xref: /linux/tools/perf/util/header.c (revision 8ab2e96d8ff188006f1e3346a56443cd07fe1858)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
24 
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "util/evsel_fprintf.h"
29 #include "header.h"
30 #include "memswap.h"
31 #include "trace-event.h"
32 #include "session.h"
33 #include "symbol.h"
34 #include "debug.h"
35 #include "cpumap.h"
36 #include "pmu.h"
37 #include "vdso.h"
38 #include "strbuf.h"
39 #include "build-id.h"
40 #include "data.h"
41 #include <api/fs/fs.h>
42 #include "asm/bug.h"
43 #include "tool.h"
44 #include "time-utils.h"
45 #include "units.h"
46 #include "util/util.h" // perf_exe()
47 #include "cputopo.h"
48 #include "bpf-event.h"
49 
50 #include <linux/ctype.h>
51 #include <internal/lib.h>
52 
53 /*
54  * magic2 = "PERFILE2"
55  * must be a numerical value to let the endianness
56  * determine the memory layout. That way we are able
57  * to detect endianness when reading the perf.data file
58  * back.
59  *
60  * we check for legacy (PERFFILE) format.
61  */
62 static const char *__perf_magic1 = "PERFFILE";
63 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
64 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65 
66 #define PERF_MAGIC	__perf_magic2
67 
68 const char perf_version_string[] = PERF_VERSION;
69 
70 struct perf_file_attr {
71 	struct perf_event_attr	attr;
72 	struct perf_file_section	ids;
73 };
74 
75 void perf_header__set_feat(struct perf_header *header, int feat)
76 {
77 	set_bit(feat, header->adds_features);
78 }
79 
80 void perf_header__clear_feat(struct perf_header *header, int feat)
81 {
82 	clear_bit(feat, header->adds_features);
83 }
84 
85 bool perf_header__has_feat(const struct perf_header *header, int feat)
86 {
87 	return test_bit(feat, header->adds_features);
88 }
89 
90 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
91 {
92 	ssize_t ret = writen(ff->fd, buf, size);
93 
94 	if (ret != (ssize_t)size)
95 		return ret < 0 ? (int)ret : -1;
96 	return 0;
97 }
98 
99 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
100 {
101 	/* struct perf_event_header::size is u16 */
102 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
103 	size_t new_size = ff->size;
104 	void *addr;
105 
106 	if (size + ff->offset > max_size)
107 		return -E2BIG;
108 
109 	while (size > (new_size - ff->offset))
110 		new_size <<= 1;
111 	new_size = min(max_size, new_size);
112 
113 	if (ff->size < new_size) {
114 		addr = realloc(ff->buf, new_size);
115 		if (!addr)
116 			return -ENOMEM;
117 		ff->buf = addr;
118 		ff->size = new_size;
119 	}
120 
121 	memcpy(ff->buf + ff->offset, buf, size);
122 	ff->offset += size;
123 
124 	return 0;
125 }
126 
127 /* Return: 0 if succeded, -ERR if failed. */
128 int do_write(struct feat_fd *ff, const void *buf, size_t size)
129 {
130 	if (!ff->buf)
131 		return __do_write_fd(ff, buf, size);
132 	return __do_write_buf(ff, buf, size);
133 }
134 
135 /* Return: 0 if succeded, -ERR if failed. */
136 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
137 {
138 	u64 *p = (u64 *) set;
139 	int i, ret;
140 
141 	ret = do_write(ff, &size, sizeof(size));
142 	if (ret < 0)
143 		return ret;
144 
145 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
146 		ret = do_write(ff, p + i, sizeof(*p));
147 		if (ret < 0)
148 			return ret;
149 	}
150 
151 	return 0;
152 }
153 
154 /* Return: 0 if succeded, -ERR if failed. */
155 int write_padded(struct feat_fd *ff, const void *bf,
156 		 size_t count, size_t count_aligned)
157 {
158 	static const char zero_buf[NAME_ALIGN];
159 	int err = do_write(ff, bf, count);
160 
161 	if (!err)
162 		err = do_write(ff, zero_buf, count_aligned - count);
163 
164 	return err;
165 }
166 
167 #define string_size(str)						\
168 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
169 
170 /* Return: 0 if succeded, -ERR if failed. */
171 static int do_write_string(struct feat_fd *ff, const char *str)
172 {
173 	u32 len, olen;
174 	int ret;
175 
176 	olen = strlen(str) + 1;
177 	len = PERF_ALIGN(olen, NAME_ALIGN);
178 
179 	/* write len, incl. \0 */
180 	ret = do_write(ff, &len, sizeof(len));
181 	if (ret < 0)
182 		return ret;
183 
184 	return write_padded(ff, str, olen, len);
185 }
186 
187 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
188 {
189 	ssize_t ret = readn(ff->fd, addr, size);
190 
191 	if (ret != size)
192 		return ret < 0 ? (int)ret : -1;
193 	return 0;
194 }
195 
196 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
197 {
198 	if (size > (ssize_t)ff->size - ff->offset)
199 		return -1;
200 
201 	memcpy(addr, ff->buf + ff->offset, size);
202 	ff->offset += size;
203 
204 	return 0;
205 
206 }
207 
208 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
209 {
210 	if (!ff->buf)
211 		return __do_read_fd(ff, addr, size);
212 	return __do_read_buf(ff, addr, size);
213 }
214 
215 static int do_read_u32(struct feat_fd *ff, u32 *addr)
216 {
217 	int ret;
218 
219 	ret = __do_read(ff, addr, sizeof(*addr));
220 	if (ret)
221 		return ret;
222 
223 	if (ff->ph->needs_swap)
224 		*addr = bswap_32(*addr);
225 	return 0;
226 }
227 
228 static int do_read_u64(struct feat_fd *ff, u64 *addr)
229 {
230 	int ret;
231 
232 	ret = __do_read(ff, addr, sizeof(*addr));
233 	if (ret)
234 		return ret;
235 
236 	if (ff->ph->needs_swap)
237 		*addr = bswap_64(*addr);
238 	return 0;
239 }
240 
241 static char *do_read_string(struct feat_fd *ff)
242 {
243 	u32 len;
244 	char *buf;
245 
246 	if (do_read_u32(ff, &len))
247 		return NULL;
248 
249 	buf = malloc(len);
250 	if (!buf)
251 		return NULL;
252 
253 	if (!__do_read(ff, buf, len)) {
254 		/*
255 		 * strings are padded by zeroes
256 		 * thus the actual strlen of buf
257 		 * may be less than len
258 		 */
259 		return buf;
260 	}
261 
262 	free(buf);
263 	return NULL;
264 }
265 
266 /* Return: 0 if succeded, -ERR if failed. */
267 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
268 {
269 	unsigned long *set;
270 	u64 size, *p;
271 	int i, ret;
272 
273 	ret = do_read_u64(ff, &size);
274 	if (ret)
275 		return ret;
276 
277 	set = bitmap_alloc(size);
278 	if (!set)
279 		return -ENOMEM;
280 
281 	p = (u64 *) set;
282 
283 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
284 		ret = do_read_u64(ff, p + i);
285 		if (ret < 0) {
286 			free(set);
287 			return ret;
288 		}
289 	}
290 
291 	*pset  = set;
292 	*psize = size;
293 	return 0;
294 }
295 
296 static int write_tracing_data(struct feat_fd *ff,
297 			      struct evlist *evlist)
298 {
299 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
300 		return -1;
301 
302 	return read_tracing_data(ff->fd, &evlist->core.entries);
303 }
304 
305 static int write_build_id(struct feat_fd *ff,
306 			  struct evlist *evlist __maybe_unused)
307 {
308 	struct perf_session *session;
309 	int err;
310 
311 	session = container_of(ff->ph, struct perf_session, header);
312 
313 	if (!perf_session__read_build_ids(session, true))
314 		return -1;
315 
316 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
317 		return -1;
318 
319 	err = perf_session__write_buildid_table(session, ff);
320 	if (err < 0) {
321 		pr_debug("failed to write buildid table\n");
322 		return err;
323 	}
324 	perf_session__cache_build_ids(session);
325 
326 	return 0;
327 }
328 
329 static int write_hostname(struct feat_fd *ff,
330 			  struct evlist *evlist __maybe_unused)
331 {
332 	struct utsname uts;
333 	int ret;
334 
335 	ret = uname(&uts);
336 	if (ret < 0)
337 		return -1;
338 
339 	return do_write_string(ff, uts.nodename);
340 }
341 
342 static int write_osrelease(struct feat_fd *ff,
343 			   struct evlist *evlist __maybe_unused)
344 {
345 	struct utsname uts;
346 	int ret;
347 
348 	ret = uname(&uts);
349 	if (ret < 0)
350 		return -1;
351 
352 	return do_write_string(ff, uts.release);
353 }
354 
355 static int write_arch(struct feat_fd *ff,
356 		      struct evlist *evlist __maybe_unused)
357 {
358 	struct utsname uts;
359 	int ret;
360 
361 	ret = uname(&uts);
362 	if (ret < 0)
363 		return -1;
364 
365 	return do_write_string(ff, uts.machine);
366 }
367 
368 static int write_version(struct feat_fd *ff,
369 			 struct evlist *evlist __maybe_unused)
370 {
371 	return do_write_string(ff, perf_version_string);
372 }
373 
374 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
375 {
376 	FILE *file;
377 	char *buf = NULL;
378 	char *s, *p;
379 	const char *search = cpuinfo_proc;
380 	size_t len = 0;
381 	int ret = -1;
382 
383 	if (!search)
384 		return -1;
385 
386 	file = fopen("/proc/cpuinfo", "r");
387 	if (!file)
388 		return -1;
389 
390 	while (getline(&buf, &len, file) > 0) {
391 		ret = strncmp(buf, search, strlen(search));
392 		if (!ret)
393 			break;
394 	}
395 
396 	if (ret) {
397 		ret = -1;
398 		goto done;
399 	}
400 
401 	s = buf;
402 
403 	p = strchr(buf, ':');
404 	if (p && *(p+1) == ' ' && *(p+2))
405 		s = p + 2;
406 	p = strchr(s, '\n');
407 	if (p)
408 		*p = '\0';
409 
410 	/* squash extra space characters (branding string) */
411 	p = s;
412 	while (*p) {
413 		if (isspace(*p)) {
414 			char *r = p + 1;
415 			char *q = skip_spaces(r);
416 			*p = ' ';
417 			if (q != (p+1))
418 				while ((*r++ = *q++));
419 		}
420 		p++;
421 	}
422 	ret = do_write_string(ff, s);
423 done:
424 	free(buf);
425 	fclose(file);
426 	return ret;
427 }
428 
429 static int write_cpudesc(struct feat_fd *ff,
430 		       struct evlist *evlist __maybe_unused)
431 {
432 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
433 #define CPUINFO_PROC	{ "cpu", }
434 #elif defined(__s390__)
435 #define CPUINFO_PROC	{ "vendor_id", }
436 #elif defined(__sh__)
437 #define CPUINFO_PROC	{ "cpu type", }
438 #elif defined(__alpha__) || defined(__mips__)
439 #define CPUINFO_PROC	{ "cpu model", }
440 #elif defined(__arm__)
441 #define CPUINFO_PROC	{ "model name", "Processor", }
442 #elif defined(__arc__)
443 #define CPUINFO_PROC	{ "Processor", }
444 #elif defined(__xtensa__)
445 #define CPUINFO_PROC	{ "core ID", }
446 #else
447 #define CPUINFO_PROC	{ "model name", }
448 #endif
449 	const char *cpuinfo_procs[] = CPUINFO_PROC;
450 #undef CPUINFO_PROC
451 	unsigned int i;
452 
453 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
454 		int ret;
455 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456 		if (ret >= 0)
457 			return ret;
458 	}
459 	return -1;
460 }
461 
462 
463 static int write_nrcpus(struct feat_fd *ff,
464 			struct evlist *evlist __maybe_unused)
465 {
466 	long nr;
467 	u32 nrc, nra;
468 	int ret;
469 
470 	nrc = cpu__max_present_cpu();
471 
472 	nr = sysconf(_SC_NPROCESSORS_ONLN);
473 	if (nr < 0)
474 		return -1;
475 
476 	nra = (u32)(nr & UINT_MAX);
477 
478 	ret = do_write(ff, &nrc, sizeof(nrc));
479 	if (ret < 0)
480 		return ret;
481 
482 	return do_write(ff, &nra, sizeof(nra));
483 }
484 
485 static int write_event_desc(struct feat_fd *ff,
486 			    struct evlist *evlist)
487 {
488 	struct evsel *evsel;
489 	u32 nre, nri, sz;
490 	int ret;
491 
492 	nre = evlist->core.nr_entries;
493 
