1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <regex.h> 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <linux/compiler.h> 13 #include <linux/list.h> 14 #include <linux/kernel.h> 15 #include <linux/bitops.h> 16 #include <linux/string.h> 17 #include <linux/stringify.h> 18 #include <linux/zalloc.h> 19 #include <sys/stat.h> 20 #include <sys/utsname.h> 21 #include <linux/time64.h> 22 #include <dirent.h> 23 #ifdef HAVE_LIBBPF_SUPPORT 24 #include <bpf/libbpf.h> 25 #endif 26 #include <perf/cpumap.h> 27 #include <tools/libc_compat.h> // reallocarray 28 29 #include "dso.h" 30 #include "evlist.h" 31 #include "evsel.h" 32 #include "util/evsel_fprintf.h" 33 #include "header.h" 34 #include "memswap.h" 35 #include "trace-event.h" 36 #include "session.h" 37 #include "symbol.h" 38 #include "debug.h" 39 #include "cpumap.h" 40 #include "pmu.h" 41 #include "pmus.h" 42 #include "vdso.h" 43 #include "strbuf.h" 44 #include "build-id.h" 45 #include "data.h" 46 #include <api/fs/fs.h> 47 #include <api/io_dir.h> 48 #include "asm/bug.h" 49 #include "tool.h" 50 #include "time-utils.h" 51 #include "units.h" 52 #include "util/util.h" // perf_exe() 53 #include "cputopo.h" 54 #include "bpf-event.h" 55 #include "bpf-utils.h" 56 #include "clockid.h" 57 58 #include <linux/ctype.h> 59 #include <internal/lib.h> 60 61 #ifdef HAVE_LIBTRACEEVENT 62 #include <event-parse.h> 63 #endif 64 65 /* 66 * magic2 = "PERFILE2" 67 * must be a numerical value to let the endianness 68 * determine the memory layout. That way we are able 69 * to detect endianness when reading the perf.data file 70 * back. 71 * 72 * we check for legacy (PERFFILE) format. 73 */ 74 static const char *__perf_magic1 = "PERFFILE"; 75 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 76 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 77 78 #define PERF_MAGIC __perf_magic2 79 80 const char perf_version_string[] = PERF_VERSION; 81 82 struct perf_file_attr { 83 struct perf_event_attr attr; 84 struct perf_file_section ids; 85 }; 86 87 void perf_header__set_feat(struct perf_header *header, int feat) 88 { 89 __set_bit(feat, header->adds_features); 90 } 91 92 void perf_header__clear_feat(struct perf_header *header, int feat) 93 { 94 __clear_bit(feat, header->adds_features); 95 } 96 97 bool perf_header__has_feat(const struct perf_header *header, int feat) 98 { 99 return test_bit(feat, header->adds_features); 100 } 101 102 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 103 { 104 ssize_t ret = writen(ff->fd, buf, size); 105 106 if (ret != (ssize_t)size) 107 return ret < 0 ? (int)ret : -1; 108 return 0; 109 } 110 111 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 112 { 113 /* struct perf_event_header::size is u16 */ 114 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 115 size_t new_size = ff->size; 116 void *addr; 117 118 if (size + ff->offset > max_size) 119 return -E2BIG; 120 121 while (size > (new_size - ff->offset)) 122 new_size <<= 1; 123 new_size = min(max_size, new_size); 124 125 if (ff->size < new_size) { 126 addr = realloc(ff->buf, new_size); 127 if (!addr) 128 return -ENOMEM; 129 ff->buf = addr; 130 ff->size = new_size; 131 } 132 133 memcpy(ff->buf + ff->offset, buf, size); 134 ff->offset += size; 135 136 return 0; 137 } 138 139 /* Return: 0 if succeeded, -ERR if failed. */ 140 int do_write(struct feat_fd *ff, const void *buf, size_t size) 141 { 142 if (!ff->buf) 143 return __do_write_fd(ff, buf, size); 144 return __do_write_buf(ff, buf, size); 145 } 146 147 /* Return: 0 if succeeded, -ERR if failed. */ 148 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 149 { 150 u64 *p = (u64 *) set; 151 int i, ret; 152 153 ret = do_write(ff, &size, sizeof(size)); 154 if (ret < 0) 155 return ret; 156 157 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 158 ret = do_write(ff, p + i, sizeof(*p)); 159 if (ret < 0) 160 return ret; 161 } 162 163 return 0; 164 } 165 166 /* Return: 0 if succeeded, -ERR if failed. */ 167 int write_padded(struct feat_fd *ff, const void *bf, 168 size_t count, size_t count_aligned) 169 { 170 static const char zero_buf[NAME_ALIGN]; 171 int err = do_write(ff, bf, count); 172 173 if (!err) 174 err = do_write(ff, zero_buf, count_aligned - count); 175 176 return err; 177 } 178 179 #define string_size(str) \ 180 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 181 182 /* Return: 0 if succeeded, -ERR if failed. */ 183 static int do_write_string(struct feat_fd *ff, const char *str) 184 { 185 u32 len, olen; 186 int ret; 187 188 olen = strlen(str) + 1; 189 len = PERF_ALIGN(olen, NAME_ALIGN); 190 191 /* write len, incl. \0 */ 192 ret = do_write(ff, &len, sizeof(len)); 193 if (ret < 0) 194 return ret; 195 196 return write_padded(ff, str, olen, len); 197 } 198 199 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 200 { 201 ssize_t ret = readn(ff->fd, addr, size); 202 203 if (ret != size) 204 return ret < 0 ? (int)ret : -1; 205 return 0; 206 } 207 208 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 209 { 210 if (size > (ssize_t)ff->size - ff->offset) 211 return -1; 212 213 memcpy(addr, ff->buf + ff->offset, size); 214 ff->offset += size; 215 216 return 0; 217 218 } 219 220 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 221 { 222 if (!ff->buf) 223 return __do_read_fd(ff, addr, size); 224 return __do_read_buf(ff, addr, size); 225 } 226 227 static int do_read_u32(struct feat_fd *ff, u32 *addr) 228 { 229 int ret; 230 231 ret = __do_read(ff, addr, sizeof(*addr)); 232 if (ret) 233 return ret; 234 235 if (ff->ph->needs_swap) 236 *addr = bswap_32(*addr); 237 return 0; 238 } 239 240 static int do_read_u64(struct feat_fd *ff, u64 *addr) 241 { 242 int ret; 243 244 ret = __do_read(ff, addr, sizeof(*addr)); 245 if (ret) 246 return ret; 247 248 if (ff->ph->needs_swap) 249 *addr = bswap_64(*addr); 250 return 0; 251 } 252 253 static char *do_read_string(struct feat_fd *ff) 254 { 255 u32 len; 256 char *buf; 257 258 if (do_read_u32(ff, &len)) 259 return NULL; 260 261 buf = malloc(len); 262 if (!buf) 263 return NULL; 264 265 if (!__do_read(ff, buf, len)) { 266 /* 267 * strings are padded by zeroes 268 * thus the actual strlen of buf 269 * may be less than len 270 */ 271 return buf; 272 } 273 274 free(buf); 275 return NULL; 276 } 277 278 /* Return: 0 if succeeded, -ERR if failed. */ 279 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 280 { 281 unsigned long *set; 282 u64 size, *p; 283 int i, ret; 284 285 ret = do_read_u64(ff, &size); 286 if (ret) 287 return ret; 288 289 set = bitmap_zalloc(size); 290 if (!set) 291 return -ENOMEM; 292 293 p = (u64 *) set; 294 295 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 296 ret = do_read_u64(ff, p + i); 297 if (ret < 0) { 298 free(set); 299 return ret; 300 } 301 } 302 303 *pset = set; 304 *psize = size; 305 return 0; 306 } 307 308 #ifdef HAVE_LIBTRACEEVENT 309 static int write_tracing_data(struct feat_fd *ff, 310 struct evlist *evlist) 311 { 312 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 313 return -1; 314 315 return read_tracing_data(ff->fd, &evlist->core.entries); 316 } 317 #endif 318 319 static int write_build_id(struct feat_fd *ff, 320 struct evlist *evlist __maybe_unused) 321 { 322 struct perf_session *session; 323 int err; 324 325 session = container_of(ff->ph, struct perf_session, header); 326 327 if (!perf_session__read_build_ids(session, true)) 328 return -1; 329 330 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 331 return -1; 332 333 err = perf_session__write_buildid_table(session, ff); 334 if (err < 0) { 335 pr_debug("failed to write buildid table\n"); 336 return err; 337 } 338 339 return 0; 340 } 341 342 static int write_hostname(struct feat_fd *ff, 343 struct evlist *evlist __maybe_unused) 344 { 345 struct utsname uts; 346 int ret; 347 348 ret = uname(&uts); 349 if (ret < 0) 350 return -1; 351 352 return do_write_string(ff, uts.nodename); 353 } 354 355 static int write_osrelease(struct feat_fd *ff, 356 struct evlist *evlist __maybe_unused) 357 { 358 struct utsname uts; 359 int ret; 360 361 ret = uname(&uts); 362 if (ret < 0) 363 return -1; 364 365 return do_write_string(ff, uts.release); 366 } 367 368 static int write_arch(struct feat_fd *ff, 369 struct evlist *evlist __maybe_unused) 370 { 371 struct utsname uts; 372 int ret; 373 374 ret = uname(&uts); 375 if (ret < 0) 376 return -1; 377 378 return do_write_string(ff, uts.machine); 379 } 380 381 static int write_version(struct feat_fd *ff, 382 struct evlist *evlist __maybe_unused) 383 { 384 return do_write_string(ff, perf_version_string); 385 } 386 387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 388 { 389 FILE *file; 390 char *buf = NULL; 391 char *s, *p; 392 const char *search = cpuinfo_proc; 393 size_t len = 0; 394 int ret = -1; 395 396 if (!search) 397 return -1; 398 399 file = fopen("/proc/cpuinfo", "r"); 400 if (!file) 401 return -1; 402 403 while (getline(&buf, &len, file) > 0) { 404 ret = strncmp(buf, search, strlen(search)); 405 if (!ret) 406 break; 407 } 408 409 if (ret) { 410 ret = -1; 411 goto done; 412 } 413 414 s = buf; 415 416 p = strchr(buf, ':'); 417 if (p && *(p+1) == ' ' && *(p+2)) 418 s = p + 2; 419 p = strchr(s, '\n'); 420 if (p) 421 *p = '\0'; 422 423 /* squash extra space characters (branding string) */ 424 p = s; 425 while (*p) { 426 if (isspace(*p)) { 427 char *r = p + 1; 428 char *q = skip_spaces(r); 429 *p = ' '; 430 if (q != (p+1)) 431 while ((*r++ = *q++)); 432 } 433 p++; 434 } 435 ret = do_write_string(ff, s); 436 done: 437 free(buf); 438 fclose(file); 439 return ret; 440 } 441 442 static int write_cpudesc(struct feat_fd *ff, 443 struct evlist *evlist __maybe_unused) 444 { 445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 446 #define CPUINFO_PROC { "cpu", } 447 #elif defined(__s390__) 448 #define CPUINFO_PROC { "vendor_id", } 449 #elif defined(__sh__) 450 #define CPUINFO_PROC { "cpu type", } 451 #elif defined(__alpha__) || defined(__mips__) 452 #define CPUINFO_PROC { "cpu model", } 453 #elif defined(__arm__) 454 #define CPUINFO_PROC { "model name", "Processor", } 455 #elif defined(__arc__) 456 #define CPUINFO_PROC { "Processor", } 457 #elif defined(__xtensa__) 458 #define CPUINFO_PROC { "core ID", } 459 #elif defined(__loongarch__) 460 #define CPUINFO_PROC { "Model Name", } 461 #else 462 #define CPUINFO_PROC { "model name", } 463 #endif 464 const char *cpuinfo_procs[] = CPUINFO_PROC; 465 #undef CPUINFO_PROC 466 unsigned int i; 467 468 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 469 int ret; 470 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 471 if (ret >= 0) 472 return ret; 473 } 474 return -1; 475 } 476 477 478 static int write_nrcpus(struct feat_fd *ff, 479 struct evlist *evlist __maybe_unused) 480 { 481 long nr; 482 u32 nrc, nra; 483 int ret; 484 485 nrc = cpu__max_present_cpu().cpu; 486 487 nr = sysconf(_SC_NPROCESSORS_ONLN); 488 if (nr < 0) 489 return -1; 490 491 nra = (u32)(nr & UINT_MAX); 492 493 ret = do_write(ff, &nrc, sizeof(nrc)); 494 if (ret < 0) 495 return ret; 496 497 return do_write(ff, &nra, sizeof(nra)); 498 } 499 500 static int write_event_desc(struct feat_fd *ff, 501 struct evlist *evlist) 502 { 503 struct evsel *evsel; 504 u32 nre, nri, sz; 505 int ret; 506 507 nre = evlist->core.nr_entries; 508 509 /* 510 * write number of events 511 */ 512 ret = do_write(ff, &nre, sizeof(nre)); 513 if (ret < 0) 514 return ret; 515 516 /* 517 * size of perf_event_attr struct 518 */ 519 sz = (u32)sizeof(evsel->core.attr); 520 ret = do_write(ff, &sz, sizeof(sz)); 521 if (ret < 0) 522 return ret; 523 524 evlist__for_each_entry(evlist, evsel) { 525 ret = do_write(ff, &evsel->core.attr, sz); 526 if (ret < 0) 527 return ret; 528 /* 529 * write number of unique id per event 530 * there is one id per instance of an event 531 * 532 * copy into an nri to be independent of the 533 * type of ids, 534 */ 535 nri = evsel->core.ids; 536 ret = do_write(ff, &nri, sizeof(nri)); 537 if (ret < 0) 538 return ret; 539 540 /* 541 * write event string as passed on cmdline 542 */ 543 ret = do_write_string(ff, evsel__name(evsel)); 544 if (ret < 0) 545 return ret; 546 /* 547 * write unique ids for this event 548 */ 549 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 550 if (ret < 0) 551 return ret; 552 } 553 return 0; 554 } 555 556 static int write_cmdline(struct feat_fd *ff, 557 struct evlist *evlist __maybe_unused) 558 { 559 struct perf_env *env = &ff->ph->env; 560 char pbuf[MAXPATHLEN], *buf; 561 int i, ret, n; 562 563 /* actual path to perf binary */ 564 buf = perf_exe(pbuf, MAXPATHLEN); 565 566 /* account for binary path */ 567 n = env->nr_cmdline + 1; 568 569 ret = do_write(ff, &n, sizeof(n)); 570 if (ret < 0) 571 return ret; 572 573 ret = do_write_string(ff, buf); 574 if (ret < 0) 575 return ret; 576 577 for (i = 0 ; i < env->nr_cmdline; i++) { 578 ret = do_write_string(ff, env->cmdline_argv[i]); 579 if (ret < 0) 580 return ret; 581 } 582 return 0; 583 } 584 585 586 static int write_cpu_topology(struct feat_fd *ff, 587 struct evlist *evlist __maybe_unused) 588 { 589 struct perf_env *env = &ff->ph->env; 590 struct cpu_topology *tp; 591 u32 i; 592 int ret, j; 593 594 tp = cpu_topology__new(); 595 if (!tp) 596 return -1; 597 598 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists)); 599 if (ret < 0) 600 goto done; 601 602 for (i = 0; i < tp->package_cpus_lists; i++) { 603 ret = do_write_string(ff, tp->package_cpus_list[i]); 604 if (ret < 0) 605 goto done; 606 } 607 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists)); 608 if (ret < 0) 609 goto done; 610 611 for (i = 0; i < tp->core_cpus_lists; i++) { 612 ret = do_write_string(ff, tp->core_cpus_list[i]); 613 if (ret < 0) 614 break; 615 } 616 617 ret = perf_env__read_cpu_topology_map(env); 618 if (ret < 0) 619 goto done; 620 621 for (j = 0; j < env->nr_cpus_avail; j++) { 622 ret = do_write(ff, &env->cpu[j].core_id, 623 sizeof(env->cpu[j].core_id)); 624 if (ret < 0) 625 return ret; 626 ret = do_write(ff, &env->cpu[j].socket_id, 627 sizeof(env->cpu[j].socket_id)); 628 if (ret < 0) 629 return ret; 630 } 631 632 if (!tp->die_cpus_lists) 633 goto done; 634 635 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists)); 636 if (ret < 0) 637 goto done; 638 639 for (i = 0; i < tp->die_cpus_lists; i++) { 640 ret = do_write_string(ff, tp->die_cpus_list[i]); 641 if (ret < 0) 642 goto done; 643 } 