xref: /linux/tools/perf/util/header.c (revision 5643b1a59e581ac3f66d36caba8124313cc446c0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
24 
25 #include "evlist.h"
26 #include "evsel.h"
27 #include "header.h"
28 #include "memswap.h"
29 #include "../perf.h"
30 #include "trace-event.h"
31 #include "session.h"
32 #include "symbol.h"
33 #include "debug.h"
34 #include "cpumap.h"
35 #include "pmu.h"
36 #include "vdso.h"
37 #include "strbuf.h"
38 #include "build-id.h"
39 #include "data.h"
40 #include <api/fs/fs.h>
41 #include "asm/bug.h"
42 #include "tool.h"
43 #include "time-utils.h"
44 #include "units.h"
45 #include "cputopo.h"
46 #include "bpf-event.h"
47 
48 #include <linux/ctype.h>
49 
50 /*
51  * magic2 = "PERFILE2"
52  * must be a numerical value to let the endianness
53  * determine the memory layout. That way we are able
54  * to detect endianness when reading the perf.data file
55  * back.
56  *
57  * we check for legacy (PERFFILE) format.
58  */
59 static const char *__perf_magic1 = "PERFFILE";
60 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
61 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
62 
63 #define PERF_MAGIC	__perf_magic2
64 
65 const char perf_version_string[] = PERF_VERSION;
66 
67 struct perf_file_attr {
68 	struct perf_event_attr	attr;
69 	struct perf_file_section	ids;
70 };
71 
72 struct feat_fd {
73 	struct perf_header	*ph;
74 	int			fd;
75 	void			*buf;	/* Either buf != NULL or fd >= 0 */
76 	ssize_t			offset;
77 	size_t			size;
78 	struct evsel	*events;
79 };
80 
81 void perf_header__set_feat(struct perf_header *header, int feat)
82 {
83 	set_bit(feat, header->adds_features);
84 }
85 
86 void perf_header__clear_feat(struct perf_header *header, int feat)
87 {
88 	clear_bit(feat, header->adds_features);
89 }
90 
91 bool perf_header__has_feat(const struct perf_header *header, int feat)
92 {
93 	return test_bit(feat, header->adds_features);
94 }
95 
96 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
97 {
98 	ssize_t ret = writen(ff->fd, buf, size);
99 
100 	if (ret != (ssize_t)size)
101 		return ret < 0 ? (int)ret : -1;
102 	return 0;
103 }
104 
105 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
106 {
107 	/* struct perf_event_header::size is u16 */
108 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
109 	size_t new_size = ff->size;
110 	void *addr;
111 
112 	if (size + ff->offset > max_size)
113 		return -E2BIG;
114 
115 	while (size > (new_size - ff->offset))
116 		new_size <<= 1;
117 	new_size = min(max_size, new_size);
118 
119 	if (ff->size < new_size) {
120 		addr = realloc(ff->buf, new_size);
121 		if (!addr)
122 			return -ENOMEM;
123 		ff->buf = addr;
124 		ff->size = new_size;
125 	}
126 
127 	memcpy(ff->buf + ff->offset, buf, size);
128 	ff->offset += size;
129 
130 	return 0;
131 }
132 
133 /* Return: 0 if succeded, -ERR if failed. */
134 int do_write(struct feat_fd *ff, const void *buf, size_t size)
135 {
136 	if (!ff->buf)
137 		return __do_write_fd(ff, buf, size);
138 	return __do_write_buf(ff, buf, size);
139 }
140 
141 /* Return: 0 if succeded, -ERR if failed. */
142 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
143 {
144 	u64 *p = (u64 *) set;
145 	int i, ret;
146 
147 	ret = do_write(ff, &size, sizeof(size));
148 	if (ret < 0)
149 		return ret;
150 
151 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
152 		ret = do_write(ff, p + i, sizeof(*p));
153 		if (ret < 0)
154 			return ret;
155 	}
156 
157 	return 0;
158 }
159 
160 /* Return: 0 if succeded, -ERR if failed. */
161 int write_padded(struct feat_fd *ff, const void *bf,
162 		 size_t count, size_t count_aligned)
163 {
164 	static const char zero_buf[NAME_ALIGN];
165 	int err = do_write(ff, bf, count);
166 
167 	if (!err)
168 		err = do_write(ff, zero_buf, count_aligned - count);
169 
170 	return err;
171 }
172 
173 #define string_size(str)						\
174 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
175 
176 /* Return: 0 if succeded, -ERR if failed. */
177 static int do_write_string(struct feat_fd *ff, const char *str)
178 {
179 	u32 len, olen;
180 	int ret;
181 
182 	olen = strlen(str) + 1;
183 	len = PERF_ALIGN(olen, NAME_ALIGN);
184 
185 	/* write len, incl. \0 */
186 	ret = do_write(ff, &len, sizeof(len));
187 	if (ret < 0)
188 		return ret;
189 
190 	return write_padded(ff, str, olen, len);
191 }
192 
193 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
194 {
195 	ssize_t ret = readn(ff->fd, addr, size);
196 
197 	if (ret != size)
198 		return ret < 0 ? (int)ret : -1;
199 	return 0;
200 }
201 
202 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
203 {
204 	if (size > (ssize_t)ff->size - ff->offset)
205 		return -1;
206 
207 	memcpy(addr, ff->buf + ff->offset, size);
208 	ff->offset += size;
209 
210 	return 0;
211 
212 }
213 
214 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
215 {
216 	if (!ff->buf)
217 		return __do_read_fd(ff, addr, size);
218 	return __do_read_buf(ff, addr, size);
219 }
220 
221 static int do_read_u32(struct feat_fd *ff, u32 *addr)
222 {
223 	int ret;
224 
225 	ret = __do_read(ff, addr, sizeof(*addr));
226 	if (ret)
227 		return ret;
228 
229 	if (ff->ph->needs_swap)
230 		*addr = bswap_32(*addr);
231 	return 0;
232 }
233 
234 static int do_read_u64(struct feat_fd *ff, u64 *addr)
235 {
236 	int ret;
237 
238 	ret = __do_read(ff, addr, sizeof(*addr));
239 	if (ret)
240 		return ret;
241 
242 	if (ff->ph->needs_swap)
243 		*addr = bswap_64(*addr);
244 	return 0;
245 }
246 
247 static char *do_read_string(struct feat_fd *ff)
248 {
249 	u32 len;
250 	char *buf;
251 
252 	if (do_read_u32(ff, &len))
253 		return NULL;
254 
255 	buf = malloc(len);
256 	if (!buf)
257 		return NULL;
258 
259 	if (!__do_read(ff, buf, len)) {
260 		/*
261 		 * strings are padded by zeroes
262 		 * thus the actual strlen of buf
263 		 * may be less than len
264 		 */
265 		return buf;
266 	}
267 
268 	free(buf);
269 	return NULL;
270 }
271 
272 /* Return: 0 if succeded, -ERR if failed. */
273 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
274 {
275 	unsigned long *set;
276 	u64 size, *p;
277 	int i, ret;
278 
279 	ret = do_read_u64(ff, &size);
280 	if (ret)
281 		return ret;
282 
283 	set = bitmap_alloc(size);
284 	if (!set)
285 		return -ENOMEM;
286 
287 	p = (u64 *) set;
288 
289 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
290 		ret = do_read_u64(ff, p + i);
291 		if (ret < 0) {
292 			free(set);
293 			return ret;
294 		}
295 	}
296 
297 	*pset  = set;
298 	*psize = size;
299 	return 0;
300 }
301 
302 static int write_tracing_data(struct feat_fd *ff,
303 			      struct evlist *evlist)
304 {
305 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
306 		return -1;
307 
308 	return read_tracing_data(ff->fd, &evlist->core.entries);
309 }
310 
311 static int write_build_id(struct feat_fd *ff,
312 			  struct evlist *evlist __maybe_unused)
313 {
314 	struct perf_session *session;
315 	int err;
316 
317 	session = container_of(ff->ph, struct perf_session, header);
318 
319 	if (!perf_session__read_build_ids(session, true))
320 		return -1;
321 
322 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
323 		return -1;
324 
325 	err = perf_session__write_buildid_table(session, ff);
326 	if (err < 0) {
327 		pr_debug("failed to write buildid table\n");
328 		return err;
329 	}
330 	perf_session__cache_build_ids(session);
331 
332 	return 0;
333 }
334 
335 static int write_hostname(struct feat_fd *ff,
336 			  struct evlist *evlist __maybe_unused)
337 {
338 	struct utsname uts;
339 	int ret;
340 
341 	ret = uname(&uts);
342 	if (ret < 0)
343 		return -1;
344 
345 	return do_write_string(ff, uts.nodename);
346 }
347 
348 static int write_osrelease(struct feat_fd *ff,
349 			   struct evlist *evlist __maybe_unused)
350 {
351 	struct utsname uts;
352 	int ret;
353 
354 	ret = uname(&uts);
355 	if (ret < 0)
356 		return -1;
357 
358 	return do_write_string(ff, uts.release);
359 }
360 
361 static int write_arch(struct feat_fd *ff,
362 		      struct evlist *evlist __maybe_unused)
363 {
364 	struct utsname uts;
365 	int ret;
366 
367 	ret = uname(&uts);
368 	if (ret < 0)
369 		return -1;
370 
371 	return do_write_string(ff, uts.machine);
372 }
373 
374 static int write_version(struct feat_fd *ff,
375 			 struct evlist *evlist __maybe_unused)
376 {
377 	return do_write_string(ff, perf_version_string);
378 }
379 
380 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
381 {
382 	FILE *file;
383 	char *buf = NULL;
384 	char *s, *p;
385 	const char *search = cpuinfo_proc;
386 	size_t len = 0;
387 	int ret = -1;
388 
389 	if (!search)
390 		return -1;
391 
392 	file = fopen("/proc/cpuinfo", "r");
393 	if (!file)
394 		return -1;
395 
396 	while (getline(&buf, &len, file) > 0) {
397 		ret = strncmp(buf, search, strlen(search));
398 		if (!ret)
399 			break;
400 	}
401 
402 	if (ret) {
403 		ret = -1;
404 		goto done;
405 	}
406 
407 	s = buf;
408 
409 	p = strchr(buf, ':');
410 	if (p && *(p+1) == ' ' && *(p+2))
411 		s = p + 2;
412 	p = strchr(s, '\n');
413 	if (p)
414 		*p = '\0';
415 
416 	/* squash extra space characters (branding string) */
417 	p = s;
418 	while (*p) {
419 		if (isspace(*p)) {
420 			char *r = p + 1;
421 			char *q = skip_spaces(r);
422 			*p = ' ';
423 			if (q != (p+1))
424 				while ((*r++ = *q++));
425 		}
426 		p++;
427 	}
428 	ret = do_write_string(ff, s);
429 done:
430 	free(buf);
431 	fclose(file);
432 	return ret;
433 }
434 
435 static int write_cpudesc(struct feat_fd *ff,
436 		       struct evlist *evlist __maybe_unused)
437 {
438 	const char *cpuinfo_procs[] = CPUINFO_PROC;
439 	unsigned int i;
440 
441 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
442 		int ret;
443 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
444 		if (ret >= 0)
445 			return ret;
446 	}
447 	return -1;
448 }
449 
450 
451 static int write_nrcpus(struct feat_fd *ff,
452 			struct evlist *evlist __maybe_unused)
453 {
454 	long nr;
455 	u32 nrc, nra;
456 	int ret;
457 
458 	nrc = cpu__max_present_cpu();
459 
460 	nr = sysconf(_SC_NPROCESSORS_ONLN);
461 	if (nr < 0)
462 		return -1;
463 
464 	nra = (u32)(nr & UINT_MAX);
465 
466 	ret = do_write(ff, &nrc, sizeof(nrc));
467 	if (ret < 0)
468 		return ret;
469 
470 	return do_write(ff, &nra, sizeof(nra));
471 }
472 
473 static int write_event_desc(struct feat_fd *ff,
474 			    struct evlist *evlist)
475 {
476 	struct evsel *evsel;
477 	u32 nre, nri, sz;
478 	int ret;
479 
480 	nre = evlist->core.nr_entries;
481 
482 	/*
483 	 * write number of events
484 	 */
485 	ret = do_write(ff, &nre, sizeof(nre));
486 	if (ret < 0)
487 		return ret;
488 
489 	/*
490 	 * size of perf_event_attr struct
491 	 */
492 	sz = (u32)sizeof(evsel->core.attr);
493 	ret = do_write(ff, &sz, sizeof(sz));
494 	if (ret < 0)
495 		return ret;
496 
497 	evlist__for_each_entry(evlist, evsel) {
498 		ret = do_write(ff, &evsel->core.attr, sz);
499 		if (ret < 0)
500 			return ret;
501 		/*
502 		 * write number of unique id per event
503 		 * there is one id per instance of an event
504 		 *
505 		 * copy into an nri to be independent of the
506 		 * type of ids,
507 		 */
508 		nri = evsel->ids;
509 		ret = do_write(ff, &nri, sizeof(nri));
510 		if (ret < 0)
511 			return ret;
512 
513 		/*
514 		 * write event string as passed on cmdline
515 		 */
516 		ret = do_write_string(ff, perf_evsel__name(evsel));
517 		if (ret < 0)
518 			return ret;
519 		/*
520 		 * write unique ids for this event
521 		 */
522 		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
523 		if (ret < 0)
524 			return ret;
525 	}
526 	return 0;
527 }
528 
529 static int write_cmdline(struct feat_fd *ff,
530 			 struct evlist *evlist __maybe_unused)
531 {
532 	char pbuf[MAXPATHLEN], *buf;
533 	int i, ret, n;
534 
535 	/* actual path to perf binary */
536 	buf = perf_exe(pbuf, MAXPATHLEN);
537 
538 	/* account for binary path */
539 	n = perf_env.nr_cmdline + 1;
540 
541 	ret = do_write(ff, &n, sizeof(n));
542 	if (ret < 0)
543 		return ret;
544 
545 	ret = do_write_string(ff, buf);
546 	if (ret < 0)
547 		return ret;
548 
549 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
550 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
551 		if (ret < 0)
552 			return ret;
553 	}
554 	return 0;
555 }
556 
557 
558 static int write_cpu_topology(struct feat_fd *ff,
559 			      struct evlist *evlist __maybe_unused)
560 {
561 	struct cpu_topology *tp;
562 	u32 i;
563 	int ret, j;
564 
565 	tp = cpu_topology__new();
566 	if (!tp)
567 		return -1;
568 
569 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
570 	if (ret < 0)
571 		goto done;
572 
573 	for (i = 0; i < tp->core_sib; i++) {
574 		ret = do_write_string(ff, tp->core_siblings[i]);
575 		if (ret < 0)
576 			goto done;
577 	}
578 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
579 	if (ret < 0)
580 		goto done;
581 
582 	for (i = 0; i < tp->thread_sib; i++) {
583 		ret = do_write_string(ff, tp->thread_siblings[i]);
584 		if (ret < 0)
585 			break;
586 	}
587 
588 	ret = perf_env__read_cpu_topology_map(&perf_env);
589 	if (ret < 0)
590 		goto done;
591 
592 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
593 		ret = do_write(ff, &perf_env.cpu[j].core_id,
594 			       sizeof(perf_env.cpu[j].core_id));
595 		if (ret < 0)
596 			return ret;
597 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
598 			       sizeof(perf_env.cpu[j].socket_id));
599 		if (ret < 0)
600 			return ret;
601 	}
602 
603 	if (!tp->die_sib)
604 		goto done;
605 
606 	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
607 	if (ret < 0)
608 		goto done;
609 
610 	for (i = 0; i < tp->die_sib; i++) {
611 		ret = do_write_string(ff, tp->die_siblings[i]);
612 		if (ret < 0)
613 			goto done;
614 	}
615 
616 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
617 		ret = do_write(ff, &perf_env.cpu[j].die_id,
618 			       sizeof(perf_env.cpu[j].die_id));
619 		if (ret < 0)
620 			return ret;
621 	}
622 
623 done:
624 	cpu_topology__delete(tp);
625 	return ret;
626 }
627 
628 
629 
630 static int write_total_mem(struct feat_fd *ff,
631 			   struct evlist *evlist __maybe_unused)
632 {
633 	char *buf = NULL;
634 	FILE *fp;
635 	size_t len = 0;
636 	int ret = -1, n;
637 	uint64_t mem;
638 
639 	fp = fopen("/proc/meminfo", "r");
640 	if (!fp)
641 		return -1;
642 
643 	while (getline(&buf, &len, fp) > 0) {
644 		ret = strncmp(buf, "MemTotal:", 9);
645 		if (!ret)
646 			break;
647 	}
648 	if (!ret) {
649 		n = sscanf(buf, "%*s %"PRIu64, &mem);
650 		if (n == 1)
651 			ret = do_write(ff, &mem, sizeof(mem));
652 	} else
653 		ret = -1;
654 	free(buf);
655 	fclose(fp);
656 	return ret;
657 }
658 
659 static int write_numa_topology(struct feat_fd *ff,
660 			       struct evlist *evlist __maybe_unused)
661 {
662 	struct numa_topology *tp;
663 	int ret = -1;
664 	u32 i;
665 
666 	tp = numa_topology__new();
667 	if (!tp)
668 		return -ENOMEM;
669 
670 	ret = do_write(ff, &tp->nr, sizeof(u32));
671 	if (ret < 0)
672 		goto err;
673 
674 	for (i = 0; i < tp->nr; i++) {
675 		struct numa_topology_node *n = &tp->nodes[i];
676 
677 		ret = do_write(ff, &n->node, sizeof(u32));
678 		if (ret < 0)
679 			goto err;
680 
681 		ret = do_write(ff, &n->mem_total, sizeof(u64));
682 		if (ret)
683 			goto err;
684 
685 		ret = do_write(ff, &n->mem_free, sizeof(u64));
686 		if (ret)
687 			goto err;
688 
689 		ret = do_write_string(ff, n->cpus);
690 		if (ret < 0)
691 			goto err;
692 	}
693 
694 	ret = 0;
695 
696 err:
697 	numa_topology__delete(tp);
698 	return ret;
699 }
700 
701 /*
702  * File format:
703  *
704  * struct pmu_mappings {
705  *	u32	pmu_num;
706  *	struct pmu_map {
707  *		u32	type;
708  *		char	name[];
709  *	}[pmu_num];
710  * };
711  */
712 
713 static int write_pmu_mappings(struct feat_fd *ff,
714 			      struct evlist *evlist __maybe_unused)
715 {
716 	struct perf_pmu *pmu = NULL;
717 	u32 pmu_num = 0;
718 	int ret;
719 
720 	/*
721 	 * Do a first pass to count number of pmu to avoid lseek so this
722 	 * works in pipe mode as well.
