1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "util.h" 5 #include "string2.h" 6 #include <sys/param.h> 7 #include <sys/types.h> 8 #include <byteswap.h> 9 #include <unistd.h> 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <linux/compiler.h> 13 #include <linux/list.h> 14 #include <linux/kernel.h> 15 #include <linux/bitops.h> 16 #include <linux/stringify.h> 17 #include <sys/stat.h> 18 #include <sys/utsname.h> 19 #include <linux/time64.h> 20 #include <dirent.h> 21 #include <bpf/libbpf.h> 22 23 #include "evlist.h" 24 #include "evsel.h" 25 #include "header.h" 26 #include "memswap.h" 27 #include "../perf.h" 28 #include "trace-event.h" 29 #include "session.h" 30 #include "symbol.h" 31 #include "debug.h" 32 #include "cpumap.h" 33 #include "pmu.h" 34 #include "vdso.h" 35 #include "strbuf.h" 36 #include "build-id.h" 37 #include "data.h" 38 #include <api/fs/fs.h> 39 #include "asm/bug.h" 40 #include "tool.h" 41 #include "time-utils.h" 42 #include "units.h" 43 #include "cputopo.h" 44 #include "bpf-event.h" 45 46 #include "sane_ctype.h" 47 48 /* 49 * magic2 = "PERFILE2" 50 * must be a numerical value to let the endianness 51 * determine the memory layout. That way we are able 52 * to detect endianness when reading the perf.data file 53 * back. 54 * 55 * we check for legacy (PERFFILE) format. 56 */ 57 static const char *__perf_magic1 = "PERFFILE"; 58 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 59 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 60 61 #define PERF_MAGIC __perf_magic2 62 63 const char perf_version_string[] = PERF_VERSION; 64 65 struct perf_file_attr { 66 struct perf_event_attr attr; 67 struct perf_file_section ids; 68 }; 69 70 struct feat_fd { 71 struct perf_header *ph; 72 int fd; 73 void *buf; /* Either buf != NULL or fd >= 0 */ 74 ssize_t offset; 75 size_t size; 76 struct perf_evsel *events; 77 }; 78 79 void perf_header__set_feat(struct perf_header *header, int feat) 80 { 81 set_bit(feat, header->adds_features); 82 } 83 84 void perf_header__clear_feat(struct perf_header *header, int feat) 85 { 86 clear_bit(feat, header->adds_features); 87 } 88 89 bool perf_header__has_feat(const struct perf_header *header, int feat) 90 { 91 return test_bit(feat, header->adds_features); 92 } 93 94 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 95 { 96 ssize_t ret = writen(ff->fd, buf, size); 97 98 if (ret != (ssize_t)size) 99 return ret < 0 ? (int)ret : -1; 100 return 0; 101 } 102 103 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 104 { 105 /* struct perf_event_header::size is u16 */ 106 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 107 size_t new_size = ff->size; 108 void *addr; 109 110 if (size + ff->offset > max_size) 111 return -E2BIG; 112 113 while (size > (new_size - ff->offset)) 114 new_size <<= 1; 115 new_size = min(max_size, new_size); 116 117 if (ff->size < new_size) { 118 addr = realloc(ff->buf, new_size); 119 if (!addr) 120 return -ENOMEM; 121 ff->buf = addr; 122 ff->size = new_size; 123 } 124 125 memcpy(ff->buf + ff->offset, buf, size); 126 ff->offset += size; 127 128 return 0; 129 } 130 131 /* Return: 0 if succeded, -ERR if failed. */ 132 int do_write(struct feat_fd *ff, const void *buf, size_t size) 133 { 134 if (!ff->buf) 135 return __do_write_fd(ff, buf, size); 136 return __do_write_buf(ff, buf, size); 137 } 138 139 /* Return: 0 if succeded, -ERR if failed. */ 140 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 141 { 142 u64 *p = (u64 *) set; 143 int i, ret; 144 145 ret = do_write(ff, &size, sizeof(size)); 146 if (ret < 0) 147 return ret; 148 149 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 150 ret = do_write(ff, p + i, sizeof(*p)); 151 if (ret < 0) 152 return ret; 153 } 154 155 return 0; 156 } 157 158 /* Return: 0 if succeded, -ERR if failed. */ 159 int write_padded(struct feat_fd *ff, const void *bf, 160 size_t count, size_t count_aligned) 161 { 162 static const char zero_buf[NAME_ALIGN]; 163 int err = do_write(ff, bf, count); 164 165 if (!err) 166 err = do_write(ff, zero_buf, count_aligned - count); 167 168 return err; 169 } 170 171 #define string_size(str) \ 172 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 173 174 /* Return: 0 if succeded, -ERR if failed. */ 175 static int do_write_string(struct feat_fd *ff, const char *str) 176 { 177 u32 len, olen; 178 int ret; 179 180 olen = strlen(str) + 1; 181 len = PERF_ALIGN(olen, NAME_ALIGN); 182 183 /* write len, incl. \0 */ 184 ret = do_write(ff, &len, sizeof(len)); 185 if (ret < 0) 186 return ret; 187 188 return write_padded(ff, str, olen, len); 189 } 190 191 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 192 { 193 ssize_t ret = readn(ff->fd, addr, size); 194 195 if (ret != size) 196 return ret < 0 ? (int)ret : -1; 197 return 0; 198 } 199 200 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 201 { 202 if (size > (ssize_t)ff->size - ff->offset) 203 return -1; 204 205 memcpy(addr, ff->buf + ff->offset, size); 206 ff->offset += size; 207 208 return 0; 209 210 } 211 212 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 213 { 214 if (!ff->buf) 215 return __do_read_fd(ff, addr, size); 216 return __do_read_buf(ff, addr, size); 217 } 218 219 static int do_read_u32(struct feat_fd *ff, u32 *addr) 220 { 221 int ret; 222 223 ret = __do_read(ff, addr, sizeof(*addr)); 224 if (ret) 225 return ret; 226 227 if (ff->ph->needs_swap) 228 *addr = bswap_32(*addr); 229 return 0; 230 } 231 232 static int do_read_u64(struct feat_fd *ff, u64 *addr) 233 { 234 int ret; 235 236 ret = __do_read(ff, addr, sizeof(*addr)); 237 if (ret) 238 return ret; 239 240 if (ff->ph->needs_swap) 241 *addr = bswap_64(*addr); 242 return 0; 243 } 244 245 static char *do_read_string(struct feat_fd *ff) 246 { 247 u32 len; 248 char *buf; 249 250 if (do_read_u32(ff, &len)) 251 return NULL; 252 253 buf = malloc(len); 254 if (!buf) 255 return NULL; 256 257 if (!__do_read(ff, buf, len)) { 258 /* 259 * strings are padded by zeroes 260 * thus the actual strlen of buf 261 * may be less than len 262 */ 263 return buf; 264 } 265 266 free(buf); 267 return NULL; 268 } 269 270 /* Return: 0 if succeded, -ERR if failed. */ 271 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 272 { 273 unsigned long *set; 274 u64 size, *p; 275 int i, ret; 276 277 ret = do_read_u64(ff, &size); 278 if (ret) 279 return ret; 280 281 set = bitmap_alloc(size); 282 if (!set) 283 return -ENOMEM; 284 285 p = (u64 *) set; 286 287 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 288 ret = do_read_u64(ff, p + i); 289 if (ret < 0) { 290 free(set); 291 return ret; 292 } 293 } 294 295 *pset = set; 296 *psize = size; 297 return 0; 298 } 299 300 static int write_tracing_data(struct feat_fd *ff, 301 struct perf_evlist *evlist) 302 { 303 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 304 return -1; 305 306 return read_tracing_data(ff->fd, &evlist->entries); 307 } 308 309 static int write_build_id(struct feat_fd *ff, 310 struct perf_evlist *evlist __maybe_unused) 311 { 312 struct perf_session *session; 313 int err; 314 315 session = container_of(ff->ph, struct perf_session, header); 316 317 if (!perf_session__read_build_ids(session, true)) 318 return -1; 319 320 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 321 return -1; 322 323 err = perf_session__write_buildid_table(session, ff); 324 if (err < 0) { 325 pr_debug("failed to write buildid table\n"); 326 return err; 327 } 328 perf_session__cache_build_ids(session); 329 330 return 0; 331 } 332 333 static int write_hostname(struct feat_fd *ff, 334 struct perf_evlist *evlist __maybe_unused) 335 { 336 struct utsname uts; 337 int ret; 338 339 ret = uname(&uts); 340 if (ret < 0) 341 return -1; 342 343 return do_write_string(ff, uts.nodename); 344 } 345 346 static int write_osrelease(struct feat_fd *ff, 347 struct perf_evlist *evlist __maybe_unused) 348 { 349 struct utsname uts; 350 int ret; 351 352 ret = uname(&uts); 353 if (ret < 0) 354 return -1; 355 356 return do_write_string(ff, uts.release); 357 } 358 359 static int write_arch(struct feat_fd *ff, 360 struct perf_evlist *evlist __maybe_unused) 361 { 362 struct utsname uts; 363 int ret; 364 365 ret = uname(&uts); 366 if (ret < 0) 367 return -1; 368 369 return do_write_string(ff, uts.machine); 370 } 371 372 static int write_version(struct feat_fd *ff, 373 struct perf_evlist *evlist __maybe_unused) 374 { 375 return do_write_string(ff, perf_version_string); 376 } 377 378 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 379 { 380 FILE *file; 381 char *buf = NULL; 382 char *s, *p; 383 const char *search = cpuinfo_proc; 384 size_t len = 0; 385 int ret = -1; 386 387 if (!search) 388 return -1; 389 390 file = fopen("/proc/cpuinfo", "r"); 391 if (!file) 392 return -1; 393 394 while (getline(&buf, &len, file) > 0) { 395 ret = strncmp(buf, search, strlen(search)); 396 if (!ret) 397 break; 398 } 399 400 if (ret) { 401 ret = -1; 402 goto done; 403 } 404 405 s = buf; 406 407 p = strchr(buf, ':'); 408 if (p && *(p+1) == ' ' && *(p+2)) 409 s = p + 2; 410 p = strchr(s, '\n'); 411 if (p) 412 *p = '\0'; 413 414 /* squash extra space characters (branding string) */ 415 p = s; 416 while (*p) { 417 if (isspace(*p)) { 418 char *r = p + 1; 419 char *q = r; 420 *p = ' '; 421 while (*q && isspace(*q)) 422 q++; 423 if (q != (p+1)) 424 while ((*r++ = *q++)); 425 } 426 p++; 427 } 428 ret = do_write_string(ff, s); 429 done: 430 free(buf); 431 fclose(file); 432 return ret; 433 } 434 435 static int write_cpudesc(struct feat_fd *ff, 436 struct perf_evlist *evlist __maybe_unused) 437 { 438 const char *cpuinfo_procs[] = CPUINFO_PROC; 439 unsigned int i; 440 441 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 442 int ret; 443 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 444 if (ret >= 0) 445 return ret; 446 } 447 return -1; 448 } 449 450 451 static int write_nrcpus(struct feat_fd *ff, 452 struct perf_evlist *evlist __maybe_unused) 453 { 454 long nr; 455 u32 nrc, nra; 456 int ret; 457 458 nrc = cpu__max_present_cpu(); 459 460 nr = sysconf(_SC_NPROCESSORS_ONLN); 461 if (nr < 0) 462 return -1; 463 464 nra = (u32)(nr & UINT_MAX); 465 466 ret = do_write(ff, &nrc, sizeof(nrc)); 467 if (ret < 0) 468 return ret; 469 470 return do_write(ff, &nra, sizeof(nra)); 471 } 472 473 static int write_event_desc(struct feat_fd *ff, 474 struct perf_evlist *evlist) 475 { 476 struct perf_evsel *evsel; 477 u32 nre, nri, sz; 478 int ret; 479 480 nre = evlist->nr_entries; 481 482 /* 483 * write number of events 484 */ 485 ret = do_write(ff, &nre, sizeof(nre)); 486 if (ret < 0) 487 return ret; 488 489 /* 490 * size of perf_event_attr struct 491 */ 492 sz = (u32)sizeof(evsel->attr); 493 ret = do_write(ff, &sz, sizeof(sz)); 494 if (ret < 0) 495 return ret; 496 497 evlist__for_each_entry(evlist, evsel) { 498 ret = do_write(ff, &evsel->attr, sz); 499 if (ret < 0) 500 return ret; 501 /* 502 * write number of unique id per event 503 * there is one id per instance of an event 504 * 505 * copy into an nri to be independent of the 506 * type of ids, 507 */ 508 nri = evsel->ids; 509 ret = do_write(ff, &nri, sizeof(nri)); 510 if (ret < 0) 511 return ret; 512 513 /* 514 * write event string as passed on cmdline 515 */ 516 ret = do_write_string(ff, perf_evsel__name(evsel)); 517 if (ret < 0) 518 return ret; 519 /* 520 * write unique ids for this event 521 */ 522 ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64)); 523 if (ret < 0) 524 return ret; 525 } 526 return 0; 527 } 528 529 static int write_cmdline(struct feat_fd *ff, 530 struct perf_evlist *evlist __maybe_unused) 531 { 532 char pbuf[MAXPATHLEN], *buf; 533 int i, ret, n; 534 535 /* actual path to perf binary */ 536 buf = perf_exe(pbuf, MAXPATHLEN); 537 538 /* account for binary path */ 539 n = perf_env.nr_cmdline + 1; 540 541 ret = do_write(ff, &n, sizeof(n)); 542 if (ret < 0) 543 return ret; 544 545 ret = do_write_string(ff, buf); 546 if (ret < 0) 547 return ret; 548 549 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 550 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 551 if (ret < 0) 552 return ret; 553 } 554 return 0; 555 } 556 557 558 static int write_cpu_topology(struct feat_fd *ff, 559 struct perf_evlist *evlist __maybe_unused) 560 { 561 struct cpu_topology *tp; 562 u32 i; 563 int ret, j; 564 565 tp = cpu_topology__new(); 566 if (!tp) 567 return -1; 568 569 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib)); 570 if (ret < 0) 571 goto done; 572 573 for (i = 0; i < tp->core_sib; i++) { 574 ret = do_write_string(ff, tp->core_siblings[i]); 575 if (ret < 0) 576 goto done; 577 } 578 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib)); 579 if (ret < 0) 580 goto done; 581 582 for (i = 0; i < tp->thread_sib; i++) { 583 ret = do_write_string(ff, tp->thread_siblings[i]); 584 if (ret < 0) 585 break; 586 } 587 588 ret = perf_env__read_cpu_topology_map(&perf_env); 