644 645 for (j = 0; j < env->nr_cpus_avail; j++) { 646 ret = do_write(ff, &env->cpu[j].die_id, 647 sizeof(env->cpu[j].die_id)); 648 if (ret < 0) 649 return ret; 650 } 651 652 done: 653 cpu_topology__delete(tp); 654 return ret; 655 } 656 657 658 659 static int write_total_mem(struct feat_fd *ff, 660 struct evlist *evlist __maybe_unused) 661 { 662 char *buf = NULL; 663 FILE *fp; 664 size_t len = 0; 665 int ret = -1, n; 666 uint64_t mem; 667 668 fp = fopen("/proc/meminfo", "r"); 669 if (!fp) 670 return -1; 671 672 while (getline(&buf, &len, fp) > 0) { 673 ret = strncmp(buf, "MemTotal:", 9); 674 if (!ret) 675 break; 676 } 677 if (!ret) { 678 n = sscanf(buf, "%*s %"PRIu64, &mem); 679 if (n == 1) 680 ret = do_write(ff, &mem, sizeof(mem)); 681 } else 682 ret = -1; 683 free(buf); 684 fclose(fp); 685 return ret; 686 } 687 688 static int write_numa_topology(struct feat_fd *ff, 689 struct evlist *evlist __maybe_unused) 690 { 691 struct numa_topology *tp; 692 int ret = -1; 693 u32 i; 694 695 tp = numa_topology__new(); 696 if (!tp) 697 return -ENOMEM; 698 699 ret = do_write(ff, &tp->nr, sizeof(u32)); 700 if (ret < 0) 701 goto err; 702 703 for (i = 0; i < tp->nr; i++) { 704 struct numa_topology_node *n = &tp->nodes[i]; 705 706 ret = do_write(ff, &n->node, sizeof(u32)); 707 if (ret < 0) 708 goto err; 709 710 ret = do_write(ff, &n->mem_total, sizeof(u64)); 711 if (ret) 712 goto err; 713 714 ret = do_write(ff, &n->mem_free, sizeof(u64)); 715 if (ret) 716 goto err; 717 718 ret = do_write_string(ff, n->cpus); 719 if (ret < 0) 720 goto err; 721 } 722 723 ret = 0; 724 725 err: 726 numa_topology__delete(tp); 727 return ret; 728 } 729 730 /* 731 * File format: 732 * 733 * struct pmu_mappings { 734 * u32 pmu_num; 735 * struct pmu_map { 736 * u32 type; 737 * char name[]; 738 * }[pmu_num]; 739 * }; 740 */ 741 742 static int write_pmu_mappings(struct feat_fd *ff, 743 struct evlist *evlist __maybe_unused) 744 { 745 struct perf_pmu *pmu = NULL; 746 u32 pmu_num = 0; 747 int ret; 748 749 /* 750 * Do a first pass to count number of pmu to avoid lseek so this 751 * works in pipe mode as well. 752 */ 753 while ((pmu = perf_pmus__scan(pmu))) 754 pmu_num++; 755 756 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 757 if (ret < 0) 758 return ret; 759 760 while ((pmu = perf_pmus__scan(pmu))) { 761 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 762 if (ret < 0) 763 return ret; 764 765 ret = do_write_string(ff, pmu->name); 766 if (ret < 0) 767 return ret; 768 } 769 770 return 0; 771 } 772 773 /* 774 * File format: 775 * 776 * struct group_descs { 777 * u32 nr_groups; 778 * struct group_desc { 779 * char name[]; 780 * u32 leader_idx; 781 * u32 nr_members; 782 * }[nr_groups]; 783 * }; 784 */ 785 static int write_group_desc(struct feat_fd *ff, 786 struct evlist *evlist) 787 { 788 u32 nr_groups = evlist__nr_groups(evlist); 789 struct evsel *evsel; 790 int ret; 791 792 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 793 if (ret < 0) 794 return ret; 795 796 evlist__for_each_entry(evlist, evsel) { 797 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 798 const char *name = evsel->group_name ?: "{anon_group}"; 799 u32 leader_idx = evsel->core.idx; 800 u32 nr_members = evsel->core.nr_members; 801 802 ret = do_write_string(ff, name); 803 if (ret < 0) 804 return ret; 805 806 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 807 if (ret < 0) 808 return ret; 809 810 ret = do_write(ff, &nr_members, sizeof(nr_members)); 811 if (ret < 0) 812 return ret; 813 } 814 } 815 return 0; 816 } 817 818 /* 819 * Return the CPU id as a raw string. 820 * 821 * Each architecture should provide a more precise id string that 822 * can be use to match the architecture's "mapfile". 823 */ 824 char * __weak get_cpuid_str(struct perf_cpu cpu __maybe_unused) 825 { 826 return NULL; 827 } 828 829 char *get_cpuid_allow_env_override(struct perf_cpu cpu) 830 { 831 char *cpuid; 832 static bool printed; 833 834 cpuid = getenv("PERF_CPUID"); 835 if (cpuid) 836 cpuid = strdup(cpuid); 837 if (!cpuid) 838 cpuid = get_cpuid_str(cpu); 839 if (!cpuid) 840 return NULL; 841 842 if (!printed) { 843 pr_debug("Using CPUID %s\n", cpuid); 844 printed = true; 845 } 846 return cpuid; 847 } 848 849 /* Return zero when the cpuid from the mapfile.csv matches the 850 * cpuid string generated on this platform. 851 * Otherwise return non-zero. 852 */ 853 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 854 { 855 regex_t re; 856 regmatch_t pmatch[1]; 857 int match; 858 859 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 860 /* Warn unable to generate match particular string. */ 861 pr_info("Invalid regular expression %s\n", mapcpuid); 862 return 1; 863 } 864 865 match = !regexec(&re, cpuid, 1, pmatch, 0); 866 regfree(&re); 867 if (match) { 868 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 869 870 /* Verify the entire string matched. */ 871 if (match_len == strlen(cpuid)) 872 return 0; 873 } 874 return 1; 875 } 876 877 /* 878 * default get_cpuid(): nothing gets recorded 879 * actual implementation must be in arch/$(SRCARCH)/util/header.c 880 */ 881 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused, 882 struct perf_cpu cpu __maybe_unused) 883 { 884 return ENOSYS; /* Not implemented */ 885 } 886 887 static int write_cpuid(struct feat_fd *ff, struct evlist *evlist) 888 { 889 struct perf_cpu cpu = perf_cpu_map__min(evlist->core.all_cpus); 890 char buffer[64]; 891 int ret; 892 893 ret = get_cpuid(buffer, sizeof(buffer), cpu); 894 if (ret) 895 return -1; 896 897 return do_write_string(ff, buffer); 898 } 899 900 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 901 struct evlist *evlist __maybe_unused) 902 { 903 return 0; 904 } 905 906 static int write_auxtrace(struct feat_fd *ff, 907 struct evlist *evlist __maybe_unused) 908 { 909 struct perf_session *session; 910 int err; 911 912 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 913 return -1; 914 915 session = container_of(ff->ph, struct perf_session, header); 916 917 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 918 if (err < 0) 919 pr_err("Failed to write auxtrace index\n"); 920 return err; 921 } 922 923 static int write_clockid(struct feat_fd *ff, 924 struct evlist *evlist __maybe_unused) 925 { 926 return do_write(ff, &ff->ph->env.clock.clockid_res_ns, 927 sizeof(ff->ph->env.clock.clockid_res_ns)); 928 } 929 930 static int write_clock_data(struct feat_fd *ff, 931 struct evlist *evlist __maybe_unused) 932 { 933 u64 *data64; 934 u32 data32; 935 int ret; 936 937 /* version */ 938 data32 = 1; 939 940 ret = do_write(ff, &data32, sizeof(data32)); 941 if (ret < 0) 942 return ret; 943 944 /* clockid */ 945 data32 = ff->ph->env.clock.clockid; 946 947 ret = do_write(ff, &data32, sizeof(data32)); 948 if (ret < 0) 949 return ret; 950 951 /* TOD ref time */ 952 data64 = &ff->ph->env.clock.tod_ns; 953 954 ret = do_write(ff, data64, sizeof(*data64)); 955 if (ret < 0) 956 return ret; 957 958 /* clockid ref time */ 959 data64 = &ff->ph->env.clock.clockid_ns; 960 961 return do_write(ff, data64, sizeof(*data64)); 962 } 963 964 static int write_hybrid_topology(struct feat_fd *ff, 965 struct evlist *evlist __maybe_unused) 966 { 967 struct hybrid_topology *tp; 968 int ret; 969 u32 i; 970 971 tp = hybrid_topology__new(); 972 if (!tp) 973 return -ENOENT; 974 975 ret = do_write(ff, &tp->nr, sizeof(u32)); 976 if (ret < 0) 977 goto err; 978 979 for (i = 0; i < tp->nr; i++) { 980 struct hybrid_topology_node *n = &tp->nodes[i]; 981 982 ret = do_write_string(ff, n->pmu_name); 983 if (ret < 0) 984 goto err; 985 986 ret = do_write_string(ff, n->cpus); 987 if (ret < 0) 988 goto err; 989 } 990 991 ret = 0; 992 993 err: 994 hybrid_topology__delete(tp); 995 return ret; 996 } 997 998 static int write_dir_format(struct feat_fd *ff, 999 struct evlist *evlist __maybe_unused) 1000 { 1001 struct perf_session *session; 1002 struct perf_data *data; 1003 1004 session = container_of(ff->ph, struct perf_session, header); 1005 data = session->data; 1006 1007 if (WARN_ON(!perf_data__is_dir(data))) 1008 return -1; 1009 1010 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 1011 } 1012 1013 #ifdef HAVE_LIBBPF_SUPPORT 1014 static int write_bpf_prog_info(struct feat_fd *ff, 1015 struct evlist *evlist __maybe_unused) 1016 { 1017 struct perf_env *env = &ff->ph->env; 1018 struct rb_root *root; 1019 struct rb_node *next; 1020 int ret = 0; 1021 1022 down_read(&env->bpf_progs.lock); 1023 1024 if (env->bpf_progs.infos_cnt == 0) 1025 goto out; 1026 1027 ret = do_write(ff, &env->bpf_progs.infos_cnt, 1028 sizeof(env->bpf_progs.infos_cnt)); 1029 if (ret < 0) 1030 goto out; 1031 1032 root = &env->bpf_progs.infos; 1033 next = rb_first(root); 1034 while (next) { 1035 struct bpf_prog_info_node *node; 1036 size_t len; 1037 1038 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1039 next = rb_next(&node->rb_node); 1040 len = sizeof(struct perf_bpil) + 1041 node->info_linear->data_len; 1042 1043 /* before writing to file, translate address to offset */ 1044 bpil_addr_to_offs(node->info_linear); 1045 ret = do_write(ff, node->info_linear, len); 1046 /* 1047 * translate back to address even when do_write() fails, 1048 * so that this function never changes the data. 1049 */ 1050 bpil_offs_to_addr(node->info_linear); 1051 if (ret < 0) 1052 goto out; 1053 } 1054 out: 1055 up_read(&env->bpf_progs.lock); 1056 return ret; 1057 } 1058 1059 static int write_bpf_btf(struct feat_fd *ff, 1060 struct evlist *evlist __maybe_unused) 1061 { 1062 struct perf_env *env = &ff->ph->env; 1063 struct rb_root *root; 1064 struct rb_node *next; 1065 int ret = 0; 1066 1067 down_read(&env->bpf_progs.lock); 1068 1069 if (env->bpf_progs.btfs_cnt == 0) 1070 goto out; 1071 1072 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 1073 sizeof(env->bpf_progs.btfs_cnt)); 1074 1075 if (ret < 0) 1076 goto out; 1077 1078 root = &env->bpf_progs.btfs; 1079 next = rb_first(root); 1080 while (next) { 1081 struct btf_node *node; 1082 1083 node = rb_entry(next, struct btf_node, rb_node); 1084 next = rb_next(&node->rb_node); 1085 ret = do_write(ff, &node->id, 1086 sizeof(u32) * 2 + node->data_size); 1087 if (ret < 0) 1088 goto out; 1089 } 1090 out: 1091 up_read(&env->bpf_progs.lock); 1092 return ret; 1093 } 1094 #endif // HAVE_LIBBPF_SUPPORT 1095 1096 static int cpu_cache_level__sort(const void *a, const void *b) 1097 { 1098 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1099 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1100 1101 return cache_a->level - cache_b->level; 1102 } 1103 1104 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1105 { 1106 if (a->level != b->level) 1107 return false; 1108 1109 if (a->line_size != b->line_size) 1110 return false; 1111 1112 if (a->sets != b->sets) 1113 return false; 1114 1115 if (a->ways != b->ways) 1116 return false; 1117 1118 if (strcmp(a->type, b->type)) 1119 return false; 1120 1121 if (strcmp(a->size, b->size)) 1122 return false; 1123 1124 if (strcmp(a->map, b->map)) 1125 return false; 1126 1127 return true; 1128 } 1129 1130 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1131 { 1132 char path[PATH_MAX], file[PATH_MAX]; 1133 struct stat st; 1134 size_t len; 1135 1136 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1137 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1138 1139 if (stat(file, &st)) 1140 return 1; 1141 1142 scnprintf(file, PATH_MAX, "%s/level", path); 1143 if (sysfs__read_int(file, (int *) &cache->level)) 1144 return -1; 1145 1146 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1147 if (sysfs__read_int(file, (int *) &cache->line_size)) 1148 return -1; 1149 1150 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1151 if (sysfs__read_int(file, (int *) &cache->sets)) 1152 return -1; 1153 1154 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1155 if (sysfs__read_int(file, (int *) &cache->ways)) 1156 return -1; 1157 1158 scnprintf(file, PATH_MAX, "%s/type", path); 1159 if (sysfs__read_str(file, &cache->type, &len)) 1160 return -1; 1161 1162 cache->type[len] = 0; 1163 cache->type = strim(cache->type); 1164 1165 scnprintf(file, PATH_MAX, "%s/size", path); 1166 if (sysfs__read_str(file, &cache->size, &len)) { 1167 zfree(&cache->type); 1168 return -1; 1169 } 1170 1171 cache->size[len] = 0; 1172 cache->size = strim(cache->size); 1173 1174 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1175 if (sysfs__read_str(file, &cache->map, &len)) { 1176 zfree(&cache->size); 1177 zfree(&cache->type); 1178 return -1; 1179 } 1180 1181 cache->map[len] = 0; 1182 cache->map = strim(cache->map); 1183 return 0; 1184 } 1185 1186 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1187 { 1188 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1189 } 1190 1191 /* 1192 * Build caches levels for a particular CPU from the data in 1193 * /sys/devices/system/cpu/cpu<cpu>/cache/ 1194 * The cache level data is stored in caches[] from index at 1195 * *cntp. 1196 */ 1197 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp) 1198 { 1199 u16 level; 1200 1201 for (level = 0; level < MAX_CACHE_LVL; level++) { 1202 struct cpu_cache_level c; 1203 int err; 1204 u32 i; 1205 1206 err = cpu_cache_level__read(&c, cpu, level); 1207 if (err < 0) 1208 return err; 1209 1210 if (err == 1) 1211 break; 1212 1213 for (i = 0; i < *cntp; i++) { 1214 if (cpu_cache_level__cmp(&c, &caches[i])) 1215 break; 1216 } 1217 1218 if (i == *cntp) { 1219 caches[*cntp] = c; 1220 *cntp = *cntp + 1; 1221 } else 1222 cpu_cache_level__free(&c); 1223 } 1224 1225 return 0; 1226 } 1227 1228 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1229 { 1230 u32 nr, cpu, cnt = 0; 1231 1232 nr = cpu__max_cpu().cpu; 1233 1234 for (cpu = 0; cpu < nr; cpu++) { 1235 int ret = build_caches_for_cpu(cpu, caches, &cnt); 1236 1237 if (ret) 1238 return ret; 1239 } 1240 *cntp = cnt; 1241 return 0; 1242 } 1243 1244 static int write_cache(struct feat_fd *ff, 1245 struct evlist *evlist __maybe_unused) 1246 { 1247 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL; 1248 struct cpu_cache_level caches[max_caches]; 1249 u32 cnt = 0, i, version = 1; 1250 int ret; 1251 1252 ret = build_caches(caches, &cnt); 1253 if (ret) 1254 goto out; 1255 1256 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1257 1258 ret = do_write(ff, &version, sizeof(u32)); 1259 if (ret < 0) 1260 goto out; 1261 