723 	 */
724 	while ((pmu = perf_pmu__scan(pmu))) {
725 		if (!pmu->name)
726 			continue;
727 		pmu_num++;
728 	}
729 
730 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
731 	if (ret < 0)
732 		return ret;
733 
734 	while ((pmu = perf_pmu__scan(pmu))) {
735 		if (!pmu->name)
736 			continue;
737 
738 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
739 		if (ret < 0)
740 			return ret;
741 
742 		ret = do_write_string(ff, pmu->name);
743 		if (ret < 0)
744 			return ret;
745 	}
746 
747 	return 0;
748 }
749 
750 /*
751  * File format:
752  *
753  * struct group_descs {
754  *	u32	nr_groups;
755  *	struct group_desc {
756  *		char	name[];
757  *		u32	leader_idx;
758  *		u32	nr_members;
759  *	}[nr_groups];
760  * };
761  */
762 static int write_group_desc(struct feat_fd *ff,
763 			    struct evlist *evlist)
764 {
765 	u32 nr_groups = evlist->nr_groups;
766 	struct evsel *evsel;
767 	int ret;
768 
769 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
770 	if (ret < 0)
771 		return ret;
772 
773 	evlist__for_each_entry(evlist, evsel) {
774 		if (perf_evsel__is_group_leader(evsel) &&
775 		    evsel->core.nr_members > 1) {
776 			const char *name = evsel->group_name ?: "{anon_group}";
777 			u32 leader_idx = evsel->idx;
778 			u32 nr_members = evsel->core.nr_members;
779 
780 			ret = do_write_string(ff, name);
781 			if (ret < 0)
782 				return ret;
783 
784 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
785 			if (ret < 0)
786 				return ret;
787 
788 			ret = do_write(ff, &nr_members, sizeof(nr_members));
789 			if (ret < 0)
790 				return ret;
791 		}
792 	}
793 	return 0;
794 }
795 
796 /*
797  * Return the CPU id as a raw string.
798  *
799  * Each architecture should provide a more precise id string that
800  * can be use to match the architecture's "mapfile".
801  */
802 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
803 {
804 	return NULL;
805 }
806 
807 /* Return zero when the cpuid from the mapfile.csv matches the
808  * cpuid string generated on this platform.
809  * Otherwise return non-zero.
810  */
811 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
812 {
813 	regex_t re;
814 	regmatch_t pmatch[1];
815 	int match;
816 
817 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
818 		/* Warn unable to generate match particular string. */
819 		pr_info("Invalid regular expression %s\n", mapcpuid);
820 		return 1;
821 	}
822 
823 	match = !regexec(&re, cpuid, 1, pmatch, 0);
824 	regfree(&re);
825 	if (match) {
826 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
827 
828 		/* Verify the entire string matched. */
829 		if (match_len == strlen(cpuid))
830 			return 0;
831 	}
832 	return 1;
833 }
834 
835 /*
836  * default get_cpuid(): nothing gets recorded
837  * actual implementation must be in arch/$(SRCARCH)/util/header.c
838  */
839 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
840 {
841 	return -1;
842 }
843 
844 static int write_cpuid(struct feat_fd *ff,
845 		       struct evlist *evlist __maybe_unused)
846 {
847 	char buffer[64];
848 	int ret;
849 
850 	ret = get_cpuid(buffer, sizeof(buffer));
851 	if (ret)
852 		return -1;
853 
854 	return do_write_string(ff, buffer);
855 }
856 
857 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
858 			      struct evlist *evlist __maybe_unused)
859 {
860 	return 0;
861 }
862 
863 static int write_auxtrace(struct feat_fd *ff,
864 			  struct evlist *evlist __maybe_unused)
865 {
866 	struct perf_session *session;
867 	int err;
868 
869 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
870 		return -1;
871 
872 	session = container_of(ff->ph, struct perf_session, header);
873 
874 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
875 	if (err < 0)
876 		pr_err("Failed to write auxtrace index\n");
877 	return err;
878 }
879 
880 static int write_clockid(struct feat_fd *ff,
881 			 struct evlist *evlist __maybe_unused)
882 {
883 	return do_write(ff, &ff->ph->env.clockid_res_ns,
884 			sizeof(ff->ph->env.clockid_res_ns));
885 }
886 
887 static int write_dir_format(struct feat_fd *ff,
888 			    struct evlist *evlist __maybe_unused)
889 {
890 	struct perf_session *session;
891 	struct perf_data *data;
892 
893 	session = container_of(ff->ph, struct perf_session, header);
894 	data = session->data;
895 
896 	if (WARN_ON(!perf_data__is_dir(data)))
897 		return -1;
898 
899 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
900 }
901 
902 #ifdef HAVE_LIBBPF_SUPPORT
903 static int write_bpf_prog_info(struct feat_fd *ff,
904 			       struct evlist *evlist __maybe_unused)
905 {
906 	struct perf_env *env = &ff->ph->env;
907 	struct rb_root *root;
908 	struct rb_node *next;
909 	int ret;
910 
911 	down_read(&env->bpf_progs.lock);
912 
913 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
914 		       sizeof(env->bpf_progs.infos_cnt));
915 	if (ret < 0)
916 		goto out;
917 
918 	root = &env->bpf_progs.infos;
919 	next = rb_first(root);
920 	while (next) {
921 		struct bpf_prog_info_node *node;
922 		size_t len;
923 
924 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
925 		next = rb_next(&node->rb_node);
926 		len = sizeof(struct bpf_prog_info_linear) +
927 			node->info_linear->data_len;
928 
929 		/* before writing to file, translate address to offset */
930 		bpf_program__bpil_addr_to_offs(node->info_linear);
931 		ret = do_write(ff, node->info_linear, len);
932 		/*
933 		 * translate back to address even when do_write() fails,
934 		 * so that this function never changes the data.
935 		 */
936 		bpf_program__bpil_offs_to_addr(node->info_linear);
937 		if (ret < 0)
938 			goto out;
939 	}
940 out:
941 	up_read(&env->bpf_progs.lock);
942 	return ret;
943 }
944 #else // HAVE_LIBBPF_SUPPORT
945 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
946 			       struct evlist *evlist __maybe_unused)
947 {
948 	return 0;
949 }
950 #endif // HAVE_LIBBPF_SUPPORT
951 
952 static int write_bpf_btf(struct feat_fd *ff,
953 			 struct evlist *evlist __maybe_unused)
954 {
955 	struct perf_env *env = &ff->ph->env;
956 	struct rb_root *root;
957 	struct rb_node *next;
958 	int ret;
959 
960 	down_read(&env->bpf_progs.lock);
961 
962 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
963 		       sizeof(env->bpf_progs.btfs_cnt));
964 
965 	if (ret < 0)
966 		goto out;
967 
968 	root = &env->bpf_progs.btfs;
969 	next = rb_first(root);
970 	while (next) {
971 		struct btf_node *node;
972 
973 		node = rb_entry(next, struct btf_node, rb_node);
974 		next = rb_next(&node->rb_node);
975 		ret = do_write(ff, &node->id,
976 			       sizeof(u32) * 2 + node->data_size);
977 		if (ret < 0)
978 			goto out;
979 	}
980 out:
981 	up_read(&env->bpf_progs.lock);
982 	return ret;
983 }
984 
985 static int cpu_cache_level__sort(const void *a, const void *b)
986 {
987 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
988 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
989 
990 	return cache_a->level - cache_b->level;
991 }
992 
993 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
994 {
995 	if (a->level != b->level)
996 		return false;
997 
998 	if (a->line_size != b->line_size)
999 		return false;
1000 
1001 	if (a->sets != b->sets)
1002 		return false;
1003 
1004 	if (a->ways != b->ways)
1005 		return false;
1006 
1007 	if (strcmp(a->type, b->type))
1008 		return false;
1009 
1010 	if (strcmp(a->size, b->size))
1011 		return false;
1012 
1013 	if (strcmp(a->map, b->map))
1014 		return false;
1015 
1016 	return true;
1017 }
1018 
1019 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1020 {
1021 	char path[PATH_MAX], file[PATH_MAX];
1022 	struct stat st;
1023 	size_t len;
1024 
1025 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1026 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1027 
1028 	if (stat(file, &st))
1029 		return 1;
1030 
1031 	scnprintf(file, PATH_MAX, "%s/level", path);
1032 	if (sysfs__read_int(file, (int *) &cache->level))
1033 		return -1;
1034 
1035 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1036 	if (sysfs__read_int(file, (int *) &cache->line_size))
1037 		return -1;
1038 
1039 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1040 	if (sysfs__read_int(file, (int *) &cache->sets))
1041 		return -1;
1042 
1043 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1044 	if (sysfs__read_int(file, (int *) &cache->ways))
1045 		return -1;
1046 
1047 	scnprintf(file, PATH_MAX, "%s/type", path);
1048 	if (sysfs__read_str(file, &cache->type, &len))
1049 		return -1;
1050 
1051 	cache->type[len] = 0;
1052 	cache->type = strim(cache->type);
1053 
1054 	scnprintf(file, PATH_MAX, "%s/size", path);
1055 	if (sysfs__read_str(file, &cache->size, &len)) {
1056 		zfree(&cache->type);
1057 		return -1;
1058 	}
1059 
1060 	cache->size[len] = 0;
1061 	cache->size = strim(cache->size);
1062 
1063 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1064 	if (sysfs__read_str(file, &cache->map, &len)) {
1065 		zfree(&cache->map);
1066 		zfree(&cache->type);
1067 		return -1;
1068 	}
1069 
1070 	cache->map[len] = 0;
1071 	cache->map = strim(cache->map);
1072 	return 0;
1073 }
1074 
1075 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1076 {
1077 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1078 }
1079 
1080 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1081 {
1082 	u32 i, cnt = 0;
1083 	long ncpus;
1084 	u32 nr, cpu;
1085 	u16 level;
1086 
1087 	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1088 	if (ncpus < 0)
1089 		return -1;
1090 
1091 	nr = (u32)(ncpus & UINT_MAX);
1092 
1093 	for (cpu = 0; cpu < nr; cpu++) {
1094 		for (level = 0; level < 10; level++) {
1095 			struct cpu_cache_level c;
1096 			int err;
1097 
1098 			err = cpu_cache_level__read(&c, cpu, level);
1099 			if (err < 0)
1100 				return err;
1101 
1102 			if (err == 1)
1103 				break;
1104 
1105 			for (i = 0; i < cnt; i++) {
1106 				if (cpu_cache_level__cmp(&c, &caches[i]))
1107 					break;
1108 			}
1109 
1110 			if (i == cnt)
1111 				caches[cnt++] = c;
1112 			else
1113 				cpu_cache_level__free(&c);
1114 
1115 			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1116 				goto out;
1117 		}
1118 	}
1119  out:
1120 	*cntp = cnt;
1121 	return 0;
1122 }
1123 
1124 #define MAX_CACHES (MAX_NR_CPUS * 4)
1125 
1126 static int write_cache(struct feat_fd *ff,
1127 		       struct evlist *evlist __maybe_unused)
1128 {
1129 	struct cpu_cache_level caches[MAX_CACHES];
1130 	u32 cnt = 0, i, version = 1;
1131 	int ret;
1132 
1133 	ret = build_caches(caches, MAX_CACHES, &cnt);
1134 	if (ret)
1135 		goto out;
1136 
1137 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1138 
1139 	ret = do_write(ff, &version, sizeof(u32));
1140 	if (ret < 0)
1141 		goto out;
1142 
1143 	ret = do_write(ff, &cnt, sizeof(u32));
1144 	if (ret < 0)
1145 		goto out;
1146 
1147 	for (i = 0; i < cnt; i++) {
1148 		struct cpu_cache_level *c = &caches[i];
1149 
1150 		#define _W(v)					\
1151 			ret = do_write(ff, &c->v, sizeof(u32));	\
1152 			if (ret < 0)				\
1153 				goto out;
1154 
1155 		_W(level)
1156 		_W(line_size)
1157 		_W(sets)
1158 		_W(ways)
1159 		#undef _W
1160 
1161 		#define _W(v)						\
1162 			ret = do_write_string(ff, (const char *) c->v);	\
1163 			if (ret < 0)					\
1164 				goto out;
1165 
1166 		_W(type)
1167 		_W(size)
1168 		_W(map)
1169 		#undef _W
1170 	}
1171 
1172 out:
1173 	for (i = 0; i < cnt; i++)
1174 		cpu_cache_level__free(&caches[i]);
1175 	return ret;
1176 }
1177 
1178 static int write_stat(struct feat_fd *ff __maybe_unused,
1179 		      struct evlist *evlist __maybe_unused)
1180 {
1181 	return 0;
1182 }
1183 
1184 static int write_sample_time(struct feat_fd *ff,
1185 			     struct evlist *evlist)
1186 {
1187 	int ret;
1188 
1189 	ret = do_write(ff, &evlist->first_sample_time,
1190 		       sizeof(evlist->first_sample_time));
1191 	if (ret < 0)
1192 		return ret;
1193 
1194 	return do_write(ff, &evlist->last_sample_time,
1195 			sizeof(evlist->last_sample_time));
1196 }
1197 
1198 
1199 static int memory_node__read(struct memory_node *n, unsigned long idx)
1200 {
1201 	unsigned int phys, size = 0;
1202 	char path[PATH_MAX];
1203 	struct dirent *ent;
1204 	DIR *dir;
1205 
1206 #define for_each_memory(mem, dir)					\
1207 	while ((ent = readdir(dir)))					\
1208 		if (strcmp(ent->d_name, ".") &&				\
1209 		    strcmp(ent->d_name, "..") &&			\
1210 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1211 
1212 	scnprintf(path, PATH_MAX,
1213 		  "%s/devices/system/node/node%lu",
1214 		  sysfs__mountpoint(), idx);
1215 
1216 	dir = opendir(path);
1217 	if (!dir) {
1218 		pr_warning("failed: cant' open memory sysfs data\n");
1219 		return -1;
1220 	}
1221 
1222 	for_each_memory(phys, dir) {
1223 		size = max(phys, size);
1224 	}
1225 
1226 	size++;
1227 
1228 	n->set = bitmap_alloc(size);
1229 	if (!n->set) {
1230 		closedir(dir);
1231 		return -ENOMEM;
1232 	}
1233 
1234 	n->node = idx;
1235 	n->size = size;
1236 
1237 	rewinddir(dir);
1238 
1239 	for_each_memory(phys, dir) {
1240 		set_bit(phys, n->set);
1241 	}
1242 
1243 	closedir(dir);
1244 	return 0;
1245 }
1246 
1247 static int memory_node__sort(const void *a, const void *b)
1248 {
1249 	const struct memory_node *na = a;
1250 	const struct memory_node *nb = b;
1251 
1252 	return na->node - nb->node;
1253 }
1254 
1255 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1256 {
1257 	char path[PATH_MAX];
1258 	struct dirent *ent;
1259 	DIR *dir;
1260 	u64 cnt = 0;
1261 	int ret = 0;
1262 
1263 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1264 		  sysfs__mountpoint());
1265 
1266 	dir = opendir(path);
1267 	if (!dir) {
1268 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1269 			  __func__, path);
1270 		return -1;
1271 	}
1272 
1273 	while (!ret && (ent = readdir(dir))) {
1274 		unsigned int idx;
1275 		int r;
1276 
1277 		if (!strcmp(ent->d_name, ".") ||
1278 		    !strcmp(ent->d_name, ".."))
