu_pmu_caps, 2055 char *pmu_name) 2056 { 2057 const char *delimiter; 2058 char *str, buf[128]; 2059 2060 if (!nr_caps) { 2061 if (!pmu_name) 2062 fprintf(fp, "# cpu pmu capabilities: not available\n"); 2063 else 2064 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name); 2065 return; 2066 } 2067 2068 if (!pmu_name) 2069 scnprintf(buf, sizeof(buf), "# cpu pmu capabilities: "); 2070 else 2071 scnprintf(buf, sizeof(buf), "# %s pmu capabilities: ", pmu_name); 2072 2073 delimiter = buf; 2074 2075 str = cpu_pmu_caps; 2076 while (nr_caps--) { 2077 fprintf(fp, "%s%s", delimiter, str); 2078 delimiter = ", "; 2079 str += strlen(str) + 1; 2080 } 2081 2082 fprintf(fp, "\n"); 2083 } 2084 2085 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2086 { 2087 print_per_cpu_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps, 2088 ff->ph->env.cpu_pmu_caps, NULL); 2089 } 2090 2091 static void print_hybrid_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2092 { 2093 struct hybrid_cpc_node *n; 2094 2095 for (int i = 0; i < ff->ph->env.nr_hybrid_cpc_nodes; i++) { 2096 n = &ff->ph->env.hybrid_cpc_nodes[i]; 2097 print_per_cpu_pmu_caps(fp, n->nr_cpu_pmu_caps, 2098 n->cpu_pmu_caps, 2099 n->pmu_name); 2100 } 2101 } 2102 2103 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 2104 { 2105 const char *delimiter = "# pmu mappings: "; 2106 char *str, *tmp; 2107 u32 pmu_num; 2108 u32 type; 2109 2110 pmu_num = ff->ph->env.nr_pmu_mappings; 2111 if (!pmu_num) { 2112 fprintf(fp, "# pmu mappings: not available\n"); 2113 return; 2114 } 2115 2116 str = ff->ph->env.pmu_mappings; 2117 2118 while (pmu_num) { 2119 type = strtoul(str, &tmp, 0); 2120 if (*tmp != ':') 2121 goto error; 2122 2123 str = tmp + 1; 2124 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 2125 2126 delimiter = ", "; 2127 str += strlen(str) + 1; 2128 pmu_num--; 2129 } 2130 2131 fprintf(fp, "\n"); 2132 2133 if (!pmu_num) 2134 return; 2135 error: 2136 fprintf(fp, "# pmu mappings: unable to read\n"); 2137 } 2138 2139 static void print_group_desc(struct feat_fd *ff, FILE *fp) 2140 { 2141 struct perf_session *session; 2142 struct evsel *evsel; 2143 u32 nr = 0; 2144 2145 session = container_of(ff->ph, struct perf_session, header); 2146 2147 evlist__for_each_entry(session->evlist, evsel) { 2148 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 2149 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); 2150 2151 nr = evsel->core.nr_members - 1; 2152 } else if (nr) { 2153 fprintf(fp, ",%s", evsel__name(evsel)); 2154 2155 if (--nr == 0) 2156 fprintf(fp, "}\n"); 2157 } 2158 } 2159 } 2160 2161 static void print_sample_time(struct feat_fd *ff, FILE *fp) 2162 { 2163 struct perf_session *session; 2164 char time_buf[32]; 2165 double d; 2166 2167 session = container_of(ff->ph, struct perf_session, header); 2168 2169 timestamp__scnprintf_usec(session->evlist->first_sample_time, 2170 time_buf, sizeof(time_buf)); 2171 fprintf(fp, "# time of first sample : %s\n", time_buf); 2172 2173 timestamp__scnprintf_usec(session->evlist->last_sample_time, 2174 time_buf, sizeof(time_buf)); 2175 fprintf(fp, "# time of last sample : %s\n", time_buf); 2176 2177 d = (double)(session->evlist->last_sample_time - 2178 session->evlist->first_sample_time) / NSEC_PER_MSEC; 2179 2180 fprintf(fp, "# sample duration : %10.3f ms\n", d); 2181 } 2182 2183 static void memory_node__fprintf(struct memory_node *n, 2184 unsigned long long bsize, FILE *fp) 2185 { 2186 char buf_map[100], buf_size[50]; 2187 unsigned long long size; 2188 2189 size = bsize * bitmap_weight(n->set, n->size); 2190 unit_number__scnprintf(buf_size, 50, size); 2191 2192 bitmap_scnprintf(n->set, n->size, buf_map, 100); 2193 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 2194 } 2195 2196 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 2197 { 2198 struct memory_node *nodes; 2199 int i, nr; 2200 2201 nodes = ff->ph->env.memory_nodes; 2202 nr = ff->ph->env.nr_memory_nodes; 2203 2204 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 2205 nr, ff->ph->env.memory_bsize); 2206 2207 for (i = 0; i < nr; i++) { 2208 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 2209 } 2210 } 2211 2212 static int __event_process_build_id(struct perf_record_header_build_id *bev, 2213 char *filename, 2214 struct perf_session *session) 2215 { 2216 int err = -1; 2217 struct machine *machine; 2218 u16 cpumode; 2219 struct dso *dso; 2220 enum dso_space_type dso_space; 2221 2222 machine = perf_session__findnew_machine(session, bev->pid); 2223 if (!machine) 2224 goto out; 2225 2226 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2227 2228 switch (cpumode) { 2229 case PERF_RECORD_MISC_KERNEL: 2230 dso_space = DSO_SPACE__KERNEL; 2231 break; 2232 case PERF_RECORD_MISC_GUEST_KERNEL: 2233 dso_space = DSO_SPACE__KERNEL_GUEST; 2234 break; 2235 case PERF_RECORD_MISC_USER: 2236 case PERF_RECORD_MISC_GUEST_USER: 2237 dso_space = DSO_SPACE__USER; 2238 break; 2239 default: 2240 goto out; 2241 } 2242 2243 dso = machine__findnew_dso(machine, filename); 2244 if (dso != NULL) { 2245 char sbuild_id[SBUILD_ID_SIZE]; 2246 struct build_id bid; 2247 size_t size = BUILD_ID_SIZE; 2248 2249 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) 2250 size = bev->size; 2251 2252 build_id__init(&bid, bev->data, size); 2253 dso__set_build_id(dso, &bid); 2254 dso->header_build_id = 1; 2255 2256 if (dso_space != DSO_SPACE__USER) { 2257 struct kmod_path m = { .name = NULL, }; 2258 2259 if (!kmod_path__parse_name(&m, filename) && m.kmod) 2260 dso__set_module_info(dso, &m, machine); 2261 2262 dso->kernel = dso_space; 2263 free(m.name); 2264 } 2265 2266 build_id__sprintf(&dso->bid, sbuild_id); 2267 pr_debug("build id event received for %s: %s [%zu]\n", 2268 dso->long_name, sbuild_id, size); 2269 dso__put(dso); 2270 } 2271 2272 err = 0; 2273 out: 2274 return err; 2275 } 2276 2277 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 2278 int input, u64 offset, u64 size) 2279 { 2280 struct perf_session *session = container_of(header, struct perf_session, header); 2281 struct { 2282 struct perf_event_header header; 2283 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 2284 char filename[0]; 2285 } old_bev; 2286 struct perf_record_header_build_id bev; 2287 char filename[PATH_MAX]; 2288 u64 limit = offset + size; 2289 2290 while (offset < limit) { 2291 ssize_t len; 2292 2293 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2294 return -1; 2295 2296 if (header->needs_swap) 2297 perf_event_header__bswap(&old_bev.header); 2298 2299 len = old_bev.header.size - sizeof(old_bev); 2300 if (readn(input, filename, len) != len) 2301 return -1; 2302 2303 bev.header = old_bev.header; 2304 2305 /* 2306 * As the pid is the missing value, we need to fill 2307 * it properly. The header.misc value give us nice hint. 2308 */ 2309 bev.pid = HOST_KERNEL_ID; 2310 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2311 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2312 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2313 2314 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2315 __event_process_build_id(&bev, filename, session); 2316 2317 offset += bev.header.size; 2318 } 2319 2320 return 0; 2321 } 2322 2323 static int perf_header__read_build_ids(struct perf_header *header, 2324 int input, u64 offset, u64 size) 2325 { 2326 struct perf_session *session = container_of(header, struct perf_session, header); 2327 struct perf_record_header_build_id bev; 2328 char filename[PATH_MAX]; 2329 u64 limit = offset + size, orig_offset = offset; 2330 int err = -1; 2331 2332 while (offset < limit) { 2333 ssize_t len; 2334 2335 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2336 goto out; 2337 2338 if (header->needs_swap) 2339 perf_event_header__bswap(&bev.header); 2340 2341 len = bev.header.size - sizeof(bev); 2342 if (readn(input, filename, len) != len) 2343 goto out; 2344 /* 2345 * The a1645ce1 changeset: 2346 * 2347 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2348 * 2349 * Added a field to struct perf_record_header_build_id that broke the file 2350 * format. 