1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <stdio.h> 10 #include <stdlib.h> 11 #include <linux/compiler.h> 12 #include <linux/list.h> 13 #include <linux/kernel.h> 14 #include <linux/bitops.h> 15 #include <linux/string.h> 16 #include <linux/stringify.h> 17 #include <linux/zalloc.h> 18 #include <sys/stat.h> 19 #include <sys/utsname.h> 20 #include <linux/time64.h> 21 #include <dirent.h> 22 #include <bpf/libbpf.h> 23 #include <perf/cpumap.h> 24 25 #include "evlist.h" 26 #include "evsel.h" 27 #include "header.h" 28 #include "memswap.h" 29 #include "../perf.h" 30 #include "trace-event.h" 31 #include "session.h" 32 #include "symbol.h" 33 #include "debug.h" 34 #include "cpumap.h" 35 #include "pmu.h" 36 #include "vdso.h" 37 #include "strbuf.h" 38 #include "build-id.h" 39 #include "data.h" 40 #include <api/fs/fs.h> 41 #include "asm/bug.h" 42 #include "tool.h" 43 #include "time-utils.h" 44 #include "units.h" 45 #include "cputopo.h" 46 #include "bpf-event.h" 47 48 #include <linux/ctype.h> 49 50 /* 51 * magic2 = "PERFILE2" 52 * must be a numerical value to let the endianness 53 * determine the memory layout. That way we are able 54 * to detect endianness when reading the perf.data file 55 * back. 56 * 57 * we check for legacy (PERFFILE) format. 58 */ 59 static const char *__perf_magic1 = "PERFFILE"; 60 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 61 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 62 63 #define PERF_MAGIC __perf_magic2 64 65 const char perf_version_string[] = PERF_VERSION; 66 67 struct perf_file_attr { 68 struct perf_event_attr attr; 69 struct perf_file_section ids; 70 }; 71 72 struct feat_fd { 73 struct perf_header *ph; 74 int fd; 75 void *buf; /* Either buf != NULL or fd >= 0 */ 76 ssize_t offset; 77 size_t size; 78 struct evsel *events; 79 }; 80 81 void perf_header__set_feat(struct perf_header *header, int feat) 82 { 83 set_bit(feat, header->adds_features); 84 } 85 86 void perf_header__clear_feat(struct perf_header *header, int feat) 87 { 88 clear_bit(feat, header->adds_features); 89 } 90 91 bool perf_header__has_feat(const struct perf_header *header, int feat) 92 { 93 return test_bit(feat, header->adds_features); 94 } 95 96 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 97 { 98 ssize_t ret = writen(ff->fd, buf, size); 99 100 if (ret != (ssize_t)size) 101 return ret < 0 ? (int)ret : -1; 102 return 0; 103 } 104 105 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 106 { 107 /* struct perf_event_header::size is u16 */ 108 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 109 size_t new_size = ff->size; 110 void *addr; 111 112 if (size + ff->offset > max_size) 113 return -E2BIG; 114 115 while (size > (new_size - ff->offset)) 116 new_size <<= 1; 117 new_size = min(max_size, new_size); 118 119 if (ff->size < new_size) { 120 addr = realloc(ff->buf, new_size); 121 if (!addr) 122 return -ENOMEM; 123 ff->buf = addr; 124 ff->size = new_size; 125 } 126 127 memcpy(ff->buf + ff->offset, buf, size); 128 ff->offset += size; 129 130 return 0; 131 } 132 133 /* Return: 0 if succeded, -ERR if failed. */ 134 int do_write(struct feat_fd *ff, const void *buf, size_t size) 135 { 136 if (!ff->buf) 137 return __do_write_fd(ff, buf, size); 138 return __do_write_buf(ff, buf, size); 139 } 140 141 /* Return: 0 if succeded, -ERR if failed. */ 142 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 143 { 144 u64 *p = (u64 *) set; 145 int i, ret; 146 147 ret = do_write(ff, &size, sizeof(size)); 148 if (ret < 0) 149 return ret; 150 151 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 152 ret = do_write(ff, p + i, sizeof(*p)); 153 if (ret < 0) 154 return ret; 155 } 156 157 return 0; 158 } 159 160 /* Return: 0 if succeded, -ERR if failed. */ 161 int write_padded(struct feat_fd *ff, const void *bf, 162 size_t count, size_t count_aligned) 163 { 164 static const char zero_buf[NAME_ALIGN]; 165 int err = do_write(ff, bf, count); 166 167 if (!err) 168 err = do_write(ff, zero_buf, count_aligned - count); 169 170 return err; 171 } 172 173 #define string_size(str) \ 174 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 175 176 /* Return: 0 if succeded, -ERR if failed. */ 177 static int do_write_string(struct feat_fd *ff, const char *str) 178 { 179 u32 len, olen; 180 int ret; 181 182 olen = strlen(str) + 1; 183 len = PERF_ALIGN(olen, NAME_ALIGN); 184 185 /* write len, incl. \0 */ 186 ret = do_write(ff, &len, sizeof(len)); 187 if (ret < 0) 188 return ret; 189 190 return write_padded(ff, str, olen, len); 191 } 192 193 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 194 { 195 ssize_t ret = readn(ff->fd, addr, size); 196 197 if (ret != size) 198 return ret < 0 ? (int)ret : -1; 199 return 0; 200 } 201 202 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 203 { 204 if (size > (ssize_t)ff->size - ff->offset) 205 return -1; 206 207 memcpy(addr, ff->buf + ff->offset, size); 208 ff->offset += size; 209 210 return 0; 211 212 } 213 214 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 215 { 216 if (!ff->buf) 217 return __do_read_fd(ff, addr, size); 218 return __do_read_buf(ff, addr, size); 219 } 220 221 static int do_read_u32(struct feat_fd *ff, u32 *addr) 222 { 223 int ret; 224 225 ret = __do_read(ff, addr, sizeof(*addr)); 226 if (ret) 227 return ret; 228 229 if (ff->ph->needs_swap) 230 *addr = bswap_32(*addr); 231 return 0; 232 } 233 234 static int do_read_u64(struct feat_fd *ff, u64 *addr) 235 { 236 int ret; 237 238 ret = __do_read(ff, addr, sizeof(*addr)); 239 if (ret) 240 return ret; 241 242 if (ff->ph->needs_swap) 243 *addr = bswap_64(*addr); 244 return 0; 245 } 246 247 static char *do_read_string(struct feat_fd *ff) 248 { 249 u32 len; 250 char *buf; 251 252 if (do_read_u32(ff, &len)) 253 return NULL; 254 255 buf = malloc(len); 256 if (!buf) 257 return NULL; 258 259 if (!__do_read(ff, buf, len)) { 260 /* 261 * strings are padded by zeroes 262 * thus the actual strlen of buf 263 * may be less than len 264 */ 265 return buf; 266 } 267 268 free(buf); 269 return NULL; 270 } 271 272 /* Return: 0 if succeded, -ERR if failed. */ 273 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 274 { 275 unsigned long *set; 276 u64 size, *p; 277 int i, ret; 278 279 ret = do_read_u64(ff, &size); 280 if (ret) 281 return ret; 282 283 set = bitmap_alloc(size); 284 if (!set) 285 return -ENOMEM; 286 287 p = (u64 *) set; 288 289 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 290 ret = do_read_u64(ff, p + i); 291 if (ret < 0) { 292 free(set); 293 return ret; 294 } 295 } 296 297 *pset = set; 298 *psize = size; 299 return 0; 300 } 301 302 static int write_tracing_data(struct feat_fd *ff, 303 struct evlist *evlist) 304 { 305 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 306 return -1; 307 308 return read_tracing_data(ff->fd, &evlist->core.entries); 309 } 310 311 static int write_build_id(struct feat_fd *ff, 312 struct evlist *evlist __maybe_unused) 313 { 314 struct perf_session *session; 315 int err; 316 317 session = container_of(ff->ph, struct perf_session, header); 318 319 if (!perf_session__read_build_ids(session, true)) 320 return -1; 321 322 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 323 return -1; 324 325 err = perf_session__write_buildid_table(session, ff); 326 if (err < 0) { 327 pr_debug("failed to write buildid table\n"); 328 return err; 329 } 330 perf_session__cache_build_ids(session); 331 332 return 0; 333 } 334 335 static int write_hostname(struct feat_fd *ff, 336 struct evlist *evlist __maybe_unused) 337 { 338 struct utsname uts; 339 int ret; 340 341 ret = uname(&uts); 342 if (ret < 0) 343 return -1; 344 345 return do_write_string(ff, uts.nodename); 346 } 347 348 static int write_osrelease(struct feat_fd *ff, 349 struct evlist *evlist __maybe_unused) 350 { 351 struct utsname uts; 352 int ret; 353 354 ret = uname(&uts); 355 if (ret < 0) 356 return -1; 357 358 return do_write_string(ff, uts.release); 359 } 360 361 static int write_arch(struct feat_fd *ff, 362 struct evlist *evlist __maybe_unused) 363 { 364 struct utsname uts; 365 int ret; 366 367 ret = uname(&uts); 368 if (ret < 0) 369 return -1; 370 371 return do_write_string(ff, uts.machine); 372 } 373 374 static int write_version(struct feat_fd *ff, 375 struct evlist *evlist __maybe_unused) 376 { 377 return do_write_string(ff, perf_version_string); 378 } 379 380 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 381 { 382 FILE *file; 383 char *buf = NULL; 384 char *s, *p; 385 const char *search = cpuinfo_proc; 386 size_t len = 0; 387 int ret = -1; 388 389 if (!search) 390 return -1; 391 392 file = fopen("/proc/cpuinfo", "r"); 393 if (!file) 394 return -1; 395 396 while (getline(&buf, &len, file) > 0) { 397 ret = strncmp(buf, search, strlen(search)); 398 if (!ret) 399 break; 400 } 401 402 if (ret) { 403 ret = -1; 404 goto done; 405 } 406 407 s = buf; 408 409 p = strchr(buf, ':'); 410 if (p && *(p+1) == ' ' && *(p+2)) 411 s = p + 2; 412 p = strchr(s, '\n'); 413 if (p) 414 *p = '\0'; 415 416 /* squash extra space characters (branding string) */ 417 p = s; 418 while (*p) { 419 if (isspace(*p)) { 420 char *r = p + 1; 421 char *q = skip_spaces(r); 422 *p = ' '; 423 if (q != (p+1)) 424 while ((*r++ = *q++)); 425 } 426 p++; 427 } 428 ret = do_write_string(ff, s); 429 done: 430 free(buf); 431 fclose(file); 432 return ret; 433 } 434 435 static int write_cpudesc(struct feat_fd *ff, 436 struct evlist *evlist __maybe_unused) 437 { 438 const char *cpuinfo_procs[] = CPUINFO_PROC; 439 unsigned int i; 440 441 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 442 int ret; 443 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 444 if (ret >= 0) 445 return ret; 446 } 447 return -1; 448 } 449 450 451 static int write_nrcpus(struct feat_fd *ff, 452 struct evlist *evlist __maybe_unused) 453 { 454 long nr; 455 u32 nrc, nra; 456 int ret; 457 458 nrc = cpu__max_present_cpu(); 459 460 nr = sysconf(_SC_NPROCESSORS_ONLN); 461 if (nr < 0) 462 return -1; 463 464 nra = (u32)(nr & UINT_MAX); 465 466 ret = do_write(ff, &nrc, sizeof(nrc)); 467 if (ret < 0) 468 return ret; 469 470 return do_write(ff, &nra, sizeof(nra)); 471 } 472 473 static int write_event_desc(struct feat_fd *ff, 474 struct evlist *evlist) 475 { 476 struct evsel *evsel; 477 u32 nre, nri, sz; 478 int ret; 479 480 nre = evlist->core.nr_entries; 481 482 /* 483 * write number of events 484 */ 485 ret = do_write(ff, &nre, sizeof(nre)); 486 if (ret < 0) 487 return ret; 488 489 /* 490 * size of perf_event_attr struct 491 */ 492 sz = (u32)sizeof(evsel->core.attr); 493 ret = do_write(ff, &sz, sizeof(sz)); 494 if (ret < 0) 495 return ret; 496 497 evlist__for_each_entry(evlist, evsel) { 498 ret = do_write(ff, &evsel->core.attr, sz); 499 if (ret < 0) 500 return ret; 501 /* 502 * write number of unique id per event 503 * there is one id per instance of an event 504 * 505 * copy into an nri to be independent of the 506 * type of ids, 507 */ 508 nri = evsel->ids; 509 ret = do_write(ff, &nri, sizeof(nri)); 510 if (ret < 0) 511 return ret; 512 513 /* 514 * write event string as passed on cmdline 515 */ 516 ret = do_write_string(ff, perf_evsel__name(evsel)); 517 if (ret < 0) 518 return ret; 519 /* 520 * write unique ids for this event 521 */ 522 ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64)); 523 if (ret < 0) 524 return ret; 525 } 526 return 0; 527 } 528 529 static int write_cmdline(struct feat_fd *ff, 530 struct evlist *evlist __maybe_unused) 531 { 532 char pbuf[MAXPATHLEN], *buf; 533 int i, ret, n; 534 535 /* actual path to perf binary */ 536 buf = perf_exe(pbuf, MAXPATHLEN); 537 538 /* account for binary path */ 539 n = perf_env.nr_cmdline + 1; 540 541 ret = do_write(ff, &n, sizeof(n)); 542 if (ret < 0) 543 return ret; 