494 	/*
495 	 * write number of events
496 	 */
497 	ret = do_write(ff, &nre, sizeof(nre));
498 	if (ret < 0)
499 		return ret;
500 
501 	/*
502 	 * size of perf_event_attr struct
503 	 */
504 	sz = (u32)sizeof(evsel->core.attr);
505 	ret = do_write(ff, &sz, sizeof(sz));
506 	if (ret < 0)
507 		return ret;
508 
509 	evlist__for_each_entry(evlist, evsel) {
510 		ret = do_write(ff, &evsel->core.attr, sz);
511 		if (ret < 0)
512 			return ret;
513 		/*
514 		 * write number of unique id per event
515 		 * there is one id per instance of an event
516 		 *
517 		 * copy into an nri to be independent of the
518 		 * type of ids,
519 		 */
520 		nri = evsel->core.ids;
521 		ret = do_write(ff, &nri, sizeof(nri));
522 		if (ret < 0)
523 			return ret;
524 
525 		/*
526 		 * write event string as passed on cmdline
527 		 */
528 		ret = do_write_string(ff, evsel__name(evsel));
529 		if (ret < 0)
530 			return ret;
531 		/*
532 		 * write unique ids for this event
533 		 */
534 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535 		if (ret < 0)
536 			return ret;
537 	}
538 	return 0;
539 }
540 
541 static int write_cmdline(struct feat_fd *ff,
542 			 struct evlist *evlist __maybe_unused)
543 {
544 	char pbuf[MAXPATHLEN], *buf;
545 	int i, ret, n;
546 
547 	/* actual path to perf binary */
548 	buf = perf_exe(pbuf, MAXPATHLEN);
549 
550 	/* account for binary path */
551 	n = perf_env.nr_cmdline + 1;
552 
553 	ret = do_write(ff, &n, sizeof(n));
554 	if (ret < 0)
555 		return ret;
556 
557 	ret = do_write_string(ff, buf);
558 	if (ret < 0)
559 		return ret;
560 
561 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563 		if (ret < 0)
564 			return ret;
565 	}
566 	return 0;
567 }
568 
569 
570 static int write_cpu_topology(struct feat_fd *ff,
571 			      struct evlist *evlist __maybe_unused)
572 {
573 	struct cpu_topology *tp;
574 	u32 i;
575 	int ret, j;
576 
577 	tp = cpu_topology__new();
578 	if (!tp)
579 		return -1;
580 
581 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582 	if (ret < 0)
583 		goto done;
584 
585 	for (i = 0; i < tp->core_sib; i++) {
586 		ret = do_write_string(ff, tp->core_siblings[i]);
587 		if (ret < 0)
588 			goto done;
589 	}
590 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591 	if (ret < 0)
592 		goto done;
593 
594 	for (i = 0; i < tp->thread_sib; i++) {
595 		ret = do_write_string(ff, tp->thread_siblings[i]);
596 		if (ret < 0)
597 			break;
598 	}
599 
600 	ret = perf_env__read_cpu_topology_map(&perf_env);
601 	if (ret < 0)
602 		goto done;
603 
604 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605 		ret = do_write(ff, &perf_env.cpu[j].core_id,
606 			       sizeof(perf_env.cpu[j].core_id));
607 		if (ret < 0)
608 			return ret;
609 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
610 			       sizeof(perf_env.cpu[j].socket_id));
611 		if (ret < 0)
612 			return ret;
613 	}
614 
615 	if (!tp->die_sib)
616 		goto done;
617 
618 	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
619 	if (ret < 0)
620 		goto done;
621 
622 	for (i = 0; i < tp->die_sib; i++) {
623 		ret = do_write_string(ff, tp->die_siblings[i]);
624 		if (ret < 0)
625 			goto done;
626 	}
627 
628 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
629 		ret = do_write(ff, &perf_env.cpu[j].die_id,
630 			       sizeof(perf_env.cpu[j].die_id));
631 		if (ret < 0)
632 			return ret;
633 	}
634 
635 done:
636 	cpu_topology__delete(tp);
637 	return ret;
638 }
639 
640 
641 
642 static int write_total_mem(struct feat_fd *ff,
643 			   struct evlist *evlist __maybe_unused)
644 {
645 	char *buf = NULL;
646 	FILE *fp;
647 	size_t len = 0;
648 	int ret = -1, n;
649 	uint64_t mem;
650 
651 	fp = fopen("/proc/meminfo", "r");
652 	if (!fp)
653 		return -1;
654 
655 	while (getline(&buf, &len, fp) > 0) {
656 		ret = strncmp(buf, "MemTotal:", 9);
657 		if (!ret)
658 			break;
659 	}
660 	if (!ret) {
661 		n = sscanf(buf, "%*s %"PRIu64, &mem);
662 		if (n == 1)
663 			ret = do_write(ff, &mem, sizeof(mem));
664 	} else
665 		ret = -1;
666 	free(buf);
667 	fclose(fp);
668 	return ret;
669 }
670 
671 static int write_numa_topology(struct feat_fd *ff,
672 			       struct evlist *evlist __maybe_unused)
673 {
674 	struct numa_topology *tp;
675 	int ret = -1;
676 	u32 i;
677 
678 	tp = numa_topology__new();
679 	if (!tp)
680 		return -ENOMEM;
681 
682 	ret = do_write(ff, &tp->nr, sizeof(u32));
683 	if (ret < 0)
684 		goto err;
685 
686 	for (i = 0; i < tp->nr; i++) {
687 		struct numa_topology_node *n = &tp->nodes[i];
688 
689 		ret = do_write(ff, &n->node, sizeof(u32));
690 		if (ret < 0)
691 			goto err;
692 
693 		ret = do_write(ff, &n->mem_total, sizeof(u64));
694 		if (ret)
695 			goto err;
696 
697 		ret = do_write(ff, &n->mem_free, sizeof(u64));
698 		if (ret)
699 			goto err;
700 
701 		ret = do_write_string(ff, n->cpus);
702 		if (ret < 0)
703 			goto err;
704 	}
705 
706 	ret = 0;
707 
708 err:
709 	numa_topology__delete(tp);
710 	return ret;
711 }
712 
713 /*
714  * File format:
715  *
716  * struct pmu_mappings {
717  *	u32	pmu_num;
718  *	struct pmu_map {
719  *		u32	type;
720  *		char	name[];
721  *	}[pmu_num];
722  * };
723  */
724 
725 static int write_pmu_mappings(struct feat_fd *ff,
726 			      struct evlist *evlist __maybe_unused)
727 {
728 	struct perf_pmu *pmu = NULL;
729 	u32 pmu_num = 0;
730 	int ret;
731 
732 	/*
733 	 * Do a first pass to count number of pmu to avoid lseek so this
734 	 * works in pipe mode as well.
735 	 */
736 	while ((pmu = perf_pmu__scan(pmu))) {
737 		if (!pmu->name)
738 			continue;
739 		pmu_num++;
740 	}
741 
742 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743 	if (ret < 0)
744 		return ret;
745 
746 	while ((pmu = perf_pmu__scan(pmu))) {
747 		if (!pmu->name)
748 			continue;
749 
750 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751 		if (ret < 0)
752 			return ret;
753 
754 		ret = do_write_string(ff, pmu->name);
755 		if (ret < 0)
756 			return ret;
757 	}
758 
759 	return 0;
760 }
761 
762 /*
763  * File format:
764  *
765  * struct group_descs {
766  *	u32	nr_groups;
767  *	struct group_desc {
768  *		char	name[];
769  *		u32	leader_idx;
770  *		u32	nr_members;
771  *	}[nr_groups];
772  * };
773  */
774 static int write_group_desc(struct feat_fd *ff,
775 			    struct evlist *evlist)
776 {
777 	u32 nr_groups = evlist->nr_groups;
778 	struct evsel *evsel;
779 	int ret;
780 
781 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782 	if (ret < 0)
783 		return ret;
784 
785 	evlist__for_each_entry(evlist, evsel) {
786 		if (perf_evsel__is_group_leader(evsel) &&
787 		    evsel->core.nr_members > 1) {
788 			const char *name = evsel->group_name ?: "{anon_group}";
789 			u32 leader_idx = evsel->idx;
790 			u32 nr_members = evsel->core.nr_members;
791 
792 			ret = do_write_string(ff, name);
793 			if (ret < 0)
794 				return ret;
795 
796 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 			if (ret < 0)
798 				return ret;
799 
800 			ret = do_write(ff, &nr_members, sizeof(nr_members));
801 			if (ret < 0)
802 				return ret;
803 		}
804 	}
805 	return 0;
806 }
807 
808 /*
809  * Return the CPU id as a raw string.
810  *
811  * Each architecture should provide a more precise id string that
812  * can be use to match the architecture's "mapfile".
813  */
814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815 {
816 	return NULL;
817 }
818 
819 /* Return zero when the cpuid from the mapfile.csv matches the
820  * cpuid string generated on this platform.
821  * Otherwise return non-zero.
822  */
823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824 {
825 	regex_t re;
826 	regmatch_t pmatch[1];
827 	int match;
828 
829 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830 		/* Warn unable to generate match particular string. */
831 		pr_info("Invalid regular expression %s\n", mapcpuid);
832 		return 1;
833 	}
834 
835 	match = !regexec(&re, cpuid, 1, pmatch, 0);
836 	regfree(&re);
837 	if (match) {
838 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839 
840 		/* Verify the entire string matched. */
841 		if (match_len == strlen(cpuid))
842 			return 0;
843 	}
844 	return 1;
845 }
846 
847 /*
848  * default get_cpuid(): nothing gets recorded
849  * actual implementation must be in arch/$(SRCARCH)/util/header.c
850  */
851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852 {
853 	return ENOSYS; /* Not implemented */
854 }
855 
856 static int write_cpuid(struct feat_fd *ff,
857 		       struct evlist *evlist __maybe_unused)
858 {
859 	char buffer[64];
860 	int ret;
861 
862 	ret = get_cpuid(buffer, sizeof(buffer));
863 	if (ret)
864 		return -1;
865 
866 	return do_write_string(ff, buffer);
867 }
868 
869 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870 			      struct evlist *evlist __maybe_unused)
871 {
872 	return 0;
873 }
874 
875 static int write_auxtrace(struct feat_fd *ff,
876 			  struct evlist *evlist __maybe_unused)
877 {
878 	struct perf_session *session;
879 	int err;
880 
881 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882 		return -1;
883 
884 	session = container_of(ff->ph, struct perf_session, header);
885 
886 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 	if (err < 0)
888 		pr_err("Failed to write auxtrace index\n");
889 	return err;
890 }
891 
892 static int write_clockid(struct feat_fd *ff,
893 			 struct evlist *evlist __maybe_unused)
894 {
895 	return do_write(ff, &ff->ph->env.clockid_res_ns,
896 			sizeof(ff->ph->env.clockid_res_ns));
897 }
898 
899 static int write_dir_format(struct feat_fd *ff,
900 			    struct evlist *evlist __maybe_unused)
901 {
902 	struct perf_session *session;
903 	struct perf_data *data;
904 
905 	session = container_of(ff->ph, struct perf_session, header);
906 	data = session->data;
907 
908 	if (WARN_ON(!perf_data__is_dir(data)))
909 		return -1;
910 
911 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
912 }
913 
914 #ifdef HAVE_LIBBPF_SUPPORT
915 static int write_bpf_prog_info(struct feat_fd *ff,
916 			       struct evlist *evlist __maybe_unused)
917 {
918 	struct perf_env *env = &ff->ph->env;
919 	struct rb_root *root;
920 	struct rb_node *next;
921 	int ret;
922 
923 	down_read(&env->bpf_progs.lock);
924 
925 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
926 		       sizeof(env->bpf_progs.infos_cnt));
927 	if (ret < 0)
928 		goto out;
929 
930 	root = &env->bpf_progs.infos;
931 	next = rb_first(root);
932 	while (next) {
933 		struct bpf_prog_info_node *node;
934 		size_t len;
935 
936 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
937 		next = rb_next(&node->rb_node);
938 		len = sizeof(struct bpf_prog_info_linear) +
939 			node->info_linear->data_len;
940 
941 		/* before writing to file, translate address to offset */
942 		bpf_program__bpil_addr_to_offs(node->info_linear);
943 		ret = do_write(ff, node->info_linear, len);
944 		/*
945 		 * translate back to address even when do_write() fails,
946 		 * so that this function never changes the data.