2351 * 2352 * Since the kernel build-id is the first entry, process the 2353 * table using the old format if the well known 2354 * '[kernel.kallsyms]' string for the kernel build-id has the 2355 * first 4 characters chopped off (where the pid_t sits). 2356 */ 2357 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2358 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2359 return -1; 2360 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2361 } 2362 2363 __event_process_build_id(&bev, filename, session); 2364 2365 offset += bev.header.size; 2366 } 2367 err = 0; 2368 out: 2369 return err; 2370 } 2371 2372 /* Macro for features that simply need to read and store a string. */ 2373 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2374 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2375 {\ 2376 free(ff->ph->env.__feat_env); \ 2377 ff->ph->env.__feat_env = do_read_string(ff); \ 2378 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2379 } 2380 2381 FEAT_PROCESS_STR_FUN(hostname, hostname); 2382 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2383 FEAT_PROCESS_STR_FUN(version, version); 2384 FEAT_PROCESS_STR_FUN(arch, arch); 2385 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2386 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2387 2388 static int process_tracing_data(struct feat_fd *ff, void *data) 2389 { 2390 ssize_t ret = trace_report(ff->fd, data, false); 2391 2392 return ret < 0 ? -1 : 0; 2393 } 2394 2395 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2396 { 2397 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2398 pr_debug("Failed to read buildids, continuing...\n"); 2399 return 0; 2400 } 2401 2402 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2403 { 2404 int ret; 2405 u32 nr_cpus_avail, nr_cpus_online; 2406 2407 ret = do_read_u32(ff, &nr_cpus_avail); 2408 if (ret) 2409 return ret; 2410 2411 ret = do_read_u32(ff, &nr_cpus_online); 2412 if (ret) 2413 return ret; 2414 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2415 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2416 return 0; 2417 } 2418 2419 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2420 { 2421 u64 total_mem; 2422 int ret; 2423 2424 ret = do_read_u64(ff, &total_mem); 2425 if (ret) 2426 return -1; 2427 ff->ph->env.total_mem = (unsigned long long)total_mem; 2428 return 0; 2429 } 2430 2431 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) 2432 { 2433 struct evsel *evsel; 2434 2435 evlist__for_each_entry(evlist, evsel) { 2436 if (evsel->core.idx == idx) 2437 return evsel; 2438 } 2439 2440 return NULL; 2441 } 2442 2443 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event) 2444 { 2445 struct evsel *evsel; 2446 2447 if (!event->name) 2448 return; 2449 2450 evsel = evlist__find_by_index(evlist, event->core.idx); 2451 if (!evsel) 2452 return; 2453 2454 if (evsel->name) 2455 return; 2456 2457 evsel->name = strdup(event->name); 2458 } 2459 2460 static int 2461 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2462 { 2463 struct perf_session *session; 2464 struct evsel *evsel, *events = read_event_desc(ff); 2465 2466 if (!events) 2467 return 0; 2468 2469 session = container_of(ff->ph, struct perf_session, header); 2470 2471 if (session->data->is_pipe) { 2472 /* Save events for reading later by print_event_desc, 2473 * since they can't be read again in pipe mode. */ 2474 ff->events = events; 2475 } 2476 2477 for (evsel = events; evsel->core.attr.size; evsel++) 2478 evlist__set_event_name(session->evlist, evsel); 2479 2480 if (!session->data->is_pipe) 2481 free_event_desc(events); 2482 2483 return 0; 2484 } 2485 2486 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2487 { 2488 char *str, *cmdline = NULL, **argv = NULL; 2489 u32 nr, i, len = 0; 2490 2491 if (do_read_u32(ff, &nr)) 2492 return -1; 2493 2494 ff->ph->env.nr_cmdline = nr; 2495 2496 cmdline = zalloc(ff->size + nr + 1); 2497 if (!cmdline) 2498 return -1; 2499 2500 argv = zalloc(sizeof(char *) * (nr + 1)); 2501 if (!argv) 2502 goto error; 2503 2504 for (i = 0; i < nr; i++) { 2505 str = do_read_string(ff); 2506 if (!str) 2507 goto error; 2508 2509 argv[i] = cmdline + len; 2510 memcpy(argv[i], str, strlen(str) + 1); 2511 len += strlen(str) + 1; 2512 free(str); 2513 } 2514 ff->ph->env.cmdline = cmdline; 2515 ff->ph->env.cmdline_argv = (const char **) argv; 2516 return 0; 2517 2518 error: 2519 free(argv); 2520 free(cmdline); 2521 return -1; 2522 } 2523 2524 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2525 { 2526 u32 nr, i; 2527 char *str; 2528 struct strbuf sb; 2529 int cpu_nr = ff->ph->env.nr_cpus_avail; 2530 u64 size = 0; 2531 struct perf_header *ph = ff->ph; 2532 bool do_core_id_test = true; 2533 2534 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2535 if (!ph->env.cpu) 2536 return -1; 2537 2538 if (do_read_u32(ff, &nr)) 2539 goto free_cpu; 2540 2541 ph->env.nr_sibling_cores = nr; 2542 size += sizeof(u32); 2543 if (strbuf_init(&sb, 128) < 0) 2544 goto free_cpu; 2545 2546 for (i = 0; i < nr; i++) { 2547 str = do_read_string(ff); 2548 if (!str) 2549 goto error; 2550 2551 /* include a NULL character at the end */ 2552 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2553 goto error; 2554 size += string_size(str); 2555 free(str); 2556 } 2557 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2558 2559 if (do_read_u32(ff, &nr)) 2560 return -1; 2561 2562 ph->env.nr_sibling_threads = nr; 2563 size += sizeof(u32); 2564 2565 for (i = 0; i < nr; i++) { 2566 str = do_read_string(ff); 2567 if (!str) 2568 goto error; 2569 2570 /* include a NULL character at the end */ 2571 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2572 goto error; 2573 size += string_size(str); 2574 free(str); 2575 } 2576 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2577 2578 /* 2579 * The header may be from old perf, 2580 * which doesn't include core id and socket id information. 2581 */ 2582 if (ff->size <= size) { 2583 zfree(&ph->env.cpu); 2584 return 0; 2585 } 2586 2587 /* On s390 the socket_id number is not related to the numbers of cpus. 2588 * The socket_id number might be higher than the numbers of cpus. 2589 * This depends on the configuration. 2590 * AArch64 is the same. 2591 */ 2592 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2593 || !strncmp(ph->env.arch, "aarch64", 7))) 2594 do_core_id_test = false; 2595 2596 for (i = 0; i < (u32)cpu_nr; i++) { 2597 if (do_read_u32(ff, &nr)) 2598 goto free_cpu; 2599 2600 ph->env.cpu[i].core_id = nr; 2601 size += sizeof(u32); 2602 2603 if (do_read_u32(ff, &nr)) 2604 goto free_cpu; 2605 2606 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2607 pr_debug("socket_id number is too big." 2608 "You may need to upgrade the perf tool.\n"); 2609 goto free_cpu; 2610 } 2611 2612 ph->env.cpu[i].socket_id = nr; 2613 size += sizeof(u32); 2614 } 2615 2616 /* 2617 * The header may be from old perf, 2618 * which doesn't include die information. 