1262 ret = do_write(ff, &cnt, sizeof(u32)); 1263 if (ret < 0) 1264 goto out; 1265 1266 for (i = 0; i < cnt; i++) { 1267 struct cpu_cache_level *c = &caches[i]; 1268 1269 #define _W(v) \ 1270 ret = do_write(ff, &c->v, sizeof(u32)); \ 1271 if (ret < 0) \ 1272 goto out; 1273 1274 _W(level) 1275 _W(line_size) 1276 _W(sets) 1277 _W(ways) 1278 #undef _W 1279 1280 #define _W(v) \ 1281 ret = do_write_string(ff, (const char *) c->v); \ 1282 if (ret < 0) \ 1283 goto out; 1284 1285 _W(type) 1286 _W(size) 1287 _W(map) 1288 #undef _W 1289 } 1290 1291 out: 1292 for (i = 0; i < cnt; i++) 1293 cpu_cache_level__free(&caches[i]); 1294 return ret; 1295 } 1296 1297 static int write_stat(struct feat_fd *ff __maybe_unused, 1298 struct evlist *evlist __maybe_unused) 1299 { 1300 return 0; 1301 } 1302 1303 static int write_sample_time(struct feat_fd *ff, 1304 struct evlist *evlist) 1305 { 1306 int ret; 1307 1308 ret = do_write(ff, &evlist->first_sample_time, 1309 sizeof(evlist->first_sample_time)); 1310 if (ret < 0) 1311 return ret; 1312 1313 return do_write(ff, &evlist->last_sample_time, 1314 sizeof(evlist->last_sample_time)); 1315 } 1316 1317 1318 static int memory_node__read(struct memory_node *n, unsigned long idx) 1319 { 1320 unsigned int phys, size = 0; 1321 char path[PATH_MAX]; 1322 struct io_dirent64 *ent; 1323 struct io_dir dir; 1324 1325 #define for_each_memory(mem, dir) \ 1326 while ((ent = io_dir__readdir(&dir)) != NULL) \ 1327 if (strcmp(ent->d_name, ".") && \ 1328 strcmp(ent->d_name, "..") && \ 1329 sscanf(ent->d_name, "memory%u", &mem) == 1) 1330 1331 scnprintf(path, PATH_MAX, 1332 "%s/devices/system/node/node%lu", 1333 sysfs__mountpoint(), idx); 1334 1335 io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY)); 1336 if (dir.dirfd < 0) { 1337 pr_warning("failed: can't open memory sysfs data '%s'\n", path); 1338 return -1; 1339 } 1340 1341 for_each_memory(phys, dir) { 1342 size = max(phys, size); 1343 } 1344 1345 size++; 1346 1347 n->set = bitmap_zalloc(size); 1348 if (!n->set) { 1349 close(dir.dirfd); 1350 return -ENOMEM; 1351 } 1352 1353 n->node = idx; 1354 n->size = size; 1355 1356 io_dir__rewinddir(&dir); 1357 1358 for_each_memory(phys, dir) { 1359 __set_bit(phys, n->set); 1360 } 1361 1362 close(dir.dirfd); 1363 return 0; 1364 } 1365 1366 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt) 1367 { 1368 for (u64 i = 0; i < cnt; i++) 1369 bitmap_free(nodesp[i].set); 1370 1371 free(nodesp); 1372 } 1373 1374 static int memory_node__sort(const void *a, const void *b) 1375 { 1376 const struct memory_node *na = a; 1377 const struct memory_node *nb = b; 1378 1379 return na->node - nb->node; 1380 } 1381 1382 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp) 1383 { 1384 char path[PATH_MAX]; 1385 struct io_dirent64 *ent; 1386 struct io_dir dir; 1387 int ret = 0; 1388 size_t cnt = 0, size = 0; 1389 struct memory_node *nodes = NULL; 1390 1391 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1392 sysfs__mountpoint()); 1393 1394 io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY)); 1395 if (dir.dirfd < 0) { 1396 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n", 1397 __func__, path); 1398 return -1; 1399 } 1400 1401 while (!ret && (ent = io_dir__readdir(&dir))) { 1402 unsigned int idx; 1403 int r; 1404 1405 if (!strcmp(ent->d_name, ".") || 1406 !strcmp(ent->d_name, "..")) 1407 continue; 1408 1409 r = sscanf(ent->d_name, "node%u", &idx); 1410 if (r != 1) 1411 continue; 1412 1413 if (cnt >= size) { 1414 struct memory_node *new_nodes = 1415 reallocarray(nodes, cnt + 4, sizeof(*nodes)); 1416 1417 if (!new_nodes) { 1418 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size); 1419 ret = -ENOMEM; 1420 goto out; 1421 } 1422 nodes = new_nodes; 1423 size += 4; 1424 } 1425 ret = memory_node__read(&nodes[cnt], idx); 1426 if (!ret) 1427 cnt += 1; 1428 } 1429 out: 1430 close(dir.dirfd); 1431 if (!ret) { 1432 *cntp = cnt; 1433 *nodesp = nodes; 1434 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1435 } else 1436 memory_node__delete_nodes(nodes, cnt); 1437 1438 return ret; 1439 } 1440 1441 /* 1442 * The MEM_TOPOLOGY holds physical memory map for every 1443 * node in system. The format of data is as follows: 1444 * 1445 * 0 - version | for future changes 1446 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1447 * 16 - count | number of nodes 1448 * 1449 * For each node we store map of physical indexes for 1450 * each node: 1451 * 1452 * 32 - node id | node index 1453 * 40 - size | size of bitmap 1454 * 48 - bitmap | bitmap of memory indexes that belongs to node 1455 */ 1456 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1457 struct evlist *evlist __maybe_unused) 1458 { 1459 struct memory_node *nodes = NULL; 1460 u64 bsize, version = 1, i, nr = 0; 1461 int ret; 1462 1463 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1464 (unsigned long long *) &bsize); 1465 if (ret) 1466 return ret; 1467 1468 ret = build_mem_topology(&nodes, &nr); 1469 if (ret) 1470 return ret; 1471 1472 ret = do_write(ff, &version, sizeof(version)); 1473 if (ret < 0) 1474 goto out; 1475 1476 ret = do_write(ff, &bsize, sizeof(bsize)); 1477 if (ret < 0) 1478 goto out; 1479 1480 ret = do_write(ff, &nr, sizeof(nr)); 1481 if (ret < 0) 1482 goto out; 1483 1484 for (i = 0; i < nr; i++) { 1485 struct memory_node *n = &nodes[i]; 1486 1487 #define _W(v) \ 1488 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1489 if (ret < 0) \ 1490 goto out; 1491 1492 _W(node) 1493 _W(size) 1494 1495 #undef _W 1496 1497 ret = do_write_bitmap(ff, n->set, n->size); 1498 if (ret < 0) 1499 goto out; 1500 } 1501 1502 out: 1503 memory_node__delete_nodes(nodes, nr); 1504 return ret; 1505 } 1506 1507 static int write_compressed(struct feat_fd *ff __maybe_unused, 1508 struct evlist *evlist __maybe_unused) 1509 { 1510 int ret; 1511 1512 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1513 if (ret) 1514 return ret; 1515 1516 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1517 if (ret) 1518 return ret; 1519 1520 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1521 if (ret) 1522 return ret; 1523 1524 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1525 if (ret) 1526 return ret; 1527 1528 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1529 } 1530 1531 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu, 1532 bool write_pmu) 1533 { 1534 struct perf_pmu_caps *caps = NULL; 1535 int ret; 1536 1537 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps)); 1538 if (ret < 0) 1539 return ret; 1540 1541 list_for_each_entry(caps, &pmu->caps, list) { 1542 ret = do_write_string(ff, caps->name); 1543 if (ret < 0) 1544 return ret; 1545 1546 ret = do_write_string(ff, caps->value); 1547 if (ret < 0) 1548 return ret; 1549 } 1550 1551 if (write_pmu) { 1552 ret = do_write_string(ff, pmu->name); 1553 if (ret < 0) 1554 return ret; 1555 } 1556 1557 return ret; 1558 } 1559 1560 static int write_cpu_pmu_caps(struct feat_fd *ff, 1561 struct evlist *evlist __maybe_unused) 1562 { 1563 struct perf_pmu *cpu_pmu = perf_pmus__find("cpu"); 1564 int ret; 1565 1566 if (!cpu_pmu) 1567 return -ENOENT; 1568 1569 ret = perf_pmu__caps_parse(cpu_pmu); 1570 if (ret < 0) 1571 return ret; 1572 1573 return __write_pmu_caps(ff, cpu_pmu, false); 1574 } 1575 1576 static int write_pmu_caps(struct feat_fd *ff, 1577 struct evlist *evlist __maybe_unused) 1578 { 1579 struct perf_pmu *pmu = NULL; 1580 int nr_pmu = 0; 1581 int ret; 1582 1583 while ((pmu = perf_pmus__scan(pmu))) { 1584 if (!strcmp(pmu->name, "cpu")) { 1585 /* 1586 * The "cpu" PMU is special and covered by 1587 * HEADER_CPU_PMU_CAPS. Note, core PMUs are 1588 * counted/written here for ARM, s390 and Intel hybrid. 1589 */ 1590 continue; 1591 } 1592 if (perf_pmu__caps_parse(pmu) <= 0) 1593 continue; 1594 nr_pmu++; 1595 } 1596 1597 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu)); 1598 if (ret < 0) 1599 return ret; 1600 1601 if (!nr_pmu) 1602 return 0; 1603 1604 /* 1605 * Note older perf tools assume core PMUs come first, this is a property 1606 * of perf_pmus__scan. 1607 */ 1608 pmu = NULL; 1609 while ((pmu = perf_pmus__scan(pmu))) { 1610 if (!strcmp(pmu->name, "cpu")) { 1611 /* Skip as above. */ 1612 continue; 1613 } 1614 if (perf_pmu__caps_parse(pmu) <= 0) 1615 continue; 1616 ret = __write_pmu_caps(ff, pmu, true); 1617 if (ret < 0) 1618 return ret; 1619 } 1620 return 0; 1621 } 1622 1623 static void print_hostname(struct feat_fd *ff, FILE *fp) 1624 { 1625 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1626 } 1627 1628 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1629 { 1630 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1631 } 1632 1633 static void print_arch(struct feat_fd *ff, FILE *fp) 1634 { 1635 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1636 } 1637 1638 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1639 { 1640 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1641 } 1642 1643 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1644 { 1645 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1646 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1647 } 1648 1649 static void print_version(struct feat_fd *ff, FILE *fp) 1650 { 1651 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1652 } 1653 1654 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1655 { 1656 int nr, i; 1657 1658 nr = ff->ph->env.nr_cmdline; 1659 1660 fprintf(fp, "# cmdline : "); 1661 1662 for (i = 0; i < nr; i++) { 1663 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1664 if (!argv_i) { 1665 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1666 } else { 1667 char *mem = argv_i; 1668 do { 1669 char *quote = strchr(argv_i, '\''); 1670 if (!quote) 1671 break; 1672 *quote++ = '\0'; 1673 fprintf(fp, "%s\\\'", argv_i); 1674 argv_i = quote; 1675 } while (1); 1676 fprintf(fp, "%s ", argv_i); 1677 free(mem); 1678 } 1679 } 1680 fputc('\n', fp); 1681 } 1682 1683 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1684 { 1685 struct perf_header *ph = ff->ph; 1686 int cpu_nr = ph->env.nr_cpus_avail; 1687 int nr, i; 1688 char *str; 1689 1690 nr = ph->env.nr_sibling_cores; 1691 str = ph->env.sibling_cores; 1692 1693 for (i = 0; i < nr; i++) { 1694 fprintf(fp, "# sibling sockets : %s\n", str); 1695 str += strlen(str) + 1; 1696 } 1697 1698 if (ph->env.nr_sibling_dies) { 1699 nr = ph->env.nr_sibling_dies; 1700 str = ph->env.sibling_dies; 1701 1702 for (i = 0; i < nr; i++) { 1703 fprintf(fp, "# sibling dies : %s\n", str); 1704 str += strlen(str) + 1; 1705 } 1706 } 1707 1708 nr = ph->env.nr_sibling_threads; 1709 str = ph->env.sibling_threads; 1710 1711 for (i = 0; i < nr; i++) { 1712 fprintf(fp, "# sibling threads : %s\n", str); 1713 str += strlen(str) + 1; 1714 } 1715 1716 if (ph->env.nr_sibling_dies) { 1717 if (ph->env.cpu != NULL) { 1718 for (i = 0; i < cpu_nr; i++) 1719 fprintf(fp, "# CPU %d: Core ID %d, " 1720 "Die ID %d, Socket ID %d\n", 1721 i, ph->env.cpu[i].core_id, 1722 ph->env.cpu[i].die_id, 1723 ph->env.cpu[i].socket_id); 1724 } else 1725 fprintf(fp, "# Core ID, Die ID and Socket ID " 1726 "information is not available\n"); 1727 } else { 1728 if (ph->env.cpu != NULL) { 1729 for (i = 0; i < cpu_nr; i++) 1730 fprintf(fp, "# CPU %d: Core ID %d, " 1731 "Socket ID %d\n", 1732 i, ph->env.cpu[i].core_id, 1733 ph->env.cpu[i].socket_id); 1734 } else 1735 fprintf(fp, "# Core ID and Socket ID " 1736 "information is not available\n"); 1737 } 1738 } 1739 1740 static void print_clockid(struct feat_fd *ff, FILE *fp) 1741 { 1742 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1743 ff->ph->env.clock.clockid_res_ns * 1000); 1744 } 1745 1746 static void print_clock_data(struct feat_fd *ff, FILE *fp) 1747 { 1748 struct timespec clockid_ns; 1749 char tstr[64], date[64]; 1750 struct timeval tod_ns; 1751 clockid_t clockid; 1752 struct tm ltime; 1753 u64 ref; 1754 1755 if (!ff->ph->env.clock.enabled) { 1756 fprintf(fp, "# reference time disabled\n"); 1757 return; 1758 } 1759 1760 /* Compute TOD time. */ 1761 ref = ff->ph->env.clock.tod_ns; 1762 tod_ns.tv_sec = ref / NSEC_PER_SEC; 1763 ref -= tod_ns.tv_sec * NSEC_PER_SEC; 1764 tod_ns.tv_usec = ref / NSEC_PER_USEC; 1765 1766 /* Compute clockid time. */ 1767 ref = ff->ph->env.clock.clockid_ns; 1768 clockid_ns.tv_sec = ref / NSEC_PER_SEC; 1769 ref -= clockid_ns.tv_sec * NSEC_PER_SEC; 1770 clockid_ns.tv_nsec = ref; 1771 1772 clockid = ff->ph->env.clock.clockid; 1773 1774 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) 1775 snprintf(tstr, sizeof(tstr), "<error>"); 1776 else { 1777 strftime(date, sizeof(date), "%F %T", <ime); 1778 scnprintf(tstr, sizeof(tstr), "%s.%06d", 1779 date, (int) tod_ns.tv_usec); 1780 } 1781 1782 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); 1783 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", 1784 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec, 1785 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec, 1786 clockid_name(clockid)); 1787 } 1788 1789 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp) 1790 { 1791 int i; 1792 struct hybrid_node *n; 1793 1794 fprintf(fp, "# hybrid cpu system:\n"); 1795 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) { 1796 n = &ff->ph->env.hybrid_nodes[i]; 1797 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus); 1798 } 1799 } 1800 1801 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1802 { 1803 struct perf_session *session; 1804 struct perf_data *data; 1805 1806 session = container_of(ff->ph, struct perf_session, header); 1807 data = session->data; 1808 1809 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1810 } 1811 1812 #ifdef HAVE_LIBBPF_SUPPORT 1813 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1814 { 1815 struct perf_env *env = &ff->ph->env; 1816 struct rb_root *root; 1817 struct rb_node *next; 1818 1819 down_read(&env->bpf_progs.lock); 1820 1821 root = &env->bpf_progs.infos; 1822 next = rb_first(root); 1823 1824 if (!next) 1825 printf("# bpf_prog_info empty\n"); 1826 1827 while (next) { 1828 struct bpf_prog_info_node *node; 1829 1830 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1831 next = rb_next(&node->rb_node); 1832 1833 __bpf_event__print_bpf_prog_info(&node->info_linear->info, 1834 env, fp); 1835 } 1836 1837 up_read(&env->bpf_progs.lock); 1838 } 1839 1840 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1841 { 1842 struct perf_env *env = &ff->ph->env; 1843 struct rb_root *root; 1844 struct rb_node *next; 1845 1846 down_read(&env->bpf_progs.lock); 1847 1848 root = &env->bpf_progs.btfs; 1849 next = rb_first(root); 1850 1851 if (!next) 1852 printf("# btf info empty\n"); 1853 1854 while (next) { 1855 struct btf_node *node; 1856 1857 node = rb_entry(next, struct btf_node, rb_node); 1858 next = rb_next(&node->rb_node); 1859 fprintf(fp, "# btf info of id %u\n", node->id); 1860 } 1861 1862 up_read(&env->bpf_progs.lock); 1863 } 1864 #endif // HAVE_LIBBPF_SUPPORT 1865 1866 static void free_event_desc(struct evsel *events) 1867 { 1868 struct evsel *evsel; 1869 1870 if (!events) 1871 return; 1872 1873 for (evsel = events; evsel->core.attr.size; evsel++) { 1874 zfree(&evsel->name); 1875 zfree(&evsel->core.id); 1876 } 1877 1878 free(events); 1879 } 1880 1881 static bool perf_attr_check(struct perf_event_attr *attr) 1882 { 1883 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1884 pr_warning("Reserved bits are set unexpectedly. " 1885 "Please update perf tool.