1279 			continue;
1280 
1281 		r = sscanf(ent->d_name, "node%u", &idx);
1282 		if (r != 1)
1283 			continue;
1284 
1285 		if (WARN_ONCE(cnt >= size,
1286 			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1287 			return -1;
1288 
1289 		ret = memory_node__read(&nodes[cnt++], idx);
1290 	}
1291 
1292 	*cntp = cnt;
1293 	closedir(dir);
1294 
1295 	if (!ret)
1296 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1297 
1298 	return ret;
1299 }
1300 
1301 #define MAX_MEMORY_NODES 2000
1302 
1303 /*
1304  * The MEM_TOPOLOGY holds physical memory map for every
1305  * node in system. The format of data is as follows:
1306  *
1307  *  0 - version          | for future changes
1308  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1309  * 16 - count            | number of nodes
1310  *
1311  * For each node we store map of physical indexes for
1312  * each node:
1313  *
1314  * 32 - node id          | node index
1315  * 40 - size             | size of bitmap
1316  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1317  */
1318 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1319 			      struct evlist *evlist __maybe_unused)
1320 {
1321 	static struct memory_node nodes[MAX_MEMORY_NODES];
1322 	u64 bsize, version = 1, i, nr;
1323 	int ret;
1324 
1325 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1326 			      (unsigned long long *) &bsize);
1327 	if (ret)
1328 		return ret;
1329 
1330 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1331 	if (ret)
1332 		return ret;
1333 
1334 	ret = do_write(ff, &version, sizeof(version));
1335 	if (ret < 0)
1336 		goto out;
1337 
1338 	ret = do_write(ff, &bsize, sizeof(bsize));
1339 	if (ret < 0)
1340 		goto out;
1341 
1342 	ret = do_write(ff, &nr, sizeof(nr));
1343 	if (ret < 0)
1344 		goto out;
1345 
1346 	for (i = 0; i < nr; i++) {
1347 		struct memory_node *n = &nodes[i];
1348 
1349 		#define _W(v)						\
1350 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1351 			if (ret < 0)					\
1352 				goto out;
1353 
1354 		_W(node)
1355 		_W(size)
1356 
1357 		#undef _W
1358 
1359 		ret = do_write_bitmap(ff, n->set, n->size);
1360 		if (ret < 0)
1361 			goto out;
1362 	}
1363 
1364 out:
1365 	return ret;
1366 }
1367 
1368 static int write_compressed(struct feat_fd *ff __maybe_unused,
1369 			    struct evlist *evlist __maybe_unused)
1370 {
1371 	int ret;
1372 
1373 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1374 	if (ret)
1375 		return ret;
1376 
1377 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1378 	if (ret)
1379 		return ret;
1380 
1381 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1382 	if (ret)
1383 		return ret;
1384 
1385 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1386 	if (ret)
1387 		return ret;
1388 
1389 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1390 }
1391 
1392 static void print_hostname(struct feat_fd *ff, FILE *fp)
1393 {
1394 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1395 }
1396 
1397 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1398 {
1399 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1400 }
1401 
1402 static void print_arch(struct feat_fd *ff, FILE *fp)
1403 {
1404 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1405 }
1406 
1407 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1408 {
1409 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1410 }
1411 
1412 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1413 {
1414 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1415 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1416 }
1417 
1418 static void print_version(struct feat_fd *ff, FILE *fp)
1419 {
1420 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1421 }
1422 
1423 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1424 {
1425 	int nr, i;
1426 
1427 	nr = ff->ph->env.nr_cmdline;
1428 
1429 	fprintf(fp, "# cmdline : ");
1430 
1431 	for (i = 0; i < nr; i++) {
1432 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1433 		if (!argv_i) {
1434 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1435 		} else {
1436 			char *mem = argv_i;
1437 			do {
1438 				char *quote = strchr(argv_i, '\'');
1439 				if (!quote)
1440 					break;
1441 				*quote++ = '\0';
1442 				fprintf(fp, "%s\\\'", argv_i);
1443 				argv_i = quote;
1444 			} while (1);
1445 			fprintf(fp, "%s ", argv_i);
1446 			free(mem);
1447 		}
1448 	}
1449 	fputc('\n', fp);
1450 }
1451 
1452 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1453 {
1454 	struct perf_header *ph = ff->ph;
1455 	int cpu_nr = ph->env.nr_cpus_avail;
1456 	int nr, i;
1457 	char *str;
1458 
1459 	nr = ph->env.nr_sibling_cores;
1460 	str = ph->env.sibling_cores;
1461 
1462 	for (i = 0; i < nr; i++) {
1463 		fprintf(fp, "# sibling sockets : %s\n", str);
1464 		str += strlen(str) + 1;
1465 	}
1466 
1467 	if (ph->env.nr_sibling_dies) {
1468 		nr = ph->env.nr_sibling_dies;
1469 		str = ph->env.sibling_dies;
1470 
1471 		for (i = 0; i < nr; i++) {
1472 			fprintf(fp, "# sibling dies    : %s\n", str);
1473 			str += strlen(str) + 1;
1474 		}
1475 	}
1476 
1477 	nr = ph->env.nr_sibling_threads;
1478 	str = ph->env.sibling_threads;
1479 
1480 	for (i = 0; i < nr; i++) {
1481 		fprintf(fp, "# sibling threads : %s\n", str);
1482 		str += strlen(str) + 1;
1483 	}
1484 
1485 	if (ph->env.nr_sibling_dies) {
1486 		if (ph->env.cpu != NULL) {
1487 			for (i = 0; i < cpu_nr; i++)
1488 				fprintf(fp, "# CPU %d: Core ID %d, "
1489 					    "Die ID %d, Socket ID %d\n",
1490 					    i, ph->env.cpu[i].core_id,
1491 					    ph->env.cpu[i].die_id,
1492 					    ph->env.cpu[i].socket_id);
1493 		} else
1494 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1495 				    "information is not available\n");
1496 	} else {
1497 		if (ph->env.cpu != NULL) {
1498 			for (i = 0; i < cpu_nr; i++)
1499 				fprintf(fp, "# CPU %d: Core ID %d, "
1500 					    "Socket ID %d\n",
1501 					    i, ph->env.cpu[i].core_id,
1502 					    ph->env.cpu[i].socket_id);
1503 		} else
1504 			fprintf(fp, "# Core ID and Socket ID "
1505 				    "information is not available\n");
1506 	}
1507 }
1508 
1509 static void print_clockid(struct feat_fd *ff, FILE *fp)
1510 {
1511 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1512 		ff->ph->env.clockid_res_ns * 1000);
1513 }
1514 
1515 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1516 {
1517 	struct perf_session *session;
1518 	struct perf_data *data;
1519 
1520 	session = container_of(ff->ph, struct perf_session, header);
1521 	data = session->data;
1522 
1523 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1524 }
1525 
1526 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1527 {
1528 	struct perf_env *env = &ff->ph->env;
1529 	struct rb_root *root;
1530 	struct rb_node *next;
1531 
1532 	down_read(&env->bpf_progs.lock);
1533 
1534 	root = &env->bpf_progs.infos;
1535 	next = rb_first(root);
1536 
1537 	while (next) {
1538 		struct bpf_prog_info_node *node;
1539 
1540 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1541 		next = rb_next(&node->rb_node);
1542 
1543 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1544 					       env, fp);
1545 	}
1546 
1547 	up_read(&env->bpf_progs.lock);
1548 }
1549 
1550 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1551 {
1552 	struct perf_env *env = &ff->ph->env;
1553 	struct rb_root *root;
1554 	struct rb_node *next;
1555 
1556 	down_read(&env->bpf_progs.lock);
1557 
1558 	root = &env->bpf_progs.btfs;
1559 	next = rb_first(root);
1560 
1561 	while (next) {
1562 		struct btf_node *node;
1563 
1564 		node = rb_entry(next, struct btf_node, rb_node);
1565 		next = rb_next(&node->rb_node);
1566 		fprintf(fp, "# btf info of id %u\n", node->id);
1567 	}
1568 
1569 	up_read(&env->bpf_progs.lock);
1570 }
1571 
1572 static void free_event_desc(struct evsel *events)
1573 {
1574 	struct evsel *evsel;
1575 
1576 	if (!events)
1577 		return;
1578 
1579 	for (evsel = events; evsel->core.attr.size; evsel++) {
1580 		zfree(&evsel->name);
1581 		zfree(&evsel->id);
1582 	}
1583 
1584 	free(events);
1585 }
1586 
1587 static struct evsel *read_event_desc(struct feat_fd *ff)
1588 {
1589 	struct evsel *evsel, *events = NULL;
1590 	u64 *id;
1591 	void *buf = NULL;
1592 	u32 nre, sz, nr, i, j;
1593 	size_t msz;
1594 
1595 	/* number of events */
1596 	if (do_read_u32(ff, &nre))
1597 		goto error;
1598 
1599 	if (do_read_u32(ff, &sz))
1600 		goto error;
1601 
1602 	/* buffer to hold on file attr struct */
1603 	buf = malloc(sz);
1604 	if (!buf)
1605 		goto error;
1606 
1607 	/* the last event terminates with evsel->core.attr.size == 0: */
1608 	events = calloc(nre + 1, sizeof(*events));
1609 	if (!events)
1610 		goto error;
1611 
1612 	msz = sizeof(evsel->core.attr);
1613 	if (sz < msz)
1614 		msz = sz;
1615 
1616 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1617 		evsel->idx = i;
1618 
1619 		/*
1620 		 * must read entire on-file attr struct to
1621 		 * sync up with layout.