544 545 ret = do_write_string(ff, buf); 546 if (ret < 0) 547 return ret; 548 549 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 550 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 551 if (ret < 0) 552 return ret; 553 } 554 return 0; 555 } 556 557 558 static int write_cpu_topology(struct feat_fd *ff, 559 struct evlist *evlist __maybe_unused) 560 { 561 struct cpu_topology *tp; 562 u32 i; 563 int ret, j; 564 565 tp = cpu_topology__new(); 566 if (!tp) 567 return -1; 568 569 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib)); 570 if (ret < 0) 571 goto done; 572 573 for (i = 0; i < tp->core_sib; i++) { 574 ret = do_write_string(ff, tp->core_siblings[i]); 575 if (ret < 0) 576 goto done; 577 } 578 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib)); 579 if (ret < 0) 580 goto done; 581 582 for (i = 0; i < tp->thread_sib; i++) { 583 ret = do_write_string(ff, tp->thread_siblings[i]); 584 if (ret < 0) 585 break; 586 } 587 588 ret = perf_env__read_cpu_topology_map(&perf_env); 589 if (ret < 0) 590 goto done; 591 592 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 593 ret = do_write(ff, &perf_env.cpu[j].core_id, 594 sizeof(perf_env.cpu[j].core_id)); 595 if (ret < 0) 596 return ret; 597 ret = do_write(ff, &perf_env.cpu[j].socket_id, 598 sizeof(perf_env.cpu[j].socket_id)); 599 if (ret < 0) 600 return ret; 601 } 602 603 if (!tp->die_sib) 604 goto done; 605 606 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib)); 607 if (ret < 0) 608 goto done; 609 610 for (i = 0; i < tp->die_sib; i++) { 611 ret = do_write_string(ff, tp->die_siblings[i]); 612 if (ret < 0) 613 goto done; 614 } 615 616 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 617 ret = do_write(ff, &perf_env.cpu[j].die_id, 618 sizeof(perf_env.cpu[j].die_id)); 619 if (ret < 0) 620 return ret; 621 } 622 623 done: 624 cpu_topology__delete(tp); 625 return ret; 626 } 627 628 629 630 static int write_total_mem(struct feat_fd *ff, 631 struct evlist *evlist __maybe_unused) 632 { 633 char *buf = NULL; 634 FILE *fp; 635 size_t len = 0; 636 int ret = -1, n; 637 uint64_t mem; 638 639 fp = fopen("/proc/meminfo", "r"); 640 if (!fp) 641 return -1; 642 643 while (getline(&buf, &len, fp) > 0) { 644 ret = strncmp(buf, "MemTotal:", 9); 645 if (!ret) 646 break; 647 } 648 if (!ret) { 649 n = sscanf(buf, "%*s %"PRIu64, &mem); 650 if (n == 1) 651 ret = do_write(ff, &mem, sizeof(mem)); 652 } else 653 ret = -1; 654 free(buf); 655 fclose(fp); 656 return ret; 657 } 658 659 static int write_numa_topology(struct feat_fd *ff, 660 struct evlist *evlist __maybe_unused) 661 { 662 struct numa_topology *tp; 663 int ret = -1; 664 u32 i; 665 666 tp = numa_topology__new(); 667 if (!tp) 668 return -ENOMEM; 669 670 ret = do_write(ff, &tp->nr, sizeof(u32)); 671 if (ret < 0) 672 goto err; 673 674 for (i = 0; i < tp->nr; i++) { 675 struct numa_topology_node *n = &tp->nodes[i]; 676 677 ret = do_write(ff, &n->node, sizeof(u32)); 678 if (ret < 0) 679 goto err; 680 681 ret = do_write(ff, &n->mem_total, sizeof(u64)); 682 if (ret) 683 goto err; 684 685 ret = do_write(ff, &n->mem_free, sizeof(u64)); 686 if (ret) 687 goto err; 688 689 ret = do_write_string(ff, n->cpus); 690 if (ret < 0) 691 goto err; 692 } 693 694 ret = 0; 695 696 err: 697 numa_topology__delete(tp); 698 return ret; 699 } 700 701 /* 702 * File format: 703 * 704 * struct pmu_mappings { 705 * u32 pmu_num; 706 * struct pmu_map { 707 * u32 type; 708 * char name[]; 709 * }[pmu_num]; 710 * }; 711 */ 712 713 static int write_pmu_mappings(struct feat_fd *ff, 714 struct evlist *evlist __maybe_unused) 715 { 716 struct perf_pmu *pmu = NULL; 717 u32 pmu_num = 0; 718 int ret; 719 720 /* 721 * Do a first pass to count number of pmu to avoid lseek so this 722 * works in pipe mode as well. 723 */ 724 while ((pmu = perf_pmu__scan(pmu))) { 725 if (!pmu->name) 726 continue; 727 pmu_num++; 728 } 729 730 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 731 if (ret < 0) 732 return ret; 733 734 while ((pmu = perf_pmu__scan(pmu))) { 735 if (!pmu->name) 736 continue; 737 738 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 739 if (ret < 0) 740 return ret; 741 742 ret = do_write_string(ff, pmu->name); 743 if (ret < 0) 744 return ret; 745 } 746 747 return 0; 748 } 749 750 /* 751 * File format: 752 * 753 * struct group_descs { 754 * u32 nr_groups; 755 * struct group_desc { 756 * char name[]; 757 * u32 leader_idx; 758 * u32 nr_members; 759 * }[nr_groups]; 760 * }; 761 */ 762 static int write_group_desc(struct feat_fd *ff, 763 struct evlist *evlist) 764 { 765 u32 nr_groups = evlist->nr_groups; 766 struct evsel *evsel; 767 int ret; 768 769 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 770 if (ret < 0) 771 return ret; 772 773 evlist__for_each_entry(evlist, evsel) { 774 if (perf_evsel__is_group_leader(evsel) && 775 evsel->core.nr_members > 1) { 776 const char *name = evsel->group_name ?: "{anon_group}"; 777 u32 leader_idx = evsel->idx; 778 u32 nr_members = evsel->core.nr_members; 779 780 ret = do_write_string(ff, name); 781 if (ret < 0) 782 return ret; 783 784 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 785 if (ret < 0) 786 return ret; 787 788 ret = do_write(ff, &nr_members, sizeof(nr_members)); 789 if (ret < 0) 790 return ret; 791 } 792 } 793 return 0; 794 } 795 796 /* 797 * Return the CPU id as a raw string. 798 * 799 * Each architecture should provide a more precise id string that 800 * can be use to match the architecture's "mapfile". 801 */ 802 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 803 { 804 return NULL; 805 } 806 807 /* Return zero when the cpuid from the mapfile.csv matches the 808 * cpuid string generated on this platform. 809 * Otherwise return non-zero. 810 */ 811 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 812 { 813 regex_t re; 814 regmatch_t pmatch[1]; 815 int match; 816 817 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 818 /* Warn unable to generate match particular string. */ 819 pr_info("Invalid regular expression %s\n", mapcpuid); 820 return 1; 821 } 822 823 match = !regexec(&re, cpuid, 1, pmatch, 0); 824 regfree(&re); 825 if (match) { 826 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 827 828 /* Verify the entire string matched. */ 829 if (match_len == strlen(cpuid)) 830 return 0; 831 } 832 return 1; 833 } 834 835 /* 836 * default get_cpuid(): nothing gets recorded 837 * actual implementation must be in arch/$(SRCARCH)/util/header.c 838 */ 839 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 840 { 841 return -1; 842 } 843 844 static int write_cpuid(struct feat_fd *ff, 845 struct evlist *evlist __maybe_unused) 846 { 847 char buffer[64]; 848 int ret; 849 850 ret = get_cpuid(buffer, sizeof(buffer)); 851 if (ret) 852 return -1; 853 854 return do_write_string(ff, buffer); 855 } 856 857 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 858 struct evlist *evlist __maybe_unused) 859 { 860 return 0; 861 } 862 863 static int write_auxtrace(struct feat_fd *ff, 864 struct evlist *evlist __maybe_unused) 865 { 866 struct perf_session *session; 867 int err; 868 869 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 870 return -1; 871 872 session = container_of(ff->ph, struct perf_session, header); 873 874 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 875 if (err < 0) 876 pr_err("Failed to write auxtrace index\n"); 877 return err; 878 } 879 880 static int write_clockid(struct feat_fd *ff, 881 struct evlist *evlist __maybe_unused) 882 { 883 return do_write(ff, &ff->ph->env.clockid_res_ns, 884 sizeof(ff->ph->env.clockid_res_ns)); 885 } 886 887 static int write_dir_format(struct feat_fd *ff, 888 struct evlist *evlist __maybe_unused) 889 { 890 struct perf_session *session; 891 struct perf_data *data; 892 893 session = container_of(ff->ph, struct perf_session, header); 894 data = session->data; 895 896 if (WARN_ON(!perf_data__is_dir(data))) 897 return -1; 898 899 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 900 } 901 902 #ifdef HAVE_LIBBPF_SUPPORT 903 static int write_bpf_prog_info(struct feat_fd *ff, 904 struct evlist *evlist __maybe_unused) 905 { 906 struct perf_env *env = &ff->ph->env; 907 struct rb_root *root; 908 struct rb_node *next; 909 int ret; 910 911 down_read(&env->bpf_progs.lock); 912 913 ret = do_write(ff, &env->bpf_progs.infos_cnt, 914 sizeof(env->bpf_progs.infos_cnt)); 915 if (ret < 0) 916 goto out; 917 918 root = &env->bpf_progs.infos; 919 next = rb_first(root); 920 while (next) { 921 struct bpf_prog_info_node *node; 922 size_t len; 923 924 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 925 next = rb_next(&node->rb_node); 926 len = sizeof(struct bpf_prog_info_linear) + 927 node->info_linear->data_len; 928 929 /* before writing to file, translate address to offset */ 930 bpf_program__bpil_addr_to_offs(node->info_linear); 931 ret = do_write(ff, node->info_linear, len); 932 /* 933 * translate back to address even when do_write() fails, 934 * so that this function never changes the data. 935 */ 936 bpf_program__bpil_offs_to_addr(node->info_linear); 937 if (ret < 0) 938 goto out; 939 } 940 out: 941 up_read(&env->bpf_progs.lock); 942 return ret; 943 } 944 #else // HAVE_LIBBPF_SUPPORT 945 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused, 946 struct evlist *evlist __maybe_unused) 947 { 948 return 0; 949 } 950 #endif // HAVE_LIBBPF_SUPPORT 951 952 static int write_bpf_btf(struct feat_fd *ff, 953 struct evlist *evlist __maybe_unused) 954 { 955 struct perf_env *env = &ff->ph->env; 956 struct rb_root *root; 957 struct rb_node *next; 958 int ret; 959 960 down_read(&env->bpf_progs.lock); 961 962 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 963 sizeof(env->bpf_progs.btfs_cnt)); 964 965 if (ret < 0) 966 goto out; 967 968 root = &env->bpf_progs.btfs; 969 next = rb_first(root); 970 while (next) { 971 struct btf_node *node; 972 973 node = rb_entry(next, struct btf_node, rb_node); 974 next = rb_next(&node->rb_node); 975 ret = do_write(ff, &node->id, 976 sizeof(u32) * 2 + node->data_size); 977 if (ret < 0) 978 goto out; 979 } 980 out: 981 up_read(&env->bpf_progs.lock); 982 return ret; 983 } 984 985 static int cpu_cache_level__sort(const void *a, const void *b) 986 { 987 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 988 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 989 990 return cache_a->level - cache_b->level; 991 } 992 993 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 994 { 995 if (a->level != b->level) 996 return false; 997 998 if (a->line_size != b->line_size) 999 return false; 1000 1001 if (a->sets != b->sets) 1002 return false; 1003 1004 if (a->ways != b->ways) 1005 return false; 1006 1007 if (strcmp(a->type, b->type)) 1008 return false; 1009 1010 if (strcmp(a->size, b->size)) 1011 return false; 1012 1013 if (strcmp(a->map, b->map)) 1014 return false; 1015 1016 return true; 1017 } 1018 1019 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1020 { 1021 char path[PATH_MAX], file[PATH_MAX]; 1022 struct stat st; 1023 size_t len; 1024 1025 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1026 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1027 1028 if (stat(file, &st)) 1029 return 1; 1030 1031 scnprintf(file, PATH_MAX, "%s/level", path); 1032 if (sysfs__read_int(file, (int *) &cache->level)) 1033 return -1; 1034 1035 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1036 if (sysfs__read_int(file, (int *) &cache->line_size)) 1037 return -1; 1038 1039 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1040 if (sysfs__read_int(file, (int *) &cache->sets)) 1041 return -1; 1042 1043 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1044 if (sysfs__read_int(file, (int *) &cache->ways)) 1045 return -1; 1046 1047 scnprintf(file, PATH_MAX, "%s/type", path); 1048 if (sysfs__read_str(file, &cache->type, &len)) 1049 return -1; 1050 1051 cache->type[len] = 0; 1052 cache->type = strim(cache->type); 1053 1054 scnprintf(file, PATH_MAX, "%s/size", path); 1055 if (sysfs__read_str(file, &cache->size, &len)) { 1056 zfree(&cache->type); 1057 return -1; 1058 } 1059 1060 cache->size[len] = 0; 1061 cache->size = strim(cache->size); 1062 1063 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1064 if (sysfs__read_str(file, &cache->map, &len)) { 1065 zfree(&cache->map); 1066 zfree(&cache->type); 1067 return -1; 1068 } 1069 1070 cache->map[len] = 0; 1071 cache->map = strim(cache->map); 1072 return 0; 1073 } 1074 1075 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1076 { 1077 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1078 } 1079 1080 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp) 1081 { 1082 u32 i, cnt = 0; 1083 long ncpus; 1084 u32 nr, cpu; 1085 u16 level; 1086 1087 ncpus = sysconf(_SC_NPROCESSORS_CONF); 1088 if (ncpus < 0) 1089 return -1; 1090 1091 nr = (u32)(ncpus & UINT_MAX); 1092 1093 for (cpu = 0; cpu < nr; cpu++) { 1094 for (level = 0; level < 10; level++) { 1095 struct cpu_cache_level c; 1096 int err; 1097 1098 err = cpu_cache_level__read(&c, cpu, level); 1099 if (err < 0) 1100 return err; 1101 1102 if (err == 1) 1103 break; 1104 1105 for (i = 0; i < cnt; i++) { 1106 if (cpu_cache_level__cmp(&c, &caches[i])) 1107 break; 1108 } 1109 1110 if (i == cnt) 1111 caches[cnt++] = c; 1112 else 1113 cpu_cache_level__free(&c); 1114 1115 if (WARN_ONCE(cnt == size, "way too many cpu caches..")) 