1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <regex.h> 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <linux/compiler.h> 13 #include <linux/list.h> 14 #include <linux/kernel.h> 15 #include <linux/bitops.h> 16 #include <linux/string.h> 17 #include <linux/stringify.h> 18 #include <linux/zalloc.h> 19 #include <sys/stat.h> 20 #include <sys/utsname.h> 21 #include <linux/time64.h> 22 #include <dirent.h> 23 #ifdef HAVE_LIBBPF_SUPPORT 24 #include <bpf/libbpf.h> 25 #endif 26 #include <perf/cpumap.h> 27 #include <tools/libc_compat.h> // reallocarray 28 29 #include "dso.h" 30 #include "evlist.h" 31 #include "evsel.h" 32 #include "util/evsel_fprintf.h" 33 #include "header.h" 34 #include "memswap.h" 35 #include "trace-event.h" 36 #include "session.h" 37 #include "symbol.h" 38 #include "debug.h" 39 #include "cpumap.h" 40 #include "pmu.h" 41 #include "pmus.h" 42 #include "vdso.h" 43 #include "strbuf.h" 44 #include "build-id.h" 45 #include "data.h" 46 #include <api/fs/fs.h> 47 #include <api/io_dir.h> 48 #include "asm/bug.h" 49 #include "tool.h" 50 #include "time-utils.h" 51 #include "units.h" 52 #include "util/util.h" // perf_exe() 53 #include "cputopo.h" 54 #include "bpf-event.h" 55 #include "bpf-utils.h" 56 #include "clockid.h" 57 58 #include <linux/ctype.h> 59 #include <internal/lib.h> 60 61 #ifdef HAVE_LIBTRACEEVENT 62 #include <event-parse.h> 63 #endif 64 65 /* 66 * magic2 = "PERFILE2" 67 * must be a numerical value to let the endianness 68 * determine the memory layout. That way we are able 69 * to detect endianness when reading the perf.data file 70 * back. 71 * 72 * we check for legacy (PERFFILE) format. 73 */ 74 static const char *__perf_magic1 = "PERFFILE"; 75 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 76 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 77 78 #define PERF_MAGIC __perf_magic2 79 80 const char perf_version_string[] = PERF_VERSION; 81 82 struct perf_file_attr { 83 struct perf_event_attr attr; 84 struct perf_file_section ids; 85 }; 86 87 void perf_header__set_feat(struct perf_header *header, int feat) 88 { 89 __set_bit(feat, header->adds_features); 90 } 91 92 void perf_header__clear_feat(struct perf_header *header, int feat) 93 { 94 __clear_bit(feat, header->adds_features); 95 } 96 97 bool perf_header__has_feat(const struct perf_header *header, int feat) 98 { 99 return test_bit(feat, header->adds_features); 100 } 101 102 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 103 { 104 ssize_t ret = writen(ff->fd, buf, size); 105 106 if (ret != (ssize_t)size) 107 return ret < 0 ? (int)ret : -1; 108 return 0; 109 } 110 111 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 112 { 113 /* struct perf_event_header::size is u16 */ 114 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 115 size_t new_size = ff->size; 116 void *addr; 117 118 if (size + ff->offset > max_size) 119 return -E2BIG; 120 121 while (size > (new_size - ff->offset)) 122 new_size <<= 1; 123 new_size = min(max_size, new_size); 124 125 if (ff->size < new_size) { 126 addr = realloc(ff->buf, new_size); 127 if (!addr) 128 return -ENOMEM; 129 ff->buf = addr; 130 ff->size = new_size; 131 } 132 133 memcpy(ff->buf + ff->offset, buf, size); 134 ff->offset += size; 135 136 return 0; 137 } 138 139 /* Return: 0 if succeeded, -ERR if failed. */ 140 int do_write(struct feat_fd *ff, const void *buf, size_t size) 141 { 142 if (!ff->buf) 143 return __do_write_fd(ff, buf, size); 144 return __do_write_buf(ff, buf, size); 145 } 146 147 /* Return: 0 if succeeded, -ERR if failed. */ 148 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 149 { 150 u64 *p = (u64 *) set; 151 int i, ret; 152 153 ret = do_write(ff, &size, sizeof(size)); 154 if (ret < 0) 155 return ret; 156 157 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 158 ret = do_write(ff, p + i, sizeof(*p)); 159 if (ret < 0) 160 return ret; 161 } 162 163 return 0; 164 } 165 166 /* Return: 0 if succeeded, -ERR if failed. */ 167 int write_padded(struct feat_fd *ff, const void *bf, 168 size_t count, size_t count_aligned) 169 { 170 static const char zero_buf[NAME_ALIGN]; 171 int err = do_write(ff, bf, count); 172 173 if (!err) 174 err = do_write(ff, zero_buf, count_aligned - count); 175 176 return err; 177 } 178 179 #define string_size(str) \ 180 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 181 182 /* Return: 0 if succeeded, -ERR if failed. */ 183 static int do_write_string(struct feat_fd *ff, const char *str) 184 { 185 u32 len, olen; 186 int ret; 187 188 olen = strlen(str) + 1; 189 len = PERF_ALIGN(olen, NAME_ALIGN); 190 191 /* write len, incl. \0 */ 192 ret = do_write(ff, &len, sizeof(len)); 193 if (ret < 0) 194 return ret; 195 196 return write_padded(ff, str, olen, len); 197 } 198 199 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 200 { 201 ssize_t ret = readn(ff->fd, addr, size); 202 203 if (ret != size) 204 return ret < 0 ? (int)ret : -1; 205 return 0; 206 } 207 208 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 209 { 210 if (size > (ssize_t)ff->size - ff->offset) 211 return -1; 212 213 memcpy(addr, ff->buf + ff->offset, size); 214 ff->offset += size; 215 216 return 0; 217 218 } 219 220 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 221 { 222 if (!ff->buf) 223 return __do_read_fd(ff, addr, size); 224 return __do_read_buf(ff, addr, size); 225 } 226 227 static int do_read_u32(struct feat_fd *ff, u32 *addr) 228 { 229 int ret; 230 231 ret = __do_read(ff, addr, sizeof(*addr)); 232 if (ret) 233 return ret; 234 235 if (ff->ph->needs_swap) 236 *addr = bswap_32(*addr); 237 return 0; 238 } 239 240 static int do_read_u64(struct feat_fd *ff, u64 *addr) 241 { 242 int ret; 243 244 ret = __do_read(ff, addr, sizeof(*addr)); 245 if (ret) 246 return ret; 247 248 if (ff->ph->needs_swap) 249 *addr = bswap_64(*addr); 250 return 0; 251 } 252 253 static char *do_read_string(struct feat_fd *ff) 254 { 255 u32 len; 256 char *buf; 257 258 if (do_read_u32(ff, &len)) 259 return NULL; 260 261 buf = malloc(len); 262 if (!buf) 263 return NULL; 264 265 if (!__do_read(ff, buf, len)) { 266 /* 267 * strings are padded by zeroes 268 * thus the actual strlen of buf 269 * may be less than len 270 */ 271 return buf; 272 } 273 274 free(buf); 275 return NULL; 276 } 277 278 /* Return: 0 if succeeded, -ERR if failed. */ 279 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 280 { 281 unsigned long *set; 282 u64 size, *p; 283 int i, ret; 284 285 ret = do_read_u64(ff, &size); 286 if (ret) 287 return ret; 288 289 set = bitmap_zalloc(size); 290 if (!set) 291 return -ENOMEM; 292 293 p = (u64 *) set; 294 295 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 296 ret = do_read_u64(ff, p + i); 297 if (ret < 0) { 298 free(set); 299 return ret; 300 } 301 } 302 303 *pset = set; 304 *psize = size; 305 return 0; 306 } 307 308 #ifdef HAVE_LIBTRACEEVENT 309 static int write_tracing_data(struct feat_fd *ff, 310 struct evlist *evlist) 311 { 312 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 313 return -1; 314 315 return read_tracing_data(ff->fd, &evlist->core.entries); 316 } 317 #endif 318 319 static int write_build_id(struct feat_fd *ff, 320 struct evlist *evlist __maybe_unused) 321 { 322 struct perf_session *session; 323 int err; 324 325 session = container_of(ff->ph, struct perf_session, header); 326 327 if (!perf_session__read_build_ids(session, true)) 328 return -1; 329 330 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 331 return -1; 332 333 err = perf_session__write_buildid_table(session, ff); 334 if (err < 0) { 335 pr_debug("failed to write buildid table\n"); 336 return err; 337 } 338 perf_session__cache_build_ids(session); 339 340 return 0; 341 } 342 343 static int write_hostname(struct feat_fd *ff, 344 struct evlist *evlist __maybe_unused) 345 { 346 struct utsname uts; 347 int ret; 348 349 ret = uname(&uts); 350 if (ret < 0) 351 return -1; 352 353 return do_write_string(ff, uts.nodename); 354 } 355 356 static int write_osrelease(struct feat_fd *ff, 357 struct evlist *evlist __maybe_unused) 358 { 359 struct utsname uts; 360 int ret; 361 362 ret = uname(&uts); 363 if (ret < 0) 364 return -1; 365 366 return do_write_string(ff, uts.release); 367 } 368 369 static int write_arch(struct feat_fd *ff, 370 struct evlist *evlist __maybe_unused) 371 { 372 struct utsname uts; 373 int ret; 374 375 ret = uname(&uts); 376 if (ret < 0) 377 return -1; 378 379 return do_write_string(ff, uts.machine); 380 } 381 382 static int write_version(struct feat_fd *ff, 383 struct evlist *evlist __maybe_unused) 384 { 385 return do_write_string(ff, perf_version_string); 386 } 387 388 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 389 { 390 FILE *file; 391 char *buf = NULL; 392 char *s, *p; 393 const char *search = cpuinfo_proc; 394 size_t len = 0; 395 int ret = -1; 396 397 if (!search) 398 return -1; 399 400 file = fopen("/proc/cpuinfo", "r"); 401 if (!file) 402 return -1; 403 404 while (getline(&buf, &len, file) > 0) { 405 ret = strncmp(buf, search, strlen(search)); 406 if (!ret) 407 break; 408 } 409 410 if (ret) { 411 ret = -1; 412 goto done; 413 } 414 415 s = buf; 416 417 p = strchr(buf, ':'); 418 if (p && *(p+1) == ' ' && *(p+2)) 419 s = p + 2; 420 p = strchr(s, '\n'); 421 if (p) 422 *p = '\0'; 423 424 /* squash extra space characters (branding string) */ 425 p = s; 426 while (*p) { 427 if (isspace(*p)) { 428 char *r = p + 1; 429 char *q = skip_spaces(r); 430 *p = ' '; 431 if (q != (p+1)) 432 while ((*r++ = *q++)); 433 } 434 p++; 435 } 436 ret = do_write_string(ff, s); 437 done: 438 free(buf); 439 fclose(file); 440 return ret; 441 } 442 443 static int write_cpudesc(struct feat_fd *ff, 444 struct evlist *evlist __maybe_unused) 445 { 446 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 447 #define CPUINFO_PROC { "cpu", } 448 #elif defined(__s390__) 449 #define CPUINFO_PROC { "vendor_id", } 450 #elif defined(__sh__) 451 #define CPUINFO_PROC { "cpu type", } 452 #elif defined(__alpha__) || defined(__mips__) 453 #define CPUINFO_PROC { "cpu model", } 454 #elif defined(__arm__) 455 #define CPUINFO_PROC { "model name", "Processor", } 456 #elif defined(__arc__) 457 #define CPUINFO_PROC { "Processor", } 458 #elif defined(__xtensa__) 459 #define CPUINFO_PROC { "core ID", } 460 #elif defined(__loongarch__) 461 #define CPUINFO_PROC { "Model Name", } 462 #else 463 #define CPUINFO_PROC { "model name", } 464 #endif 465 const char *cpuinfo_procs[] = CPUINFO_PROC; 466 #undef CPUINFO_PROC 467 unsigned int i; 468 469 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 470 int ret; 471 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 472 if (ret >= 0) 473 return ret; 474 } 475 return -1; 476 } 477 478 479 static int write_nrcpus(struct feat_fd *ff, 480 struct evlist *evlist __maybe_unused) 481 { 482 long nr; 483 u32 nrc, nra; 484 int ret; 485 486 nrc = cpu__max_present_cpu().cpu; 487 488 nr = sysconf(_SC_NPROCESSORS_ONLN); 489 if (nr < 0) 490 return -1; 491 492 nra = (u32)(nr & UINT_MAX); 493 494 ret = do_write(ff, &nrc, sizeof(nrc)); 495 if (ret < 0) 496 return ret; 497 498 return do_write(ff, &nra, sizeof(nra)); 499 } 500 501 static int write_event_desc(struct feat_fd *ff, 502 struct evlist *evlist) 503 { 504 struct evsel *evsel; 505 u32 nre, nri, sz; 506 int ret; 507 508 nre = evlist->core.nr_entries; 509 510 /* 511 * write number of events 512 */ 513 ret = do_write(ff, &nre, sizeof(nre)); 514 if (ret < 0) 515 return ret; 516 517 /* 518 * size of perf_event_attr struct 519 */ 520 sz = (u32)sizeof(evsel->core.attr); 521 ret = do_write(ff, &sz, sizeof(sz)); 522 if (ret < 0) 523 return ret; 524 525 evlist__for_each_entry(evlist, evsel) { 526 ret = do_write(ff, &evsel->core.attr, sz); 527 if (ret < 0) 528 return ret; 529 /* 530 * write number of unique id per event 531 * there is one id per instance of an event 532 * 533 * copy into an nri to be independent of the 534 * type of ids, 535 */ 536 nri = evsel->core.ids; 537 ret = do_write(ff, &nri, sizeof(nri)); 538 if (ret < 0) 539 return ret; 540 541 /* 542 * write event string as passed on cmdline 543 */ 544 ret = do_write_string(ff, evsel__name(evsel)); 545 if (ret < 0) 546 return ret; 547 /* 548 * write unique ids for this event 549 */ 550 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 551 if (ret < 0) 552 return ret; 553 } 554 return 0; 555 } 556 557 static int write_cmdline(struct feat_fd *ff, 558 struct evlist *evlist __maybe_unused) 559 { 560 char pbuf[MAXPATHLEN], *buf; 561 int i, ret, n; 562 563 /* actual path to perf binary */ 564 buf = perf_exe(pbuf, MAXPATHLEN); 565 566 /* account for binary path */ 567 n = perf_env.nr_cmdline + 1; 568 569 ret = do_write(ff, &n, sizeof(n)); 570 if (ret < 0) 571 return ret; 572 573 ret = do_write_string(ff, buf); 574 if (ret < 0) 575 return ret; 576 577 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 578 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 579 if (ret < 0) 580 return ret; 581 } 582 return 0; 583 } 584 585 586 static int write_cpu_topology(struct feat_fd *ff, 587 struct evlist *evlist __maybe_unused) 588 { 589 struct cpu_topology *tp; 590 u32 i; 591 int ret, j; 592 593 tp = cpu_topology__new(); 594 if (!tp) 595 return -1; 596 597 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists)); 598 if (ret < 0) 599 goto done; 600 601 for (i = 0; i < tp->package_cpus_lists; i++) { 602 ret = do_write_string(ff, tp->package_cpus_list[i]); 603 if (ret < 0) 604 goto done; 605 } 606 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists)); 607 if (ret < 0) 608 goto done; 609 610 for (i = 0; i < tp->core_cpus_lists; i++) { 611 ret = do_write_string(ff, tp->core_cpus_list[i]); 612 if (ret < 0) 613 break; 614 } 615 616 ret = perf_env__read_cpu_topology_map(&perf_env); 617 if (ret < 0) 618 goto done; 619 620 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 621 ret = do_write(ff, &perf_env.cpu[j].core_id, 622 sizeof(perf_env.cpu[j].core_id)); 623 if (ret < 0) 624 return ret; 625 ret = do_write(ff, &perf_env.cpu[j].socket_id, 626 sizeof(perf_env.cpu[j].socket_id)); 627 if (ret < 0) 628 return ret; 629 } 630 631 if (!tp->die_cpus_lists) 632 goto done; 633 634 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists)); 635 if (ret < 0) 636 goto done; 637 638 for (i = 0; i < tp->die_cpus_lists; i++) { 639 ret = do_write_string(ff, tp->die_cpus_list[i]); 640 if (ret < 0) 641 goto done; 642 } 643 644 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 645 ret = do_write(ff, &perf_env.cpu[j].die_id, 646 sizeof(perf_env.cpu[j].die_id)); 647 if (ret < 0) 648 return ret; 649 } 650 651 done: 652 cpu_topology__delete(tp); 653 return ret; 654 } 655 656 657 658 static int write_total_mem(struct feat_fd *ff, 659 struct evlist *evlist __maybe_unused) 660 { 661 char *buf = NULL; 662 FILE *fp; 663 size_t len = 0; 664 int ret = -1, n; 665 uint64_t mem; 666 667 fp = fopen("/proc/meminfo", "r"); 668 if (!fp) 669 return -1; 670 671 while (getline(&buf, &len, fp) > 0) { 672 ret = strncmp(buf, "MemTotal:", 9); 673 if (!ret) 674 break; 675 } 676 if (!ret) { 677 n = sscanf(buf, "%*s %"PRIu64, &mem); 678 if (n == 1) 679 ret = do_write(ff, &mem, sizeof(mem)); 680 } else 681 ret = -1; 682 free(buf); 683 fclose(fp); 684 return ret; 685 } 686 687 static int write_numa_topology(struct feat_fd *ff, 688 struct evlist *evlist __maybe_unused) 689 { 690 struct numa_topology *tp; 691 int ret = -1; 692 u32 i; 693 694 tp = numa_topology__new(); 695 if (!tp) 696 return -ENOMEM; 697 698 ret = do_write(ff, &tp->nr, sizeof(u32)); 699 if (ret < 0) 700 goto err; 701 702 for (i = 0; i < tp->nr; i++) { 703 struct numa_topology_node *n = &tp->nodes[i]; 704 705 ret = do_write(ff, &n->node, sizeof(u32)); 706 if (ret < 0) 707 goto err; 708 709 ret = do_write(ff, &n->mem_total, sizeof(u64)); 710 if (ret) 711 goto err; 712 713 ret = do_write(ff, &n->mem_free, sizeof(u64)); 714 if (ret) 715 goto err; 716 717 ret = do_write_string(ff, n->cpus); 718 if (ret < 0) 719 goto err; 720 } 721 722 ret = 0; 723 724 err: 725 numa_topology__delete(tp); 726 return ret; 727 } 728 729 /* 730 * File format: 731 * 732 * struct pmu_mappings { 733 * u32 pmu_num; 734 * struct pmu_map { 735 * u32 type; 736 * char name[]; 737 * }[pmu_num]; 738 * }; 739 */ 740 741 static int write_pmu_mappings(struct feat_fd *ff, 742 struct evlist *evlist __maybe_unused) 743 { 744 struct perf_pmu *pmu = NULL; 745 u32 pmu_num = 0; 746 int ret; 747 748 /* 749 * Do a first pass to count number of pmu to avoid lseek so this 750 * works in pipe mode as well. 751 */ 752 while ((pmu = perf_pmus__scan(pmu))) 753 pmu_num++; 754 755 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 756 if (ret < 0) 757 return ret; 758 759 while ((pmu = perf_pmus__scan(pmu))) { 760 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 761 if (ret < 0) 762 return ret; 763 764 ret = do_write_string(ff, pmu->name); 765 if (ret < 0) 766 return ret; 767 } 768 769 return 0; 770 } 771 772 /* 773 * File format: 774 * 775 * struct group_descs { 776 * u32 nr_groups; 777 * struct group_desc { 778 * char name[]; 779 * u32 leader_idx; 780 * u32 nr_members; 781 * }[nr_groups]; 782 * }; 783 */ 784 static int write_group_desc(struct feat_fd *ff, 785 struct evlist *evlist) 786 { 787 u32 nr_groups = evlist__nr_groups(evlist); 788 struct evsel *evsel; 789 int ret; 790 791 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 792 if (ret < 0) 793 return ret; 794 795 evlist__for_each_entry(evlist, evsel) { 796 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 797 const char *name = evsel->group_name ?: "{anon_group}"; 798 u32 leader_idx = evsel->core.idx; 799 u32 nr_members = evsel->core.nr_members; 800 801 ret = do_write_string(ff, name); 802 if (ret < 0) 803 return ret; 804 805 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 806 if (ret < 0) 807 return ret; 808 809 ret = do_write(ff, &nr_members, sizeof(nr_members)); 810 if (ret < 0) 811 return ret; 812 } 813 } 814 return 0; 815 } 816 817 /* 818 * Return the CPU id as a raw string. 819 * 820 * Each architecture should provide a more precise id string that 821 * can be use to match the architecture's "mapfile". 822 */ 823 char * __weak get_cpuid_str(struct perf_cpu cpu __maybe_unused) 824 { 825 return NULL; 826 } 827 828 char *get_cpuid_allow_env_override(struct perf_cpu cpu) 829 { 830 char *cpuid; 831 static bool printed; 832 833 cpuid = getenv("PERF_CPUID"); 834 if (cpuid) 835 cpuid = strdup(cpuid); 836 if (!cpuid) 837 cpuid = get_cpuid_str(cpu); 838 if (!cpuid) 839 return NULL; 840 841 if (!printed) { 842 pr_debug("Using CPUID %s\n", cpuid); 843 printed = true; 844 } 845 return cpuid; 846 } 847 848 /* Return zero when the cpuid from the mapfile.csv matches the 849 * cpuid string generated on this platform. 850 * Otherwise return non-zero. 851 */ 852 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 853 { 854 regex_t re; 855 regmatch_t pmatch[1]; 856 int match; 857 858 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 859 /* Warn unable to generate match particular string. */ 860 pr_info("Invalid regular expression %s\n", mapcpuid); 861 return 1; 862 } 863 864 match = !regexec(&re, cpuid, 1, pmatch, 0); 865 regfree(&re); 866 if (match) { 867 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 868 869 /* Verify the entire string matched. */ 870 if (match_len == strlen(cpuid)) 871 return 0; 872 } 873 return 1; 874 } 875 876 /* 877 * default get_cpuid(): nothing gets recorded 878 * actual implementation must be in arch/$(SRCARCH)/util/header.c 879 */ 880 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused, 881 struct perf_cpu cpu __maybe_unused) 882 { 883 return ENOSYS; /* Not implemented */ 884 } 885 886 static int write_cpuid(struct feat_fd *ff, struct evlist *evlist) 887 { 888 struct perf_cpu cpu = perf_cpu_map__min(evlist->core.all_cpus); 889 char buffer[64]; 890 int ret; 891 892 ret = get_cpuid(buffer, sizeof(buffer), cpu); 893 if (ret) 894 return -1; 895 896 return do_write_string(ff, buffer); 897 } 898 899 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 900 struct evlist *evlist __maybe_unused) 901 { 902 return 0; 903 } 904 905 static int write_auxtrace(struct feat_fd *ff, 906 struct evlist *evlist __maybe_unused) 907 { 908 struct perf_session *session; 909 int err; 910 911 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 912 return -1; 913 914 session = container_of(ff->ph, struct perf_session, header); 915 916 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 917 if (err < 0) 918 pr_err("Failed to write auxtrace index\n"); 919 return err; 920 } 921 922 static int write_clockid(struct feat_fd *ff, 923 struct evlist *evlist __maybe_unused) 924 { 925 return do_write(ff, &ff->ph->env.clock.clockid_res_ns, 926 sizeof(ff->ph->env.clock.clockid_res_ns)); 927 } 928 929 static int write_clock_data(struct feat_fd *ff, 930 struct evlist *evlist __maybe_unused) 931 { 932 u64 *data64; 933 u32 data32; 934 int ret; 935 936 /* version */ 937 data32 = 1; 938 939 ret = do_write(ff, &data32, sizeof(data32)); 940 if (ret < 0) 941 return ret; 942 943 /* clockid */ 944 data32 = ff->ph->env.clock.clockid; 945 946 ret = do_write(ff, &data32, sizeof(data32)); 947 if (ret < 0) 948 return ret; 949 950 /* TOD ref time */ 951 data64 = &ff->ph->env.clock.tod_ns; 952 953 ret = do_write(ff, data64, sizeof(*data64)); 954 if (ret < 0) 955 return ret; 956 957 /* clockid ref time */ 958 data64 = &ff->ph->env.clock.clockid_ns; 959 960 return do_write(ff, data64, sizeof(*data64)); 961 } 962 963 static int write_hybrid_topology(struct feat_fd *ff, 964 struct evlist *evlist __maybe_unused) 965 { 966 struct hybrid_topology *tp; 967 int ret; 968 u32 i; 969 970 tp = hybrid_topology__new(); 971 if (!tp) 972 return -ENOENT; 973 974 ret = do_write(ff, &tp->nr, sizeof(u32)); 975 if (ret < 0) 976 goto err; 977 978 for (i = 0; i < tp->nr; i++) { 979 struct hybrid_topology_node *n = &tp->nodes[i]; 980 981 ret = do_write_string(ff, n->pmu_name); 982 if (ret < 0) 983 goto err; 984 985 ret = do_write_string(ff, n->cpus); 986 if (ret < 0) 987 goto err; 988 } 989 990 ret = 0; 991 992 err: 993 hybrid_topology__delete(tp); 994 return ret; 995 } 996 997 static int write_dir_format(struct feat_fd *ff, 998 struct evlist *evlist __maybe_unused) 999 { 1000 struct perf_session *session; 1001 struct perf_data *data; 1002 1003 session = container_of(ff->ph, struct perf_session, header); 1004 data = session->data; 1005 1006 if (WARN_ON(!perf_data__is_dir(data))) 1007 return -1; 1008 1009 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 1010 } 1011 1012 #ifdef HAVE_LIBBPF_SUPPORT 1013 static int write_bpf_prog_info(struct feat_fd *ff, 1014 struct evlist *evlist __maybe_unused) 1015 { 1016 struct perf_env *env = &ff->ph->env; 1017 struct rb_root *root; 1018 struct rb_node *next; 1019 int ret = 0; 1020 1021 down_read(&env->bpf_progs.lock); 1022 1023 if (env->bpf_progs.infos_cnt == 0) 1024 goto out; 1025 1026 ret = do_write(ff, &env->bpf_progs.infos_cnt, 1027 sizeof(env->bpf_progs.infos_cnt)); 1028 if (ret < 0) 1029 goto out; 1030 1031 root = &env->bpf_progs.infos; 1032 next = rb_first(root); 1033 while (next) { 1034 struct bpf_prog_info_node *node; 1035 size_t len; 1036 1037 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1038 next = rb_next(&node->rb_node); 1039 len = sizeof(struct perf_bpil) + 1040 node->info_linear->data_len; 1041 1042 /* before writing to file, translate address to offset */ 1043 bpil_addr_to_offs(node->info_linear); 1044 ret = do_write(ff, node->info_linear, len); 1045 /* 1046 * translate back to address even when do_write() fails, 1047 * so that this function never changes the data. 1048 */ 1049 bpil_offs_to_addr(node->info_linear); 1050 if (ret < 0) 1051 goto out; 1052 } 1053 out: 1054 up_read(&env->bpf_progs.lock); 1055 return ret; 1056 } 1057 1058 static int write_bpf_btf(struct feat_fd *ff, 1059 struct evlist *evlist __maybe_unused) 1060 { 1061 struct perf_env *env = &ff->ph->env; 1062 struct rb_root *root; 1063 struct rb_node *next; 1064 int ret = 0; 1065 1066 down_read(&env->bpf_progs.lock); 1067 1068 if (env->bpf_progs.btfs_cnt == 0) 1069 goto out; 1070 1071 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 1072 sizeof(env->bpf_progs.btfs_cnt)); 1073 1074 if (ret < 0) 1075 goto out; 1076 1077 root = &env->bpf_progs.btfs; 1078 next = rb_first(root); 1079 while (next) { 1080 struct btf_node *node; 1081 1082 node = rb_entry(next, struct btf_node, rb_node); 1083 next = rb_next(&node->rb_node); 1084 ret = do_write(ff, &node->id, 1085 sizeof(u32) * 2 + node->data_size); 1086 if (ret < 0) 1087 goto out; 1088 } 1089 out: 1090 up_read(&env->bpf_progs.lock); 1091 return ret; 1092 } 1093 #endif // HAVE_LIBBPF_SUPPORT 1094 1095 static int cpu_cache_level__sort(const void *a, const void *b) 1096 { 1097 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1098 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1099 1100 return cache_a->level - cache_b->level; 1101 } 1102 1103 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1104 { 1105 if (a->level != b->level) 1106 return false; 1107 1108 if (a->line_size != b->line_size) 1109 return false; 1110 1111 if (a->sets != b->sets) 1112 return false; 1113 1114 if (a->ways != b->ways) 1115 return false; 1116 1117 if (strcmp(a->type, b->type)) 1118 return false; 1119 1120 if (strcmp(a->size, b->size)) 1121 return false; 1122 1123 if (strcmp(a->map, b->map)) 1124 return false; 1125 1126 return true; 1127 } 1128 1129 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1130 { 1131 char path[PATH_MAX], file[PATH_MAX]; 1132 struct stat st; 1133 size_t len; 1134 1135 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1136 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1137 1138 if (stat(file, &st)) 1139 return 1; 1140 1141 scnprintf(file, PATH_MAX, "%s/level", path); 1142 if (sysfs__read_int(file, (int *) &cache->level)) 1143 return -1; 1144 1145 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1146 if (sysfs__read_int(file, (int *) &cache->line_size)) 1147 return -1; 1148 1149 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1150 if (sysfs__read_int(file, (int *) &cache->sets)) 1151 return -1; 1152 1153 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1154 if (sysfs__read_int(file, (int *) &cache->ways)) 1155 return -1; 1156 1157 scnprintf(file, PATH_MAX, "%s/type", path); 1158 if (sysfs__read_str(file, &cache->type, &len)) 1159 return -1; 1160 1161 cache->type[len] = 0; 1162 cache->type = strim(cache->type); 1163 1164 scnprintf(file, PATH_MAX, "%s/size", path); 1165 if (sysfs__read_str(file, &cache->size, &len)) { 1166 zfree(&cache->type); 1167 return -1; 1168 } 1169 1170 cache->size[len] = 0; 1171 cache->size = strim(cache->size); 1172 1173 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1174 if (sysfs__read_str(file, &cache->map, &len)) { 1175 zfree(&cache->size); 1176 zfree(&cache->type); 1177 return -1; 1178 } 1179 1180 cache->map[len] = 0; 1181 cache->map = strim(cache->map); 1182 return 0; 1183 } 1184 1185 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1186 { 1187 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1188 } 1189 1190 /* 1191 * Build caches levels for a particular CPU from the data in 1192 * /sys/devices/system/cpu/cpu<cpu>/cache/ 1193 * The cache level data is stored in caches[] from index at 1194 * *cntp. 1195 */ 1196 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp) 1197 { 1198 u16 level; 1199 1200 for (level = 0; level < MAX_CACHE_LVL; level++) { 1201 struct cpu_cache_level c; 1202 int err; 1203 u32 i; 1204 1205 err = cpu_cache_level__read(&c, cpu, level); 1206 if (err < 0) 1207 return err; 1208 1209 if (err == 1) 1210 break; 1211 1212 for (i = 0; i < *cntp; i++) { 1213 if (cpu_cache_level__cmp(&c, &caches[i])) 1214 break; 1215 } 1216 1217 if (i == *cntp) { 1218 caches[*cntp] = c; 1219 *cntp = *cntp + 1; 1220 } else 1221 cpu_cache_level__free(&c); 1222 } 1223 1224 return 0; 1225 } 1226 1227 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1228 { 1229 u32 nr, cpu, cnt = 0; 1230 1231 nr = cpu__max_cpu().cpu; 1232 1233 for (cpu = 0; cpu < nr; cpu++) { 1234 int ret = build_caches_for_cpu(cpu, caches, &cnt); 1235 1236 if (ret) 1237 return ret; 1238 } 1239 *cntp = cnt; 1240 return 0; 1241 } 1242 1243 static int write_cache(struct feat_fd *ff, 1244 struct evlist *evlist __maybe_unused) 1245 { 1246 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL; 1247 struct cpu_cache_level caches[max_caches]; 1248 u32 cnt = 0, i, version = 1; 1249 int ret; 1250 1251 ret = build_caches(caches, &cnt); 1252 if (ret) 1253 goto out; 1254 1255 