947 		 */
948 		bpf_program__bpil_offs_to_addr(node->info_linear);
949 		if (ret < 0)
950 			goto out;
951 	}
952 out:
953 	up_read(&env->bpf_progs.lock);
954 	return ret;
955 }
956 #else // HAVE_LIBBPF_SUPPORT
957 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
958 			       struct evlist *evlist __maybe_unused)
959 {
960 	return 0;
961 }
962 #endif // HAVE_LIBBPF_SUPPORT
963 
964 static int write_bpf_btf(struct feat_fd *ff,
965 			 struct evlist *evlist __maybe_unused)
966 {
967 	struct perf_env *env = &ff->ph->env;
968 	struct rb_root *root;
969 	struct rb_node *next;
970 	int ret;
971 
972 	down_read(&env->bpf_progs.lock);
973 
974 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
975 		       sizeof(env->bpf_progs.btfs_cnt));
976 
977 	if (ret < 0)
978 		goto out;
979 
980 	root = &env->bpf_progs.btfs;
981 	next = rb_first(root);
982 	while (next) {
983 		struct btf_node *node;
984 
985 		node = rb_entry(next, struct btf_node, rb_node);
986 		next = rb_next(&node->rb_node);
987 		ret = do_write(ff, &node->id,
988 			       sizeof(u32) * 2 + node->data_size);
989 		if (ret < 0)
990 			goto out;
991 	}
992 out:
993 	up_read(&env->bpf_progs.lock);
994 	return ret;
995 }
996 
997 static int cpu_cache_level__sort(const void *a, const void *b)
998 {
999 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1001 
1002 	return cache_a->level - cache_b->level;
1003 }
1004 
1005 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1006 {
1007 	if (a->level != b->level)
1008 		return false;
1009 
1010 	if (a->line_size != b->line_size)
1011 		return false;
1012 
1013 	if (a->sets != b->sets)
1014 		return false;
1015 
1016 	if (a->ways != b->ways)
1017 		return false;
1018 
1019 	if (strcmp(a->type, b->type))
1020 		return false;
1021 
1022 	if (strcmp(a->size, b->size))
1023 		return false;
1024 
1025 	if (strcmp(a->map, b->map))
1026 		return false;
1027 
1028 	return true;
1029 }
1030 
1031 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1032 {
1033 	char path[PATH_MAX], file[PATH_MAX];
1034 	struct stat st;
1035 	size_t len;
1036 
1037 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1039 
1040 	if (stat(file, &st))
1041 		return 1;
1042 
1043 	scnprintf(file, PATH_MAX, "%s/level", path);
1044 	if (sysfs__read_int(file, (int *) &cache->level))
1045 		return -1;
1046 
1047 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048 	if (sysfs__read_int(file, (int *) &cache->line_size))
1049 		return -1;
1050 
1051 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052 	if (sysfs__read_int(file, (int *) &cache->sets))
1053 		return -1;
1054 
1055 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056 	if (sysfs__read_int(file, (int *) &cache->ways))
1057 		return -1;
1058 
1059 	scnprintf(file, PATH_MAX, "%s/type", path);
1060 	if (sysfs__read_str(file, &cache->type, &len))
1061 		return -1;
1062 
1063 	cache->type[len] = 0;
1064 	cache->type = strim(cache->type);
1065 
1066 	scnprintf(file, PATH_MAX, "%s/size", path);
1067 	if (sysfs__read_str(file, &cache->size, &len)) {
1068 		zfree(&cache->type);
1069 		return -1;
1070 	}
1071 
1072 	cache->size[len] = 0;
1073 	cache->size = strim(cache->size);
1074 
1075 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076 	if (sysfs__read_str(file, &cache->map, &len)) {
1077 		zfree(&cache->size);
1078 		zfree(&cache->type);
1079 		return -1;
1080 	}
1081 
1082 	cache->map[len] = 0;
1083 	cache->map = strim(cache->map);
1084 	return 0;
1085 }
1086 
1087 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1088 {
1089 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1090 }
1091 
1092 #define MAX_CACHE_LVL 4
1093 
1094 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1095 {
1096 	u32 i, cnt = 0;
1097 	u32 nr, cpu;
1098 	u16 level;
1099 
1100 	nr = cpu__max_cpu();
1101 
1102 	for (cpu = 0; cpu < nr; cpu++) {
1103 		for (level = 0; level < MAX_CACHE_LVL; level++) {
1104 			struct cpu_cache_level c;
1105 			int err;
1106 
1107 			err = cpu_cache_level__read(&c, cpu, level);
1108 			if (err < 0)
1109 				return err;
1110 
1111 			if (err == 1)
1112 				break;
1113 
1114 			for (i = 0; i < cnt; i++) {
1115 				if (cpu_cache_level__cmp(&c, &caches[i]))
1116 					break;
1117 			}
1118 
1119 			if (i == cnt)
1120 				caches[cnt++] = c;
1121 			else
1122 				cpu_cache_level__free(&c);
1123 		}
1124 	}
1125 	*cntp = cnt;
1126 	return 0;
1127 }
1128 
1129 static int write_cache(struct feat_fd *ff,
1130 		       struct evlist *evlist __maybe_unused)
1131 {
1132 	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1133 	struct cpu_cache_level caches[max_caches];
1134 	u32 cnt = 0, i, version = 1;
1135 	int ret;
1136 
1137 	ret = build_caches(caches, &cnt);
1138 	if (ret)
1139 		goto out;
1140 
1141 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1142 
1143 	ret = do_write(ff, &version, sizeof(u32));
1144 	if (ret < 0)
1145 		goto out;
1146 
1147 	ret = do_write(ff, &cnt, sizeof(u32));
1148 	if (ret < 0)
1149 		goto out;
1150 
1151 	for (i = 0; i < cnt; i++) {
1152 		struct cpu_cache_level *c = &caches[i];
1153 
1154 		#define _W(v)					\
1155 			ret = do_write(ff, &c->v, sizeof(u32));	\
1156 			if (ret < 0)				\
1157 				goto out;
1158 
1159 		_W(level)
1160 		_W(line_size)
1161 		_W(sets)
1162 		_W(ways)
1163 		#undef _W
1164 
1165 		#define _W(v)						\
1166 			ret = do_write_string(ff, (const char *) c->v);	\
1167 			if (ret < 0)					\
1168 				goto out;
1169 
1170 		_W(type)
1171 		_W(size)
1172 		_W(map)
1173 		#undef _W
1174 	}
1175 
1176 out:
1177 	for (i = 0; i < cnt; i++)
1178 		cpu_cache_level__free(&caches[i]);
1179 	return ret;
1180 }
1181 
1182 static int write_stat(struct feat_fd *ff __maybe_unused,
1183 		      struct evlist *evlist __maybe_unused)
1184 {
1185 	return 0;
1186 }
1187 
1188 static int write_sample_time(struct feat_fd *ff,
1189 			     struct evlist *evlist)
1190 {
1191 	int ret;
1192 
1193 	ret = do_write(ff, &evlist->first_sample_time,
1194 		       sizeof(evlist->first_sample_time));
1195 	if (ret < 0)
1196 		return ret;
1197 
1198 	return do_write(ff, &evlist->last_sample_time,
1199 			sizeof(evlist->last_sample_time));
1200 }
1201 
1202 
1203 static int memory_node__read(struct memory_node *n, unsigned long idx)
1204 {
1205 	unsigned int phys, size = 0;
1206 	char path[PATH_MAX];
1207 	struct dirent *ent;
1208 	DIR *dir;
1209 
1210 #define for_each_memory(mem, dir)					\
1211 	while ((ent = readdir(dir)))					\
1212 		if (strcmp(ent->d_name, ".") &&				\
1213 		    strcmp(ent->d_name, "..") &&			\
1214 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1215 
1216 	scnprintf(path, PATH_MAX,
1217 		  "%s/devices/system/node/node%lu",
1218 		  sysfs__mountpoint(), idx);
1219 
1220 	dir = opendir(path);
1221 	if (!dir) {
1222 		pr_warning("failed: cant' open memory sysfs data\n");
1223 		return -1;
1224 	}
1225 
1226 	for_each_memory(phys, dir) {
1227 		size = max(phys, size);
1228 	}
1229 
1230 	size++;
1231 
1232 	n->set = bitmap_alloc(size);
1233 	if (!n->set) {
1234 		closedir(dir);
1235 		return -ENOMEM;
1236 	}
1237 
1238 	n->node = idx;
1239 	n->size = size;
1240 
1241 	rewinddir(dir);
1242 
1243 	for_each_memory(phys, dir) {
1244 		set_bit(phys, n->set);
1245 	}
1246 
1247 	closedir(dir);
1248 	return 0;
1249 }
1250 
1251 static int memory_node__sort(const void *a, const void *b)
1252 {
1253 	const struct memory_node *na = a;
1254 	const struct memory_node *nb = b;
1255 
1256 	return na->node - nb->node;
1257 }
1258 
1259 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1260 {
1261 	char path[PATH_MAX];
1262 	struct dirent *ent;
1263 	DIR *dir;
1264 	u64 cnt = 0;
1265 	int ret = 0;
1266 
1267 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1268 		  sysfs__mountpoint());
1269 
1270 	dir = opendir(path);
1271 	if (!dir) {
1272 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1273 			  __func__, path);
1274 		return -1;
1275 	}
1276 
1277 	while (!ret && (ent = readdir(dir))) {
1278 		unsigned int idx;
1279 		int r;
1280 
1281 		if (!strcmp(ent->d_name, ".") ||
1282 		    !strcmp(ent->d_name, ".."))
1283 			continue;
1284 
1285 		r = sscanf(ent->d_name, "node%u", &idx);
1286 		if (r != 1)
1287 			continue;
1288 
1289 		if (WARN_ONCE(cnt >= size,
1290 			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1291 			closedir(dir);
1292 			return -1;
1293 		}
1294 
1295 		ret = memory_node__read(&nodes[cnt++], idx);
1296 	}
1297 
1298 	*cntp = cnt;
1299 	closedir(dir);
1300 
1301 	if (!ret)
1302 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1303 
1304 	return ret;
1305 }
1306 
1307 #define MAX_MEMORY_NODES 2000
1308 
1309 /*
1310  * The MEM_TOPOLOGY holds physical memory map for every
1311  * node in system. The format of data is as follows:
1312  *
1313  *  0 - version          | for future changes
1314  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1315  * 16 - count            | number of nodes
1316  *
1317  * For each node we store map of physical indexes for
1318  * each node:
1319  *
1320  * 32 - node id          | node index
1321  * 40 - size             | size of bitmap
1322  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1323  */
1324 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1325 			      struct evlist *evlist __maybe_unused)
1326 {
1327 	static struct memory_node nodes[MAX_MEMORY_NODES];
1328 	u64 bsize, version = 1, i, nr;
1329 	int ret;
1330 
1331 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1332 			      (unsigned long long *) &bsize);
1333 	if (ret)
1334 		return ret;
1335 
1336 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1337 	if (ret)
1338 		return ret;
1339 
1340 	ret = do_write(ff, &version, sizeof(version));
1341 	if (ret < 0)
1342 		goto out;
1343 
1344 	ret = do_write(ff, &bsize, sizeof(bsize));
1345 	if (ret < 0)
1346 		goto out;
1347 
1348 	ret = do_write(ff, &nr, sizeof(nr));
1349 	if (ret < 0)
1350 		goto out;
1351 
1352 	for (i = 0; i < nr; i++) {
1353 		struct memory_node *n = &nodes[i];
1354 
1355 		#define _W(v)						\
1356 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1357 			if (ret < 0)					\
1358 				goto out;
1359 
1360 		_W(node)
1361 		_W(size)
1362 
1363 		#undef _W
1364 
1365 		ret = do_write_bitmap(ff, n->set, n->size);
1366 		if (ret < 0)
1367 			goto out;
1368 	}
1369 
1370 out:
1371 	return ret;
1372 }
1373 
1374 static int write_compressed(struct feat_fd *ff __maybe_unused,
1375 			    struct evlist *evlist __maybe_unused)
1376 {
1377 	int ret;
1378 
1379 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1380 	if (ret)
1381 		return ret;
1382 
1383 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1384 	if (ret)
1385 		return ret;
1386 
1387 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1388 	if (ret)
1389 		return ret;
1390 
1391 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1392 	if (ret)
1393 		return ret;
1394 
1395 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1396 }
1397 
1398 static int write_cpu_pmu_caps(struct feat_fd *ff,
1399 			      struct evlist *evlist __maybe_unused)
1400 {
1401 	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1402 	struct perf_pmu_caps *caps = NULL;
1403 	int nr_caps;
1404 	int ret;
1405 
1406 	if (!cpu_pmu)
1407 		return -ENOENT;
1408 
1409 	nr_caps = perf_pmu__caps_parse(cpu_pmu);
1410 	if (nr_caps < 0)
1411 		return nr_caps;
1412 
1413 	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1414 	if (ret < 0)
1415 		return ret;
1416 
1417 	list_for_each_entry(caps, &cpu_pmu->caps, list) {
1418 		ret = do_write_string(ff, caps->name);
1419 		if (ret < 0)
1420 			return ret;
1421 
1422 		ret = do_write_string(ff, caps->value);
1423 		if (ret < 0)
1424 			return ret;
1425 	}
1426 
1427 	return ret;
1428 }
1429 
1430 static void print_hostname(struct feat_fd *ff, FILE *fp)
1431 {
1432 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1433 }
1434 
1435 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1436 {
1437 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1438 }
1439 
1440 static void print_arch(struct feat_fd *ff, FILE *fp)
1441 {
1442 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1443 }
1444 
1445 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1446 {
1447 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1448 }
1449 
1450 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1451 {
1452 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1453 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1454 }
1455 
1456 static void print_version(struct feat_fd *ff, FILE *fp)
1457 {
1458 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1459 }
1460 
1461 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1462 {
1463 	int nr, i;
1464 
1465 	nr = ff->ph->env.nr_cmdline;
1466 
1467 	fprintf(fp, "# cmdline : ");
1468 
1469 	for (i = 0; i < nr; i++) {
1470 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1471 		if (!argv_i) {
1472 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1473 		} else {
1474 			char *mem = argv_i;
1475 			do {
1476 				char *quote = strchr(argv_i, '\'');
1477 				if (!quote)
1478 					break;
1479 				*quote++ = '\0';
1480 				fprintf(fp, "%s\\\'", argv_i);
1481 				argv_i = quote;
1482 			} while (1);
1483 			fprintf(fp, "%s ", argv_i);
1484 			free(mem);
1485 		}
1486 	}
1487 	fputc('\n', fp);
1488 }
1489 
1490 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1491 {
1492 	struct perf_header *ph = ff->ph;
1493 	int cpu_nr = ph->env.nr_cpus_avail;
1494 	int nr, i;
1495 	char *str;
1496 
1497 	nr = ph->env.nr_sibling_cores;
1498 	str = ph->env.sibling_cores;
1499 
1500 	for (i = 0; i < nr; i++) {
1501 		fprintf(fp, "# sibling sockets : %s\n", str);
1502 		str += strlen(str) + 1;
1503 	}
1504 
1505 	if (ph->env.nr_sibling_dies) {
1506 		nr = ph->env.nr_sibling_dies;
1507 		str = ph->env.sibling_dies;
1508 
1509 		for (i = 0; i < nr; i++) {
1510 			fprintf(fp, "# sibling dies    : %s\n", str);
1511 			str += strlen(str) + 1;
1512 		}
1513 	}
1514 
1515 	nr = ph->env.nr_sibling_threads;
1516 	str = ph->env.sibling_threads;
1517 
1518 	for (i = 0; i < nr; i++) {
1519 		fprintf(fp, "# sibling threads : %s\n", str);
1520 		str += strlen(str) + 1;
1521 	}
1522 
1523 	if (ph->env.nr_sibling_dies) {
1524 		if (ph->env.cpu != NULL) {
1525 			for (i = 0; i < cpu_nr; i++)
1526 				fprintf(fp, "# CPU %d: Core ID %d, "
1527 					    "Die ID %d, Socket ID %d\n",
1528 					    i, ph->env.cpu[i].core_id,
1529 					    ph->env.cpu[i].die_id,
1530 					    ph->env.cpu[i].socket_id);
1531 		} else
1532 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1533 				    "information is not available\n");
1534 	} else {
1535 		if (ph->env.cpu != NULL) {
1536 			for (i = 0; i < cpu_nr; i++)
1537 				fprintf(fp, "# CPU %d: Core ID %d, "
1538 					    "Socket ID %d\n",
1539 					    i, ph->env.cpu[i].core_id,
1540 					    ph->env.cpu[i].socket_id);
1541 		} else
1542 			fprintf(fp, "# Core ID and Socket ID "
1543 				    "information is not available\n");
1544 	}
1545 }
1546 
1547 static void print_clockid(struct feat_fd *ff, FILE *fp)
1548 {
1549 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1550 		ff->ph->env.clockid_res_ns * 1000);
1551 }
1552 
1553 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1554 {
1555 	struct perf_session *session;
1556 	struct perf_data *data;
1557 
1558 	session = container_of(ff->ph, struct perf_session, header);
1559 	data = session->data;
1560 
1561 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1562 }
1563 
1564 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1565 {
1566 	struct perf_env *env = &ff->ph->env;
1567 	struct rb_root *root;
1568 	struct rb_node *next;
1569 
1570 	down_read(&env->bpf_progs.lock);
1571 
1572 	root = &env->bpf_progs.infos;
1573 	next = rb_first(root);
1574 
1575 	while (next) {
1576 		struct bpf_prog_info_node *node;
1577 
1578 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1579 		next = rb_next(&node->rb_node);
1580 
1581 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1582 					       env, fp);
1583 	}
1584 
1585 	up_read(&env->bpf_progs.lock);
1586 }
1587 
1588 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1589 {
1590 	struct perf_env *env = &ff->ph->env;
1591 	struct rb_root *root;
1592 	struct rb_node *next;
1593 
1594 	down_read(&env->bpf_progs.lock);
1595 
1596 	root = &env->bpf_progs.btfs;
1597 	next = rb_first(root);
1598 
1599 	while (next) {
1600 		struct btf_node *node;
1601 
1602 		node = rb_entry(next, struct btf_node, rb_node);
1603 		next = rb_next(&node->rb_node);
1604 		fprintf(fp, "# btf info of id %u\n", node->id);
1605 	}
1606 
1607 	up_read(&env->bpf_progs.lock);
1608 }
1609 
1610 static void free_event_desc(struct evsel *events)
1611 {
1612 	struct evsel *evsel;
1613 
1614 	if (!events)
1615 		return;
1616 
1617 	for (evsel = events; evsel->core.attr.size; evsel++) {
1618 		zfree(&evsel->name);
1619 		zfree(&evsel->core.id);
1620 	}
1621 
1622 	free(events);
1623 }
1624 
1625 static bool perf_attr_check(struct perf_event_attr *attr)
1626 {
1627 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1628 		pr_warning("Reserved bits are set unexpectedly. "
1629 			   "Please update perf tool.\n");
1630 		return false;
1631 	}
1632 
1633 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1634 		pr_warning("Unknown sample type (0x%llx) is detected. "
1635 			   "Please update perf tool.\n",
1636 			   attr->sample_type);
1637 		return false;
1638 	}
1639 
1640 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1641 		pr_warning("Unknown read format (0x%llx) is detected. "
1642 			   "Please update perf tool.\n",
1643 			   attr->read_format);
1644 		return false;
1645 	}
1646 
1647 	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1648 	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1649 		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1650 			   "Please update perf tool.\n",
1651 			   attr->branch_sample_type);
1652 
1653 		return false;
1654 	}
1655 
1656 	return true;
1657 }
1658 
1659 static struct evsel *read_event_desc(struct feat_fd *ff)
1660 {
1661 	struct evsel *evsel, *events = NULL;
1662 	u64 *id;
1663 	void *buf = NULL;
1664 	u32 nre, sz, nr, i, j;
1665 	size_t msz;
1666 
1667 	/* number of events */
1668 	if (do_read_u32(ff, &nre))
1669 		goto error;
1670 
1671 	if (do_read_u32(ff, &sz))
1672 		goto error;
1673 
1674 	/* buffer to hold on file attr struct */
1675 	buf = malloc(sz);
1676 	if (!buf)
1677 		goto error;
1678 
1679 	/* the last event terminates with evsel->core.attr.size == 0: */
1680 	events = calloc(nre + 1, sizeof(*events));
1681 	if (!events)
1682 		goto error;
1683 
1684 	msz = sizeof(evsel->core.attr);
1685 	if (sz < msz)
1686 		msz = sz;
1687 
1688 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1689 		evsel->idx = i;
1690 
1691 		/*
1692 		 * must read entire on-file attr struct to
1693 		 * sync up with layout.