1116 goto out; 1117 } 1118 } 1119 out: 1120 *cntp = cnt; 1121 return 0; 1122 } 1123 1124 #define MAX_CACHES (MAX_NR_CPUS * 4) 1125 1126 static int write_cache(struct feat_fd *ff, 1127 struct evlist *evlist __maybe_unused) 1128 { 1129 struct cpu_cache_level caches[MAX_CACHES]; 1130 u32 cnt = 0, i, version = 1; 1131 int ret; 1132 1133 ret = build_caches(caches, MAX_CACHES, &cnt); 1134 if (ret) 1135 goto out; 1136 1137 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1138 1139 ret = do_write(ff, &version, sizeof(u32)); 1140 if (ret < 0) 1141 goto out; 1142 1143 ret = do_write(ff, &cnt, sizeof(u32)); 1144 if (ret < 0) 1145 goto out; 1146 1147 for (i = 0; i < cnt; i++) { 1148 struct cpu_cache_level *c = &caches[i]; 1149 1150 #define _W(v) \ 1151 ret = do_write(ff, &c->v, sizeof(u32)); \ 1152 if (ret < 0) \ 1153 goto out; 1154 1155 _W(level) 1156 _W(line_size) 1157 _W(sets) 1158 _W(ways) 1159 #undef _W 1160 1161 #define _W(v) \ 1162 ret = do_write_string(ff, (const char *) c->v); \ 1163 if (ret < 0) \ 1164 goto out; 1165 1166 _W(type) 1167 _W(size) 1168 _W(map) 1169 #undef _W 1170 } 1171 1172 out: 1173 for (i = 0; i < cnt; i++) 1174 cpu_cache_level__free(&caches[i]); 1175 return ret; 1176 } 1177 1178 static int write_stat(struct feat_fd *ff __maybe_unused, 1179 struct evlist *evlist __maybe_unused) 1180 { 1181 return 0; 1182 } 1183 1184 static int write_sample_time(struct feat_fd *ff, 1185 struct evlist *evlist) 1186 { 1187 int ret; 1188 1189 ret = do_write(ff, &evlist->first_sample_time, 1190 sizeof(evlist->first_sample_time)); 1191 if (ret < 0) 1192 return ret; 1193 1194 return do_write(ff, &evlist->last_sample_time, 1195 sizeof(evlist->last_sample_time)); 1196 } 1197 1198 1199 static int memory_node__read(struct memory_node *n, unsigned long idx) 1200 { 1201 unsigned int phys, size = 0; 1202 char path[PATH_MAX]; 1203 struct dirent *ent; 1204 DIR *dir; 1205 1206 #define for_each_memory(mem, dir) \ 1207 while ((ent = readdir(dir))) \ 1208 if (strcmp(ent->d_name, ".") && \ 1209 strcmp(ent->d_name, "..") && \ 1210 sscanf(ent->d_name, "memory%u", &mem) == 1) 1211 1212 scnprintf(path, PATH_MAX, 1213 "%s/devices/system/node/node%lu", 1214 sysfs__mountpoint(), idx); 1215 1216 dir = opendir(path); 1217 if (!dir) { 1218 pr_warning("failed: cant' open memory sysfs data\n"); 1219 return -1; 1220 } 1221 1222 for_each_memory(phys, dir) { 1223 size = max(phys, size); 1224 } 1225 1226 size++; 1227 1228 n->set = bitmap_alloc(size); 1229 if (!n->set) { 1230 closedir(dir); 1231 return -ENOMEM; 1232 } 1233 1234 n->node = idx; 1235 n->size = size; 1236 1237 rewinddir(dir); 1238 1239 for_each_memory(phys, dir) { 1240 set_bit(phys, n->set); 1241 } 1242 1243 closedir(dir); 1244 return 0; 1245 } 1246 1247 static int memory_node__sort(const void *a, const void *b) 1248 { 1249 const struct memory_node *na = a; 1250 const struct memory_node *nb = b; 1251 1252 return na->node - nb->node; 1253 } 1254 1255 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1256 { 1257 char path[PATH_MAX]; 1258 struct dirent *ent; 1259 DIR *dir; 1260 u64 cnt = 0; 1261 int ret = 0; 1262 1263 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1264 sysfs__mountpoint()); 1265 1266 dir = opendir(path); 1267 if (!dir) { 1268 pr_debug2("%s: could't read %s, does this arch have topology information?\n", 1269 __func__, path); 1270 return -1; 1271 } 1272 1273 while (!ret && (ent = readdir(dir))) { 1274 unsigned int idx; 1275 int r; 1276 1277 if (!strcmp(ent->d_name, ".") || 1278 !strcmp(ent->d_name, "..")) 1279 continue; 1280 1281 r = sscanf(ent->d_name, "node%u", &idx); 1282 if (r != 1) 1283 continue; 1284 1285 if (WARN_ONCE(cnt >= size, 1286 "failed to write MEM_TOPOLOGY, way too many nodes\n")) 1287 return -1; 1288 1289 ret = memory_node__read(&nodes[cnt++], idx); 1290 } 1291 1292 *cntp = cnt; 1293 closedir(dir); 1294 1295 if (!ret) 1296 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1297 1298 return ret; 1299 } 1300 1301 #define MAX_MEMORY_NODES 2000 1302 1303 /* 1304 * The MEM_TOPOLOGY holds physical memory map for every 1305 * node in system. The format of data is as follows: 1306 * 1307 * 0 - version | for future changes 1308 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1309 * 16 - count | number of nodes 1310 * 1311 * For each node we store map of physical indexes for 1312 * each node: 1313 * 1314 * 32 - node id | node index 1315 * 40 - size | size of bitmap 1316 * 48 - bitmap | bitmap of memory indexes that belongs to node 1317 */ 1318 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1319 struct evlist *evlist __maybe_unused) 1320 { 1321 static struct memory_node nodes[MAX_MEMORY_NODES]; 1322 u64 bsize, version = 1, i, nr; 1323 int ret; 1324 1325 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1326 (unsigned long long *) &bsize); 1327 if (ret) 1328 return ret; 1329 1330 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1331 if (ret) 1332 return ret; 1333 1334 ret = do_write(ff, &version, sizeof(version)); 1335 if (ret < 0) 1336 goto out; 1337 1338 ret = do_write(ff, &bsize, sizeof(bsize)); 1339 if (ret < 0) 1340 goto out; 1341 1342 ret = do_write(ff, &nr, sizeof(nr)); 1343 if (ret < 0) 1344 goto out; 1345 1346 for (i = 0; i < nr; i++) { 1347 struct memory_node *n = &nodes[i]; 1348 1349 #define _W(v) \ 1350 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1351 if (ret < 0) \ 1352 goto out; 1353 1354 _W(node) 1355 _W(size) 1356 1357 #undef _W 1358 1359 ret = do_write_bitmap(ff, n->set, n->size); 1360 if (ret < 0) 1361 goto out; 1362 } 1363 1364 out: 1365 return ret; 1366 } 1367 1368 static int write_compressed(struct feat_fd *ff __maybe_unused, 1369 struct evlist *evlist __maybe_unused) 1370 { 1371 int ret; 1372 1373 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1374 if (ret) 1375 return ret; 1376 1377 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1378 if (ret) 1379 return ret; 1380 1381 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1382 if (ret) 1383 return ret; 1384 1385 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1386 if (ret) 1387 return ret; 1388 1389 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1390 } 1391 1392 static void print_hostname(struct feat_fd *ff, FILE *fp) 1393 { 1394 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1395 } 1396 1397 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1398 { 1399 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1400 } 1401 1402 static void print_arch(struct feat_fd *ff, FILE *fp) 1403 { 1404 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1405 } 1406 1407 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1408 { 1409 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1410 } 1411 1412 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1413 { 1414 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1415 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1416 } 1417 1418 static void print_version(struct feat_fd *ff, FILE *fp) 1419 { 1420 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1421 } 1422 1423 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1424 { 1425 int nr, i; 1426 1427 nr = ff->ph->env.nr_cmdline; 1428 1429 fprintf(fp, "# cmdline : "); 1430 1431 for (i = 0; i < nr; i++) { 1432 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1433 if (!argv_i) { 1434 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1435 } else { 1436 char *mem = argv_i; 1437 do { 1438 char *quote = strchr(argv_i, '\''); 1439 if (!quote) 1440 break; 1441 *quote++ = '\0'; 1442 fprintf(fp, "%s\\\'", argv_i); 1443 argv_i = quote; 1444 } while (1); 1445 fprintf(fp, "%s ", argv_i); 1446 free(mem); 1447 } 1448 } 1449 fputc('\n', fp); 1450 } 1451 1452 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1453 { 1454 struct perf_header *ph = ff->ph; 1455 int cpu_nr = ph->env.nr_cpus_avail; 1456 int nr, i; 1457 char *str; 1458 1459 nr = ph->env.nr_sibling_cores; 1460 str = ph->env.sibling_cores; 1461 1462 for (i = 0; i < nr; i++) { 1463 fprintf(fp, "# sibling sockets : %s\n", str); 1464 str += strlen(str) + 1; 1465 } 1466 1467 if (ph->env.nr_sibling_dies) { 1468 nr = ph->env.nr_sibling_dies; 1469 str = ph->env.sibling_dies; 1470 1471 for (i = 0; i < nr; i++) { 1472 fprintf(fp, "# sibling dies : %s\n", str); 1473 str += strlen(str) + 1; 1474 } 1475 } 1476 1477 nr = ph->env.nr_sibling_threads; 1478 str = ph->env.sibling_threads; 1479 1480 for (i = 0; i < nr; i++) { 1481 fprintf(fp, "# sibling threads : %s\n", str); 1482 str += strlen(str) + 1; 1483 } 1484 1485 if (ph->env.nr_sibling_dies) { 1486 if (ph->env.cpu != NULL) { 1487 for (i = 0; i < cpu_nr; i++) 1488 fprintf(fp, "# CPU %d: Core ID %d, " 1489 "Die ID %d, Socket ID %d\n", 1490 i, ph->env.cpu[i].core_id, 1491 ph->env.cpu[i].die_id, 1492 ph->env.cpu[i].socket_id); 1493 } else 1494 fprintf(fp, "# Core ID, Die ID and Socket ID " 1495 "information is not available\n"); 1496 } else { 1497 if (ph->env.cpu != NULL) { 1498 for (i = 0; i < cpu_nr; i++) 1499 fprintf(fp, "# CPU %d: Core ID %d, " 1500 "Socket ID %d\n", 1501 i, ph->env.cpu[i].core_id, 1502 ph->env.cpu[i].socket_id); 1503 } else 1504 fprintf(fp, "# Core ID and Socket ID " 1505 "information is not available\n"); 1506 } 1507 } 1508 1509 static void print_clockid(struct feat_fd *ff, FILE *fp) 1510 { 1511 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1512 ff->ph->env.clockid_res_ns * 1000); 1513 } 1514 1515 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1516 { 1517 struct perf_session *session; 1518 struct perf_data *data; 1519 1520 session = container_of(ff->ph, struct perf_session, header); 1521 data = session->data; 1522 1523 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1524 } 1525 1526 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1527 { 1528 struct perf_env *env = &ff->ph->env; 1529 struct rb_root *root; 1530 struct rb_node *next; 1531 1532 down_read(&env->bpf_progs.lock); 1533 1534 root = &env->bpf_progs.infos; 1535 next = rb_first(root); 1536 1537 while (next) { 1538 struct bpf_prog_info_node *node; 1539 1540 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1541 