2619 */ 2620 if (ff->size <= size) 2621 return 0; 2622 2623 if (do_read_u32(ff, &nr)) 2624 return -1; 2625 2626 ph->env.nr_sibling_dies = nr; 2627 size += sizeof(u32); 2628 2629 for (i = 0; i < nr; i++) { 2630 str = do_read_string(ff); 2631 if (!str) 2632 goto error; 2633 2634 /* include a NULL character at the end */ 2635 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2636 goto error; 2637 size += string_size(str); 2638 free(str); 2639 } 2640 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2641 2642 for (i = 0; i < (u32)cpu_nr; i++) { 2643 if (do_read_u32(ff, &nr)) 2644 goto free_cpu; 2645 2646 ph->env.cpu[i].die_id = nr; 2647 } 2648 2649 return 0; 2650 2651 error: 2652 strbuf_release(&sb); 2653 free_cpu: 2654 zfree(&ph->env.cpu); 2655 return -1; 2656 } 2657 2658 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2659 { 2660 struct numa_node *nodes, *n; 2661 u32 nr, i; 2662 char *str; 2663 2664 /* nr nodes */ 2665 if (do_read_u32(ff, &nr)) 2666 return -1; 2667 2668 nodes = zalloc(sizeof(*nodes) * nr); 2669 if (!nodes) 2670 return -ENOMEM; 2671 2672 for (i = 0; i < nr; i++) { 2673 n = &nodes[i]; 2674 2675 /* node number */ 2676 if (do_read_u32(ff, &n->node)) 2677 goto error; 2678 2679 if (do_read_u64(ff, &n->mem_total)) 2680 goto error; 2681 2682 if (do_read_u64(ff, &n->mem_free)) 2683 goto error; 2684 2685 str = do_read_string(ff); 2686 if (!str) 2687 goto error; 2688 2689 n->map = perf_cpu_map__new(str); 2690 if (!n->map) 2691 goto error; 2692 2693 free(str); 2694 } 2695 ff->ph->env.nr_numa_nodes = nr; 2696 ff->ph->env.numa_nodes = nodes; 2697 return 0; 2698 2699 error: 2700 free(nodes); 2701 return -1; 2702 } 2703 2704 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2705 { 2706 char *name; 2707 u32 pmu_num; 2708 u32 type; 2709 struct strbuf sb; 2710 2711 if (do_read_u32(ff, &pmu_num)) 2712 return -1; 2713 2714 if (!pmu_num) { 2715 pr_debug("pmu mappings not available\n"); 2716 return 0; 2717 } 2718 2719 ff->ph->env.nr_pmu_mappings = pmu_num; 2720 if (strbuf_init(&sb, 128) < 0) 2721 return -1; 2722 2723 while (pmu_num) { 2724 if (do_read_u32(ff, &type)) 2725 goto error; 2726 2727 name = do_read_string(ff); 2728 if (!name) 2729 goto error; 2730 2731 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2732 goto error; 2733 /* include a NULL character at the end */ 2734 if (strbuf_add(&sb, "", 1) < 0) 2735 goto error; 2736 2737 if (!strcmp(name, "msr")) 2738 ff->ph->env.msr_pmu_type = type; 2739 2740 free(name); 2741 pmu_num--; 2742 } 2743 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2744 return 0; 2745 2746 error: 2747 strbuf_release(&sb); 2748 return -1; 2749 } 2750 2751 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2752 { 2753 size_t ret = -1; 2754 u32 i, nr, nr_groups; 2755 struct perf_session *session; 2756 struct evsel *evsel, *leader = NULL; 2757 struct group_desc { 2758 char *name; 2759 u32 leader_idx; 2760 u32 nr_members; 2761 } *desc; 2762 2763 if (do_read_u32(ff, &nr_groups)) 2764 return -1; 2765 2766 ff->ph->env.nr_groups = nr_groups; 2767 if (!nr_groups) { 2768 pr_debug("group desc not available\n"); 2769 return 0; 2770 } 2771 2772 desc = calloc(nr_groups, sizeof(*desc)); 2773 if (!desc) 2774 return -1; 2775 2776 for (i = 0; i < nr_groups; i++) { 2777 desc[i].name = do_read_string(ff); 2778 if (!desc[i].name) 2779 goto out_free; 2780 2781 if (do_read_u32(ff, &desc[i].leader_idx)) 2782 goto out_free; 2783 2784 if (do_read_u32(ff, &desc[i].nr_members)) 2785 goto out_free; 2786 } 2787 2788 /* 2789 * Rebuild group relationship based on the group_desc 2790 */ 2791 session = container_of(ff->ph, struct perf_session, header); 2792 session->evlist->core.nr_groups = nr_groups; 2793 2794 i = nr = 0; 2795 evlist__for_each_entry(session->evlist, evsel) { 2796 if (evsel->core.idx == (int) desc[i].leader_idx) { 2797 evsel__set_leader(evsel, evsel); 2798 /* {anon_group} is a dummy name */ 2799 if (strcmp(desc[i].name, "{anon_group}")) { 2800 evsel->group_name = desc[i].name; 2801 desc[i].name = NULL; 2802 } 2803 evsel->core.nr_members = desc[i].nr_members; 2804 2805 if (i >= nr_groups || nr > 0) { 2806 pr_debug("invalid group desc\n"); 2807 goto out_free; 2808 } 2809 2810 leader = evsel; 2811 nr = evsel->core.nr_members - 1; 2812 i++; 2813 } else if (nr) { 2814 /* This is a group member */ 2815 evsel__set_leader(evsel, leader); 2816 2817 nr--; 2818 } 2819 } 2820 2821 if (i != nr_groups || nr != 0) { 2822 pr_debug("invalid group desc\n"); 2823 goto out_free; 2824 } 2825 2826 ret = 0; 2827 out_free: 2828 for (i = 0; i < nr_groups; i++) 2829 zfree(&desc[i].name); 2830 free(desc); 2831 2832 return ret; 2833 } 2834 2835 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2836 { 2837 struct perf_session *session; 2838 int err; 2839 2840 session = container_of(ff->ph, struct perf_session, header); 2841 2842 err = auxtrace_index__process(ff->fd, ff->size, session, 2843 ff->ph->needs_swap); 2844 if (err < 0) 2845 pr_err("Failed to process auxtrace index\n"); 2846 return err; 2847 } 2848 2849 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2850 { 2851 struct cpu_cache_level *caches; 2852 u32 cnt, i, version; 2853 2854 if (do_read_u32(ff, &version)) 2855 return -1; 2856 2857 if (version != 1) 2858 return -1; 2859 2860 if (do_read_u32(ff, &cnt)) 2861 return -1; 2862 2863 caches = zalloc(sizeof(*caches) * cnt); 2864 if (!caches) 2865 return -1; 2866 2867 for (i = 0; i < cnt; i++) { 2868 struct cpu_cache_level c; 2869 2870 #define _R(v) \ 2871 if (do_read_u32(ff, &c.v))\ 2872 goto out_free_caches; \ 2873 2874 _R(level) 2875 _R(line_size) 2876 _R(sets) 2877 _R(ways) 2878 #undef _R 2879 2880 #define _R(v) \ 2881 c.v = do_read_string(ff); \ 2882 if (!c.v) \ 2883 goto out_free_caches; 2884 2885 _R(type) 2886 _R(size) 2887 _R(map) 2888 #undef _R 2889 2890 caches[i] = c; 2891 } 2892 2893 ff->ph->env.caches = caches; 2894 ff->ph->env.caches_cnt = cnt; 2895 return 0; 2896 out_free_caches: 2897 free(caches); 2898 return -1; 2899 } 2900 2901 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2902 { 2903 struct perf_session *session; 2904 u64 first_sample_time, last_sample_time; 2905 int ret; 2906 2907 session = container_of(ff->ph, struct perf_session, header); 2908 2909 ret = do_read_u64(ff, &first_sample_time); 2910 if (ret) 2911 return -1; 2912 2913 ret = do_read_u64(ff, &last_sample_time); 2914 if (ret) 2915 return -1; 2916 2917 session->evlist->first_sample_time = first_sample_time; 2918 session->evlist->last_sample_time = last_sample_time; 2919 return 0; 2920 } 2921 2922 static int process_mem_topology(struct feat_fd *ff, 2923 void *data __maybe_unused) 2924 { 2925 struct memory_node *nodes; 2926 u64 version, i, nr, bsize; 2927 int ret = -1; 2928 2929 if (do_read_u64(ff, &version)) 2930 return -1; 2931 2932 if (version != 1) 2933 return -1; 2934 2935 if (do_read_u64(ff, &bsize)) 2936 return -1; 2937 2938 if (do_read_u64(ff, &nr)) 2939 return -1; 2940 2941 nodes = zalloc(sizeof(*nodes) * nr); 2942 if (!nodes) 2943 return -1; 2944 2945 for (i = 0; i < nr; i++) { 2946 struct memory_node n; 2947 2948 #define _R(v) \ 2949 if (do_read_u64(ff, &n.v)) \ 2950 goto out; \ 2951 2952 _R(node) 2953 _R(size) 2954 2955 #undef _R 2956 2957 if (do_read_bitmap(ff, &n.set, &n.size)) 2958 goto out; 2959 2960 nodes[i] = n; 2961 } 2962 2963 ff->ph->env.memory_bsize = bsize; 2964 ff->ph->env.memory_nodes = nodes; 2965 ff->ph->env.nr_memory_nodes = nr; 2966 ret = 0; 2967 2968 out: 2969 if (ret) 2970 free(nodes); 2971 return ret; 2972 } 2973 2974 static int process_clockid(struct feat_fd *ff, 2975 void *data __maybe_unused) 2976 { 2977 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns)) 2978 return -1; 2979 2980 return 0; 2981 } 2982 2983 static int process_clock_data(struct feat_fd *ff, 2984 void *_data __maybe_unused) 2985 { 2986 u32 data32; 2987 u64 data64; 2988 2989 /* version */ 2990 if (do_read_u32(ff, &data32)) 2991 return -1; 2992 2993 if (data32 != 1) 2994 return -1; 2995 2996 /* clockid */ 2997 if (do_read_u32(ff, &data32)) 2998 return -1; 2999 3000 ff->ph->env.clock.clockid = data32; 3001 3002 /* TOD ref time */ 3003 if (do_read_u64(ff, &data64)) 3004 return -1; 3005 3006 ff->ph->env.clock.tod_ns = data64; 3007 3008 /* clockid ref time */ 3009 if (do_read_u64(ff, &data64)) 3010 return -1; 3011 3012 ff->ph->env.clock.clockid_ns = data64; 3013 ff->ph->env.clock.enabled = true; 3014 return 0; 3015 } 3016 3017 static int process_hybrid_topology(struct feat_fd *ff, 3018 void *data __maybe_unused) 3019 { 3020 struct hybrid_node *nodes, *n; 3021 u32 nr, i; 3022 3023 /* nr nodes */ 3024 if (do_read_u32(ff, &nr)) 3025 return -1; 3026 3027 nodes = zalloc(sizeof(*nodes) * nr); 3028 if (!nodes) 3029 return -ENOMEM; 3030 3031 for (i = 0; i < nr; i++) { 3032 n = &nodes[i]; 3033 3034 n->pmu_name = do_read_string(ff); 3035 if (!n->pmu_name) 3036 goto error; 3037 3038 n->cpus = do_read_string(ff); 3039 if (!n->cpus) 3040 goto error; 3041 } 3042 3043 ff->ph->env.nr_hybrid_nodes = nr; 3044 ff->ph->env.hybrid_nodes = nodes; 3045 return 0; 3046 3047 error: 3048 for (i = 0; i < nr; i++) { 3049 free(nodes[i].pmu_name); 3050 free(nodes[i].cpus); 3051 } 3052 3053 free(nodes); 3054 return -1; 3055 } 3056 3057 static int process_dir_format(struct feat_fd *ff, 3058 void *_data __maybe_unused) 3059 { 3060 struct perf_session *session; 3061 struct perf_data *data; 3062 3063 session = container_of(ff->ph, struct perf_session, header); 3064 data = session->data; 3065 3066 if (WARN_ON(!perf_data__is_dir(data))) 3067 return -1; 3068 3069 return do_read_u64(ff, &data->dir.version); 3070 } 3071 3072 #ifdef HAVE_LIBBPF_SUPPORT 3073 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 3074 { 3075 struct bpf_prog_info_node *info_node; 3076 struct perf_env *env = &ff->ph->env; 3077 struct perf_bpil *info_linear; 3078 u32 count, i; 3079 int err = -1; 3080 3081 if (ff->ph->needs_swap) { 3082 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n"); 3083 return 0; 3084 } 3085 3086 if (do_read_u32(ff, &count)) 3087 return -1; 3088 3089 down_write(&env->bpf_progs.lock); 3090 3091 for (i = 0; i < count; ++i) { 3092 u32 info_len, data_len; 3093 3094 info_linear = NULL; 3095 info_node = NULL; 3096 if (do_read_u32(ff, &info_len)) 3097 goto out; 3098 if (do_read_u32(ff, &data_len)) 3099 goto out; 3100 3101 if (info_len > sizeof(struct bpf_prog_info)) { 3102 pr_warning("detected invalid bpf_prog_info\n"); 3103 goto out; 3104 } 3105 3106 info_linear = malloc(sizeof(struct perf_bpil) + 3107 data_len); 3108 if (!info_linear) 3109 goto out; 3110 info_linear->info_len = sizeof(struct bpf_prog_info); 3111 info_linear->data_len = data_len; 3112 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 3113 goto out; 3114 if (__do_read(ff, &info_linear->info, info_len)) 3115 goto out; 3116 if (info_len < sizeof(struct bpf_prog_info)) 3117 memset(((void *)(&info_linear->info)) + info_len, 0, 3118 sizeof(struct bpf_prog_info) - info_len); 3119 3120 if (__do_read(ff, info_linear->data, data_len)) 3121 goto out; 3122 3123 info_node = malloc(sizeof(struct bpf_prog_info_node)); 3124 if (!info_node) 3125 goto out; 3126 3127 /* after reading from file, translate offset to address */ 3128 bpil_offs_to_addr(info_linear); 3129 info_node->info_linear = info_linear; 3130 perf_env__insert_bpf_prog_info(env, info_node); 3131 } 3132 3133 up_write(&env->bpf_progs.lock); 3134 return 0; 3135 out: 3136 free(info_linear); 3137 free(info_node); 3138 up_write(&env->bpf_progs.lock); 3139 return err; 3140 } 3141 3142 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 3143 { 3144 struct perf_env *env = &ff->ph->env; 3145 struct btf_node *node = NULL; 3146 u32 count, i; 3147 int err = -1; 3148 3149 if (ff->ph->needs_swap) { 3150 pr_warning("interpreting btf from systems with endianness is not yet supported\n"); 3151 return 0; 3152 } 3153 3154 if (do_read_u32(ff, &count)) 3155 return -1; 3156 3157 down_write(&env->bpf_progs.lock); 3158 3159 for (i = 0; i < count; ++i) { 3160 u32 id, data_size; 3161 3162 if (do_read_u32(ff, &id)) 3163 goto out; 3164 if (do_read_u32(ff, &data_size)) 3165 goto out; 3166 3167 node = malloc(sizeof(struct btf_node) + data_size); 3168 if (!node) 3169 goto out; 3170 3171 node->id = id; 3172 node->data_size = data_size; 3173 3174 if (__do_read(ff, node->data, data_size)) 3175 goto out; 3176 3177 perf_env__insert_btf(env, node); 3178 node = NULL; 3179 } 3180 3181 err = 0; 3182 out: 3183 up_write(&env->bpf_progs.lock); 3184 free(node); 3185 return err; 3186 } 3187 #endif // HAVE_LIBBPF_SUPPORT 3188 3189 static int process_compressed(struct feat_fd *ff, 3190 void *data __maybe_unused) 3191 { 3192 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 3193 return -1; 3194 3195 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 3196 return -1; 3197 3198 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 3199 return -1; 3200 3201 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 3202 return -1; 3203 3204 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 3205 return -1; 3206 3207 return 0; 3208 } 3209 3210 static int process_per_cpu_pmu_caps(struct feat_fd *ff, int *nr_cpu_pmu_caps, 3211 char **cpu_pmu_caps, 3212 unsigned int *max_branches) 3213 { 3214 char *name, *value; 3215 struct strbuf sb; 3216 u32 nr_caps; 3217 3218 if (do_read_u32(ff, &nr_caps)) 3219 return -1; 3220 3221 if (!nr_caps) { 3222 pr_debug("cpu pmu capabilities not available\n"); 3223 return 0; 3224 } 3225 3226 *nr_cpu_pmu_caps = nr_caps; 3227 3228 if (strbuf_init(&sb, 128) < 0) 3229 return -1; 3230 3231 while (nr_caps--) { 3232 name = do_read_string(ff); 3233 if (!name) 3234 goto error; 3235 3236 value = do_read_string(ff); 3237 if (!value) 3238 goto free_name; 3239 3240 if (strbuf_addf(&sb, "%s=%s", name, value) < 0) 3241 goto free_value; 3242 3243 /* include a NULL character at the end */ 3244 if (strbuf_add(&sb, "", 1) < 0) 3245 goto free_value; 3246 3247 if (!strcmp(name, "branches")) 3248 *max_branches = atoi(value); 3249 3250 free(value); 3251 free(name); 3252 } 3253 *cpu_pmu_caps = strbuf_detach(&sb, NULL); 3254 return 0; 3255 3256 free_value: 3257 free(value); 3258 free_name: 3259 free(name); 3260 error: 3261 strbuf_release(&sb); 3262 return -1; 3263 } 3264 3265 static int process_cpu_pmu_caps(struct feat_fd *ff, 3266 void *data __maybe_unused) 3267 { 3268 return process_per_cpu_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps, 3269 &ff->ph->env.cpu_pmu_caps, 3270 &ff->ph->env.max_branches); 3271 } 3272 3273 static int process_hybrid_cpu_pmu_caps(struct feat_fd *ff, 3274 void *data __maybe_unused) 3275 { 3276 struct hybrid_cpc_node *nodes; 3277 u32 nr_pmu, i; 3278 int ret; 3279 3280 if (do_read_u32(ff, &nr_pmu)) 3281 return -1; 3282 3283 if (!nr_pmu) { 3284 pr_debug("hybrid cpu pmu capabilities not available\n"); 3285 return 0; 3286 } 3287 3288 nodes = zalloc(sizeof(*nodes) * nr_pmu); 3289 if (!nodes) 3290 return -ENOMEM; 3291 3292 for (i = 0; i < nr_pmu; i++) { 3293 struct hybrid_cpc_node *n = &nodes[i]; 3294 3295 ret = process_per_cpu_pmu_caps(ff, &n->nr_cpu_pmu_caps, 3296 &n->cpu_pmu_caps, 3297 &n->max_branches); 3298 if (ret) 3299 goto err; 3300 3301 n->pmu_name = do_read_string(ff); 3302 if (!n->pmu_name) { 3303 ret = -1; 3304 goto err; 3305 } 3306 } 3307 3308 ff->ph->env.nr_hybrid_cpc_nodes = nr_pmu; 3309 ff->ph->env.hybrid_cpc_nodes = nodes; 3310 return 0; 3311 3312 err: 3313 for (i = 0; i < nr_pmu; i++) { 3314 free(nodes[i].cpu_pmu_caps); 3315 free(nodes[i].pmu_name); 3316 } 3317 3318 free(nodes); 3319 return ret; 3320 } 3321 3322 #define FEAT_OPR(n, func, __full_only) \ 3323 [HEADER_##n] = { \ 3324 .name = __stringify(n), \ 3325 .write = write_##func, \ 3326 .print = print_##func, \ 3327 .full_only = __full_only, \ 3328 .process = process_##func, \ 3329 .synthesize = true \ 3330 } 3331 3332 #define FEAT_OPN(n, func, __full_only) \ 3333 [HEADER_##n] = { \ 3334 .name = __stringify(n), \ 3335 .write = write_##func, \ 3336 .print = print_##func, \ 3337 .full_only = __full_only, \ 3338 .process = process_##func \ 3339 } 3340 3341 /* feature_ops not implemented: */ 3342 #define print_tracing_data