1622 		 */
1623 		if (__do_read(ff, buf, sz))
1624 			goto error;
1625 
1626 		if (ff->ph->needs_swap)
1627 			perf_event__attr_swap(buf);
1628 
1629 		memcpy(&evsel->core.attr, buf, msz);
1630 
1631 		if (do_read_u32(ff, &nr))
1632 			goto error;
1633 
1634 		if (ff->ph->needs_swap)
1635 			evsel->needs_swap = true;
1636 
1637 		evsel->name = do_read_string(ff);
1638 		if (!evsel->name)
1639 			goto error;
1640 
1641 		if (!nr)
1642 			continue;
1643 
1644 		id = calloc(nr, sizeof(*id));
1645 		if (!id)
1646 			goto error;
1647 		evsel->ids = nr;
1648 		evsel->id = id;
1649 
1650 		for (j = 0 ; j < nr; j++) {
1651 			if (do_read_u64(ff, id))
1652 				goto error;
1653 			id++;
1654 		}
1655 	}
1656 out:
1657 	free(buf);
1658 	return events;
1659 error:
1660 	free_event_desc(events);
1661 	events = NULL;
1662 	goto out;
1663 }
1664 
1665 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1666 				void *priv __maybe_unused)
1667 {
1668 	return fprintf(fp, ", %s = %s", name, val);
1669 }
1670 
1671 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1672 {
1673 	struct evsel *evsel, *events;
1674 	u32 j;
1675 	u64 *id;
1676 
1677 	if (ff->events)
1678 		events = ff->events;
1679 	else
1680 		events = read_event_desc(ff);
1681 
1682 	if (!events) {
1683 		fprintf(fp, "# event desc: not available or unable to read\n");
1684 		return;
1685 	}
1686 
1687 	for (evsel = events; evsel->core.attr.size; evsel++) {
1688 		fprintf(fp, "# event : name = %s, ", evsel->name);
1689 
1690 		if (evsel->ids) {
1691 			fprintf(fp, ", id = {");
1692 			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1693 				if (j)
1694 					fputc(',', fp);
1695 				fprintf(fp, " %"PRIu64, *id);
1696 			}
1697 			fprintf(fp, " }");
1698 		}
1699 
1700 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1701 
1702 		fputc('\n', fp);
1703 	}
1704 
1705 	free_event_desc(events);
1706 	ff->events = NULL;
1707 }
1708 
1709 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1710 {
1711 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1712 }
1713 
1714 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1715 {
1716 	int i;
1717 	struct numa_node *n;
1718 
1719 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1720 		n = &ff->ph->env.numa_nodes[i];
1721 
1722 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1723 			    " free = %"PRIu64" kB\n",
1724 			n->node, n->mem_total, n->mem_free);
1725 
1726 		fprintf(fp, "# node%u cpu list : ", n->node);
1727 		cpu_map__fprintf(n->map, fp);
1728 	}
1729 }
1730 
1731 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1732 {
1733 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1734 }
1735 
1736 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1737 {
1738 	fprintf(fp, "# contains samples with branch stack\n");
1739 }
1740 
1741 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1742 {
1743 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1744 }
1745 
1746 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1747 {
1748 	fprintf(fp, "# contains stat data\n");
1749 }
1750 
1751 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1752 {
1753 	int i;
1754 
1755 	fprintf(fp, "# CPU cache info:\n");
1756 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1757 		fprintf(fp, "#  ");
1758 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1759 	}
1760 }
1761 
1762 static void print_compressed(struct feat_fd *ff, FILE *fp)
1763 {
1764 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1765 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1766 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1767 }
1768 
1769 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1770 {
1771 	const char *delimiter = "# pmu mappings: ";
1772 	char *str, *tmp;
1773 	u32 pmu_num;
1774 	u32 type;
1775 
1776 	pmu_num = ff->ph->env.nr_pmu_mappings;
1777 	if (!pmu_num) {
1778 		fprintf(fp, "# pmu mappings: not available\n");
1779 		return;
1780 	}
1781 
1782 	str = ff->ph->env.pmu_mappings;
1783 
1784 	while (pmu_num) {
1785 		type = strtoul(str, &tmp, 0);
1786 		if (*tmp != ':')
1787 			goto error;
1788 
1789 		str = tmp + 1;
1790 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1791 
1792 		delimiter = ", ";
1793 		str += strlen(str) + 1;
1794 		pmu_num--;
1795 	}
1796 
1797 	fprintf(fp, "\n");
1798 
1799 	if (!pmu_num)
1800 		return;
1801 error:
1802 	fprintf(fp, "# pmu mappings: unable to read\n");
1803 }
1804 
1805 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1806 {
1807 	struct perf_session *session;
1808 	struct evsel *evsel;
1809 	u32 nr = 0;
1810 
1811 	session = container_of(ff->ph, struct perf_session, header);
1812 
1813 	evlist__for_each_entry(session->evlist, evsel) {
1814 		if (perf_evsel__is_group_leader(evsel) &&
1815 		    evsel->core.nr_members > 1) {
1816 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1817 				perf_evsel__name(evsel));
1818 
1819 			nr = evsel->core.nr_members - 1;
1820 		} else if (nr) {
1821 			fprintf(fp, ",%s", perf_evsel__name(evsel));
1822 
1823 			if (--nr == 0)
1824 				fprintf(fp, "}\n");
1825 		}
1826 	}
1827 }
1828 
1829 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1830 {
1831 	struct perf_session *session;
1832 	char time_buf[32];
1833 	double d;
1834 
1835 	session = container_of(ff->ph, struct perf_session, header);
1836 
1837 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1838 				  time_buf, sizeof(time_buf));
1839 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1840 
1841 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1842 				  time_buf, sizeof(time_buf));
1843 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1844 
1845 	d = (double)(session->evlist->last_sample_time -
1846 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1847 
1848 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1849 }
1850 
1851 static void memory_node__fprintf(struct memory_node *n,
1852 				 unsigned long long bsize, FILE *fp)
1853 {
1854 	char buf_map[100], buf_size[50];
1855 	unsigned long long size;
1856 
1857 	size = bsize * bitmap_weight(n->set, n->size);
1858 	unit_number__scnprintf(buf_size, 50, size);
1859 
1860 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1861 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1862 }
1863 
1864 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1865 {
1866 	struct memory_node *nodes;
1867 	int i, nr;
1868 
1869 	nodes = ff->ph->env.memory_nodes;
1870 	nr    = ff->ph->env.nr_memory_nodes;
1871 
1872 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1873 		nr, ff->ph->env.memory_bsize);
1874 
1875 	for (i = 0; i < nr; i++) {
1876 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1877 	}
1878 }
1879 
1880 static int __event_process_build_id(struct build_id_event *bev,
1881 				    char *filename,
1882 				    struct perf_session *session)
1883 {
1884 	int err = -1;
1885 	struct machine *machine;
1886 	u16 cpumode;
1887 	struct dso *dso;
1888 	enum dso_kernel_type dso_type;
1889 
1890 	machine = perf_session__findnew_machine(session, bev->pid);
1891 	if (!machine)
1892 		goto out;
1893 
1894 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1895 
1896 	switch (cpumode) {
1897 	case PERF_RECORD_MISC_KERNEL:
1898 		dso_type = DSO_TYPE_KERNEL;
1899 		break;
1900 	case PERF_RECORD_MISC_GUEST_KERNEL:
1901 		dso_type = DSO_TYPE_GUEST_KERNEL;
1902 		break;
1903 	case PERF_RECORD_MISC_USER:
1904 	case PERF_RECORD_MISC_GUEST_USER:
1905 		dso_type = DSO_TYPE_USER;
1906 		break;
1907 	default:
1908 		goto out;
1909 	}
1910 
1911 	dso = machine__findnew_dso(machine, filename);
1912 	if (dso != NULL) {
1913 		char sbuild_id[SBUILD_ID_SIZE];
1914 
1915 		dso__set_build_id(dso, &bev->build_id);
1916 
1917 		if (dso_type != DSO_TYPE_USER) {
1918 			struct kmod_path m = { .name = NULL, };
1919 
1920 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1921 				dso__set_module_info(dso, &m, machine);
1922 			else
1923 				dso->kernel = dso_type;
1924 
1925 			free(m.name);
1926 		}
1927 
1928 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1929 				  sbuild_id);
1930 		pr_debug("build id event received for %s: %s\n",
1931 			 dso->long_name, sbuild_id);
1932 		dso__put(dso);
1933 	}
1934 
1935 	err = 0;
1936 out:
1937 	return err;
1938 }
1939 
1940 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1941 						 int input, u64 offset, u64 size)
1942 {
1943 	struct perf_session *session = container_of(header, struct perf_session, header);
1944 	struct {
1945 		struct perf_event_header   header;
1946 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1947 		char			   filename[0];
1948 	} old_bev;
1949 	struct build_id_event bev;
1950 	char filename[PATH_MAX];
1951 	u64 limit = offset + size;
1952 
1953 	while (offset < limit) {
1954 		ssize_t len;
1955 
1956 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1957 			return -1;
1958 
1959 		if (header->needs_swap)
1960 			perf_event_header__bswap(&old_bev.header);
1961 
1962 		len = old_bev.header.size - sizeof(old_bev);
1963 		if (readn(input, filename, len) != len)
1964 			return -1;
1965 
1966 		bev.header = old_bev.header;
1967 
1968 		/*
1969 		 * As the pid is the missing value, we need to fill
1970 		 * it properly. The header.misc value give us nice hint.
1971 		 */
1972 		bev.pid	= HOST_KERNEL_ID;
1973 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1974 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1975 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1976 
1977 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1978 		__event_process_build_id(&bev, filename, session);
1979 
1980 		offset += bev.header.size;
1981 	}
1982 
1983 	return 0;
1984 }
1985 
1986 static int perf_header__read_build_ids(struct perf_header *header,
1987 				       int input, u64 offset, u64 size)
1988 {
1989 	struct perf_session *session = container_of(header, struct perf_session, header);
1990 	struct build_id_event bev;
1991 	char filename[PATH_MAX];
1992 	u64 limit = offset + size, orig_offset = offset;
1993 	int err = -1;
1994 
1995 	while (offset < limit) {
1996 		ssize_t len;
1997 
1998 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1999 			goto out;
2000 
2001 		if (header->needs_swap)
2002 			perf_event_header__bswap(&bev.header);
2003 
2004 		len = bev.header.size - sizeof(bev);
2005 		if (readn(input, filename, len) != len)
2006 			goto out;
2007 		/*
2008 		 * The a1645ce1 changeset:
2009 		 *
2010 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2011 		 *
2012 		 * Added a field to struct build_id_event that broke the file
2013 		 * format.
2014 		 *
2015 		 * Since the kernel build-id is the first entry, process the
2016 		 * table using the old format if the well known
2017 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2018 		 * first 4 characters chopped off (where the pid_t sits).
2019 		 */
2020 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2021 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2022 				return -1;
2023 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2024 		}
2025 
2026 		__event_process_build_id(&bev, filename, session);
2027 
2028 		offset += bev.header.size;
2029 	}
2030 	err = 0;
2031 out:
2032 	return err;
2033 }
2034 
2035 /* Macro for features that simply need to read and store a string. */
2036 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2037 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2038 {\
2039 	ff->ph->env.__feat_env = do_read_string(ff); \
2040 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2041 }
2042 
2043 FEAT_PROCESS_STR_FUN(hostname, hostname);
2044 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2045 FEAT_PROCESS_STR_FUN(version, version);
2046 FEAT_PROCESS_STR_FUN(arch, arch);
2047 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2048 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2049 
2050 static int process_tracing_data(struct feat_fd *ff, void *data)
2051 {
2052 	ssize_t ret = trace_report(ff->fd, data, false);
2053 
2054 	return ret < 0 ? -1 : 0;
2055 }
2056 
2057 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2058 {
2059 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2060 		pr_debug("Failed to read buildids, continuing...\n");
2061 	return 0;
2062 }
2063 
2064 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2065 {
2066 	int ret;
2067 	u32 nr_cpus_avail, nr_cpus_online;
2068 
2069 	ret = do_read_u32(ff, &nr_cpus_avail);
2070 	if (ret)
2071 		return ret;
2072 
2073 	ret = do_read_u32(ff, &nr_cpus_online);
2074 	if (ret)
2075 		return ret;
2076 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2077 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2078 	return 0;
2079 }
2080 
2081 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2082 {
2083 	u64 total_mem;
2084 	int ret;
2085 
2086 	ret = do_read_u64(ff, &total_mem);
2087 	if (ret)
2088 		return -1;
2089 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2090 	return 0;
2091 }
2092 
2093 static struct evsel *
2094 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2095 {
2096 	struct evsel *evsel;
2097 
2098 	evlist__for_each_entry(evlist, evsel) {
2099 		if (evsel->idx == idx)
2100 			return evsel;
2101 	}
2102 
2103 	return NULL;
2104 }
2105 
2106 static void
2107 perf_evlist__set_event_name(struct evlist *evlist,
2108 			    struct evsel *event)
2109 {
2110 	struct evsel *evsel;
2111 
2112 	if (!event->name)
2113 		return;
2114 
2115 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2116 	if (!evsel)
2117 		return;
2118 
2119 	if (evsel->name)
2120 		return;
2121 
2122 	evsel->name = strdup(event->name);
2123 }
2124 
2125 static int
2126 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2127 {
2128 	struct perf_session *session;
2129 	struct evsel *evsel, *events = read_event_desc(ff);
2130 
2131 	if (!events)
2132 		return 0;
2133 
2134 	session = container_of(ff->ph, struct perf_session, header);
2135 
2136 	if (session->data->is_pipe) {
2137 		/* Save events for reading later by print_event_desc,
2138 		 * since they can't be read again in pipe mode. */
2139 		ff->events = events;
2140 	}
2141 
2142 	for (evsel = events; evsel->core.attr.size; evsel++)
2143 		perf_evlist__set_event_name(session->evlist, evsel);
2144 
2145 	if (!session->data->is_pipe)
2146 		free_event_desc(events);
2147 
2148 	return 0;
2149 }
2150 
2151 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2152 {
2153 	char *str, *cmdline = NULL, **argv = NULL;
2154 	u32 nr, i, len = 0;
2155 
2156 	if (do_read_u32(ff, &nr))
2157 		return -1;
2158 
2159 	ff->ph->env.nr_cmdline = nr;
2160 
2161 	cmdline = zalloc(ff->size + nr + 1);
2162 	if (!cmdline)
2163 		return -1;
2164 
2165 	argv = zalloc(sizeof(char *) * (nr + 1));
2166 	if (!argv)
2167 		goto error;
2168 
2169 	for (i = 0; i < nr; i++) {
2170 		str = do_read_string(ff);
2171 		if (!str)
2172 			goto error;
2173 
2174 		argv[i] = cmdline + len;
2175 		memcpy(argv[i], str, strlen(str) + 1);
2176 		len += strlen(str) + 1;
2177 		free(str);
2178 	}
2179 	ff->ph->env.cmdline = cmdline;
2180 	ff->ph->env.cmdline_argv = (const char **) argv;
2181 	return 0;
2182 
2183 error:
2184 	free(argv);
2185 	free(cmdline);
2186 	return -1;
2187 }
2188 
2189 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2190 {
2191 	u32 nr, i;
2192 	char *str;
2193 	struct strbuf sb;
2194 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2195 	u64 size = 0;
2196 	struct perf_header *ph = ff->ph;
2197 	bool do_core_id_test = true;
2198 
2199 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2200 	if (!ph->env.cpu)
2201 		return -1;
2202 
2203 	if (do_read_u32(ff, &nr))
2204 		goto free_cpu;
2205 
2206 	ph->env.nr_sibling_cores = nr;
2207 	size += sizeof(u32);
2208 	if (strbuf_init(&sb, 128) < 0)
2209 		goto free_cpu;
2210 
2211 	for (i = 0; i < nr; i++) {
2212 		str = do_read_string(ff);
2213 		if (!str)
2214 			goto error;
2215 
2216 		/* include a NULL character at the end */
2217 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2218 			goto error;
2219 		size += string_size(str);
2220 		free(str);
2221 	}
2222 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2223 
2224 	if (do_read_u32(ff, &nr))
2225 		return -1;
2226 
2227 	ph->env.nr_sibling_threads = nr;
2228 	size += sizeof(u32);
2229 
2230 	for (i = 0; i < nr; i++) {
2231 		str = do_read_string(ff);
2232 		if (!str)
2233 			goto error;
2234 
2235 		/* include a NULL character at the end */
2236 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2237 			goto error;
2238 		size += string_size(str);
2239 		free(str);
2240 	}
2241 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2242 
2243 	/*
2244 	 * The header may be from old perf,
2245 	 * which doesn't include core id and socket id information.