next = rb_next(&node->rb_node); 1542 1543 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1544 env, fp); 1545 } 1546 1547 up_read(&env->bpf_progs.lock); 1548 } 1549 1550 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1551 { 1552 struct perf_env *env = &ff->ph->env; 1553 struct rb_root *root; 1554 struct rb_node *next; 1555 1556 down_read(&env->bpf_progs.lock); 1557 1558 root = &env->bpf_progs.btfs; 1559 next = rb_first(root); 1560 1561 while (next) { 1562 struct btf_node *node; 1563 1564 node = rb_entry(next, struct btf_node, rb_node); 1565 next = rb_next(&node->rb_node); 1566 fprintf(fp, "# btf info of id %u\n", node->id); 1567 } 1568 1569 up_read(&env->bpf_progs.lock); 1570 } 1571 1572 static void free_event_desc(struct evsel *events) 1573 { 1574 struct evsel *evsel; 1575 1576 if (!events) 1577 return; 1578 1579 for (evsel = events; evsel->core.attr.size; evsel++) { 1580 zfree(&evsel->name); 1581 zfree(&evsel->id); 1582 } 1583 1584 free(events); 1585 } 1586 1587 static struct evsel *read_event_desc(struct feat_fd *ff) 1588 { 1589 struct evsel *evsel, *events = NULL; 1590 u64 *id; 1591 void *buf = NULL; 1592 u32 nre, sz, nr, i, j; 1593 size_t msz; 1594 1595 /* number of events */ 1596 if (do_read_u32(ff, &nre)) 1597 goto error; 1598 1599 if (do_read_u32(ff, &sz)) 1600 goto error; 1601 1602 /* buffer to hold on file attr struct */ 1603 buf = malloc(sz); 1604 if (!buf) 1605 goto error; 1606 1607 /* the last event terminates with evsel->core.attr.size == 0: */ 1608 events = calloc(nre + 1, sizeof(*events)); 1609 if (!events) 1610 goto error; 1611 1612 msz = sizeof(evsel->core.attr); 1613 if (sz < msz) 1614 msz = sz; 1615 1616 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1617 evsel->idx = i; 1618 1619 /* 1620 * must read entire on-file attr struct to 1621 * sync up with layout. 1622 */ 1623 if (__do_read(ff, buf, sz)) 1624 goto error; 1625 1626 if (ff->ph->needs_swap) 1627 perf_event__attr_swap(buf); 1628 1629 memcpy(&evsel->core.attr, buf, msz); 1630 1631 if (do_read_u32(ff, &nr)) 1632 goto error; 1633 1634 if (ff->ph->needs_swap) 1635 evsel->needs_swap = true; 1636 1637 evsel->name = do_read_string(ff); 1638 if (!evsel->name) 1639 goto error; 1640 1641 if (!nr) 1642 continue; 1643 1644 id = calloc(nr, sizeof(*id)); 1645 if (!id) 1646 goto error; 1647 evsel->ids = nr; 1648 evsel->id = id; 1649 1650 for (j = 0 ; j < nr; j++) { 1651 if (do_read_u64(ff, id)) 1652 goto error; 1653 id++; 1654 } 1655 } 1656 out: 1657 free(buf); 1658 return events; 1659 error: 1660 free_event_desc(events); 1661 events = NULL; 1662 goto out; 1663 } 1664 1665 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1666 void *priv __maybe_unused) 1667 { 1668 return fprintf(fp, ", %s = %s", name, val); 1669 } 1670 1671 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1672 { 1673 struct evsel *evsel, *events; 1674 u32 j; 1675 u64 *id; 1676 1677 if (ff->events) 1678 events = ff->events; 1679 else 1680 events = read_event_desc(ff); 1681 1682 if (!events) { 1683 fprintf(fp, "# event desc: not available or unable to read\n"); 1684 return; 1685 } 1686 1687 for (evsel = events; evsel->core.attr.size; evsel++) { 1688 fprintf(fp, "# event : name = %s, ", evsel->name); 1689 1690 if (evsel->ids) { 1691 fprintf(fp, ", id = {"); 1692 for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) { 1693 if (j) 1694 fputc(',', fp); 1695 fprintf(fp, " %"PRIu64, *id); 1696 } 1697 fprintf(fp, " }"); 1698 } 1699 1700 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 1701 1702 fputc('\n', fp); 1703 } 1704 1705 free_event_desc(events); 1706 ff->events = NULL; 1707 } 1708 1709 static void print_total_mem(struct feat_fd *ff, FILE *fp) 1710 { 1711 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 1712 } 1713 1714 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 1715 { 1716 int i; 1717 struct numa_node *n; 1718 1719 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 1720 n = &ff->ph->env.numa_nodes[i]; 1721 1722 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 1723 " free = %"PRIu64" kB\n", 1724 n->node, n->mem_total, n->mem_free); 1725 1726 fprintf(fp, "# node%u cpu list : ", n->node); 1727 cpu_map__fprintf(n->map, fp); 1728 } 1729 } 1730 1731 static void print_cpuid(struct feat_fd *ff, FILE *fp) 1732 { 1733 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 1734 } 1735 1736 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 1737 { 1738 fprintf(fp, "# contains samples with branch stack\n"); 1739 } 1740 1741 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 1742 { 1743 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 1744 } 1745 1746 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 1747 { 1748 fprintf(fp, "# contains stat data\n"); 1749 } 1750 1751 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 1752 { 1753 int i; 1754 1755 fprintf(fp, "# CPU cache info:\n"); 1756 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 1757 fprintf(fp, "# "); 1758 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 1759 } 1760 } 1761 1762 static void print_compressed(struct feat_fd *ff, FILE *fp) 1763 { 1764 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 1765 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 1766 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 1767 } 1768 1769 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 1770 { 1771 const char *delimiter = "# pmu mappings: "; 1772 char *str, *tmp; 1773 u32 pmu_num; 1774 u32 type; 1775 1776 pmu_num = ff->ph->env.nr_pmu_mappings; 1777 if (!pmu_num) { 1778 fprintf(fp, "# pmu mappings: not available\n"); 1779 return; 1780 } 1781 1782 str = ff->ph->env.pmu_mappings; 1783 1784 while (pmu_num) { 1785 type = strtoul(str, &tmp, 0); 1786 if (*tmp != ':') 1787 goto error; 1788 1789 str = tmp + 1; 1790 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 1791 1792 delimiter = ", "; 1793 str += strlen(str) + 1; 1794 pmu_num--; 1795 } 1796 1797 fprintf(fp, "\n"); 1798 1799 if (!pmu_num) 1800 return; 1801 error: 1802 fprintf(fp, "# pmu mappings: unable to read\n"); 1803 } 1804 1805 static void print_group_desc(struct feat_fd *ff, FILE *fp) 1806 { 1807 struct perf_session *session; 1808 struct evsel *evsel; 1809 u32 nr = 0; 1810 1811 session = container_of(ff->ph, struct perf_session, header); 1812 1813 evlist__for_each_entry(session->evlist, evsel) { 1814 if (perf_evsel__is_group_leader(evsel) && 1815 evsel->core.nr_members > 1) { 1816 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", 1817 perf_evsel__name(evsel)); 1818 1819 nr = evsel->core.nr_members - 1; 1820 } else if (nr) { 1821 fprintf(fp, ",%s", perf_evsel__name(evsel)); 1822 1823 if (--nr == 0) 1824 fprintf(fp, "}\n"); 1825 } 1826 } 1827 } 1828 1829 static void print_sample_time(struct feat_fd *ff, FILE *fp) 1830 { 1831 struct perf_session *session; 1832 char time_buf[32]; 1833 double d; 1834 1835 session = container_of(ff->ph, struct perf_session, header); 1836 1837 timestamp__scnprintf_usec(session->evlist->first_sample_time, 1838 time_buf, sizeof(time_buf)); 1839 fprintf(fp, "# time of first sample : %s\n", time_buf); 1840 1841 timestamp__scnprintf_usec(session->evlist->last_sample_time, 1842 time_buf, sizeof(time_buf)); 1843 fprintf(fp, "# time of last sample : %s\n", time_buf); 1844 1845 d = (double)(session->evlist->last_sample_time - 1846 session->evlist->first_sample_time) / NSEC_PER_MSEC; 1847 1848 fprintf(fp, "# sample duration : %10.3f ms\n", d); 1849 } 1850 1851 static void memory_node__fprintf(struct memory_node *n, 1852 unsigned long long bsize, FILE *fp) 1853 { 1854 char buf_map[100], buf_size[50]; 1855 unsigned long long size; 1856 1857 size = bsize * bitmap_weight(n->set, n->size); 1858 unit_number__scnprintf(buf_size, 50, size); 1859 1860 bitmap_scnprintf(n->set, n->size, buf_map, 100); 1861 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 1862 } 1863 1864 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 1865 { 1866 struct memory_node *nodes; 1867 int i, nr; 1868 1869 nodes = ff->ph->env.memory_nodes; 1870 nr = ff->ph->env.nr_memory_nodes; 1871 1872 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 1873 nr, ff->ph->env.memory_bsize); 1874 1875 for (i = 0; i < nr; i++) { 1876 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 1877 } 1878 } 1879 1880 static int __event_process_build_id(struct build_id_event *bev, 1881 char *filename, 1882 struct perf_session *session) 1883 { 1884 int err = -1; 1885 struct machine *machine; 1886 u16 cpumode; 1887 struct dso *dso; 1888 enum dso_kernel_type dso_type; 1889 1890 machine = perf_session__findnew_machine(session, bev->pid); 1891 if (!machine) 1892 goto out; 1893 1894 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1895 1896 switch (cpumode) { 1897 case PERF_RECORD_MISC_KERNEL: 1898 dso_type = DSO_TYPE_KERNEL; 1899 break; 1900 case PERF_RECORD_MISC_GUEST_KERNEL: 1901 dso_type = DSO_TYPE_GUEST_KERNEL; 1902 break; 1903 case PERF_RECORD_MISC_USER: 1904 case PERF_RECORD_MISC_GUEST_USER: 1905 dso_type = DSO_TYPE_USER; 1906 break; 1907 default: 1908 goto out; 1909 } 1910 1911 dso = machine__findnew_dso(machine, filename); 1912 if (dso != NULL) { 1913 char sbuild_id[SBUILD_ID_SIZE]; 1914 1915 dso__set_build_id(dso, &bev->build_id); 1916 1917 if (dso_type != DSO_TYPE_USER) { 1918 struct kmod_path m = { .name = NULL, }; 1919 1920 if (!kmod_path__parse_name(&m, filename) && m.kmod) 1921 dso__set_module_info(dso, &m, machine); 1922 else 1923 dso->kernel = dso_type; 1924 1925 free(m.name); 1926 } 1927 1928 build_id__sprintf(dso->build_id, sizeof(dso->build_id), 1929 sbuild_id); 1930 pr_debug("build id event received for %s: %s\n", 1931 dso->long_name, sbuild_id); 1932 dso__put(dso); 1933 } 1934 1935 err = 0; 1936 out: 1937 return err; 1938 } 1939 1940 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 1941 int input, u64 offset, u64 size) 1942 { 1943 struct perf_session *session = container_of(header, struct perf_session, header); 1944 struct { 1945 struct perf_event_header header; 1946 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 1947 char filename[0]; 1948 } old_bev; 1949 struct build_id_event bev; 1950 char filename[PATH_MAX]; 1951 u64 limit = offset + size; 1952 1953 while (offset < limit) { 1954 ssize_t len; 1955 1956 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 1957 return -1; 1958 1959 if (header->needs_swap) 1960 perf_event_header__bswap(&old_bev.header); 1961 1962 len = old_bev.header.size - sizeof(old_bev); 1963 if (readn(input, filename, len) != len) 1964 return -1; 1965 1966 bev.header = old_bev.header; 1967 1968 /* 1969 * As the pid is the missing value, we need to fill 1970 * it properly. The header.misc value give us nice hint. 1971 */ 1972 bev.pid = HOST_KERNEL_ID; 1973 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 1974 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 1975 bev.pid = DEFAULT_GUEST_KERNEL_ID; 1976 1977 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 1978 __event_process_build_id(&bev, filename, session); 1979 1980 offset += bev.header.size; 1981 } 1982 1983 return 0; 1984 } 1985 1986 static int perf_header__read_build_ids(struct perf_header *header, 1987 int input, u64 offset, u64 size) 1988 { 1989 struct perf_session *session = container_of(header, struct perf_session, header); 1990 struct build_id_event bev; 1991 char filename[PATH_MAX]; 1992 u64 limit = offset + size, orig_offset = offset; 1993 int err = -1; 1994 1995 while (offset < limit) { 1996 ssize_t len; 1997 1998 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 1999 goto out; 2000 2001 if (header->needs_swap) 2002 perf_event_header__bswap(&bev.header); 2003 2004 len = bev.header.size - sizeof(bev); 2005 if (readn(input, filename, len) != len) 2006 goto out; 2007 /* 2008 * The a1645ce1 changeset: 2009 * 2010 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2011 * 2012 * Added a field to struct build_id_event that broke the file 2013 * format. 