NULL 3343 #define print_build_id NULL 3344 3345 #define process_branch_stack NULL 3346 #define process_stat NULL 3347 3348 // Only used in util/synthetic-events.c 3349 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 3350 3351 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 3352 FEAT_OPN(TRACING_DATA, tracing_data, false), 3353 FEAT_OPN(BUILD_ID, build_id, false), 3354 FEAT_OPR(HOSTNAME, hostname, false), 3355 FEAT_OPR(OSRELEASE, osrelease, false), 3356 FEAT_OPR(VERSION, version, false), 3357 FEAT_OPR(ARCH, arch, false), 3358 FEAT_OPR(NRCPUS, nrcpus, false), 3359 FEAT_OPR(CPUDESC, cpudesc, false), 3360 FEAT_OPR(CPUID, cpuid, false), 3361 FEAT_OPR(TOTAL_MEM, total_mem, false), 3362 FEAT_OPR(EVENT_DESC, event_desc, false), 3363 FEAT_OPR(CMDLINE, cmdline, false), 3364 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 3365 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 3366 FEAT_OPN(BRANCH_STACK, branch_stack, false), 3367 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 3368 FEAT_OPR(GROUP_DESC, group_desc, false), 3369 FEAT_OPN(AUXTRACE, auxtrace, false), 3370 FEAT_OPN(STAT, stat, false), 3371 FEAT_OPN(CACHE, cache, true), 3372 FEAT_OPR(SAMPLE_TIME, sample_time, false), 3373 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 3374 FEAT_OPR(CLOCKID, clockid, false), 3375 FEAT_OPN(DIR_FORMAT, dir_format, false), 3376 #ifdef HAVE_LIBBPF_SUPPORT 3377 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 3378 FEAT_OPR(BPF_BTF, bpf_btf, false), 3379 #endif 3380 FEAT_OPR(COMPRESSED, compressed, false), 3381 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), 3382 FEAT_OPR(CLOCK_DATA, clock_data, false), 3383 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true), 3384 FEAT_OPR(HYBRID_CPU_PMU_CAPS, hybrid_cpu_pmu_caps, false), 3385 }; 3386 3387 struct header_print_data { 3388 FILE *fp; 3389 bool full; /* extended list of headers */ 3390 }; 3391 3392 static int perf_file_section__fprintf_info(struct perf_file_section *section, 3393 struct perf_header *ph, 3394 int feat, int fd, void *data) 3395 { 3396 struct header_print_data *hd = data; 3397 struct feat_fd ff; 3398 3399 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3400 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3401 "%d, continuing...\n", section->offset, feat); 3402 return 0; 3403 } 3404 if (feat >= HEADER_LAST_FEATURE) { 3405 pr_warning("unknown feature %d\n", feat); 3406 return 0; 3407 } 3408 if (!feat_ops[feat].print) 3409 return 0; 3410 3411 ff = (struct feat_fd) { 3412 .fd = fd, 3413 .ph = ph, 3414 }; 3415 3416 if (!feat_ops[feat].full_only || hd->full) 3417 feat_ops[feat].print(&ff, hd->fp); 3418 else 3419 fprintf(hd->fp, "# %s info available, use -I to display\n", 3420 feat_ops[feat].name); 3421 3422 return 0; 3423 } 3424 3425 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 3426 { 3427 struct header_print_data hd; 3428 struct perf_header *header = &session->header; 3429 int fd = perf_data__fd(session->data); 3430 struct stat st; 3431 time_t stctime; 3432 int ret, bit; 3433 3434 hd.fp = fp; 3435 hd.full = full; 3436 3437 ret = fstat(fd, &st); 3438 if (ret == -1) 3439 return -1; 3440 3441 stctime = st.st_mtime; 3442 fprintf(fp, "# captured on : %s", ctime(&stctime)); 3443 3444 fprintf(fp, "# header version : %u\n", header->version); 3445 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 3446 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 3447 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 3448 3449 perf_header__process_sections(header, fd, &hd, 3450 perf_file_section__fprintf_info); 3451 3452 if (session->data->is_pipe) 3453 return 0; 3454 3455 fprintf(fp, "# missing features: "); 3456 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 3457 if (bit) 3458 fprintf(fp, "%s ", feat_ops[bit].name); 3459 } 3460 3461 fprintf(fp, "\n"); 3462 return 0; 3463 } 3464 3465 struct header_fw { 3466 struct feat_writer fw; 3467 struct feat_fd *ff; 3468 }; 3469 3470 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz) 3471 { 3472 struct header_fw *h = container_of(fw, struct header_fw, fw); 3473 3474 return do_write(h->ff, buf, sz); 3475 } 3476 3477 static int do_write_feat(struct feat_fd *ff, int type, 3478 struct perf_file_section **p, 3479 struct evlist *evlist, 3480 struct feat_copier *fc) 3481 { 3482 int err; 3483 int ret = 0; 3484 3485 if (perf_header__has_feat(ff->ph, type)) { 3486 if (!feat_ops[type].write) 3487 return -1; 3488 3489 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 3490 return -1; 3491 3492 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3493 3494 /* 3495 * Hook to let perf inject copy features sections from the input 3496 * file. 3497 */ 3498 if (fc && fc->copy) { 3499 struct header_fw h = { 3500 .fw.write = feat_writer_cb, 3501 .ff = ff, 3502 }; 3503 3504 /* ->copy() returns 0 if the feature was not copied */ 3505 err = fc->copy(fc, type, &h.fw); 3506 } else { 3507 err = 0; 3508 } 3509 if (!err) 3510 err = feat_ops[type].write(ff, evlist); 3511 if (err < 0) { 3512 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3513 3514 /* undo anything written */ 3515 lseek(ff->fd, (*p)->offset, SEEK_SET); 3516 3517 return -1; 3518 } 3519 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3520 (*p)++; 3521 } 3522 return ret; 3523 } 3524 3525 static int perf_header__adds_write(struct perf_header *header, 3526 struct evlist *evlist, int fd, 3527 struct feat_copier *fc) 3528 { 3529 int nr_sections; 3530 struct feat_fd ff; 3531 struct perf_file_section *feat_sec, *p; 3532 int sec_size; 3533 u64 sec_start; 3534 int feat; 3535 int err; 3536 3537 ff = (struct feat_fd){ 3538 .fd = fd, 3539 .ph = header, 3540 }; 3541 3542 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3543 if (!nr_sections) 3544 return 0; 3545 3546 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3547 if (feat_sec == NULL) 3548 return -ENOMEM; 3549 3550 sec_size = sizeof(*feat_sec) * nr_sections; 3551 3552 sec_start = header->feat_offset; 3553 lseek(fd, sec_start + sec_size, SEEK_SET); 3554 3555 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3556 if (do_write_feat(&ff, feat, &p, evlist, fc)) 3557 perf_header__clear_feat(header, feat); 3558 } 3559 3560 lseek(fd, sec_start, SEEK_SET); 3561 /* 3562 * may write more than needed due to dropped feature, but 3563 * this is okay, reader will skip the missing entries 3564 */ 3565 err = do_write(&ff, feat_sec, sec_size); 3566 if (err < 0) 3567 pr_debug("failed to write feature section\n"); 3568 free(feat_sec); 3569 return err; 3570 } 3571 3572 int perf_header__write_pipe(int fd) 3573 { 3574 struct perf_pipe_file_header f_header; 3575 struct feat_fd ff; 3576 int err; 3577 3578 ff = (struct feat_fd){ .fd = fd }; 3579 3580 f_header = (struct perf_pipe_file_header){ 3581 .magic = PERF_MAGIC, 3582 .size = sizeof(f_header), 3583 }; 3584 3585 err = do_write(&ff, &f_header, sizeof(f_header)); 3586 if (err < 0) { 3587 pr_debug("failed to write perf pipe header\n"); 3588 return err; 3589 } 3590 3591 return 0; 3592 } 3593 3594 static int perf_session__do_write_header(struct perf_session *session, 3595 struct evlist *evlist, 3596 int fd, bool at_exit, 3597 struct feat_copier *fc) 3598 { 3599 struct perf_file_header f_header; 3600 struct perf_file_attr f_attr; 3601 struct perf_header *header = &session->header; 3602 struct evsel *evsel; 3603 struct feat_fd ff; 3604 u64 attr_offset; 3605 int err; 3606 3607 ff = (struct feat_fd){ .fd = fd}; 3608 lseek(fd, sizeof(f_header), SEEK_SET); 3609 3610 evlist__for_each_entry(session->evlist, evsel) { 3611 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3612 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3613 if (err < 0) { 3614 pr_debug("failed to write perf header\n"); 3615 return err; 3616 } 3617 } 