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1256 1257 ret = do_write(ff, &version, sizeof(u32)); 1258 if (ret < 0) 1259 goto out; 1260 1261 ret = do_write(ff, &cnt, sizeof(u32)); 1262 if (ret < 0) 1263 goto out; 1264 1265 for (i = 0; i < cnt; i++) { 1266 struct cpu_cache_level *c = &caches[i]; 1267 1268 #define _W(v) \ 1269 ret = do_write(ff, &c->v, sizeof(u32)); \ 1270 if (ret < 0) \ 1271 goto out; 1272 1273 _W(level) 1274 _W(line_size) 1275 _W(sets) 1276 _W(ways) 1277 #undef _W 1278 1279 #define _W(v) \ 1280 ret = do_write_string(ff, (const char *) c->v); \ 1281 if (ret < 0) \ 1282 goto out; 1283 1284 _W(type) 1285 _W(size) 1286 _W(map) 1287 #undef _W 1288 } 1289 1290 out: 1291 for (i = 0; i < cnt; i++) 1292 cpu_cache_level__free(&caches[i]); 1293 return ret; 1294 } 1295 1296 static int write_stat(struct feat_fd *ff __maybe_unused, 1297 struct evlist *evlist __maybe_unused) 1298 { 1299 return 0; 1300 } 1301 1302 static int write_sample_time(struct feat_fd *ff, 1303 struct evlist *evlist) 1304 { 1305 int ret; 1306 1307 ret = do_write(ff, &evlist->first_sample_time, 1308 sizeof(evlist->first_sample_time)); 1309 if (ret < 0) 1310 return ret; 1311 1312 return do_write(ff, &evlist->last_sample_time, 1313 sizeof(evlist->last_sample_time)); 1314 } 1315 1316 1317 static int memory_node__read(struct memory_node *n, unsigned long idx) 1318 { 1319 unsigned int phys, size = 0; 1320 char path[PATH_MAX]; 1321 struct io_dirent64 *ent; 1322 struct io_dir dir; 1323 1324 #define for_each_memory(mem, dir) \ 1325 while ((ent = io_dir__readdir(&dir)) != NULL) \ 1326 if (strcmp(ent->d_name, ".") && \ 1327 strcmp(ent->d_name, "..") && \ 1328 sscanf(ent->d_name, "memory%u", &mem) == 1) 1329 1330 scnprintf(path, PATH_MAX, 1331 "%s/devices/system/node/node%lu", 1332 sysfs__mountpoint(), idx); 1333 1334 io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY)); 1335 if (dir.dirfd < 0) { 1336 pr_warning("failed: can't open memory sysfs data '%s'\n", path); 1337 return -1; 1338 } 1339 1340 for_each_memory(phys, dir) { 1341 size = max(phys, size); 1342 } 1343 1344 size++; 1345 1346 n->set = bitmap_zalloc(size); 1347 if (!n->set) { 1348 close(dir.dirfd); 1349 return -ENOMEM; 1350 } 1351 1352 n->node = idx; 1353 n->size = size; 1354 1355 io_dir__rewinddir(&dir); 1356 1357 for_each_memory(phys, dir) { 1358 __set_bit(phys, n->set); 1359 } 1360 1361 close(dir.dirfd); 1362 return 0; 1363 } 1364 1365 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt) 1366 { 1367 for (u64 i = 0; i < cnt; i++) 1368 bitmap_free(nodesp[i].set); 1369 1370 free(nodesp); 1371 } 1372 1373 static int memory_node__sort(const void *a, const void *b) 1374 { 1375 const struct memory_node *na = a; 1376 const struct memory_node *nb = b; 1377 1378 return na->node - nb->node; 1379 } 1380 1381 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp) 1382 { 1383 char path[PATH_MAX]; 1384 struct io_dirent64 *ent; 1385 struct io_dir dir; 1386 int ret = 0; 1387 size_t cnt = 0, size = 0; 1388 struct memory_node *nodes = NULL; 1389 1390 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1391 sysfs__mountpoint()); 1392 1393 io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY)); 1394 if (dir.dirfd < 0) { 1395 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n", 1396 __func__, path); 1397 return -1; 1398 } 1399 1400 while (!ret && (ent = io_dir__readdir(&dir))) { 1401 unsigned int idx; 1402 int r; 1403 1404 if (!strcmp(ent->d_name, ".") || 1405 !strcmp(ent->d_name, "..")) 1406 continue; 1407 1408 r = sscanf(ent->d_name, "node%u", &idx); 1409 if (r != 1) 1410 continue; 1411 1412 if (cnt >= size) { 1413 struct memory_node *new_nodes = 1414 reallocarray(nodes, cnt + 4, sizeof(*nodes)); 1415 1416 if (!new_nodes) { 1417 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size); 1418 ret = -ENOMEM; 1419 goto out; 1420 } 1421 nodes = new_nodes; 1422 size += 4; 1423 } 1424 ret = memory_node__read(&nodes[cnt], idx); 1425 if (!ret) 1426 cnt += 1; 1427 } 1428 out: 1429 close(dir.dirfd); 1430 if (!ret) { 1431 *cntp = cnt; 1432 *nodesp = nodes; 1433 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1434 } else 1435 memory_node__delete_nodes(nodes, cnt); 1436 1437 return ret; 1438 } 1439 1440 /* 1441 * The MEM_TOPOLOGY holds physical memory map for every 1442 * node in system. The format of data is as follows: 1443 * 1444 * 0 - version | for future changes 1445 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1446 * 16 - count | number of nodes 1447 * 1448 * For each node we store map of physical indexes for 1449 * each node: 1450 * 1451 * 32 - node id | node index 1452 * 40 - size | size of bitmap 1453 * 48 - bitmap | bitmap of memory indexes that belongs to node 1454 */ 1455 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1456 struct evlist *evlist __maybe_unused) 1457 { 1458 struct memory_node *nodes = NULL; 1459 u64 bsize, version = 1, i, nr = 0; 1460 int ret; 1461 1462 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1463 (unsigned long long *) &bsize); 1464 if (ret) 1465 return ret; 1466 1467 ret = build_mem_topology(&nodes, &nr); 1468 if (ret) 1469 return ret; 1470 1471 ret = do_write(ff, &version, sizeof(version)); 1472 if (ret < 0) 1473 goto out; 1474 1475 ret = do_write(ff, &bsize, sizeof(bsize)); 1476 if (ret < 0) 1477 goto out; 1478 1479 ret = do_write(ff, &nr, sizeof(nr)); 1480 if (ret < 0) 1481 goto out; 1482 1483 for (i = 0; i < nr; i++) { 1484 struct memory_node *n = &nodes[i]; 1485 1486 #define _W(v) \ 1487 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1488 if (ret < 0) \ 1489 goto out; 1490 1491 _W(node) 1492 _W(size) 1493 1494 #undef _W 1495 1496 ret = do_write_bitmap(ff, n->set, n->size); 1497 if (ret < 0) 1498 goto out; 1499 } 1500 1501 out: 1502 memory_node__delete_nodes(nodes, nr); 1503 return ret; 1504 } 1505 1506 static int write_compressed(struct feat_fd *ff __maybe_unused, 1507 struct evlist *evlist __maybe_unused) 1508 { 1509 int ret; 1510 1511 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1512 if (ret) 1513 return ret; 1514 1515 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1516 if (ret) 1517 return ret; 1518 1519 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1520 if (ret) 1521 return ret; 1522 1523 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1524 if (ret) 1525 return ret; 1526 1527 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1528 } 1529 1530 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu, 1531 bool write_pmu) 1532 { 1533 struct perf_pmu_caps *caps = NULL; 1534 int ret; 1535 1536 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps)); 1537 if (ret < 0) 1538 return ret; 1539 1540 list_for_each_entry(caps, &pmu->caps, list) { 1541 ret = do_write_string(ff, caps->name); 1542 if (ret < 0) 1543 return ret; 1544 1545 ret = do_write_string(ff, caps->value); 1546 if (ret < 0) 1547 return ret; 1548 } 1549 1550 if (write_pmu) { 1551 ret = do_write_string(ff, pmu->name); 1552 if (ret < 0) 1553 return ret; 1554 } 1555 1556 return ret; 1557 } 1558 1559 static int write_cpu_pmu_caps(struct feat_fd *ff, 1560 struct evlist *evlist __maybe_unused) 1561 { 1562 struct perf_pmu *cpu_pmu = perf_pmus__find("cpu"); 1563 int ret; 1564 1565 if (!cpu_pmu) 1566 return -ENOENT; 1567 1568 ret = perf_pmu__caps_parse(cpu_pmu); 1569 if (ret < 0) 1570 return ret; 1571 1572 return __write_pmu_caps(ff, cpu_pmu, false); 1573 } 1574 1575 static int write_pmu_caps(struct feat_fd *ff, 1576 struct evlist *evlist __maybe_unused) 1577 { 1578 struct perf_pmu *pmu = NULL; 1579 int nr_pmu = 0; 1580 int ret; 1581 1582 while ((pmu = perf_pmus__scan(pmu))) { 1583 if (!strcmp(pmu->name, "cpu")) { 1584 /* 1585 * The "cpu" PMU is special and covered by 1586 * HEADER_CPU_PMU_CAPS. Note, core PMUs are 1587 * counted/written here for ARM, s390 and Intel hybrid. 1588 */ 1589 continue; 1590 } 1591 if (perf_pmu__caps_parse(pmu) <= 0) 1592 continue; 1593 nr_pmu++; 1594 } 1595 1596 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu)); 1597 if (ret < 0) 1598 return ret; 1599 1600 if (!nr_pmu) 1601 return 0; 1602 1603 /* 1604 * Note older perf tools assume core PMUs come first, this is a property 1605 * of perf_pmus__scan. 1606 */ 1607 pmu = NULL; 1608 while ((pmu = perf_pmus__scan(pmu))) { 1609 if (!strcmp(pmu->name, "cpu")) { 1610 /* Skip as above. */ 1611 continue; 1612 } 1613 if (perf_pmu__caps_parse(pmu) <= 0) 1614 continue; 1615 ret = __write_pmu_caps(ff, pmu, true); 1616 if (ret < 0) 1617 return ret; 1618 } 1619 return 0; 1620 } 1621 1622 static void print_hostname(struct feat_fd *ff, FILE *fp) 1623 { 1624 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1625 } 1626 1627 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1628 { 1629 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1630 } 1631 1632 static void print_arch(struct feat_fd *ff, FILE *fp) 1633 { 1634 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1635 } 1636 1637 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1638 { 1639 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1640 } 1641 1642 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1643 { 1644 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1645 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1646 } 1647 1648 static void print_version(struct feat_fd *ff, FILE *fp) 1649 { 1650 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1651 } 1652 1653 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1654 { 1655 int nr, i; 1656 1657 nr = ff->ph->env.nr_cmdline; 1658 1659 fprintf(fp, "# cmdline : "); 1660 1661 for (i = 0; i < nr; i++) { 1662 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1663 if (!argv_i) { 1664 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1665 } else { 1666 char *mem = argv_i; 1667 do { 1668 char *quote = strchr(argv_i, '\''); 1669 if (!quote) 1670 break; 1671 *quote++ = '\0'; 1672 fprintf(fp, "%s\\\'", argv_i); 1673 argv_i = quote; 1674 } while (1); 1675 fprintf(fp, "%s ", argv_i); 1676 free(mem); 1677 } 1678 } 1679 fputc('\n', fp); 1680 } 1681 1682 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1683 { 1684 struct perf_header *ph = ff->ph; 1685 int cpu_nr = ph->env.nr_cpus_avail; 1686 int nr, i; 1687 char *str; 1688 1689 nr = ph->env.nr_sibling_cores; 1690 str = ph->env.sibling_cores; 1691 1692 for (i = 0; i < nr; i++) { 1693 fprintf(fp, "# sibling sockets : %s\n", str); 1694 str += strlen(str) + 1; 1695 } 1696 1697 if (ph->env.nr_sibling_dies) { 1698 nr = ph->env.nr_sibling_dies; 1699 str = ph->env.sibling_dies; 1700 1701 for (i = 0; i < nr; i++) { 1702 fprintf(fp, "# sibling dies : %s\n", str); 1703 str += strlen(str) + 1; 1704 } 1705 } 1706 1707 nr = ph->env.nr_sibling_threads; 1708 str = ph->env.sibling_threads; 1709 1710 for (i = 0; i < nr; i++) { 1711 fprintf(fp, "# sibling threads : %s\n", str); 1712 str += strlen(str) + 1; 1713 } 1714 1715 if (ph->env.nr_sibling_dies) { 1716 if (ph->env.cpu != NULL) { 1717 for (i = 0; i < cpu_nr; i++) 1718 fprintf(fp, "# CPU %d: Core ID %d, " 1719 "Die ID %d, Socket ID %d\n", 1720 i, ph->env.cpu[i].core_id, 1721 ph->env.cpu[i].die_id, 1722 ph->env.cpu[i].socket_id); 1723 } else 1724 fprintf(fp, "# Core ID, Die ID and Socket ID " 1725 "information is not available\n"); 1726 } else { 1727 if (ph->env.cpu != NULL) { 1728 for (i = 0; i < cpu_nr; i++) 1729 fprintf(fp, "# CPU %d: Core ID %d, " 1730 "Socket ID %d\n", 1731 i, ph->env.cpu[i].core_id, 1732 ph->env.cpu[i].socket_id); 1733 } else 1734 fprintf(fp, "# Core ID and Socket ID " 1735 "information is not available\n"); 1736 } 1737 } 1738 1739 static void print_clockid(struct feat_fd *ff, FILE *fp) 1740 { 1741 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1742 ff->ph->env.clock.clockid_res_ns * 1000); 1743 } 1744 1745 static void print_clock_data(struct feat_fd *ff, FILE *fp) 1746 { 1747 struct timespec clockid_ns; 1748 char tstr[64], date[64]; 1749 struct timeval tod_ns; 1750 clockid_t clockid; 1751 struct tm ltime; 1752 u64 ref; 1753 1754 if (!ff->ph->env.clock.enabled) { 1755 fprintf(fp, "# reference time disabled\n"); 1756 return; 1757 } 1758 1759 /* Compute TOD time. */ 1760 ref = ff->ph->env.clock.tod_ns; 1761 tod_ns.tv_sec = ref / NSEC_PER_SEC; 1762 ref -= tod_ns.tv_sec * NSEC_PER_SEC; 1763 tod_ns.tv_usec = ref / NSEC_PER_USEC; 1764 1765 /* Compute clockid time. */ 1766 ref = ff->ph->env.clock.clockid_ns; 1767 clockid_ns.tv_sec = ref / NSEC_PER_SEC; 1768 ref -= clockid_ns.tv_sec * NSEC_PER_SEC; 1769 clockid_ns.tv_nsec = ref; 1770 1771 clockid = ff->ph->env.clock.clockid; 1772 1773 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) 1774 snprintf(tstr, sizeof(tstr), "<error>"); 1775 else { 1776 strftime(date, sizeof(date), "%F %T", <ime); 1777 scnprintf(tstr, sizeof(tstr), "%s.%06d", 1778 date, (int) tod_ns.tv_usec); 1779 } 1780 1781 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); 1782 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", 1783 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec, 1784 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec, 1785 clockid_name(clockid)); 1786 } 1787 1788 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp) 1789 { 1790 int i; 1791 struct hybrid_node *n; 1792 1793 fprintf(fp, "# hybrid cpu system:\n"); 1794 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) { 1795 n = &ff->ph->env.hybrid_nodes[i]; 1796 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus); 1797 } 1798 } 1799 1800 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1801 { 1802 struct perf_session *session; 1803 struct perf_data *data; 1804 1805 session = container_of(ff->ph, struct perf_session, header); 1806 data = session->data; 1807 1808 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1809 } 1810 1811 #ifdef HAVE_LIBBPF_SUPPORT 1812 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1813 { 1814 struct perf_env *env = &ff->ph->env; 1815 struct rb_root *root; 1816 struct rb_node *next; 1817 1818 down_read(&env->bpf_progs.lock); 1819 1820 root = &env->bpf_progs.infos; 1821 next = rb_first(root); 1822 1823 if (!next) 1824 printf("# bpf_prog_info empty\n"); 1825 1826 while (next) { 1827 struct bpf_prog_info_node *node; 1828 1829 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1830 next = rb_next(&node->rb_node); 1831 1832 __bpf_event__print_bpf_prog_info(&node->info_linear->info, 1833 env, fp); 1834 } 1835 1836 up_read(&env->bpf_progs.lock); 1837 } 1838 1839 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1840 { 1841 struct perf_env *env = &ff->ph->env; 1842 struct rb_root *root; 1843 struct rb_node *next; 1844 1845 down_read(&env->bpf_progs.lock); 1846 1847 root = &env->bpf_progs.btfs; 1848 next = rb_first(root); 1849 1850 if (!next) 1851 printf("# btf info empty\n"); 1852 1853 while (next) { 1854 struct btf_node *node; 1855 1856 node = rb_entry(next, struct btf_node, rb_node); 1857 next = rb_next(&node->rb_node); 1858 fprintf(fp, "# btf info of id %u\n", node->id); 1859 } 1860 1861 up_read(&env->bpf_progs.lock); 1862 } 1863 #endif // HAVE_LIBBPF_SUPPORT 1864 1865 static void free_event_desc(struct evsel *events) 1866 { 1867 struct evsel *evsel; 1868 1869 if (!events) 1870 return; 1871 1872 for (evsel = events; evsel->core.attr.size; evsel++) { 1873 zfree(&evsel->name); 1874 zfree(&evsel->core.id); 1875 } 1876 1877 free(events); 1878 } 1879 1880 static bool perf_attr_check(struct perf_event_attr *attr) 1881 { 1882 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1883 pr_warning("Reserved bits are set unexpectedly. " 1884 "Please update perf tool.