589 if (ret < 0) 590 goto done; 591 592 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 593 ret = do_write(ff, &perf_env.cpu[j].core_id, 594 sizeof(perf_env.cpu[j].core_id)); 595 if (ret < 0) 596 return ret; 597 ret = do_write(ff, &perf_env.cpu[j].socket_id, 598 sizeof(perf_env.cpu[j].socket_id)); 599 if (ret < 0) 600 return ret; 601 } 602 done: 603 cpu_topology__delete(tp); 604 return ret; 605 } 606 607 608 609 static int write_total_mem(struct feat_fd *ff, 610 struct perf_evlist *evlist __maybe_unused) 611 { 612 char *buf = NULL; 613 FILE *fp; 614 size_t len = 0; 615 int ret = -1, n; 616 uint64_t mem; 617 618 fp = fopen("/proc/meminfo", "r"); 619 if (!fp) 620 return -1; 621 622 while (getline(&buf, &len, fp) > 0) { 623 ret = strncmp(buf, "MemTotal:", 9); 624 if (!ret) 625 break; 626 } 627 if (!ret) { 628 n = sscanf(buf, "%*s %"PRIu64, &mem); 629 if (n == 1) 630 ret = do_write(ff, &mem, sizeof(mem)); 631 } else 632 ret = -1; 633 free(buf); 634 fclose(fp); 635 return ret; 636 } 637 638 static int write_numa_topology(struct feat_fd *ff, 639 struct perf_evlist *evlist __maybe_unused) 640 { 641 struct numa_topology *tp; 642 int ret = -1; 643 u32 i; 644 645 tp = numa_topology__new(); 646 if (!tp) 647 return -ENOMEM; 648 649 ret = do_write(ff, &tp->nr, sizeof(u32)); 650 if (ret < 0) 651 goto err; 652 653 for (i = 0; i < tp->nr; i++) { 654 struct numa_topology_node *n = &tp->nodes[i]; 655 656 ret = do_write(ff, &n->node, sizeof(u32)); 657 if (ret < 0) 658 goto err; 659 660 ret = do_write(ff, &n->mem_total, sizeof(u64)); 661 if (ret) 662 goto err; 663 664 ret = do_write(ff, &n->mem_free, sizeof(u64)); 665 if (ret) 666 goto err; 667 668 ret = do_write_string(ff, n->cpus); 669 if (ret < 0) 670 goto err; 671 } 672 673 ret = 0; 674 675 err: 676 numa_topology__delete(tp); 677 return ret; 678 } 679 680 /* 681 * File format: 682 * 683 * struct pmu_mappings { 684 * u32 pmu_num; 685 * struct pmu_map { 686 * u32 type; 687 * char name[]; 688 * }[pmu_num]; 689 * }; 690 */ 691 692 static int write_pmu_mappings(struct feat_fd *ff, 693 struct perf_evlist *evlist __maybe_unused) 694 { 695 struct perf_pmu *pmu = NULL; 696 u32 pmu_num = 0; 697 int ret; 698 699 /* 700 * Do a first pass to count number of pmu to avoid lseek so this 701 * works in pipe mode as well. 702 */ 703 while ((pmu = perf_pmu__scan(pmu))) { 704 if (!pmu->name) 705 continue; 706 pmu_num++; 707 } 708 709 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 710 if (ret < 0) 711 return ret; 712 713 while ((pmu = perf_pmu__scan(pmu))) { 714 if (!pmu->name) 715 continue; 716 717 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 718 if (ret < 0) 719 return ret; 720 721 ret = do_write_string(ff, pmu->name); 722 if (ret < 0) 723 return ret; 724 } 725 726 return 0; 727 } 728 729 /* 730 * File format: 731 * 732 * struct group_descs { 733 * u32 nr_groups; 734 * struct group_desc { 735 * char name[]; 736 * u32 leader_idx; 737 * u32 nr_members; 738 * }[nr_groups]; 739 * }; 740 */ 741 static int write_group_desc(struct feat_fd *ff, 742 struct perf_evlist *evlist) 743 { 744 u32 nr_groups = evlist->nr_groups; 745 struct perf_evsel *evsel; 746 int ret; 747 748 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 749 if (ret < 0) 750 return ret; 751 752 evlist__for_each_entry(evlist, evsel) { 753 if (perf_evsel__is_group_leader(evsel) && 754 evsel->nr_members > 1) { 755 const char *name = evsel->group_name ?: "{anon_group}"; 756 u32 leader_idx = evsel->idx; 757 u32 nr_members = evsel->nr_members; 758 759 ret = do_write_string(ff, name); 760 if (ret < 0) 761 return ret; 762 763 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 764 if (ret < 0) 765 return ret; 766 767 ret = do_write(ff, &nr_members, sizeof(nr_members)); 768 if (ret < 0) 769 return ret; 770 } 771 } 772 return 0; 773 } 774 775 /* 776 * Return the CPU id as a raw string. 777 * 778 * Each architecture should provide a more precise id string that 779 * can be use to match the architecture's "mapfile". 780 */ 781 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 782 { 783 return NULL; 784 } 785 786 /* Return zero when the cpuid from the mapfile.csv matches the 787 * cpuid string generated on this platform. 788 * Otherwise return non-zero. 789 */ 790 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 791 { 792 regex_t re; 793 regmatch_t pmatch[1]; 794 int match; 795 796 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 797 /* Warn unable to generate match particular string. */ 798 pr_info("Invalid regular expression %s\n", mapcpuid); 799 return 1; 800 } 801 802 match = !regexec(&re, cpuid, 1, pmatch, 0); 803 regfree(&re); 804 if (match) { 805 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 806 807 /* Verify the entire string matched. */ 808 if (match_len == strlen(cpuid)) 809 return 0; 810 } 811 return 1; 812 } 813 814 /* 815 * default get_cpuid(): nothing gets recorded 816 * actual implementation must be in arch/$(SRCARCH)/util/header.c 817 */ 818 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 819 { 820 return -1; 821 } 822 823 static int write_cpuid(struct feat_fd *ff, 824 struct perf_evlist *evlist __maybe_unused) 825 { 826 char buffer[64]; 827 int ret; 828 829 ret = get_cpuid(buffer, sizeof(buffer)); 830 if (ret) 831 return -1; 832 833 return do_write_string(ff, buffer); 834 } 835 836 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 837 struct perf_evlist *evlist __maybe_unused) 838 { 839 return 0; 840 } 841 842 static int write_auxtrace(struct feat_fd *ff, 843 struct perf_evlist *evlist __maybe_unused) 844 { 845 struct perf_session *session; 846 int err; 847 848 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 849 return -1; 850 851 session = container_of(ff->ph, struct perf_session, header); 852 853 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 854 if (err < 0) 855 pr_err("Failed to write auxtrace index\n"); 856 return err; 857 } 858 859 static int write_clockid(struct feat_fd *ff, 860 struct perf_evlist *evlist __maybe_unused) 861 { 862 return do_write(ff, &ff->ph->env.clockid_res_ns, 863 sizeof(ff->ph->env.clockid_res_ns)); 864 } 865 866 static int write_dir_format(struct feat_fd *ff, 867 struct perf_evlist *evlist __maybe_unused) 868 { 869 struct perf_session *session; 870 struct perf_data *data; 871 872 session = container_of(ff->ph, struct perf_session, header); 873 data = session->data; 874 875 if (WARN_ON(!perf_data__is_dir(data))) 876 return -1; 877 878 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 879 } 880 881 #ifdef HAVE_LIBBPF_SUPPORT 882 static int write_bpf_prog_info(struct feat_fd *ff, 883 struct perf_evlist *evlist __maybe_unused) 884 { 885 struct perf_env *env = &ff->ph->env; 886 struct rb_root *root; 887 struct rb_node *next; 888 int ret; 889 890 down_read(&env->bpf_progs.lock); 891 892 ret = do_write(ff, &env->bpf_progs.infos_cnt, 893 sizeof(env->bpf_progs.infos_cnt)); 894 if (ret < 0) 895 goto out; 896 897 root = &env->bpf_progs.infos; 898 next = rb_first(root); 899 while (next) { 900 struct bpf_prog_info_node *node; 901 size_t len; 902 903 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 904 next = rb_next(&node->rb_node); 905 len = sizeof(struct bpf_prog_info_linear) + 906 node->info_linear->data_len; 907 908 /* before writing to file, translate address to offset */ 909 bpf_program__bpil_addr_to_offs(node->info_linear); 910 ret = do_write(ff, node->info_linear, len); 911 /* 912 * translate back to address even when do_write() fails, 913 * so that this function never changes the data. 914 */ 915 bpf_program__bpil_offs_to_addr(node->info_linear); 916 if (ret < 0) 917 goto out; 918 } 919 out: 920 up_read(&env->bpf_progs.lock); 921 return ret; 922 } 923 #else // HAVE_LIBBPF_SUPPORT 924 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused, 925 struct perf_evlist *evlist __maybe_unused) 926 { 927 return 0; 928 } 929 #endif // HAVE_LIBBPF_SUPPORT 930 931 static int write_bpf_btf(struct feat_fd *ff, 932 struct perf_evlist *evlist __maybe_unused) 933 { 934 struct perf_env *env = &ff->ph->env; 935 struct rb_root *root; 936 struct rb_node *next; 937 int ret; 938 939 down_read(&env->bpf_progs.lock); 940 941 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 942 sizeof(env->bpf_progs.btfs_cnt)); 943 944 if (ret < 0) 945 goto out; 946 947 root = &env->bpf_progs.btfs; 948 next = rb_first(root); 949 while (next) { 950 struct btf_node *node; 951 952 node = rb_entry(next, struct btf_node, rb_node); 953 next = rb_next(&node->rb_node); 954 ret = do_write(ff, &node->id, 955 sizeof(u32) * 2 + node->data_size); 956 if (ret < 0) 957 goto out; 958 } 959 out: 960 up_read(&env->bpf_progs.lock); 961 return ret; 962 } 963 964 static int cpu_cache_level__sort(const void *a, const void *b) 965 { 966 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 967 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 968 969 return cache_a->level - cache_b->level; 970 } 971 972 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 973 { 974 if (a->level != b->level) 975 return false; 976 977 if (a->line_size != b->line_size) 978 return false; 979 980 if (a->sets != b->sets) 981 return false; 982 983 if (a->ways != b->ways) 984 return false; 985 986 if (strcmp(a->type, b->type)) 987 return false; 988 989 if (strcmp(a->size, b->size)) 990 return false; 991 992 if (strcmp(a->map, b->map)) 993 return false; 994 995 return true; 996 } 997 998 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 999 { 1000 char path[PATH_MAX], file[PATH_MAX]; 1001 struct stat st; 1002 size_t len; 1003 1004 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1005 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1006 1007 if (stat(file, &st)) 1008 return 1; 1009 1010 scnprintf(file, PATH_MAX, "%s/level", path); 1011 if (sysfs__read_int(file, (int *) &cache->level)) 1012 return -1; 1013 1014 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1015 if (sysfs__read_int(file, (int *) &cache->line_size)) 1016 return -1; 1017 1018 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1019 if (sysfs__read_int(file, (int *) &cache->sets)) 1020 return -1; 1021 1022 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1023 if (sysfs__read_int(file, (int *) &cache->ways)) 1024 return -1; 1025 1026 scnprintf(file, PATH_MAX, "%s/type", path); 1027 if (sysfs__read_str(file, &cache->type, &len)) 1028 return -1; 1029 1030 cache->type[len] = 0; 1031 cache->type = rtrim(cache->type); 1032 1033 scnprintf(file, PATH_MAX, "%s/size", path); 1034 if (sysfs__read_str(file, &cache->size, &len)) { 1035 free(cache->type); 1036 return -1; 1037 } 1038 1039 cache->size[len] = 0; 1040 cache->size = rtrim(cache->size); 1041 1042 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1043 if (sysfs__read_str(file, &cache->map, &len)) { 1044 free(cache->map); 1045 free(cache->type); 1046 return -1; 1047 } 1048 1049 cache->map[len] = 0; 1050 cache->map = rtrim(cache->map); 1051 return 0; 1052 } 1053 1054 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1055 { 1056 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1057 } 1058 1059 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp) 1060 { 1061 u32 i, cnt = 0; 1062 long ncpus; 1063 u32 nr, cpu; 1064 u16 level; 1065 1066 ncpus = sysconf(_SC_NPROCESSORS_CONF); 1067 if (ncpus < 0) 1068 return -1; 1069 1070 nr = (u32)(ncpus & UINT_MAX); 1071 1072 for (cpu = 0; cpu < nr; cpu++) { 1073 for (level = 0; level < 10; level++) { 1074 struct cpu_cache_level c; 1075 int err; 1076 1077 err = cpu_cache_level__read(&c, cpu, level); 1078 if (err < 0) 1079 return err; 1080 1081 if (err == 1) 1082 break; 1083 1084 for (i = 0; i < cnt; i++) { 1085 if (cpu_cache_level__cmp(&c, &caches[i])) 1086 break; 1087 } 1088 1089 if (i == cnt) 1090 caches[cnt++] = c; 1091 else 1092 cpu_cache_level__free(&c); 1093 1094 if (WARN_ONCE(cnt == size, "way too many cpu caches..")) 