3618 3619 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3620 3621 evlist__for_each_entry(evlist, evsel) { 3622 if (evsel->core.attr.size < sizeof(evsel->core.attr)) { 3623 /* 3624 * We are likely in "perf inject" and have read 3625 * from an older file. Update attr size so that 3626 * reader gets the right offset to the ids. 3627 */ 3628 evsel->core.attr.size = sizeof(evsel->core.attr); 3629 } 3630 f_attr = (struct perf_file_attr){ 3631 .attr = evsel->core.attr, 3632 .ids = { 3633 .offset = evsel->id_offset, 3634 .size = evsel->core.ids * sizeof(u64), 3635 } 3636 }; 3637 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3638 if (err < 0) { 3639 pr_debug("failed to write perf header attribute\n"); 3640 return err; 3641 } 3642 } 3643 3644 if (!header->data_offset) 3645 header->data_offset = lseek(fd, 0, SEEK_CUR); 3646 header->feat_offset = header->data_offset + header->data_size; 3647 3648 if (at_exit) { 3649 err = perf_header__adds_write(header, evlist, fd, fc); 3650 if (err < 0) 3651 return err; 3652 } 3653 3654 f_header = (struct perf_file_header){ 3655 .magic = PERF_MAGIC, 3656 .size = sizeof(f_header), 3657 .attr_size = sizeof(f_attr), 3658 .attrs = { 3659 .offset = attr_offset, 3660 .size = evlist->core.nr_entries * sizeof(f_attr), 3661 }, 3662 .data = { 3663 .offset = header->data_offset, 3664 .size = header->data_size, 3665 }, 3666 /* event_types is ignored, store zeros */ 3667 }; 3668 3669 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3670 3671 lseek(fd, 0, SEEK_SET); 3672 err = do_write(&ff, &f_header, sizeof(f_header)); 3673 if (err < 0) { 3674 pr_debug("failed to write perf header\n"); 3675 return err; 3676 } 3677 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3678 3679 return 0; 3680 } 3681 3682 int perf_session__write_header(struct perf_session *session, 3683 struct evlist *evlist, 3684 int fd, bool at_exit) 3685 { 3686 return perf_session__do_write_header(session, evlist, fd, at_exit, NULL); 3687 } 3688 3689 int perf_session__inject_header(struct perf_session *session, 3690 struct evlist *evlist, 3691 int fd, 3692 struct feat_copier *fc) 3693 { 3694 return perf_session__do_write_header(session, evlist, fd, true, fc); 3695 } 3696 3697 static int perf_header__getbuffer64(struct perf_header *header, 3698 int fd, void *buf, size_t size) 3699 { 3700 if (readn(fd, buf, size) <= 0) 3701 return -1; 3702 3703 if (header->needs_swap) 3704 mem_bswap_64(buf, size); 3705 3706 return 0; 3707 } 3708 3709 int perf_header__process_sections(struct perf_header *header, int fd, 3710 void *data, 3711 int (*process)(struct perf_file_section *section, 3712 struct perf_header *ph, 3713 int feat, int fd, void *data)) 3714 { 3715 struct perf_file_section *feat_sec, *sec; 3716 int nr_sections; 3717 int sec_size; 3718 int feat; 3719 int err; 3720 3721 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3722 if (!nr_sections) 3723 return 0; 3724 3725 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3726 if (!feat_sec) 3727 return -1; 3728 3729 sec_size = sizeof(*feat_sec) * nr_sections; 3730 3731 lseek(fd, header->feat_offset, SEEK_SET); 3732 3733 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3734 if (err < 0) 3735 goto out_free; 3736 3737 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3738 err = process(sec++, header, feat, fd, data); 3739 if (err < 0) 3740 goto out_free; 3741 } 3742 err = 0; 3743 out_free: 3744 free(feat_sec); 3745 return err; 3746 } 3747 3748 static const int attr_file_abi_sizes[] = { 3749 [0] = PERF_ATTR_SIZE_VER0, 3750 [1] = PERF_ATTR_SIZE_VER1, 3751 [2] = PERF_ATTR_SIZE_VER2, 3752 [3] = PERF_ATTR_SIZE_VER3, 3753 [4] = PERF_ATTR_SIZE_VER4, 3754 0, 3755 }; 3756 3757 /* 3758 * In the legacy file format, the magic number is not used to encode endianness. 3759 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3760 * on ABI revisions, we need to try all combinations for all endianness to 3761 * detect the endianness. 3762 */ 3763 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3764 { 3765 uint64_t ref_size, attr_size; 3766 int i; 3767 3768 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3769 ref_size = attr_file_abi_sizes[i] 3770 + sizeof(struct perf_file_section); 3771 if (hdr_sz != ref_size) { 3772 attr_size = bswap_64(hdr_sz); 3773 if (attr_size != ref_size) 3774 continue; 3775 3776 ph->needs_swap = true; 3777 } 3778 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3779 i, 3780 ph->needs_swap); 3781 return 0; 3782 } 3783 /* could not determine endianness */ 3784 return -1; 3785 } 3786 3787 #define PERF_PIPE_HDR_VER0 16 3788 3789 static const size_t attr_pipe_abi_sizes[] = { 3790 [0] = PERF_PIPE_HDR_VER0, 3791 0, 3792 }; 3793 3794 /* 3795 * In the legacy pipe format, there is an implicit assumption that endianness 3796 * between host recording the samples, and host parsing the samples is the 3797 * same. This is not always the case given that the pipe output may always be 3798 * redirected into a file and analyzed on a different machine with possibly a 3799 * different endianness and perf_event ABI revisions in the perf tool itself. 3800 */ 3801 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3802 { 3803 u64 attr_size; 3804 int i; 3805 3806 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3807 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3808 attr_size = bswap_64(hdr_sz); 3809 if (attr_size != hdr_sz) 3810 continue; 3811 3812 ph->needs_swap = true; 3813 } 3814 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3815 return 0; 3816 } 3817 return -1; 3818 } 3819 3820 bool is_perf_magic(u64 magic) 3821 { 3822 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3823 || magic == __perf_magic2 3824 || magic == __perf_magic2_sw) 3825 return true; 3826 3827 return false; 3828 } 3829 3830 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3831 bool is_pipe, struct perf_header *ph) 3832 { 3833 int ret; 3834 3835 /* check for legacy format */ 3836 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3837 if (ret == 0) { 3838 ph->version = PERF_HEADER_VERSION_1; 3839 pr_debug("legacy perf.data format\n"); 3840 if (is_pipe) 3841 return try_all_pipe_abis(hdr_sz, ph); 3842 3843 return try_all_file_abis(hdr_sz, ph); 3844 } 3845 /* 3846 * the new magic number serves two purposes: 3847 * - unique number to identify actual perf.data files 3848 * - encode endianness of file 3849 */ 3850 ph->version = PERF_HEADER_VERSION_2; 3851 3852 /* check magic number with one endianness */ 3853 if (magic == __perf_magic2) 3854 return 0; 3855 3856 /* check magic number with opposite endianness */ 3857 if (magic != __perf_magic2_sw) 3858 return -1; 3859 3860 ph->needs_swap = true; 3861 3862 return 0; 3863 } 3864 3865 int perf_file_header__read(struct perf_file_header *header, 3866 struct perf_header *ph, int fd) 3867 { 3868 ssize_t ret; 3869 3870 lseek(fd, 0, SEEK_SET); 3871 3872 ret = readn(fd, header, sizeof(*header)); 3873 if (ret <= 0) 3874 return -1; 3875 3876 if (check_magic_endian(header->magic, 3877 header->attr_size, false, ph) < 0) { 3878 pr_debug("magic/endian check failed\n"); 3879 return -1; 3880 } 3881 3882 if (ph->needs_swap) { 3883 mem_bswap_64(header, offsetof(struct perf_file_header, 3884 adds_features)); 3885 } 3886 3887 if (header->size != sizeof(*header)) { 3888 /* Support the previous format */ 3889 if (header->size == offsetof(typeof(*header), adds_features)) 3890 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3891 else 3892 return -1; 3893 } else if (ph->needs_swap) { 3894 /* 3895 * feature bitmap is declared as an array of unsigned longs -- 3896 * not good since its size can differ between the host that 3897 * generated the data file and the host analyzing the file. 3898 * 3899 * We need to handle endianness, but we don't know the size of 3900 * the unsigned long where the file was generated. Take a best 3901 * guess at determining it: try 64-bit swap first (ie., file 3902 * created on a 64-bit host), and check if the hostname feature 3903 * bit is set (this feature bit is forced on as of fbe96f2). 