\n"); 1885 return false; 1886 } 1887 1888 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1889 pr_warning("Unknown sample type (0x%llx) is detected. " 1890 "Please update perf tool.\n", 1891 attr->sample_type); 1892 return false; 1893 } 1894 1895 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1896 pr_warning("Unknown read format (0x%llx) is detected. " 1897 "Please update perf tool.\n", 1898 attr->read_format); 1899 return false; 1900 } 1901 1902 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1903 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1904 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1905 "Please update perf tool.\n", 1906 attr->branch_sample_type); 1907 1908 return false; 1909 } 1910 1911 return true; 1912 } 1913 1914 static struct evsel *read_event_desc(struct feat_fd *ff) 1915 { 1916 struct evsel *evsel, *events = NULL; 1917 u64 *id; 1918 void *buf = NULL; 1919 u32 nre, sz, nr, i, j; 1920 size_t msz; 1921 1922 /* number of events */ 1923 if (do_read_u32(ff, &nre)) 1924 goto error; 1925 1926 if (do_read_u32(ff, &sz)) 1927 goto error; 1928 1929 /* buffer to hold on file attr struct */ 1930 buf = malloc(sz); 1931 if (!buf) 1932 goto error; 1933 1934 /* the last event terminates with evsel->core.attr.size == 0: */ 1935 events = calloc(nre + 1, sizeof(*events)); 1936 if (!events) 1937 goto error; 1938 1939 msz = sizeof(evsel->core.attr); 1940 if (sz < msz) 1941 msz = sz; 1942 1943 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1944 evsel->core.idx = i; 1945 1946 /* 1947 * must read entire on-file attr struct to 1948 * sync up with layout. 1949 */ 1950 if (__do_read(ff, buf, sz)) 1951 goto error; 1952 1953 if (ff->ph->needs_swap) 1954 perf_event__attr_swap(buf); 1955 1956 memcpy(&evsel->core.attr, buf, msz); 1957 1958 if (!perf_attr_check(&evsel->core.attr)) 1959 goto error; 1960 1961 if (do_read_u32(ff, &nr)) 1962 goto error; 1963 1964 if (ff->ph->needs_swap) 1965 evsel->needs_swap = true; 1966 1967 evsel->name = do_read_string(ff); 1968 if (!evsel->name) 1969 goto error; 1970 1971 if (!nr) 1972 continue; 1973 1974 id = calloc(nr, sizeof(*id)); 1975 if (!id) 1976 goto error; 1977 evsel->core.ids = nr; 1978 evsel->core.id = id; 1979 1980 for (j = 0 ; j < nr; j++) { 1981 if (do_read_u64(ff, id)) 1982 goto error; 1983 id++; 1984 } 1985 } 1986 out: 1987 free(buf); 1988 return events; 1989 error: 1990 free_event_desc(events); 1991 events = NULL; 1992 goto out; 1993 } 1994 1995 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1996 void *priv __maybe_unused) 1997 { 1998 return fprintf(fp, ", %s = %s", name, val); 1999 } 2000 2001 static void print_event_desc(struct feat_fd *ff, FILE *fp) 2002 { 2003 struct evsel *evsel, *events; 2004 u32 j; 2005 u64 *id; 2006 2007 if (ff->events) 2008 events = ff->events; 2009 else 2010 events = read_event_desc(ff); 2011 2012 if (!events) { 2013 fprintf(fp, "# event desc: not available or unable to read\n"); 2014 return; 2015 } 2016 2017 for (evsel = events; evsel->core.attr.size; evsel++) { 2018 fprintf(fp, "# event : name = %s, ", evsel->name); 2019 2020 if (evsel->core.ids) { 2021 fprintf(fp, ", id = {"); 2022 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 2023 if (j) 2024 fputc(',', fp); 2025 fprintf(fp, " %"PRIu64, *id); 2026 } 2027 fprintf(fp, " }"); 2028 } 2029 2030 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 2031 2032 fputc('\n', fp); 2033 } 2034 2035 free_event_desc(events); 2036 ff->events = NULL; 2037 } 2038 2039 static void print_total_mem(struct feat_fd *ff, FILE *fp) 2040 { 2041 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 2042 } 2043 2044 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 2045 { 2046 int i; 2047 struct numa_node *n; 2048 2049 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 2050 n = &ff->ph->env.numa_nodes[i]; 2051 2052 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 2053 " free = %"PRIu64" kB\n", 2054 n->node, n->mem_total, n->mem_free); 2055 2056 fprintf(fp, "# node%u cpu list : ", n->node); 2057 cpu_map__fprintf(n->map, fp); 2058 } 2059 } 2060 2061 static void print_cpuid(struct feat_fd *ff, FILE *fp) 2062 { 2063 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 2064 } 2065 2066 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 2067 { 2068 fprintf(fp, "# contains samples with branch stack\n"); 2069 } 2070 2071 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 2072 { 2073 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 2074 } 2075 2076 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 2077 { 2078 fprintf(fp, "# contains stat data\n"); 2079 } 2080 2081 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 2082 { 2083 int i; 2084 2085 fprintf(fp, "# CPU cache info:\n"); 2086 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 2087 fprintf(fp, "# "); 2088 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 2089 } 2090 } 2091 2092 static void print_compressed(struct feat_fd *ff, FILE *fp) 2093 { 2094 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 2095 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 2096 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 2097 } 2098 2099 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name) 2100 { 2101 const char *delimiter = ""; 2102 int i; 2103 2104 if (!nr_caps) { 2105 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name); 2106 return; 2107 } 2108 2109 fprintf(fp, "# %s pmu capabilities: ", pmu_name); 2110 for (i = 0; i < nr_caps; i++) { 2111 fprintf(fp, "%s%s", delimiter, caps[i]); 2112 delimiter = ", "; 2113 } 2114 2115 fprintf(fp, "\n"); 2116 } 2117 2118 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2119 { 2120 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps, 2121 ff->ph->env.cpu_pmu_caps, (char *)"cpu"); 2122 } 2123 2124 static void print_pmu_caps(struct feat_fd *ff, FILE *fp) 2125 { 2126 struct pmu_caps *pmu_caps; 2127 2128 for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) { 2129 pmu_caps = &ff->ph->env.pmu_caps[i]; 2130 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps, 2131 pmu_caps->pmu_name); 2132 } 2133 2134 if (strcmp(perf_env__arch(&ff->ph->env), "x86") == 0 && 2135 perf_env__has_pmu_mapping(&ff->ph->env, "ibs_op")) { 2136 char *max_precise = perf_env__find_pmu_cap(&ff->ph->env, "cpu", "max_precise"); 2137 2138 if (max_precise != NULL && atoi(max_precise) == 0) 2139 fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n"); 2140 } 2141 } 2142 2143 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 2144 { 2145 const char *delimiter = "# pmu mappings: "; 2146 char *str, *tmp; 2147 u32 pmu_num; 2148 u32 type; 2149 2150 pmu_num = ff->ph->env.nr_pmu_mappings; 2151 if (!pmu_num) { 2152 fprintf(fp, "# pmu mappings: not available\n"); 2153 return; 2154 } 2155 2156 str = ff->ph->env.pmu_mappings; 2157 2158 while (pmu_num) { 2159 type = strtoul(str, &tmp, 0); 2160 if (*tmp != ':') 2161 goto error; 2162 2163 str = tmp + 1; 2164 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 2165 2166 delimiter = ", "; 2167 str += strlen(str) + 1; 2168 pmu_num--; 2169 } 2170 2171 fprintf(fp, "\n"); 2172 2173 if (!pmu_num) 2174 return; 2175 error: 2176 fprintf(fp, "# pmu mappings: unable to read\n"); 2177 } 2178 2179 static void print_group_desc(struct feat_fd *ff, FILE *fp) 2180 { 2181 struct perf_session *session; 2182 struct evsel *evsel; 2183 u32 nr = 0; 2184 2185 session = container_of(ff->ph, struct perf_session, header); 2186 2187 evlist__for_each_entry(session->evlist, evsel) { 2188 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 2189 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); 2190 2191 nr = evsel->core.nr_members - 1; 2192 } else if (nr) { 2193 fprintf(fp, ",%s", evsel__name(evsel)); 2194 2195 if (--nr == 0) 2196 fprintf(fp, "}\n"); 2197 } 2198 } 2199 } 2200 2201 static void print_sample_time(struct feat_fd *ff, FILE *fp) 2202 { 2203 struct perf_session *session; 2204 char time_buf[32]; 2205 double d; 2206 2207 session = container_of(ff->ph, struct perf_session, header); 2208 2209 timestamp__scnprintf_usec(session->evlist->first_sample_time, 2210 time_buf, sizeof(time_buf)); 2211 fprintf(fp, "# time of first sample : %s\n", time_buf); 2212 2213 timestamp__scnprintf_usec(session->evlist->last_sample_time, 2214 time_buf, sizeof(time_buf)); 2215 fprintf(fp, "# time of last sample : %s\n", time_buf); 2216 2217 d = (double)(session->evlist->last_sample_time - 2218 session->evlist->first_sample_time) / NSEC_PER_MSEC; 2219 2220 fprintf(fp, "# sample duration : %10.3f ms\n", d); 2221 } 2222 2223 static void memory_node__fprintf(struct memory_node *n, 2224 unsigned long long bsize, FILE *fp) 2225 { 2226 char buf_map[100], buf_size[50]; 2227 unsigned long long size; 2228 2229 size = bsize * bitmap_weight(n->set, n->size); 2230 unit_number__scnprintf(buf_size, 50, size); 2231 2232 bitmap_scnprintf(n->set, n->size, buf_map, 100); 2233 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 2234 } 2235 2236 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 2237 { 2238 struct memory_node *nodes; 2239 int i, nr; 2240 2241 nodes = ff->ph->env.memory_nodes; 2242 nr = ff->ph->env.nr_memory_nodes; 2243 2244 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 2245 nr, ff->ph->env.memory_bsize); 2246 2247 for (i = 0; i < nr; i++) { 2248 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 2249 } 2250 } 2251 2252 static int __event_process_build_id(struct perf_record_header_build_id *bev, 2253 char *filename, 2254 struct perf_session *session) 2255 { 2256 int err = -1; 2257 struct machine *machine; 2258 u16 cpumode; 2259 struct dso *dso; 2260 enum dso_space_type dso_space; 2261 2262 machine = perf_session__findnew_machine(session, bev->pid); 2263 if (!machine) 2264 goto out; 2265 2266 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2267 2268 switch (cpumode) { 2269 case PERF_RECORD_MISC_KERNEL: 2270 dso_space = DSO_SPACE__KERNEL; 2271 break; 2272 case PERF_RECORD_MISC_GUEST_KERNEL: 2273 dso_space = DSO_SPACE__KERNEL_GUEST; 2274 break; 2275 case PERF_RECORD_MISC_USER: 2276 case PERF_RECORD_MISC_GUEST_USER: 2277 dso_space = DSO_SPACE__USER; 2278 break; 2279 default: 2280 goto out; 2281 } 2282 2283 dso = machine__findnew_dso(machine, filename); 2284 if (dso != NULL) { 2285 char sbuild_id[SBUILD_ID_SIZE]; 2286 struct build_id bid; 2287 size_t size = BUILD_ID_SIZE; 2288 2289 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) 2290 size = bev->size; 2291 2292 build_id__init(&bid, bev->data, size); 2293 dso__set_build_id(dso, &bid); 2294 dso__set_header_build_id(dso, true); 2295 2296 if (dso_space != DSO_SPACE__USER) { 2297 struct kmod_path m = { .name = NULL, }; 2298 2299 if (!kmod_path__parse_name(&m, filename) && m.kmod) 2300 dso__set_module_info(dso, &m, machine); 2301 2302 dso__set_kernel(dso, dso_space); 2303 free(m.name); 2304 } 2305 2306 build_id__sprintf(dso__bid(dso), sbuild_id); 2307 pr_debug("build id event received for %s: %s [%zu]\n", 2308 dso__long_name(dso), sbuild_id, size); 2309 dso__put(dso); 2310 } 2311 2312 err = 0; 2313 out: 2314 return err; 2315 } 2316 2317 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 2318 int input, u64 offset, u64 size) 2319 { 2320 struct perf_session *session = container_of(header, struct perf_session, header); 2321 struct { 2322 struct perf_event_header header; 2323 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 2324 char filename[0]; 2325 } old_bev; 2326 struct perf_record_header_build_id bev; 2327 char filename[PATH_MAX]; 2328 u64 limit = offset + size; 2329 2330 while (offset < limit) { 2331 ssize_t len; 2332 2333 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2334 return -1; 2335 2336 if (header->needs_swap) 2337 perf_event_header__bswap(&old_bev.header); 2338 2339 len = old_bev.header.size - sizeof(old_bev); 2340 if (readn(input, filename, len) != len) 2341 return -1; 2342 2343 bev.header = old_bev.header; 2344 2345 /* 2346 * As the pid is the missing value, we need to fill 2347 * it properly. The header.misc value give us nice hint. 2348 */ 2349 bev.pid = HOST_KERNEL_ID; 2350 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2351 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2352 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2353 2354 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2355 __event_process_build_id(&bev, filename, session); 2356 2357 offset += bev.header.size; 2358 } 2359 2360 return 0; 2361 } 2362 2363 static int perf_header__read_build_ids(struct perf_header *header, 2364 int input, u64 offset, u64 size) 2365 { 2366 struct perf_session *session = container_of(header, struct perf_session, header); 2367 struct perf_record_header_build_id bev; 2368 char filename[PATH_MAX]; 2369 u64 limit = offset + size, orig_offset = offset; 2370 int err = -1; 2371 2372 while (offset < limit) { 2373 ssize_t len; 2374 2375 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2376 goto out; 2377 2378 if (header->needs_swap) 2379 perf_event_header__bswap(&bev.header); 2380 2381 len = bev.header.size - sizeof(bev); 2382 if (readn(input, filename, len) != len) 2383 goto out; 2384 /* 2385 * The a1645ce1 changeset: 2386 * 2387 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2388 * 2389 * Added a field to struct perf_record_header_build_id that broke the file 2390 * format. 