1095 goto out; 1096 } 1097 } 1098 out: 1099 *cntp = cnt; 1100 return 0; 1101 } 1102 1103 #define MAX_CACHES 2000 1104 1105 static int write_cache(struct feat_fd *ff, 1106 struct perf_evlist *evlist __maybe_unused) 1107 { 1108 struct cpu_cache_level caches[MAX_CACHES]; 1109 u32 cnt = 0, i, version = 1; 1110 int ret; 1111 1112 ret = build_caches(caches, MAX_CACHES, &cnt); 1113 if (ret) 1114 goto out; 1115 1116 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1117 1118 ret = do_write(ff, &version, sizeof(u32)); 1119 if (ret < 0) 1120 goto out; 1121 1122 ret = do_write(ff, &cnt, sizeof(u32)); 1123 if (ret < 0) 1124 goto out; 1125 1126 for (i = 0; i < cnt; i++) { 1127 struct cpu_cache_level *c = &caches[i]; 1128 1129 #define _W(v) \ 1130 ret = do_write(ff, &c->v, sizeof(u32)); \ 1131 if (ret < 0) \ 1132 goto out; 1133 1134 _W(level) 1135 _W(line_size) 1136 _W(sets) 1137 _W(ways) 1138 #undef _W 1139 1140 #define _W(v) \ 1141 ret = do_write_string(ff, (const char *) c->v); \ 1142 if (ret < 0) \ 1143 goto out; 1144 1145 _W(type) 1146 _W(size) 1147 _W(map) 1148 #undef _W 1149 } 1150 1151 out: 1152 for (i = 0; i < cnt; i++) 1153 cpu_cache_level__free(&caches[i]); 1154 return ret; 1155 } 1156 1157 static int write_stat(struct feat_fd *ff __maybe_unused, 1158 struct perf_evlist *evlist __maybe_unused) 1159 { 1160 return 0; 1161 } 1162 1163 static int write_sample_time(struct feat_fd *ff, 1164 struct perf_evlist *evlist) 1165 { 1166 int ret; 1167 1168 ret = do_write(ff, &evlist->first_sample_time, 1169 sizeof(evlist->first_sample_time)); 1170 if (ret < 0) 1171 return ret; 1172 1173 return do_write(ff, &evlist->last_sample_time, 1174 sizeof(evlist->last_sample_time)); 1175 } 1176 1177 1178 static int memory_node__read(struct memory_node *n, unsigned long idx) 1179 { 1180 unsigned int phys, size = 0; 1181 char path[PATH_MAX]; 1182 struct dirent *ent; 1183 DIR *dir; 1184 1185 #define for_each_memory(mem, dir) \ 1186 while ((ent = readdir(dir))) \ 1187 if (strcmp(ent->d_name, ".") && \ 1188 strcmp(ent->d_name, "..") && \ 1189 sscanf(ent->d_name, "memory%u", &mem) == 1) 1190 1191 scnprintf(path, PATH_MAX, 1192 "%s/devices/system/node/node%lu", 1193 sysfs__mountpoint(), idx); 1194 1195 dir = opendir(path); 1196 if (!dir) { 1197 pr_warning("failed: cant' open memory sysfs data\n"); 1198 return -1; 1199 } 1200 1201 for_each_memory(phys, dir) { 1202 size = max(phys, size); 1203 } 1204 1205 size++; 1206 1207 n->set = bitmap_alloc(size); 1208 if (!n->set) { 1209 closedir(dir); 1210 return -ENOMEM; 1211 } 1212 1213 n->node = idx; 1214 n->size = size; 1215 1216 rewinddir(dir); 1217 1218 for_each_memory(phys, dir) { 1219 set_bit(phys, n->set); 1220 } 1221 1222 closedir(dir); 1223 return 0; 1224 } 1225 1226 static int memory_node__sort(const void *a, const void *b) 1227 { 1228 const struct memory_node *na = a; 1229 const struct memory_node *nb = b; 1230 1231 return na->node - nb->node; 1232 } 1233 1234 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1235 { 1236 char path[PATH_MAX]; 1237 struct dirent *ent; 1238 DIR *dir; 1239 u64 cnt = 0; 1240 int ret = 0; 1241 1242 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1243 sysfs__mountpoint()); 1244 1245 dir = opendir(path); 1246 if (!dir) { 1247 pr_debug2("%s: could't read %s, does this arch have topology information?\n", 1248 __func__, path); 1249 return -1; 1250 } 1251 1252 while (!ret && (ent = readdir(dir))) { 1253 unsigned int idx; 1254 int r; 1255 1256 if (!strcmp(ent->d_name, ".") || 1257 !strcmp(ent->d_name, "..")) 1258 continue; 1259 1260 r = sscanf(ent->d_name, "node%u", &idx); 1261 if (r != 1) 1262 continue; 1263 1264 if (WARN_ONCE(cnt >= size, 1265 "failed to write MEM_TOPOLOGY, way too many nodes\n")) 1266 return -1; 1267 1268 ret = memory_node__read(&nodes[cnt++], idx); 1269 } 1270 1271 *cntp = cnt; 1272 closedir(dir); 1273 1274 if (!ret) 1275 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1276 1277 return ret; 1278 } 1279 1280 #define MAX_MEMORY_NODES 2000 1281 1282 /* 1283 * The MEM_TOPOLOGY holds physical memory map for every 1284 * node in system. The format of data is as follows: 1285 * 1286 * 0 - version | for future changes 1287 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1288 * 16 - count | number of nodes 1289 * 1290 * For each node we store map of physical indexes for 1291 * each node: 1292 * 1293 * 32 - node id | node index 1294 * 40 - size | size of bitmap 1295 * 48 - bitmap | bitmap of memory indexes that belongs to node 1296 */ 1297 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1298 struct perf_evlist *evlist __maybe_unused) 1299 { 1300 static struct memory_node nodes[MAX_MEMORY_NODES]; 1301 u64 bsize, version = 1, i, nr; 1302 int ret; 1303 1304 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1305 (unsigned long long *) &bsize); 1306 if (ret) 1307 return ret; 1308 1309 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1310 if (ret) 1311 return ret; 1312 1313 ret = do_write(ff, &version, sizeof(version)); 1314 if (ret < 0) 1315 goto out; 1316 1317 ret = do_write(ff, &bsize, sizeof(bsize)); 1318 if (ret < 0) 1319 goto out; 1320 1321 ret = do_write(ff, &nr, sizeof(nr)); 1322 if (ret < 0) 1323 goto out; 1324 1325 for (i = 0; i < nr; i++) { 1326 struct memory_node *n = &nodes[i]; 1327 1328 #define _W(v) \ 1329 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1330 if (ret < 0) \ 1331 goto out; 1332 1333 _W(node) 1334 _W(size) 1335 1336 #undef _W 1337 1338 ret = do_write_bitmap(ff, n->set, n->size); 1339 if (ret < 0) 1340 goto out; 1341 } 1342 1343 out: 1344 return ret; 1345 } 1346 1347 static int write_compressed(struct feat_fd *ff __maybe_unused, 1348 struct perf_evlist *evlist __maybe_unused) 1349 { 1350 int ret; 1351 1352 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1353 if (ret) 1354 return ret; 1355 1356 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1357 if (ret) 1358 return ret; 1359 1360 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1361 if (ret) 1362 return ret; 1363 1364 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1365 if (ret) 1366 return ret; 1367 1368 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1369 } 1370 1371 static void print_hostname(struct feat_fd *ff, FILE *fp) 1372 { 1373 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1374 } 1375 1376 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1377 { 1378 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1379 } 1380 1381 static void print_arch(struct feat_fd *ff, FILE *fp) 1382 { 1383 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1384 } 1385 1386 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1387 { 1388 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1389 } 1390 1391 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1392 { 1393 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1394 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1395 } 1396 1397 static void print_version(struct feat_fd *ff, FILE *fp) 1398 { 1399 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1400 } 1401 1402 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1403 { 1404 int nr, i; 1405 1406 nr = ff->ph->env.nr_cmdline; 1407 1408 fprintf(fp, "# cmdline : "); 1409 1410 for (i = 0; i < nr; i++) { 1411 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1412 if (!argv_i) { 1413 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1414 } else { 1415 char *mem = argv_i; 1416 do { 1417 char *quote = strchr(argv_i, '\''); 1418 if (!quote) 1419 break; 1420 *quote++ = '\0'; 1421 fprintf(fp, "%s\\\'", argv_i); 1422 argv_i = quote; 1423 } while (1); 1424 fprintf(fp, "%s ", argv_i); 1425 free(mem); 1426 } 1427 } 1428 fputc('\n', fp); 1429 } 1430 1431 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1432 { 1433 struct perf_header *ph = ff->ph; 1434 int cpu_nr = ph->env.nr_cpus_avail; 1435 int nr, i; 1436 char *str; 1437 1438 nr = ph->env.nr_sibling_cores; 1439 str = ph->env.sibling_cores; 1440 1441 for (i = 0; i < nr; i++) { 1442 fprintf(fp, "# sibling cores : %s\n", str); 1443 str += strlen(str) + 1; 1444 } 1445 1446 nr = ph->env.nr_sibling_threads; 1447 str = ph->env.sibling_threads; 1448 1449 for (i = 0; i < nr; i++) { 1450 fprintf(fp, "# sibling threads : %s\n", str); 1451 str += strlen(str) + 1; 1452 } 1453 1454 if (ph->env.cpu != NULL) { 1455 for (i = 0; i < cpu_nr; i++) 1456 fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i, 1457 ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id); 1458 } else 1459 fprintf(fp, "# Core ID and Socket ID information is not available\n"); 1460 } 1461 1462 static void print_clockid(struct feat_fd *ff, FILE *fp) 1463 { 1464 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1465 ff->ph->env.clockid_res_ns * 1000); 1466 } 1467 1468 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1469 { 1470 struct perf_session *session; 1471 struct perf_data *data; 1472 1473 session = container_of(ff->ph, struct perf_session, header); 1474 data = session->data; 1475 1476 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1477 } 1478 1479 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1480 { 1481 struct perf_env *env = &ff->ph->env; 1482 struct rb_root *root; 1483 struct rb_node *next; 1484 1485 down_read(&env->bpf_progs.lock); 1486 1487 root = &env->bpf_progs.infos; 1488 next = rb_first(root); 1489 1490 while (next) { 1491 struct bpf_prog_info_node *node; 1492 1493 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1494 next = rb_next(&node->rb_node); 1495 1496 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1497 env, fp); 1498 } 1499 1500 up_read(&env->bpf_progs.lock); 1501 } 1502 1503 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1504 { 1505 struct perf_env *env = &ff->ph->env; 1506 struct rb_root *root; 1507 struct rb_node *next; 1508 1509 down_read(&env->bpf_progs.lock); 1510 1511 root = &env->bpf_progs.btfs; 1512 next = rb_first(root); 1513 1514 while (next) { 1515 struct btf_node *node; 1516 1517 node = rb_entry(next, struct btf_node, rb_node); 1518 next = rb_next(&node->rb_node); 1519 fprintf(fp, "# btf info of id %u\n", node->id); 1520 } 1521 1522 up_read(&env->bpf_progs.lock); 1523 } 1524 1525 static void free_event_desc(struct perf_evsel *events) 1526 { 1527 struct perf_evsel *evsel; 1528 1529 if (!events) 1530 return; 1531 1532 for (evsel = events; evsel->attr.size; evsel++) { 1533 zfree(&evsel->name); 1534 zfree(&evsel->id); 1535 } 1536 1537 free(events); 1538 } 1539 1540 static struct perf_evsel *read_event_desc(struct feat_fd *ff) 1541 { 1542 struct perf_evsel *evsel, *events = NULL; 1543 u64 *id; 1544 void *buf = NULL; 1545 u32 nre, sz, nr, i, j; 1546 size_t msz; 1547 1548 /* number of events */ 1549 if (do_read_u32(ff, &nre)) 1550 goto error; 1551 1552 if (do_read_u32(ff, &sz)) 1553 goto error; 1554 1555 /* buffer to hold on file attr struct */ 1556 buf = malloc(sz); 1557 if (!buf) 1558 goto error; 1559 1560 /* the last event terminates with evsel->attr.size == 0: */ 1561 events = calloc(nre + 1, sizeof(*events)); 1562 if (!events) 1563 goto error; 1564 1565 msz = sizeof(evsel->attr); 1566 if (sz < msz) 1567 msz = sz; 1568 1569 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1570 evsel->idx = i; 1571 1572 /* 1573 * must read entire on-file attr struct to 1574 * sync up with layout. 1575 */ 1576 if (__do_read(ff, buf, sz)) 1577 goto error; 1578 1579 if (ff->ph->needs_swap) 1580 perf_event__attr_swap(buf); 1581 1582 memcpy(&evsel->attr, buf, msz); 1583 1584 if (do_read_u32(ff, &nr)) 1585 goto error; 1586 1587 if (ff->ph->needs_swap) 1588 evsel->needs_swap = true; 1589 1590 evsel->name = do_read_string(ff); 1591 if (!evsel->name) 1592 goto error; 1593 1594 if (!nr) 1595 continue; 1596 1597 id = calloc(nr, sizeof(*id)); 1598 if (!id) 1599 goto error; 1600 evsel->ids = nr; 1601 evsel->id = id; 1602 1603 for (j = 0 ; j < nr; j++) { 1604 if (do_read_u64(ff, id)) 1605 goto error; 1606 id++; 1607 } 1608 } 1609 out: 1610 free(buf); 1611 return events; 1612 error: 1613 free_event_desc(events); 1614 events = NULL; 1615 goto out; 1616 } 1617 1618 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1619 void *priv __maybe_unused) 1620 { 1621 return fprintf(fp, ", %s = %s", name, val); 1622 } 1623 1624 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1625 { 1626 struct perf_evsel *evsel, *events; 1627 u32 j; 1628 u64 *id; 1629 1630 if (ff->events) 1631 events = ff->events; 1632 else 1633 events = read_event_desc(ff); 1634 1635 if (!events) { 1636 fprintf(fp, "# event desc: not available or unable to read\n"); 1637 return; 1638 } 1639 1640 for (evsel = events; evsel->attr.size; evsel++) { 1641 fprintf(fp, "# event : name = %s, ", evsel->name); 1642 1643 if (evsel->ids) { 1644 fprintf(fp, ", id = {"); 1645 for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) { 1646 if (j) 1647 fputc(',', fp); 1648 fprintf(fp, " %"PRIu64, *id); 1649 } 1650 fprintf(fp, " }"); 1651 } 1652 1653 perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL); 1654 1655 fputc('\n', fp); 1656 } 1657 1658 free_event_desc(events); 1659 ff->events = NULL; 1660 } 1661 1662 static void print_total_mem(struct feat_fd *ff, FILE *fp) 1663 { 1664 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 1665 } 1666 1667 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 1668 { 1669 int i; 1670 struct numa_node *n; 1671 1672 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 1673 n = &ff->ph->env.numa_nodes[i]; 1674 1675 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 1676 " free = %"PRIu64" kB\n", 1677 n->node, n->mem_total, n->mem_free); 1678 1679 fprintf(fp, "# node%u cpu list : ", n->node); 1680 cpu_map__fprintf(n->map, fp); 1681 } 1682 } 1683 1684 static void print_cpuid(struct feat_fd *ff, FILE *fp) 1685 { 1686 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 