2246 	 */
2247 	if (ff->size <= size) {
2248 		zfree(&ph->env.cpu);
2249 		return 0;
2250 	}
2251 
2252 	/* On s390 the socket_id number is not related to the numbers of cpus.
2253 	 * The socket_id number might be higher than the numbers of cpus.
2254 	 * This depends on the configuration.
2255 	 */
2256 	if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2257 		do_core_id_test = false;
2258 
2259 	for (i = 0; i < (u32)cpu_nr; i++) {
2260 		if (do_read_u32(ff, &nr))
2261 			goto free_cpu;
2262 
2263 		ph->env.cpu[i].core_id = nr;
2264 		size += sizeof(u32);
2265 
2266 		if (do_read_u32(ff, &nr))
2267 			goto free_cpu;
2268 
2269 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2270 			pr_debug("socket_id number is too big."
2271 				 "You may need to upgrade the perf tool.\n");
2272 			goto free_cpu;
2273 		}
2274 
2275 		ph->env.cpu[i].socket_id = nr;
2276 		size += sizeof(u32);
2277 	}
2278 
2279 	/*
2280 	 * The header may be from old perf,
2281 	 * which doesn't include die information.
2282 	 */
2283 	if (ff->size <= size)
2284 		return 0;
2285 
2286 	if (do_read_u32(ff, &nr))
2287 		return -1;
2288 
2289 	ph->env.nr_sibling_dies = nr;
2290 	size += sizeof(u32);
2291 
2292 	for (i = 0; i < nr; i++) {
2293 		str = do_read_string(ff);
2294 		if (!str)
2295 			goto error;
2296 
2297 		/* include a NULL character at the end */
2298 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2299 			goto error;
2300 		size += string_size(str);
2301 		free(str);
2302 	}
2303 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2304 
2305 	for (i = 0; i < (u32)cpu_nr; i++) {
2306 		if (do_read_u32(ff, &nr))
2307 			goto free_cpu;
2308 
2309 		ph->env.cpu[i].die_id = nr;
2310 	}
2311 
2312 	return 0;
2313 
2314 error:
2315 	strbuf_release(&sb);
2316 free_cpu:
2317 	zfree(&ph->env.cpu);
2318 	return -1;
2319 }
2320 
2321 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2322 {
2323 	struct numa_node *nodes, *n;
2324 	u32 nr, i;
2325 	char *str;
2326 
2327 	/* nr nodes */
2328 	if (do_read_u32(ff, &nr))
2329 		return -1;
2330 
2331 	nodes = zalloc(sizeof(*nodes) * nr);
2332 	if (!nodes)
2333 		return -ENOMEM;
2334 
2335 	for (i = 0; i < nr; i++) {
2336 		n = &nodes[i];
2337 
2338 		/* node number */
2339 		if (do_read_u32(ff, &n->node))
2340 			goto error;
2341 
2342 		if (do_read_u64(ff, &n->mem_total))
2343 			goto error;
2344 
2345 		if (do_read_u64(ff, &n->mem_free))
2346 			goto error;
2347 
2348 		str = do_read_string(ff);
2349 		if (!str)
2350 			goto error;
2351 
2352 		n->map = perf_cpu_map__new(str);
2353 		if (!n->map)
2354 			goto error;
2355 
2356 		free(str);
2357 	}
2358 	ff->ph->env.nr_numa_nodes = nr;
2359 	ff->ph->env.numa_nodes = nodes;
2360 	return 0;
2361 
2362 error:
2363 	free(nodes);
2364 	return -1;
2365 }
2366 
2367 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2368 {
2369 	char *name;
2370 	u32 pmu_num;
2371 	u32 type;
2372 	struct strbuf sb;
2373 
2374 	if (do_read_u32(ff, &pmu_num))
2375 		return -1;
2376 
2377 	if (!pmu_num) {
2378 		pr_debug("pmu mappings not available\n");
2379 		return 0;
2380 	}
2381 
2382 	ff->ph->env.nr_pmu_mappings = pmu_num;
2383 	if (strbuf_init(&sb, 128) < 0)
2384 		return -1;
2385 
2386 	while (pmu_num) {
2387 		if (do_read_u32(ff, &type))
2388 			goto error;
2389 
2390 		name = do_read_string(ff);
2391 		if (!name)
2392 			goto error;
2393 
2394 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2395 			goto error;
2396 		/* include a NULL character at the end */
2397 		if (strbuf_add(&sb, "", 1) < 0)
2398 			goto error;
2399 
2400 		if (!strcmp(name, "msr"))
2401 			ff->ph->env.msr_pmu_type = type;
2402 
2403 		free(name);
2404 		pmu_num--;
2405 	}
2406 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2407 	return 0;
2408 
2409 error:
2410 	strbuf_release(&sb);
2411 	return -1;
2412 }
2413 
2414 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2415 {
2416 	size_t ret = -1;
2417 	u32 i, nr, nr_groups;
2418 	struct perf_session *session;
2419 	struct evsel *evsel, *leader = NULL;
2420 	struct group_desc {
2421 		char *name;
2422 		u32 leader_idx;
2423 		u32 nr_members;
2424 	} *desc;
2425 
2426 	if (do_read_u32(ff, &nr_groups))
2427 		return -1;
2428 
2429 	ff->ph->env.nr_groups = nr_groups;
2430 	if (!nr_groups) {
2431 		pr_debug("group desc not available\n");
2432 		return 0;
2433 	}
2434 
2435 	desc = calloc(nr_groups, sizeof(*desc));
2436 	if (!desc)
2437 		return -1;
2438 
2439 	for (i = 0; i < nr_groups; i++) {
2440 		desc[i].name = do_read_string(ff);
2441 		if (!desc[i].name)
2442 			goto out_free;
2443 
2444 		if (do_read_u32(ff, &desc[i].leader_idx))
2445 			goto out_free;
2446 
2447 		if (do_read_u32(ff, &desc[i].nr_members))
2448 			goto out_free;
2449 	}
2450 
2451 	/*
2452 	 * Rebuild group relationship based on the group_desc
2453 	 */
2454 	session = container_of(ff->ph, struct perf_session, header);
2455 	session->evlist->nr_groups = nr_groups;
2456 
2457 	i = nr = 0;
2458 	evlist__for_each_entry(session->evlist, evsel) {
2459 		if (evsel->idx == (int) desc[i].leader_idx) {
2460 			evsel->leader = evsel;
2461 			/* {anon_group} is a dummy name */
2462 			if (strcmp(desc[i].name, "{anon_group}")) {
2463 				evsel->group_name = desc[i].name;
2464 				desc[i].name = NULL;
2465 			}
2466 			evsel->core.nr_members = desc[i].nr_members;
2467 
2468 			if (i >= nr_groups || nr > 0) {
2469 				pr_debug("invalid group desc\n");
2470 				goto out_free;
2471 			}
2472 
2473 			leader = evsel;
2474 			nr = evsel->core.nr_members - 1;
2475 			i++;
2476 		} else if (nr) {
2477 			/* This is a group member */
2478 			evsel->leader = leader;
2479 
2480 			nr--;
2481 		}
2482 	}
2483 
2484 	if (i != nr_groups || nr != 0) {
2485 		pr_debug("invalid group desc\n");
2486 		goto out_free;
2487 	}
2488 
2489 	ret = 0;
2490 out_free:
2491 	for (i = 0; i < nr_groups; i++)
2492 		zfree(&desc[i].name);
2493 	free(desc);
2494 
2495 	return ret;
2496 }
2497 
2498 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2499 {
2500 	struct perf_session *session;
2501 	int err;
2502 
2503 	session = container_of(ff->ph, struct perf_session, header);
2504 
2505 	err = auxtrace_index__process(ff->fd, ff->size, session,
2506 				      ff->ph->needs_swap);
2507 	if (err < 0)
2508 		pr_err("Failed to process auxtrace index\n");
2509 	return err;
2510 }
2511 
2512 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2513 {
2514 	struct cpu_cache_level *caches;
2515 	u32 cnt, i, version;
2516 
2517 	if (do_read_u32(ff, &version))
2518 		return -1;
2519 
2520 	if (version != 1)
2521 		return -1;
2522 
2523 	if (do_read_u32(ff, &cnt))
2524 		return -1;
2525 
2526 	caches = zalloc(sizeof(*caches) * cnt);
2527 	if (!caches)
2528 		return -1;
2529 
2530 	for (i = 0; i < cnt; i++) {
2531 		struct cpu_cache_level c;
2532 
2533 		#define _R(v)						\
2534 			if (do_read_u32(ff, &c.v))\
2535 				goto out_free_caches;			\
2536 
2537 		_R(level)
2538 		_R(line_size)
2539 		_R(sets)
2540 		_R(ways)
2541 		#undef _R
2542 
2543 		#define _R(v)					\
2544 			c.v = do_read_string(ff);		\
2545 			if (!c.v)				\
2546 				goto out_free_caches;
2547 
2548 		_R(type)
2549 		_R(size)
2550 		_R(map)
2551 		#undef _R
2552 
2553 		caches[i] = c;
2554 	}
2555 
2556 	ff->ph->env.caches = caches;
2557 	ff->ph->env.caches_cnt = cnt;
2558 	return 0;
2559 out_free_caches:
2560 	free(caches);
2561 	return -1;
2562 }
2563 
2564 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2565 {
2566 	struct perf_session *session;
2567 	u64 first_sample_time, last_sample_time;
2568 	int ret;
2569 
2570 	session = container_of(ff->ph, struct perf_session, header);
2571 
2572 	ret = do_read_u64(ff, &first_sample_time);
2573 	if (ret)
2574 		return -1;
2575 
2576 	ret = do_read_u64(ff, &last_sample_time);
2577 	if (ret)
2578 		return -1;
2579 
2580 	session->evlist->first_sample_time = first_sample_time;
2581 	session->evlist->last_sample_time = last_sample_time;
2582 	return 0;
2583 }
2584 
2585 static int process_mem_topology(struct feat_fd *ff,
2586 				void *data __maybe_unused)
2587 {
2588 	struct memory_node *nodes;
2589 	u64 version, i, nr, bsize;
2590 	int ret = -1;
2591 
2592 	if (do_read_u64(ff, &version))
2593 		return -1;
2594 
2595 	if (version != 1)
2596 		return -1;
2597 
2598 	if (do_read_u64(ff, &bsize))
2599 		return -1;
2600 
2601 	if (do_read_u64(ff, &nr))
2602 		return -1;
2603 
2604 	nodes = zalloc(sizeof(*nodes) * nr);
2605 	if (!nodes)
2606 		return -1;
2607 
2608 	for (i = 0; i < nr; i++) {
2609 		struct memory_node n;
2610 
2611 		#define _R(v)				\
2612 			if (do_read_u64(ff, &n.v))	\
2613 				goto out;		\
2614 
2615 		_R(node)
2616 		_R(size)
2617 
2618 		#undef _R
2619 
2620 		if (do_read_bitmap(ff, &n.set, &n.size))
2621 			goto out;
2622 
2623 		nodes[i] = n;
2624 	}
2625 
2626 	ff->ph->env.memory_bsize    = bsize;
2627 	ff->ph->env.memory_nodes    = nodes;
2628 	ff->ph->env.nr_memory_nodes = nr;
2629 	ret = 0;
2630 
2631 out:
2632 	if (ret)
2633 		free(nodes);
2634 	return ret;
2635 }
2636 
2637 static int process_clockid(struct feat_fd *ff,
2638 			   void *data __maybe_unused)
2639 {
2640 	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2641 		return -1;
2642 
2643 	return 0;
2644 }
2645 
2646 static int process_dir_format(struct feat_fd *ff,
2647 			      void *_data __maybe_unused)
2648 {
2649 	struct perf_session *session;
2650 	struct perf_data *data;
2651 
2652 	session = container_of(ff->ph, struct perf_session, header);
2653 	data = session->data;
2654 
2655 	if (WARN_ON(!perf_data__is_dir(data)))
2656 		return -1;
2657 
2658 	return do_read_u64(ff, &data->dir.version);
2659 }
2660 
2661 #ifdef HAVE_LIBBPF_SUPPORT
2662 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2663 {
2664 	struct bpf_prog_info_linear *info_linear;
2665 	struct bpf_prog_info_node *info_node;
2666 	struct perf_env *env = &ff->ph->env;
2667 	u32 count, i;
2668 	int err = -1;
2669 
2670 	if (ff->ph->needs_swap) {
2671 		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2672 		return 0;
2673 	}
2674 
2675 	if (do_read_u32(ff, &count))
2676 		return -1;
2677 
2678 	down_write(&env->bpf_progs.lock);
2679 
2680 	for (i = 0; i < count; ++i) {
2681 		u32 info_len, data_len;
2682 
2683 		info_linear = NULL;
2684 		info_node = NULL;
2685 		if (do_read_u32(ff, &info_len))
2686 			goto out;
2687 		if (do_read_u32(ff, &data_len))
2688 			goto out;
2689 
2690 		if (info_len > sizeof(struct bpf_prog_info)) {
2691 			pr_warning("detected invalid bpf_prog_info\n");
2692 			goto out;
2693 		}
2694 
2695 		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2696 				     data_len);
2697 		if (!info_linear)
2698 			goto out;
2699 		info_linear->info_len = sizeof(struct bpf_prog_info);
2700 		info_linear->data_len = data_len;
2701 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2702 			goto out;
2703 		if (__do_read(ff, &info_linear->info, info_len))
2704 			goto out;
2705 		if (info_len < sizeof(struct bpf_prog_info))
2706 			memset(((void *)(&info_linear->info)) + info_len, 0,
2707 			       sizeof(struct bpf_prog_info) - info_len);
2708 
2709 		if (__do_read(ff, info_linear->data, data_len))
2710 			goto out;
2711 
2712 		info_node = malloc(sizeof(struct bpf_prog_info_node));
2713 		if (!info_node)
2714 			goto out;
2715 
2716 		/* after reading from file, translate offset to address */
2717 		bpf_program__bpil_offs_to_addr(info_linear);
2718 		info_node->info_linear = info_linear;
2719 		perf_env__insert_bpf_prog_info(env, info_node);
2720 	}
2721 
2722 	up_write(&env->bpf_progs.lock);
2723 	return 0;
2724 out:
2725 	free(info_linear);
2726 	free(info_node);
2727 	up_write(&env->bpf_progs.lock);
2728 	return err;
2729 }
2730 #else // HAVE_LIBBPF_SUPPORT
2731 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2732 {
2733 	return 0;
2734 }
2735 #endif // HAVE_LIBBPF_SUPPORT
2736 
2737 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2738 {
2739 	struct perf_env *env = &ff->ph->env;
2740 	struct btf_node *node = NULL;
2741 	u32 count, i;
2742 	int err = -1;
2743 
2744 	if (ff->ph->needs_swap) {
2745 		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2746 		return 0;
2747 	}
2748 
2749 	if (do_read_u32(ff, &count))
2750 		return -1;
2751 
2752 	down_write(&env->bpf_progs.lock);
2753 
2754 	for (i = 0; i < count; ++i) {
2755 		u32 id, data_size;
2756 
2757 		if (do_read_u32(ff, &id))
2758 			goto out;
2759 		if (do_read_u32(ff, &data_size))
2760 			goto out;
2761 
2762 		node = malloc(sizeof(struct btf_node) + data_size);
2763 		if (!node)
2764 			goto out;
2765 
2766 		node->id = id;
2767 		node->data_size = data_size;
2768 
2769 		if (__do_read(ff, node->data, data_size))
2770 			goto out;
2771 
2772 		perf_env__insert_btf(env, node);
2773 		node = NULL;
2774 	}
2775 
2776 	err = 0;
2777 out:
2778 	up_write(&env->bpf_progs.lock);
2779 	free(node);
2780 	return err;
2781 }
2782 
2783 static int process_compressed(struct feat_fd *ff,
2784 			      void *data __maybe_unused)
2785 {