2391 * 2392 * Since the kernel build-id is the first entry, process the 2393 * table using the old format if the well known 2394 * '[kernel.kallsyms]' string for the kernel build-id has the 2395 * first 4 characters chopped off (where the pid_t sits). 2396 */ 2397 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2398 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2399 return -1; 2400 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2401 } 2402 2403 __event_process_build_id(&bev, filename, session); 2404 2405 offset += bev.header.size; 2406 } 2407 err = 0; 2408 out: 2409 return err; 2410 } 2411 2412 /* Macro for features that simply need to read and store a string. */ 2413 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2414 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2415 {\ 2416 free(ff->ph->env.__feat_env); \ 2417 ff->ph->env.__feat_env = do_read_string(ff); \ 2418 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2419 } 2420 2421 FEAT_PROCESS_STR_FUN(hostname, hostname); 2422 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2423 FEAT_PROCESS_STR_FUN(version, version); 2424 FEAT_PROCESS_STR_FUN(arch, arch); 2425 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2426 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2427 2428 #ifdef HAVE_LIBTRACEEVENT 2429 static int process_tracing_data(struct feat_fd *ff, void *data) 2430 { 2431 ssize_t ret = trace_report(ff->fd, data, false); 2432 2433 return ret < 0 ? -1 : 0; 2434 } 2435 #endif 2436 2437 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2438 { 2439 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2440 pr_debug("Failed to read buildids, continuing...\n"); 2441 return 0; 2442 } 2443 2444 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2445 { 2446 int ret; 2447 u32 nr_cpus_avail, nr_cpus_online; 2448 2449 ret = do_read_u32(ff, &nr_cpus_avail); 2450 if (ret) 2451 return ret; 2452 2453 ret = do_read_u32(ff, &nr_cpus_online); 2454 if (ret) 2455 return ret; 2456 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2457 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2458 return 0; 2459 } 2460 2461 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2462 { 2463 u64 total_mem; 2464 int ret; 2465 2466 ret = do_read_u64(ff, &total_mem); 2467 if (ret) 2468 return -1; 2469 ff->ph->env.total_mem = (unsigned long long)total_mem; 2470 return 0; 2471 } 2472 2473 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) 2474 { 2475 struct evsel *evsel; 2476 2477 evlist__for_each_entry(evlist, evsel) { 2478 if (evsel->core.idx == idx) 2479 return evsel; 2480 } 2481 2482 return NULL; 2483 } 2484 2485 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event) 2486 { 2487 struct evsel *evsel; 2488 2489 if (!event->name) 2490 return; 2491 2492 evsel = evlist__find_by_index(evlist, event->core.idx); 2493 if (!evsel) 2494 return; 2495 2496 if (evsel->name) 2497 return; 2498 2499 evsel->name = strdup(event->name); 2500 } 2501 2502 static int 2503 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2504 { 2505 struct perf_session *session; 2506 struct evsel *evsel, *events = read_event_desc(ff); 2507 2508 if (!events) 2509 return 0; 2510 2511 session = container_of(ff->ph, struct perf_session, header); 2512 2513 if (session->data->is_pipe) { 2514 /* Save events for reading later by print_event_desc, 2515 * since they can't be read again in pipe mode. */ 2516 ff->events = events; 2517 } 2518 2519 for (evsel = events; evsel->core.attr.size; evsel++) 2520 evlist__set_event_name(session->evlist, evsel); 2521 2522 if (!session->data->is_pipe) 2523 free_event_desc(events); 2524 2525 return 0; 2526 } 2527 2528 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2529 { 2530 char *str, *cmdline = NULL, **argv = NULL; 2531 u32 nr, i, len = 0; 2532 2533 if (do_read_u32(ff, &nr)) 2534 return -1; 2535 2536 ff->ph->env.nr_cmdline = nr; 2537 2538 cmdline = zalloc(ff->size + nr + 1); 2539 if (!cmdline) 2540 return -1; 2541 2542 argv = zalloc(sizeof(char *) * (nr + 1)); 2543 if (!argv) 2544 goto error; 2545 2546 for (i = 0; i < nr; i++) { 2547 str = do_read_string(ff); 2548 if (!str) 2549 goto error; 2550 2551 argv[i] = cmdline + len; 2552 memcpy(argv[i], str, strlen(str) + 1); 2553 len += strlen(str) + 1; 2554 free(str); 2555 } 2556 ff->ph->env.cmdline = cmdline; 2557 ff->ph->env.cmdline_argv = (const char **) argv; 2558 return 0; 2559 2560 error: 2561 free(argv); 2562 free(cmdline); 2563 return -1; 2564 } 2565 2566 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2567 { 2568 u32 nr, i; 2569 char *str = NULL; 2570 struct strbuf sb; 2571 int cpu_nr = ff->ph->env.nr_cpus_avail; 2572 u64 size = 0; 2573 struct perf_header *ph = ff->ph; 2574 2575 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2576 if (!ph->env.cpu) 2577 return -1; 2578 2579 if (do_read_u32(ff, &nr)) 2580 goto free_cpu; 2581 2582 ph->env.nr_sibling_cores = nr; 2583 size += sizeof(u32); 2584 if (strbuf_init(&sb, 128) < 0) 2585 goto free_cpu; 2586 2587 for (i = 0; i < nr; i++) { 2588 str = do_read_string(ff); 2589 if (!str) 2590 goto error; 2591 2592 /* include a NULL character at the end */ 2593 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2594 goto error; 2595 size += string_size(str); 2596 zfree(&str); 2597 } 2598 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2599 2600 if (do_read_u32(ff, &nr)) 2601 return -1; 2602 2603 ph->env.nr_sibling_threads = nr; 2604 size += sizeof(u32); 2605 2606 for (i = 0; i < nr; i++) { 2607 str = do_read_string(ff); 2608 if (!str) 2609 goto error; 2610 2611 /* include a NULL character at the end */ 2612 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2613 goto error; 2614 size += string_size(str); 2615 zfree(&str); 2616 } 2617 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2618 2619 /* 2620 * The header may be from old perf, 2621 * which doesn't include core id and socket id information. 2622 */ 2623 if (ff->size <= size) { 2624 zfree(&ph->env.cpu); 2625 return 0; 2626 } 2627 2628 for (i = 0; i < (u32)cpu_nr; i++) { 2629 if (do_read_u32(ff, &nr)) 2630 goto free_cpu; 2631 2632 ph->env.cpu[i].core_id = nr; 2633 size += sizeof(u32); 2634 2635 if (do_read_u32(ff, &nr)) 2636 goto free_cpu; 2637 2638 ph->env.cpu[i].socket_id = nr; 2639 size += sizeof(u32); 2640 } 2641 2642 /* 2643 * The header may be from old perf, 2644 * which doesn't include die information. 2645 */ 2646 if (ff->size <= size) 2647 return 0; 2648 2649 if (do_read_u32(ff, &nr)) 2650 return -1; 2651 2652 ph->env.nr_sibling_dies = nr; 2653 size += sizeof(u32); 2654 2655 for (i = 0; i < nr; i++) { 2656 str = do_read_string(ff); 2657 if (!str) 2658 goto error; 2659 2660 /* include a NULL character at the end */ 2661 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2662 goto error; 2663 size += string_size(str); 2664 zfree(&str); 2665 } 2666 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2667 2668 for (i = 0; i < (u32)cpu_nr; i++) { 2669 if (do_read_u32(ff, &nr)) 2670 goto free_cpu; 2671 2672 ph->env.cpu[i].die_id = nr; 2673 } 2674 2675 return 0; 2676 2677 error: 2678 strbuf_release(&sb); 2679 zfree(&str); 2680 free_cpu: 2681 zfree(&ph->env.cpu); 2682 return -1; 2683 } 2684 2685 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2686 { 2687 struct numa_node *nodes, *n; 2688 u32 nr, i; 2689 char *str; 2690 2691 /* nr nodes */ 2692 if (do_read_u32(ff, &nr)) 2693 return -1; 2694 2695 nodes = zalloc(sizeof(*nodes) * nr); 2696 if (!nodes) 2697 return -ENOMEM; 2698 2699 for (i = 0; i < nr; i++) { 2700 n = &nodes[i]; 2701 2702 /* node number */ 2703 if (do_read_u32(ff, &n->node)) 2704 goto error; 2705 2706 if (do_read_u64(ff, &n->mem_total)) 2707 goto error; 2708 2709 if (do_read_u64(ff, &n->mem_free)) 2710 goto error; 2711 2712 str = do_read_string(ff); 2713 if (!str) 2714 goto error; 2715 2716 n->map = perf_cpu_map__new(str); 2717 free(str); 2718 if (!n->map) 2719 goto error; 2720 } 2721 ff->ph->env.nr_numa_nodes = nr; 2722 ff->ph->env.numa_nodes = nodes; 2723 return 0; 2724 2725 error: 2726 free(nodes); 2727 return -1; 2728 } 2729 2730 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2731 { 2732 char *name; 2733 u32 pmu_num; 2734 u32 type; 2735 struct strbuf sb; 2736 2737 if (do_read_u32(ff, &pmu_num)) 2738 return -1; 2739 2740 if (!pmu_num) { 2741 pr_debug("pmu mappings not available\n"); 2742 return 0; 2743 } 2744 2745 ff->ph->env.nr_pmu_mappings = pmu_num; 2746 if (strbuf_init(&sb, 128) < 0) 2747 return -1; 2748 2749 while (pmu_num) { 2750 if (do_read_u32(ff, &type)) 2751 goto error; 2752 2753 name = do_read_string(ff); 2754 if (!name) 2755 goto error; 2756 2757 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2758 goto error; 2759 /* include a NULL character at the end */ 2760 if (strbuf_add(&sb, "", 1) < 0) 2761 goto error; 2762 2763 if (!strcmp(name, "msr")) 2764 ff->ph->env.msr_pmu_type = type; 2765 2766 free(name); 2767 pmu_num--; 2768 } 2769 /* AMD may set it by evlist__has_amd_ibs() from perf_session__new() */ 2770 free(ff->ph->env.pmu_mappings); 2771 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2772 return 0; 2773 2774 error: 2775 strbuf_release(&sb); 2776 return -1; 2777 } 2778 2779 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2780 { 2781 size_t ret = -1; 2782 u32 i, nr, nr_groups; 2783 struct perf_session *session; 2784 struct evsel *evsel, *leader = NULL; 2785 struct group_desc { 2786 char *name; 2787 u32 leader_idx; 2788 u32 nr_members; 2789 } *desc; 2790 2791 if (do_read_u32(ff, &nr_groups)) 2792 return -1; 2793 2794 ff->ph->env.nr_groups = nr_groups; 2795 if (!nr_groups) { 2796 pr_debug("group desc not available\n"); 2797 return 0; 2798 } 2799 2800 desc = calloc(nr_groups, sizeof(*desc)); 2801 if (!desc) 2802 return -1; 2803 2804 for (i = 0; i < nr_groups; i++) { 2805 desc[i].name = do_read_string(ff); 2806 if (!desc[i].name) 2807 goto out_free; 2808 2809 if (do_read_u32(ff, &desc[i].leader_idx)) 2810 goto out_free; 2811 2812 if (do_read_u32(ff, &desc[i].nr_members)) 2813 goto out_free; 2814 } 2815 2816 /* 2817 * Rebuild group relationship based on the group_desc 2818 */ 2819 session = container_of(ff->ph, struct perf_session, header); 2820 2821 i = nr = 0; 2822 evlist__for_each_entry(session->evlist, evsel) { 2823 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) { 2824 evsel__set_leader(evsel, evsel); 2825 /* {anon_group} is a dummy name */ 2826 if (strcmp(desc[i].name, "{anon_group}")) { 2827 evsel->group_name = desc[i].name; 2828 desc[i].name = NULL; 2829 } 2830 evsel->core.nr_members = desc[i].nr_members; 2831 2832 if (i >= nr_groups || nr > 0) { 2833 pr_debug("invalid group desc\n"); 2834 goto out_free; 2835 } 2836 2837 leader = evsel; 2838 nr = evsel->core.nr_members - 1; 2839 i++; 2840 } else if (nr) { 2841 /* This is a group member */ 2842 evsel__set_leader(evsel, leader); 2843 2844 nr--; 2845 } 2846 } 2847 2848 if (i != nr_groups || nr != 0) { 2849 pr_debug("invalid group desc\n"); 2850 goto out_free; 2851 } 2852 2853 ret = 0; 2854 out_free: 2855 for (i = 0; i < nr_groups; i++) 2856 zfree(&desc[i].name); 2857 free(desc); 2858 2859 return ret; 2860 } 2861 2862 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2863 { 2864 struct perf_session *session; 2865 int err; 2866 2867 session = container_of(ff->ph, struct perf_session, header); 2868 2869 err = auxtrace_index__process(ff->fd, ff->size, session, 2870 ff->ph->needs_swap); 2871 if (err < 0) 2872 pr_err("Failed to process auxtrace index\n"); 2873 return err; 2874 } 2875 2876 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2877 { 2878 struct cpu_cache_level *caches; 2879 u32 cnt, i, version; 2880 2881 if (do_read_u32(ff, &version)) 2882 return -1; 2883 2884 if (version != 1) 2885 return -1; 2886 2887 if (do_read_u32(ff, &cnt)) 2888 return -1; 2889 2890 caches = zalloc(sizeof(*caches) * cnt); 2891 if (!caches) 2892 return -1; 2893 2894 for (i = 0; i < cnt; i++) { 2895 struct cpu_cache_level *c = &caches[i]; 2896 2897 #define _R(v) \ 2898 if (do_read_u32(ff, &c->v)) \ 2899 goto out_free_caches; \ 2900 2901 _R(level) 2902 _R(line_size) 2903 _R(sets) 2904 _R(ways) 2905 #undef _R 2906 2907 #define _R(v) \ 2908 c->v = do_read_string(ff); \ 2909 if (!c->v) \ 2910 goto out_free_caches; \ 2911 2912 _R(type) 2913 _R(size) 2914 _R(map) 2915 #undef _R 2916 } 2917 2918 ff->ph->env.caches = caches; 2919 ff->ph->env.caches_cnt = cnt; 2920 return 0; 2921 out_free_caches: 2922 for (i = 0; i < cnt; i++) { 2923 free(caches[i].type); 2924 free(caches[i].size); 2925 free(caches[i].map); 2926 } 2927 free(caches); 2928 return -1; 2929 } 2930 2931 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2932 { 2933 struct perf_session *session; 2934 u64 first_sample_time, last_sample_time; 2935 int ret; 2936 2937 session = container_of(ff->ph, struct perf_session, header); 2938 2939 ret = do_read_u64(ff, &first_sample_time); 2940 if (ret) 2941 return -1; 2942 2943 ret = do_read_u64(ff, &last_sample_time); 2944 if (ret) 2945 return -1; 2946 2947 session->evlist->first_sample_time = first_sample_time; 2948 session->evlist->last_sample_time = last_sample_time; 2949 return 0; 2950 } 2951 2952 static int process_mem_topology(struct feat_fd *ff, 2953 void *data __maybe_unused) 2954 { 2955 struct memory_node *nodes; 2956 u64 version, i, nr, bsize; 2957 int ret = -1; 2958 2959 if (do_read_u64(ff, &version)) 2960 return -1; 2961 2962 if (version != 1) 2963 return -1; 2964 2965 if (do_read_u64(ff, &bsize)) 2966 return -1; 2967 2968 if (do_read_u64(ff, &nr)) 2969 return -1; 2970 2971 nodes = zalloc(sizeof(*nodes) * nr); 2972 if (!nodes) 2973 return -1; 2974 2975 for (i = 0; i < nr; i++) { 2976 struct memory_node n; 2977 2978 #define _R(v) \ 2979 if (do_read_u64(ff, &n.v)) \ 2980 goto out; \ 2981 2982 _R(node) 2983 _R(size) 2984 2985 #undef _R 2986 2987 if (do_read_bitmap(ff, &n.set, &n.size)) 2988 goto out; 2989 2990 nodes[i] = n; 2991 } 2992 2993 ff->ph->env.memory_bsize = bsize; 2994 ff->ph->env.memory_nodes = nodes; 2995 