1687 } 1688 1689 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 1690 { 1691 fprintf(fp, "# contains samples with branch stack\n"); 1692 } 1693 1694 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 1695 { 1696 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 1697 } 1698 1699 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 1700 { 1701 fprintf(fp, "# contains stat data\n"); 1702 } 1703 1704 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 1705 { 1706 int i; 1707 1708 fprintf(fp, "# CPU cache info:\n"); 1709 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 1710 fprintf(fp, "# "); 1711 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 1712 } 1713 } 1714 1715 static void print_compressed(struct feat_fd *ff, FILE *fp) 1716 { 1717 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 1718 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 1719 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 1720 } 1721 1722 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 1723 { 1724 const char *delimiter = "# pmu mappings: "; 1725 char *str, *tmp; 1726 u32 pmu_num; 1727 u32 type; 1728 1729 pmu_num = ff->ph->env.nr_pmu_mappings; 1730 if (!pmu_num) { 1731 fprintf(fp, "# pmu mappings: not available\n"); 1732 return; 1733 } 1734 1735 str = ff->ph->env.pmu_mappings; 1736 1737 while (pmu_num) { 1738 type = strtoul(str, &tmp, 0); 1739 if (*tmp != ':') 1740 goto error; 1741 1742 str = tmp + 1; 1743 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 1744 1745 delimiter = ", "; 1746 str += strlen(str) + 1; 1747 pmu_num--; 1748 } 1749 1750 fprintf(fp, "\n"); 1751 1752 if (!pmu_num) 1753 return; 1754 error: 1755 fprintf(fp, "# pmu mappings: unable to read\n"); 1756 } 1757 1758 static void print_group_desc(struct feat_fd *ff, FILE *fp) 1759 { 1760 struct perf_session *session; 1761 struct perf_evsel *evsel; 1762 u32 nr = 0; 1763 1764 session = container_of(ff->ph, struct perf_session, header); 1765 1766 evlist__for_each_entry(session->evlist, evsel) { 1767 if (perf_evsel__is_group_leader(evsel) && 1768 evsel->nr_members > 1) { 1769 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", 1770 perf_evsel__name(evsel)); 1771 1772 nr = evsel->nr_members - 1; 1773 } else if (nr) { 1774 fprintf(fp, ",%s", perf_evsel__name(evsel)); 1775 1776 if (--nr == 0) 1777 fprintf(fp, "}\n"); 1778 } 1779 } 1780 } 1781 1782 static void print_sample_time(struct feat_fd *ff, FILE *fp) 1783 { 1784 struct perf_session *session; 1785 char time_buf[32]; 1786 double d; 1787 1788 session = container_of(ff->ph, struct perf_session, header); 1789 1790 timestamp__scnprintf_usec(session->evlist->first_sample_time, 1791 time_buf, sizeof(time_buf)); 1792 fprintf(fp, "# time of first sample : %s\n", time_buf); 1793 1794 timestamp__scnprintf_usec(session->evlist->last_sample_time, 1795 time_buf, sizeof(time_buf)); 1796 fprintf(fp, "# time of last sample : %s\n", time_buf); 1797 1798 d = (double)(session->evlist->last_sample_time - 1799 session->evlist->first_sample_time) / NSEC_PER_MSEC; 1800 1801 fprintf(fp, "# sample duration : %10.3f ms\n", d); 1802 } 1803 1804 static void memory_node__fprintf(struct memory_node *n, 1805 unsigned long long bsize, FILE *fp) 1806 { 1807 char buf_map[100], buf_size[50]; 1808 unsigned long long size; 1809 1810 size = bsize * bitmap_weight(n->set, n->size); 1811 unit_number__scnprintf(buf_size, 50, size); 1812 1813 bitmap_scnprintf(n->set, n->size, buf_map, 100); 1814 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 1815 } 1816 1817 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 1818 { 1819 struct memory_node *nodes; 1820 int i, nr; 1821 1822 nodes = ff->ph->env.memory_nodes; 1823 nr = ff->ph->env.nr_memory_nodes; 1824 1825 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 1826 nr, ff->ph->env.memory_bsize); 1827 1828 for (i = 0; i < nr; i++) { 1829 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 1830 } 1831 } 1832 1833 static int __event_process_build_id(struct build_id_event *bev, 1834 char *filename, 1835 struct perf_session *session) 1836 { 1837 int err = -1; 1838 struct machine *machine; 1839 u16 cpumode; 1840 struct dso *dso; 1841 enum dso_kernel_type dso_type; 1842 1843 machine = perf_session__findnew_machine(session, bev->pid); 1844 if (!machine) 1845 goto out; 1846 1847 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1848 1849 switch (cpumode) { 1850 case PERF_RECORD_MISC_KERNEL: 1851 dso_type = DSO_TYPE_KERNEL; 1852 break; 1853 case PERF_RECORD_MISC_GUEST_KERNEL: 1854 dso_type = DSO_TYPE_GUEST_KERNEL; 1855 break; 1856 case PERF_RECORD_MISC_USER: 1857 case PERF_RECORD_MISC_GUEST_USER: 1858 dso_type = DSO_TYPE_USER; 1859 break; 1860 default: 1861 goto out; 1862 } 1863 1864 dso = machine__findnew_dso(machine, filename); 1865 if (dso != NULL) { 1866 char sbuild_id[SBUILD_ID_SIZE]; 1867 1868 dso__set_build_id(dso, &bev->build_id); 1869 1870 if (dso_type != DSO_TYPE_USER) { 1871 struct kmod_path m = { .name = NULL, }; 1872 1873 if (!kmod_path__parse_name(&m, filename) && m.kmod) 1874 dso__set_module_info(dso, &m, machine); 1875 else 1876 dso->kernel = dso_type; 1877 1878 free(m.name); 1879 } 1880 1881 build_id__sprintf(dso->build_id, sizeof(dso->build_id), 1882 sbuild_id); 1883 pr_debug("build id event received for %s: %s\n", 1884 dso->long_name, sbuild_id); 1885 dso__put(dso); 1886 } 1887 1888 err = 0; 1889 out: 1890 return err; 1891 } 1892 1893 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 1894 int input, u64 offset, u64 size) 1895 { 1896 struct perf_session *session = container_of(header, struct perf_session, header); 1897 struct { 1898 struct perf_event_header header; 1899 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 1900 char filename[0]; 1901 } old_bev; 1902 struct build_id_event bev; 1903 char filename[PATH_MAX]; 1904 u64 limit = offset + size; 1905 1906 while (offset < limit) { 1907 ssize_t len; 1908 1909 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 1910 return -1; 1911 1912 if (header->needs_swap) 1913 perf_event_header__bswap(&old_bev.header); 1914 1915 len = old_bev.header.size - sizeof(old_bev); 1916 if (readn(input, filename, len) != len) 1917 return -1; 1918 1919 bev.header = old_bev.header; 1920 1921 /* 1922 * As the pid is the missing value, we need to fill 1923 * it properly. The header.misc value give us nice hint. 1924 */ 1925 bev.pid = HOST_KERNEL_ID; 1926 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 1927 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 1928 bev.pid = DEFAULT_GUEST_KERNEL_ID; 1929 1930 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 1931 __event_process_build_id(&bev, filename, session); 1932 1933 offset += bev.header.size; 1934 } 1935 1936 return 0; 1937 } 1938 1939 static int perf_header__read_build_ids(struct perf_header *header, 1940 int input, u64 offset, u64 size) 1941 { 1942 struct perf_session *session = container_of(header, struct perf_session, header); 1943 struct build_id_event bev; 1944 char filename[PATH_MAX]; 1945 u64 limit = offset + size, orig_offset = offset; 1946 int err = -1; 1947 1948 while (offset < limit) { 1949 ssize_t len; 1950 1951 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 1952 goto out; 1953 1954 if (header->needs_swap) 1955 perf_event_header__bswap(&bev.header); 1956 1957 len = bev.header.size - sizeof(bev); 1958 if (readn(input, filename, len) != len) 1959 goto out; 1960 /* 1961 * The a1645ce1 changeset: 1962 * 1963 * "perf: 'perf kvm' tool for monitoring guest performance from host" 1964 * 1965 * Added a field to struct build_id_event that broke the file 1966 * format. 1967 * 1968 * Since the kernel build-id is the first entry, process the 1969 * table using the old format if the well known 1970 * '[kernel.kallsyms]' string for the kernel build-id has the 1971 * first 4 characters chopped off (where the pid_t sits). 1972 */ 1973 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 1974 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 1975 return -1; 1976 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 1977 } 1978 1979 __event_process_build_id(&bev, filename, session); 1980 1981 offset += bev.header.size; 1982 } 1983 err = 0; 1984 out: 1985 return err; 1986 } 1987 1988 /* Macro for features that simply need to read and store a string. */ 1989 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 1990 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 1991 {\ 1992 ff->ph->env.__feat_env = do_read_string(ff); \ 1993 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 1994 } 1995 1996 FEAT_PROCESS_STR_FUN(hostname, hostname); 1997 FEAT_PROCESS_STR_FUN(osrelease, os_release); 1998 FEAT_PROCESS_STR_FUN(version, version); 1999 FEAT_PROCESS_STR_FUN(arch, arch); 2000 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2001 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2002 2003 static int process_tracing_data(struct feat_fd *ff, void *data) 2004 { 2005 ssize_t ret = trace_report(ff->fd, data, false); 2006 2007 return ret < 0 ? -1 : 0; 2008 } 2009 2010 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2011 { 2012 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2013 pr_debug("Failed to read buildids, continuing...\n"); 2014 return 0; 2015 } 2016 2017 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2018 { 2019 int ret; 2020 u32 nr_cpus_avail, nr_cpus_online; 2021 2022 ret = do_read_u32(ff, &nr_cpus_avail); 2023 if (ret) 2024 return ret; 2025 2026 ret = do_read_u32(ff, &nr_cpus_online); 2027 if (ret) 2028 return ret; 2029 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2030 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2031 return 0; 2032 } 2033 2034 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2035 { 2036 u64 total_mem; 2037 int ret; 2038 2039 ret = do_read_u64(ff, &total_mem); 2040 if (ret) 2041 return -1; 2042 ff->ph->env.total_mem = (unsigned long long)total_mem; 2043 return 0; 2044 } 2045 2046 static struct perf_evsel * 2047 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx) 2048 { 2049 struct perf_evsel *evsel; 2050 2051 evlist__for_each_entry(evlist, evsel) { 2052 if (evsel->idx == idx) 2053 return evsel; 2054 } 2055 2056 return NULL; 2057 } 2058 2059 static void 2060 perf_evlist__set_event_name(struct perf_evlist *evlist, 2061 struct perf_evsel *event) 2062 { 2063 struct perf_evsel *evsel; 2064 2065 if (!event->name) 2066 return; 2067 2068 evsel = perf_evlist__find_by_index(evlist, event->idx); 2069 if (!evsel) 2070 return; 2071 2072 if (evsel->name) 2073 return; 2074 2075 evsel->name = strdup(event->name); 2076 } 2077 2078 static int 2079 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2080 { 2081 struct perf_session *session; 2082 struct perf_evsel *evsel, *events = read_event_desc(ff); 2083 2084 if (!events) 2085 return 0; 2086 2087 session = container_of(ff->ph, struct perf_session, header); 2088 2089 if (session->data->is_pipe) { 2090 /* Save events for reading later by print_event_desc, 2091 * since they can't be read again in pipe mode. */ 2092 ff->events = events; 2093 } 2094 2095 for (evsel = events; evsel->attr.size; evsel++) 2096 perf_evlist__set_event_name(session->evlist, evsel); 2097 2098 if (!session->data->is_pipe) 2099 free_event_desc(events); 2100 2101 return 0; 2102 } 2103 2104 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2105 { 2106 char *str, *cmdline = NULL, **argv = NULL; 2107 u32 nr, i, len = 0; 2108 2109 if (do_read_u32(ff, &nr)) 2110 return -1; 2111 2112 ff->ph->env.nr_cmdline = nr; 2113 2114 cmdline = zalloc(ff->size + nr + 1); 2115 if (!cmdline) 2116 return -1; 2117 2118 argv = zalloc(sizeof(char *) * (nr + 1)); 2119 if (!argv) 2120 goto error; 2121 2122 for (i = 0; i < nr; i++) { 2123 str = do_read_string(ff); 2124 if (!str) 2125 goto error; 2126 2127 argv[i] = cmdline + len; 2128 memcpy(argv[i], str, strlen(str) + 1); 2129 len += strlen(str) + 1; 2130 free(str); 2131 } 2132 ff->ph->env.cmdline = cmdline; 2133 ff->ph->env.cmdline_argv = (const char **) argv; 2134 return 0; 2135 2136 error: 2137 free(argv); 2138 free(cmdline); 2139 return -1; 2140 } 2141 2142 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2143 { 2144 u32 nr, i; 2145 char *str; 2146 struct strbuf sb; 2147 int cpu_nr = ff->ph->env.nr_cpus_avail; 2148 u64 size = 0; 2149 struct perf_header *ph = ff->ph; 2150 bool do_core_id_test = true; 2151 2152 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2153 if (!ph->env.cpu) 2154 return -1; 2155 2156 if (do_read_u32(ff, &nr)) 2157 goto free_cpu; 2158 2159 ph->env.nr_sibling_cores = nr; 2160 size += sizeof(u32); 2161 if (strbuf_init(&sb, 128) < 0) 2162 goto free_cpu; 2163 2164 for (i = 0; i < nr; i++) { 2165 str = do_read_string(ff); 2166 if (!str) 2167 goto error; 2168 2169 /* include a NULL character at the end */ 2170 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2171 goto error; 2172 size += string_size(str); 2173 free(str); 2174 } 2175 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2176 2177 if (do_read_u32(ff, &nr)) 2178 return -1; 2179 2180 ph->env.nr_sibling_threads = nr; 2181 size += sizeof(u32); 2182 2183 for (i = 0; i < nr; i++) { 2184 str = do_read_string(ff); 2185 if (!str) 2186 goto error; 2187 2188 /* include a NULL character at the end */ 2189 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2190 goto error; 2191 size += string_size(str); 2192 free(str); 2193 } 2194 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2195 2196 /* 2197 * The header may be from old perf, 2198 * which doesn't include core id and socket id information. 