1694 		 */
1695 		if (__do_read(ff, buf, sz))
1696 			goto error;
1697 
1698 		if (ff->ph->needs_swap)
1699 			perf_event__attr_swap(buf);
1700 
1701 		memcpy(&evsel->core.attr, buf, msz);
1702 
1703 		if (!perf_attr_check(&evsel->core.attr))
1704 			goto error;
1705 
1706 		if (do_read_u32(ff, &nr))
1707 			goto error;
1708 
1709 		if (ff->ph->needs_swap)
1710 			evsel->needs_swap = true;
1711 
1712 		evsel->name = do_read_string(ff);
1713 		if (!evsel->name)
1714 			goto error;
1715 
1716 		if (!nr)
1717 			continue;
1718 
1719 		id = calloc(nr, sizeof(*id));
1720 		if (!id)
1721 			goto error;
1722 		evsel->core.ids = nr;
1723 		evsel->core.id = id;
1724 
1725 		for (j = 0 ; j < nr; j++) {
1726 			if (do_read_u64(ff, id))
1727 				goto error;
1728 			id++;
1729 		}
1730 	}
1731 out:
1732 	free(buf);
1733 	return events;
1734 error:
1735 	free_event_desc(events);
1736 	events = NULL;
1737 	goto out;
1738 }
1739 
1740 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1741 				void *priv __maybe_unused)
1742 {
1743 	return fprintf(fp, ", %s = %s", name, val);
1744 }
1745 
1746 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1747 {
1748 	struct evsel *evsel, *events;
1749 	u32 j;
1750 	u64 *id;
1751 
1752 	if (ff->events)
1753 		events = ff->events;
1754 	else
1755 		events = read_event_desc(ff);
1756 
1757 	if (!events) {
1758 		fprintf(fp, "# event desc: not available or unable to read\n");
1759 		return;
1760 	}
1761 
1762 	for (evsel = events; evsel->core.attr.size; evsel++) {
1763 		fprintf(fp, "# event : name = %s, ", evsel->name);
1764 
1765 		if (evsel->core.ids) {
1766 			fprintf(fp, ", id = {");
1767 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1768 				if (j)
1769 					fputc(',', fp);
1770 				fprintf(fp, " %"PRIu64, *id);
1771 			}
1772 			fprintf(fp, " }");
1773 		}
1774 
1775 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1776 
1777 		fputc('\n', fp);
1778 	}
1779 
1780 	free_event_desc(events);
1781 	ff->events = NULL;
1782 }
1783 
1784 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1785 {
1786 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1787 }
1788 
1789 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1790 {
1791 	int i;
1792 	struct numa_node *n;
1793 
1794 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1795 		n = &ff->ph->env.numa_nodes[i];
1796 
1797 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1798 			    " free = %"PRIu64" kB\n",
1799 			n->node, n->mem_total, n->mem_free);
1800 
1801 		fprintf(fp, "# node%u cpu list : ", n->node);
1802 		cpu_map__fprintf(n->map, fp);
1803 	}
1804 }
1805 
1806 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1807 {
1808 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1809 }
1810 
1811 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1812 {
1813 	fprintf(fp, "# contains samples with branch stack\n");
1814 }
1815 
1816 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1817 {
1818 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1819 }
1820 
1821 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1822 {
1823 	fprintf(fp, "# contains stat data\n");
1824 }
1825 
1826 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1827 {
1828 	int i;
1829 
1830 	fprintf(fp, "# CPU cache info:\n");
1831 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1832 		fprintf(fp, "#  ");
1833 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1834 	}
1835 }
1836 
1837 static void print_compressed(struct feat_fd *ff, FILE *fp)
1838 {
1839 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1840 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1841 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1842 }
1843 
1844 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
1845 {
1846 	const char *delimiter = "# cpu pmu capabilities: ";
1847 	u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
1848 	char *str;
1849 
1850 	if (!nr_caps) {
1851 		fprintf(fp, "# cpu pmu capabilities: not available\n");
1852 		return;
1853 	}
1854 
1855 	str = ff->ph->env.cpu_pmu_caps;
1856 	while (nr_caps--) {
1857 		fprintf(fp, "%s%s", delimiter, str);
1858 		delimiter = ", ";
1859 		str += strlen(str) + 1;
1860 	}
1861 
1862 	fprintf(fp, "\n");
1863 }
1864 
1865 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1866 {
1867 	const char *delimiter = "# pmu mappings: ";
1868 	char *str, *tmp;
1869 	u32 pmu_num;
1870 	u32 type;
1871 
1872 	pmu_num = ff->ph->env.nr_pmu_mappings;
1873 	if (!pmu_num) {
1874 		fprintf(fp, "# pmu mappings: not available\n");
1875 		return;
1876 	}
1877 
1878 	str = ff->ph->env.pmu_mappings;
1879 
1880 	while (pmu_num) {
1881 		type = strtoul(str, &tmp, 0);
1882 		if (*tmp != ':')
1883 			goto error;
1884 
1885 		str = tmp + 1;
1886 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1887 
1888 		delimiter = ", ";
1889 		str += strlen(str) + 1;
1890 		pmu_num--;
1891 	}
1892 
1893 	fprintf(fp, "\n");
1894 
1895 	if (!pmu_num)
1896 		return;
1897 error:
1898 	fprintf(fp, "# pmu mappings: unable to read\n");
1899 }
1900 
1901 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1902 {
1903 	struct perf_session *session;
1904 	struct evsel *evsel;
1905 	u32 nr = 0;
1906 
1907 	session = container_of(ff->ph, struct perf_session, header);
1908 
1909 	evlist__for_each_entry(session->evlist, evsel) {
1910 		if (perf_evsel__is_group_leader(evsel) &&
1911 		    evsel->core.nr_members > 1) {
1912 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1913 
1914 			nr = evsel->core.nr_members - 1;
1915 		} else if (nr) {
1916 			fprintf(fp, ",%s", evsel__name(evsel));
1917 
1918 			if (--nr == 0)
1919 				fprintf(fp, "}\n");
1920 		}
1921 	}
1922 }
1923 
1924 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1925 {
1926 	struct perf_session *session;
1927 	char time_buf[32];
1928 	double d;
1929 
1930 	session = container_of(ff->ph, struct perf_session, header);
1931 
1932 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1933 				  time_buf, sizeof(time_buf));
1934 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1935 
1936 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1937 				  time_buf, sizeof(time_buf));
1938 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1939 
1940 	d = (double)(session->evlist->last_sample_time -
1941 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1942 
1943 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1944 }
1945 
1946 static void memory_node__fprintf(struct memory_node *n,
1947 				 unsigned long long bsize, FILE *fp)
1948 {
1949 	char buf_map[100], buf_size[50];
1950 	unsigned long long size;
1951 
1952 	size = bsize * bitmap_weight(n->set, n->size);
1953 	unit_number__scnprintf(buf_size, 50, size);
1954 
1955 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1956 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1957 }
1958 
1959 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1960 {
1961 	struct memory_node *nodes;
1962 	int i, nr;
1963 
1964 	nodes = ff->ph->env.memory_nodes;
1965 	nr    = ff->ph->env.nr_memory_nodes;
1966 
1967 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1968 		nr, ff->ph->env.memory_bsize);
1969 
1970 	for (i = 0; i < nr; i++) {
1971 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1972 	}
1973 }
1974 
1975 static int __event_process_build_id(struct perf_record_header_build_id *bev,
1976 				    char *filename,
1977 				    struct perf_session *session)
1978 {
1979 	int err = -1;
1980 	struct machine *machine;
1981 	u16 cpumode;
1982 	struct dso *dso;
1983 	enum dso_kernel_type dso_type;
1984 
1985 	machine = perf_session__findnew_machine(session, bev->pid);
1986 	if (!machine)
1987 		goto out;
1988 
1989 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1990 
1991 	switch (cpumode) {
1992 	case PERF_RECORD_MISC_KERNEL:
1993 		dso_type = DSO_TYPE_KERNEL;
1994 		break;
1995 	case PERF_RECORD_MISC_GUEST_KERNEL:
1996 		dso_type = DSO_TYPE_GUEST_KERNEL;
1997 		break;
1998 	case PERF_RECORD_MISC_USER:
1999 	case PERF_RECORD_MISC_GUEST_USER:
2000 		dso_type = DSO_TYPE_USER;
2001 		break;
2002 	default:
2003 		goto out;
2004 	}
2005 
2006 	dso = machine__findnew_dso(machine, filename);
2007 	if (dso != NULL) {
2008 		char sbuild_id[SBUILD_ID_SIZE];
2009 
2010 		dso__set_build_id(dso, &bev->build_id);
2011 
2012 		if (dso_type != DSO_TYPE_USER) {
2013 			struct kmod_path m = { .name = NULL, };
2014 
2015 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2016 				dso__set_module_info(dso, &m, machine);
2017 			else
2018 				dso->kernel = dso_type;
2019 
2020 			free(m.name);
2021 		}
2022 
2023 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
2024 				  sbuild_id);
2025 		pr_debug("build id event received for %s: %s\n",
2026 			 dso->long_name, sbuild_id);
2027 		dso__put(dso);
2028 	}
2029 
2030 	err = 0;
2031 out:
2032 	return err;
2033 }
2034 
2035 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2036 						 int input, u64 offset, u64 size)
2037 {
2038 	struct perf_session *session = container_of(header, struct perf_session, header);
2039 	struct {
2040 		struct perf_event_header   header;
2041 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2042 		char			   filename[0];
2043 	} old_bev;
2044 	struct perf_record_header_build_id bev;
2045 	char filename[PATH_MAX];
2046 	u64 limit = offset + size;
2047 
2048 	while (offset < limit) {
2049 		ssize_t len;
2050 
2051 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2052 			return -1;
2053 
2054 		if (header->needs_swap)
2055 			perf_event_header__bswap(&old_bev.header);
2056 
2057 		len = old_bev.header.size - sizeof(old_bev);
2058 		if (readn(input, filename, len) != len)
2059 			return -1;
2060 
2061 		bev.header = old_bev.header;
2062 
2063 		/*
2064 		 * As the pid is the missing value, we need to fill
2065 		 * it properly. The header.misc value give us nice hint.