ff->ph->env.nr_memory_nodes = nr; 2996 ret = 0; 2997 2998 out: 2999 if (ret) 3000 free(nodes); 3001 return ret; 3002 } 3003 3004 static int process_clockid(struct feat_fd *ff, 3005 void *data __maybe_unused) 3006 { 3007 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns)) 3008 return -1; 3009 3010 return 0; 3011 } 3012 3013 static int process_clock_data(struct feat_fd *ff, 3014 void *_data __maybe_unused) 3015 { 3016 u32 data32; 3017 u64 data64; 3018 3019 /* version */ 3020 if (do_read_u32(ff, &data32)) 3021 return -1; 3022 3023 if (data32 != 1) 3024 return -1; 3025 3026 /* clockid */ 3027 if (do_read_u32(ff, &data32)) 3028 return -1; 3029 3030 ff->ph->env.clock.clockid = data32; 3031 3032 /* TOD ref time */ 3033 if (do_read_u64(ff, &data64)) 3034 return -1; 3035 3036 ff->ph->env.clock.tod_ns = data64; 3037 3038 /* clockid ref time */ 3039 if (do_read_u64(ff, &data64)) 3040 return -1; 3041 3042 ff->ph->env.clock.clockid_ns = data64; 3043 ff->ph->env.clock.enabled = true; 3044 return 0; 3045 } 3046 3047 static int process_hybrid_topology(struct feat_fd *ff, 3048 void *data __maybe_unused) 3049 { 3050 struct hybrid_node *nodes, *n; 3051 u32 nr, i; 3052 3053 /* nr nodes */ 3054 if (do_read_u32(ff, &nr)) 3055 return -1; 3056 3057 nodes = zalloc(sizeof(*nodes) * nr); 3058 if (!nodes) 3059 return -ENOMEM; 3060 3061 for (i = 0; i < nr; i++) { 3062 n = &nodes[i]; 3063 3064 n->pmu_name = do_read_string(ff); 3065 if (!n->pmu_name) 3066 goto error; 3067 3068 n->cpus = do_read_string(ff); 3069 if (!n->cpus) 3070 goto error; 3071 } 3072 3073 ff->ph->env.nr_hybrid_nodes = nr; 3074 ff->ph->env.hybrid_nodes = nodes; 3075 return 0; 3076 3077 error: 3078 for (i = 0; i < nr; i++) { 3079 free(nodes[i].pmu_name); 3080 free(nodes[i].cpus); 3081 } 3082 3083 free(nodes); 3084 return -1; 3085 } 3086 3087 static int process_dir_format(struct feat_fd *ff, 3088 void *_data __maybe_unused) 3089 { 3090 struct perf_session *session; 3091 struct perf_data *data; 3092 3093 session = container_of(ff->ph, struct perf_session, header); 3094 data = session->data; 3095 3096 if (WARN_ON(!perf_data__is_dir(data))) 3097 return -1; 3098 3099 return do_read_u64(ff, &data->dir.version); 3100 } 3101 3102 #ifdef HAVE_LIBBPF_SUPPORT 3103 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 3104 { 3105 struct bpf_prog_info_node *info_node; 3106 struct perf_env *env = &ff->ph->env; 3107 struct perf_bpil *info_linear; 3108 u32 count, i; 3109 int err = -1; 3110 3111 if (ff->ph->needs_swap) { 3112 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n"); 3113 return 0; 3114 } 3115 3116 if (do_read_u32(ff, &count)) 3117 return -1; 3118 3119 down_write(&env->bpf_progs.lock); 3120 3121 for (i = 0; i < count; ++i) { 3122 u32 info_len, data_len; 3123 3124 info_linear = NULL; 3125 info_node = NULL; 3126 if (do_read_u32(ff, &info_len)) 3127 goto out; 3128 if (do_read_u32(ff, &data_len)) 3129 goto out; 3130 3131 if (info_len > sizeof(struct bpf_prog_info)) { 3132 pr_warning("detected invalid bpf_prog_info\n"); 3133 goto out; 3134 } 3135 3136 info_linear = malloc(sizeof(struct perf_bpil) + 3137 data_len); 3138 if (!info_linear) 3139 goto out; 3140 info_linear->info_len = sizeof(struct bpf_prog_info); 3141 info_linear->data_len = data_len; 3142 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 3143 goto out; 3144 if (__do_read(ff, &info_linear->info, info_len)) 3145 goto out; 3146 if (info_len < sizeof(struct bpf_prog_info)) 3147 memset(((void *)(&info_linear->info)) + info_len, 0, 3148 sizeof(struct bpf_prog_info) - info_len); 3149 3150 if (__do_read(ff, info_linear->data, data_len)) 3151 goto out; 3152 3153 info_node = malloc(sizeof(struct bpf_prog_info_node)); 3154 if (!info_node) 3155 goto out; 3156 3157 /* after reading from file, translate offset to address */ 3158 bpil_offs_to_addr(info_linear); 3159 info_node->info_linear = info_linear; 3160 info_node->metadata = NULL; 3161 if (!__perf_env__insert_bpf_prog_info(env, info_node)) { 3162 free(info_linear); 3163 free(info_node); 3164 } 3165 } 3166 3167 up_write(&env->bpf_progs.lock); 3168 return 0; 3169 out: 3170 free(info_linear); 3171 free(info_node); 3172 up_write(&env->bpf_progs.lock); 3173 return err; 3174 } 3175 3176 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 3177 { 3178 struct perf_env *env = &ff->ph->env; 3179 struct btf_node *node = NULL; 3180 u32 count, i; 3181 int err = -1; 3182 3183 if (ff->ph->needs_swap) { 3184 pr_warning("interpreting btf from systems with endianness is not yet supported\n"); 3185 return 0; 3186 } 3187 3188 if (do_read_u32(ff, &count)) 3189 return -1; 3190 3191 down_write(&env->bpf_progs.lock); 3192 3193 for (i = 0; i < count; ++i) { 3194 u32 id, data_size; 3195 3196 if (do_read_u32(ff, &id)) 3197 goto out; 3198 if (do_read_u32(ff, &data_size)) 3199 goto out; 3200 3201 node = malloc(sizeof(struct btf_node) + data_size); 3202 if (!node) 3203 goto out; 3204 3205 node->id = id; 3206 node->data_size = data_size; 3207 3208 if (__do_read(ff, node->data, data_size)) 3209 goto out; 3210 3211 if (!__perf_env__insert_btf(env, node)) 3212 free(node); 3213 node = NULL; 3214 } 3215 3216 err = 0; 3217 out: 3218 up_write(&env->bpf_progs.lock); 3219 free(node); 3220 return err; 3221 } 3222 #endif // HAVE_LIBBPF_SUPPORT 3223 3224 static int process_compressed(struct feat_fd *ff, 3225 void *data __maybe_unused) 3226 { 3227 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 3228 return -1; 3229 3230 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 3231 return -1; 3232 3233 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 3234 return -1; 3235 3236 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 3237 return -1; 3238 3239 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 3240 return -1; 3241 3242 return 0; 3243 } 3244 3245 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps, 3246 char ***caps, unsigned int *max_branches, 3247 unsigned int *br_cntr_nr, 3248 unsigned int *br_cntr_width) 3249 { 3250 char *name, *value, *ptr; 3251 u32 nr_pmu_caps, i; 3252 3253 *nr_caps = 0; 3254 *caps = NULL; 3255 3256 if (do_read_u32(ff, &nr_pmu_caps)) 3257 return -1; 3258 3259 if (!nr_pmu_caps) 3260 return 0; 3261 3262 *caps = zalloc(sizeof(char *) * nr_pmu_caps); 3263 if (!*caps) 3264 return -1; 3265 3266 for (i = 0; i < nr_pmu_caps; i++) { 3267 name = do_read_string(ff); 3268 if (!name) 3269 goto error; 3270 3271 value = do_read_string(ff); 3272 if (!value) 3273 goto free_name; 3274 3275 if (asprintf(&ptr, "%s=%s", name, value) < 0) 3276 goto free_value; 3277 3278 (*caps)[i] = ptr; 3279 3280 if (!strcmp(name, "branches")) 3281 *max_branches = atoi(value); 3282 3283 if (!strcmp(name, "branch_counter_nr")) 3284 *br_cntr_nr = atoi(value); 3285 3286 if (!strcmp(name, "branch_counter_width")) 3287 *br_cntr_width = atoi(value); 3288 3289 free(value); 3290 free(name); 3291 } 3292 *nr_caps = nr_pmu_caps; 3293 return 0; 3294 3295 free_value: 3296 free(value); 3297 free_name: 3298 free(name); 3299 error: 3300 for (; i > 0; i--) 3301 free((*caps)[i - 1]); 3302 free(*caps); 3303 *caps = NULL; 3304 *nr_caps = 0; 3305 return -1; 3306 } 3307 3308 static int process_cpu_pmu_caps(struct feat_fd *ff, 3309 void *data __maybe_unused) 3310 { 3311 int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps, 3312 &ff->ph->env.cpu_pmu_caps, 3313 &ff->ph->env.max_branches, 3314 &ff->ph->env.br_cntr_nr, 3315 &ff->ph->env.br_cntr_width); 3316 3317 if (!ret && !ff->ph->env.cpu_pmu_caps) 3318 pr_debug("cpu pmu capabilities not available\n"); 3319 return ret; 3320 } 3321 3322 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused) 3323 { 3324 struct pmu_caps *pmu_caps; 3325 u32 nr_pmu, i; 3326 int ret; 3327 int j; 3328 3329 if (do_read_u32(ff, &nr_pmu)) 3330 return -1; 3331 3332 if (!nr_pmu) { 3333 pr_debug("pmu capabilities not available\n"); 3334 return 0; 3335 } 3336 3337 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu); 3338 if (!pmu_caps) 3339 return -ENOMEM; 3340 3341 for (i = 0; i < nr_pmu; i++) { 3342 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps, 3343 &pmu_caps[i].caps, 3344 &pmu_caps[i].max_branches, 3345 &pmu_caps[i].br_cntr_nr, 3346 &pmu_caps[i].br_cntr_width); 3347 if (ret) 3348 goto err; 3349 3350 pmu_caps[i].pmu_name = do_read_string(ff); 3351 if (!pmu_caps[i].pmu_name) { 3352 ret = -1; 3353 goto err; 3354 } 3355 if (!pmu_caps[i].nr_caps) { 3356 pr_debug("%s pmu capabilities not available\n", 3357 pmu_caps[i].pmu_name); 3358 } 3359 } 3360 3361 ff->ph->env.nr_pmus_with_caps = nr_pmu; 3362 ff->ph->env.pmu_caps = pmu_caps; 3363 return 0; 3364 3365 err: 3366 for (i = 0; i < nr_pmu; i++) { 3367 for (j = 0; j < pmu_caps[i].nr_caps; j++) 3368 free(pmu_caps[i].caps[j]); 3369 free(pmu_caps[i].caps); 3370 free(pmu_caps[i].pmu_name); 3371 } 3372 3373 free(pmu_caps); 3374 return ret; 3375 } 3376 3377 #define FEAT_OPR(n, func, __full_only) \ 3378 [HEADER_##n] = { \ 3379 .name = __stringify(n), \ 3380 .write = write_##func, \ 3381 .print = print_##func, \ 3382 .full_only = __full_only, \ 3383 .process = process_##func, \ 3384 .synthesize = true \ 3385 } 3386 3387 #define FEAT_OPN(n, func, __full_only) \ 3388 [HEADER_##n] = { \ 3389 .name = __stringify(n), \ 3390 .write = write_##func, \ 3391 .print = print_##func, \ 3392 .full_only = __full_only, \ 3393 .process = process_##func \ 3394 } 3395 3396 /* feature_ops not implemented: */ 3397 #define print_tracing_data NULL 3398 #define print_build_id NULL 3399 3400 #define process_branch_stack NULL 3401 #define process_stat NULL 3402 3403 // Only used in util/synthetic-events.c 3404 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 3405 3406 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 3407 #ifdef HAVE_LIBTRACEEVENT 3408 FEAT_OPN(TRACING_DATA, tracing_data, false), 3409 #endif 3410 FEAT_OPN(BUILD_ID, build_id, false), 3411 FEAT_OPR(HOSTNAME, hostname, false), 3412 FEAT_OPR(OSRELEASE, osrelease, false), 3413 FEAT_OPR(VERSION, version, false), 3414 FEAT_OPR(ARCH, arch, false), 3415 FEAT_OPR(NRCPUS, nrcpus, false), 3416 FEAT_OPR(CPUDESC, cpudesc, false), 3417 FEAT_OPR(CPUID, cpuid, false), 3418 FEAT_OPR(TOTAL_MEM, total_mem, false), 3419 FEAT_OPR(EVENT_DESC, event_desc, false), 3420 FEAT_OPR(CMDLINE, cmdline, false), 3421 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 3422 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 3423 FEAT_OPN(BRANCH_STACK, branch_stack, false), 3424 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 3425 FEAT_OPR(GROUP_DESC, group_desc, false), 3426 FEAT_OPN(AUXTRACE, auxtrace, false), 3427 FEAT_OPN(STAT, stat, false), 3428 FEAT_OPN(CACHE, cache, true), 3429 FEAT_OPR(SAMPLE_TIME, sample_time, false), 3430 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 3431 FEAT_OPR(CLOCKID, clockid, false), 3432 FEAT_OPN(DIR_FORMAT, dir_format, false), 3433 #ifdef HAVE_LIBBPF_SUPPORT 3434 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 3435 FEAT_OPR(BPF_BTF, bpf_btf, false), 3436 #endif 3437 FEAT_OPR(COMPRESSED, compressed, false), 3438 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), 3439 FEAT_OPR(CLOCK_DATA, clock_data, false), 3440 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true), 3441 FEAT_OPR(PMU_CAPS, pmu_caps, false), 3442 }; 3443 3444 struct header_print_data { 3445 FILE *fp; 3446 bool full; /* extended list of headers */ 3447 }; 3448 3449 static int perf_file_section__fprintf_info(struct perf_file_section *section, 3450 struct perf_header *ph, 3451 int feat, int fd, void *data) 3452 { 3453 struct header_print_data *hd = data; 3454 struct feat_fd ff; 3455 3456 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3457 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3458 "%d, continuing...\n", section->offset, feat); 3459 return 0; 3460 } 3461 if (feat >= HEADER_LAST_FEATURE) { 3462 pr_warning("unknown feature %d\n", feat); 3463 return 0; 3464 } 3465 if (!feat_ops[feat].print) 3466 return 0; 3467 3468 ff = (struct feat_fd) { 3469 .fd = fd, 3470 .ph = ph, 3471 }; 3472 3473 if (!feat_ops[feat].full_only || hd->full) 3474 feat_ops[feat].print(&ff, hd->fp); 3475 else 3476 fprintf(hd->fp, "# %s info available, use -I to display\n", 3477 feat_ops[feat].name); 3478 3479 return 0; 3480 } 3481 3482 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 3483 { 3484 struct header_print_data hd; 3485 struct perf_header *header = &session->header; 3486 int fd = perf_data__fd(session->data); 3487 struct stat st; 3488 time_t stctime; 3489 int ret, bit; 3490 3491 hd.fp = fp; 3492 hd.full = full; 3493 3494 ret = fstat(fd, &st); 3495 if (ret == -1) 3496 return -1; 3497 3498 stctime = st.st_mtime; 3499 fprintf(fp, "# captured on : %s", ctime(&stctime)); 3500 3501 fprintf(fp, "# header version : %u\n", header->version); 3502 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 3503 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 3504 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 3505 3506 perf_header__process_sections(header, fd, &hd, 3507 perf_file_section__fprintf_info); 3508 3509 if (session->data->is_pipe) 3510 return 0; 3511 3512 fprintf(fp, "# missing features: "); 3513 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 3514 if (bit) 3515 fprintf(fp, "%s ", feat_ops[bit].name); 3516 } 3517 3518 fprintf(fp, "\n"); 3519 return 0; 3520 } 3521 3522 struct header_fw { 3523 struct feat_writer fw; 3524 struct feat_fd *ff; 3525 }; 3526 3527 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz) 3528 { 3529 struct header_fw *h = container_of(fw, struct header_fw, fw); 3530 3531 return do_write(h->ff, buf, sz); 3532 } 3533 3534 static int do_write_feat(struct feat_fd *ff, int type, 3535 struct perf_file_section **p, 3536 struct evlist *evlist, 3537 struct feat_copier *fc) 3538 { 3539 int err; 3540 int ret = 0; 3541 3542 if (perf_header__has_feat(ff->ph, type)) { 3543 if (!feat_ops[type].write) 3544 return -1; 3545 3546 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 3547 return -1; 3548 3549 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3550 3551 /* 3552 * Hook to let perf inject copy features sections from the input 3553 * file. 3554 */ 3555 if (fc && fc->copy) { 3556 struct header_fw h = { 3557 .fw.write = feat_writer_cb, 3558 .ff = ff, 3559 }; 3560 3561 /* ->copy() returns 0 if the feature was not copied */ 3562 err = fc->copy(fc, type, &h.fw); 3563 } else { 3564 err = 0; 3565 } 3566 if (!err) 3567 err = feat_ops[type].write(ff, evlist); 3568 if (err < 0) { 3569 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3570 3571 /* undo anything written */ 3572 lseek(ff->fd, (*p)->offset, SEEK_SET); 3573 3574 return -1; 3575 } 3576 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3577 (*p)++; 3578 } 3579 return ret; 3580 } 3581 3582 static int perf_header__adds_write(struct perf_header *header, 3583 struct evlist *evlist, int fd, 3584 struct feat_copier *fc) 3585 { 3586 int nr_sections; 3587 struct feat_fd ff = { 3588 .fd = fd, 3589 .ph = header, 3590 }; 3591 struct perf_file_section *feat_sec, *p; 3592 int sec_size; 3593 u64 sec_start; 3594 int feat; 3595 int err; 3596 3597 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3598 if (!nr_sections) 3599 return 0; 3600 3601 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3602 if (feat_sec == NULL) 3603 return -ENOMEM; 3604 3605 sec_size = sizeof(*feat_sec) * nr_sections; 3606 3607 sec_start = header->feat_offset; 3608 lseek(fd, sec_start + sec_size, SEEK_SET); 3609 3610 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3611 if (do_write_feat(&ff, feat, &p, evlist, fc)) 3612 perf_header__clear_feat(header, feat); 3613 } 3614 3615 lseek(fd, sec_start, SEEK_SET); 3616 /* 3617 * may write more than needed due to dropped feature, but 3618 * this is okay, reader will skip the missing entries 3619 */ 3620 err = do_write(&ff, feat_sec, sec_size); 3621 if (err < 0) 3622 pr_debug("failed to write feature section\n"); 3623 free(ff.buf); /* TODO: added to silence clang-tidy. */ 3624 free(feat_sec); 3625 return err; 3626 } 3627 3628 int perf_header__write_pipe(int fd) 3629 { 3630 struct perf_pipe_file_header f_header; 3631 struct feat_fd ff = { 3632 .fd = fd, 3633 }; 3634 int err; 3635 3636 f_header = (struct perf_pipe_file_header){ 3637 .magic = PERF_MAGIC, 3638 .size = sizeof(f_header), 3639 }; 3640 3641 err = do_write(&ff, &f_header, sizeof(f_header)); 3642 if (err < 0) { 3643 pr_debug("failed to write perf pipe header\n"); 3644 return err; 3645 } 3646 free(ff.buf); 3647 return 0; 3648 } 3649 3650 static int perf_session__do_write_header(struct perf_session *session, 3651 struct evlist *evlist, 3652 int fd, bool at_exit, 3653 struct feat_copier *fc, 3654 bool write_attrs_after_data) 3655 { 3656 struct perf_file_header f_header; 3657 struct perf_header *header = &session->header; 3658 struct evsel *evsel; 3659 struct feat_fd ff = { 3660 .fd = fd, 3661 }; 3662 u64 attr_offset = sizeof(f_header), attr_size = 0; 3663 int err; 3664 3665 if (write_attrs_after_data && at_exit) { 3666 /* 3667 * Write features at the end of the file first so that 3668 * attributes may come after them. 3669 */ 3670 if (!header->data_offset && header->data_size) { 3671 pr_err("File contains data but offset unknown\n"); 3672 err = -1; 3673 goto err_out; 3674 } 3675 header->feat_offset = header->data_offset + header->data_size; 3676 err = perf_header__adds_write(header, evlist, fd, fc); 3677 if (err < 0) 3678 goto err_out; 3679 attr_offset = lseek(fd, 0, SEEK_CUR); 3680 } else { 3681 lseek(fd, attr_offset, SEEK_SET); 3682 } 3683 3684 evlist__for_each_entry(session->evlist, evsel) { 3685 evsel->id_offset = attr_offset; 3686 /* Avoid writing at the end of the file until the session is exiting. */ 3687 if (!write_attrs_after_data || at_exit) { 3688 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3689 if (err < 0) { 3690 pr_debug("failed to write perf header\n"); 3691 goto err_out; 3692 } 3693 } 3694 attr_offset += evsel->core.ids * sizeof(u64); 3695 } 3696 3697 evlist__for_each_entry(evlist, evsel) { 3698 if (evsel->core.attr.size < sizeof(evsel->core.attr)) { 3699 /* 3700 * We are likely in "perf inject" and have read 3701 * from an older file. Update attr size so that 3702 * reader gets the right offset to the ids. 3703 */ 3704 evsel->core.attr.size = sizeof(evsel->core.attr); 3705 } 3706 /* Avoid writing at the end of the file until the session is exiting. */ 3707 if (!write_attrs_after_data || at_exit) { 3708 struct perf_file_attr f_attr = { 3709 .attr = evsel->core.attr, 3710 .ids = { 3711 .offset = evsel->id_offset, 3712 .size = evsel->core.ids * sizeof(u64), 3713 } 3714 }; 3715 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3716 if (err < 0) { 3717 pr_debug("failed to write perf header attribute\n"); 3718 goto err_out; 3719 } 3720 } 3721 attr_size += sizeof(struct perf_file_attr); 3722 } 3723 3724 if (!header->data_offset) { 3725 if (write_attrs_after_data) 3726 header->data_offset = sizeof(f_header); 3727 else 3728 header->data_offset = attr_offset + attr_size; 3729 } 3730 header->feat_offset = header->data_offset + header->data_size; 3731 3732 if (!write_attrs_after_data && at_exit) { 3733 /* Write features now feat_offset is known. */ 3734 err = perf_header__adds_write(header, evlist, fd, fc); 3735 if (err < 0) 3736 goto err_out; 3737 } 3738 3739 f_header = (struct perf_file_header){ 3740 .magic = PERF_MAGIC, 3741 .size = sizeof(f_header), 3742 .attr_size = sizeof(struct perf_file_attr), 3743 .attrs = { 3744 .offset = attr_offset, 3745 .size = attr_size, 3746 }, 3747 .data = { 3748 .offset = header->data_offset, 3749 .size = header->data_size, 3750 }, 3751 /* event_types is ignored, store zeros */ 3752 }; 3753 3754 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3755 3756 lseek(fd, 0, SEEK_SET); 3757 err = do_write(&ff, &f_header, sizeof(f_header)); 3758 if (err < 0) { 3759 pr_debug("failed to write perf header\n"); 3760 goto err_out; 3761 } else { 3762 lseek(fd, 0, SEEK_END); 3763 err = 0; 3764 } 3765 err_out: 3766 free(ff.buf); 3767 return err; 3768 } 3769 3770 int perf_session__write_header(struct perf_session *session, 3771 struct evlist *evlist, 3772 int fd, bool at_exit) 3773 { 3774 return perf_session__do_write_header(session, evlist, fd, at_exit, /*fc=*/NULL, 3775 /*write_attrs_after_data=*/false); 3776 } 3777 3778 size_t perf_session__data_offset(const struct evlist *evlist) 3779 { 3780 struct evsel *evsel; 3781 size_t data_offset; 3782 3783 data_offset = sizeof(struct perf_file_header); 3784 evlist__for_each_entry(evlist, evsel) { 3785 data_offset += evsel->core.ids * sizeof(u64); 3786 } 3787 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr); 3788 3789 return data_offset; 3790 } 3791 3792 int perf_session__inject_header(struct perf_session *session, 3793 struct evlist *evlist, 3794 int fd, 3795 struct feat_copier *fc, 3796 bool write_attrs_after_data) 3797 { 3798 return perf_session__do_write_header(session, evlist, fd, true, fc, 3799 write_attrs_after_data); 3800 } 3801 3802 static int perf_header__getbuffer64(struct perf_header *header, 3803 int fd, void *buf, size_t size) 3804 { 3805 if (readn(fd, buf, size) <= 0) 3806 return -1; 3807 3808 if (header->needs_swap) 3809 mem_bswap_64(buf, size); 3810 3811 return 0; 3812 } 3813 3814 int perf_header__process_sections(struct perf_header *header, int fd, 3815 void *data, 3816 int (*process)(struct perf_file_section *section, 3817 struct perf_header *ph, 3818 int feat, int fd, void *data)) 3819 { 3820 struct perf_file_section *feat_sec, *sec; 3821 int nr_sections; 3822 int sec_size; 3823 int feat; 3824 int err; 3825 3826 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3827 if (!nr_sections) 3828 return 0; 3829 3830 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3831 if (!feat_sec) 3832 return -1; 3833 3834 sec_size = sizeof(*feat_sec) * nr_sections; 3835 3836 lseek(fd, header->feat_offset, SEEK_SET); 3837 3838 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3839 if (err < 0) 3840 goto out_free; 3841 3842 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3843 err = process(sec++, header, feat, fd, data); 3844 if (err < 0) 3845 goto out_free; 3846 } 3847 err = 0; 3848 out_free: 3849 free(feat_sec); 3850 return err; 3851 } 3852 3853 static const int attr_file_abi_sizes[] = { 3854 [0] = PERF_ATTR_SIZE_VER0, 3855 [1] = PERF_ATTR_SIZE_VER1, 3856 [2] = PERF_ATTR_SIZE_VER2, 3857 [3] = PERF_ATTR_SIZE_VER3, 3858 [4] = PERF_ATTR_SIZE_VER4, 3859 0, 3860 }; 3861 3862 /* 3863 * In the legacy file format, the magic number is not used to encode endianness. 3864 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3865 * on ABI revisions, we need to try all combinations for all endianness to 3866 * detect the endianness. 3867 */ 3868 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3869 { 3870 uint64_t ref_size, attr_size; 3871 int i; 3872 3873 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3874 ref_size = attr_file_abi_sizes[i] 3875 + sizeof(struct perf_file_section); 3876 if (hdr_sz != ref_size) { 3877 attr_size = bswap_64(hdr_sz); 3878 if (attr_size != ref_size) 3879 continue; 3880 3881 ph->needs_swap = true; 3882 } 3883 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3884 i, 3885 ph->needs_swap); 3886 return 0; 3887 } 3888 /* could not determine endianness */ 3889 return -1; 3890 } 3891 3892 #define PERF_PIPE_HDR_VER0 16 3893 3894 static const size_t attr_pipe_abi_sizes[] = { 3895 [0] = PERF_PIPE_HDR_VER0, 3896 0, 3897 }; 3898 3899 /* 3900 * In the legacy pipe format, there is an implicit assumption that endianness 3901 * between host recording the samples, and host parsing the samples is the 3902 * same. This is not always the case given that the pipe output may always be 3903 * redirected into a file and analyzed on a different machine with possibly a 3904 * different endianness and perf_event ABI revisions in the perf tool itself. 3905 */ 3906 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3907 { 3908 u64 attr_size; 3909 int i; 3910 3911 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3912 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3913 attr_size = bswap_64(hdr_sz); 3914 if (attr_size != hdr_sz) 3915 continue; 3916 3917 ph->needs_swap = true; 3918 } 3919 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3920 return 0; 3921 } 3922 return -1; 3923 } 3924 3925 bool is_perf_magic(u64 magic) 3926 { 3927 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3928 || magic == __perf_magic2 3929 || magic == __perf_magic2_sw) 3930 return true; 3931 3932 return false; 3933 } 3934 3935 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3936 bool is_pipe, struct perf_header *ph) 3937 { 3938 int ret; 3939 3940 /* check for legacy format */ 3941 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3942 if (ret == 0) { 3943 ph->version = PERF_HEADER_VERSION_1; 3944 pr_debug("legacy perf.data format\n"); 3945 if (is_pipe) 3946 return try_all_pipe_abis(hdr_sz, ph); 3947 3948 return try_all_file_abis(hdr_sz, ph); 3949 } 3950 /* 3951 * the new magic number serves two purposes: 3952 * - unique number to identify actual perf.data files 3953 * - encode endianness of file 3954 */ 3955 ph->version = PERF_HEADER_VERSION_2; 3956 3957 /* check magic number with one endianness */ 3958 if (magic == __perf_magic2) 3959 return 0; 3960 3961 /* check magic number with opposite endianness */ 3962 if (magic != __perf_magic2_sw) 3963 return -1; 3964 3965 ph->needs_swap = true; 3966 3967 return 0; 3968 } 3969 3970 int perf_file_header__read(struct perf_file_header *header, 3971 struct perf_header *ph, int fd) 3972 { 3973 ssize_t ret; 3974 3975 lseek(fd, 0, SEEK_SET); 3976 3977 ret = readn(fd, header, sizeof(*header)); 3978 if (ret <= 0) 3979 return -1; 3980 3981 if (check_magic_endian(header->magic, 3982 header->attr_size, false, ph) < 0) { 3983 pr_debug("magic/endian check failed\n"); 3984 return -1; 3985 } 3986 3987 if (ph->needs_swap) { 3988 mem_bswap_64(header, offsetof(struct perf_file_header, 3989 adds_features)); 3990 } 3991 3992 if (header->size > header->attrs.offset) { 3993 pr_err("Perf file header corrupt: header overlaps attrs\n"); 3994 return -1; 3995 } 3996 3997 if (header->size > header->data.offset) { 3998 pr_err("Perf file header corrupt: header overlaps data\n"); 3999 return -1; 4000 } 4001 4002 if ((header->attrs.offset <= header->data.offset && 4003 header->attrs.offset + header->attrs.size > header->data.offset) || 4004 (header->attrs.offset > header->data.offset && 4005 header->data.offset + header->data.size > header->attrs.offset)) { 4006 pr_err("Perf file header corrupt: Attributes and data overlap\n"); 4007 return -1; 4008 } 4009 4010 if (header->size != sizeof(*header)) { 4011 /* Support the previous format */ 4012 if (header->size == offsetof(typeof(*header), adds_features)) 4013 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 4014 else 4015 return -1; 4016 } else if (ph->needs_swap) { 4017 /* 4018 * feature bitmap is declared as an array of unsigned longs -- 4019 * not good since its size can differ between the host that 4020 * generated the data file and the host analyzing the file. 4021 * 4022 * We need to handle endianness, but we don't know the size of 4023 * the unsigned long where the file was generated. Take a best 4024 * guess at determining it: try 64-bit swap first (ie., file 4025 * created on a 64-bit host), and check if the hostname feature 4026 * bit is set (this feature bit is forced on as of fbe96f2). 4027 * If the bit is not, undo the 64-bit swap and try a 32-bit 4028 * swap. If the hostname bit is still not set (e.g., older data 4029 * file), punt and fallback to the original behavior -- 4030 * clearing all feature bits and setting buildid. 4031 */ 4032 mem_bswap_64(&header->adds_features, 4033 BITS_TO_U64(HEADER_FEAT_BITS)); 4034 4035 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 4036 /* unswap as u64 */ 4037 mem_bswap_64(&header->adds_features, 4038 BITS_TO_U64(HEADER_FEAT_BITS)); 4039 4040 /* unswap as u32 */ 4041 mem_bswap_32(&header->adds_features, 4042 BITS_TO_U32(HEADER_FEAT_BITS)); 4043 } 4044 4045 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 4046 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 4047 __set_bit(HEADER_BUILD_ID, header->adds_features); 4048 } 4049 } 4050 4051 memcpy(&ph->adds_features, &header->adds_features, 4052 sizeof(ph->adds_features)); 4053 4054 ph->data_offset = header->data.offset; 4055 ph->data_size = header->data.size; 4056 ph->feat_offset = header->data.offset + header->data.size; 4057 return 0; 4058 } 4059 4060 static int perf_file_section__process(struct perf_file_section *section, 4061 struct perf_header *ph, 4062 int feat, int fd, void *data) 4063 { 4064 struct feat_fd fdd = { 4065 .fd = fd, 4066 .ph = ph, 4067 .size = section->size, 4068 .offset = section->offset, 4069 }; 4070 4071 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 4072 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 4073 "%d, continuing...