2014 * 2015 * Since the kernel build-id is the first entry, process the 2016 * table using the old format if the well known 2017 * '[kernel.kallsyms]' string for the kernel build-id has the 2018 * first 4 characters chopped off (where the pid_t sits). 2019 */ 2020 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2021 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2022 return -1; 2023 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2024 } 2025 2026 __event_process_build_id(&bev, filename, session); 2027 2028 offset += bev.header.size; 2029 } 2030 err = 0; 2031 out: 2032 return err; 2033 } 2034 2035 /* Macro for features that simply need to read and store a string. */ 2036 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2037 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2038 {\ 2039 ff->ph->env.__feat_env = do_read_string(ff); \ 2040 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2041 } 2042 2043 FEAT_PROCESS_STR_FUN(hostname, hostname); 2044 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2045 FEAT_PROCESS_STR_FUN(version, version); 2046 FEAT_PROCESS_STR_FUN(arch, arch); 2047 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2048 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2049 2050 static int process_tracing_data(struct feat_fd *ff, void *data) 2051 { 2052 ssize_t ret = trace_report(ff->fd, data, false); 2053 2054 return ret < 0 ? -1 : 0; 2055 } 2056 2057 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2058 { 2059 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2060 pr_debug("Failed to read buildids, continuing...\n"); 2061 return 0; 2062 } 2063 2064 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2065 { 2066 int ret; 2067 u32 nr_cpus_avail, nr_cpus_online; 2068 2069 ret = do_read_u32(ff, &nr_cpus_avail); 2070 if (ret) 2071 return ret; 2072 2073 ret = do_read_u32(ff, &nr_cpus_online); 2074 if (ret) 2075 return ret; 2076 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2077 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2078 return 0; 2079 } 2080 2081 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2082 { 2083 u64 total_mem; 2084 int ret; 2085 2086 ret = do_read_u64(ff, &total_mem); 2087 if (ret) 2088 return -1; 2089 ff->ph->env.total_mem = (unsigned long long)total_mem; 2090 return 0; 2091 } 2092 2093 static struct evsel * 2094 perf_evlist__find_by_index(struct evlist *evlist, int idx) 2095 { 2096 struct evsel *evsel; 2097 2098 evlist__for_each_entry(evlist, evsel) { 2099 if (evsel->idx == idx) 2100 return evsel; 2101 } 2102 2103 return NULL; 2104 } 2105 2106 static void 2107 perf_evlist__set_event_name(struct evlist *evlist, 2108 struct evsel *event) 2109 { 2110 struct evsel *evsel; 2111 2112 if (!event->name) 2113 return; 2114 2115 evsel = perf_evlist__find_by_index(evlist, event->idx); 2116 if (!evsel) 2117 return; 2118 2119 if (evsel->name) 2120 return; 2121 2122 evsel->name = strdup(event->name); 2123 } 2124 2125 static int 2126 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2127 { 2128 struct perf_session *session; 2129 struct evsel *evsel, *events = read_event_desc(ff); 2130 2131 if (!events) 2132 return 0; 2133 2134 session = container_of(ff->ph, struct perf_session, header); 2135 2136 if (session->data->is_pipe) { 2137 /* Save events for reading later by print_event_desc, 2138 * since they can't be read again in pipe mode. */ 2139 ff->events = events; 2140 } 2141 2142 for (evsel = events; evsel->core.attr.size; evsel++) 2143 perf_evlist__set_event_name(session->evlist, evsel); 2144 2145 if (!session->data->is_pipe) 2146 free_event_desc(events); 2147 2148 return 0; 2149 } 2150 2151 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2152 { 2153 char *str, *cmdline = NULL, **argv = NULL; 2154 u32 nr, i, len = 0; 2155 2156 if (do_read_u32(ff, &nr)) 2157 return -1; 2158 2159 ff->ph->env.nr_cmdline = nr; 2160 2161 cmdline = zalloc(ff->size + nr + 1); 2162 if (!cmdline) 2163 return -1; 2164 2165 argv = zalloc(sizeof(char *) * (nr + 1)); 2166 if (!argv) 2167 goto error; 2168 2169 for (i = 0; i < nr; i++) { 2170 str = do_read_string(ff); 2171 if (!str) 2172 goto error; 2173 2174 argv[i] = cmdline + len; 2175 memcpy(argv[i], str, strlen(str) + 1); 2176 len += strlen(str) + 1; 2177 free(str); 2178 } 2179 ff->ph->env.cmdline = cmdline; 2180 ff->ph->env.cmdline_argv = (const char **) argv; 2181 return 0; 2182 2183 error: 2184 free(argv); 2185 free(cmdline); 2186 return -1; 2187 } 2188 2189 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2190 { 2191 u32 nr, i; 2192 char *str; 2193 struct strbuf sb; 2194 int cpu_nr = ff->ph->env.nr_cpus_avail; 2195 u64 size = 0; 2196 struct perf_header *ph = ff->ph; 2197 bool do_core_id_test = true; 2198 2199 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2200 if (!ph->env.cpu) 2201 return -1; 2202 2203 if (do_read_u32(ff, &nr)) 2204 goto free_cpu; 2205 2206 ph->env.nr_sibling_cores = nr; 2207 size += sizeof(u32); 2208 if (strbuf_init(&sb, 128) < 0) 2209 goto free_cpu; 2210 2211 for (i = 0; i < nr; i++) { 2212 str = do_read_string(ff); 2213 if (!str) 2214 goto error; 2215 2216 /* include a NULL character at the end */ 2217 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2218 goto error; 2219 size += string_size(str); 2220 free(str); 2221 } 2222 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2223 2224 if (do_read_u32(ff, &nr)) 2225 return -1; 2226 2227 ph->env.nr_sibling_threads = nr; 2228 size += sizeof(u32); 2229 2230 for (i = 0; i < nr; i++) { 2231 str = do_read_string(ff); 2232 if (!str) 2233 goto error; 2234 2235 /* include a NULL character at the end */ 2236 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2237 goto error; 2238 size += string_size(str); 2239 free(str); 2240 } 2241 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2242 2243 /* 2244 * The header may be from old perf, 2245 * which doesn't include core id and socket id information. 2246 */ 2247 if (ff->size <= size) { 2248 zfree(&ph->env.cpu); 2249 return 0; 2250 } 2251 2252 /* On s390 the socket_id number is not related to the numbers of cpus. 2253 * The socket_id number might be higher than the numbers of cpus. 2254 * This depends on the configuration. 2255 */ 2256 if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4)) 2257 do_core_id_test = false; 2258 2259 for (i = 0; i < (u32)cpu_nr; i++) { 2260 if (do_read_u32(ff, &nr)) 2261 goto free_cpu; 2262 2263 ph->env.cpu[i].core_id = nr; 2264 size += sizeof(u32); 2265 2266 if (do_read_u32(ff, &nr)) 2267 goto free_cpu; 2268 2269 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2270 pr_debug("socket_id number is too big." 2271 "You may need to upgrade the perf tool.\n"); 2272 goto free_cpu; 2273 } 2274 2275 ph->env.cpu[i].socket_id = nr; 2276 size += sizeof(u32); 2277 } 2278 2279 /* 2280 * The header may be from old perf, 2281 * which doesn't include die information. 2282 */ 2283 if (ff->size <= size) 2284 return 0; 2285 2286 if (do_read_u32(ff, &nr)) 2287 return -1; 2288 2289 ph->env.nr_sibling_dies = nr; 2290 size += sizeof(u32); 2291 2292 for (i = 0; i < nr; i++) { 2293 str = do_read_string(ff); 2294 if (!str) 2295 goto error; 2296 2297 /* include a NULL character at the end */ 2298 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2299 goto error; 2300 size += string_size(str); 2301 free(str); 2302 } 2303 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2304 2305 for (i = 0; i < (u32)cpu_nr; i++) { 2306 if (do_read_u32(ff, &nr)) 2307 goto free_cpu; 2308 2309 ph->env.cpu[i].die_id = nr; 2310 } 2311 2312 return 0; 2313 2314 error: 2315 strbuf_release(&sb); 2316 free_cpu: 2317 zfree(&ph->env.cpu); 2318 return -1; 2319 } 2320 2321 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2322 { 2323 struct numa_node *nodes, *n; 2324 u32 nr, i; 2325 char *str; 2326 2327 /* nr nodes */ 2328 if (do_read_u32(ff, &nr)) 2329 return -1; 2330 2331 nodes = zalloc(sizeof(*nodes) * nr); 2332 if (!nodes) 2333 return -ENOMEM; 2334 2335 for (i = 0; i < nr; i++) { 2336 n = &nodes[i]; 2337 2338 /* node number */ 2339 if (do_read_u32(ff, &n->node)) 2340 goto error; 2341 2342 if (do_read_u64(ff, &n->mem_total)) 2343 goto error; 2344 2345 if (do_read_u64(ff, &n->mem_free)) 2346 goto error; 2347 2348 str = do_read_string(ff); 2349 if (!str) 2350 goto error; 2351 2352 n->map = perf_cpu_map__new(str); 2353 if (!n->map) 2354 goto error; 2355 2356 free(str); 2357 } 2358 ff->ph->env.nr_numa_nodes = nr; 2359 ff->ph->env.numa_nodes = nodes; 2360 return 0; 2361 2362 error: 2363 free(nodes); 2364 return -1; 2365 } 2366 2367 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2368 { 2369 char *name; 2370 u32 pmu_num; 2371 u32 type; 2372 struct strbuf sb; 2373 2374 if (do_read_u32(ff, &pmu_num)) 2375 return -1; 2376 2377 if (!pmu_num) { 2378 pr_debug("pmu mappings not available\n"); 2379 return 0; 2380 } 2381 2382 ff->ph->env.nr_pmu_mappings = pmu_num; 2383 if (strbuf_init(&sb, 128) < 0) 2384 return -1; 2385 2386 while (pmu_num) { 2387 if (do_read_u32(ff, &type)) 2388 goto error; 2389 2390 name = do_read_string(ff); 2391 if (!name) 2392 goto error; 2393 2394 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2395 goto error; 2396 /* include a NULL character at the end */ 2397 if (strbuf_add(&sb, "", 1) < 0) 2398 goto error; 2399 2400 if (!strcmp(name, "msr")) 2401 ff->ph->env.msr_pmu_type = type; 2402 2403 free(name); 2404 pmu_num--; 2405 } 2406 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2407 return 0; 2408 2409 error: 2410 strbuf_release(&sb); 2411 return -1; 2412 } 2413 2414 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2415 { 2416 size_t ret = -1; 2417 u32 i, nr, nr_groups; 2418 struct perf_session *session; 2419 struct evsel *evsel, *leader = NULL; 2420 struct group_desc { 2421 char *name; 2422 u32 leader_idx; 2423 u32 nr_members; 2424 } *desc; 2425 2426 if (do_read_u32(ff, &nr_groups)) 2427 return -1; 2428 2429 ff->ph->env.nr_groups = nr_groups; 2430 if (!nr_groups) { 2431 pr_debug("group desc not available\n"); 2432 return 0; 2433 } 2434 2435 desc = calloc(nr_groups, sizeof(*desc)); 2436 if (!desc) 2437 return -1; 2438 2439 for (i = 0; i < nr_groups; i++) { 2440 desc[i].name = do_read_string(ff); 2441 if (!desc[i].name) 2442 goto out_free; 2443 2444 if (do_read_u32(ff, &desc[i].leader_idx)) 2445 goto out_free; 2446 2447 if (do_read_u32(ff, &desc[i].nr_members)) 2448 goto out_free; 2449 } 2450 2451 /* 2452 * Rebuild group relationship based on the group_desc 2453 */ 2454 session = container_of(ff->ph, struct perf_session, header); 2455 session->evlist->nr_groups = nr_groups; 2456 2457 i = nr = 0; 2458 evlist__for_each_entry(session->evlist, evsel) { 2459 if (evsel->idx == (int) desc[i].leader_idx) { 2460 evsel->leader = evsel; 2461 /* {anon_group} is a dummy name */ 2462 if (strcmp(desc[i].name, "{anon_group}")) { 2463 evsel->group_name = desc[i].name; 2464 desc[i].name = NULL; 2465 } 2466 evsel->core.nr_members = desc[i].nr_members; 2467 2468 if (i >= nr_groups || nr > 0) { 2469 pr_debug("invalid group desc\n"); 2470 goto out_free; 2471 } 2472 2473 leader = evsel; 2474 nr = evsel->core.nr_members - 1; 2475 i++; 2476 } else if (nr) { 2477 /* This is a group member */ 2478 evsel->leader = leader; 2479 2480 nr--; 2481 } 2482 } 2483 2484 if (i != nr_groups || nr != 0) { 2485 pr_debug("invalid group desc\n"); 2486 goto out_free; 2487 } 2488 2489 ret = 0; 2490 out_free: 2491 for (i = 0; i < nr_groups; i++) 2492 zfree(&desc[i].name); 2493 free(desc); 2494 2495 