2066 		 */
2067 		bev.pid	= HOST_KERNEL_ID;
2068 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2069 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2070 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2071 
2072 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2073 		__event_process_build_id(&bev, filename, session);
2074 
2075 		offset += bev.header.size;
2076 	}
2077 
2078 	return 0;
2079 }
2080 
2081 static int perf_header__read_build_ids(struct perf_header *header,
2082 				       int input, u64 offset, u64 size)
2083 {
2084 	struct perf_session *session = container_of(header, struct perf_session, header);
2085 	struct perf_record_header_build_id bev;
2086 	char filename[PATH_MAX];
2087 	u64 limit = offset + size, orig_offset = offset;
2088 	int err = -1;
2089 
2090 	while (offset < limit) {
2091 		ssize_t len;
2092 
2093 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2094 			goto out;
2095 
2096 		if (header->needs_swap)
2097 			perf_event_header__bswap(&bev.header);
2098 
2099 		len = bev.header.size - sizeof(bev);
2100 		if (readn(input, filename, len) != len)
2101 			goto out;
2102 		/*
2103 		 * The a1645ce1 changeset:
2104 		 *
2105 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2106 		 *
2107 		 * Added a field to struct perf_record_header_build_id that broke the file
2108 		 * format.
2109 		 *
2110 		 * Since the kernel build-id is the first entry, process the
2111 		 * table using the old format if the well known
2112 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2113 		 * first 4 characters chopped off (where the pid_t sits).
2114 		 */
2115 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2116 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2117 				return -1;
2118 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2119 		}
2120 
2121 		__event_process_build_id(&bev, filename, session);
2122 
2123 		offset += bev.header.size;
2124 	}
2125 	err = 0;
2126 out:
2127 	return err;
2128 }
2129 
2130 /* Macro for features that simply need to read and store a string. */
2131 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2132 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2133 {\
2134 	ff->ph->env.__feat_env = do_read_string(ff); \
2135 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2136 }
2137 
2138 FEAT_PROCESS_STR_FUN(hostname, hostname);
2139 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2140 FEAT_PROCESS_STR_FUN(version, version);
2141 FEAT_PROCESS_STR_FUN(arch, arch);
2142 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2143 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2144 
2145 static int process_tracing_data(struct feat_fd *ff, void *data)
2146 {
2147 	ssize_t ret = trace_report(ff->fd, data, false);
2148 
2149 	return ret < 0 ? -1 : 0;
2150 }
2151 
2152 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2153 {
2154 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2155 		pr_debug("Failed to read buildids, continuing...\n");
2156 	return 0;
2157 }
2158 
2159 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2160 {
2161 	int ret;
2162 	u32 nr_cpus_avail, nr_cpus_online;
2163 
2164 	ret = do_read_u32(ff, &nr_cpus_avail);
2165 	if (ret)
2166 		return ret;
2167 
2168 	ret = do_read_u32(ff, &nr_cpus_online);
2169 	if (ret)
2170 		return ret;
2171 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2172 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2173 	return 0;
2174 }
2175 
2176 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2177 {
2178 	u64 total_mem;
2179 	int ret;
2180 
2181 	ret = do_read_u64(ff, &total_mem);
2182 	if (ret)
2183 		return -1;
2184 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2185 	return 0;
2186 }
2187 
2188 static struct evsel *
2189 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2190 {
2191 	struct evsel *evsel;
2192 
2193 	evlist__for_each_entry(evlist, evsel) {
2194 		if (evsel->idx == idx)
2195 			return evsel;
2196 	}
2197 
2198 	return NULL;
2199 }
2200 
2201 static void
2202 perf_evlist__set_event_name(struct evlist *evlist,
2203 			    struct evsel *event)
2204 {
2205 	struct evsel *evsel;
2206 
2207 	if (!event->name)
2208 		return;
2209 
2210 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2211 	if (!evsel)
2212 		return;
2213 
2214 	if (evsel->name)
2215 		return;
2216 
2217 	evsel->name = strdup(event->name);
2218 }
2219 
2220 static int
2221 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2222 {
2223 	struct perf_session *session;
2224 	struct evsel *evsel, *events = read_event_desc(ff);
2225 
2226 	if (!events)
2227 		return 0;
2228 
2229 	session = container_of(ff->ph, struct perf_session, header);
2230 
2231 	if (session->data->is_pipe) {
2232 		/* Save events for reading later by print_event_desc,
2233 		 * since they can't be read again in pipe mode. */
2234 		ff->events = events;
2235 	}
2236 
2237 	for (evsel = events; evsel->core.attr.size; evsel++)
2238 		perf_evlist__set_event_name(session->evlist, evsel);
2239 
2240 	if (!session->data->is_pipe)
2241 		free_event_desc(events);
2242 
2243 	return 0;
2244 }
2245 
2246 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2247 {
2248 	char *str, *cmdline = NULL, **argv = NULL;
2249 	u32 nr, i, len = 0;
2250 
2251 	if (do_read_u32(ff, &nr))
2252 		return -1;
2253 
2254 	ff->ph->env.nr_cmdline = nr;
2255 
2256 	cmdline = zalloc(ff->size + nr + 1);
2257 	if (!cmdline)
2258 		return -1;
2259 
2260 	argv = zalloc(sizeof(char *) * (nr + 1));
2261 	if (!argv)
2262 		goto error;
2263 
2264 	for (i = 0; i < nr; i++) {
2265 		str = do_read_string(ff);
2266 		if (!str)
2267 			goto error;
2268 
2269 		argv[i] = cmdline + len;
2270 		memcpy(argv[i], str, strlen(str) + 1);
2271 		len += strlen(str) + 1;
2272 		free(str);
2273 	}
2274 	ff->ph->env.cmdline = cmdline;
2275 	ff->ph->env.cmdline_argv = (const char **) argv;
2276 	return 0;
2277 
2278 error:
2279 	free(argv);
2280 	free(cmdline);
2281 	return -1;
2282 }
2283 
2284 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2285 {
2286 	u32 nr, i;
2287 	char *str;
2288 	struct strbuf sb;
2289 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2290 	u64 size = 0;
2291 	struct perf_header *ph = ff->ph;
2292 	bool do_core_id_test = true;
2293 
2294 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2295 	if (!ph->env.cpu)
2296 		return -1;
2297 
2298 	if (do_read_u32(ff, &nr))
2299 		goto free_cpu;
2300 
2301 	ph->env.nr_sibling_cores = nr;
2302 	size += sizeof(u32);
2303 	if (strbuf_init(&sb, 128) < 0)
2304 		goto free_cpu;
2305 
2306 	for (i = 0; i < nr; i++) {
2307 		str = do_read_string(ff);
2308 		if (!str)
2309 			goto error;
2310 
2311 		/* include a NULL character at the end */
2312 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2313 			goto error;
2314 		size += string_size(str);
2315 		free(str);
2316 	}
2317 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2318 
2319 	if (do_read_u32(ff, &nr))
2320 		return -1;
2321 
2322 	ph->env.nr_sibling_threads = nr;
2323 	size += sizeof(u32);
2324 
2325 	for (i = 0; i < nr; i++) {
2326 		str = do_read_string(ff);
2327 		if (!str)
2328 			goto error;
2329 
2330 		/* include a NULL character at the end */
2331 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2332 			goto error;
2333 		size += string_size(str);
2334 		free(str);
2335 	}
2336 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2337 
2338 	/*
2339 	 * The header may be from old perf,
2340 	 * which doesn't include core id and socket id information.
2341 	 */
2342 	if (ff->size <= size) {
2343 		zfree(&ph->env.cpu);
2344 		return 0;
2345 	}
2346 
2347 	/* On s390 the socket_id number is not related to the numbers of cpus.
2348 	 * The socket_id number might be higher than the numbers of cpus.
2349 	 * This depends on the configuration.
2350 	 * AArch64 is the same.
2351 	 */
2352 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2353 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2354 		do_core_id_test = false;
2355 
2356 	for (i = 0; i < (u32)cpu_nr; i++) {
2357 		if (do_read_u32(ff, &nr))
2358 			goto free_cpu;
2359 
2360 		ph->env.cpu[i].core_id = nr;
2361 		size += sizeof(u32);
2362 
2363 		if (do_read_u32(ff, &nr))
2364 			goto free_cpu;
2365 
2366 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2367 			pr_debug("socket_id number is too big."
2368 				 "You may need to upgrade the perf tool.\n");
2369 			goto free_cpu;
2370 		}
2371 
2372 		ph->env.cpu[i].socket_id = nr;
2373 		size += sizeof(u32);
2374 	}
2375 
2376 	/*
2377 	 * The header may be from old perf,
2378 	 * which doesn't include die information.
2379 	 */
2380 	if (ff->size <= size)
2381 		return 0;
2382 
2383 	if (do_read_u32(ff, &nr))
2384 		return -1;
2385 
2386 	ph->env.nr_sibling_dies = nr;
2387 	size += sizeof(u32);
2388 
2389 	for (i = 0; i < nr; i++) {
2390 		str = do_read_string(ff);
2391 		if (!str)
2392 			goto error;
2393 
2394 		/* include a NULL character at the end */
2395 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2396 			goto error;
2397 		size += string_size(str);
2398 		free(str);
2399 	}
2400 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2401 
2402 	for (i = 0; i < (u32)cpu_nr; i++) {
2403 		if (do_read_u32(ff, &nr))
2404 			goto free_cpu;
2405 
2406 		ph->env.cpu[i].die_id = nr;
2407 	}
2408 
2409 	return 0;
2410 
2411 error:
2412 	strbuf_release(&sb);
2413 free_cpu:
2414 	zfree(&ph->env.cpu);
2415 	return -1;
2416 }
2417 
2418 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2419 {
2420 	struct numa_node *nodes, *n;
2421 	u32 nr, i;
2422 	char *str;
2423 
2424 	/* nr nodes */
2425 	if (do_read_u32(ff, &nr))
2426 		return -1;
2427 
2428 	nodes = zalloc(sizeof(*nodes) * nr);
2429 	if (!nodes)
2430 		return -ENOMEM;
2431 
2432 	for (i = 0; i < nr; i++) {
2433 		n = &nodes[i];
2434 
2435 		/* node number */
2436 		if (do_read_u32(ff, &n->node))
2437 			goto error;
2438 
2439 		if (do_read_u64(ff, &n->mem_total))
2440 			goto error;
2441 
2442 		if (do_read_u64(ff, &n->mem_free))
2443 			goto error;
2444 
2445 		str = do_read_string(ff);
2446 		if (!str)
2447 			goto error;
2448 
2449 		n->map = perf_cpu_map__new(str);
2450 		if (!n->map)
2451 			goto error;
2452 
2453 		free(str);
2454 	}
2455 	ff->ph->env.nr_numa_nodes = nr;
2456 	ff->ph->env.numa_nodes = nodes;
2457 	return 0;
2458 
2459 error:
2460 	free(nodes);
2461 	return -1;
2462 }
2463 
2464 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2465 {
2466 	char *name;
2467 	u32 pmu_num;
2468 	u32 type;
2469 	struct strbuf sb;
2470 
2471 	if (do_read_u32(ff, &pmu_num))
2472 		return -1;
2473 
2474 	if (!pmu_num) {
2475 		pr_debug("pmu mappings not available\n");
2476 		return 0;
2477 	}
2478 
2479 	ff->ph->env.nr_pmu_mappings = pmu_num;
2480 	if (strbuf_init(&sb, 128) < 0)
2481 		return -1;
2482 
2483 	while (pmu_num) {
2484 		if (do_read_u32(ff, &type))
2485 			goto error;
2486 
2487 		name = do_read_string(ff);
2488 		if (!name)
2489 			goto error;
2490 
2491 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2492 			goto error;
2493 		/* include a NULL character at the end */
2494 		if (strbuf_add(&sb, "", 1) < 0)
2495 			goto error;
2496 
2497 		if (!strcmp(name, "msr"))
2498 			ff->ph->env.msr_pmu_type = type;
2499 
2500 		free(name);
2501 		pmu_num--;
2502 	}
2503 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2504 	return 0;
2505 
2506 error:
2507 	strbuf_release(&sb);
2508 	return -1;
2509 }
2510 
2511 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2512 {
2513 	size_t ret = -1;
2514 	u32 i, nr, nr_groups;
2515 	struct perf_session *session;
2516 	struct evsel *evsel, *leader = NULL;
2517 	struct group_desc {
2518 		char *name;
2519 		u32 leader_idx;
2520 		u32 nr_members;
2521 	} *desc;
2522 
2523 	if (do_read_u32(ff, &nr_groups))
2524 		return -1;
2525 
2526 	ff->ph->env.nr_groups = nr_groups;
2527 	if (!nr_groups) {
2528 		pr_debug("group desc not available\n");
2529 		return 0;
2530 	}
2531 
2532 	desc = calloc(nr_groups, sizeof(*desc));
2533 	if (!desc)
2534 		return -1;
2535 
2536 	for (i = 0; i < nr_groups; i++) {
2537 		desc[i].name = do_read_string(ff);
2538 		if (!desc[i].name)
2539 			goto out_free;
2540 
2541 		if (do_read_u32(ff, &desc[i].leader_idx))
2542 			goto out_free;
2543 
2544 		if (do_read_u32(ff, &desc[i].nr_members))
2545 			goto out_free;
2546 	}
2547 
2548 	/*
2549 	 * Rebuild group relationship based on the group_desc
2550 	 */
2551 	session = container_of(ff->ph, struct perf_session, header);
2552 	session->evlist->nr_groups = nr_groups;
2553 
2554 	i = nr = 0;
2555 	evlist__for_each_entry(session->evlist, evsel) {
2556 		if (evsel->idx == (int) desc[i].leader_idx) {
2557 			evsel->leader = evsel;