3904 * If the bit is not, undo the 64-bit swap and try a 32-bit 3905 * swap. If the hostname bit is still not set (e.g., older data 3906 * file), punt and fallback to the original behavior -- 3907 * clearing all feature bits and setting buildid. 3908 */ 3909 mem_bswap_64(&header->adds_features, 3910 BITS_TO_U64(HEADER_FEAT_BITS)); 3911 3912 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3913 /* unswap as u64 */ 3914 mem_bswap_64(&header->adds_features, 3915 BITS_TO_U64(HEADER_FEAT_BITS)); 3916 3917 /* unswap as u32 */ 3918 mem_bswap_32(&header->adds_features, 3919 BITS_TO_U32(HEADER_FEAT_BITS)); 3920 } 3921 3922 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3923 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3924 set_bit(HEADER_BUILD_ID, header->adds_features); 3925 } 3926 } 3927 3928 memcpy(&ph->adds_features, &header->adds_features, 3929 sizeof(ph->adds_features)); 3930 3931 ph->data_offset = header->data.offset; 3932 ph->data_size = header->data.size; 3933 ph->feat_offset = header->data.offset + header->data.size; 3934 return 0; 3935 } 3936 3937 static int perf_file_section__process(struct perf_file_section *section, 3938 struct perf_header *ph, 3939 int feat, int fd, void *data) 3940 { 3941 struct feat_fd fdd = { 3942 .fd = fd, 3943 .ph = ph, 3944 .size = section->size, 3945 .offset = section->offset, 3946 }; 3947 3948 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3949 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3950 "%d, continuing...\n", section->offset, feat); 3951 return 0; 3952 } 3953 3954 if (feat >= HEADER_LAST_FEATURE) { 3955 pr_debug("unknown feature %d, continuing...\n", feat); 3956 return 0; 3957 } 3958 3959 if (!feat_ops[feat].process) 3960 return 0; 3961 3962 return feat_ops[feat].process(&fdd, data); 3963 } 3964 3965 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 3966 struct perf_header *ph, 3967 struct perf_data* data, 3968 bool repipe, int repipe_fd) 3969 { 3970 struct feat_fd ff = { 3971 .fd = repipe_fd, 3972 .ph = ph, 3973 }; 3974 ssize_t ret; 3975 3976 ret = perf_data__read(data, header, sizeof(*header)); 3977 if (ret <= 0) 3978 return -1; 3979 3980 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 3981 pr_debug("endian/magic failed\n"); 3982 return -1; 3983 } 3984 3985 if (ph->needs_swap) 3986 header->size = bswap_64(header->size); 3987 3988 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 3989 return -1; 3990 3991 return 0; 3992 } 3993 3994 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd) 3995 { 3996 struct perf_header *header = &session->header; 3997 struct perf_pipe_file_header f_header; 3998 3999 if (perf_file_header__read_pipe(&f_header, header, session->data, 4000 session->repipe, repipe_fd) < 0) { 4001 pr_debug("incompatible file format\n"); 4002 return -EINVAL; 4003 } 4004 4005 return f_header.size == sizeof(f_header) ? 0 : -1; 4006 } 4007 4008 static int read_attr(int fd, struct perf_header *ph, 4009 struct perf_file_attr *f_attr) 4010 { 4011 struct perf_event_attr *attr = &f_attr->attr; 4012 size_t sz, left; 4013 size_t our_sz = sizeof(f_attr->attr); 4014 ssize_t ret; 4015 4016 memset(f_attr, 0, sizeof(*f_attr)); 4017 4018 /* read minimal guaranteed structure */ 4019 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 4020 if (ret <= 0) { 4021 pr_debug("cannot read %d bytes of header attr\n", 4022 PERF_ATTR_SIZE_VER0); 4023 return -1; 4024 } 4025 4026 /* on file perf_event_attr size */ 4027 sz = attr->size; 4028 4029 if (ph->needs_swap) 4030 sz = bswap_32(sz); 4031 4032 if (sz == 0) { 4033 /* assume ABI0 */ 4034 sz = PERF_ATTR_SIZE_VER0; 4035 } else if (sz > our_sz) { 4036 pr_debug("file uses a more recent and unsupported ABI" 4037 " (%zu bytes extra)\n", sz - our_sz); 4038 return -1; 4039 } 4040 /* what we have not yet read and that we know about */ 4041 left = sz - PERF_ATTR_SIZE_VER0; 4042 if (left) { 4043 void *ptr = attr; 4044 ptr += PERF_ATTR_SIZE_VER0; 4045 4046 ret = readn(fd, ptr, left); 4047 } 4048 /* read perf_file_section, ids are read in caller */ 4049 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 4050 4051 return ret <= 0 ? -1 : 0; 4052 } 4053 4054 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) 4055 { 4056 struct tep_event *event; 4057 char bf[128]; 4058 4059 /* already prepared */ 4060 if (evsel->tp_format) 4061 return 0; 4062 4063 if (pevent == NULL) { 4064 pr_debug("broken or missing trace data\n"); 4065 return -1; 4066 } 4067 4068 event = tep_find_event(pevent, evsel->core.attr.config); 4069 if (event == NULL) { 4070 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 4071 return -1; 4072 } 4073 4074 if (!evsel->name) { 4075 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 4076 evsel->name = strdup(bf); 4077 if (evsel->name == NULL) 4078 return -1; 4079 } 4080 4081 evsel->tp_format = event; 4082 return 0; 4083 } 4084 4085 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent) 4086 { 4087 struct evsel *pos; 4088 4089 evlist__for_each_entry(evlist, pos) { 4090 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 4091 evsel__prepare_tracepoint_event(pos, pevent)) 4092 return -1; 4093 } 4094 4095 return 0; 4096 } 4097 4098 int perf_session__read_header(struct perf_session *session, int repipe_fd) 4099 { 4100 struct perf_data *data = session->data; 4101 struct perf_header *header = &session->header; 4102 struct perf_file_header f_header; 4103 struct perf_file_attr f_attr; 4104 u64 f_id; 4105 int nr_attrs, nr_ids, i, j, err; 4106 int fd = perf_data__fd(data); 4107 4108 session->evlist = evlist__new(); 4109 if (session->evlist == NULL) 4110 return -ENOMEM; 4111 4112 session->evlist->env = &header->env; 4113 session->machines.host.env = &header->env; 4114 4115 /* 4116 * We can read 'pipe' data event from regular file, 4117 * check for the pipe header regardless of source. 4118 */ 4119 err = perf_header__read_pipe(session, repipe_fd); 4120 if (!err || perf_data__is_pipe(data)) { 4121 data->is_pipe = true; 4122 return err; 4123 } 4124 4125 if (perf_file_header__read(&f_header, header, fd) < 0) 4126 return -EINVAL; 4127 4128 if (header->needs_swap && data->in_place_update) { 4129 pr_err("In-place update not supported when byte-swapping is required\n"); 4130 return -EINVAL; 4131 } 4132 4133 /* 4134 * Sanity check that perf.data was written cleanly; data size is 4135 * initialized to 0 and updated only if the on_exit function is run. 4136 * If data size is still 0 then the file contains only partial 4137 * information. Just warn user and process it as much as it can. 4138 */ 4139 if (f_header.data.size == 0) { 4140 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 4141 "Was the 'perf record' command properly terminated?\n", 4142 data->file.path); 4143 } 4144 4145 if (f_header.attr_size == 0) { 4146 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 4147 "Was the 'perf record' command properly terminated?\n", 4148 data->file.path); 4149 return -EINVAL; 4150 } 4151 4152 nr_attrs = f_header.attrs.size / f_header.attr_size; 4153 lseek(fd, f_header.attrs.offset, SEEK_SET); 4154 4155 for (i = 0; i < nr_attrs; i++) { 4156 struct evsel *evsel; 4157 off_t tmp; 4158 4159 if (read_attr(fd, header, &f_attr) < 0) 4160 goto out_errno; 4161 4162 if (header->needs_swap) { 4163 f_attr.ids.size = bswap_64(f_attr.ids.size); 4164 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 4165 perf_event__attr_swap(&f_attr.attr); 4166 } 4167 4168 tmp = lseek(fd, 0, SEEK_CUR); 4169 evsel = evsel__new(&f_attr.attr); 4170 4171 if (evsel == NULL) 4172 goto out_delete_evlist; 4173 4174 evsel->needs_swap = header->needs_swap; 4175 /* 4176 * Do it before so that if perf_evsel__alloc_id fails, this 4177 * entry gets purged too at evlist__delete(). 