\n"); 1886 return false; 1887 } 1888 1889 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1890 pr_warning("Unknown sample type (0x%llx) is detected. " 1891 "Please update perf tool.\n", 1892 attr->sample_type); 1893 return false; 1894 } 1895 1896 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1897 pr_warning("Unknown read format (0x%llx) is detected. " 1898 "Please update perf tool.\n", 1899 attr->read_format); 1900 return false; 1901 } 1902 1903 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1904 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1905 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1906 "Please update perf tool.\n", 1907 attr->branch_sample_type); 1908 1909 return false; 1910 } 1911 1912 return true; 1913 } 1914 1915 static struct evsel *read_event_desc(struct feat_fd *ff) 1916 { 1917 struct evsel *evsel, *events = NULL; 1918 u64 *id; 1919 void *buf = NULL; 1920 u32 nre, sz, nr, i, j; 1921 size_t msz; 1922 1923 /* number of events */ 1924 if (do_read_u32(ff, &nre)) 1925 goto error; 1926 1927 if (do_read_u32(ff, &sz)) 1928 goto error; 1929 1930 /* buffer to hold on file attr struct */ 1931 buf = malloc(sz); 1932 if (!buf) 1933 goto error; 1934 1935 /* the last event terminates with evsel->core.attr.size == 0: */ 1936 events = calloc(nre + 1, sizeof(*events)); 1937 if (!events) 1938 goto error; 1939 1940 msz = sizeof(evsel->core.attr); 1941 if (sz < msz) 1942 msz = sz; 1943 1944 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1945 evsel->core.idx = i; 1946 1947 /* 1948 * must read entire on-file attr struct to 1949 * sync up with layout. 1950 */ 1951 if (__do_read(ff, buf, sz)) 1952 goto error; 1953 1954 if (ff->ph->needs_swap) 1955 perf_event__attr_swap(buf); 1956 1957 memcpy(&evsel->core.attr, buf, msz); 1958 1959 if (!perf_attr_check(&evsel->core.attr)) 1960 goto error; 1961 1962 if (do_read_u32(ff, &nr)) 1963 goto error; 1964 1965 if (ff->ph->needs_swap) 1966 evsel->needs_swap = true; 1967 1968 evsel->name = do_read_string(ff); 1969 if (!evsel->name) 1970 goto error; 1971 1972 if (!nr) 1973 continue; 1974 1975 id = calloc(nr, sizeof(*id)); 1976 if (!id) 1977 goto error; 1978 evsel->core.ids = nr; 1979 evsel->core.id = id; 1980 1981 for (j = 0 ; j < nr; j++) { 1982 if (do_read_u64(ff, id)) 1983 goto error; 1984 id++; 1985 } 1986 } 1987 out: 1988 free(buf); 1989 return events; 1990 error: 1991 free_event_desc(events); 1992 events = NULL; 1993 goto out; 1994 } 1995 1996 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1997 void *priv __maybe_unused) 1998 { 1999 return fprintf(fp, ", %s = %s", name, val); 2000 } 2001 2002 static void print_event_desc(struct feat_fd *ff, FILE *fp) 2003 { 2004 struct evsel *evsel, *events; 2005 u32 j; 2006 u64 *id; 2007 2008 if (ff->events) 2009 events = ff->events; 2010 else 2011 events = read_event_desc(ff); 2012 2013 if (!events) { 2014 fprintf(fp, "# event desc: not available or unable to read\n"); 2015 return; 2016 } 2017 2018 for (evsel = events; evsel->core.attr.size; evsel++) { 2019 fprintf(fp, "# event : name = %s, ", evsel->name); 2020 2021 if (evsel->core.ids) { 2022 fprintf(fp, ", id = {"); 2023 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 2024 if (j) 2025 fputc(',', fp); 2026 fprintf(fp, " %"PRIu64, *id); 2027 } 2028 fprintf(fp, " }"); 2029 } 2030 2031 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 2032 2033 fputc('\n', fp); 2034 } 2035 2036 free_event_desc(events); 2037 ff->events = NULL; 2038 } 2039 2040 static void print_total_mem(struct feat_fd *ff, FILE *fp) 2041 { 2042 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 2043 } 2044 2045 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 2046 { 2047 int i; 2048 struct numa_node *n; 2049 2050 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 2051 n = &ff->ph->env.numa_nodes[i]; 2052 2053 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 2054 " free = %"PRIu64" kB\n", 2055 n->node, n->mem_total, n->mem_free); 2056 2057 fprintf(fp, "# node%u cpu list : ", n->node); 2058 cpu_map__fprintf(n->map, fp); 2059 } 2060 } 2061 2062 static void print_cpuid(struct feat_fd *ff, FILE *fp) 2063 { 2064 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 2065 } 2066 2067 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 2068 { 2069 fprintf(fp, "# contains samples with branch stack\n"); 2070 } 2071 2072 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 2073 { 2074 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 2075 } 2076 2077 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 2078 { 2079 fprintf(fp, "# contains stat data\n"); 2080 } 2081 2082 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 2083 { 2084 int i; 2085 2086 fprintf(fp, "# CPU cache info:\n"); 2087 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 2088 fprintf(fp, "# "); 2089 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 2090 } 2091 } 2092 2093 static void print_compressed(struct feat_fd *ff, FILE *fp) 2094 { 2095 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 2096 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 2097 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 2098 } 2099 2100 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name) 2101 { 2102 const char *delimiter = ""; 2103 int i; 2104 2105 if (!nr_caps) { 2106 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name); 2107 return; 2108 } 2109 2110 fprintf(fp, "# %s pmu capabilities: ", pmu_name); 2111 for (i = 0; i < nr_caps; i++) { 2112 fprintf(fp, "%s%s", delimiter, caps[i]); 2113 delimiter = ", "; 2114 } 2115 2116 fprintf(fp, "\n"); 2117 } 2118 2119 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2120 { 2121 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps, 2122 ff->ph->env.cpu_pmu_caps, (char *)"cpu"); 2123 } 2124 2125 static void print_pmu_caps(struct feat_fd *ff, FILE *fp) 2126 { 2127 struct perf_env *env = &ff->ph->env; 2128 struct pmu_caps *pmu_caps; 2129 2130 for (int i = 0; i < env->nr_pmus_with_caps; i++) { 2131 pmu_caps = &env->pmu_caps[i]; 2132 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps, 2133 pmu_caps->pmu_name); 2134 } 2135 2136 if (strcmp(perf_env__arch(env), "x86") == 0 && 2137 perf_env__has_pmu_mapping(env, "ibs_op")) { 2138 char *max_precise = perf_env__find_pmu_cap(env, "cpu", "max_precise"); 2139 2140 if (max_precise != NULL && atoi(max_precise) == 0) 2141 fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n"); 2142 } 2143 } 2144 2145 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 2146 { 2147 struct perf_env *env = &ff->ph->env; 2148 const char *delimiter = "# pmu mappings: "; 2149 char *str, *tmp; 2150 u32 pmu_num; 2151 u32 type; 2152 2153 pmu_num = env->nr_pmu_mappings; 2154 if (!pmu_num) { 2155 fprintf(fp, "# pmu mappings: not available\n"); 2156 return; 2157 } 2158 2159 str = env->pmu_mappings; 2160 2161 while (pmu_num) { 2162 type = strtoul(str, &tmp, 0); 2163 if (*tmp != ':') 2164 goto error; 2165 2166 str = tmp + 1; 2167 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 2168 2169 delimiter = ", "; 2170 str += strlen(str) + 1; 2171 pmu_num--; 2172 } 2173 2174 fprintf(fp, "\n"); 2175 2176 if (!pmu_num) 2177 return; 2178 error: 2179 fprintf(fp, "# pmu mappings: unable to read\n"); 2180 } 2181 2182 static void print_group_desc(struct feat_fd *ff, FILE *fp) 2183 { 2184 struct perf_session *session; 2185 struct evsel *evsel; 2186 u32 nr = 0; 2187 2188 session = container_of(ff->ph, struct perf_session, header); 2189 2190 evlist__for_each_entry(session->evlist, evsel) { 2191 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 2192 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); 2193 2194 nr = evsel->core.nr_members - 1; 2195 } else if (nr) { 2196 fprintf(fp, ",%s", evsel__name(evsel)); 2197 2198 if (--nr == 0) 2199 fprintf(fp, "}\n"); 2200 } 2201 } 2202 } 2203 2204 static void print_sample_time(struct feat_fd *ff, FILE *fp) 2205 { 2206 struct perf_session *session; 2207 char time_buf[32]; 2208 double d; 2209 2210 session = container_of(ff->ph, struct perf_session, header); 2211 2212 timestamp__scnprintf_usec(session->evlist->first_sample_time, 2213 time_buf, sizeof(time_buf)); 2214 fprintf(fp, "# time of first sample : %s\n", time_buf); 2215 2216 timestamp__scnprintf_usec(session->evlist->last_sample_time, 2217 time_buf, sizeof(time_buf)); 2218 fprintf(fp, "# time of last sample : %s\n", time_buf); 2219 2220 d = (double)(session->evlist->last_sample_time - 2221 session->evlist->first_sample_time) / NSEC_PER_MSEC; 2222 2223 fprintf(fp, "# sample duration : %10.3f ms\n", d); 2224 } 2225 2226 static void memory_node__fprintf(struct memory_node *n, 2227 unsigned long long bsize, FILE *fp) 2228 { 2229 char buf_map[100], buf_size[50]; 2230 unsigned long long size; 2231 2232 size = bsize * bitmap_weight(n->set, n->size); 2233 unit_number__scnprintf(buf_size, 50, size); 2234 2235 bitmap_scnprintf(n->set, n->size, buf_map, 100); 2236 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 2237 } 2238 2239 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 2240 { 2241 struct perf_env *env = &ff->ph->env; 2242 struct memory_node *nodes; 2243 int i, nr; 2244 2245 nodes = env->memory_nodes; 2246 nr = env->nr_memory_nodes; 2247 2248 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 2249 nr, env->memory_bsize); 2250 2251 for (i = 0; i < nr; i++) { 2252 memory_node__fprintf(&nodes[i], env->memory_bsize, fp); 2253 } 2254 } 2255 2256 static int __event_process_build_id(struct perf_record_header_build_id *bev, 2257 char *filename, 2258 struct perf_session *session) 2259 { 2260 int err = -1; 2261 struct machine *machine; 2262 u16 cpumode; 2263 struct dso *dso; 2264 enum dso_space_type dso_space; 2265 2266 machine = perf_session__findnew_machine(session, bev->pid); 2267 if (!machine) 2268 goto out; 2269 2270 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2271 2272 switch (cpumode) { 2273 case PERF_RECORD_MISC_KERNEL: 2274 dso_space = DSO_SPACE__KERNEL; 2275 break; 2276 case PERF_RECORD_MISC_GUEST_KERNEL: 2277 dso_space = DSO_SPACE__KERNEL_GUEST; 2278 break; 2279 case PERF_RECORD_MISC_USER: 2280 case PERF_RECORD_MISC_GUEST_USER: 2281 dso_space = DSO_SPACE__USER; 2282 break; 2283 default: 2284 goto out; 2285 } 2286 2287 dso = machine__findnew_dso(machine, filename); 2288 if (dso != NULL) { 2289 char sbuild_id[SBUILD_ID_SIZE]; 2290 struct build_id bid; 2291 size_t size = BUILD_ID_SIZE; 2292 2293 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) 2294 size = bev->size; 2295 2296 build_id__init(&bid, bev->data, size); 2297 dso__set_build_id(dso, &bid); 2298 dso__set_header_build_id(dso, true); 2299 2300 if (dso_space != DSO_SPACE__USER) { 2301 struct kmod_path m = { .name = NULL, }; 2302 2303 if (!kmod_path__parse_name(&m, filename) && m.kmod) 2304 dso__set_module_info(dso, &m, machine); 2305 2306 dso__set_kernel(dso, dso_space); 2307 free(m.name); 2308 } 2309 2310 build_id__snprintf(dso__bid(dso), sbuild_id, sizeof(sbuild_id)); 2311 pr_debug("build id event received for %s: %s [%zu]\n", 2312 dso__long_name(dso), sbuild_id, size); 2313 dso__put(dso); 2314 } 2315 2316 err = 0; 2317 out: 2318 return err; 2319 } 2320 2321 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 2322 int input, u64 offset, u64 size) 2323 { 2324 struct perf_session *session = container_of(header, struct perf_session, header); 2325 struct { 2326 struct perf_event_header header; 2327 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 2328 char filename[0]; 2329 } old_bev; 2330 struct perf_record_header_build_id bev; 2331 char filename[PATH_MAX]; 2332 u64 limit = offset + size; 2333 2334 while (offset < limit) { 2335 ssize_t len; 2336 2337 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2338 return -1; 2339 2340 if (header->needs_swap) 2341 perf_event_header__bswap(&old_bev.header); 2342 2343 len = old_bev.header.size - sizeof(old_bev); 2344 if (readn(input, filename, len) != len) 2345 return -1; 2346 2347 bev.header = old_bev.header; 2348 2349 /* 2350 * As the pid is the missing value, we need to fill 2351 * it properly. The header.misc value give us nice hint. 2352 */ 2353 bev.pid = HOST_KERNEL_ID; 2354 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2355 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2356 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2357 2358 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2359 __event_process_build_id(&bev, filename, session); 2360 2361 offset += bev.header.size; 2362 } 2363 2364 return 0; 2365 } 2366 2367 static int perf_header__read_build_ids(struct perf_header *header, 2368 int input, u64 offset, u64 size) 2369 { 2370 struct perf_session *session = container_of(header, struct perf_session, header); 2371 struct perf_record_header_build_id bev; 2372 char filename[PATH_MAX]; 2373 u64 limit = offset + size, orig_offset = offset; 2374 int err = -1; 2375 2376 while (offset < limit) { 2377 ssize_t len; 2378 2379 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2380 goto out; 2381 2382 if (header->needs_swap) 2383 perf_event_header__bswap(&bev.header); 2384 2385 len = bev.header.size - sizeof(bev); 2386 if (readn(input, filename, len) != len) 2387 goto out; 2388 /* 2389 * The a1645ce1 changeset: 2390 * 2391 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2392 * 2393 * Added a field to struct perf_record_header_build_id that broke the file 2394 * format. 