2558 			/* {anon_group} is a dummy name */
2559 			if (strcmp(desc[i].name, "{anon_group}")) {
2560 				evsel->group_name = desc[i].name;
2561 				desc[i].name = NULL;
2562 			}
2563 			evsel->core.nr_members = desc[i].nr_members;
2564 
2565 			if (i >= nr_groups || nr > 0) {
2566 				pr_debug("invalid group desc\n");
2567 				goto out_free;
2568 			}
2569 
2570 			leader = evsel;
2571 			nr = evsel->core.nr_members - 1;
2572 			i++;
2573 		} else if (nr) {
2574 			/* This is a group member */
2575 			evsel->leader = leader;
2576 
2577 			nr--;
2578 		}
2579 	}
2580 
2581 	if (i != nr_groups || nr != 0) {
2582 		pr_debug("invalid group desc\n");
2583 		goto out_free;
2584 	}
2585 
2586 	ret = 0;
2587 out_free:
2588 	for (i = 0; i < nr_groups; i++)
2589 		zfree(&desc[i].name);
2590 	free(desc);
2591 
2592 	return ret;
2593 }
2594 
2595 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2596 {
2597 	struct perf_session *session;
2598 	int err;
2599 
2600 	session = container_of(ff->ph, struct perf_session, header);
2601 
2602 	err = auxtrace_index__process(ff->fd, ff->size, session,
2603 				      ff->ph->needs_swap);
2604 	if (err < 0)
2605 		pr_err("Failed to process auxtrace index\n");
2606 	return err;
2607 }
2608 
2609 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2610 {
2611 	struct cpu_cache_level *caches;
2612 	u32 cnt, i, version;
2613 
2614 	if (do_read_u32(ff, &version))
2615 		return -1;
2616 
2617 	if (version != 1)
2618 		return -1;
2619 
2620 	if (do_read_u32(ff, &cnt))
2621 		return -1;
2622 
2623 	caches = zalloc(sizeof(*caches) * cnt);
2624 	if (!caches)
2625 		return -1;
2626 
2627 	for (i = 0; i < cnt; i++) {
2628 		struct cpu_cache_level c;
2629 
2630 		#define _R(v)						\
2631 			if (do_read_u32(ff, &c.v))\
2632 				goto out_free_caches;			\
2633 
2634 		_R(level)
2635 		_R(line_size)
2636 		_R(sets)
2637 		_R(ways)
2638 		#undef _R
2639 
2640 		#define _R(v)					\
2641 			c.v = do_read_string(ff);		\
2642 			if (!c.v)				\
2643 				goto out_free_caches;
2644 
2645 		_R(type)
2646 		_R(size)
2647 		_R(map)
2648 		#undef _R
2649 
2650 		caches[i] = c;
2651 	}
2652 
2653 	ff->ph->env.caches = caches;
2654 	ff->ph->env.caches_cnt = cnt;
2655 	return 0;
2656 out_free_caches:
2657 	free(caches);
2658 	return -1;
2659 }
2660 
2661 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2662 {
2663 	struct perf_session *session;
2664 	u64 first_sample_time, last_sample_time;
2665 	int ret;
2666 
2667 	session = container_of(ff->ph, struct perf_session, header);
2668 
2669 	ret = do_read_u64(ff, &first_sample_time);
2670 	if (ret)
2671 		return -1;
2672 
2673 	ret = do_read_u64(ff, &last_sample_time);
2674 	if (ret)
2675 		return -1;
2676 
2677 	session->evlist->first_sample_time = first_sample_time;
2678 	session->evlist->last_sample_time = last_sample_time;
2679 	return 0;
2680 }
2681 
2682 static int process_mem_topology(struct feat_fd *ff,
2683 				void *data __maybe_unused)
2684 {
2685 	struct memory_node *nodes;
2686 	u64 version, i, nr, bsize;
2687 	int ret = -1;
2688 
2689 	if (do_read_u64(ff, &version))
2690 		return -1;
2691 
2692 	if (version != 1)
2693 		return -1;
2694 
2695 	if (do_read_u64(ff, &bsize))
2696 		return -1;
2697 
2698 	if (do_read_u64(ff, &nr))
2699 		return -1;
2700 
2701 	nodes = zalloc(sizeof(*nodes) * nr);
2702 	if (!nodes)
2703 		return -1;
2704 
2705 	for (i = 0; i < nr; i++) {
2706 		struct memory_node n;
2707 
2708 		#define _R(v)				\
2709 			if (do_read_u64(ff, &n.v))	\
2710 				goto out;		\
2711 
2712 		_R(node)
2713 		_R(size)
2714 
2715 		#undef _R
2716 
2717 		if (do_read_bitmap(ff, &n.set, &n.size))
2718 			goto out;
2719 
2720 		nodes[i] = n;
2721 	}
2722 
2723 	ff->ph->env.memory_bsize    = bsize;
2724 	ff->ph->env.memory_nodes    = nodes;
2725 	ff->ph->env.nr_memory_nodes = nr;
2726 	ret = 0;
2727 
2728 out:
2729 	if (ret)
2730 		free(nodes);
2731 	return ret;
2732 }
2733 
2734 static int process_clockid(struct feat_fd *ff,
2735 			   void *data __maybe_unused)
2736 {
2737 	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2738 		return -1;
2739 
2740 	return 0;
2741 }
2742 
2743 static int process_dir_format(struct feat_fd *ff,
2744 			      void *_data __maybe_unused)
2745 {
2746 	struct perf_session *session;
2747 	struct perf_data *data;
2748 
2749 	session = container_of(ff->ph, struct perf_session, header);
2750 	data = session->data;
2751 
2752 	if (WARN_ON(!perf_data__is_dir(data)))
2753 		return -1;
2754 
2755 	return do_read_u64(ff, &data->dir.version);
2756 }
2757 
2758 #ifdef HAVE_LIBBPF_SUPPORT
2759 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2760 {
2761 	struct bpf_prog_info_linear *info_linear;
2762 	struct bpf_prog_info_node *info_node;
2763 	struct perf_env *env = &ff->ph->env;
2764 	u32 count, i;
2765 	int err = -1;
2766 
2767 	if (ff->ph->needs_swap) {
2768 		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2769 		return 0;
2770 	}
2771 
2772 	if (do_read_u32(ff, &count))
2773 		return -1;
2774 
2775 	down_write(&env->bpf_progs.lock);
2776 
2777 	for (i = 0; i < count; ++i) {
2778 		u32 info_len, data_len;
2779 
2780 		info_linear = NULL;
2781 		info_node = NULL;
2782 		if (do_read_u32(ff, &info_len))
2783 			goto out;
2784 		if (do_read_u32(ff, &data_len))
2785 			goto out;
2786 
2787 		if (info_len > sizeof(struct bpf_prog_info)) {
2788 			pr_warning("detected invalid bpf_prog_info\n");
2789 			goto out;
2790 		}
2791 
2792 		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2793 				     data_len);
2794 		if (!info_linear)
2795 			goto out;
2796 		info_linear->info_len = sizeof(struct bpf_prog_info);
2797 		info_linear->data_len = data_len;
2798 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2799 			goto out;
2800 		if (__do_read(ff, &info_linear->info, info_len))
2801 			goto out;
2802 		if (info_len < sizeof(struct bpf_prog_info))
2803 			memset(((void *)(&info_linear->info)) + info_len, 0,
2804 			       sizeof(struct bpf_prog_info) - info_len);
2805 
2806 		if (__do_read(ff, info_linear->data, data_len))
2807 			goto out;
2808 
2809 		info_node = malloc(sizeof(struct bpf_prog_info_node));
2810 		if (!info_node)
2811 			goto out;
2812 
2813 		/* after reading from file, translate offset to address */
2814 		bpf_program__bpil_offs_to_addr(info_linear);
2815 		info_node->info_linear = info_linear;
2816 		perf_env__insert_bpf_prog_info(env, info_node);
2817 	}
2818 
2819 	up_write(&env->bpf_progs.lock);
2820 	return 0;
2821 out:
2822 	free(info_linear);
2823 	free(info_node);
2824 	up_write(&env->bpf_progs.lock);
2825 	return err;
2826 }
2827 #else // HAVE_LIBBPF_SUPPORT
2828 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2829 {
2830 	return 0;
2831 }
2832 #endif // HAVE_LIBBPF_SUPPORT
2833 
2834 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2835 {
2836 	struct perf_env *env = &ff->ph->env;
2837 	struct btf_node *node = NULL;
2838 	u32 count, i;
2839 	int err = -1;
2840 
2841 	if (ff->ph->needs_swap) {
2842 		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2843 		return 0;
2844 	}
2845 
2846 	if (do_read_u32(ff, &count))
2847 		return -1;
2848 
2849 	down_write(&env->bpf_progs.lock);
2850 
2851 	for (i = 0; i < count; ++i) {
2852 		u32 id, data_size;
2853 
2854 		if (do_read_u32(ff, &id))
2855 			goto out;
2856 		if (do_read_u32(ff, &data_size))
2857 			goto out;
2858 
2859 		node = malloc(sizeof(struct btf_node) + data_size);
2860 		if (!node)
2861 			goto out;
2862 
2863 		node->id = id;
2864 		node->data_size = data_size;
2865 
2866 		if (__do_read(ff, node->data, data_size))
2867 			goto out;
2868 
2869 		perf_env__insert_btf(env, node);
2870 		node = NULL;
2871 	}
2872 
2873 	err = 0;
2874 out:
2875 	up_write(&env->bpf_progs.lock);
2876 	free(node);
2877 	return err;
2878 }
2879 
2880 static int process_compressed(struct feat_fd *ff,
2881 			      void *data __maybe_unused)
2882 {
2883 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2884 		return -1;
2885 
2886 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2887 		return -1;
2888 
2889 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2890 		return -1;
2891 
2892 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2893 		return -1;
2894 
2895 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2896 		return -1;
2897 
2898 	return 0;
2899 }
2900 
2901 static int process_cpu_pmu_caps(struct feat_fd *ff,
2902 				void *data __maybe_unused)
2903 {
2904 	char *name, *value;
2905 	struct strbuf sb;
2906 	u32 nr_caps;
2907 
2908 	if (do_read_u32(ff, &nr_caps))
2909 		return -1;
2910 
2911 	if (!nr_caps) {
2912 		pr_debug("cpu pmu capabilities not available\n");
2913 		return 0;
2914 	}
2915 
2916 	ff->ph->env.nr_cpu_pmu_caps = nr_caps;
2917 
2918 	if (strbuf_init(&sb, 128) < 0)
2919 		return -1;
2920 
2921 	while (nr_caps--) {
2922 		name = do_read_string(ff);
2923 		if (!name)
2924 			goto error;
2925 
2926 		value = do_read_string(ff);
2927 		if (!value)
2928 			goto free_name;
2929 
2930 		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
2931 			goto free_value;
2932 
2933 		/* include a NULL character at the end */
2934 		if (strbuf_add(&sb, "", 1) < 0)
2935 			goto free_value;
2936 
2937 		if (!strcmp(name, "branches"))
2938 			ff->ph->env.max_branches = atoi(value);
2939 
2940 		free(value);
2941 		free(name);
2942 	}
2943 	ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
2944 	return 0;
2945 
2946 free_value:
2947 	free(value);
2948 free_name:
2949 	free(name);
2950 error:
2951 	strbuf_release(&sb);
2952 	return -1;
2953 }
2954 
2955 #define FEAT_OPR(n, func, __full_only) \
2956 	[HEADER_##n] = {					\
2957 		.name	    = __stringify(n),			\
2958 		.write	    = write_##func,			\
2959 		.print	    = print_##func,			\
2960 		.full_only  = __full_only,			\
2961 		.process    = process_##func,			\
2962 		.synthesize = true				\
2963 	}
2964 
2965 #define FEAT_OPN(n, func, __full_only) \
2966 	[HEADER_##n] = {					\
2967 		.name	    = __stringify(n),			\
2968 		.write	    = write_##func,			\
2969 		.print	    = print_##func,			\
2970 		.full_only  = __full_only,			\
2971 		.process    = process_##func			\
2972 	}
2973 
2974 /* feature_ops not implemented: */
2975 #define print_tracing_data	NULL
2976 #define print_build_id		NULL
2977 
2978 #define process_branch_stack	NULL
2979 #define process_stat		NULL
2980 
2981 // Only used in util/synthetic-events.c
2982 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2983 
2984 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2985 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2986 	FEAT_OPN(BUILD_ID,	build_id,	false),
2987 	FEAT_OPR(HOSTNAME,	hostname,	false),
2988 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2989 	FEAT_OPR(VERSION,	version,	false),
2990 	FEAT_OPR(ARCH,		arch,		false),
2991 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2992 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2993 	FEAT_OPR(CPUID,		cpuid,		false),
2994 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2995 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2996 	FEAT_OPR(CMDLINE,	cmdline,	false),
2997 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2998 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2999 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3000 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3001 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3002 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3003 	FEAT_OPN(STAT,		stat,		false),
3004 	FEAT_OPN(CACHE,		cache,		true),
3005 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3006 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3007 	FEAT_OPR(CLOCKID,	clockid,	false),
3008 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3009 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3010 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3011 	FEAT_OPR(COMPRESSED,	compressed,	false),
3012 	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3013 };
3014 
3015 struct header_print_data {
3016 	FILE *fp;
3017 	bool full; /* extended list of headers */
3018 };
3019 
3020 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3021 					   struct perf_header *ph,
3022 					   int feat, int fd, void *data)
3023 {
3024 	struct header_print_data *hd = data;
3025 	struct feat_fd ff;
3026 
3027 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3028 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3029 				"%d, continuing...\n", section->offset, feat);
3030 		return 0;
3031 	}
3032 	if (feat >= HEADER_LAST_FEATURE) {
3033 		pr_warning("unknown feature %d\n", feat);
3034 		return 0;
3035 	}
3036 	if (!feat_ops[feat].print)
3037 		return 0;
3038 
3039 	ff = (struct  feat_fd) {