2199 */ 2200 if (ff->size <= size) { 2201 zfree(&ph->env.cpu); 2202 return 0; 2203 } 2204 2205 /* On s390 the socket_id number is not related to the numbers of cpus. 2206 * The socket_id number might be higher than the numbers of cpus. 2207 * This depends on the configuration. 2208 */ 2209 if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4)) 2210 do_core_id_test = false; 2211 2212 for (i = 0; i < (u32)cpu_nr; i++) { 2213 if (do_read_u32(ff, &nr)) 2214 goto free_cpu; 2215 2216 ph->env.cpu[i].core_id = nr; 2217 2218 if (do_read_u32(ff, &nr)) 2219 goto free_cpu; 2220 2221 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2222 pr_debug("socket_id number is too big." 2223 "You may need to upgrade the perf tool.\n"); 2224 goto free_cpu; 2225 } 2226 2227 ph->env.cpu[i].socket_id = nr; 2228 } 2229 2230 return 0; 2231 2232 error: 2233 strbuf_release(&sb); 2234 free_cpu: 2235 zfree(&ph->env.cpu); 2236 return -1; 2237 } 2238 2239 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2240 { 2241 struct numa_node *nodes, *n; 2242 u32 nr, i; 2243 char *str; 2244 2245 /* nr nodes */ 2246 if (do_read_u32(ff, &nr)) 2247 return -1; 2248 2249 nodes = zalloc(sizeof(*nodes) * nr); 2250 if (!nodes) 2251 return -ENOMEM; 2252 2253 for (i = 0; i < nr; i++) { 2254 n = &nodes[i]; 2255 2256 /* node number */ 2257 if (do_read_u32(ff, &n->node)) 2258 goto error; 2259 2260 if (do_read_u64(ff, &n->mem_total)) 2261 goto error; 2262 2263 if (do_read_u64(ff, &n->mem_free)) 2264 goto error; 2265 2266 str = do_read_string(ff); 2267 if (!str) 2268 goto error; 2269 2270 n->map = cpu_map__new(str); 2271 if (!n->map) 2272 goto error; 2273 2274 free(str); 2275 } 2276 ff->ph->env.nr_numa_nodes = nr; 2277 ff->ph->env.numa_nodes = nodes; 2278 return 0; 2279 2280 error: 2281 free(nodes); 2282 return -1; 2283 } 2284 2285 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2286 { 2287 char *name; 2288 u32 pmu_num; 2289 u32 type; 2290 struct strbuf sb; 2291 2292 if (do_read_u32(ff, &pmu_num)) 2293 return -1; 2294 2295 if (!pmu_num) { 2296 pr_debug("pmu mappings not available\n"); 2297 return 0; 2298 } 2299 2300 ff->ph->env.nr_pmu_mappings = pmu_num; 2301 if (strbuf_init(&sb, 128) < 0) 2302 return -1; 2303 2304 while (pmu_num) { 2305 if (do_read_u32(ff, &type)) 2306 goto error; 2307 2308 name = do_read_string(ff); 2309 if (!name) 2310 goto error; 2311 2312 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2313 goto error; 2314 /* include a NULL character at the end */ 2315 if (strbuf_add(&sb, "", 1) < 0) 2316 goto error; 2317 2318 if (!strcmp(name, "msr")) 2319 ff->ph->env.msr_pmu_type = type; 2320 2321 free(name); 2322 pmu_num--; 2323 } 2324 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2325 return 0; 2326 2327 error: 2328 strbuf_release(&sb); 2329 return -1; 2330 } 2331 2332 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2333 { 2334 size_t ret = -1; 2335 u32 i, nr, nr_groups; 2336 struct perf_session *session; 2337 struct perf_evsel *evsel, *leader = NULL; 2338 struct group_desc { 2339 char *name; 2340 u32 leader_idx; 2341 u32 nr_members; 2342 } *desc; 2343 2344 if (do_read_u32(ff, &nr_groups)) 2345 return -1; 2346 2347 ff->ph->env.nr_groups = nr_groups; 2348 if (!nr_groups) { 2349 pr_debug("group desc not available\n"); 2350 return 0; 2351 } 2352 2353 desc = calloc(nr_groups, sizeof(*desc)); 2354 if (!desc) 2355 return -1; 2356 2357 for (i = 0; i < nr_groups; i++) { 2358 desc[i].name = do_read_string(ff); 2359 if (!desc[i].name) 2360 goto out_free; 2361 2362 if (do_read_u32(ff, &desc[i].leader_idx)) 2363 goto out_free; 2364 2365 if (do_read_u32(ff, &desc[i].nr_members)) 2366 goto out_free; 2367 } 2368 2369 /* 2370 * Rebuild group relationship based on the group_desc 2371 */ 2372 session = container_of(ff->ph, struct perf_session, header); 2373 session->evlist->nr_groups = nr_groups; 2374 2375 i = nr = 0; 2376 evlist__for_each_entry(session->evlist, evsel) { 2377 if (evsel->idx == (int) desc[i].leader_idx) { 2378 evsel->leader = evsel; 2379 /* {anon_group} is a dummy name */ 2380 if (strcmp(desc[i].name, "{anon_group}")) { 2381 evsel->group_name = desc[i].name; 2382 desc[i].name = NULL; 2383 } 2384 evsel->nr_members = desc[i].nr_members; 2385 2386 if (i >= nr_groups || nr > 0) { 2387 pr_debug("invalid group desc\n"); 2388 goto out_free; 2389 } 2390 2391 leader = evsel; 2392 nr = evsel->nr_members - 1; 2393 i++; 2394 } else if (nr) { 2395 /* This is a group member */ 2396 evsel->leader = leader; 2397 2398 nr--; 2399 } 2400 } 2401 2402 if (i != nr_groups || nr != 0) { 2403 pr_debug("invalid group desc\n"); 2404 goto out_free; 2405 } 2406 2407 ret = 0; 2408 out_free: 2409 for (i = 0; i < nr_groups; i++) 2410 zfree(&desc[i].name); 2411 free(desc); 2412 2413 return ret; 2414 } 2415 2416 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2417 { 2418 struct perf_session *session; 2419 int err; 2420 2421 session = container_of(ff->ph, struct perf_session, header); 2422 2423 err = auxtrace_index__process(ff->fd, ff->size, session, 2424 ff->ph->needs_swap); 2425 if (err < 0) 2426 pr_err("Failed to process auxtrace index\n"); 2427 return err; 2428 } 2429 2430 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2431 { 2432 struct cpu_cache_level *caches; 2433 u32 cnt, i, version; 2434 2435 if (do_read_u32(ff, &version)) 2436 return -1; 2437 2438 if (version != 1) 2439 return -1; 2440 2441 if (do_read_u32(ff, &cnt)) 2442 return -1; 2443 2444 caches = zalloc(sizeof(*caches) * cnt); 2445 if (!caches) 2446 return -1; 2447 2448 for (i = 0; i < cnt; i++) { 2449 struct cpu_cache_level c; 2450 2451 #define _R(v) \ 2452 if (do_read_u32(ff, &c.v))\ 2453 goto out_free_caches; \ 2454 2455 _R(level) 2456 _R(line_size) 2457 _R(sets) 2458 _R(ways) 2459 #undef _R 2460 2461 #define _R(v) \ 2462 c.v = do_read_string(ff); \ 2463 if (!c.v) \ 2464 goto out_free_caches; 2465 2466 _R(type) 2467 _R(size) 2468 _R(map) 2469 #undef _R 2470 2471 caches[i] = c; 2472 } 2473 2474 ff->ph->env.caches = caches; 2475 ff->ph->env.caches_cnt = cnt; 2476 return 0; 2477 out_free_caches: 2478 free(caches); 2479 return -1; 2480 } 2481 2482 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2483 { 2484 struct perf_session *session; 2485 u64 first_sample_time, last_sample_time; 2486 int ret; 2487 2488 session = container_of(ff->ph, struct perf_session, header); 2489 2490 ret = do_read_u64(ff, &first_sample_time); 2491 if (ret) 2492 return -1; 2493 2494 ret = do_read_u64(ff, &last_sample_time); 2495 if (ret) 2496 return -1; 2497 2498 session->evlist->first_sample_time = first_sample_time; 2499 session->evlist->last_sample_time = last_sample_time; 2500 return 0; 2501 } 2502 2503 static int process_mem_topology(struct feat_fd *ff, 2504 void *data __maybe_unused) 2505 { 2506 struct memory_node *nodes; 2507 u64 version, i, nr, bsize; 2508 int ret = -1; 2509 2510 if (do_read_u64(ff, &version)) 2511 return -1; 2512 2513 if (version != 1) 2514 return -1; 2515 2516 if (do_read_u64(ff, &bsize)) 2517 return -1; 2518 2519 if (do_read_u64(ff, &nr)) 2520 return -1; 2521 2522 nodes = zalloc(sizeof(*nodes) * nr); 2523 if (!nodes) 2524 return -1; 2525 2526 for (i = 0; i < nr; i++) { 2527 struct memory_node n; 2528 2529 #define _R(v) \ 2530 if (do_read_u64(ff, &n.v)) \ 2531 goto out; \ 2532 2533 _R(node) 2534 _R(size) 2535 2536 #undef _R 2537 2538 if (do_read_bitmap(ff, &n.set, &n.size)) 2539 goto out; 2540 2541 nodes[i] = n; 2542 } 2543 2544 ff->ph->env.memory_bsize = bsize; 2545 ff->ph->env.memory_nodes = nodes; 2546 ff->ph->env.nr_memory_nodes = nr; 2547 ret = 0; 2548 2549 out: 2550 if (ret) 2551 free(nodes); 2552 return ret; 2553 } 2554 2555 static int process_clockid(struct feat_fd *ff, 2556 void *data __maybe_unused) 2557 { 2558 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns)) 2559 return -1; 2560 2561 return 0; 2562 } 2563 2564 static int process_dir_format(struct feat_fd *ff, 2565 void *_data __maybe_unused) 2566 { 2567 struct perf_session *session; 2568 struct perf_data *data; 2569 2570 session = container_of(ff->ph, struct perf_session, header); 2571 data = session->data; 2572 2573 if (WARN_ON(!perf_data__is_dir(data))) 2574 return -1; 2575 2576 return do_read_u64(ff, &data->dir.version); 2577 } 2578 2579 #ifdef HAVE_LIBBPF_SUPPORT 2580 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 2581 { 2582 struct bpf_prog_info_linear *info_linear; 2583 struct bpf_prog_info_node *info_node; 2584 struct perf_env *env = &ff->ph->env; 2585 u32 count, i; 2586 int err = -1; 2587 2588 if (ff->ph->needs_swap) { 2589 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n"); 2590 return 0; 2591 } 2592 2593 if (do_read_u32(ff, &count)) 2594 return -1; 2595 2596 down_write(&env->bpf_progs.lock); 2597 2598 for (i = 0; i < count; ++i) { 2599 u32 info_len, data_len; 2600 2601 info_linear = NULL; 2602 info_node = NULL; 2603 if (do_read_u32(ff, &info_len)) 2604 goto out; 2605 if (do_read_u32(ff, &data_len)) 2606 goto out; 2607 2608 if (info_len > sizeof(struct bpf_prog_info)) { 2609 pr_warning("detected invalid bpf_prog_info\n"); 2610 goto out; 2611 } 2612 2613 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + 2614 data_len); 2615 if (!info_linear) 2616 goto out; 2617 info_linear->info_len = sizeof(struct bpf_prog_info); 2618 info_linear->data_len = data_len; 2619 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 2620 goto out; 2621 if (__do_read(ff, &info_linear->info, info_len)) 2622 goto out; 2623 if (info_len < sizeof(struct bpf_prog_info)) 2624 memset(((void *)(&info_linear->info)) + info_len, 0, 2625 sizeof(struct bpf_prog_info) - info_len); 2626 2627 if (__do_read(ff, info_linear->data, data_len)) 2628 goto out; 2629 2630 info_node = malloc(sizeof(struct bpf_prog_info_node)); 2631 if (!info_node) 2632 goto out; 2633 2634 /* after reading from file, translate offset to address */ 2635 bpf_program__bpil_offs_to_addr(info_linear); 2636 info_node->info_linear = info_linear; 2637 perf_env__insert_bpf_prog_info(env, info_node); 2638 } 2639 2640 up_write(&env->bpf_progs.lock); 2641 return 0; 2642 out: 2643 free(info_linear); 2644 free(info_node); 2645 up_write(&env->bpf_progs.lock); 2646 return err; 2647 } 2648 #else // HAVE_LIBBPF_SUPPORT 2649 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused) 2650 { 2651 return 0; 2652 } 2653 #endif // HAVE_LIBBPF_SUPPORT 2654 2655 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 2656 { 2657 struct perf_env *env = &ff->ph->env; 2658 struct btf_node *node = NULL; 2659 u32 count, i; 2660 int err = -1; 2661 2662 if (ff->ph->needs_swap) { 2663 pr_warning("interpreting btf from systems with endianity is not yet supported\n"); 2664 return 0; 2665 } 2666 2667 if (do_read_u32(ff, &count)) 2668 return -1; 2669 2670 down_write(&env->bpf_progs.lock); 2671 2672 for (i = 0; i < count; ++i) { 2673 u32 id, data_size; 2674 2675 if (do_read_u32(ff, &id)) 2676 goto out; 2677 if (do_read_u32(ff, &data_size)) 2678 goto out; 2679 2680 node = malloc(sizeof(struct btf_node) + data_size); 2681 if (!node) 2682 goto out; 2683 2684 node->id = id; 2685 node->data_size = data_size; 2686 2687 if (__do_read(ff, node->data, data_size)) 2688 goto out; 2689 2690 perf_env__insert_btf(env, node); 2691 node = NULL; 2692 } 2693 2694 err = 0; 2695 out: 2696 up_write(&env->bpf_progs.lock); 2697 free(node); 2698 return err; 2699 } 2700 2701 static int process_compressed(struct feat_fd *ff, 2702 void *data __maybe_unused) 2703 { 2704 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 2705 return -1; 2706 2707 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 2708 return -1; 2709 2710 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 2711 return -1; 2712 2713 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 2714 return -1; 2715 2716 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 2717 return -1; 2718 2719 return 0; 2720 } 2721 2722 struct feature_ops { 2723 int (*write)(struct feat_fd *ff, struct perf_evlist *evlist); 2724 void (*print)(struct feat_fd *ff, FILE *fp); 2725 int (*process)(struct feat_fd *ff, void *data); 2726 const char *name; 2727 bool full_only; 2728 bool synthesize; 