return ret; 2496 } 2497 2498 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2499 { 2500 struct perf_session *session; 2501 int err; 2502 2503 session = container_of(ff->ph, struct perf_session, header); 2504 2505 err = auxtrace_index__process(ff->fd, ff->size, session, 2506 ff->ph->needs_swap); 2507 if (err < 0) 2508 pr_err("Failed to process auxtrace index\n"); 2509 return err; 2510 } 2511 2512 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2513 { 2514 struct cpu_cache_level *caches; 2515 u32 cnt, i, version; 2516 2517 if (do_read_u32(ff, &version)) 2518 return -1; 2519 2520 if (version != 1) 2521 return -1; 2522 2523 if (do_read_u32(ff, &cnt)) 2524 return -1; 2525 2526 caches = zalloc(sizeof(*caches) * cnt); 2527 if (!caches) 2528 return -1; 2529 2530 for (i = 0; i < cnt; i++) { 2531 struct cpu_cache_level c; 2532 2533 #define _R(v) \ 2534 if (do_read_u32(ff, &c.v))\ 2535 goto out_free_caches; \ 2536 2537 _R(level) 2538 _R(line_size) 2539 _R(sets) 2540 _R(ways) 2541 #undef _R 2542 2543 #define _R(v) \ 2544 c.v = do_read_string(ff); \ 2545 if (!c.v) \ 2546 goto out_free_caches; 2547 2548 _R(type) 2549 _R(size) 2550 _R(map) 2551 #undef _R 2552 2553 caches[i] = c; 2554 } 2555 2556 ff->ph->env.caches = caches; 2557 ff->ph->env.caches_cnt = cnt; 2558 return 0; 2559 out_free_caches: 2560 free(caches); 2561 return -1; 2562 } 2563 2564 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2565 { 2566 struct perf_session *session; 2567 u64 first_sample_time, last_sample_time; 2568 int ret; 2569 2570 session = container_of(ff->ph, struct perf_session, header); 2571 2572 ret = do_read_u64(ff, &first_sample_time); 2573 if (ret) 2574 return -1; 2575 2576 ret = do_read_u64(ff, &last_sample_time); 2577 if (ret) 2578 return -1; 2579 2580 session->evlist->first_sample_time = first_sample_time; 2581 session->evlist->last_sample_time = last_sample_time; 2582 return 0; 2583 } 2584 2585 static int process_mem_topology(struct feat_fd *ff, 2586 void *data __maybe_unused) 2587 { 2588 struct memory_node *nodes; 2589 u64 version, i, nr, bsize; 2590 int ret = -1; 2591 2592 if (do_read_u64(ff, &version)) 2593 return -1; 2594 2595 if (version != 1) 2596 return -1; 2597 2598 if (do_read_u64(ff, &bsize)) 2599 return -1; 2600 2601 if (do_read_u64(ff, &nr)) 2602 return -1; 2603 2604 nodes = zalloc(sizeof(*nodes) * nr); 2605 if (!nodes) 2606 return -1; 2607 2608 for (i = 0; i < nr; i++) { 2609 struct memory_node n; 2610 2611 #define _R(v) \ 2612 if (do_read_u64(ff, &n.v)) \ 2613 goto out; \ 2614 2615 _R(node) 2616 _R(size) 2617 2618 #undef _R 2619 2620 if (do_read_bitmap(ff, &n.set, &n.size)) 2621 goto out; 2622 2623 nodes[i] = n; 2624 } 2625 2626 ff->ph->env.memory_bsize = bsize; 2627 ff->ph->env.memory_nodes = nodes; 2628 ff->ph->env.nr_memory_nodes = nr; 2629 ret = 0; 2630 2631 out: 2632 if (ret) 2633 free(nodes); 2634 return ret; 2635 } 2636 2637 static int process_clockid(struct feat_fd *ff, 2638 void *data __maybe_unused) 2639 { 2640 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns)) 2641 return -1; 2642 2643 return 0; 2644 } 2645 2646 static int process_dir_format(struct feat_fd *ff, 2647 void *_data __maybe_unused) 2648 { 2649 struct perf_session *session; 2650 struct perf_data *data; 2651 2652 session = container_of(ff->ph, struct perf_session, header); 2653 data = session->data; 2654 2655 if (WARN_ON(!perf_data__is_dir(data))) 2656 return -1; 2657 2658 return do_read_u64(ff, &data->dir.version); 2659 } 2660 2661 #ifdef HAVE_LIBBPF_SUPPORT 2662 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 2663 { 2664 struct bpf_prog_info_linear *info_linear; 2665 struct bpf_prog_info_node *info_node; 2666 struct perf_env *env = &ff->ph->env; 2667 u32 count, i; 2668 int err = -1; 2669 2670 if (ff->ph->needs_swap) { 2671 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n"); 2672 return 0; 2673 } 2674 2675 if (do_read_u32(ff, &count)) 2676 return -1; 2677 2678 down_write(&env->bpf_progs.lock); 2679 2680 for (i = 0; i < count; ++i) { 2681 u32 info_len, data_len; 2682 2683 info_linear = NULL; 2684 info_node = NULL; 2685 if (do_read_u32(ff, &info_len)) 2686 goto out; 2687 if (do_read_u32(ff, &data_len)) 2688 goto out; 2689 2690 if (info_len > sizeof(struct bpf_prog_info)) { 2691 pr_warning("detected invalid bpf_prog_info\n"); 2692 goto out; 2693 } 2694 2695 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + 2696 data_len); 2697 if (!info_linear) 2698 goto out; 2699 info_linear->info_len = sizeof(struct bpf_prog_info); 2700 info_linear->data_len = data_len; 2701 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 2702 goto out; 2703 if (__do_read(ff, &info_linear->info, info_len)) 2704 goto out; 2705 if (info_len < sizeof(struct bpf_prog_info)) 2706 memset(((void *)(&info_linear->info)) + info_len, 0, 2707 sizeof(struct bpf_prog_info) - info_len); 2708 2709 if (__do_read(ff, info_linear->data, data_len)) 2710 goto out; 2711 2712 info_node = malloc(sizeof(struct bpf_prog_info_node)); 2713 if (!info_node) 2714 goto out; 2715 2716 /* after reading from file, translate offset to address */ 2717 bpf_program__bpil_offs_to_addr(info_linear); 2718 info_node->info_linear = info_linear; 2719 perf_env__insert_bpf_prog_info(env, info_node); 2720 } 2721 2722 up_write(&env->bpf_progs.lock); 2723 return 0; 2724 out: 2725 free(info_linear); 2726 free(info_node); 2727 up_write(&env->bpf_progs.lock); 2728 return err; 2729 } 2730 #else // HAVE_LIBBPF_SUPPORT 2731 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused) 2732 { 2733 return 0; 2734 } 2735 #endif // HAVE_LIBBPF_SUPPORT 2736 2737 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 2738 { 2739 struct perf_env *env = &ff->ph->env; 2740 struct btf_node *node = NULL; 2741 u32 count, i; 2742 int err = -1; 2743 2744 if (ff->ph->needs_swap) { 2745 pr_warning("interpreting btf from systems with endianity is not yet supported\n"); 2746 return 0; 2747 } 2748 2749 if (do_read_u32(ff, &count)) 2750 return -1; 2751 2752 down_write(&env->bpf_progs.lock); 2753 2754 for (i = 0; i < count; ++i) { 2755 u32 id, data_size; 2756 2757 if (do_read_u32(ff, &id)) 2758 goto out; 2759 if (do_read_u32(ff, &data_size)) 2760 goto out; 2761 2762 node = malloc(sizeof(struct btf_node) + data_size); 2763 if (!node) 2764 goto out; 2765 2766 node->id = id; 2767 node->data_size = data_size; 2768 2769 if (__do_read(ff, node->data, data_size)) 2770 goto out; 2771 2772 perf_env__insert_btf(env, node); 2773 node = NULL; 2774 } 2775 2776 err = 0; 2777 out: 2778 up_write(&env->bpf_progs.lock); 2779 free(node); 2780 return err; 2781 } 2782 2783 static int process_compressed(struct feat_fd *ff, 2784 void *data __maybe_unused) 2785 { 2786 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 2787 return -1; 2788 2789 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 2790 return -1; 2791 2792 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 2793 return -1; 2794 2795 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 2796 return -1; 2797 2798 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 2799 return -1; 2800 2801 return 0; 2802 } 2803 2804 struct feature_ops { 2805 int (*write)(struct feat_fd *ff, struct evlist *evlist); 2806 void (*print)(struct feat_fd *ff, FILE *fp); 2807 int (*process)(struct feat_fd *ff, void *data); 2808 const char *name; 2809 bool full_only; 2810 bool synthesize; 2811 }; 2812 2813 #define FEAT_OPR(n, func, __full_only) \ 2814 [HEADER_##n] = { \ 2815 .name = __stringify(n), \ 2816 .write = write_##func, \ 2817 .print = print_##func, \ 2818 .full_only = __full_only, \ 2819 .process = process_##func, \ 2820 .synthesize = true \ 2821 } 2822 2823 #define FEAT_OPN(n, func, __full_only) \ 2824 [HEADER_##n] = { \ 2825 .name = __stringify(n), \ 2826 .write = write_##func, \ 2827 .print = print_##func, \ 2828 .full_only = __full_only, \ 2829 .process = process_##func \ 2830 } 2831 2832 /* feature_ops not implemented: */ 2833 #define print_tracing_data NULL 2834 #define print_build_id NULL 2835 2836 #define process_branch_stack NULL 2837 #define process_stat NULL 2838 2839 2840 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = { 2841 FEAT_OPN(TRACING_DATA, tracing_data, false), 2842 FEAT_OPN(BUILD_ID, build_id, false), 2843 FEAT_OPR(HOSTNAME, hostname, false), 2844 FEAT_OPR(OSRELEASE, osrelease, false), 2845 FEAT_OPR(VERSION, version, false), 2846 FEAT_OPR(ARCH, arch, false), 2847 FEAT_OPR(NRCPUS, nrcpus, false), 2848 FEAT_OPR(CPUDESC, cpudesc, false), 2849 FEAT_OPR(CPUID, cpuid, false), 2850 FEAT_OPR(TOTAL_MEM, total_mem, false), 2851 FEAT_OPR(EVENT_DESC, event_desc, false), 2852 FEAT_OPR(CMDLINE, cmdline, false), 2853 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 2854 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 2855 FEAT_OPN(BRANCH_STACK, branch_stack, false), 2856 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 2857 FEAT_OPR(GROUP_DESC, group_desc, false), 2858 FEAT_OPN(AUXTRACE, auxtrace, false), 2859 FEAT_OPN(STAT, stat, false), 2860 FEAT_OPN(CACHE, cache, true), 2861 FEAT_OPR(SAMPLE_TIME, sample_time, false), 2862 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 2863 FEAT_OPR(CLOCKID, clockid, false), 2864 FEAT_OPN(DIR_FORMAT, dir_format, false), 2865 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 2866 FEAT_OPR(BPF_BTF, bpf_btf, false), 2867 FEAT_OPR(COMPRESSED, compressed, false), 2868 }; 2869 2870 struct header_print_data { 2871 FILE *fp; 2872 bool full; /* extended list of headers */ 2873 }; 2874 2875 static int perf_file_section__fprintf_info(struct perf_file_section *section, 2876 struct perf_header *ph, 2877 int feat, int fd, void *data) 2878 { 2879 struct header_print_data *hd = data; 2880 struct feat_fd ff; 2881 2882 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 2883 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 2884 "%d, continuing...\n", section->offset, feat); 2885 return 0; 2886 } 2887 if (feat >= HEADER_LAST_FEATURE) { 2888 pr_warning("unknown feature %d\n", feat); 2889 return 0; 2890 } 2891 if (!feat_ops[feat].print) 2892 return 0; 2893 2894 ff = (struct feat_fd) { 2895 .fd = fd, 2896 .ph = ph, 2897 }; 2898 2899 if (!feat_ops[feat].full_only || hd->full) 2900 feat_ops[feat].print(&ff, hd->fp); 2901 else 2902 fprintf(hd->fp, "# %s info available, use -I to display\n", 2903 feat_ops[feat].name); 2904 2905 return 0; 2906 } 2907 2908 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 2909 { 2910 struct header_print_data hd; 2911 struct perf_header *header = &session->header; 2912 int fd = perf_data__fd(session->data); 2913 struct stat st; 2914 time_t stctime; 2915 int ret, bit; 2916 2917 hd.fp = fp; 2918 hd.full = full; 2919 2920 ret = fstat(fd, &st); 2921 if (ret == -1) 2922 return -1; 2923 2924 stctime = st.st_ctime; 2925 fprintf(fp, "# captured on : %s", ctime(&stctime)); 2926 2927 fprintf(fp, "# header version : %u\n", header->version); 2928 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 2929 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 2930 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 2931 2932 perf_header__process_sections(header, fd, &hd, 2933 perf_file_section__fprintf_info); 2934 2935 if (session->data->is_pipe) 2936 return 0; 2937 2938 fprintf(fp, "# missing features: "); 2939 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 2940 if (bit) 2941 fprintf(fp, "%s ", feat_ops[bit].name); 2942 } 2943 2944 fprintf(fp, "\n"); 2945 return 0; 2946 } 2947 2948 static int do_write_feat(struct feat_fd *ff, int type, 2949 struct perf_file_section **p, 2950 struct evlist *evlist) 2951 { 2952 int err; 2953 int ret = 0; 2954 2955 if (perf_header__has_feat(ff->ph, type)) { 2956 if (!feat_ops[type].write) 2957 return -1; 