3040 		.fd = fd,
3041 		.ph = ph,
3042 	};
3043 
3044 	if (!feat_ops[feat].full_only || hd->full)
3045 		feat_ops[feat].print(&ff, hd->fp);
3046 	else
3047 		fprintf(hd->fp, "# %s info available, use -I to display\n",
3048 			feat_ops[feat].name);
3049 
3050 	return 0;
3051 }
3052 
3053 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3054 {
3055 	struct header_print_data hd;
3056 	struct perf_header *header = &session->header;
3057 	int fd = perf_data__fd(session->data);
3058 	struct stat st;
3059 	time_t stctime;
3060 	int ret, bit;
3061 
3062 	hd.fp = fp;
3063 	hd.full = full;
3064 
3065 	ret = fstat(fd, &st);
3066 	if (ret == -1)
3067 		return -1;
3068 
3069 	stctime = st.st_mtime;
3070 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3071 
3072 	fprintf(fp, "# header version : %u\n", header->version);
3073 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3074 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3075 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3076 
3077 	perf_header__process_sections(header, fd, &hd,
3078 				      perf_file_section__fprintf_info);
3079 
3080 	if (session->data->is_pipe)
3081 		return 0;
3082 
3083 	fprintf(fp, "# missing features: ");
3084 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3085 		if (bit)
3086 			fprintf(fp, "%s ", feat_ops[bit].name);
3087 	}
3088 
3089 	fprintf(fp, "\n");
3090 	return 0;
3091 }
3092 
3093 static int do_write_feat(struct feat_fd *ff, int type,
3094 			 struct perf_file_section **p,
3095 			 struct evlist *evlist)
3096 {
3097 	int err;
3098 	int ret = 0;
3099 
3100 	if (perf_header__has_feat(ff->ph, type)) {
3101 		if (!feat_ops[type].write)
3102 			return -1;
3103 
3104 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3105 			return -1;
3106 
3107 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3108 
3109 		err = feat_ops[type].write(ff, evlist);
3110 		if (err < 0) {
3111 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3112 
3113 			/* undo anything written */
3114 			lseek(ff->fd, (*p)->offset, SEEK_SET);
3115 
3116 			return -1;
3117 		}
3118 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3119 		(*p)++;
3120 	}
3121 	return ret;
3122 }
3123 
3124 static int perf_header__adds_write(struct perf_header *header,
3125 				   struct evlist *evlist, int fd)
3126 {
3127 	int nr_sections;
3128 	struct feat_fd ff;
3129 	struct perf_file_section *feat_sec, *p;
3130 	int sec_size;
3131 	u64 sec_start;
3132 	int feat;
3133 	int err;
3134 
3135 	ff = (struct feat_fd){
3136 		.fd  = fd,
3137 		.ph = header,
3138 	};
3139 
3140 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3141 	if (!nr_sections)
3142 		return 0;
3143 
3144 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3145 	if (feat_sec == NULL)
3146 		return -ENOMEM;
3147 
3148 	sec_size = sizeof(*feat_sec) * nr_sections;
3149 
3150 	sec_start = header->feat_offset;
3151 	lseek(fd, sec_start + sec_size, SEEK_SET);
3152 
3153 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3154 		if (do_write_feat(&ff, feat, &p, evlist))
3155 			perf_header__clear_feat(header, feat);
3156 	}
3157 
3158 	lseek(fd, sec_start, SEEK_SET);
3159 	/*
3160 	 * may write more than needed due to dropped feature, but
3161 	 * this is okay, reader will skip the missing entries
3162 	 */
3163 	err = do_write(&ff, feat_sec, sec_size);
3164 	if (err < 0)
3165 		pr_debug("failed to write feature section\n");
3166 	free(feat_sec);
3167 	return err;
3168 }
3169 
3170 int perf_header__write_pipe(int fd)
3171 {
3172 	struct perf_pipe_file_header f_header;
3173 	struct feat_fd ff;
3174 	int err;
3175 
3176 	ff = (struct feat_fd){ .fd = fd };
3177 
3178 	f_header = (struct perf_pipe_file_header){
3179 		.magic	   = PERF_MAGIC,
3180 		.size	   = sizeof(f_header),
3181 	};
3182 
3183 	err = do_write(&ff, &f_header, sizeof(f_header));
3184 	if (err < 0) {
3185 		pr_debug("failed to write perf pipe header\n");
3186 		return err;
3187 	}
3188 
3189 	return 0;
3190 }
3191 
3192 int perf_session__write_header(struct perf_session *session,
3193 			       struct evlist *evlist,
3194 			       int fd, bool at_exit)
3195 {
3196 	struct perf_file_header f_header;
3197 	struct perf_file_attr   f_attr;
3198 	struct perf_header *header = &session->header;
3199 	struct evsel *evsel;
3200 	struct feat_fd ff;
3201 	u64 attr_offset;
3202 	int err;
3203 
3204 	ff = (struct feat_fd){ .fd = fd};
3205 	lseek(fd, sizeof(f_header), SEEK_SET);
3206 
3207 	evlist__for_each_entry(session->evlist, evsel) {
3208 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3209 		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3210 		if (err < 0) {
3211 			pr_debug("failed to write perf header\n");
3212 			return err;
3213 		}
3214 	}
3215 
3216 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3217 
3218 	evlist__for_each_entry(evlist, evsel) {
3219 		f_attr = (struct perf_file_attr){
3220 			.attr = evsel->core.attr,
3221 			.ids  = {
3222 				.offset = evsel->id_offset,
3223 				.size   = evsel->core.ids * sizeof(u64),
3224 			}
3225 		};
3226 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3227 		if (err < 0) {
3228 			pr_debug("failed to write perf header attribute\n");
3229 			return err;
3230 		}
3231 	}
3232 
3233 	if (!header->data_offset)
3234 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3235 	header->feat_offset = header->data_offset + header->data_size;
3236 
3237 	if (at_exit) {
3238 		err = perf_header__adds_write(header, evlist, fd);
3239 		if (err < 0)
3240 			return err;
3241 	}
3242 
3243 	f_header = (struct perf_file_header){
3244 		.magic	   = PERF_MAGIC,
3245 		.size	   = sizeof(f_header),
3246 		.attr_size = sizeof(f_attr),
3247 		.attrs = {
3248 			.offset = attr_offset,
3249 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3250 		},
3251 		.data = {
3252 			.offset = header->data_offset,
3253 			.size	= header->data_size,
3254 		},
3255 		/* event_types is ignored, store zeros */
3256 	};
3257 
3258 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3259 
3260 	lseek(fd, 0, SEEK_SET);
3261 	err = do_write(&ff, &f_header, sizeof(f_header));
3262 	if (err < 0) {
3263 		pr_debug("failed to write perf header\n");
3264 		return err;
3265 	}
3266 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3267 
3268 	return 0;
3269 }
3270 
3271 static int perf_header__getbuffer64(struct perf_header *header,
3272 				    int fd, void *buf, size_t size)
3273 {
3274 	if (readn(fd, buf, size) <= 0)
3275 		return -1;
3276 
3277 	if (header->needs_swap)
3278 		mem_bswap_64(buf, size);
3279 
3280 	return 0;
3281 }
3282 
3283 int perf_header__process_sections(struct perf_header *header, int fd,
3284 				  void *data,
3285 				  int (*process)(struct perf_file_section *section,
3286 						 struct perf_header *ph,
3287 						 int feat, int fd, void *data))
3288 {
3289 	struct perf_file_section *feat_sec, *sec;
3290 	int nr_sections;
3291 	int sec_size;
3292 	int feat;
3293 	int err;
3294 
3295 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3296 	if (!nr_sections)
3297 		return 0;
3298 
3299 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3300 	if (!feat_sec)
3301 		return -1;
3302 
3303 	sec_size = sizeof(*feat_sec) * nr_sections;
3304 
3305 	lseek(fd, header->feat_offset, SEEK_SET);
3306 
3307 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3308 	if (err < 0)
3309 		goto out_free;
3310 
3311 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3312 		err = process(sec++, header, feat, fd, data);
3313 		if (err < 0)
3314 			goto out_free;
3315 	}
3316 	err = 0;
3317 out_free:
3318 	free(feat_sec);
3319 	return err;
3320 }
3321 
3322 static const int attr_file_abi_sizes[] = {
3323 	[0] = PERF_ATTR_SIZE_VER0,
3324 	[1] = PERF_ATTR_SIZE_VER1,
3325 	[2] = PERF_ATTR_SIZE_VER2,
3326 	[3] = PERF_ATTR_SIZE_VER3,
3327 	[4] = PERF_ATTR_SIZE_VER4,
3328 	0,
3329 };
3330 
3331 /*
3332  * In the legacy file format, the magic number is not used to encode endianness.
3333  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3334  * on ABI revisions, we need to try all combinations for all endianness to
3335  * detect the endianness.
3336  */
3337 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3338 {
3339 	uint64_t ref_size, attr_size;
3340 	int i;
3341 
3342 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3343 		ref_size = attr_file_abi_sizes[i]
3344 			 + sizeof(struct perf_file_section);
3345 		if (hdr_sz != ref_size) {
3346 			attr_size = bswap_64(hdr_sz);
3347 			if (attr_size != ref_size)
3348 				continue;
3349 
3350 			ph->needs_swap = true;
3351 		}
3352 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3353 			 i,
3354 			 ph->needs_swap);
3355 		return 0;
3356 	}
3357 	/* could not determine endianness */
3358 	return -1;
3359 }
3360 
3361 #define PERF_PIPE_HDR_VER0	16
3362 
3363 static const size_t attr_pipe_abi_sizes[] = {
3364 	[0] = PERF_PIPE_HDR_VER0,
3365 	0,
3366 };
3367 
3368 /*
3369  * In the legacy pipe format, there is an implicit assumption that endiannesss
3370  * between host recording the samples, and host parsing the samples is the
3371  * same. This is not always the case given that the pipe output may always be
3372  * redirected into a file and analyzed on a different machine with possibly a
3373  * different endianness and perf_event ABI revsions in the perf tool itself.
3374  */
3375 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3376 {
3377 	u64 attr_size;
3378 	int i;
3379 
3380 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3381 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3382 			attr_size = bswap_64(hdr_sz);
3383 			if (attr_size != hdr_sz)
3384 				continue;
3385 
3386 			ph->needs_swap = true;
3387 		}
3388 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3389 		return 0;
3390 	}
3391 	return -1;
3392 }
3393 
3394 bool is_perf_magic(u64 magic)
3395 {
3396 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3397 		|| magic == __perf_magic2
3398 		|| magic == __perf_magic2_sw)
3399 		return true;
3400 
3401 	return false;
3402 }
3403 
3404 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3405 			      bool is_pipe, struct perf_header *ph)
3406 {
3407 	int ret;
3408 
3409 	/* check for legacy format */
3410 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3411 	if (ret == 0) {
3412 		ph->version = PERF_HEADER_VERSION_1;
3413 		pr_debug("legacy perf.data format\n");
3414 		if (is_pipe)
3415 			return try_all_pipe_abis(hdr_sz, ph);
3416 
3417 		return try_all_file_abis(hdr_sz, ph);
3418 	}
3419 	/*
3420 	 * the new magic number serves two purposes:
3421 	 * - unique number to identify actual perf.data files
3422 	 * - encode endianness of file
3423 	 */
3424 	ph->version = PERF_HEADER_VERSION_2;
3425 
3426 	/* check magic number with one endianness */
3427 	if (magic == __perf_magic2)
3428 		return 0;
3429 
3430 	/* check magic number with opposite endianness */
3431 	if (magic != __perf_magic2_sw)
3432 		return -1;
3433 
3434 	ph->needs_swap = true;
3435 
3436 	return 0;
3437 }
3438 
3439 int perf_file_header__read(struct perf_file_header *header,
3440 			   struct perf_header *ph, int fd)
3441 {
3442 	ssize_t ret;
3443 
3444 	lseek(fd, 0, SEEK_SET);
3445 
3446 	ret = readn(fd, header, sizeof(*header));
3447 	if (ret <= 0)
3448 		return -1;
3449 
3450 	if (check_magic_endian(header->magic,
3451 			       header->attr_size, false, ph) < 0) {
3452 		pr_debug("magic/endian check failed\n");
3453 		return -1;
3454 	}
3455 
3456 	if (ph->needs_swap) {
3457 		mem_bswap_64(header, offsetof(struct perf_file_header,
3458 			     adds_features));
3459 	}
3460 
3461 	if (header->size != sizeof(*header)) {
3462 		/* Support the previous format */
3463 		if (header->size == offsetof(typeof(*header), adds_features))
3464 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3465 		else
3466 			return -1;
3467 	} else if (ph->needs_swap) {
3468 		/*
3469 		 * feature bitmap is declared as an array of unsigned longs --
3470 		 * not good since its size can differ between the host that
3471 		 * generated the data file and the host analyzing the file.
3472 		 *
3473 		 * We need to handle endianness, but we don't know the size of
3474 		 * the unsigned long where the file was generated. Take a best
3475 		 * guess at determining it: try 64-bit swap first (ie., file
3476 		 * created on a 64-bit host), and check if the hostname feature
3477 		 * bit is set (this feature bit is forced on as of fbe96f2).
3478 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3479 		 * swap. If the hostname bit is still not set (e.g., older data
3480 		 * file), punt and fallback to the original behavior --
3481 		 * clearing all feature bits and setting buildid.