2786 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2787 		return -1;
2788 
2789 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2790 		return -1;
2791 
2792 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2793 		return -1;
2794 
2795 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2796 		return -1;
2797 
2798 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2799 		return -1;
2800 
2801 	return 0;
2802 }
2803 
2804 struct feature_ops {
2805 	int (*write)(struct feat_fd *ff, struct evlist *evlist);
2806 	void (*print)(struct feat_fd *ff, FILE *fp);
2807 	int (*process)(struct feat_fd *ff, void *data);
2808 	const char *name;
2809 	bool full_only;
2810 	bool synthesize;
2811 };
2812 
2813 #define FEAT_OPR(n, func, __full_only) \
2814 	[HEADER_##n] = {					\
2815 		.name	    = __stringify(n),			\
2816 		.write	    = write_##func,			\
2817 		.print	    = print_##func,			\
2818 		.full_only  = __full_only,			\
2819 		.process    = process_##func,			\
2820 		.synthesize = true				\
2821 	}
2822 
2823 #define FEAT_OPN(n, func, __full_only) \
2824 	[HEADER_##n] = {					\
2825 		.name	    = __stringify(n),			\
2826 		.write	    = write_##func,			\
2827 		.print	    = print_##func,			\
2828 		.full_only  = __full_only,			\
2829 		.process    = process_##func			\
2830 	}
2831 
2832 /* feature_ops not implemented: */
2833 #define print_tracing_data	NULL
2834 #define print_build_id		NULL
2835 
2836 #define process_branch_stack	NULL
2837 #define process_stat		NULL
2838 
2839 
2840 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2841 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2842 	FEAT_OPN(BUILD_ID,	build_id,	false),
2843 	FEAT_OPR(HOSTNAME,	hostname,	false),
2844 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2845 	FEAT_OPR(VERSION,	version,	false),
2846 	FEAT_OPR(ARCH,		arch,		false),
2847 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2848 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2849 	FEAT_OPR(CPUID,		cpuid,		false),
2850 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2851 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2852 	FEAT_OPR(CMDLINE,	cmdline,	false),
2853 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2854 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2855 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2856 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2857 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2858 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2859 	FEAT_OPN(STAT,		stat,		false),
2860 	FEAT_OPN(CACHE,		cache,		true),
2861 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2862 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2863 	FEAT_OPR(CLOCKID,	clockid,	false),
2864 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2865 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2866 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2867 	FEAT_OPR(COMPRESSED,	compressed,	false),
2868 };
2869 
2870 struct header_print_data {
2871 	FILE *fp;
2872 	bool full; /* extended list of headers */
2873 };
2874 
2875 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2876 					   struct perf_header *ph,
2877 					   int feat, int fd, void *data)
2878 {
2879 	struct header_print_data *hd = data;
2880 	struct feat_fd ff;
2881 
2882 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2883 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2884 				"%d, continuing...\n", section->offset, feat);
2885 		return 0;
2886 	}
2887 	if (feat >= HEADER_LAST_FEATURE) {
2888 		pr_warning("unknown feature %d\n", feat);
2889 		return 0;
2890 	}
2891 	if (!feat_ops[feat].print)
2892 		return 0;
2893 
2894 	ff = (struct  feat_fd) {
2895 		.fd = fd,
2896 		.ph = ph,
2897 	};
2898 
2899 	if (!feat_ops[feat].full_only || hd->full)
2900 		feat_ops[feat].print(&ff, hd->fp);
2901 	else
2902 		fprintf(hd->fp, "# %s info available, use -I to display\n",
2903 			feat_ops[feat].name);
2904 
2905 	return 0;
2906 }
2907 
2908 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2909 {
2910 	struct header_print_data hd;
2911 	struct perf_header *header = &session->header;
2912 	int fd = perf_data__fd(session->data);
2913 	struct stat st;
2914 	time_t stctime;
2915 	int ret, bit;
2916 
2917 	hd.fp = fp;
2918 	hd.full = full;
2919 
2920 	ret = fstat(fd, &st);
2921 	if (ret == -1)
2922 		return -1;
2923 
2924 	stctime = st.st_ctime;
2925 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2926 
2927 	fprintf(fp, "# header version : %u\n", header->version);
2928 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2929 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2930 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2931 
2932 	perf_header__process_sections(header, fd, &hd,
2933 				      perf_file_section__fprintf_info);
2934 
2935 	if (session->data->is_pipe)
2936 		return 0;
2937 
2938 	fprintf(fp, "# missing features: ");
2939 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2940 		if (bit)
2941 			fprintf(fp, "%s ", feat_ops[bit].name);
2942 	}
2943 
2944 	fprintf(fp, "\n");
2945 	return 0;
2946 }
2947 
2948 static int do_write_feat(struct feat_fd *ff, int type,
2949 			 struct perf_file_section **p,
2950 			 struct evlist *evlist)
2951 {
2952 	int err;
2953 	int ret = 0;
2954 
2955 	if (perf_header__has_feat(ff->ph, type)) {
2956 		if (!feat_ops[type].write)
2957 			return -1;
2958 
2959 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2960 			return -1;
2961 
2962 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2963 
2964 		err = feat_ops[type].write(ff, evlist);
2965 		if (err < 0) {
2966 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2967 
2968 			/* undo anything written */
2969 			lseek(ff->fd, (*p)->offset, SEEK_SET);
2970 
2971 			return -1;
2972 		}
2973 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2974 		(*p)++;
2975 	}
2976 	return ret;
2977 }
2978 
2979 static int perf_header__adds_write(struct perf_header *header,
2980 				   struct evlist *evlist, int fd)
2981 {
2982 	int nr_sections;
2983 	struct feat_fd ff;
2984 	struct perf_file_section *feat_sec, *p;
2985 	int sec_size;
2986 	u64 sec_start;
2987 	int feat;
2988 	int err;
2989 
2990 	ff = (struct feat_fd){
2991 		.fd  = fd,
2992 		.ph = header,
2993 	};
2994 
2995 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2996 	if (!nr_sections)
2997 		return 0;
2998 
2999 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3000 	if (feat_sec == NULL)
3001 		return -ENOMEM;
3002 
3003 	sec_size = sizeof(*feat_sec) * nr_sections;
3004 
3005 	sec_start = header->feat_offset;
3006 	lseek(fd, sec_start + sec_size, SEEK_SET);
3007 
3008 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3009 		if (do_write_feat(&ff, feat, &p, evlist))
3010 			perf_header__clear_feat(header, feat);
3011 	}
3012 
3013 	lseek(fd, sec_start, SEEK_SET);
3014 	/*
3015 	 * may write more than needed due to dropped feature, but
3016 	 * this is okay, reader will skip the missing entries
3017 	 */
3018 	err = do_write(&ff, feat_sec, sec_size);
3019 	if (err < 0)
3020 		pr_debug("failed to write feature section\n");
3021 	free(feat_sec);
3022 	return err;
3023 }
3024 
3025 int perf_header__write_pipe(int fd)
3026 {
3027 	struct perf_pipe_file_header f_header;
3028 	struct feat_fd ff;
3029 	int err;
3030 
3031 	ff = (struct feat_fd){ .fd = fd };
3032 
3033 	f_header = (struct perf_pipe_file_header){
3034 		.magic	   = PERF_MAGIC,
3035 		.size	   = sizeof(f_header),
3036 	};
3037 
3038 	err = do_write(&ff, &f_header, sizeof(f_header));
3039 	if (err < 0) {
3040 		pr_debug("failed to write perf pipe header\n");
3041 		return err;
3042 	}
3043 
3044 	return 0;
3045 }
3046 
3047 int perf_session__write_header(struct perf_session *session,
3048 			       struct evlist *evlist,
3049 			       int fd, bool at_exit)
3050 {
3051 	struct perf_file_header f_header;
3052 	struct perf_file_attr   f_attr;
3053 	struct perf_header *header = &session->header;
3054 	struct evsel *evsel;
3055 	struct feat_fd ff;
3056 	u64 attr_offset;
3057 	int err;
3058 
3059 	ff = (struct feat_fd){ .fd = fd};
3060 	lseek(fd, sizeof(f_header), SEEK_SET);
3061 
3062 	evlist__for_each_entry(session->evlist, evsel) {
3063 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3064 		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
3065 		if (err < 0) {
3066 			pr_debug("failed to write perf header\n");
3067 			return err;
3068 		}
3069 	}
3070 
3071 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3072 
3073 	evlist__for_each_entry(evlist, evsel) {
3074 		f_attr = (struct perf_file_attr){
3075 			.attr = evsel->core.attr,
3076 			.ids  = {
3077 				.offset = evsel->id_offset,
3078 				.size   = evsel->ids * sizeof(u64),
3079 			}
3080 		};
3081 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3082 		if (err < 0) {
3083 			pr_debug("failed to write perf header attribute\n");
3084 			return err;
3085 		}
3086 	}
3087 
3088 	if (!header->data_offset)
3089 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3090 	header->feat_offset = header->data_offset + header->data_size;
3091 
3092 	if (at_exit) {
3093 		err = perf_header__adds_write(header, evlist, fd);
3094 		if (err < 0)
3095 			return err;
3096 	}
3097 
3098 	f_header = (struct perf_file_header){
3099 		.magic	   = PERF_MAGIC,
3100 		.size	   = sizeof(f_header),
3101 		.attr_size = sizeof(f_attr),
3102 		.attrs = {
3103 			.offset = attr_offset,
3104 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3105 		},
3106 		.data = {
3107 			.offset = header->data_offset,
3108 			.size	= header->data_size,
3109 		},
3110 		/* event_types is ignored, store zeros */
3111 	};
3112 
3113 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3114 
3115 	lseek(fd, 0, SEEK_SET);
3116 	err = do_write(&ff, &f_header, sizeof(f_header));
3117 	if (err < 0) {
3118 		pr_debug("failed to write perf header\n");
3119 		return err;
3120 	}
3121 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3122 
3123 	return 0;
3124 }
3125 
3126 static int perf_header__getbuffer64(struct perf_header *header,
3127 				    int fd, void *buf, size_t size)
3128 {
3129 	if (readn(fd, buf, size) <= 0)
3130 		return -1;
3131 
3132 	if (header->needs_swap)
3133 		mem_bswap_64(buf, size);
3134 
3135 	return 0;
3136 }
3137 
3138 int perf_header__process_sections(struct perf_header *header, int fd,
3139 				  void *data,
3140 				  int (*process)(struct perf_file_section *section,
3141 						 struct perf_header *ph,
3142 						 int feat, int fd, void *data))
3143 {
3144 	struct perf_file_section *feat_sec, *sec;
3145 	int nr_sections;
3146 	int sec_size;
3147 	int feat;
3148 	int err;
3149 
3150 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3151 	if (!nr_sections)
3152 		return 0;
3153 
3154 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3155 	if (!feat_sec)
3156 		return -1;
3157 
3158 	sec_size = sizeof(*feat_sec) * nr_sections;
3159 
3160 	lseek(fd, header->feat_offset, SEEK_SET);
3161 
3162 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3163 	if (err < 0)
3164 		goto out_free;
3165 
3166 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3167 		err = process(sec++, header, feat, fd, data);
3168 		if (err < 0)
3169 			goto out_free;
3170 	}
3171 	err = 0;
3172 out_free:
3173 	free(feat_sec);
3174 	return err;
3175 }
3176 
3177 static const int attr_file_abi_sizes[] = {
3178 	[0] = PERF_ATTR_SIZE_VER0,
3179 	[1] = PERF_ATTR_SIZE_VER1,
3180 	[2] = PERF_ATTR_SIZE_VER2,
3181 	[3] = PERF_ATTR_SIZE_VER3,
3182 	[4] = PERF_ATTR_SIZE_VER4,
3183 	0,
3184 };
3185 
3186 /*
3187  * In the legacy file format, the magic number is not used to encode endianness.
3188  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3189  * on ABI revisions, we need to try all combinations for all endianness to
3190  * detect the endianness.
3191  */
3192 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3193 {
3194 	uint64_t ref_size, attr_size;
3195 	int i;
3196 
3197 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3198 		ref_size = attr_file_abi_sizes[i]
3199 			 + sizeof(struct perf_file_section);
3200 		if (hdr_sz != ref_size) {
3201 			attr_size = bswap_64(hdr_sz);
3202 			if (attr_size != ref_size)
3203 				continue;
3204 
3205 			ph->needs_swap = true;
3206 		}
3207 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3208 			 i,
3209 			 ph->needs_swap);
3210 		return 0;
3211 	}
3212 	/* could not determine endianness */
3213 	return -1;
3214 }
3215 
3216 #define PERF_PIPE_HDR_VER0	16
3217 
3218 static const size_t attr_pipe_abi_sizes[] = {
3219 	[0] = PERF_PIPE_HDR_VER0,
3220 	0,
3221 };
3222 
3223 /*
3224  * In the legacy pipe format, there is an implicit assumption that endiannesss
3225  * between host recording the samples, and host parsing the samples is the
3226  * same. This is not always the case given that the pipe output may always be
3227  * redirected into a file and analyzed on a different machine with possibly a
3228  * different endianness and perf_event ABI revsions in the perf tool itself.