4178 */ 4179 evlist__add(session->evlist, evsel); 4180 4181 nr_ids = f_attr.ids.size / sizeof(u64); 4182 /* 4183 * We don't have the cpu and thread maps on the header, so 4184 * for allocating the perf_sample_id table we fake 1 cpu and 4185 * hattr->ids threads. 4186 */ 4187 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 4188 goto out_delete_evlist; 4189 4190 lseek(fd, f_attr.ids.offset, SEEK_SET); 4191 4192 for (j = 0; j < nr_ids; j++) { 4193 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 4194 goto out_errno; 4195 4196 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 4197 } 4198 4199 lseek(fd, tmp, SEEK_SET); 4200 } 4201 4202 perf_header__process_sections(header, fd, &session->tevent, 4203 perf_file_section__process); 4204 4205 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) 4206 goto out_delete_evlist; 4207 4208 return 0; 4209 out_errno: 4210 return -errno; 4211 4212 out_delete_evlist: 4213 evlist__delete(session->evlist); 4214 session->evlist = NULL; 4215 return -ENOMEM; 4216 } 4217 4218 int perf_event__process_feature(struct perf_session *session, 4219 union perf_event *event) 4220 { 4221 struct perf_tool *tool = session->tool; 4222 struct feat_fd ff = { .fd = 0 }; 4223 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 4224 int type = fe->header.type; 4225 u64 feat = fe->feat_id; 4226 int ret = 0; 4227 4228 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 4229 pr_warning("invalid record type %d in pipe-mode\n", type); 4230 return 0; 4231 } 4232 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 4233 pr_warning("invalid record type %d in pipe-mode\n", type); 4234 return -1; 4235 } 4236 4237 if (!feat_ops[feat].process) 4238 return 0; 4239 4240 ff.buf = (void *)fe->data; 4241 ff.size = event->header.size - sizeof(*fe); 4242 ff.ph = &session->header; 4243 4244 if (feat_ops[feat].process(&ff, NULL)) { 4245 ret = -1; 4246 goto out; 4247 } 4248 4249 if (!feat_ops[feat].print || !tool->show_feat_hdr) 4250 goto out; 4251 4252 if (!feat_ops[feat].full_only || 4253 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 4254 feat_ops[feat].print(&ff, stdout); 4255 } else { 4256 fprintf(stdout, "# %s info available, use -I to display\n", 4257 feat_ops[feat].name); 4258 } 4259 out: 4260 free_event_desc(ff.events); 4261 return ret; 4262 } 4263 4264 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 4265 { 4266 struct perf_record_event_update *ev = &event->event_update; 4267 struct perf_record_event_update_scale *ev_scale; 4268 struct perf_record_event_update_cpus *ev_cpus; 4269 struct perf_cpu_map *map; 4270 size_t ret; 4271 4272 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 4273 4274 switch (ev->type) { 4275 case PERF_EVENT_UPDATE__SCALE: 4276 ev_scale = (struct perf_record_event_update_scale *)ev->data; 4277 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale); 4278 break; 4279 case PERF_EVENT_UPDATE__UNIT: 4280 ret += fprintf(fp, "... unit: %s\n", ev->data); 4281 break; 4282 case PERF_EVENT_UPDATE__NAME: 4283 ret += fprintf(fp, "... name: %s\n", ev->data); 4284 break; 4285 case PERF_EVENT_UPDATE__CPUS: 4286 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 4287 ret += fprintf(fp, "... "); 4288 4289 map = cpu_map__new_data(&ev_cpus->cpus); 4290 if (map) 4291 ret += cpu_map__fprintf(map, fp); 4292 else 4293 ret += fprintf(fp, "failed to get cpus\n"); 4294 break; 4295 default: 4296 ret += fprintf(fp, "... unknown type\n"); 4297 break; 4298 } 4299 4300 return ret; 4301 } 4302 4303 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 4304 union perf_event *event, 4305 struct evlist **pevlist) 4306 { 4307 u32 i, ids, n_ids; 4308 struct evsel *evsel; 4309 struct evlist *evlist = *pevlist; 4310 4311 if (evlist == NULL) { 4312 *pevlist = evlist = evlist__new(); 4313 if (evlist == NULL) 4314 return -ENOMEM; 4315 } 4316 4317 evsel = evsel__new(&event->attr.attr); 4318 if (evsel == NULL) 4319 return -ENOMEM; 4320 4321 evlist__add(evlist, evsel); 4322 4323 ids = event->header.size; 4324 ids -= (void *)&event->attr.id - (void *)event; 4325 n_ids = ids / sizeof(u64); 4326 /* 4327 * We don't have the cpu and thread maps on the header, so 4328 * for allocating the perf_sample_id table we fake 1 cpu and 4329 * hattr->ids threads. 4330 */ 4331 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 4332 return -ENOMEM; 4333 4334 for (i = 0; i < n_ids; i++) { 4335 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]); 4336 } 4337 4338 return 0; 4339 } 4340 4341 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 4342 union perf_event *event, 4343 struct evlist **pevlist) 4344 { 4345 struct perf_record_event_update *ev = &event->event_update; 4346 struct perf_record_event_update_scale *ev_scale; 4347 struct perf_record_event_update_cpus *ev_cpus; 4348 struct evlist *evlist; 4349 struct evsel *evsel; 4350 struct perf_cpu_map *map; 4351 4352 if (!pevlist || *pevlist == NULL) 4353 return -EINVAL; 4354 4355 evlist = *pevlist; 4356 4357 evsel = evlist__id2evsel(evlist, ev->id); 4358 if (evsel == NULL) 4359 return -EINVAL; 4360 4361 switch (ev->type) { 4362 case PERF_EVENT_UPDATE__UNIT: 4363 free((char *)evsel->unit); 4364 evsel->unit = strdup(ev->data); 4365 break; 4366 case PERF_EVENT_UPDATE__NAME: 4367 free(evsel->name); 4368 evsel->name = strdup(ev->data); 4369 break; 4370 case PERF_EVENT_UPDATE__SCALE: 4371 ev_scale = (struct perf_record_event_update_scale *)ev->data; 4372 evsel->scale = ev_scale->scale; 4373 break; 4374 case PERF_EVENT_UPDATE__CPUS: 4375 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 4376 map = cpu_map__new_data(&ev_cpus->cpus); 4377 if (map) { 4378 perf_cpu_map__put(evsel->core.own_cpus); 4379 evsel->core.own_cpus = map; 4380 } else 4381 pr_err("failed to get event_update cpus\n"); 4382 default: 4383 break; 4384 } 4385 4386 return 0; 4387 } 4388 4389 int perf_event__process_tracing_data(struct perf_session *session, 4390 union perf_event *event) 4391 { 4392 ssize_t size_read, padding, size = event->tracing_data.size; 4393 int fd = perf_data__fd(session->data); 4394 char buf[BUFSIZ]; 4395 4396 /* 4397 * The pipe fd is already in proper place and in any case 4398 * we can't move it, and we'd screw the case where we read 4399 * 'pipe' data from regular file. The trace_report reads 4400 * data from 'fd' so we need to set it directly behind the 4401 * event, where the tracing data starts. 4402 */ 4403 if (!perf_data__is_pipe(session->data)) { 4404 off_t offset = lseek(fd, 0, SEEK_CUR); 4405 4406 /* setup for reading amidst mmap */ 4407 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 4408 SEEK_SET); 4409 } 4410 4411 size_read = trace_report(fd, &session->tevent, 4412 session->repipe); 4413 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4414 4415 if (readn(fd, buf, padding) < 0) { 4416 pr_err("%s: reading input file", __func__); 4417 return -1; 4418 } 4419 if (session->repipe) { 4420 int retw = write(STDOUT_FILENO, buf, padding); 4421 if (retw <= 0 || retw != padding) { 4422 pr_err("%s: repiping tracing data padding", __func__); 4423 return -1; 4424 } 4425 } 4426 4427 if (size_read + padding != size) { 4428 pr_err("%s: tracing data size mismatch", __func__); 4429 return -1; 4430 } 4431 4432 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); 4433 4434 return size_read + padding; 4435 } 4436 4437 int perf_event__process_build_id(struct perf_session *session, 4438 union perf_event *event) 4439 { 4440 __event_process_build_id(&event->build_id, 4441 event->build_id.filename, 4442 session); 4443 return 0; 4444 } 4445