3482 		 */
3483 		mem_bswap_64(&header->adds_features,
3484 			    BITS_TO_U64(HEADER_FEAT_BITS));
3485 
3486 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3487 			/* unswap as u64 */
3488 			mem_bswap_64(&header->adds_features,
3489 				    BITS_TO_U64(HEADER_FEAT_BITS));
3490 
3491 			/* unswap as u32 */
3492 			mem_bswap_32(&header->adds_features,
3493 				    BITS_TO_U32(HEADER_FEAT_BITS));
3494 		}
3495 
3496 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3497 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3498 			set_bit(HEADER_BUILD_ID, header->adds_features);
3499 		}
3500 	}
3501 
3502 	memcpy(&ph->adds_features, &header->adds_features,
3503 	       sizeof(ph->adds_features));
3504 
3505 	ph->data_offset  = header->data.offset;
3506 	ph->data_size	 = header->data.size;
3507 	ph->feat_offset  = header->data.offset + header->data.size;
3508 	return 0;
3509 }
3510 
3511 static int perf_file_section__process(struct perf_file_section *section,
3512 				      struct perf_header *ph,
3513 				      int feat, int fd, void *data)
3514 {
3515 	struct feat_fd fdd = {
3516 		.fd	= fd,
3517 		.ph	= ph,
3518 		.size	= section->size,
3519 		.offset	= section->offset,
3520 	};
3521 
3522 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3523 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3524 			  "%d, continuing...\n", section->offset, feat);
3525 		return 0;
3526 	}
3527 
3528 	if (feat >= HEADER_LAST_FEATURE) {
3529 		pr_debug("unknown feature %d, continuing...\n", feat);
3530 		return 0;
3531 	}
3532 
3533 	if (!feat_ops[feat].process)
3534 		return 0;
3535 
3536 	return feat_ops[feat].process(&fdd, data);
3537 }
3538 
3539 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3540 				       struct perf_header *ph, int fd,
3541 				       bool repipe)
3542 {
3543 	struct feat_fd ff = {
3544 		.fd = STDOUT_FILENO,
3545 		.ph = ph,
3546 	};
3547 	ssize_t ret;
3548 
3549 	ret = readn(fd, header, sizeof(*header));
3550 	if (ret <= 0)
3551 		return -1;
3552 
3553 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3554 		pr_debug("endian/magic failed\n");
3555 		return -1;
3556 	}
3557 
3558 	if (ph->needs_swap)
3559 		header->size = bswap_64(header->size);
3560 
3561 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3562 		return -1;
3563 
3564 	return 0;
3565 }
3566 
3567 static int perf_header__read_pipe(struct perf_session *session)
3568 {
3569 	struct perf_header *header = &session->header;
3570 	struct perf_pipe_file_header f_header;
3571 
3572 	if (perf_file_header__read_pipe(&f_header, header,
3573 					perf_data__fd(session->data),
3574 					session->repipe) < 0) {
3575 		pr_debug("incompatible file format\n");
3576 		return -EINVAL;
3577 	}
3578 
3579 	return 0;
3580 }
3581 
3582 static int read_attr(int fd, struct perf_header *ph,
3583 		     struct perf_file_attr *f_attr)
3584 {
3585 	struct perf_event_attr *attr = &f_attr->attr;
3586 	size_t sz, left;
3587 	size_t our_sz = sizeof(f_attr->attr);
3588 	ssize_t ret;
3589 
3590 	memset(f_attr, 0, sizeof(*f_attr));
3591 
3592 	/* read minimal guaranteed structure */
3593 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3594 	if (ret <= 0) {
3595 		pr_debug("cannot read %d bytes of header attr\n",
3596 			 PERF_ATTR_SIZE_VER0);
3597 		return -1;
3598 	}
3599 
3600 	/* on file perf_event_attr size */
3601 	sz = attr->size;
3602 
3603 	if (ph->needs_swap)
3604 		sz = bswap_32(sz);
3605 
3606 	if (sz == 0) {
3607 		/* assume ABI0 */
3608 		sz =  PERF_ATTR_SIZE_VER0;
3609 	} else if (sz > our_sz) {
3610 		pr_debug("file uses a more recent and unsupported ABI"
3611 			 " (%zu bytes extra)\n", sz - our_sz);
3612 		return -1;
3613 	}
3614 	/* what we have not yet read and that we know about */
3615 	left = sz - PERF_ATTR_SIZE_VER0;
3616 	if (left) {
3617 		void *ptr = attr;
3618 		ptr += PERF_ATTR_SIZE_VER0;
3619 
3620 		ret = readn(fd, ptr, left);
3621 	}
3622 	/* read perf_file_section, ids are read in caller */
3623 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3624 
3625 	return ret <= 0 ? -1 : 0;
3626 }
3627 
3628 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3629 						struct tep_handle *pevent)
3630 {
3631 	struct tep_event *event;
3632 	char bf[128];
3633 
3634 	/* already prepared */
3635 	if (evsel->tp_format)
3636 		return 0;
3637 
3638 	if (pevent == NULL) {
3639 		pr_debug("broken or missing trace data\n");
3640 		return -1;
3641 	}
3642 
3643 	event = tep_find_event(pevent, evsel->core.attr.config);
3644 	if (event == NULL) {
3645 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3646 		return -1;
3647 	}
3648 
3649 	if (!evsel->name) {
3650 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3651 		evsel->name = strdup(bf);
3652 		if (evsel->name == NULL)
3653 			return -1;
3654 	}
3655 
3656 	evsel->tp_format = event;
3657 	return 0;
3658 }
3659 
3660 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3661 						  struct tep_handle *pevent)
3662 {
3663 	struct evsel *pos;
3664 
3665 	evlist__for_each_entry(evlist, pos) {
3666 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3667 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3668 			return -1;
3669 	}
3670 
3671 	return 0;
3672 }
3673 
3674 int perf_session__read_header(struct perf_session *session)
3675 {
3676 	struct perf_data *data = session->data;
3677 	struct perf_header *header = &session->header;
3678 	struct perf_file_header	f_header;
3679 	struct perf_file_attr	f_attr;
3680 	u64			f_id;
3681 	int nr_attrs, nr_ids, i, j;
3682 	int fd = perf_data__fd(data);
3683 
3684 	session->evlist = evlist__new();
3685 	if (session->evlist == NULL)
3686 		return -ENOMEM;
3687 
3688 	session->evlist->env = &header->env;
3689 	session->machines.host.env = &header->env;
3690 	if (perf_data__is_pipe(data))
3691 		return perf_header__read_pipe(session);
3692 
3693 	if (perf_file_header__read(&f_header, header, fd) < 0)
3694 		return -EINVAL;
3695 
3696 	/*
3697 	 * Sanity check that perf.data was written cleanly; data size is
3698 	 * initialized to 0 and updated only if the on_exit function is run.
3699 	 * If data size is still 0 then the file contains only partial
3700 	 * information.  Just warn user and process it as much as it can.
3701 	 */
3702 	if (f_header.data.size == 0) {
3703 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3704 			   "Was the 'perf record' command properly terminated?\n",
3705 			   data->file.path);
3706 	}
3707 
3708 	if (f_header.attr_size == 0) {
3709 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3710 		       "Was the 'perf record' command properly terminated?\n",
3711 		       data->file.path);
3712 		return -EINVAL;
3713 	}
3714 
3715 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3716 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3717 
3718 	for (i = 0; i < nr_attrs; i++) {
3719 		struct evsel *evsel;
3720 		off_t tmp;
3721 
3722 		if (read_attr(fd, header, &f_attr) < 0)
3723 			goto out_errno;
3724 
3725 		if (header->needs_swap) {
3726 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3727 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3728 			perf_event__attr_swap(&f_attr.attr);
3729 		}
3730 
3731 		tmp = lseek(fd, 0, SEEK_CUR);
3732 		evsel = evsel__new(&f_attr.attr);
3733 
3734 		if (evsel == NULL)
3735 			goto out_delete_evlist;
3736 
3737 		evsel->needs_swap = header->needs_swap;
3738 		/*
3739 		 * Do it before so that if perf_evsel__alloc_id fails, this
3740 		 * entry gets purged too at evlist__delete().
3741 		 */
3742 		evlist__add(session->evlist, evsel);
3743 
3744 		nr_ids = f_attr.ids.size / sizeof(u64);
3745 		/*
3746 		 * We don't have the cpu and thread maps on the header, so
3747 		 * for allocating the perf_sample_id table we fake 1 cpu and
3748 		 * hattr->ids threads.
3749 		 */
3750 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3751 			goto out_delete_evlist;
3752 
3753 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3754 
3755 		for (j = 0; j < nr_ids; j++) {
3756 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3757 				goto out_errno;
3758 
3759 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3760 		}
3761 
3762 		lseek(fd, tmp, SEEK_SET);
3763 	}
3764 
3765 	perf_header__process_sections(header, fd, &session->tevent,
3766 				      perf_file_section__process);
3767 
3768 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3769 						   session->tevent.pevent))
3770 		goto out_delete_evlist;
3771 
3772 	return 0;
3773 out_errno:
3774 	return -errno;
3775 
3776 out_delete_evlist:
3777 	evlist__delete(session->evlist);
3778 	session->evlist = NULL;
3779 	return -ENOMEM;
3780 }
3781 
3782 int perf_event__process_feature(struct perf_session *session,
3783 				union perf_event *event)
3784 {
3785 	struct perf_tool *tool = session->tool;
3786 	struct feat_fd ff = { .fd = 0 };
3787 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3788 	int type = fe->header.type;
3789 	u64 feat = fe->feat_id;
3790 
3791 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3792 		pr_warning("invalid record type %d in pipe-mode\n", type);
3793 		return 0;
3794 	}
3795 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3796 		pr_warning("invalid record type %d in pipe-mode\n", type);
3797 		return -1;
3798 	}
3799 
3800 	if (!feat_ops[feat].process)
3801 		return 0;
3802 
3803 	ff.buf  = (void *)fe->data;
3804 	ff.size = event->header.size - sizeof(*fe);
3805 	ff.ph = &session->header;
3806 
3807 	if (feat_ops[feat].process(&ff, NULL))
3808 		return -1;
3809 
3810 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3811 		return 0;
3812 
3813 	if (!feat_ops[feat].full_only ||
3814 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3815 		feat_ops[feat].print(&ff, stdout);
3816 	} else {
3817 		fprintf(stdout, "# %s info available, use -I to display\n",
3818 			feat_ops[feat].name);
3819 	}
3820 
3821 	return 0;
3822 }
3823 
3824 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3825 {
3826 	struct perf_record_event_update *ev = &event->event_update;
3827 	struct perf_record_event_update_scale *ev_scale;
3828 	struct perf_record_event_update_cpus *ev_cpus;
3829 	struct perf_cpu_map *map;
3830 	size_t ret;
3831 
3832 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3833 
3834 	switch (ev->type) {
3835 	case PERF_EVENT_UPDATE__SCALE:
3836 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3837 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3838 		break;
3839 	case PERF_EVENT_UPDATE__UNIT:
3840 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3841 		break;
3842 	case PERF_EVENT_UPDATE__NAME:
3843 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3844 		break;
3845 	case PERF_EVENT_UPDATE__CPUS:
3846 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3847 		ret += fprintf(fp, "... ");
3848 
3849 		map = cpu_map__new_data(&ev_cpus->cpus);
3850 		if (map)
3851 			ret += cpu_map__fprintf(map, fp);
3852 		else
3853 			ret += fprintf(fp, "failed to get cpus\n");
3854 		break;
3855 	default:
3856 		ret += fprintf(fp, "... unknown type\n");
3857 		break;
3858 	}
3859 
3860 	return ret;
3861 }
3862 
3863 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3864 			     union perf_event *event,
3865 			     struct evlist **pevlist)
3866 {
3867 	u32 i, ids, n_ids;
3868 	struct evsel *evsel;
3869 	struct evlist *evlist = *pevlist;
3870 
3871 	if (evlist == NULL) {
3872 		*pevlist = evlist = evlist__new();
3873 		if (evlist == NULL)
3874 			return -ENOMEM;
3875 	}
3876 
3877 	evsel = evsel__new(&event->attr.attr);
3878 	if (evsel == NULL)
3879 		return -ENOMEM;
3880 
3881 	evlist__add(evlist, evsel);
3882 
3883 	ids = event->header.size;
3884 	ids -= (void *)&event->attr.id - (void *)event;
3885 	n_ids = ids / sizeof(u64);
3886 	/*
3887 	 * We don't have the cpu and thread maps on the header, so
3888 	 * for allocating the perf_sample_id table we fake 1 cpu and
3889 	 * hattr->ids threads.
3890 	 */
3891 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3892 		return -ENOMEM;
3893 
3894 	for (i = 0; i < n_ids; i++) {
3895 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3896 	}
3897 
3898 	return 0;
3899 }
3900 
3901 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3902 				     union perf_event *event,
3903 				     struct evlist **pevlist)
3904 {
3905 	struct perf_record_event_update *ev = &event->event_update;
3906 	struct perf_record_event_update_scale *ev_scale;
3907 	struct perf_record_event_update_cpus *ev_cpus;
3908 	struct evlist *evlist;
3909 	struct evsel *evsel;
3910 	struct perf_cpu_map *map;
3911 
3912 	if (!pevlist || *pevlist == NULL)
3913 		return -EINVAL;
3914 
3915 	evlist = *pevlist;
3916 
3917 	evsel = perf_evlist__id2evsel(evlist, ev->id);
3918 	if (evsel == NULL)
3919 		return -EINVAL;
3920 
3921 	switch (ev->type) {
3922 	case PERF_EVENT_UPDATE__UNIT:
3923 		evsel->unit = strdup(ev->data);
3924 		break;
3925 	case PERF_EVENT_UPDATE__NAME:
3926 		evsel->name = strdup(ev->data);
3927 		break;
3928 	case PERF_EVENT_UPDATE__SCALE:
3929 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3930 		evsel->scale = ev_scale->scale;
3931 		break;
3932 	case PERF_EVENT_UPDATE__CPUS:
3933 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3934 
3935 		map = cpu_map__new_data(&ev_cpus->cpus);
3936 		if (map)
3937 			evsel->core.own_cpus = map;
3938 		else
3939 			pr_err("failed to get event_update cpus\n");
3940 	default:
3941 		break;
3942 	}
3943 
3944 	return 0;
3945 }
3946 
3947 int perf_event__process_tracing_data(struct perf_session *session,
3948 				     union perf_event *event)
3949 {
3950 	ssize_t size_read, padding, size = event->tracing_data.size;
3951 	int fd = perf_data__fd(session->data);
3952 	off_t offset = lseek(fd, 0, SEEK_CUR);
3953 	char buf[BUFSIZ];
3954 
3955 	/* setup for reading amidst mmap */
3956 	lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3957 	      SEEK_SET);
3958 
3959 	size_read = trace_report(fd, &session->tevent,
3960 				 session->repipe);
3961 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3962 
3963 	if (readn(fd, buf, padding) < 0) {
3964 		pr_err("%s: reading input file", __func__);
3965 		return -1;
3966 	}
3967 	if (session->repipe) {
3968 		int retw = write(STDOUT_FILENO, buf, padding);
3969 		if (retw <= 0 || retw != padding) {
3970 			pr_err("%s: repiping tracing data padding", __func__);
3971 			return -1;
3972 		}
3973 	}
3974 
3975 	if (size_read + padding != size) {
3976 		pr_err("%s: tracing data size mismatch", __func__);
3977 		return -1;
3978 	}
3979 
3980 	perf_evlist__prepare_tracepoint_events(session->evlist,
3981 					       session->tevent.pevent);
3982 
3983 	return size_read + padding;
3984 }
3985 
3986 int perf_event__process_build_id(struct perf_session *session,
3987 				 union perf_event *event)
3988 {
3989 	__event_process_build_id(&event->build_id,
3990 				 event->build_id.filename,
3991 				 session);
3992 	return 0;
3993 }
3994