3229  */
3230 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3231 {
3232 	u64 attr_size;
3233 	int i;
3234 
3235 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3236 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3237 			attr_size = bswap_64(hdr_sz);
3238 			if (attr_size != hdr_sz)
3239 				continue;
3240 
3241 			ph->needs_swap = true;
3242 		}
3243 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3244 		return 0;
3245 	}
3246 	return -1;
3247 }
3248 
3249 bool is_perf_magic(u64 magic)
3250 {
3251 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3252 		|| magic == __perf_magic2
3253 		|| magic == __perf_magic2_sw)
3254 		return true;
3255 
3256 	return false;
3257 }
3258 
3259 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3260 			      bool is_pipe, struct perf_header *ph)
3261 {
3262 	int ret;
3263 
3264 	/* check for legacy format */
3265 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3266 	if (ret == 0) {
3267 		ph->version = PERF_HEADER_VERSION_1;
3268 		pr_debug("legacy perf.data format\n");
3269 		if (is_pipe)
3270 			return try_all_pipe_abis(hdr_sz, ph);
3271 
3272 		return try_all_file_abis(hdr_sz, ph);
3273 	}
3274 	/*
3275 	 * the new magic number serves two purposes:
3276 	 * - unique number to identify actual perf.data files
3277 	 * - encode endianness of file
3278 	 */
3279 	ph->version = PERF_HEADER_VERSION_2;
3280 
3281 	/* check magic number with one endianness */
3282 	if (magic == __perf_magic2)
3283 		return 0;
3284 
3285 	/* check magic number with opposite endianness */
3286 	if (magic != __perf_magic2_sw)
3287 		return -1;
3288 
3289 	ph->needs_swap = true;
3290 
3291 	return 0;
3292 }
3293 
3294 int perf_file_header__read(struct perf_file_header *header,
3295 			   struct perf_header *ph, int fd)
3296 {
3297 	ssize_t ret;
3298 
3299 	lseek(fd, 0, SEEK_SET);
3300 
3301 	ret = readn(fd, header, sizeof(*header));
3302 	if (ret <= 0)
3303 		return -1;
3304 
3305 	if (check_magic_endian(header->magic,
3306 			       header->attr_size, false, ph) < 0) {
3307 		pr_debug("magic/endian check failed\n");
3308 		return -1;
3309 	}
3310 
3311 	if (ph->needs_swap) {
3312 		mem_bswap_64(header, offsetof(struct perf_file_header,
3313 			     adds_features));
3314 	}
3315 
3316 	if (header->size != sizeof(*header)) {
3317 		/* Support the previous format */
3318 		if (header->size == offsetof(typeof(*header), adds_features))
3319 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3320 		else
3321 			return -1;
3322 	} else if (ph->needs_swap) {
3323 		/*
3324 		 * feature bitmap is declared as an array of unsigned longs --
3325 		 * not good since its size can differ between the host that
3326 		 * generated the data file and the host analyzing the file.
3327 		 *
3328 		 * We need to handle endianness, but we don't know the size of
3329 		 * the unsigned long where the file was generated. Take a best
3330 		 * guess at determining it: try 64-bit swap first (ie., file
3331 		 * created on a 64-bit host), and check if the hostname feature
3332 		 * bit is set (this feature bit is forced on as of fbe96f2).
3333 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3334 		 * swap. If the hostname bit is still not set (e.g., older data
3335 		 * file), punt and fallback to the original behavior --
3336 		 * clearing all feature bits and setting buildid.
3337 		 */
3338 		mem_bswap_64(&header->adds_features,
3339 			    BITS_TO_U64(HEADER_FEAT_BITS));
3340 
3341 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3342 			/* unswap as u64 */
3343 			mem_bswap_64(&header->adds_features,
3344 				    BITS_TO_U64(HEADER_FEAT_BITS));
3345 
3346 			/* unswap as u32 */
3347 			mem_bswap_32(&header->adds_features,
3348 				    BITS_TO_U32(HEADER_FEAT_BITS));
3349 		}
3350 
3351 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3352 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3353 			set_bit(HEADER_BUILD_ID, header->adds_features);
3354 		}
3355 	}
3356 
3357 	memcpy(&ph->adds_features, &header->adds_features,
3358 	       sizeof(ph->adds_features));
3359 
3360 	ph->data_offset  = header->data.offset;
3361 	ph->data_size	 = header->data.size;
3362 	ph->feat_offset  = header->data.offset + header->data.size;
3363 	return 0;
3364 }
3365 
3366 static int perf_file_section__process(struct perf_file_section *section,
3367 				      struct perf_header *ph,
3368 				      int feat, int fd, void *data)
3369 {
3370 	struct feat_fd fdd = {
3371 		.fd	= fd,
3372 		.ph	= ph,
3373 		.size	= section->size,
3374 		.offset	= section->offset,
3375 	};
3376 
3377 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3378 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3379 			  "%d, continuing...\n", section->offset, feat);
3380 		return 0;
3381 	}
3382 
3383 	if (feat >= HEADER_LAST_FEATURE) {
3384 		pr_debug("unknown feature %d, continuing...\n", feat);
3385 		return 0;
3386 	}
3387 
3388 	if (!feat_ops[feat].process)
3389 		return 0;
3390 
3391 	return feat_ops[feat].process(&fdd, data);
3392 }
3393 
3394 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3395 				       struct perf_header *ph, int fd,
3396 				       bool repipe)
3397 {
3398 	struct feat_fd ff = {
3399 		.fd = STDOUT_FILENO,
3400 		.ph = ph,
3401 	};
3402 	ssize_t ret;
3403 
3404 	ret = readn(fd, header, sizeof(*header));
3405 	if (ret <= 0)
3406 		return -1;
3407 
3408 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3409 		pr_debug("endian/magic failed\n");
3410 		return -1;
3411 	}
3412 
3413 	if (ph->needs_swap)
3414 		header->size = bswap_64(header->size);
3415 
3416 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3417 		return -1;
3418 
3419 	return 0;
3420 }
3421 
3422 static int perf_header__read_pipe(struct perf_session *session)
3423 {
3424 	struct perf_header *header = &session->header;
3425 	struct perf_pipe_file_header f_header;
3426 
3427 	if (perf_file_header__read_pipe(&f_header, header,
3428 					perf_data__fd(session->data),
3429 					session->repipe) < 0) {
3430 		pr_debug("incompatible file format\n");
3431 		return -EINVAL;
3432 	}
3433 
3434 	return 0;
3435 }
3436 
3437 static int read_attr(int fd, struct perf_header *ph,
3438 		     struct perf_file_attr *f_attr)
3439 {
3440 	struct perf_event_attr *attr = &f_attr->attr;
3441 	size_t sz, left;
3442 	size_t our_sz = sizeof(f_attr->attr);
3443 	ssize_t ret;
3444 
3445 	memset(f_attr, 0, sizeof(*f_attr));
3446 
3447 	/* read minimal guaranteed structure */
3448 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3449 	if (ret <= 0) {
3450 		pr_debug("cannot read %d bytes of header attr\n",
3451 			 PERF_ATTR_SIZE_VER0);
3452 		return -1;
3453 	}
3454 
3455 	/* on file perf_event_attr size */
3456 	sz = attr->size;
3457 
3458 	if (ph->needs_swap)
3459 		sz = bswap_32(sz);
3460 
3461 	if (sz == 0) {
3462 		/* assume ABI0 */
3463 		sz =  PERF_ATTR_SIZE_VER0;
3464 	} else if (sz > our_sz) {
3465 		pr_debug("file uses a more recent and unsupported ABI"
3466 			 " (%zu bytes extra)\n", sz - our_sz);
3467 		return -1;
3468 	}
3469 	/* what we have not yet read and that we know about */
3470 	left = sz - PERF_ATTR_SIZE_VER0;
3471 	if (left) {
3472 		void *ptr = attr;
3473 		ptr += PERF_ATTR_SIZE_VER0;
3474 
3475 		ret = readn(fd, ptr, left);
3476 	}
3477 	/* read perf_file_section, ids are read in caller */
3478 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3479 
3480 	return ret <= 0 ? -1 : 0;
3481 }
3482 
3483 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3484 						struct tep_handle *pevent)
3485 {
3486 	struct tep_event *event;
3487 	char bf[128];
3488 
3489 	/* already prepared */
3490 	if (evsel->tp_format)
3491 		return 0;
3492 
3493 	if (pevent == NULL) {
3494 		pr_debug("broken or missing trace data\n");
3495 		return -1;
3496 	}
3497 
3498 	event = tep_find_event(pevent, evsel->core.attr.config);
3499 	if (event == NULL) {
3500 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3501 		return -1;
3502 	}
3503 
3504 	if (!evsel->name) {
3505 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3506 		evsel->name = strdup(bf);
3507 		if (evsel->name == NULL)
3508 			return -1;
3509 	}
3510 
3511 	evsel->tp_format = event;
3512 	return 0;
3513 }
3514 
3515 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3516 						  struct tep_handle *pevent)
3517 {
3518 	struct evsel *pos;
3519 
3520 	evlist__for_each_entry(evlist, pos) {
3521 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3522 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3523 			return -1;
3524 	}
3525 
3526 	return 0;
3527 }
3528 
3529 int perf_session__read_header(struct perf_session *session)
3530 {
3531 	struct perf_data *data = session->data;
3532 	struct perf_header *header = &session->header;
3533 	struct perf_file_header	f_header;
3534 	struct perf_file_attr	f_attr;
3535 	u64			f_id;
3536 	int nr_attrs, nr_ids, i, j;
3537 	int fd = perf_data__fd(data);
3538 
3539 	session->evlist = evlist__new();
3540 	if (session->evlist == NULL)
3541 		return -ENOMEM;
3542 
3543 	session->evlist->env = &header->env;
3544 	session->machines.host.env = &header->env;
3545 	if (perf_data__is_pipe(data))
3546 		return perf_header__read_pipe(session);
3547 
3548 	if (perf_file_header__read(&f_header, header, fd) < 0)
3549 		return -EINVAL;
3550 
3551 	/*
3552 	 * Sanity check that perf.data was written cleanly; data size is
3553 	 * initialized to 0 and updated only if the on_exit function is run.
3554 	 * If data size is still 0 then the file contains only partial
3555 	 * information.  Just warn user and process it as much as it can.
3556 	 */
3557 	if (f_header.data.size == 0) {
3558 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3559 			   "Was the 'perf record' command properly terminated?\n",
3560 			   data->file.path);
3561 	}
3562 
3563 	if (f_header.attr_size == 0) {
3564 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3565 		       "Was the 'perf record' command properly terminated?\n",
3566 		       data->file.path);
3567 		return -EINVAL;
3568 	}
3569 
3570 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3571 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3572 
3573 	for (i = 0; i < nr_attrs; i++) {
3574 		struct evsel *evsel;
3575 		off_t tmp;
3576 
3577 		if (read_attr(fd, header, &f_attr) < 0)
3578 			goto out_errno;
3579 
3580 		if (header->needs_swap) {
3581 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3582 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3583 			perf_event__attr_swap(&f_attr.attr);
3584 		}
3585 
3586 		tmp = lseek(fd, 0, SEEK_CUR);
3587 		evsel = evsel__new(&f_attr.attr);
3588 
3589 		if (evsel == NULL)
3590 			goto out_delete_evlist;
3591 
3592 		evsel->needs_swap = header->needs_swap;
3593 		/*
3594 		 * Do it before so that if perf_evsel__alloc_id fails, this
3595 		 * entry gets purged too at evlist__delete().
3596 		 */
3597 		evlist__add(session->evlist, evsel);
3598 
3599 		nr_ids = f_attr.ids.size / sizeof(u64);
3600 		/*
3601 		 * We don't have the cpu and thread maps on the header, so
3602 		 * for allocating the perf_sample_id table we fake 1 cpu and
3603 		 * hattr->ids threads.