2958 2959 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 2960 return -1; 2961 2962 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 2963 2964 err = feat_ops[type].write(ff, evlist); 2965 if (err < 0) { 2966 pr_debug("failed to write feature %s\n", feat_ops[type].name); 2967 2968 /* undo anything written */ 2969 lseek(ff->fd, (*p)->offset, SEEK_SET); 2970 2971 return -1; 2972 } 2973 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 2974 (*p)++; 2975 } 2976 return ret; 2977 } 2978 2979 static int perf_header__adds_write(struct perf_header *header, 2980 struct evlist *evlist, int fd) 2981 { 2982 int nr_sections; 2983 struct feat_fd ff; 2984 struct perf_file_section *feat_sec, *p; 2985 int sec_size; 2986 u64 sec_start; 2987 int feat; 2988 int err; 2989 2990 ff = (struct feat_fd){ 2991 .fd = fd, 2992 .ph = header, 2993 }; 2994 2995 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 2996 if (!nr_sections) 2997 return 0; 2998 2999 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3000 if (feat_sec == NULL) 3001 return -ENOMEM; 3002 3003 sec_size = sizeof(*feat_sec) * nr_sections; 3004 3005 sec_start = header->feat_offset; 3006 lseek(fd, sec_start + sec_size, SEEK_SET); 3007 3008 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3009 if (do_write_feat(&ff, feat, &p, evlist)) 3010 perf_header__clear_feat(header, feat); 3011 } 3012 3013 lseek(fd, sec_start, SEEK_SET); 3014 /* 3015 * may write more than needed due to dropped feature, but 3016 * this is okay, reader will skip the missing entries 3017 */ 3018 err = do_write(&ff, feat_sec, sec_size); 3019 if (err < 0) 3020 pr_debug("failed to write feature section\n"); 3021 free(feat_sec); 3022 return err; 3023 } 3024 3025 int perf_header__write_pipe(int fd) 3026 { 3027 struct perf_pipe_file_header f_header; 3028 struct feat_fd ff; 3029 int err; 3030 3031 ff = (struct feat_fd){ .fd = fd }; 3032 3033 f_header = (struct perf_pipe_file_header){ 3034 .magic = PERF_MAGIC, 3035 .size = sizeof(f_header), 3036 }; 3037 3038 err = do_write(&ff, &f_header, sizeof(f_header)); 3039 if (err < 0) { 3040 pr_debug("failed to write perf pipe header\n"); 3041 return err; 3042 } 3043 3044 return 0; 3045 } 3046 3047 int perf_session__write_header(struct perf_session *session, 3048 struct evlist *evlist, 3049 int fd, bool at_exit) 3050 { 3051 struct perf_file_header f_header; 3052 struct perf_file_attr f_attr; 3053 struct perf_header *header = &session->header; 3054 struct evsel *evsel; 3055 struct feat_fd ff; 3056 u64 attr_offset; 3057 int err; 3058 3059 ff = (struct feat_fd){ .fd = fd}; 3060 lseek(fd, sizeof(f_header), SEEK_SET); 3061 3062 evlist__for_each_entry(session->evlist, evsel) { 3063 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3064 err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64)); 3065 if (err < 0) { 3066 pr_debug("failed to write perf header\n"); 3067 return err; 3068 } 3069 } 3070 3071 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3072 3073 evlist__for_each_entry(evlist, evsel) { 3074 f_attr = (struct perf_file_attr){ 3075 .attr = evsel->core.attr, 3076 .ids = { 3077 .offset = evsel->id_offset, 3078 .size = evsel->ids * sizeof(u64), 3079 } 3080 }; 3081 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3082 if (err < 0) { 3083 pr_debug("failed to write perf header attribute\n"); 3084 return err; 3085 } 3086 } 3087 3088 if (!header->data_offset) 3089 header->data_offset = lseek(fd, 0, SEEK_CUR); 3090 header->feat_offset = header->data_offset + header->data_size; 3091 3092 if (at_exit) { 3093 err = perf_header__adds_write(header, evlist, fd); 3094 if (err < 0) 3095 return err; 3096 } 3097 3098 f_header = (struct perf_file_header){ 3099 .magic = PERF_MAGIC, 3100 .size = sizeof(f_header), 3101 .attr_size = sizeof(f_attr), 3102 .attrs = { 3103 .offset = attr_offset, 3104 .size = evlist->core.nr_entries * sizeof(f_attr), 3105 }, 3106 .data = { 3107 .offset = header->data_offset, 3108 .size = header->data_size, 3109 }, 3110 /* event_types is ignored, store zeros */ 3111 }; 3112 3113 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3114 3115 lseek(fd, 0, SEEK_SET); 3116 err = do_write(&ff, &f_header, sizeof(f_header)); 3117 if (err < 0) { 3118 pr_debug("failed to write perf header\n"); 3119 return err; 3120 } 3121 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3122 3123 return 0; 3124 } 3125 3126 static int perf_header__getbuffer64(struct perf_header *header, 3127 int fd, void *buf, size_t size) 3128 { 3129 if (readn(fd, buf, size) <= 0) 3130 return -1; 3131 3132 if (header->needs_swap) 3133 mem_bswap_64(buf, size); 3134 3135 return 0; 3136 } 3137 3138 int perf_header__process_sections(struct perf_header *header, int fd, 3139 void *data, 3140 int (*process)(struct perf_file_section *section, 3141 struct perf_header *ph, 3142 int feat, int fd, void *data)) 3143 { 3144 struct perf_file_section *feat_sec, *sec; 3145 int nr_sections; 3146 int sec_size; 3147 int feat; 3148 int err; 3149 3150 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3151 if (!nr_sections) 3152 return 0; 3153 3154 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3155 if (!feat_sec) 3156 return -1; 3157 3158 sec_size = sizeof(*feat_sec) * nr_sections; 3159 3160 lseek(fd, header->feat_offset, SEEK_SET); 3161 3162 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3163 if (err < 0) 3164 goto out_free; 3165 3166 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3167 err = process(sec++, header, feat, fd, data); 3168 if (err < 0) 3169 goto out_free; 3170 } 3171 err = 0; 3172 out_free: 3173 free(feat_sec); 3174 return err; 3175 } 3176 3177 static const int attr_file_abi_sizes[] = { 3178 [0] = PERF_ATTR_SIZE_VER0, 3179 [1] = PERF_ATTR_SIZE_VER1, 3180 [2] = PERF_ATTR_SIZE_VER2, 3181 [3] = PERF_ATTR_SIZE_VER3, 3182 [4] = PERF_ATTR_SIZE_VER4, 3183 0, 3184 }; 3185 3186 /* 3187 * In the legacy file format, the magic number is not used to encode endianness. 3188 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3189 * on ABI revisions, we need to try all combinations for all endianness to 3190 * detect the endianness. 3191 */ 3192 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3193 { 3194 uint64_t ref_size, attr_size; 3195 int i; 3196 3197 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3198 ref_size = attr_file_abi_sizes[i] 3199 + sizeof(struct perf_file_section); 3200 if (hdr_sz != ref_size) { 3201 attr_size = bswap_64(hdr_sz); 3202 if (attr_size != ref_size) 3203 continue; 3204 3205 ph->needs_swap = true; 3206 } 3207 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3208 i, 3209 ph->needs_swap); 3210 return 0; 3211 } 3212 /* could not determine endianness */ 3213 return -1; 3214 } 3215 3216 #define PERF_PIPE_HDR_VER0 16 3217 3218 static const size_t attr_pipe_abi_sizes[] = { 3219 [0] = PERF_PIPE_HDR_VER0, 3220 0, 3221 }; 3222 3223 /* 3224 * In the legacy pipe format, there is an implicit assumption that endiannesss 3225 * between host recording the samples, and host parsing the samples is the 3226 * same. This is not always the case given that the pipe output may always be 3227 * redirected into a file and analyzed on a different machine with possibly a 3228 * different endianness and perf_event ABI revsions in the perf tool itself. 3229 */ 3230 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3231 { 3232 u64 attr_size; 3233 int i; 3234 3235 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3236 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3237 attr_size = bswap_64(hdr_sz); 3238 if (attr_size != hdr_sz) 3239 continue; 3240 3241 ph->needs_swap = true; 3242 } 3243 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3244 return 0; 3245 } 3246 return -1; 3247 } 3248 3249 bool is_perf_magic(u64 magic) 3250 { 3251 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3252 || magic == __perf_magic2 3253 || magic == __perf_magic2_sw) 3254 return true; 3255 3256 return false; 3257 } 3258 3259 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3260 bool is_pipe, struct perf_header *ph) 3261 { 3262 int ret; 3263 3264 /* check for legacy format */ 3265 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3266 if (ret == 0) { 3267 ph->version = PERF_HEADER_VERSION_1; 3268 pr_debug("legacy perf.data format\n"); 3269 if (is_pipe) 3270 return try_all_pipe_abis(hdr_sz, ph); 3271 3272 return try_all_file_abis(hdr_sz, ph); 3273 } 3274 /* 3275 * the new magic number serves two purposes: 3276 * - unique number to identify actual perf.data files 3277 * - encode endianness of file 3278 */ 3279 ph->version = PERF_HEADER_VERSION_2; 3280 3281 /* check magic number with one endianness */ 3282 if (magic == __perf_magic2) 3283 return 0; 3284 3285 /* check magic number with opposite endianness */ 3286 if (magic != __perf_magic2_sw) 3287 return -1; 3288 3289 ph->needs_swap = true; 3290 3291 return 0; 3292 } 3293 3294 int perf_file_header__read(struct perf_file_header *header, 3295 struct perf_header *ph, int fd) 3296 { 3297 ssize_t ret; 3298 3299 lseek(fd, 0, SEEK_SET); 3300 3301 ret = readn(fd, header, sizeof(*header)); 3302 if (ret <= 0) 3303 return -1; 3304 3305 if (check_magic_endian(header->magic, 3306 header->attr_size, false, ph) < 0) { 3307 pr_debug("magic/endian check failed\n"); 3308 return -1; 3309 } 3310 3311 if (ph->needs_swap) { 3312 mem_bswap_64(header, offsetof(struct perf_file_header, 3313 adds_features)); 3314 } 3315 3316 if (header->size != sizeof(*header)) { 3317 /* Support the previous format */ 3318 if (header->size == offsetof(typeof(*header), adds_features)) 3319 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3320 else 3321 return -1; 3322 } else if (ph->needs_swap) { 3323 /* 3324 * feature bitmap is declared as an array of unsigned longs -- 3325 * not good since its size can differ between the host that 3326 * generated the data file and the host analyzing the file. 3327 * 3328 * We need to handle endianness, but we don't know the size of 3329 * the unsigned long where the file was generated. Take a best 3330 * guess at determining it: try 64-bit swap first (ie., file 3331 * created on a 64-bit host), and check if the hostname feature 3332 * bit is set (this feature bit is forced on as of fbe96f2). 3333 * If the bit is not, undo the 64-bit swap and try a 32-bit 3334 * swap. If the hostname bit is still not set (e.g., older data 3335 * file), punt and fallback to the original behavior -- 3336 * clearing all feature bits and setting buildid. 3337 */ 3338 mem_bswap_64(&header->adds_features, 3339 BITS_TO_U64(HEADER_FEAT_BITS)); 3340 3341 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3342 /* unswap as u64 */ 3343 mem_bswap_64(&header->adds_features, 3344 BITS_TO_U64(HEADER_FEAT_BITS)); 3345 3346 /* unswap as u32 */ 3347 mem_bswap_32(&header->adds_features, 3348 BITS_TO_U32(HEADER_FEAT_BITS)); 3349 } 3350 3351 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3352 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3353 set_bit(HEADER_BUILD_ID, header->adds_features); 3354 } 3355 } 3356 3357 memcpy(&ph->adds_features, &header->adds_features, 3358 sizeof(ph->adds_features)); 3359 3360 ph->data_offset = header->data.offset; 3361 ph->data_size = header->data.size; 3362 ph->feat_offset = header->data.offset + header->data.size; 3363 return 0; 3364 } 3365 3366 static int perf_file_section__process(struct perf_file_section *section, 3367 struct perf_header *ph, 3368 int feat, int fd, void *data) 3369 { 3370 struct feat_fd fdd = { 3371 .fd = fd, 3372 .ph = ph, 3373 .size = section->size, 3374 .offset = section->offset, 3375 }; 3376 3377 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3378 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3379 "%d, continuing...