\n", section->offset, feat); 4074 return 0; 4075 } 4076 4077 if (feat >= HEADER_LAST_FEATURE) { 4078 pr_debug("unknown feature %d, continuing...\n", feat); 4079 return 0; 4080 } 4081 4082 if (!feat_ops[feat].process) 4083 return 0; 4084 4085 return feat_ops[feat].process(&fdd, data); 4086 } 4087 4088 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 4089 struct perf_header *ph, 4090 struct perf_data *data) 4091 { 4092 ssize_t ret; 4093 4094 ret = perf_data__read(data, header, sizeof(*header)); 4095 if (ret <= 0) 4096 return -1; 4097 4098 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 4099 pr_debug("endian/magic failed\n"); 4100 return -1; 4101 } 4102 4103 if (ph->needs_swap) 4104 header->size = bswap_64(header->size); 4105 4106 return 0; 4107 } 4108 4109 static int perf_header__read_pipe(struct perf_session *session) 4110 { 4111 struct perf_header *header = &session->header; 4112 struct perf_pipe_file_header f_header; 4113 4114 if (perf_file_header__read_pipe(&f_header, header, session->data) < 0) { 4115 pr_debug("incompatible file format\n"); 4116 return -EINVAL; 4117 } 4118 4119 return f_header.size == sizeof(f_header) ? 0 : -1; 4120 } 4121 4122 static int read_attr(int fd, struct perf_header *ph, 4123 struct perf_file_attr *f_attr) 4124 { 4125 struct perf_event_attr *attr = &f_attr->attr; 4126 size_t sz, left; 4127 size_t our_sz = sizeof(f_attr->attr); 4128 ssize_t ret; 4129 4130 memset(f_attr, 0, sizeof(*f_attr)); 4131 4132 /* read minimal guaranteed structure */ 4133 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 4134 if (ret <= 0) { 4135 pr_debug("cannot read %d bytes of header attr\n", 4136 PERF_ATTR_SIZE_VER0); 4137 return -1; 4138 } 4139 4140 /* on file perf_event_attr size */ 4141 sz = attr->size; 4142 4143 if (ph->needs_swap) 4144 sz = bswap_32(sz); 4145 4146 if (sz == 0) { 4147 /* assume ABI0 */ 4148 sz = PERF_ATTR_SIZE_VER0; 4149 } else if (sz > our_sz) { 4150 pr_debug("file uses a more recent and unsupported ABI" 4151 " (%zu bytes extra)\n", sz - our_sz); 4152 return -1; 4153 } 4154 /* what we have not yet read and that we know about */ 4155 left = sz - PERF_ATTR_SIZE_VER0; 4156 if (left) { 4157 void *ptr = attr; 4158 ptr += PERF_ATTR_SIZE_VER0; 4159 4160 ret = readn(fd, ptr, left); 4161 } 4162 /* read perf_file_section, ids are read in caller */ 4163 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 4164 4165 return ret <= 0 ? -1 : 0; 4166 } 4167 4168 #ifdef HAVE_LIBTRACEEVENT 4169 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) 4170 { 4171 struct tep_event *event; 4172 char bf[128]; 4173 4174 /* already prepared */ 4175 if (evsel->tp_format) 4176 return 0; 4177 4178 if (pevent == NULL) { 4179 pr_debug("broken or missing trace data\n"); 4180 return -1; 4181 } 4182 4183 event = tep_find_event(pevent, evsel->core.attr.config); 4184 if (event == NULL) { 4185 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 4186 return -1; 4187 } 4188 4189 if (!evsel->name) { 4190 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 4191 evsel->name = strdup(bf); 4192 if (evsel->name == NULL) 4193 return -1; 4194 } 4195 4196 evsel->tp_format = event; 4197 return 0; 4198 } 4199 4200 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent) 4201 { 4202 struct evsel *pos; 4203 4204 evlist__for_each_entry(evlist, pos) { 4205 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 4206 evsel__prepare_tracepoint_event(pos, pevent)) 4207 return -1; 4208 } 4209 4210 return 0; 4211 } 4212 #endif 4213 4214 int perf_session__read_header(struct perf_session *session) 4215 { 4216 struct perf_data *data = session->data; 4217 struct perf_header *header = &session->header; 4218 struct perf_file_header f_header; 4219 struct perf_file_attr f_attr; 4220 u64 f_id; 4221 int nr_attrs, nr_ids, i, j, err; 4222 int fd = perf_data__fd(data); 4223 4224 session->evlist = evlist__new(); 4225 if (session->evlist == NULL) 4226 return -ENOMEM; 4227 4228 session->evlist->env = &header->env; 4229 session->machines.host.env = &header->env; 4230 4231 /* 4232 * We can read 'pipe' data event from regular file, 4233 * check for the pipe header regardless of source. 4234 */ 4235 err = perf_header__read_pipe(session); 4236 if (!err || perf_data__is_pipe(data)) { 4237 data->is_pipe = true; 4238 return err; 4239 } 4240 4241 if (perf_file_header__read(&f_header, header, fd) < 0) 4242 return -EINVAL; 4243 4244 if (header->needs_swap && data->in_place_update) { 4245 pr_err("In-place update not supported when byte-swapping is required\n"); 4246 return -EINVAL; 4247 } 4248 4249 /* 4250 * Sanity check that perf.data was written cleanly; data size is 4251 * initialized to 0 and updated only if the on_exit function is run. 4252 * If data size is still 0 then the file contains only partial 4253 * information. Just warn user and process it as much as it can. 4254 */ 4255 if (f_header.data.size == 0) { 4256 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 4257 "Was the 'perf record' command properly terminated?\n", 4258 data->file.path); 4259 } 4260 4261 if (f_header.attr_size == 0) { 4262 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 4263 "Was the 'perf record' command properly terminated?\n", 4264 data->file.path); 4265 return -EINVAL; 4266 } 4267 4268 nr_attrs = f_header.attrs.size / f_header.attr_size; 4269 lseek(fd, f_header.attrs.offset, SEEK_SET); 4270 4271 for (i = 0; i < nr_attrs; i++) { 4272 struct evsel *evsel; 4273 off_t tmp; 4274 4275 if (read_attr(fd, header, &f_attr) < 0) 4276 goto out_errno; 4277 4278 if (header->needs_swap) { 4279 f_attr.ids.size = bswap_64(f_attr.ids.size); 4280 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 4281 perf_event__attr_swap(&f_attr.attr); 4282 } 4283 4284 tmp = lseek(fd, 0, SEEK_CUR); 4285 evsel = evsel__new(&f_attr.attr); 4286 4287 if (evsel == NULL) 4288 goto out_delete_evlist; 4289 4290 evsel->needs_swap = header->needs_swap; 4291 /* 4292 * Do it before so that if perf_evsel__alloc_id fails, this 4293 * entry gets purged too at evlist__delete(). 4294 */ 4295 evlist__add(session->evlist, evsel); 4296 4297 nr_ids = f_attr.ids.size / sizeof(u64); 4298 /* 4299 * We don't have the cpu and thread maps on the header, so 4300 * for allocating the perf_sample_id table we fake 1 cpu and 4301 * hattr->ids threads. 4302 */ 4303 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 4304 goto out_delete_evlist; 4305 4306 lseek(fd, f_attr.ids.offset, SEEK_SET); 4307 4308 for (j = 0; j < nr_ids; j++) { 4309 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 4310 goto out_errno; 4311 4312 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 4313 } 4314 4315 lseek(fd, tmp, SEEK_SET); 4316 } 4317 4318 #ifdef HAVE_LIBTRACEEVENT 4319 perf_header__process_sections(header, fd, &session->tevent, 4320 perf_file_section__process); 4321 4322 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) 4323 goto out_delete_evlist; 4324 #else 4325 perf_header__process_sections(header, fd, NULL, perf_file_section__process); 4326 #endif 4327 4328 return 0; 4329 out_errno: 4330 return -errno; 4331 4332 out_delete_evlist: 4333 evlist__delete(session->evlist); 4334 session->evlist = NULL; 4335 return -ENOMEM; 4336 } 4337 4338 int perf_event__process_feature(struct perf_session *session, 4339 union perf_event *event) 4340 { 4341 struct feat_fd ff = { .fd = 0 }; 4342 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 4343 int type = fe->header.type; 4344 u64 feat = fe->feat_id; 4345 int ret = 0; 4346 bool print = dump_trace; 4347 4348 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 4349 pr_warning("invalid record type %d in pipe-mode\n", type); 4350 return 0; 4351 } 4352 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 4353 pr_warning("invalid record type %d in pipe-mode\n", type); 4354 return -1; 4355 } 4356 4357 ff.buf = (void *)fe->data; 4358 ff.size = event->header.size - sizeof(*fe); 4359 ff.ph = &session->header; 4360 4361 if (feat_ops[feat].process && feat_ops[feat].process(&ff, NULL)) { 4362 ret = -1; 4363 goto out; 4364 } 4365 4366 if (session->tool->show_feat_hdr) { 4367 if (!feat_ops[feat].full_only || 4368 session->tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 4369 print = true; 4370 } else { 4371 fprintf(stdout, "# %s info available, use -I to display\n", 4372 feat_ops[feat].name); 4373 } 4374 } 4375 4376 if (dump_trace) 4377 printf(", "); 4378 4379 if (print) { 4380 if (feat_ops[feat].print) 4381 feat_ops[feat].print(&ff, stdout); 4382 else 4383 printf("# %s", feat_ops[feat].name); 4384 } 4385 4386 out: 4387 free_event_desc(ff.events); 4388 return ret; 4389 } 4390 4391 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 4392 { 4393 struct perf_record_event_update *ev = &event->event_update; 4394 struct perf_cpu_map *map; 4395 size_t ret; 4396 4397 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 4398 4399 switch (ev->type) { 4400 case PERF_EVENT_UPDATE__SCALE: 4401 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale); 4402 break; 4403 case PERF_EVENT_UPDATE__UNIT: 4404 ret += fprintf(fp, "... unit: %s\n", ev->unit); 4405 break; 4406 case PERF_EVENT_UPDATE__NAME: 4407 ret += fprintf(fp, "... name: %s\n", ev->name); 4408 break; 4409 case PERF_EVENT_UPDATE__CPUS: 4410 ret += fprintf(fp, "... "); 4411 4412 map = cpu_map__new_data(&ev->cpus.cpus); 4413 if (map) { 4414 ret += cpu_map__fprintf(map, fp); 4415 perf_cpu_map__put(map); 4416 } else 4417 ret += fprintf(fp, "failed to get cpus\n"); 4418 break; 4419 default: 4420 ret += fprintf(fp, "... unknown type\n"); 4421 break; 4422 } 4423 4424 return ret; 4425 } 4426 4427 size_t perf_event__fprintf_attr(union perf_event *event, FILE *fp) 4428 { 4429 return perf_event_attr__fprintf(fp, &event->attr.attr, __desc_attr__fprintf, NULL); 4430 } 4431 4432 int perf_event__process_attr(const struct perf_tool *tool __maybe_unused, 4433 union perf_event *event, 4434 struct evlist **pevlist) 4435 { 4436 u32 i, n_ids; 4437 u64 *ids; 4438 struct evsel *evsel; 4439 struct evlist *evlist = *pevlist; 4440 4441 if (dump_trace) 4442 perf_event__fprintf_attr(event, stdout); 4443 4444 if (evlist == NULL) { 4445 *pevlist = evlist = evlist__new(); 4446 if (evlist == NULL) 4447 return -ENOMEM; 4448 } 4449 4450 evsel = evsel__new(&event->attr.attr); 4451 if (evsel == NULL) 4452 return -ENOMEM; 4453 4454 evlist__add(evlist, evsel); 4455 4456 n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size; 4457 n_ids = n_ids / sizeof(u64); 4458 /* 4459 * We don't have the cpu and thread maps on the header, so 4460 * for allocating the perf_sample_id table we fake 1 cpu and 4461 * hattr->ids threads. 4462 */ 4463 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 4464 return -ENOMEM; 4465 4466 ids = perf_record_header_attr_id(event); 4467 for (i = 0; i < n_ids; i++) { 4468 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]); 4469 } 4470 4471 return 0; 4472 } 4473 4474 int perf_event__process_event_update(const struct perf_tool *tool __maybe_unused, 4475 union perf_event *event, 4476 struct evlist **pevlist) 4477 { 4478 struct perf_record_event_update *ev = &event->event_update; 4479 struct evlist *evlist; 4480 struct evsel *evsel; 4481 struct perf_cpu_map *map; 4482 4483 if (dump_trace) 4484 perf_event__fprintf_event_update(event, stdout); 4485 4486 if (!pevlist || *pevlist == NULL) 4487 return -EINVAL; 4488 4489 evlist = *pevlist; 4490 4491 evsel = evlist__id2evsel(evlist, ev->id); 4492 if (evsel == NULL) 4493 return -EINVAL; 4494 4495 switch (ev->type) { 4496 case PERF_EVENT_UPDATE__UNIT: 4497 free((char *)evsel->unit); 4498 evsel->unit = strdup(ev->unit); 4499 break; 4500 case PERF_EVENT_UPDATE__NAME: 4501 free(evsel->name); 4502 evsel->name = strdup(ev->name); 4503 break; 4504 case PERF_EVENT_UPDATE__SCALE: 4505 evsel->scale = ev->scale.scale; 4506 break; 4507 case PERF_EVENT_UPDATE__CPUS: 4508 map = cpu_map__new_data(&ev->cpus.cpus); 4509 if (map) { 4510 perf_cpu_map__put(evsel->core.pmu_cpus); 4511 evsel->core.pmu_cpus = map; 4512 } else 4513 pr_err("failed to get event_update cpus\n"); 4514 default: 4515 break; 4516 } 4517 4518 return 0; 4519 } 4520 4521 #ifdef HAVE_LIBTRACEEVENT 4522 int perf_event__process_tracing_data(struct perf_session *session, 4523 union perf_event *event) 4524 { 4525 ssize_t size_read, padding, size = event->tracing_data.size; 4526 int fd = perf_data__fd(session->data); 4527 char buf[BUFSIZ]; 4528 4529 /* 4530 * The pipe fd is already in proper place and in any case 4531 * we can't move it, and we'd screw the case where we read 4532 * 'pipe' data from regular file. The trace_report reads 4533 * data from 'fd' so we need to set it directly behind the 4534 * event, where the tracing data starts. 4535 */ 4536 if (!perf_data__is_pipe(session->data)) { 4537 off_t offset = lseek(fd, 0, SEEK_CUR); 4538 4539 /* setup for reading amidst mmap */ 4540 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 4541 SEEK_SET); 4542 } 4543 4544 size_read = trace_report(fd, &session->tevent, session->trace_event_repipe); 4545 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4546 4547 if (readn(fd, buf, padding) < 0) { 4548 pr_err("%s: reading input file", __func__); 4549 return -1; 4550 } 4551 if (session->trace_event_repipe) { 4552 int retw = write(STDOUT_FILENO, buf, padding); 4553 if (retw <= 0 || retw != padding) { 4554 pr_err("%s: repiping tracing data padding", __func__); 4555 return -1; 4556 } 4557 } 4558 4559 if (size_read + padding != size) { 4560 pr_err("%s: tracing data size mismatch", __func__); 4561 return -1; 4562 } 4563 4564 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); 4565 4566 return size_read + padding; 4567 } 4568 #endif 4569 4570 int perf_event__process_build_id(struct perf_session *session, 4571 union perf_event *event) 4572 { 4573 __event_process_build_id(&event->build_id, 4574 event->build_id.filename, 4575 session); 4576 return 0; 4577 } 4578