3604 		 */
3605 		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3606 			goto out_delete_evlist;
3607 
3608 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3609 
3610 		for (j = 0; j < nr_ids; j++) {
3611 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3612 				goto out_errno;
3613 
3614 			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3615 		}
3616 
3617 		lseek(fd, tmp, SEEK_SET);
3618 	}
3619 
3620 	perf_header__process_sections(header, fd, &session->tevent,
3621 				      perf_file_section__process);
3622 
3623 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3624 						   session->tevent.pevent))
3625 		goto out_delete_evlist;
3626 
3627 	return 0;
3628 out_errno:
3629 	return -errno;
3630 
3631 out_delete_evlist:
3632 	evlist__delete(session->evlist);
3633 	session->evlist = NULL;
3634 	return -ENOMEM;
3635 }
3636 
3637 int perf_event__synthesize_attr(struct perf_tool *tool,
3638 				struct perf_event_attr *attr, u32 ids, u64 *id,
3639 				perf_event__handler_t process)
3640 {
3641 	union perf_event *ev;
3642 	size_t size;
3643 	int err;
3644 
3645 	size = sizeof(struct perf_event_attr);
3646 	size = PERF_ALIGN(size, sizeof(u64));
3647 	size += sizeof(struct perf_event_header);
3648 	size += ids * sizeof(u64);
3649 
3650 	ev = zalloc(size);
3651 
3652 	if (ev == NULL)
3653 		return -ENOMEM;
3654 
3655 	ev->attr.attr = *attr;
3656 	memcpy(ev->attr.id, id, ids * sizeof(u64));
3657 
3658 	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3659 	ev->attr.header.size = (u16)size;
3660 
3661 	if (ev->attr.header.size == size)
3662 		err = process(tool, ev, NULL, NULL);
3663 	else
3664 		err = -E2BIG;
3665 
3666 	free(ev);
3667 
3668 	return err;
3669 }
3670 
3671 int perf_event__synthesize_features(struct perf_tool *tool,
3672 				    struct perf_session *session,
3673 				    struct evlist *evlist,
3674 				    perf_event__handler_t process)
3675 {
3676 	struct perf_header *header = &session->header;
3677 	struct feat_fd ff;
3678 	struct feature_event *fe;
3679 	size_t sz, sz_hdr;
3680 	int feat, ret;
3681 
3682 	sz_hdr = sizeof(fe->header);
3683 	sz = sizeof(union perf_event);
3684 	/* get a nice alignment */
3685 	sz = PERF_ALIGN(sz, page_size);
3686 
3687 	memset(&ff, 0, sizeof(ff));
3688 
3689 	ff.buf = malloc(sz);
3690 	if (!ff.buf)
3691 		return -ENOMEM;
3692 
3693 	ff.size = sz - sz_hdr;
3694 	ff.ph = &session->header;
3695 
3696 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3697 		if (!feat_ops[feat].synthesize) {
3698 			pr_debug("No record header feature for header :%d\n", feat);
3699 			continue;
3700 		}
3701 
3702 		ff.offset = sizeof(*fe);
3703 
3704 		ret = feat_ops[feat].write(&ff, evlist);
3705 		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3706 			pr_debug("Error writing feature\n");
3707 			continue;
3708 		}
3709 		/* ff.buf may have changed due to realloc in do_write() */
3710 		fe = ff.buf;
3711 		memset(fe, 0, sizeof(*fe));
3712 
3713 		fe->feat_id = feat;
3714 		fe->header.type = PERF_RECORD_HEADER_FEATURE;
3715 		fe->header.size = ff.offset;
3716 
3717 		ret = process(tool, ff.buf, NULL, NULL);
3718 		if (ret) {
3719 			free(ff.buf);
3720 			return ret;
3721 		}
3722 	}
3723 
3724 	/* Send HEADER_LAST_FEATURE mark. */
3725 	fe = ff.buf;
3726 	fe->feat_id     = HEADER_LAST_FEATURE;
3727 	fe->header.type = PERF_RECORD_HEADER_FEATURE;
3728 	fe->header.size = sizeof(*fe);
3729 
3730 	ret = process(tool, ff.buf, NULL, NULL);
3731 
3732 	free(ff.buf);
3733 	return ret;
3734 }
3735 
3736 int perf_event__process_feature(struct perf_session *session,
3737 				union perf_event *event)
3738 {
3739 	struct perf_tool *tool = session->tool;
3740 	struct feat_fd ff = { .fd = 0 };
3741 	struct feature_event *fe = (struct feature_event *)event;
3742 	int type = fe->header.type;
3743 	u64 feat = fe->feat_id;
3744 
3745 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3746 		pr_warning("invalid record type %d in pipe-mode\n", type);
3747 		return 0;
3748 	}
3749 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3750 		pr_warning("invalid record type %d in pipe-mode\n", type);
3751 		return -1;
3752 	}
3753 
3754 	if (!feat_ops[feat].process)
3755 		return 0;
3756 
3757 	ff.buf  = (void *)fe->data;
3758 	ff.size = event->header.size - sizeof(*fe);
3759 	ff.ph = &session->header;
3760 
3761 	if (feat_ops[feat].process(&ff, NULL))
3762 		return -1;
3763 
3764 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3765 		return 0;
3766 
3767 	if (!feat_ops[feat].full_only ||
3768 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3769 		feat_ops[feat].print(&ff, stdout);
3770 	} else {
3771 		fprintf(stdout, "# %s info available, use -I to display\n",
3772 			feat_ops[feat].name);
3773 	}
3774 
3775 	return 0;
3776 }
3777 
3778 static struct event_update_event *
3779 event_update_event__new(size_t size, u64 type, u64 id)
3780 {
3781 	struct event_update_event *ev;
3782 
3783 	size += sizeof(*ev);
3784 	size  = PERF_ALIGN(size, sizeof(u64));
3785 
3786 	ev = zalloc(size);
3787 	if (ev) {
3788 		ev->header.type = PERF_RECORD_EVENT_UPDATE;
3789 		ev->header.size = (u16)size;
3790 		ev->type = type;
3791 		ev->id = id;
3792 	}
3793 	return ev;
3794 }
3795 
3796 int
3797 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3798 					 struct evsel *evsel,
3799 					 perf_event__handler_t process)
3800 {
3801 	struct event_update_event *ev;
3802 	size_t size = strlen(evsel->unit);
3803 	int err;
3804 
3805 	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3806 	if (ev == NULL)
3807 		return -ENOMEM;
3808 
3809 	strlcpy(ev->data, evsel->unit, size + 1);
3810 	err = process(tool, (union perf_event *)ev, NULL, NULL);
3811 	free(ev);
3812 	return err;
3813 }
3814 
3815 int
3816 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3817 					  struct evsel *evsel,
3818 					  perf_event__handler_t process)
3819 {
3820 	struct event_update_event *ev;
3821 	struct event_update_event_scale *ev_data;
3822 	int err;
3823 
3824 	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3825 	if (ev == NULL)
3826 		return -ENOMEM;
3827 
3828 	ev_data = (struct event_update_event_scale *) ev->data;
3829 	ev_data->scale = evsel->scale;
3830 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3831 	free(ev);
3832 	return err;
3833 }
3834 
3835 int
3836 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3837 					 struct evsel *evsel,
3838 					 perf_event__handler_t process)
3839 {
3840 	struct event_update_event *ev;
3841 	size_t len = strlen(evsel->name);
3842 	int err;
3843 
3844 	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3845 	if (ev == NULL)
3846 		return -ENOMEM;
3847 
3848 	strlcpy(ev->data, evsel->name, len + 1);
3849 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3850 	free(ev);
3851 	return err;
3852 }
3853 
3854 int
3855 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3856 					struct evsel *evsel,
3857 					perf_event__handler_t process)
3858 {
3859 	size_t size = sizeof(struct event_update_event);
3860 	struct event_update_event *ev;
3861 	int max, err;
3862 	u16 type;
3863 
3864 	if (!evsel->core.own_cpus)
3865 		return 0;
3866 
3867 	ev = cpu_map_data__alloc(evsel->core.own_cpus, &size, &type, &max);
3868 	if (!ev)
3869 		return -ENOMEM;
3870 
3871 	ev->header.type = PERF_RECORD_EVENT_UPDATE;
3872 	ev->header.size = (u16)size;
3873 	ev->type = PERF_EVENT_UPDATE__CPUS;
3874 	ev->id   = evsel->id[0];
3875 
3876 	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3877 				 evsel->core.own_cpus,
3878 				 type, max);
3879 
3880 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3881 	free(ev);
3882 	return err;
3883 }
3884 
3885 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3886 {
3887 	struct event_update_event *ev = &event->event_update;
3888 	struct event_update_event_scale *ev_scale;
3889 	struct event_update_event_cpus *ev_cpus;
3890 	struct perf_cpu_map *map;
3891 	size_t ret;
3892 
3893 	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3894 
3895 	switch (ev->type) {
3896 	case PERF_EVENT_UPDATE__SCALE:
3897 		ev_scale = (struct event_update_event_scale *) ev->data;
3898 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3899 		break;
3900 	case PERF_EVENT_UPDATE__UNIT:
3901 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3902 		break;
3903 	case PERF_EVENT_UPDATE__NAME:
3904 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3905 		break;
3906 	case PERF_EVENT_UPDATE__CPUS:
3907 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3908 		ret += fprintf(fp, "... ");
3909 
3910 		map = cpu_map__new_data(&ev_cpus->cpus);
3911 		if (map)
3912 			ret += cpu_map__fprintf(map, fp);
3913 		else
3914 			ret += fprintf(fp, "failed to get cpus\n");
3915 		break;
3916 	default:
3917 		ret += fprintf(fp, "... unknown type\n");
3918 		break;
3919 	}
3920 
3921 	return ret;
3922 }
3923 
3924 int perf_event__synthesize_attrs(struct perf_tool *tool,
3925 				 struct evlist *evlist,
3926 				 perf_event__handler_t process)
3927 {
3928 	struct evsel *evsel;
3929 	int err = 0;
3930 
3931 	evlist__for_each_entry(evlist, evsel) {
3932 		err = perf_event__synthesize_attr(tool, &evsel->core.attr, evsel->ids,
3933 						  evsel->id, process);
3934 		if (err) {
3935 			pr_debug("failed to create perf header attribute\n");
3936 			return err;
3937 		}
3938 	}
3939 
3940 	return err;
3941 }
3942 
3943 static bool has_unit(struct evsel *counter)
3944 {
3945 	return counter->unit && *counter->unit;
3946 }
3947 
3948 static bool has_scale(struct evsel *counter)
3949 {
3950 	return counter->scale != 1;
3951 }
3952 
3953 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3954 				      struct evlist *evsel_list,
3955 				      perf_event__handler_t process,
3956 				      bool is_pipe)
3957 {
3958 	struct evsel *counter;
3959 	int err;
3960 
3961 	/*
3962 	 * Synthesize other events stuff not carried within
3963 	 * attr event - unit, scale, name
3964 	 */
3965 	evlist__for_each_entry(evsel_list, counter) {
3966 		if (!counter->supported)
3967 			continue;
3968 
3969 		/*
3970 		 * Synthesize unit and scale only if it's defined.
3971 		 */
3972 		if (has_unit(counter)) {
3973 			err = perf_event__synthesize_event_update_unit(tool, counter, process);
3974 			if (err < 0) {
3975 				pr_err("Couldn't synthesize evsel unit.\n");
3976 				return err;
3977 			}
3978 		}
3979 
3980 		if (has_scale(counter)) {
3981 			err = perf_event__synthesize_event_update_scale(tool, counter, process);
3982 			if (err < 0) {
3983 				pr_err("Couldn't synthesize evsel counter.\n");
3984 				return err;
3985 			}
3986 		}
3987 
3988 		if (counter->core.own_cpus) {
3989 			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3990 			if (err < 0) {
3991 				pr_err("Couldn't synthesize evsel cpus.\n");
3992 				return err;
3993 			}
3994 		}
3995 
3996 		/*
3997 		 * Name is needed only for pipe output,
3998 		 * perf.data carries event names.
3999 		 */
4000 		if (is_pipe) {
4001 			err = perf_event__synthesize_event_update_name(tool, counter, process);
4002 			if (err < 0) {
4003 				pr_err("Couldn't synthesize evsel name.\n");
4004 				return err;
4005 			}
4006 		}
4007 	}
4008 	return 0;
4009 }
4010 
4011 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4012 			     union perf_event *event,
4013 			     struct evlist **pevlist)
4014 {
4015 	u32 i, ids, n_ids;
4016 	struct evsel *evsel;
4017 	struct evlist *evlist = *pevlist;
4018 
4019 	if (evlist == NULL) {
4020 		*pevlist = evlist = evlist__new();
4021 		if (evlist == NULL)
4022 			return -ENOMEM;
4023 	}
4024 
4025 	evsel = evsel__new(&event->attr.attr);
4026 	if (evsel == NULL)
4027 		return -ENOMEM;
4028 
4029 	evlist__add(evlist, evsel);
4030 
4031 	ids = event->header.size;
4032 	ids -= (void *)&event->attr.id - (void *)event;
4033 	n_ids = ids / sizeof(u64);
4034 	/*
4035 	 * We don't have the cpu and thread maps on the header, so
4036 	 * for allocating the perf_sample_id table we fake 1 cpu and
4037 	 * hattr->ids threads.
4038 	 */
4039 	if (perf_evsel__alloc_id(evsel, 1, n_ids))
4040 		return -ENOMEM;
4041 
4042 	for (i = 0; i < n_ids; i++) {
4043 		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
4044 	}
4045 
4046 	return 0;
4047 }
4048 
4049 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4050 				     union perf_event *event,
4051 				     struct evlist **pevlist)
4052 {
4053 	struct event_update_event *ev = &event->event_update;
4054 	struct event_update_event_scale *ev_scale;
4055 	struct event_update_event_cpus *ev_cpus;
4056 	struct evlist *evlist;
4057 	struct evsel *evsel;
4058 	struct perf_cpu_map *map;
4059 
4060 	if (!pevlist || *pevlist == NULL)
4061 		return -EINVAL;
4062 
4063 	evlist = *pevlist;
4064 
4065 	evsel = perf_evlist__id2evsel(evlist, ev->id);
4066 	if (evsel == NULL)
4067 		return -EINVAL;
4068 
4069 	switch (ev->type) {
4070 	case PERF_EVENT_UPDATE__UNIT:
4071 		evsel->unit = strdup(ev->data);
4072 		break;
4073 	case PERF_EVENT_UPDATE__NAME:
4074 		evsel->name = strdup(ev->data);
4075 		break;
4076 	case PERF_EVENT_UPDATE__SCALE:
4077 		ev_scale = (struct event_update_event_scale *) ev->data;
4078 		evsel->scale = ev_scale->scale;
4079 		break;
4080 	case PERF_EVENT_UPDATE__CPUS:
4081 		ev_cpus = (struct event_update_event_cpus *) ev->data;
4082 
4083 		map = cpu_map__new_data(&ev_cpus->cpus);
4084 		if (map)
4085 			evsel->core.own_cpus = map;
4086 		else
4087 			pr_err("failed to get event_update cpus\n");
4088 	default:
4089 		break;
4090 	}
4091 
4092 	return 0;
4093 }
4094 
4095 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
4096 					struct evlist *evlist,
4097 					perf_event__handler_t process)
4098 {
4099 	union perf_event ev;
4100 	struct tracing_data *tdata;
4101 	ssize_t size = 0, aligned_size = 0, padding;
4102 	struct feat_fd ff;
4103 	int err __maybe_unused = 0;
4104 
4105 	/*
4106 	 * We are going to store the size of the data followed
4107 	 * by the data contents. Since the fd descriptor is a pipe,
4108 	 * we cannot seek back to store the size of the data once
4109 	 * we know it. Instead we:
4110 	 *
4111 	 * - write the tracing data to the temp file
4112 	 * - get/write the data size to pipe
4113 	 * - write the tracing data from the temp file
4114 	 *   to the pipe
4115 	 */
4116 	tdata = tracing_data_get(&evlist->core.entries, fd, true);
4117 	if (!tdata)
4118 		return -1;
4119 
4120 	memset(&ev, 0, sizeof(ev));
4121 
4122 	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
4123 	size = tdata->size;
4124 	aligned_size = PERF_ALIGN(size, sizeof(u64));
4125 	padding = aligned_size - size;
4126 	ev.tracing_data.header.size = sizeof(ev.tracing_data);
4127 	ev.tracing_data.size = aligned_size;
4128 
4129 	process(tool, &ev, NULL, NULL);
4130 
4131 	/*
4132 	 * The put function will copy all the tracing data
4133 	 * stored in temp file to the pipe.
4134 	 */
4135 	tracing_data_put(tdata);
4136 
4137 	ff = (struct feat_fd){ .fd = fd };
4138 	if (write_padded(&ff, NULL, 0, padding))
4139 		return -1;
4140 
4141 	return aligned_size;
4142 }
4143 
4144 int perf_event__process_tracing_data(struct perf_session *session,
4145 				     union perf_event *event)
4146 {
4147 	ssize_t size_read, padding, size = event->tracing_data.size;
4148 	int fd = perf_data__fd(session->data);
4149 	off_t offset = lseek(fd, 0, SEEK_CUR);
4150 	char buf[BUFSIZ];
4151 
4152 	/* setup for reading amidst mmap */
4153 	lseek(fd, offset + sizeof(struct tracing_data_event),
4154 	      SEEK_SET);
4155 
4156 	size_read = trace_report(fd, &session->tevent,
4157 				 session->repipe);
4158 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4159 
4160 	if (readn(fd, buf, padding) < 0) {
4161 		pr_err("%s: reading input file", __func__);
4162 		return -1;
4163 	}
4164 	if (session->repipe) {
4165 		int retw = write(STDOUT_FILENO, buf, padding);
4166 		if (retw <= 0 || retw != padding) {
4167 			pr_err("%s: repiping tracing data padding", __func__);
4168 			return -1;
4169 		}
4170 	}
4171 
4172 	if (size_read + padding != size) {
4173 		pr_err("%s: tracing data size mismatch", __func__);
4174 		return -1;
4175 	}
4176 
4177 	perf_evlist__prepare_tracepoint_events(session->evlist,
4178 					       session->tevent.pevent);
4179 
4180 	return size_read + padding;
4181 }
4182 
4183 int perf_event__synthesize_build_id(struct perf_tool *tool,
4184 				    struct dso *pos, u16 misc,
4185 				    perf_event__handler_t process,
4186 				    struct machine *machine)
4187 {
4188 	union perf_event ev;
4189 	size_t len;
4190 	int err = 0;
4191 
4192 	if (!pos->hit)
4193 		return err;
4194 
4195 	memset(&ev, 0, sizeof(ev));
4196 
4197 	len = pos->long_name_len + 1;
4198 	len = PERF_ALIGN(len, NAME_ALIGN);
4199 	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
4200 	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
4201 	ev.build_id.header.misc = misc;
4202 	ev.build_id.pid = machine->pid;
4203 	ev.build_id.header.size = sizeof(ev.build_id) + len;
4204 	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
4205 
4206 	err = process(tool, &ev, NULL, machine);
4207 
4208 	return err;
4209 }
4210 
4211 int perf_event__process_build_id(struct perf_session *session,
4212 				 union perf_event *event)
4213 {
4214 	__event_process_build_id(&event->build_id,
4215 				 event->build_id.filename,
4216 				 session);
4217 	return 0;
4218 }
4219