2395 * 2396 * Since the kernel build-id is the first entry, process the 2397 * table using the old format if the well known 2398 * '[kernel.kallsyms]' string for the kernel build-id has the 2399 * first 4 characters chopped off (where the pid_t sits). 2400 */ 2401 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2402 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2403 return -1; 2404 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2405 } 2406 2407 __event_process_build_id(&bev, filename, session); 2408 2409 offset += bev.header.size; 2410 } 2411 err = 0; 2412 out: 2413 return err; 2414 } 2415 2416 /* Macro for features that simply need to read and store a string. */ 2417 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2418 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2419 {\ 2420 free(ff->ph->env.__feat_env); \ 2421 ff->ph->env.__feat_env = do_read_string(ff); \ 2422 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2423 } 2424 2425 FEAT_PROCESS_STR_FUN(hostname, hostname); 2426 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2427 FEAT_PROCESS_STR_FUN(version, version); 2428 FEAT_PROCESS_STR_FUN(arch, arch); 2429 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2430 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2431 2432 #ifdef HAVE_LIBTRACEEVENT 2433 static int process_tracing_data(struct feat_fd *ff, void *data) 2434 { 2435 ssize_t ret = trace_report(ff->fd, data, false); 2436 2437 return ret < 0 ? -1 : 0; 2438 } 2439 #endif 2440 2441 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2442 { 2443 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2444 pr_debug("Failed to read buildids, continuing...\n"); 2445 return 0; 2446 } 2447 2448 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2449 { 2450 struct perf_env *env = &ff->ph->env; 2451 int ret; 2452 u32 nr_cpus_avail, nr_cpus_online; 2453 2454 ret = do_read_u32(ff, &nr_cpus_avail); 2455 if (ret) 2456 return ret; 2457 2458 ret = do_read_u32(ff, &nr_cpus_online); 2459 if (ret) 2460 return ret; 2461 env->nr_cpus_avail = (int)nr_cpus_avail; 2462 env->nr_cpus_online = (int)nr_cpus_online; 2463 return 0; 2464 } 2465 2466 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2467 { 2468 struct perf_env *env = &ff->ph->env; 2469 u64 total_mem; 2470 int ret; 2471 2472 ret = do_read_u64(ff, &total_mem); 2473 if (ret) 2474 return -1; 2475 env->total_mem = (unsigned long long)total_mem; 2476 return 0; 2477 } 2478 2479 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) 2480 { 2481 struct evsel *evsel; 2482 2483 evlist__for_each_entry(evlist, evsel) { 2484 if (evsel->core.idx == idx) 2485 return evsel; 2486 } 2487 2488 return NULL; 2489 } 2490 2491 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event) 2492 { 2493 struct evsel *evsel; 2494 2495 if (!event->name) 2496 return; 2497 2498 evsel = evlist__find_by_index(evlist, event->core.idx); 2499 if (!evsel) 2500 return; 2501 2502 if (evsel->name) 2503 return; 2504 2505 evsel->name = strdup(event->name); 2506 } 2507 2508 static int 2509 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2510 { 2511 struct perf_session *session; 2512 struct evsel *evsel, *events = read_event_desc(ff); 2513 2514 if (!events) 2515 return 0; 2516 2517 session = container_of(ff->ph, struct perf_session, header); 2518 2519 if (session->data->is_pipe) { 2520 /* Save events for reading later by print_event_desc, 2521 * since they can't be read again in pipe mode. */ 2522 ff->events = events; 2523 } 2524 2525 for (evsel = events; evsel->core.attr.size; evsel++) 2526 evlist__set_event_name(session->evlist, evsel); 2527 2528 if (!session->data->is_pipe) 2529 free_event_desc(events); 2530 2531 return 0; 2532 } 2533 2534 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2535 { 2536 struct perf_env *env = &ff->ph->env; 2537 char *str, *cmdline = NULL, **argv = NULL; 2538 u32 nr, i, len = 0; 2539 2540 if (do_read_u32(ff, &nr)) 2541 return -1; 2542 2543 env->nr_cmdline = nr; 2544 2545 cmdline = zalloc(ff->size + nr + 1); 2546 if (!cmdline) 2547 return -1; 2548 2549 argv = zalloc(sizeof(char *) * (nr + 1)); 2550 if (!argv) 2551 goto error; 2552 2553 for (i = 0; i < nr; i++) { 2554 str = do_read_string(ff); 2555 if (!str) 2556 goto error; 2557 2558 argv[i] = cmdline + len; 2559 memcpy(argv[i], str, strlen(str) + 1); 2560 len += strlen(str) + 1; 2561 free(str); 2562 } 2563 env->cmdline = cmdline; 2564 env->cmdline_argv = (const char **) argv; 2565 return 0; 2566 2567 error: 2568 free(argv); 2569 free(cmdline); 2570 return -1; 2571 } 2572 2573 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2574 { 2575 u32 nr, i; 2576 char *str = NULL; 2577 struct strbuf sb; 2578 struct perf_env *env = &ff->ph->env; 2579 int cpu_nr = env->nr_cpus_avail; 2580 u64 size = 0; 2581 2582 env->cpu = calloc(cpu_nr, sizeof(*env->cpu)); 2583 if (!env->cpu) 2584 return -1; 2585 2586 if (do_read_u32(ff, &nr)) 2587 goto free_cpu; 2588 2589 env->nr_sibling_cores = nr; 2590 size += sizeof(u32); 2591 if (strbuf_init(&sb, 128) < 0) 2592 goto free_cpu; 2593 2594 for (i = 0; i < nr; i++) { 2595 str = do_read_string(ff); 2596 if (!str) 2597 goto error; 2598 2599 /* include a NULL character at the end */ 2600 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2601 goto error; 2602 size += string_size(str); 2603 zfree(&str); 2604 } 2605 env->sibling_cores = strbuf_detach(&sb, NULL); 2606 2607 if (do_read_u32(ff, &nr)) 2608 return -1; 2609 2610 env->nr_sibling_threads = nr; 2611 size += sizeof(u32); 2612 2613 for (i = 0; i < nr; i++) { 2614 str = do_read_string(ff); 2615 if (!str) 2616 goto error; 2617 2618 /* include a NULL character at the end */ 2619 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2620 goto error; 2621 size += string_size(str); 2622 zfree(&str); 2623 } 2624 env->sibling_threads = strbuf_detach(&sb, NULL); 2625 2626 /* 2627 * The header may be from old perf, 2628 * which doesn't include core id and socket id information. 2629 */ 2630 if (ff->size <= size) { 2631 zfree(&env->cpu); 2632 return 0; 2633 } 2634 2635 for (i = 0; i < (u32)cpu_nr; i++) { 2636 if (do_read_u32(ff, &nr)) 2637 goto free_cpu; 2638 2639 env->cpu[i].core_id = nr; 2640 size += sizeof(u32); 2641 2642 if (do_read_u32(ff, &nr)) 2643 goto free_cpu; 2644 2645 env->cpu[i].socket_id = nr; 2646 size += sizeof(u32); 2647 } 2648 2649 /* 2650 * The header may be from old perf, 2651 * which doesn't include die information. 2652 */ 2653 if (ff->size <= size) 2654 return 0; 2655 2656 if (do_read_u32(ff, &nr)) 2657 return -1; 2658 2659 env->nr_sibling_dies = nr; 2660 size += sizeof(u32); 2661 2662 for (i = 0; i < nr; i++) { 2663 str = do_read_string(ff); 2664 if (!str) 2665 goto error; 2666 2667 /* include a NULL character at the end */ 2668 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2669 goto error; 2670 size += string_size(str); 2671 zfree(&str); 2672 } 2673 env->sibling_dies = strbuf_detach(&sb, NULL); 2674 2675 for (i = 0; i < (u32)cpu_nr; i++) { 2676 if (do_read_u32(ff, &nr)) 2677 goto free_cpu; 2678 2679 env->cpu[i].die_id = nr; 2680 } 2681 2682 return 0; 2683 2684 error: 2685 strbuf_release(&sb); 2686 zfree(&str); 2687 free_cpu: 2688 zfree(&env->cpu); 2689 return -1; 2690 } 2691 2692 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2693 { 2694 struct perf_env *env = &ff->ph->env; 2695 struct numa_node *nodes, *n; 2696 u32 nr, i; 2697 char *str; 2698 2699 /* nr nodes */ 2700 if (do_read_u32(ff, &nr)) 2701 return -1; 2702 2703 nodes = zalloc(sizeof(*nodes) * nr); 2704 if (!nodes) 2705 return -ENOMEM; 2706 2707 for (i = 0; i < nr; i++) { 2708 n = &nodes[i]; 2709 2710 /* node number */ 2711 if (do_read_u32(ff, &n->node)) 2712 goto error; 2713 2714 if (do_read_u64(ff, &n->mem_total)) 2715 goto error; 2716 2717 if (do_read_u64(ff, &n->mem_free)) 2718 goto error; 2719 2720 str = do_read_string(ff); 2721 if (!str) 2722 goto error; 2723 2724 n->map = perf_cpu_map__new(str); 2725 free(str); 2726 if (!n->map) 2727 goto error; 2728 } 2729 env->nr_numa_nodes = nr; 2730 env->numa_nodes = nodes; 2731 return 0; 2732 2733 error: 2734 free(nodes); 2735 return -1; 2736 } 2737 2738 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2739 { 2740 struct perf_env *env = &ff->ph->env; 2741 char *name; 2742 u32 pmu_num; 2743 u32 type; 2744 struct strbuf sb; 2745 2746 if (do_read_u32(ff, &pmu_num)) 2747 return -1; 2748 2749 if (!pmu_num) { 2750 pr_debug("pmu mappings not available\n"); 2751 return 0; 2752 } 2753 2754 env->nr_pmu_mappings = pmu_num; 2755 if (strbuf_init(&sb, 128) < 0) 2756 return -1; 2757 2758 while (pmu_num) { 2759 if (do_read_u32(ff, &type)) 2760 goto error; 2761 2762 name = do_read_string(ff); 2763 if (!name) 2764 goto error; 2765 2766 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2767 goto error; 2768 /* include a NULL character at the end */ 2769 if (strbuf_add(&sb, "", 1) < 0) 2770 goto error; 2771 2772 if (!strcmp(name, "msr")) 2773 env->msr_pmu_type = type; 2774 2775 free(name); 2776 pmu_num--; 2777 } 2778 /* AMD may set it by evlist__has_amd_ibs() from perf_session__new() */ 2779 free(env->pmu_mappings); 2780 env->pmu_mappings = strbuf_detach(&sb, NULL); 2781 return 0; 2782 2783 error: 2784 strbuf_release(&sb); 2785 return -1; 2786 } 2787 2788 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2789 { 2790 struct perf_env *env = &ff->ph->env; 2791 size_t ret = -1; 2792 u32 i, nr, nr_groups; 2793 struct perf_session *session; 2794 struct evsel *evsel, *leader = NULL; 2795 struct group_desc { 2796 char *name; 2797 u32 leader_idx; 2798 u32 nr_members; 2799 } *desc; 2800 2801 if (do_read_u32(ff, &nr_groups)) 2802 return -1; 2803 2804 env->nr_groups = nr_groups; 2805 if (!nr_groups) { 2806 pr_debug("group desc not available\n"); 2807 return 0; 2808 } 2809 2810 desc = calloc(nr_groups, sizeof(*desc)); 2811 if (!desc) 2812 return -1; 2813 2814 for (i = 0; i < nr_groups; i++) { 2815 desc[i].name = do_read_string(ff); 2816 if (!desc[i].name) 2817 goto out_free; 2818 2819 if (do_read_u32(ff, &desc[i].leader_idx)) 2820 goto out_free; 2821 2822 if (do_read_u32(ff, &desc[i].nr_members)) 2823 goto out_free; 2824 } 2825 2826 /* 2827 * Rebuild group relationship based on the group_desc 2828 */ 2829 session = container_of(ff->ph, struct perf_session, header); 2830 2831 i = nr = 0; 2832 evlist__for_each_entry(session->evlist, evsel) { 2833 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) { 2834 evsel__set_leader(evsel, evsel); 2835 /* {anon_group} is a dummy name */ 2836 if (strcmp(desc[i].name, "{anon_group}")) { 2837 evsel->group_name = desc[i].name; 2838 desc[i].name = NULL; 2839 } 2840 evsel->core.nr_members = desc[i].nr_members; 2841 2842 if (i >= nr_groups || nr > 0) { 2843 pr_debug("invalid group desc\n"); 2844 goto out_free; 2845 } 2846 2847 leader = evsel; 2848 nr = evsel->core.nr_members - 1; 2849 i++; 2850 } else if (nr) { 2851 /* This is a group member */ 2852 evsel__set_leader(evsel, leader); 2853 2854 nr--; 2855 } 2856 } 2857 2858 if (i != nr_groups || nr != 0) { 2859 pr_debug("invalid group desc\n"); 2860 goto out_free; 2861 } 2862 2863 ret = 0; 2864 out_free: 2865 for (i = 0; i < nr_groups; i++) 2866 zfree(&desc[i].name); 2867 free(desc); 2868 2869 return ret; 2870 } 2871 2872 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2873 { 2874 struct perf_session *session; 2875 int err; 2876 2877 session = container_of(ff->ph, struct perf_session, header); 2878 2879 err = auxtrace_index__process(ff->fd, ff->size, session, 2880 ff->ph->needs_swap); 2881 if (err < 0) 2882 pr_err("Failed to process auxtrace index\n"); 2883 return err; 2884 } 2885 2886 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2887 { 2888 struct perf_env *env = &ff->ph->env; 2889 struct cpu_cache_level *caches; 2890 u32 cnt, i, version; 2891 2892 if (do_read_u32(ff, &version)) 2893 return -1; 2894 2895 if (version != 1) 2896 return -1; 2897 2898 if (do_read_u32(ff, &cnt)) 2899 return -1; 2900 2901 caches = zalloc(sizeof(*caches) * cnt); 2902 if (!caches) 2903 return -1; 2904 2905 for (i = 0; i < cnt; i++) { 2906 struct cpu_cache_level *c = &caches[i]; 2907 2908 #define _R(v) \ 2909 if (do_read_u32(ff, &c->v)) \ 2910 goto out_free_caches; \ 2911 2912 _R(level) 2913 _R(line_size) 2914 _R(sets) 2915 _R(ways) 2916 #undef _R 2917 2918 #define _R(v) \ 2919 c->v = do_read_string(ff); \ 2920 if (!c->v) \ 2921 goto out_free_caches; \ 2922 2923 _R(type) 2924 _R(size) 2925 _R(map) 2926 #undef _R 2927 } 2928 2929 env->caches = caches; 2930 env->caches_cnt = cnt; 2931 return 0; 2932 out_free_caches: 2933 for (i = 0; i < cnt; i++) { 2934 free(caches[i].type); 2935 free(caches[i].size); 2936 free(caches[i].map); 2937 } 2938 free(caches); 2939 return -1; 2940 } 2941 2942 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2943 { 2944 struct perf_session *session; 2945 u64 first_sample_time, last_sample_time; 2946 int ret; 2947 2948 session = container_of(ff->ph, struct perf_session, header); 2949 2950 ret = do_read_u64(ff, &first_sample_time); 2951 if (ret) 2952 return -1; 2953 2954 ret = do_read_u64(ff, &last_sample_time); 2955 if (ret) 2956 return -1; 2957 2958 session->evlist->first_sample_time = first_sample_time; 2959 session->evlist->last_sample_time = last_sample_time; 2960 return 0; 2961 } 2962 2963 static int process_mem_topology(struct feat_fd *ff, 2964 void *data __maybe_unused) 2965 { 2966 struct perf_env *env = &ff->ph->env; 2967 struct memory_node *nodes; 2968 u64 version, i, nr, bsize; 2969 int ret = -1; 2970 2971 if (do_read_u64(ff, &version)) 2972 return -1; 2973 2974 if (version != 1) 2975 return -1; 2976 2977 if (do_read_u64(ff, &bsize)) 2978 return -1; 2979 2980 if (do_read_u64(ff, &nr)) 2981 return -1; 2982 2983 nodes = zalloc(sizeof(*nodes) * nr); 2984 if (!nodes) 2985 return -1; 2986 2987 for (i = 0; i < nr; i++) { 2988 struct memory_node n; 2989 2990 #define _R(v) \ 2991 if (do_read_u64(ff, &n.v)) \ 2992 goto out; \ 2993 2994 _R(node) 2995 _R(size) 2996 2997 #undef _R 2998 2999 if (do_read_bitmap(ff, &n.set, &n.size)) 3000 goto out; 3001 3002 nodes[i] = n; 3003 } 3004 3005 env->memory_bsize = bsize; 3006 env->memory_nodes = nodes; 3007 env->nr_memory_nodes = nr; 3008 ret = 0; 3009 3010 out: 3011 if (ret) 3012 free(nodes); 3013 return ret; 3014 } 3015 3016 static int process_clockid(struct feat_fd *ff, 3017 void *data __maybe_unused) 3018 { 3019 struct perf_env *env = &ff->ph->env; 3020 3021 if (do_read_u64(ff, &env->clock.clockid_res_ns)) 3022 return -1; 3023 3024 return 0; 3025 } 3026 3027 static int process_clock_data(struct feat_fd *ff, 3028 void *_data __maybe_unused) 3029 { 3030 struct perf_env *env = &ff->ph->env; 3031 u32 data32; 3032 u64 data64; 3033 3034 /* version */ 3035 if (do_read_u32(ff, &data32)) 3036 return -1; 3037 3038 if (data32 != 1) 3039 return -1; 3040 3041 /* clockid */ 3042 if (do_read_u32(ff, &data32)) 3043 return -1; 3044 3045 env->clock.clockid = data32; 3046 3047 /* TOD ref time */ 3048 if (do_read_u64(ff, &data64)) 3049 return -1; 3050 3051 env->clock.tod_ns = data64; 3052 3053 /* clockid ref time */ 3054 if (do_read_u64(ff, &data64)) 3055 return -1; 3056 3057 env->clock.clockid_ns = data64; 3058 env->clock.enabled = true; 3059 return 0; 3060 } 3061 3062 static int process_hybrid_topology(struct feat_fd *ff, 3063 void *data __maybe_unused) 3064 { 3065 struct perf_env *env = &ff->ph->env; 3066 struct hybrid_node *nodes, *n; 3067 u32 nr, i; 3068 3069 /* nr nodes */ 3070 if (do_read_u32(ff, &nr)) 3071 return -1; 3072 3073 nodes = zalloc(sizeof(*nodes) * nr); 3074 if (!nodes) 3075 return -ENOMEM; 3076 3077 for (i = 0; i < nr; i++) { 3078 n = &nodes[i]; 3079 3080 n->pmu_name = do_read_string(ff); 3081 if (!n->pmu_name) 3082 goto error; 3083 3084 n->cpus = do_read_string(ff); 3085 if (!n->cpus) 3086 goto error; 3087 } 3088 3089 env->nr_hybrid_nodes = nr; 3090 env->hybrid_nodes = nodes; 3091 return 0; 3092 3093 error: 3094 for (i = 0; i < nr; i++) { 3095 free(nodes[i].pmu_name); 3096 free(nodes[i].cpus); 3097 } 3098 3099 free(nodes); 3100 return -1; 3101 } 3102 3103 static int process_dir_format(struct feat_fd *ff, 3104 void *_data __maybe_unused) 3105 { 3106 struct perf_session *session; 3107 struct perf_data *data; 3108 3109 session = container_of(ff->ph, struct perf_session, header); 3110 data = session->data; 3111 3112 if (WARN_ON(!perf_data__is_dir(data))) 3113 return -1; 3114 3115 return do_read_u64(ff, &data->dir.version); 3116 } 3117 3118 #ifdef HAVE_LIBBPF_SUPPORT 3119 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 3120 { 3121 struct bpf_prog_info_node *info_node; 3122 struct perf_env *env = &ff->ph->env; 3123 struct perf_bpil *info_linear; 3124 u32 count, i; 3125 int err = -1; 3126 3127 if (ff->ph->needs_swap) { 3128 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n"); 3129 return 0; 3130 } 3131 3132 if (do_read_u32(ff, &count)) 3133 return -1; 3134 3135 down_write(&env->bpf_progs.lock); 3136 3137 for (i = 0; i < count; ++i) { 3138 u32 info_len, data_len; 3139 3140 info_linear = NULL; 3141 info_node = NULL; 3142 if (do_read_u32(ff, &info_len)) 3143 goto out; 3144 if (do_read_u32(ff, &data_len)) 3145 goto out; 3146 3147 if (info_len > sizeof(struct bpf_prog_info)) { 3148 pr_warning("detected invalid bpf_prog_info\n"); 3149 goto out; 3150 } 3151 3152 info_linear = malloc(sizeof(struct perf_bpil) + 3153 data_len); 3154 if (!info_linear) 3155 goto out; 3156 info_linear->info_len = sizeof(struct bpf_prog_info); 3157 info_linear->data_len = data_len; 3158 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 3159 goto out; 3160 if (__do_read(ff, &info_linear->info, info_len)) 3161 goto out; 3162 if (info_len < sizeof(struct bpf_prog_info)) 3163 memset(((void *)(&info_linear->info)) + info_len, 0, 3164 sizeof(struct bpf_prog_info) - info_len); 3165 3166 if (__do_read(ff, info_linear->data, data_len)) 3167 goto out; 3168 3169 info_node = malloc(sizeof(struct bpf_prog_info_node)); 3170 if (!info_node) 3171 goto out; 3172 3173 /* after reading from file, translate offset to address */ 3174 bpil_offs_to_addr(info_linear); 3175 info_node->info_linear = info_linear; 3176 info_node->metadata = NULL; 3177 if (!__perf_env__insert_bpf_prog_info(env, info_node)) { 3178 free(info_linear); 3179 free(info_node); 3180 } 3181 } 3182 3183 up_write(&env->bpf_progs.lock); 3184 return 0; 3185 out: 3186 free(info_linear); 3187 free(info_node); 3188 up_write(&env->bpf_progs.lock); 3189 return err; 3190 } 3191 3192 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 3193 { 3194 struct perf_env *env = &ff->ph->env; 3195 struct btf_node *node = NULL; 3196 u32 count, i; 3197 int err = -1; 3198 3199 if (ff->ph->needs_swap) { 3200 pr_warning("interpreting btf from systems with endianness is not yet supported\n"); 3201 return 0; 3202 } 3203 3204 if (do_read_u32(ff, &count)) 3205 return -1; 3206 3207 down_write(&env->bpf_progs.lock); 3208 3209 for (i = 0; i < count; ++i) { 3210 u32 id, data_size; 3211 3212 if (do_read_u32(ff, &id)) 3213 goto out; 3214 if (do_read_u32(ff, &data_size)) 3215 goto out; 3216 3217 node = malloc(sizeof(struct btf_node) + data_size); 3218 if (!node) 3219 goto out; 3220 3221 node->id = id; 3222 node->data_size = data_size; 3223 3224 if (__do_read(ff, node->data, data_size)) 3225 goto out; 3226 3227 if (!__perf_env__insert_btf(env, node)) 3228 free(node); 3229 node = NULL; 3230 } 3231 3232 err = 0; 3233 out: 3234 up_write(&env->bpf_progs.lock); 3235 free(node); 3236 return err; 3237 } 3238 #endif // HAVE_LIBBPF_SUPPORT 3239 3240 static int process_compressed(struct feat_fd *ff, 3241 void *data __maybe_unused) 3242 { 3243 struct perf_env *env = &ff->ph->env; 3244 3245 if (do_read_u32(ff, &(env->comp_ver))) 3246 return -1; 3247 3248 if (do_read_u32(ff, &(env->comp_type))) 3249 return -1; 3250 3251 if (do_read_u32(ff, &(env->comp_level))) 3252 return -1; 3253 3254 if (do_read_u32(ff, &(env->comp_ratio))) 3255 return -1; 3256 3257 if (do_read_u32(ff, &(env->comp_mmap_len))) 3258 return -1; 3259 3260 return 0; 3261 } 3262 3263 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps, 3264 char ***caps, unsigned int *max_branches, 3265 unsigned int *br_cntr_nr, 3266 unsigned int *br_cntr_width) 3267 { 3268 char *name, *value, *ptr; 3269 u32 nr_pmu_caps, i; 3270 3271 *nr_caps = 0; 3272 *caps = NULL; 3273 3274 if (do_read_u32(ff, &nr_pmu_caps)) 3275 return -1; 3276 3277 if (!nr_pmu_caps) 3278 return 0; 3279 3280 *caps = zalloc(sizeof(char *) * nr_pmu_caps); 3281 if (!*caps) 3282 return -1; 3283 3284 for (i = 0; i < nr_pmu_caps; i++) { 3285 name = do_read_string(ff); 3286 if (!name) 3287 goto error; 3288 3289 value = do_read_string(ff); 3290 if (!value) 3291 goto free_name; 3292 3293 if (asprintf(&ptr, "%s=%s", name, value) < 0) 3294 goto free_value; 3295 3296 (*caps)[i] = ptr; 3297 3298 if (!strcmp(name, "branches")) 3299 *max_branches = atoi(value); 3300 3301 if (!strcmp(name, "branch_counter_nr")) 3302 *br_cntr_nr = atoi(value); 3303 3304 if (!strcmp(name, "branch_counter_width")) 3305 *br_cntr_width = atoi(value); 3306 3307 free(value); 3308 free(name); 3309 } 3310 *nr_caps = nr_pmu_caps; 3311 return 0; 3312 3313 free_value: 3314 free(value); 3315 free_name: 3316 free(name); 3317 error: 3318 for (; i > 0; i--) 3319 free((*caps)[i - 1]); 3320 free(*caps); 3321 *caps = NULL; 3322 *nr_caps = 0; 3323 return -1; 3324 } 3325 3326 static int process_cpu_pmu_caps(struct feat_fd *ff, 3327 void *data __maybe_unused) 3328 { 3329 struct perf_env *env = &ff->ph->env; 3330 int ret = __process_pmu_caps(ff, &env->nr_cpu_pmu_caps, 3331 &env->cpu_pmu_caps, 3332 &env->max_branches, 3333 &env->br_cntr_nr, 3334 &env->br_cntr_width); 3335 3336 if (!ret && !env->cpu_pmu_caps) 3337 pr_debug("cpu pmu capabilities not available\n"); 3338 return ret; 3339 } 3340 3341 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused) 3342 { 3343 struct perf_env *env = &ff->ph->env; 3344 struct pmu_caps *pmu_caps; 3345 u32 nr_pmu, i; 3346 int ret; 3347 int j; 3348 3349 if (do_read_u32(ff, &nr_pmu)) 3350 return -1; 3351 3352 if (!nr_pmu) { 3353 pr_debug("pmu capabilities not available\n"); 3354 return 0; 3355 } 3356 3357 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu); 3358 if (!pmu_caps) 3359 return -ENOMEM; 3360 3361 for (i = 0; i < nr_pmu; i++) { 3362 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps, 3363 &pmu_caps[i].caps, 3364 &pmu_caps[i].max_branches, 3365 &pmu_caps[i].br_cntr_nr, 3366 &pmu_caps[i].br_cntr_width); 3367 if (ret) 3368 goto err; 3369 3370 pmu_caps[i].pmu_name = do_read_string(ff); 3371 if (!pmu_caps[i].pmu_name) { 3372 ret = -1; 3373 goto err; 3374 } 3375 if (!pmu_caps[i].nr_caps) { 3376 pr_debug("%s pmu capabilities not available\n", 3377 pmu_caps[i].pmu_name); 3378 } 3379 } 3380 3381 env->nr_pmus_with_caps = nr_pmu; 3382 env->pmu_caps = pmu_caps; 3383 return 0; 3384 3385 err: 3386 for (i = 0; i < nr_pmu; i++) { 3387 for (j = 0; j < pmu_caps[i].nr_caps; j++) 3388 free(pmu_caps[i].caps[j]); 3389 free(pmu_caps[i].caps); 3390 free(pmu_caps[i].pmu_name); 3391 } 3392 3393 free(pmu_caps); 3394 return ret; 3395 } 3396 3397 #define FEAT_OPR(n, func, __full_only) \ 3398 [HEADER_##n] = { \ 3399 .name = __stringify(n), \ 3400 .write = write_##func, \ 3401 .print = print_##func, \ 3402 .full_only = __full_only, \ 3403 .process = process_##func, \ 3404 .synthesize = true \ 3405 } 3406 3407 #define FEAT_OPN(n, func, __full_only) \ 3408 [HEADER_##n] = { \ 3409 .name = __stringify(n), \ 3410 .write = write_##func, \ 3411 .print = print_##func, \ 3412 .full_only = __full_only, \ 3413 .process = process_##func \ 3414 } 3415 3416 /* feature_ops not implemented: */ 3417 #define print_tracing_data NULL 3418 #define print_build_id NULL 3419 3420 #define process_branch_stack NULL 3421 #define process_stat NULL 3422 3423 // Only used in util/synthetic-events.c 3424 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 3425 3426 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 3427 #ifdef HAVE_LIBTRACEEVENT 3428 FEAT_OPN(TRACING_DATA, tracing_data, false), 3429 #endif 3430 FEAT_OPN(BUILD_ID, build_id, false), 3431 FEAT_OPR(HOSTNAME, hostname, false), 3432 FEAT_OPR(OSRELEASE, osrelease, false), 3433 FEAT_OPR(VERSION, version, false), 3434 FEAT_OPR(ARCH, arch, false), 3435 FEAT_OPR(NRCPUS, nrcpus, false), 3436 FEAT_OPR(CPUDESC, cpudesc, false), 3437 FEAT_OPR(CPUID, cpuid, false), 3438 FEAT_OPR(TOTAL_MEM, total_mem, false), 3439 FEAT_OPR(EVENT_DESC, event_desc, false), 3440 FEAT_OPR(CMDLINE, cmdline, false), 3441 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 3442 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 3443 FEAT_OPN(BRANCH_STACK, branch_stack, false), 3444 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 3445 FEAT_OPR(GROUP_DESC, group_desc, false), 3446 FEAT_OPN(AUXTRACE, auxtrace, false), 3447 FEAT_OPN(STAT, stat, false), 3448 FEAT_OPN(CACHE, cache, true), 3449 FEAT_OPR(SAMPLE_TIME, sample_time, false), 3450 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 3451 FEAT_OPR(CLOCKID, clockid, false), 3452 FEAT_OPN(DIR_FORMAT, dir_format, false), 3453 #ifdef HAVE_LIBBPF_SUPPORT 3454 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 3455 FEAT_OPR(BPF_BTF, bpf_btf, false), 3456 #endif 3457 FEAT_OPR(COMPRESSED, compressed, false), 3458 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), 3459 FEAT_OPR(CLOCK_DATA, clock_data, false), 3460 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true), 3461 FEAT_OPR(PMU_CAPS, pmu_caps, false), 3462 }; 3463 3464 struct header_print_data { 3465 FILE *fp; 3466 bool full; /* extended list of headers */ 3467 }; 3468 3469 static int perf_file_section__fprintf_info(struct perf_file_section *section, 3470 struct perf_header *ph, 3471 int feat, int fd, void *data) 3472 { 3473 struct header_print_data *hd = data; 3474 struct feat_fd ff; 3475 3476 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3477 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3478 "%d, continuing...\n", section->offset, feat); 3479 return 0; 3480 } 3481 if (feat >= HEADER_LAST_FEATURE) { 3482 pr_warning("unknown feature %d\n", feat); 3483 return 0; 3484 } 3485 if (!feat_ops[feat].print) 3486 return 0; 3487 3488 ff = (struct feat_fd) { 3489 .fd = fd, 3490 .ph = ph, 3491 }; 3492 3493 if (!feat_ops[feat].full_only || hd->full) 3494 feat_ops[feat].print(&ff, hd->fp); 3495 else 3496 fprintf(hd->fp, "# %s info available, use -I to display\n", 3497 feat_ops[feat].name); 3498 3499 return 0; 3500 } 3501 3502 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 3503 { 3504 struct header_print_data hd; 3505 struct perf_header *header = &session->header; 3506 int fd = perf_data__fd(session->data); 3507 struct stat st; 3508 time_t stctime; 3509 int ret, bit; 3510 3511 hd.fp = fp; 3512 hd.full = full; 3513 3514 ret = fstat(fd, &st); 3515 if (ret == -1) 3516 return -1; 3517 3518 stctime = st.st_mtime; 3519 fprintf(fp, "# captured on : %s", ctime(&stctime)); 3520 3521 fprintf(fp, "# header version : %u\n", header->version); 3522 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 3523 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 3524 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 3525 3526 perf_header__process_sections(header, fd, &hd, 3527 perf_file_section__fprintf_info); 3528 3529 if (session->data->is_pipe) 3530 return 0; 3531 3532 fprintf(fp, "# missing features: "); 3533 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 3534 if (bit) 3535 fprintf(fp, "%s ", feat_ops[bit].name); 3536 } 3537 3538 fprintf(fp, "\n"); 3539 return 0; 3540 } 3541 3542 struct header_fw { 3543 struct feat_writer fw; 3544 struct feat_fd *ff; 3545 }; 3546 3547 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz) 3548 { 3549 struct header_fw *h = container_of(fw, struct header_fw, fw); 3550 3551 return do_write(h->ff, buf, sz); 3552 } 3553 3554 static int do_write_feat(struct feat_fd *ff, int type, 3555 struct perf_file_section **p, 3556 struct evlist *evlist, 3557 struct feat_copier *fc) 3558 { 3559 int err; 3560 int ret = 0; 3561 3562 if (perf_header__has_feat(ff->ph, type)) { 3563 if (!feat_ops[type].write) 3564 return -1; 3565 3566 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 3567 return -1; 3568 3569 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3570 3571 /* 3572 * Hook to let perf inject copy features sections from the input 3573 * file. 3574 */ 3575 if (fc && fc->copy) { 3576 struct header_fw h = { 3577 .fw.write = feat_writer_cb, 3578 .ff = ff, 3579 }; 3580 3581 /* ->copy() returns 0 if the feature was not copied */ 3582 err = fc->copy(fc, type, &h.fw); 3583 } else { 3584 err = 0; 3585 } 3586 if (!err) 3587 err = feat_ops[type].write(ff, evlist); 3588 if (err < 0) { 3589 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3590 3591 /* undo anything written */ 3592 lseek(ff->fd, (*p)->offset, SEEK_SET); 3593 3594 return -1; 3595 } 3596 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3597 (*p)++; 3598 } 3599 return ret; 3600 } 3601 3602 static int perf_header__adds_write(struct perf_header *header, 3603 struct evlist *evlist, int fd, 3604 struct feat_copier *fc) 3605 { 3606 int nr_sections; 3607 struct feat_fd ff = { 3608 .fd = fd, 3609 .ph = header, 3610 }; 3611 struct perf_file_section *feat_sec, *p; 3612 int sec_size; 3613 u64 sec_start; 3614 int feat; 3615 int err; 3616 3617 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3618 if (!nr_sections) 3619 return 0; 3620 3621 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3622 if (feat_sec == NULL) 3623 return -ENOMEM; 3624 3625 sec_size = sizeof(*feat_sec) * nr_sections; 3626 3627 sec_start = header->feat_offset; 3628 lseek(fd, sec_start + sec_size, SEEK_SET); 3629 3630 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3631 if (do_write_feat(&ff, feat, &p, evlist, fc)) 3632 perf_header__clear_feat(header, feat); 3633 } 3634 3635 lseek(fd, sec_start, SEEK_SET); 3636 /* 3637 * may write more than needed due to dropped feature, but 3638 * this is okay, reader will skip the missing entries 3639 */ 3640 err = do_write(&ff, feat_sec, sec_size); 3641 if (err < 0) 3642 pr_debug("failed to write feature section\n"); 3643 free(ff.buf); /* TODO: added to silence clang-tidy. */ 3644 free(feat_sec); 3645 return err; 3646 } 3647 3648 int perf_header__write_pipe(int fd) 3649 { 3650 struct perf_pipe_file_header f_header; 3651 struct feat_fd ff = { 3652 .fd = fd, 3653 }; 3654 int err; 3655 3656 f_header = (struct perf_pipe_file_header){ 3657 .magic = PERF_MAGIC, 3658 .size = sizeof(f_header), 3659 }; 3660 3661 err = do_write(&ff, &f_header, sizeof(f_header)); 3662 if (err < 0) { 3663 pr_debug("failed to write perf pipe header\n"); 3664 return err; 3665 } 3666 free(ff.buf); 3667 return 0; 3668 } 3669 3670 static int perf_session__do_write_header(struct perf_session *session, 3671 struct evlist *evlist, 3672 int fd, bool at_exit, 3673 struct feat_copier *fc, 3674 bool write_attrs_after_data) 3675 { 3676 struct perf_file_header f_header; 3677 struct perf_header *header = &session->header; 3678 struct evsel *evsel; 3679 struct feat_fd ff = { 3680 .ph = header, 3681 .fd = fd, 3682 }; 3683 u64 attr_offset = sizeof(f_header), attr_size = 0; 3684 int err; 3685 3686 if (write_attrs_after_data && at_exit) { 3687 /* 3688 * Write features at the end of the file first so that 3689 * attributes may come after them. 3690 */ 3691 if (!header->data_offset && header->data_size) { 3692 pr_err("File contains data but offset unknown\n"); 3693 err = -1; 3694 goto err_out; 3695 } 3696 header->feat_offset = header->data_offset + header->data_size; 3697 err = perf_header__adds_write(header, evlist, fd, fc); 3698 if (err < 0) 3699 goto err_out; 3700 attr_offset = lseek(fd, 0, SEEK_CUR); 3701 } else { 3702 lseek(fd, attr_offset, SEEK_SET); 3703 } 3704 3705 evlist__for_each_entry(session->evlist, evsel) { 3706 evsel->id_offset = attr_offset; 3707 /* Avoid writing at the end of the file until the session is exiting. */ 3708 if (!write_attrs_after_data || at_exit) { 3709 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3710 if (err < 0) { 3711 pr_debug("failed to write perf header\n"); 3712 goto err_out; 3713 } 3714 } 3715 attr_offset += evsel->core.ids * sizeof(u64); 3716 } 3717 3718 evlist__for_each_entry(evlist, evsel) { 3719 if (evsel->core.attr.size < sizeof(evsel->core.attr)) { 3720 /* 3721 * We are likely in "perf inject" and have read 3722 * from an older file. Update attr size so that 3723 * reader gets the right offset to the ids. 3724 */ 3725 evsel->core.attr.size = sizeof(evsel->core.attr); 3726 } 3727 /* Avoid writing at the end of the file until the session is exiting. */ 3728 if (!write_attrs_after_data || at_exit) { 3729 struct perf_file_attr f_attr = { 3730 .attr = evsel->core.attr, 3731 .ids = { 3732 .offset = evsel->id_offset, 3733 .size = evsel->core.ids * sizeof(u64), 3734 } 3735 }; 3736 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3737 if (err < 0) { 3738 pr_debug("failed to write perf header attribute\n"); 3739 goto err_out; 3740 } 3741 } 3742 attr_size += sizeof(struct perf_file_attr); 3743 } 3744 3745 if (!header->data_offset) { 3746 if (write_attrs_after_data) 3747 header->data_offset = sizeof(f_header); 3748 else 3749 header->data_offset = attr_offset + attr_size; 3750 } 3751 header->feat_offset = header->data_offset + header->data_size; 3752 3753 if (!write_attrs_after_data && at_exit) { 3754 /* Write features now feat_offset is known. */ 3755 err = perf_header__adds_write(header, evlist, fd, fc); 3756 if (err < 0) 3757 goto err_out; 3758 } 3759 3760 f_header = (struct perf_file_header){ 3761 .magic = PERF_MAGIC, 3762 .size = sizeof(f_header), 3763 .attr_size = sizeof(struct perf_file_attr), 3764 .attrs = { 3765 .offset = attr_offset, 3766 .size = attr_size, 3767 }, 3768 .data = { 3769 .offset = header->data_offset, 3770 .size = header->data_size, 3771 }, 3772 /* event_types is ignored, store zeros */ 3773 }; 3774 3775 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3776 3777 lseek(fd, 0, SEEK_SET); 3778 err = do_write(&ff, &f_header, sizeof(f_header)); 3779 if (err < 0) { 3780 pr_debug("failed to write perf header\n"); 3781 goto err_out; 3782 } else { 3783 lseek(fd, 0, SEEK_END); 3784 err = 0; 3785 } 3786 err_out: 3787 free(ff.buf); 3788 return err; 3789 } 3790 3791 int perf_session__write_header(struct perf_session *session, 3792 struct evlist *evlist, 3793 int fd, bool at_exit) 3794 { 3795 return perf_session__do_write_header(session, evlist, fd, at_exit, /*fc=*/NULL, 3796 /*write_attrs_after_data=*/false); 3797 } 3798 3799 size_t perf_session__data_offset(const struct evlist *evlist) 3800 { 3801 struct evsel *evsel; 3802 size_t data_offset; 3803 3804 data_offset = sizeof(struct perf_file_header); 3805 evlist__for_each_entry(evlist, evsel) { 3806 data_offset += evsel->core.ids * sizeof(u64); 3807 } 3808 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr); 3809 3810 return data_offset; 3811 } 3812 3813 int perf_session__inject_header(struct perf_session *session, 3814 struct evlist *evlist, 3815 int fd, 3816 struct feat_copier *fc, 3817 bool write_attrs_after_data) 3818 { 3819 return perf_session__do_write_header(session, evlist, fd, true, fc, 3820 write_attrs_after_data); 3821 } 3822 3823 static int perf_header__getbuffer64(struct perf_header *header, 3824 int fd, void *buf, size_t size) 3825 { 3826 if (readn(fd, buf, size) <= 0) 3827 return -1; 3828 3829 if (header->needs_swap) 3830 mem_bswap_64(buf, size); 3831 3832 return 0; 3833 } 3834 3835 int perf_header__process_sections(struct perf_header *header, int fd, 3836 void *data, 3837 int (*process)(struct perf_file_section *section, 3838 struct perf_header *ph, 3839 int feat, int fd, void *data)) 3840 { 3841 struct perf_file_section *feat_sec, *sec; 3842 int nr_sections; 3843 int sec_size; 3844 int feat; 3845 int err; 3846 3847 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3848 if (!nr_sections) 3849 return 0; 3850 3851 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3852 if (!feat_sec) 3853 return -1; 3854 3855 sec_size = sizeof(*feat_sec) * nr_sections; 3856 3857 lseek(fd, header->feat_offset, SEEK_SET); 3858 3859 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3860 if (err < 0) 3861 goto out_free; 3862 3863 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3864 err = process(sec++, header, feat, fd, data); 3865 if (err < 0) 3866 goto out_free; 3867 } 3868 err = 0; 3869 out_free: 3870 free(feat_sec); 3871 return err; 3872 } 3873 3874 static const int attr_file_abi_sizes[] = { 3875 [0] = PERF_ATTR_SIZE_VER0, 3876 [1] = PERF_ATTR_SIZE_VER1, 3877 [2] = PERF_ATTR_SIZE_VER2, 3878 [3] = PERF_ATTR_SIZE_VER3, 3879 [4] = PERF_ATTR_SIZE_VER4, 3880 0, 3881 }; 3882 3883 /* 3884 * In the legacy file format, the magic number is not used to encode endianness. 3885 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3886 * on ABI revisions, we need to try all combinations for all endianness to 3887 * detect the endianness. 3888 */ 3889 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3890 { 3891 uint64_t ref_size, attr_size; 3892 int i; 3893 3894 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3895 ref_size = attr_file_abi_sizes[i] 3896 + sizeof(struct perf_file_section); 3897 if (hdr_sz != ref_size) { 3898 attr_size = bswap_64(hdr_sz); 3899 if (attr_size != ref_size) 3900 continue; 3901 3902 ph->needs_swap = true; 3903 } 3904 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3905 i, 3906 ph->needs_swap); 3907 return 0; 3908 } 3909 /* could not determine endianness */ 3910 return -1; 3911 } 3912 3913 #define PERF_PIPE_HDR_VER0 16 3914 3915 static const size_t attr_pipe_abi_sizes[] = { 3916 [0] = PERF_PIPE_HDR_VER0, 3917 0, 3918 }; 3919 3920 /* 3921 * In the legacy pipe format, there is an implicit assumption that endianness 3922 * between host recording the samples, and host parsing the samples is the 3923 * same. This is not always the case given that the pipe output may always be 3924 * redirected into a file and analyzed on a different machine with possibly a 3925 * different endianness and perf_event ABI revisions in the perf tool itself. 3926 */ 3927 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3928 { 3929 u64 attr_size; 3930 int i; 3931 3932 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3933 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3934 attr_size = bswap_64(hdr_sz); 3935 if (attr_size != hdr_sz) 3936 continue; 3937 3938 ph->needs_swap = true; 3939 } 3940 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3941 return 0; 3942 } 3943 return -1; 3944 } 3945 3946 bool is_perf_magic(u64 magic) 3947 { 3948 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3949 || magic == __perf_magic2 3950 || magic == __perf_magic2_sw) 3951 return true; 3952 3953 return false; 3954 } 3955 3956 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3957 bool is_pipe, struct perf_header *ph) 3958 { 3959 int ret; 3960 3961 /* check for legacy format */ 3962 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3963 if (ret == 0) { 3964 ph->version = PERF_HEADER_VERSION_1; 3965 pr_debug("legacy perf.data format\n"); 3966 if (is_pipe) 3967 return try_all_pipe_abis(hdr_sz, ph); 3968 3969 return try_all_file_abis(hdr_sz, ph); 3970 } 3971 /* 3972 * the new magic number serves two purposes: 3973 * - unique number to identify actual perf.data files 3974 * - encode endianness of file 3975 */ 3976 ph->version = PERF_HEADER_VERSION_2; 3977 3978 /* check magic number with one endianness */ 3979 if (magic == __perf_magic2) 3980 return 0; 3981 3982 /* check magic number with opposite endianness */ 3983 if (magic != __perf_magic2_sw) 3984 return -1; 3985 3986 ph->needs_swap = true; 3987 3988 return 0; 3989 } 3990 3991 int perf_file_header__read(struct perf_file_header *header, 3992 struct perf_header *ph, int fd) 3993 { 3994 ssize_t ret; 3995 3996 lseek(fd, 0, SEEK_SET); 3997 3998 ret = readn(fd, header, sizeof(*header)); 3999 if (ret <= 0) 4000 return -1; 4001 4002 if (check_magic_endian(header->magic, 4003 header->attr_size, false, ph) < 0) { 4004 pr_debug("magic/endian check failed\n"); 4005 return -1; 4006 } 4007 4008 if (ph->needs_swap) { 4009 mem_bswap_64(header, offsetof(struct perf_file_header, 4010 adds_features)); 4011 } 4012 4013 if (header->size > header->attrs.offset) { 4014 pr_err("Perf file header corrupt: header overlaps attrs\n"); 4015 return -1; 4016 } 4017 4018 if (header->size > header->data.offset) { 4019 pr_err("Perf file header corrupt: header overlaps data\n"); 4020 return -1; 4021 } 4022 4023 if ((header->attrs.offset <= header->data.offset && 4024 header->attrs.offset + header->attrs.size > header->data.offset) || 4025 (header->attrs.offset > header->data.offset && 4026 header->data.offset + header->data.size > header->attrs.offset)) { 4027 pr_err("Perf file header corrupt: Attributes and data overlap\n"); 4028 return -1; 4029 } 4030 4031 if (header->size != sizeof(*header)) { 4032 /* Support the previous format */ 4033 if (header->size == offsetof(typeof(*header), adds_features)) 4034 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 4035 else 4036 return -1; 4037 } else if (ph->needs_swap) { 4038 /* 4039 * feature bitmap is declared as an array of unsigned longs -- 4040 * not good since its size can differ between the host that 4041 * generated the data file and the host analyzing the file. 4042 * 4043 * We need to handle endianness, but we don't know the size of 4044 * the unsigned long where the file was generated. Take a best 4045 * guess at determining it: try 64-bit swap first (ie., file 4046 * created on a 64-bit host), and check if the hostname feature 4047 * bit is set (this feature bit is forced on as of fbe96f2). 4048 * If the bit is not, undo the 64-bit swap and try a 32-bit 4049 * swap. If the hostname bit is still not set (e.g., older data 4050 * file), punt and fallback to the original behavior -- 4051 * clearing all feature bits and setting buildid. 4052 */ 4053 mem_bswap_64(&header->adds_features, 4054 BITS_TO_U64(HEADER_FEAT_BITS)); 4055 4056 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 4057 /* unswap as u64 */ 4058 mem_bswap_64(&header->adds_features, 4059 BITS_TO_U64(HEADER_FEAT_BITS)); 4060 4061 /* unswap as u32 */ 4062 mem_bswap_32(&header->adds_features, 4063 BITS_TO_U32(HEADER_FEAT_BITS)); 4064 } 4065 4066 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 4067 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 4068 __set_bit(HEADER_BUILD_ID, header->adds_features); 4069 } 4070 } 4071 4072 memcpy(&ph->adds_features, &header->adds_features, 4073 sizeof(ph->adds_features)); 4074 4075 ph->data_offset = header->data.offset; 4076 ph->data_size = header->data.size; 4077 ph->feat_offset = header->data.offset + header->data.size; 4078 return 0; 4079 } 4080 4081 static int perf_file_section__process(struct perf_file_section *section, 4082 struct perf_header *ph, 4083 int feat, int fd, void *data) 4084 { 4085 struct feat_fd fdd = { 4086 .fd = fd, 4087 .ph = ph, 4088 .size = section->size, 4089 .offset = section->offset, 4090 }; 4091 4092 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 4093 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 4094 "%d, continuing...