2729 }; 2730 2731 #define FEAT_OPR(n, func, __full_only) \ 2732 [HEADER_##n] = { \ 2733 .name = __stringify(n), \ 2734 .write = write_##func, \ 2735 .print = print_##func, \ 2736 .full_only = __full_only, \ 2737 .process = process_##func, \ 2738 .synthesize = true \ 2739 } 2740 2741 #define FEAT_OPN(n, func, __full_only) \ 2742 [HEADER_##n] = { \ 2743 .name = __stringify(n), \ 2744 .write = write_##func, \ 2745 .print = print_##func, \ 2746 .full_only = __full_only, \ 2747 .process = process_##func \ 2748 } 2749 2750 /* feature_ops not implemented: */ 2751 #define print_tracing_data NULL 2752 #define print_build_id NULL 2753 2754 #define process_branch_stack NULL 2755 #define process_stat NULL 2756 2757 2758 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = { 2759 FEAT_OPN(TRACING_DATA, tracing_data, false), 2760 FEAT_OPN(BUILD_ID, build_id, false), 2761 FEAT_OPR(HOSTNAME, hostname, false), 2762 FEAT_OPR(OSRELEASE, osrelease, false), 2763 FEAT_OPR(VERSION, version, false), 2764 FEAT_OPR(ARCH, arch, false), 2765 FEAT_OPR(NRCPUS, nrcpus, false), 2766 FEAT_OPR(CPUDESC, cpudesc, false), 2767 FEAT_OPR(CPUID, cpuid, false), 2768 FEAT_OPR(TOTAL_MEM, total_mem, false), 2769 FEAT_OPR(EVENT_DESC, event_desc, false), 2770 FEAT_OPR(CMDLINE, cmdline, false), 2771 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 2772 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 2773 FEAT_OPN(BRANCH_STACK, branch_stack, false), 2774 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 2775 FEAT_OPR(GROUP_DESC, group_desc, false), 2776 FEAT_OPN(AUXTRACE, auxtrace, false), 2777 FEAT_OPN(STAT, stat, false), 2778 FEAT_OPN(CACHE, cache, true), 2779 FEAT_OPR(SAMPLE_TIME, sample_time, false), 2780 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 2781 FEAT_OPR(CLOCKID, clockid, false), 2782 FEAT_OPN(DIR_FORMAT, dir_format, false), 2783 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 2784 FEAT_OPR(BPF_BTF, bpf_btf, false), 2785 FEAT_OPR(COMPRESSED, compressed, false), 2786 }; 2787 2788 struct header_print_data { 2789 FILE *fp; 2790 bool full; /* extended list of headers */ 2791 }; 2792 2793 static int perf_file_section__fprintf_info(struct perf_file_section *section, 2794 struct perf_header *ph, 2795 int feat, int fd, void *data) 2796 { 2797 struct header_print_data *hd = data; 2798 struct feat_fd ff; 2799 2800 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 2801 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 2802 "%d, continuing...\n", section->offset, feat); 2803 return 0; 2804 } 2805 if (feat >= HEADER_LAST_FEATURE) { 2806 pr_warning("unknown feature %d\n", feat); 2807 return 0; 2808 } 2809 if (!feat_ops[feat].print) 2810 return 0; 2811 2812 ff = (struct feat_fd) { 2813 .fd = fd, 2814 .ph = ph, 2815 }; 2816 2817 if (!feat_ops[feat].full_only || hd->full) 2818 feat_ops[feat].print(&ff, hd->fp); 2819 else 2820 fprintf(hd->fp, "# %s info available, use -I to display\n", 2821 feat_ops[feat].name); 2822 2823 return 0; 2824 } 2825 2826 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 2827 { 2828 struct header_print_data hd; 2829 struct perf_header *header = &session->header; 2830 int fd = perf_data__fd(session->data); 2831 struct stat st; 2832 time_t stctime; 2833 int ret, bit; 2834 2835 hd.fp = fp; 2836 hd.full = full; 2837 2838 ret = fstat(fd, &st); 2839 if (ret == -1) 2840 return -1; 2841 2842 stctime = st.st_ctime; 2843 fprintf(fp, "# captured on : %s", ctime(&stctime)); 2844 2845 fprintf(fp, "# header version : %u\n", header->version); 2846 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 2847 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 2848 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 2849 2850 perf_header__process_sections(header, fd, &hd, 2851 perf_file_section__fprintf_info); 2852 2853 if (session->data->is_pipe) 2854 return 0; 2855 2856 fprintf(fp, "# missing features: "); 2857 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 2858 if (bit) 2859 fprintf(fp, "%s ", feat_ops[bit].name); 2860 } 2861 2862 fprintf(fp, "\n"); 2863 return 0; 2864 } 2865 2866 static int do_write_feat(struct feat_fd *ff, int type, 2867 struct perf_file_section **p, 2868 struct perf_evlist *evlist) 2869 { 2870 int err; 2871 int ret = 0; 2872 2873 if (perf_header__has_feat(ff->ph, type)) { 2874 if (!feat_ops[type].write) 2875 return -1; 2876 2877 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 2878 return -1; 2879 2880 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 2881 2882 err = feat_ops[type].write(ff, evlist); 2883 if (err < 0) { 2884 pr_debug("failed to write feature %s\n", feat_ops[type].name); 2885 2886 /* undo anything written */ 2887 lseek(ff->fd, (*p)->offset, SEEK_SET); 2888 2889 return -1; 2890 } 2891 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 2892 (*p)++; 2893 } 2894 return ret; 2895 } 2896 2897 static int perf_header__adds_write(struct perf_header *header, 2898 struct perf_evlist *evlist, int fd) 2899 { 2900 int nr_sections; 2901 struct feat_fd ff; 2902 struct perf_file_section *feat_sec, *p; 2903 int sec_size; 2904 u64 sec_start; 2905 int feat; 2906 int err; 2907 2908 ff = (struct feat_fd){ 2909 .fd = fd, 2910 .ph = header, 2911 }; 2912 2913 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 2914 if (!nr_sections) 2915 return 0; 2916 2917 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 2918 if (feat_sec == NULL) 2919 return -ENOMEM; 2920 2921 sec_size = sizeof(*feat_sec) * nr_sections; 2922 2923 sec_start = header->feat_offset; 2924 lseek(fd, sec_start + sec_size, SEEK_SET); 2925 2926 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 2927 if (do_write_feat(&ff, feat, &p, evlist)) 2928 perf_header__clear_feat(header, feat); 2929 } 2930 2931 lseek(fd, sec_start, SEEK_SET); 2932 /* 2933 * may write more than needed due to dropped feature, but 2934 * this is okay, reader will skip the missing entries 2935 */ 2936 err = do_write(&ff, feat_sec, sec_size); 2937 if (err < 0) 2938 pr_debug("failed to write feature section\n"); 2939 free(feat_sec); 2940 return err; 2941 } 2942 2943 int perf_header__write_pipe(int fd) 2944 { 2945 struct perf_pipe_file_header f_header; 2946 struct feat_fd ff; 2947 int err; 2948 2949 ff = (struct feat_fd){ .fd = fd }; 2950 2951 f_header = (struct perf_pipe_file_header){ 2952 .magic = PERF_MAGIC, 2953 .size = sizeof(f_header), 2954 }; 2955 2956 err = do_write(&ff, &f_header, sizeof(f_header)); 2957 if (err < 0) { 2958 pr_debug("failed to write perf pipe header\n"); 2959 return err; 2960 } 2961 2962 return 0; 2963 } 2964 2965 int perf_session__write_header(struct perf_session *session, 2966 struct perf_evlist *evlist, 2967 int fd, bool at_exit) 2968 { 2969 struct perf_file_header f_header; 2970 struct perf_file_attr f_attr; 2971 struct perf_header *header = &session->header; 2972 struct perf_evsel *evsel; 2973 struct feat_fd ff; 2974 u64 attr_offset; 2975 int err; 2976 2977 ff = (struct feat_fd){ .fd = fd}; 2978 lseek(fd, sizeof(f_header), SEEK_SET); 2979 2980 evlist__for_each_entry(session->evlist, evsel) { 2981 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 2982 err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64)); 2983 if (err < 0) { 2984 pr_debug("failed to write perf header\n"); 2985 return err; 2986 } 2987 } 2988 2989 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 2990 2991 evlist__for_each_entry(evlist, evsel) { 2992 f_attr = (struct perf_file_attr){ 2993 .attr = evsel->attr, 2994 .ids = { 2995 .offset = evsel->id_offset, 2996 .size = evsel->ids * sizeof(u64), 2997 } 2998 }; 2999 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3000 if (err < 0) { 3001 pr_debug("failed to write perf header attribute\n"); 3002 return err; 3003 } 3004 } 3005 3006 if (!header->data_offset) 3007 header->data_offset = lseek(fd, 0, SEEK_CUR); 3008 header->feat_offset = header->data_offset + header->data_size; 3009 3010 if (at_exit) { 3011 err = perf_header__adds_write(header, evlist, fd); 3012 if (err < 0) 3013 return err; 3014 } 3015 3016 f_header = (struct perf_file_header){ 3017 .magic = PERF_MAGIC, 3018 .size = sizeof(f_header), 3019 .attr_size = sizeof(f_attr), 3020 .attrs = { 3021 .offset = attr_offset, 3022 .size = evlist->nr_entries * sizeof(f_attr), 3023 }, 3024 .data = { 3025 .offset = header->data_offset, 3026 .size = header->data_size, 3027 }, 3028 /* event_types is ignored, store zeros */ 3029 }; 3030 3031 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3032 3033 lseek(fd, 0, SEEK_SET); 3034 err = do_write(&ff, &f_header, sizeof(f_header)); 3035 if (err < 0) { 3036 pr_debug("failed to write perf header\n"); 3037 return err; 3038 } 3039 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3040 3041 return 0; 3042 } 3043 3044 static int perf_header__getbuffer64(struct perf_header *header, 3045 int fd, void *buf, size_t size) 3046 { 3047 if (readn(fd, buf, size) <= 0) 3048 return -1; 3049 3050 if (header->needs_swap) 3051 mem_bswap_64(buf, size); 3052 3053 return 0; 3054 } 3055 3056 int perf_header__process_sections(struct perf_header *header, int fd, 3057 void *data, 3058 int (*process)(struct perf_file_section *section, 3059 struct perf_header *ph, 3060 int feat, int fd, void *data)) 3061 { 3062 struct perf_file_section *feat_sec, *sec; 3063 int nr_sections; 3064 int sec_size; 3065 int feat; 3066 int err; 3067 3068 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3069 if (!nr_sections) 3070 return 0; 3071 3072 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3073 if (!feat_sec) 3074 return -1; 3075 3076 sec_size = sizeof(*feat_sec) * nr_sections; 3077 3078 lseek(fd, header->feat_offset, SEEK_SET); 3079 3080 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3081 if (err < 0) 3082 goto out_free; 3083 3084 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3085 err = process(sec++, header, feat, fd, data); 3086 if (err < 0) 3087 goto out_free; 3088 } 3089 err = 0; 3090 out_free: 3091 free(feat_sec); 3092 return err; 3093 } 3094 3095 static const int attr_file_abi_sizes[] = { 3096 [0] = PERF_ATTR_SIZE_VER0, 3097 [1] = PERF_ATTR_SIZE_VER1, 3098 [2] = PERF_ATTR_SIZE_VER2, 3099 [3] = PERF_ATTR_SIZE_VER3, 3100 [4] = PERF_ATTR_SIZE_VER4, 3101 0, 3102 }; 3103 3104 /* 3105 * In the legacy file format, the magic number is not used to encode endianness. 3106 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3107 * on ABI revisions, we need to try all combinations for all endianness to 3108 * detect the endianness. 3109 */ 3110 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3111 { 3112 uint64_t ref_size, attr_size; 3113 int i; 3114 3115 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3116 ref_size = attr_file_abi_sizes[i] 3117 + sizeof(struct perf_file_section); 3118 if (hdr_sz != ref_size) { 3119 attr_size = bswap_64(hdr_sz); 3120 if (attr_size != ref_size) 3121 continue; 3122 3123 ph->needs_swap = true; 3124 } 3125 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3126 i, 3127 ph->needs_swap); 3128 return 0; 3129 } 3130 /* could not determine endianness */ 3131 return -1; 3132 } 3133 3134 #define PERF_PIPE_HDR_VER0 16 3135 3136 static const size_t attr_pipe_abi_sizes[] = { 3137 [0] = PERF_PIPE_HDR_VER0, 3138 0, 3139 }; 3140 3141 /* 3142 * In the legacy pipe format, there is an implicit assumption that endiannesss 3143 * between host recording the samples, and host parsing the samples is the 3144 * same. This is not always the case given that the pipe output may always be 3145 * redirected into a file and analyzed on a different machine with possibly a 3146 * different endianness and perf_event ABI revsions in the perf tool itself. 3147 */ 3148 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3149 { 3150 u64 attr_size; 3151 int i; 3152 3153 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3154 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3155 attr_size = bswap_64(hdr_sz); 3156 if (attr_size != hdr_sz) 3157 continue; 3158 3159 ph->needs_swap = true; 3160 } 3161 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3162 return 0; 3163 } 3164 return -1; 3165 } 3166 3167 bool is_perf_magic(u64 magic) 3168 { 3169 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3170 || magic == __perf_magic2 3171 || magic == __perf_magic2_sw) 3172 return true; 3173 3174 return false; 3175 } 3176 3177 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3178 bool is_pipe, struct perf_header *ph) 3179 { 3180 int ret; 3181 3182 /* check for legacy format */ 3183 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3184 if (ret == 0) { 3185 ph->version = PERF_HEADER_VERSION_1; 3186 pr_debug("legacy perf.data format\n"); 3187 if (is_pipe) 3188 return try_all_pipe_abis(hdr_sz, ph); 3189 3190 return try_all_file_abis(hdr_sz, ph); 3191 } 3192 /* 3193 * the new magic number serves two purposes: 3194 * - unique number to identify actual perf.data files 3195 * - encode endianness of file 3196 */ 3197 ph->version = PERF_HEADER_VERSION_2; 3198 3199 /* check magic number with one endianness */ 3200 if (magic == __perf_magic2) 3201 return 0; 3202 3203 /* check magic number with opposite endianness */ 3204 if (magic != __perf_magic2_sw) 3205 return -1; 3206 3207 ph->needs_swap = true; 3208 3209 return 0; 3210 } 3211 3212 int perf_file_header__read(struct perf_file_header *header, 3213 struct perf_header *ph, int fd) 3214 { 3215 ssize_t ret; 3216 3217 lseek(fd, 0, SEEK_SET); 3218 3219 ret = readn(fd, header, sizeof(*header)); 3220 if (ret <= 0) 3221 return -1; 3222 3223 if (check_magic_endian(header->magic, 3224 header->attr_size, false, ph) < 0) { 3225 pr_debug("magic/endian check failed\n"); 3226 return -1; 3227 } 3228 3229 if (ph->needs_swap) { 3230 mem_bswap_64(header, offsetof(struct perf_file_header, 3231 adds_features)); 3232 } 3233 3234 if (header->size != sizeof(*header)) { 3235 /* Support the previous format */ 3236 if (header->size == offsetof(typeof(*header), adds_features)) 3237 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3238 else 3239 return -1; 3240 } else if (ph->needs_swap) { 3241 /* 3242 * feature bitmap is declared as an array of unsigned longs -- 3243 * not good since its size can differ between the host that 3244 * generated the data file and the host analyzing the file. 3245 * 3246 * We need to handle endianness, but we don't know the size of 3247 * the unsigned long where the file was generated. Take a best 3248 * guess at determining it: try 64-bit swap first (ie., file 3249 * created on a 64-bit host), and check if the hostname feature 3250 * bit is set (this feature bit is forced on as of fbe96f2). 3251 * If the bit is not, undo the 64-bit swap and try a 32-bit 3252 * swap. If the hostname bit is still not set (e.g., older data 3253 * file), punt and fallback to the original behavior -- 3254 * clearing all feature bits and setting buildid. 3255 */ 3256 mem_bswap_64(&header->adds_features, 3257 BITS_TO_U64(HEADER_FEAT_BITS)); 3258 3259 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3260 /* unswap as u64 */ 3261 mem_bswap_64(&header->adds_features, 3262 BITS_TO_U64(HEADER_FEAT_BITS)); 3263 3264 /* unswap as u32 */ 3265 mem_bswap_32(&header->adds_features, 3266 BITS_TO_U32(HEADER_FEAT_BITS)); 3267 } 3268 3269 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3270 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3271 set_bit(HEADER_BUILD_ID, header->adds_features); 3272 } 3273 } 3274 3275 memcpy(&ph->adds_features, &header->adds_features, 3276 sizeof(ph->adds_features)); 3277 3278 ph->data_offset = header->data.offset; 3279 ph->data_size = header->data.size; 3280 ph->feat_offset = header->data.offset + header->data.size; 3281 return 0; 3282 } 3283 3284 static int perf_file_section__process(struct perf_file_section *section, 3285 struct perf_header *ph, 3286 int feat, int fd, void *data) 3287 { 3288 struct feat_fd fdd = { 3289 .fd = fd, 3290 .ph = ph, 3291 .size = section->size, 3292 .offset = section->offset, 3293 }; 3294 3295 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3296 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3297 "%d, continuing...\n", section->offset, feat); 3298 return 0; 3299 } 3300 3301 if (feat >= HEADER_LAST_FEATURE) { 3302 pr_debug("unknown feature %d, continuing...\n", feat); 3303 return 0; 3304 } 3305 3306 if (!feat_ops[feat].process) 3307 return 0; 3308 3309 return feat_ops[feat].process(&fdd, data); 3310 } 3311 3312 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 3313 struct perf_header *ph, int fd, 3314 bool repipe) 3315 { 3316 struct feat_fd ff = { 3317 .fd = STDOUT_FILENO, 3318 .ph = ph, 3319 }; 3320 ssize_t ret; 3321 3322 ret = readn(fd, header, sizeof(*header)); 3323 if (ret <= 0) 3324 return -1; 3325 3326 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 3327 pr_debug("endian/magic failed\n"); 3328 return -1; 3329 } 3330 3331 if (ph->needs_swap) 3332 header->size = bswap_64(header->size); 3333 3334 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 3335 return -1; 3336 3337 return 0; 3338 } 3339 3340 static int perf_header__read_pipe(struct perf_session *session) 3341 { 3342 struct perf_header *header = &session->header; 3343 struct perf_pipe_file_header f_header; 3344 3345 if (perf_file_header__read_pipe(&f_header, header, 3346 perf_data__fd(session->data), 3347 session->repipe) < 0) { 3348 pr_debug("incompatible file format\n"); 3349 return -EINVAL; 3350 } 3351 3352 return 0; 3353 } 3354 3355 static int read_attr(int fd, struct perf_header *ph, 3356 struct perf_file_attr *f_attr) 3357 { 3358 struct perf_event_attr *attr = &f_attr->attr; 3359 size_t sz, left; 3360 size_t our_sz = sizeof(f_attr->attr); 3361 ssize_t ret; 3362 3363 memset(f_attr, 0, sizeof(*f_attr)); 3364 3365 /* read minimal guaranteed structure */ 3366 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 3367 if (ret <= 0) { 3368 pr_debug("cannot read %d bytes of header attr\n", 3369 PERF_ATTR_SIZE_VER0); 3370 return -1; 3371 } 3372 3373 /* on file perf_event_attr size */ 3374 sz = attr->size; 3375 3376 if (ph->needs_swap) 3377 sz = bswap_32(sz); 3378 3379 if (sz == 0) { 3380 /* assume ABI0 */ 3381 sz = PERF_ATTR_SIZE_VER0; 3382 } else if (sz > our_sz) { 3383 pr_debug("file uses a more recent and unsupported ABI" 3384 " (%zu bytes extra)\n", sz - our_sz); 3385 return -1; 3386 } 3387 /* what we have not yet read and that we know about */ 3388 left = sz - PERF_ATTR_SIZE_VER0; 3389 if (left) { 3390 void *ptr = attr; 3391 ptr += PERF_ATTR_SIZE_VER0; 3392 3393 ret = readn(fd, ptr, left); 3394 } 3395 /* read perf_file_section, ids are read in caller */ 3396 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 3397 3398 return ret <= 0 ? -1 : 0; 3399 } 3400 3401 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel, 3402 struct tep_handle *pevent) 3403 { 3404 struct tep_event *event; 3405 char bf[128]; 3406 3407 /* already prepared */ 3408 if (evsel->tp_format) 3409 return 0; 3410 3411 if (pevent == NULL) { 3412 pr_debug("broken or missing trace data\n"); 3413 return -1; 3414 } 3415 3416 event = tep_find_event(pevent, evsel->attr.config); 3417 if (event == NULL) { 3418 pr_debug("cannot find event format for %d\n", (int)evsel->attr.config); 3419 return -1; 3420 } 3421 3422 if (!evsel->name) { 3423 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 3424 evsel->name = strdup(bf); 3425 if (evsel->name == NULL) 3426 return -1; 3427 } 3428 3429 evsel->tp_format = event; 3430 return 0; 3431 } 3432 3433 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist, 3434 struct tep_handle *pevent) 3435 { 3436 struct perf_evsel *pos; 3437 3438 evlist__for_each_entry(evlist, pos) { 3439 if (pos->attr.type == PERF_TYPE_TRACEPOINT && 3440 perf_evsel__prepare_tracepoint_event(pos, pevent)) 3441 return -1; 3442 } 3443 3444 return 0; 3445 } 3446 3447 int perf_session__read_header(struct perf_session *session) 3448 { 3449 struct perf_data *data = session->data; 3450 struct perf_header *header = &session->header; 3451 struct perf_file_header f_header; 3452 struct perf_file_attr f_attr; 3453 u64 f_id; 3454 int nr_attrs, nr_ids, i, j; 3455 int fd = perf_data__fd(data); 3456 3457 session->evlist = perf_evlist__new(); 3458 if (session->evlist == NULL) 3459 return -ENOMEM; 3460 3461 session->evlist->env = &header->env; 3462 session->machines.host.env = &header->env; 3463 if (perf_data__is_pipe(data)) 3464 return perf_header__read_pipe(session); 3465 3466 if (perf_file_header__read(&f_header, header, fd) < 0) 3467 return -EINVAL; 3468 3469 /* 3470 * Sanity check that perf.data was written cleanly; data size is 3471 * initialized to 0 and updated only if the on_exit function is run. 3472 * If data size is still 0 then the file contains only partial 3473 * information. Just warn user and process it as much as it can. 3474 */ 3475 if (f_header.data.size == 0) { 3476 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 3477 "Was the 'perf record' command properly terminated?\n", 3478 data->file.path); 3479 } 3480 3481 nr_attrs = f_header.attrs.size / f_header.attr_size; 3482 lseek(fd, f_header.attrs.offset, SEEK_SET); 3483 3484 for (i = 0; i < nr_attrs; i++) { 3485 struct perf_evsel *evsel; 3486 off_t tmp; 3487 3488 if (read_attr(fd, header, &f_attr) < 0) 3489 goto out_errno; 3490 3491 if (header->needs_swap) { 3492 f_attr.ids.size = bswap_64(f_attr.ids.size); 3493 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 3494 perf_event__attr_swap(&f_attr.attr); 3495 } 3496 3497 tmp = lseek(fd, 0, SEEK_CUR); 3498 evsel = perf_evsel__new(&f_attr.attr); 3499 3500 if (evsel == NULL) 3501 goto out_delete_evlist; 3502 3503 evsel->needs_swap = header->needs_swap; 3504 /* 3505 * Do it before so that if perf_evsel__alloc_id fails, this 3506 * entry gets purged too at perf_evlist__delete(). 3507 */ 3508 perf_evlist__add(session->evlist, evsel); 3509 3510 nr_ids = f_attr.ids.size / sizeof(u64); 3511 /* 3512 * We don't have the cpu and thread maps on the header, so 3513 * for allocating the perf_sample_id table we fake 1 cpu and 3514 * hattr->ids threads. 3515 */ 3516 if (perf_evsel__alloc_id(evsel, 1, nr_ids)) 3517 goto out_delete_evlist; 3518 3519 lseek(fd, f_attr.ids.offset, SEEK_SET); 3520 3521 for (j = 0; j < nr_ids; j++) { 3522 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 3523 goto out_errno; 3524 3525 perf_evlist__id_add(session->evlist, evsel, 0, j, f_id); 3526 } 3527 3528 lseek(fd, tmp, SEEK_SET); 3529 } 3530 3531 perf_header__process_sections(header, fd, &session->tevent, 3532 perf_file_section__process); 3533 3534 if (perf_evlist__prepare_tracepoint_events(session->evlist, 3535 session->tevent.pevent)) 3536 goto out_delete_evlist; 3537 3538 return 0; 3539 out_errno: 3540 return -errno; 3541 3542 out_delete_evlist: 3543 perf_evlist__delete(session->evlist); 3544 session->evlist = NULL; 3545 return -ENOMEM; 3546 } 3547 3548 int perf_event__synthesize_attr(struct perf_tool *tool, 3549 struct perf_event_attr *attr, u32 ids, u64 *id, 3550 perf_event__handler_t process) 3551 { 3552 union perf_event *ev; 3553 size_t size; 3554 int err; 3555 3556 size = sizeof(struct perf_event_attr); 3557 size = PERF_ALIGN(size, sizeof(u64)); 3558 size += sizeof(struct perf_event_header); 3559 size += ids * sizeof(u64); 3560 3561 ev = malloc(size); 3562 3563 if (ev == NULL) 3564 return -ENOMEM; 3565 3566 ev->attr.attr = *attr; 3567 memcpy(ev->attr.id, id, ids * sizeof(u64)); 3568 3569 ev->attr.header.type = PERF_RECORD_HEADER_ATTR; 3570 ev->attr.header.size = (u16)size; 3571 3572 if (ev->attr.header.size == size) 3573 err = process(tool, ev, NULL, NULL); 3574 else 3575 err = -E2BIG; 3576 3577 free(ev); 3578 3579 return err; 3580 } 3581 3582 int perf_event__synthesize_features(struct perf_tool *tool, 3583 struct perf_session *session, 3584 struct perf_evlist *evlist, 3585 perf_event__handler_t process) 3586 { 3587 struct perf_header *header = &session->header; 3588 struct feat_fd ff; 3589 struct feature_event *fe; 3590 size_t sz, sz_hdr; 3591 int feat, ret; 3592 3593 sz_hdr = sizeof(fe->header); 3594 sz = sizeof(union perf_event); 3595 /* get a nice alignment */ 3596 sz = PERF_ALIGN(sz, page_size); 3597 3598 memset(&ff, 0, sizeof(ff)); 3599 3600 ff.buf = malloc(sz); 3601 if (!ff.buf) 3602 return -ENOMEM; 3603 3604 ff.size = sz - sz_hdr; 3605 3606 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3607 if (!feat_ops[feat].synthesize) { 3608 pr_debug("No record header feature for header :%d\n", feat); 3609 continue; 3610 } 3611 3612 ff.offset = sizeof(*fe); 3613 3614 ret = feat_ops[feat].write(&ff, evlist); 3615 if (ret || ff.offset <= (ssize_t)sizeof(*fe)) { 3616 pr_debug("Error writing feature\n"); 3617 continue; 3618 } 3619 /* ff.buf may have changed due to realloc in do_write() */ 3620 fe = ff.buf; 3621 memset(fe, 0, sizeof(*fe)); 3622 3623 fe->feat_id = feat; 3624 fe->header.type = PERF_RECORD_HEADER_FEATURE; 3625 fe->header.size = ff.offset; 3626 3627 ret = process(tool, ff.buf, NULL, NULL); 3628 if (ret) { 3629 free(ff.buf); 3630 return ret; 3631 } 3632 } 3633 3634 /* Send HEADER_LAST_FEATURE mark. */ 3635 fe = ff.buf; 3636 fe->feat_id = HEADER_LAST_FEATURE; 3637 fe->header.type = PERF_RECORD_HEADER_FEATURE; 3638 fe->header.size = sizeof(*fe); 3639 3640 ret = process(tool, ff.buf, NULL, NULL); 3641 3642 free(ff.buf); 3643 return ret; 3644 } 3645 3646 int perf_event__process_feature(struct perf_session *session, 3647 union perf_event *event) 3648 { 3649 struct perf_tool *tool = session->tool; 3650 struct feat_fd ff = { .fd = 0 }; 3651 struct feature_event *fe = (struct feature_event *)event; 3652 int type = fe->header.type; 3653 u64 feat = fe->feat_id; 3654 3655 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 3656 pr_warning("invalid record type %d in pipe-mode\n", type); 3657 return 0; 3658 } 3659 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 3660 pr_warning("invalid record type %d in pipe-mode\n", type); 3661 return -1; 3662 } 3663 3664 if (!feat_ops[feat].process) 3665 return 0; 3666 3667 ff.buf = (void *)fe->data; 3668 ff.size = event->header.size - sizeof(event->header); 3669 ff.ph = &session->header; 3670 3671 if (feat_ops[feat].process(&ff, NULL)) 3672 return -1; 3673 3674 if (!feat_ops[feat].print || !tool->show_feat_hdr) 3675 return 0; 3676 3677 if (!feat_ops[feat].full_only || 3678 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 3679 feat_ops[feat].print(&ff, stdout); 3680 } else { 3681 fprintf(stdout, "# %s info available, use -I to display\n", 3682 feat_ops[feat].name); 3683 } 3684 3685 return 0; 3686 } 3687 3688 static struct event_update_event * 3689 event_update_event__new(size_t size, u64 type, u64 id) 3690 { 3691 struct event_update_event *ev; 3692 3693 size += sizeof(*ev); 3694 size = PERF_ALIGN(size, sizeof(u64)); 3695 3696 ev = zalloc(size); 3697 if (ev) { 3698 ev->header.type = PERF_RECORD_EVENT_UPDATE; 3699 ev->header.size = (u16)size; 3700 ev->type = type; 3701 ev->id = id; 3702 } 3703 return ev; 3704 } 3705 3706 int 3707 perf_event__synthesize_event_update_unit(struct perf_tool *tool, 3708 struct perf_evsel *evsel, 3709 perf_event__handler_t process) 3710 { 3711 struct event_update_event *ev; 3712 size_t size = strlen(evsel->unit); 3713 int err; 3714 3715 ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]); 3716 if (ev == NULL) 3717 return -ENOMEM; 3718 3719 strlcpy(ev->data, evsel->unit, size + 1); 3720 err = process(tool, (union perf_event *)ev, NULL, NULL); 3721 free(ev); 3722 return err; 3723 } 3724 3725 int 3726 perf_event__synthesize_event_update_scale(struct perf_tool *tool, 3727 struct perf_evsel *evsel, 3728 perf_event__handler_t process) 3729 { 3730 struct event_update_event *ev; 3731 struct event_update_event_scale *ev_data; 3732 int err; 3733 3734 ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]); 3735 if (ev == NULL) 3736 return -ENOMEM; 3737 3738 ev_data = (struct event_update_event_scale *) ev->data; 3739 ev_data->scale = evsel->scale; 3740 err = process(tool, (union perf_event*) ev, NULL, NULL); 3741 free(ev); 3742 return err; 3743 } 3744 3745 int 3746 perf_event__synthesize_event_update_name(struct perf_tool *tool, 3747 struct perf_evsel *evsel, 3748 perf_event__handler_t process) 3749 { 3750 struct event_update_event *ev; 3751 size_t len = strlen(evsel->name); 3752 int err; 3753 3754 ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]); 3755 if (ev == NULL) 3756 return -ENOMEM; 3757 3758 strlcpy(ev->data, evsel->name, len + 1); 3759 err = process(tool, (union perf_event*) ev, NULL, NULL); 3760 free(ev); 3761 return err; 3762 } 3763 3764 int 3765 perf_event__synthesize_event_update_cpus(struct perf_tool *tool, 3766 struct perf_evsel *evsel, 3767 perf_event__handler_t process) 3768 { 3769 size_t size = sizeof(struct event_update_event); 3770 struct event_update_event *ev; 3771 int max, err; 3772 u16 type; 3773 3774 if (!evsel->own_cpus) 3775 return 0; 3776 3777 ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max); 3778 if (!ev) 3779 return -ENOMEM; 3780 3781 ev->header.type = PERF_RECORD_EVENT_UPDATE; 3782 ev->header.size = (u16)size; 3783 ev->type = PERF_EVENT_UPDATE__CPUS; 3784 ev->id = evsel->id[0]; 3785 3786 cpu_map_data__synthesize((struct cpu_map_data *) ev->data, 3787 evsel->own_cpus, 3788 type, max); 3789 3790 err = process(tool, (union perf_event*) ev, NULL, NULL); 3791 free(ev); 3792 return err; 3793 } 3794 3795 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 3796 { 3797 struct event_update_event *ev = &event->event_update; 3798 struct event_update_event_scale *ev_scale; 3799 struct event_update_event_cpus *ev_cpus; 3800 struct cpu_map *map; 3801 size_t ret; 3802 3803 ret = fprintf(fp, "\n... id: %" PRIu64 "\n", ev->id); 3804 3805 switch (ev->type) { 3806 case PERF_EVENT_UPDATE__SCALE: 3807 ev_scale = (struct event_update_event_scale *) ev->data; 3808 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale); 3809 break; 3810 case PERF_EVENT_UPDATE__UNIT: 3811 ret += fprintf(fp, "... unit: %s\n", ev->data); 3812 break; 3813 case PERF_EVENT_UPDATE__NAME: 3814 ret += fprintf(fp, "... name: %s\n", ev->data); 3815 break; 3816 case PERF_EVENT_UPDATE__CPUS: 3817 ev_cpus = (struct event_update_event_cpus *) ev->data; 3818 ret += fprintf(fp, "... "); 3819 3820 map = cpu_map__new_data(&ev_cpus->cpus); 3821 if (map) 3822 ret += cpu_map__fprintf(map, fp); 3823 else 3824 ret += fprintf(fp, "failed to get cpus\n"); 3825 break; 3826 default: 3827 ret += fprintf(fp, "... unknown type\n"); 3828 break; 3829 } 3830 3831 return ret; 3832 } 3833 3834 int perf_event__synthesize_attrs(struct perf_tool *tool, 3835 struct perf_evlist *evlist, 3836 perf_event__handler_t process) 3837 { 3838 struct perf_evsel *evsel; 3839 int err = 0; 3840 3841 evlist__for_each_entry(evlist, evsel) { 3842 err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids, 3843 evsel->id, process); 3844 if (err) { 3845 pr_debug("failed to create perf header attribute\n"); 3846 return err; 3847 } 3848 } 3849 3850 return err; 3851 } 3852 3853 static bool has_unit(struct perf_evsel *counter) 3854 { 3855 return counter->unit && *counter->unit; 3856 } 3857 3858 static bool has_scale(struct perf_evsel *counter) 3859 { 3860 return counter->scale != 1; 3861 } 3862 3863 int perf_event__synthesize_extra_attr(struct perf_tool *tool, 3864 struct perf_evlist *evsel_list, 3865 perf_event__handler_t process, 3866 bool is_pipe) 3867 { 3868 struct perf_evsel *counter; 3869 int err; 3870 3871 /* 3872 * Synthesize other events stuff not carried within 3873 * attr event - unit, scale, name 3874 */ 3875 evlist__for_each_entry(evsel_list, counter) { 3876 if (!counter->supported) 3877 continue; 3878 3879 /* 3880 * Synthesize unit and scale only if it's defined. 3881 */ 3882 if (has_unit(counter)) { 3883 err = perf_event__synthesize_event_update_unit(tool, counter, process); 3884 if (err < 0) { 3885 pr_err("Couldn't synthesize evsel unit.\n"); 3886 return err; 3887 } 3888 } 3889 3890 if (has_scale(counter)) { 3891 err = perf_event__synthesize_event_update_scale(tool, counter, process); 3892 if (err < 0) { 3893 pr_err("Couldn't synthesize evsel counter.\n"); 3894 return err; 3895 } 3896 } 3897 3898 if (counter->own_cpus) { 3899 err = perf_event__synthesize_event_update_cpus(tool, counter, process); 3900 if (err < 0) { 3901 pr_err("Couldn't synthesize evsel cpus.\n"); 3902 return err; 3903 } 3904 } 3905 3906 /* 3907 * Name is needed only for pipe output, 3908 * perf.data carries event names. 3909 */ 3910 if (is_pipe) { 3911 err = perf_event__synthesize_event_update_name(tool, counter, process); 3912 if (err < 0) { 3913 pr_err("Couldn't synthesize evsel name.\n"); 3914 return err; 3915 } 3916 } 3917 } 3918 return 0; 3919 } 3920 3921 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 3922 union perf_event *event, 3923 struct perf_evlist **pevlist) 3924 { 3925 u32 i, ids, n_ids; 3926 struct perf_evsel *evsel; 3927 struct perf_evlist *evlist = *pevlist; 3928 3929 if (evlist == NULL) { 3930 *pevlist = evlist = perf_evlist__new(); 3931 if (evlist == NULL) 3932 return -ENOMEM; 3933 } 3934 3935 evsel = perf_evsel__new(&event->attr.attr); 3936 if (evsel == NULL) 3937 return -ENOMEM; 3938 3939 perf_evlist__add(evlist, evsel); 3940 3941 ids = event->header.size; 3942 ids -= (void *)&event->attr.id - (void *)event; 3943 n_ids = ids / sizeof(u64); 3944 /* 3945 * We don't have the cpu and thread maps on the header, so 3946 * for allocating the perf_sample_id table we fake 1 cpu and 3947 * hattr->ids threads. 3948 */ 3949 if (perf_evsel__alloc_id(evsel, 1, n_ids)) 3950 return -ENOMEM; 3951 3952 for (i = 0; i < n_ids; i++) { 3953 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]); 3954 } 3955 3956 return 0; 3957 } 3958 3959 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 3960 union perf_event *event, 3961 struct perf_evlist **pevlist) 3962 { 3963 struct event_update_event *ev = &event->event_update; 3964 struct event_update_event_scale *ev_scale; 3965 struct event_update_event_cpus *ev_cpus; 3966 struct perf_evlist *evlist; 3967 struct perf_evsel *evsel; 3968 struct cpu_map *map; 3969 3970 if (!pevlist || *pevlist == NULL) 3971 return -EINVAL; 3972 3973 evlist = *pevlist; 3974 3975 evsel = perf_evlist__id2evsel(evlist, ev->id); 3976 if (evsel == NULL) 3977 return -EINVAL; 3978 3979 switch (ev->type) { 3980 case PERF_EVENT_UPDATE__UNIT: 3981 evsel->unit = strdup(ev->data); 3982 break; 3983 case PERF_EVENT_UPDATE__NAME: 3984 evsel->name = strdup(ev->data); 3985 break; 3986 case PERF_EVENT_UPDATE__SCALE: 3987 ev_scale = (struct event_update_event_scale *) ev->data; 3988 evsel->scale = ev_scale->scale; 3989 break; 3990 case PERF_EVENT_UPDATE__CPUS: 3991 ev_cpus = (struct event_update_event_cpus *) ev->data; 3992 3993 map = cpu_map__new_data(&ev_cpus->cpus); 3994 if (map) 3995 evsel->own_cpus = map; 3996 else 3997 pr_err("failed to get event_update cpus\n"); 3998 default: 3999 break; 4000 } 4001 4002 return 0; 4003 } 4004 4005 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd, 4006 struct perf_evlist *evlist, 4007 perf_event__handler_t process) 4008 { 4009 union perf_event ev; 4010 struct tracing_data *tdata; 4011 ssize_t size = 0, aligned_size = 0, padding; 4012 struct feat_fd ff; 4013 int err __maybe_unused = 0; 4014 4015 /* 4016 * We are going to store the size of the data followed 4017 * by the data contents. Since the fd descriptor is a pipe, 4018 * we cannot seek back to store the size of the data once 4019 * we know it. Instead we: 4020 * 4021 * - write the tracing data to the temp file 4022 * - get/write the data size to pipe 4023 * - write the tracing data from the temp file 4024 * to the pipe 4025 */ 4026 tdata = tracing_data_get(&evlist->entries, fd, true); 4027 if (!tdata) 4028 return -1; 4029 4030 memset(&ev, 0, sizeof(ev)); 4031 4032 ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA; 4033 size = tdata->size; 4034 aligned_size = PERF_ALIGN(size, sizeof(u64)); 4035 padding = aligned_size - size; 4036 ev.tracing_data.header.size = sizeof(ev.tracing_data); 4037 ev.tracing_data.size = aligned_size; 4038 4039 process(tool, &ev, NULL, NULL); 4040 4041 /* 4042 * The put function will copy all the tracing data 4043 * stored in temp file to the pipe. 4044 */ 4045 tracing_data_put(tdata); 4046 4047 ff = (struct feat_fd){ .fd = fd }; 4048 if (write_padded(&ff, NULL, 0, padding)) 4049 return -1; 4050 4051 return aligned_size; 4052 } 4053 4054 int perf_event__process_tracing_data(struct perf_session *session, 4055 union perf_event *event) 4056 { 4057 ssize_t size_read, padding, size = event->tracing_data.size; 4058 int fd = perf_data__fd(session->data); 4059 off_t offset = lseek(fd, 0, SEEK_CUR); 4060 char buf[BUFSIZ]; 4061 4062 /* setup for reading amidst mmap */ 4063 lseek(fd, offset + sizeof(struct tracing_data_event), 4064 SEEK_SET); 4065 4066 size_read = trace_report(fd, &session->tevent, 4067 session->repipe); 4068 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4069 4070 if (readn(fd, buf, padding) < 0) { 4071 pr_err("%s: reading input file", __func__); 4072 return -1; 4073 } 4074 if (session->repipe) { 4075 int retw = write(STDOUT_FILENO, buf, padding); 4076 if (retw <= 0 || retw != padding) { 4077 pr_err("%s: repiping tracing data padding", __func__); 4078 return -1; 4079 } 4080 } 4081 4082 if (size_read + padding != size) { 4083 pr_err("%s: tracing data size mismatch", __func__); 4084 return -1; 4085 } 4086 4087 perf_evlist__prepare_tracepoint_events(session->evlist, 4088 session->tevent.pevent); 4089 4090 return size_read + padding; 4091 } 4092 4093 int perf_event__synthesize_build_id(struct perf_tool *tool, 4094 struct dso *pos, u16 misc, 4095 perf_event__handler_t process, 4096 struct machine *machine) 4097 { 4098 union perf_event ev; 4099 size_t len; 4100 int err = 0; 4101 4102 if (!pos->hit) 4103 return err; 4104 4105 memset(&ev, 0, sizeof(ev)); 4106 4107 len = pos->long_name_len + 1; 4108 len = PERF_ALIGN(len, NAME_ALIGN); 4109 memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id)); 4110 ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID; 4111 ev.build_id.header.misc = misc; 4112 ev.build_id.pid = machine->pid; 4113 ev.build_id.header.size = sizeof(ev.build_id) + len; 4114 memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len); 4115 4116 err = process(tool, &ev, NULL, machine); 4117 4118 return err; 4119 } 4120 4121 int perf_event__process_build_id(struct perf_session *session, 4122 union perf_event *event) 4123 { 4124 __event_process_build_id(&event->build_id, 4125 event->build_id.filename, 4126 session); 4127 return 0; 4128 } 4129