\n", section->offset, feat); 4095 return 0; 4096 } 4097 4098 if (feat >= HEADER_LAST_FEATURE) { 4099 pr_debug("unknown feature %d, continuing...\n", feat); 4100 return 0; 4101 } 4102 4103 if (!feat_ops[feat].process) 4104 return 0; 4105 4106 return feat_ops[feat].process(&fdd, data); 4107 } 4108 4109 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 4110 struct perf_header *ph, 4111 struct perf_data *data) 4112 { 4113 ssize_t ret; 4114 4115 ret = perf_data__read(data, header, sizeof(*header)); 4116 if (ret <= 0) 4117 return -1; 4118 4119 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 4120 pr_debug("endian/magic failed\n"); 4121 return -1; 4122 } 4123 4124 if (ph->needs_swap) 4125 header->size = bswap_64(header->size); 4126 4127 return 0; 4128 } 4129 4130 static int perf_header__read_pipe(struct perf_session *session) 4131 { 4132 struct perf_header *header = &session->header; 4133 struct perf_pipe_file_header f_header; 4134 4135 if (perf_file_header__read_pipe(&f_header, header, session->data) < 0) { 4136 pr_debug("incompatible file format\n"); 4137 return -EINVAL; 4138 } 4139 4140 return f_header.size == sizeof(f_header) ? 0 : -1; 4141 } 4142 4143 static int read_attr(int fd, struct perf_header *ph, 4144 struct perf_file_attr *f_attr) 4145 { 4146 struct perf_event_attr *attr = &f_attr->attr; 4147 size_t sz, left; 4148 size_t our_sz = sizeof(f_attr->attr); 4149 ssize_t ret; 4150 4151 memset(f_attr, 0, sizeof(*f_attr)); 4152 4153 /* read minimal guaranteed structure */ 4154 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 4155 if (ret <= 0) { 4156 pr_debug("cannot read %d bytes of header attr\n", 4157 PERF_ATTR_SIZE_VER0); 4158 return -1; 4159 } 4160 4161 /* on file perf_event_attr size */ 4162 sz = attr->size; 4163 4164 if (ph->needs_swap) 4165 sz = bswap_32(sz); 4166 4167 if (sz == 0) { 4168 /* assume ABI0 */ 4169 sz = PERF_ATTR_SIZE_VER0; 4170 } else if (sz > our_sz) { 4171 pr_debug("file uses a more recent and unsupported ABI" 4172 " (%zu bytes extra)\n", sz - our_sz); 4173 return -1; 4174 } 4175 /* what we have not yet read and that we know about */ 4176 left = sz - PERF_ATTR_SIZE_VER0; 4177 if (left) { 4178 void *ptr = attr; 4179 ptr += PERF_ATTR_SIZE_VER0; 4180 4181 ret = readn(fd, ptr, left); 4182 } 4183 /* read perf_file_section, ids are read in caller */ 4184 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 4185 4186 return ret <= 0 ? -1 : 0; 4187 } 4188 4189 #ifdef HAVE_LIBTRACEEVENT 4190 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) 4191 { 4192 struct tep_event *event; 4193 char bf[128]; 4194 4195 /* already prepared */ 4196 if (evsel->tp_format) 4197 return 0; 4198 4199 if (pevent == NULL) { 4200 pr_debug("broken or missing trace data\n"); 4201 return -1; 4202 } 4203 4204 event = tep_find_event(pevent, evsel->core.attr.config); 4205 if (event == NULL) { 4206 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 4207 return -1; 4208 } 4209 4210 if (!evsel->name) { 4211 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 4212 evsel->name = strdup(bf); 4213 if (evsel->name == NULL) 4214 return -1; 4215 } 4216 4217 evsel->tp_format = event; 4218 return 0; 4219 } 4220 4221 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent) 4222 { 4223 struct evsel *pos; 4224 4225 evlist__for_each_entry(evlist, pos) { 4226 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 4227 evsel__prepare_tracepoint_event(pos, pevent)) 4228 return -1; 4229 } 4230 4231 return 0; 4232 } 4233 #endif 4234 4235 int perf_session__read_header(struct perf_session *session) 4236 { 4237 struct perf_data *data = session->data; 4238 struct perf_header *header = &session->header; 4239 struct perf_file_header f_header; 4240 struct perf_file_attr f_attr; 4241 u64 f_id; 4242 int nr_attrs, nr_ids, i, j, err; 4243 int fd = perf_data__fd(data); 4244 4245 session->evlist = evlist__new(); 4246 if (session->evlist == NULL) 4247 return -ENOMEM; 4248 4249 session->evlist->session = session; 4250 session->machines.host.env = &header->env; 4251 4252 /* 4253 * We can read 'pipe' data event from regular file, 4254 * check for the pipe header regardless of source. 4255 */ 4256 err = perf_header__read_pipe(session); 4257 if (!err || perf_data__is_pipe(data)) { 4258 data->is_pipe = true; 4259 return err; 4260 } 4261 4262 if (perf_file_header__read(&f_header, header, fd) < 0) 4263 return -EINVAL; 4264 4265 if (header->needs_swap && data->in_place_update) { 4266 pr_err("In-place update not supported when byte-swapping is required\n"); 4267 return -EINVAL; 4268 } 4269 4270 /* 4271 * Sanity check that perf.data was written cleanly; data size is 4272 * initialized to 0 and updated only if the on_exit function is run. 4273 * If data size is still 0 then the file contains only partial 4274 * information. Just warn user and process it as much as it can. 4275 */ 4276 if (f_header.data.size == 0) { 4277 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 4278 "Was the 'perf record' command properly terminated?\n", 4279 data->file.path); 4280 } 4281 4282 if (f_header.attr_size == 0) { 4283 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 4284 "Was the 'perf record' command properly terminated?\n", 4285 data->file.path); 4286 return -EINVAL; 4287 } 4288 4289 nr_attrs = f_header.attrs.size / f_header.attr_size; 4290 lseek(fd, f_header.attrs.offset, SEEK_SET); 4291 4292 for (i = 0; i < nr_attrs; i++) { 4293 struct evsel *evsel; 4294 off_t tmp; 4295 4296 if (read_attr(fd, header, &f_attr) < 0) 4297 goto out_errno; 4298 4299 if (header->needs_swap) { 4300 f_attr.ids.size = bswap_64(f_attr.ids.size); 4301 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 4302 perf_event__attr_swap(&f_attr.attr); 4303 } 4304 4305 tmp = lseek(fd, 0, SEEK_CUR); 4306 evsel = evsel__new(&f_attr.attr); 4307 4308 if (evsel == NULL) 4309 goto out_delete_evlist; 4310 4311 evsel->needs_swap = header->needs_swap; 4312 /* 4313 * Do it before so that if perf_evsel__alloc_id fails, this 4314 * entry gets purged too at evlist__delete(). 4315 */ 4316 evlist__add(session->evlist, evsel); 4317 4318 nr_ids = f_attr.ids.size / sizeof(u64); 4319 /* 4320 * We don't have the cpu and thread maps on the header, so 4321 * for allocating the perf_sample_id table we fake 1 cpu and 4322 * hattr->ids threads. 4323 */ 4324 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 4325 goto out_delete_evlist; 4326 4327 lseek(fd, f_attr.ids.offset, SEEK_SET); 4328 4329 for (j = 0; j < nr_ids; j++) { 4330 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 4331 goto out_errno; 4332 4333 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 4334 } 4335 4336 lseek(fd, tmp, SEEK_SET); 4337 } 4338 4339 #ifdef HAVE_LIBTRACEEVENT 4340 perf_header__process_sections(header, fd, &session->tevent, 4341 perf_file_section__process); 4342 4343 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) 4344 goto out_delete_evlist; 4345 #else 4346 perf_header__process_sections(header, fd, NULL, perf_file_section__process); 4347 #endif 4348 4349 return 0; 4350 out_errno: 4351 return -errno; 4352 4353 out_delete_evlist: 4354 evlist__delete(session->evlist); 4355 session->evlist = NULL; 4356 return -ENOMEM; 4357 } 4358 4359 int perf_event__process_feature(struct perf_session *session, 4360 union perf_event *event) 4361 { 4362 struct feat_fd ff = { .fd = 0 }; 4363 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 4364 int type = fe->header.type; 4365 u64 feat = fe->feat_id; 4366 int ret = 0; 4367 bool print = dump_trace; 4368 4369 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 4370 pr_warning("invalid record type %d in pipe-mode\n", type); 4371 return 0; 4372 } 4373 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 4374 pr_warning("invalid record type %d in pipe-mode\n", type); 4375 return -1; 4376 } 4377 4378 ff.buf = (void *)fe->data; 4379 ff.size = event->header.size - sizeof(*fe); 4380 ff.ph = &session->header; 4381 4382 if (feat_ops[feat].process && feat_ops[feat].process(&ff, NULL)) { 4383 ret = -1; 4384 goto out; 4385 } 4386 4387 if (session->tool->show_feat_hdr) { 4388 if (!feat_ops[feat].full_only || 4389 session->tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 4390 print = true; 4391 } else { 4392 fprintf(stdout, "# %s info available, use -I to display\n", 4393 feat_ops[feat].name); 4394 } 4395 } 4396 4397 if (dump_trace) 4398 printf(", "); 4399 4400 if (print) { 4401 if (feat_ops[feat].print) 4402 feat_ops[feat].print(&ff, stdout); 4403 else 4404 printf("# %s", feat_ops[feat].name); 4405 } 4406 4407 out: 4408 free_event_desc(ff.events); 4409 return ret; 4410 } 4411 4412 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 4413 { 4414 struct perf_record_event_update *ev = &event->event_update; 4415 struct perf_cpu_map *map; 4416 size_t ret; 4417 4418 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 4419 4420 switch (ev->type) { 4421 case PERF_EVENT_UPDATE__SCALE: 4422 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale); 4423 break; 4424 case PERF_EVENT_UPDATE__UNIT: 4425 ret += fprintf(fp, "... unit: %s\n", ev->unit); 4426 break; 4427 case PERF_EVENT_UPDATE__NAME: 4428 ret += fprintf(fp, "... name: %s\n", ev->name); 4429 break; 4430 case PERF_EVENT_UPDATE__CPUS: 4431 ret += fprintf(fp, "... "); 4432 4433 map = cpu_map__new_data(&ev->cpus.cpus); 4434 if (map) { 4435 ret += cpu_map__fprintf(map, fp); 4436 perf_cpu_map__put(map); 4437 } else 4438 ret += fprintf(fp, "failed to get cpus\n"); 4439 break; 4440 default: 4441 ret += fprintf(fp, "... unknown type\n"); 4442 break; 4443 } 4444 4445 return ret; 4446 } 4447 4448 size_t perf_event__fprintf_attr(union perf_event *event, FILE *fp) 4449 { 4450 return perf_event_attr__fprintf(fp, &event->attr.attr, __desc_attr__fprintf, NULL); 4451 } 4452 4453 int perf_event__process_attr(const struct perf_tool *tool __maybe_unused, 4454 union perf_event *event, 4455 struct evlist **pevlist) 4456 { 4457 u32 i, n_ids; 4458 u64 *ids; 4459 struct evsel *evsel; 4460 struct evlist *evlist = *pevlist; 4461 4462 if (dump_trace) 4463 perf_event__fprintf_attr(event, stdout); 4464 4465 if (evlist == NULL) { 4466 *pevlist = evlist = evlist__new(); 4467 if (evlist == NULL) 4468 return -ENOMEM; 4469 } 4470 4471 evsel = evsel__new(&event->attr.attr); 4472 if (evsel == NULL) 4473 return -ENOMEM; 4474 4475 evlist__add(evlist, evsel); 4476 4477 n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size; 4478 n_ids = n_ids / sizeof(u64); 4479 /* 4480 * We don't have the cpu and thread maps on the header, so 4481 * for allocating the perf_sample_id table we fake 1 cpu and 4482 * hattr->ids threads. 4483 */ 4484 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 4485 return -ENOMEM; 4486 4487 ids = perf_record_header_attr_id(event); 4488 for (i = 0; i < n_ids; i++) { 4489 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]); 4490 } 4491 4492 return 0; 4493 } 4494 4495 int perf_event__process_event_update(const struct perf_tool *tool __maybe_unused, 4496 union perf_event *event, 4497 struct evlist **pevlist) 4498 { 4499 struct perf_record_event_update *ev = &event->event_update; 4500 struct evlist *evlist; 4501 struct evsel *evsel; 4502 struct perf_cpu_map *map; 4503 4504 if (dump_trace) 4505 perf_event__fprintf_event_update(event, stdout); 4506 4507 if (!pevlist || *pevlist == NULL) 4508 return -EINVAL; 4509 4510 evlist = *pevlist; 4511 4512 evsel = evlist__id2evsel(evlist, ev->id); 4513 if (evsel == NULL) 4514 return -EINVAL; 4515 4516 switch (ev->type) { 4517 case PERF_EVENT_UPDATE__UNIT: 4518 free((char *)evsel->unit); 4519 evsel->unit = strdup(ev->unit); 4520 break; 4521 case PERF_EVENT_UPDATE__NAME: 4522 free(evsel->name); 4523 evsel->name = strdup(ev->name); 4524 break; 4525 case PERF_EVENT_UPDATE__SCALE: 4526 evsel->scale = ev->scale.scale; 4527 break; 4528 case PERF_EVENT_UPDATE__CPUS: 4529 map = cpu_map__new_data(&ev->cpus.cpus); 4530 if (map) { 4531 perf_cpu_map__put(evsel->core.pmu_cpus); 4532 evsel->core.pmu_cpus = map; 4533 } else 4534 pr_err("failed to get event_update cpus\n"); 4535 default: 4536 break; 4537 } 4538 4539 return 0; 4540 } 4541 4542 #ifdef HAVE_LIBTRACEEVENT 4543 int perf_event__process_tracing_data(const struct perf_tool *tool __maybe_unused, 4544 struct perf_session *session, 4545 union perf_event *event) 4546 { 4547 ssize_t size_read, padding, size = event->tracing_data.size; 4548 int fd = perf_data__fd(session->data); 4549 char buf[BUFSIZ]; 4550 4551 /* 4552 * The pipe fd is already in proper place and in any case 4553 * we can't move it, and we'd screw the case where we read 4554 * 'pipe' data from regular file. The trace_report reads 4555 * data from 'fd' so we need to set it directly behind the 4556 * event, where the tracing data starts. 4557 */ 4558 if (!perf_data__is_pipe(session->data)) { 4559 off_t offset = lseek(fd, 0, SEEK_CUR); 4560 4561 /* setup for reading amidst mmap */ 4562 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 4563 SEEK_SET); 4564 } 4565 4566 size_read = trace_report(fd, &session->tevent, session->trace_event_repipe); 4567 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4568 4569 if (readn(fd, buf, padding) < 0) { 4570 pr_err("%s: reading input file", __func__); 4571 return -1; 4572 } 4573 if (session->trace_event_repipe) { 4574 int retw = write(STDOUT_FILENO, buf, padding); 4575 if (retw <= 0 || retw != padding) { 4576 pr_err("%s: repiping tracing data padding", __func__); 4577 return -1; 4578 } 4579 } 4580 4581 if (size_read + padding != size) { 4582 pr_err("%s: tracing data size mismatch", __func__); 4583 return -1; 4584 } 4585 4586 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); 4587 4588 return size_read + padding; 4589 } 4590 #endif 4591 4592 int perf_event__process_build_id(const struct perf_tool *tool __maybe_unused, 4593 struct perf_session *session, 4594 union perf_event *event) 4595 { 4596 __event_process_build_id(&event->build_id, 4597 event->build_id.filename, 4598 session); 4599 return 0; 4600 } 4601