\n", section->offset, feat); 3380 return 0; 3381 } 3382 3383 if (feat >= HEADER_LAST_FEATURE) { 3384 pr_debug("unknown feature %d, continuing...\n", feat); 3385 return 0; 3386 } 3387 3388 if (!feat_ops[feat].process) 3389 return 0; 3390 3391 return feat_ops[feat].process(&fdd, data); 3392 } 3393 3394 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 3395 struct perf_header *ph, int fd, 3396 bool repipe) 3397 { 3398 struct feat_fd ff = { 3399 .fd = STDOUT_FILENO, 3400 .ph = ph, 3401 }; 3402 ssize_t ret; 3403 3404 ret = readn(fd, header, sizeof(*header)); 3405 if (ret <= 0) 3406 return -1; 3407 3408 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 3409 pr_debug("endian/magic failed\n"); 3410 return -1; 3411 } 3412 3413 if (ph->needs_swap) 3414 header->size = bswap_64(header->size); 3415 3416 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 3417 return -1; 3418 3419 return 0; 3420 } 3421 3422 static int perf_header__read_pipe(struct perf_session *session) 3423 { 3424 struct perf_header *header = &session->header; 3425 struct perf_pipe_file_header f_header; 3426 3427 if (perf_file_header__read_pipe(&f_header, header, 3428 perf_data__fd(session->data), 3429 session->repipe) < 0) { 3430 pr_debug("incompatible file format\n"); 3431 return -EINVAL; 3432 } 3433 3434 return 0; 3435 } 3436 3437 static int read_attr(int fd, struct perf_header *ph, 3438 struct perf_file_attr *f_attr) 3439 { 3440 struct perf_event_attr *attr = &f_attr->attr; 3441 size_t sz, left; 3442 size_t our_sz = sizeof(f_attr->attr); 3443 ssize_t ret; 3444 3445 memset(f_attr, 0, sizeof(*f_attr)); 3446 3447 /* read minimal guaranteed structure */ 3448 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 3449 if (ret <= 0) { 3450 pr_debug("cannot read %d bytes of header attr\n", 3451 PERF_ATTR_SIZE_VER0); 3452 return -1; 3453 } 3454 3455 /* on file perf_event_attr size */ 3456 sz = attr->size; 3457 3458 if (ph->needs_swap) 3459 sz = bswap_32(sz); 3460 3461 if (sz == 0) { 3462 /* assume ABI0 */ 3463 sz = PERF_ATTR_SIZE_VER0; 3464 } else if (sz > our_sz) { 3465 pr_debug("file uses a more recent and unsupported ABI" 3466 " (%zu bytes extra)\n", sz - our_sz); 3467 return -1; 3468 } 3469 /* what we have not yet read and that we know about */ 3470 left = sz - PERF_ATTR_SIZE_VER0; 3471 if (left) { 3472 void *ptr = attr; 3473 ptr += PERF_ATTR_SIZE_VER0; 3474 3475 ret = readn(fd, ptr, left); 3476 } 3477 /* read perf_file_section, ids are read in caller */ 3478 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 3479 3480 return ret <= 0 ? -1 : 0; 3481 } 3482 3483 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel, 3484 struct tep_handle *pevent) 3485 { 3486 struct tep_event *event; 3487 char bf[128]; 3488 3489 /* already prepared */ 3490 if (evsel->tp_format) 3491 return 0; 3492 3493 if (pevent == NULL) { 3494 pr_debug("broken or missing trace data\n"); 3495 return -1; 3496 } 3497 3498 event = tep_find_event(pevent, evsel->core.attr.config); 3499 if (event == NULL) { 3500 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 3501 return -1; 3502 } 3503 3504 if (!evsel->name) { 3505 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 3506 evsel->name = strdup(bf); 3507 if (evsel->name == NULL) 3508 return -1; 3509 } 3510 3511 evsel->tp_format = event; 3512 return 0; 3513 } 3514 3515 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist, 3516 struct tep_handle *pevent) 3517 { 3518 struct evsel *pos; 3519 3520 evlist__for_each_entry(evlist, pos) { 3521 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 3522 perf_evsel__prepare_tracepoint_event(pos, pevent)) 3523 return -1; 3524 } 3525 3526 return 0; 3527 } 3528 3529 int perf_session__read_header(struct perf_session *session) 3530 { 3531 struct perf_data *data = session->data; 3532 struct perf_header *header = &session->header; 3533 struct perf_file_header f_header; 3534 struct perf_file_attr f_attr; 3535 u64 f_id; 3536 int nr_attrs, nr_ids, i, j; 3537 int fd = perf_data__fd(data); 3538 3539 session->evlist = evlist__new(); 3540 if (session->evlist == NULL) 3541 return -ENOMEM; 3542 3543 session->evlist->env = &header->env; 3544 session->machines.host.env = &header->env; 3545 if (perf_data__is_pipe(data)) 3546 return perf_header__read_pipe(session); 3547 3548 if (perf_file_header__read(&f_header, header, fd) < 0) 3549 return -EINVAL; 3550 3551 /* 3552 * Sanity check that perf.data was written cleanly; data size is 3553 * initialized to 0 and updated only if the on_exit function is run. 3554 * If data size is still 0 then the file contains only partial 3555 * information. Just warn user and process it as much as it can. 3556 */ 3557 if (f_header.data.size == 0) { 3558 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 3559 "Was the 'perf record' command properly terminated?\n", 3560 data->file.path); 3561 } 3562 3563 if (f_header.attr_size == 0) { 3564 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 3565 "Was the 'perf record' command properly terminated?\n", 3566 data->file.path); 3567 return -EINVAL; 3568 } 3569 3570 nr_attrs = f_header.attrs.size / f_header.attr_size; 3571 lseek(fd, f_header.attrs.offset, SEEK_SET); 3572 3573 for (i = 0; i < nr_attrs; i++) { 3574 struct evsel *evsel; 3575 off_t tmp; 3576 3577 if (read_attr(fd, header, &f_attr) < 0) 3578 goto out_errno; 3579 3580 if (header->needs_swap) { 3581 f_attr.ids.size = bswap_64(f_attr.ids.size); 3582 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 3583 perf_event__attr_swap(&f_attr.attr); 3584 } 3585 3586 tmp = lseek(fd, 0, SEEK_CUR); 3587 evsel = evsel__new(&f_attr.attr); 3588 3589 if (evsel == NULL) 3590 goto out_delete_evlist; 3591 3592 evsel->needs_swap = header->needs_swap; 3593 /* 3594 * Do it before so that if perf_evsel__alloc_id fails, this 3595 * entry gets purged too at evlist__delete(). 3596 */ 3597 evlist__add(session->evlist, evsel); 3598 3599 nr_ids = f_attr.ids.size / sizeof(u64); 3600 /* 3601 * We don't have the cpu and thread maps on the header, so 3602 * for allocating the perf_sample_id table we fake 1 cpu and 3603 * hattr->ids threads. 3604 */ 3605 if (perf_evsel__alloc_id(evsel, 1, nr_ids)) 3606 goto out_delete_evlist; 3607 3608 lseek(fd, f_attr.ids.offset, SEEK_SET); 3609 3610 for (j = 0; j < nr_ids; j++) { 3611 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 3612 goto out_errno; 3613 3614 perf_evlist__id_add(session->evlist, evsel, 0, j, f_id); 3615 } 3616 3617 lseek(fd, tmp, SEEK_SET); 3618 } 3619 3620 perf_header__process_sections(header, fd, &session->tevent, 3621 perf_file_section__process); 3622 3623 if (perf_evlist__prepare_tracepoint_events(session->evlist, 3624 session->tevent.pevent)) 3625 goto out_delete_evlist; 3626 3627 return 0; 3628 out_errno: 3629 return -errno; 3630 3631 out_delete_evlist: 3632 evlist__delete(session->evlist); 3633 session->evlist = NULL; 3634 return -ENOMEM; 3635 } 3636 3637 int perf_event__synthesize_attr(struct perf_tool *tool, 3638 struct perf_event_attr *attr, u32 ids, u64 *id, 3639 perf_event__handler_t process) 3640 { 3641 union perf_event *ev; 3642 size_t size; 3643 int err; 3644 3645 size = sizeof(struct perf_event_attr); 3646 size = PERF_ALIGN(size, sizeof(u64)); 3647 size += sizeof(struct perf_event_header); 3648 size += ids * sizeof(u64); 3649 3650 ev = zalloc(size); 3651 3652 if (ev == NULL) 3653 return -ENOMEM; 3654 3655 ev->attr.attr = *attr; 3656 memcpy(ev->attr.id, id, ids * sizeof(u64)); 3657 3658 ev->attr.header.type = PERF_RECORD_HEADER_ATTR; 3659 ev->attr.header.size = (u16)size; 3660 3661 if (ev->attr.header.size == size) 3662 err = process(tool, ev, NULL, NULL); 3663 else 3664 err = -E2BIG; 3665 3666 free(ev); 3667 3668 return err; 3669 } 3670 3671 int perf_event__synthesize_features(struct perf_tool *tool, 3672 struct perf_session *session, 3673 struct evlist *evlist, 3674 perf_event__handler_t process) 3675 { 3676 struct perf_header *header = &session->header; 3677 struct feat_fd ff; 3678 struct feature_event *fe; 3679 size_t sz, sz_hdr; 3680 int feat, ret; 3681 3682 sz_hdr = sizeof(fe->header); 3683 sz = sizeof(union perf_event); 3684 /* get a nice alignment */ 3685 sz = PERF_ALIGN(sz, page_size); 3686 3687 memset(&ff, 0, sizeof(ff)); 3688 3689 ff.buf = malloc(sz); 3690 if (!ff.buf) 3691 return -ENOMEM; 3692 3693 ff.size = sz - sz_hdr; 3694 ff.ph = &session->header; 3695 3696 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3697 if (!feat_ops[feat].synthesize) { 3698 pr_debug("No record header feature for header :%d\n", feat); 3699 continue; 3700 } 3701 3702 ff.offset = sizeof(*fe); 3703 3704 ret = feat_ops[feat].write(&ff, evlist); 3705 if (ret || ff.offset <= (ssize_t)sizeof(*fe)) { 3706 pr_debug("Error writing feature\n"); 3707 continue; 3708 } 3709 /* ff.buf may have changed due to realloc in do_write() */ 3710 fe = ff.buf; 3711 memset(fe, 0, sizeof(*fe)); 3712 3713 fe->feat_id = feat; 3714 fe->header.type = PERF_RECORD_HEADER_FEATURE; 3715 fe->header.size = ff.offset; 3716 3717 ret = process(tool, ff.buf, NULL, NULL); 3718 if (ret) { 3719 free(ff.buf); 3720 return ret; 3721 } 3722 } 3723 3724 /* Send HEADER_LAST_FEATURE mark. */ 3725 fe = ff.buf; 3726 fe->feat_id = HEADER_LAST_FEATURE; 3727 fe->header.type = PERF_RECORD_HEADER_FEATURE; 3728 fe->header.size = sizeof(*fe); 3729 3730 ret = process(tool, ff.buf, NULL, NULL); 3731 3732 free(ff.buf); 3733 return ret; 3734 } 3735 3736 int perf_event__process_feature(struct perf_session *session, 3737 union perf_event *event) 3738 { 3739 struct perf_tool *tool = session->tool; 3740 struct feat_fd ff = { .fd = 0 }; 3741 struct feature_event *fe = (struct feature_event *)event; 3742 int type = fe->header.type; 3743 u64 feat = fe->feat_id; 3744 3745 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 3746 pr_warning("invalid record type %d in pipe-mode\n", type); 3747 return 0; 3748 } 3749 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 3750 pr_warning("invalid record type %d in pipe-mode\n", type); 3751 return -1; 3752 } 3753 3754 if (!feat_ops[feat].process) 3755 return 0; 3756 3757 ff.buf = (void *)fe->data; 3758 ff.size = event->header.size - sizeof(*fe); 3759 ff.ph = &session->header; 3760 3761 if (feat_ops[feat].process(&ff, NULL)) 3762 return -1; 3763 3764 if (!feat_ops[feat].print || !tool->show_feat_hdr) 3765 return 0; 3766 3767 if (!feat_ops[feat].full_only || 3768 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 3769 feat_ops[feat].print(&ff, stdout); 3770 } else { 3771 fprintf(stdout, "# %s info available, use -I to display\n", 3772 feat_ops[feat].name); 3773 } 3774 3775 return 0; 3776 } 3777 3778 static struct event_update_event * 3779 event_update_event__new(size_t size, u64 type, u64 id) 3780 { 3781 struct event_update_event *ev; 3782 3783 size += sizeof(*ev); 3784 size = PERF_ALIGN(size, sizeof(u64)); 3785 3786 ev = zalloc(size); 3787 if (ev) { 3788 ev->header.type = PERF_RECORD_EVENT_UPDATE; 3789 ev->header.size = (u16)size; 3790 ev->type = type; 3791 ev->id = id; 3792 } 3793 return ev; 3794 } 3795 3796 int 3797 perf_event__synthesize_event_update_unit(struct perf_tool *tool, 3798 struct evsel *evsel, 3799 perf_event__handler_t process) 3800 { 3801 struct event_update_event *ev; 3802 size_t size = strlen(evsel->unit); 3803 int err; 3804 3805 ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]); 3806 if (ev == NULL) 3807 return -ENOMEM; 3808 3809 strlcpy(ev->data, evsel->unit, size + 1); 3810 err = process(tool, (union perf_event *)ev, NULL, NULL); 3811 free(ev); 3812 return err; 3813 } 3814 3815 int 3816 perf_event__synthesize_event_update_scale(struct perf_tool *tool, 3817 struct evsel *evsel, 3818 perf_event__handler_t process) 3819 { 3820 struct event_update_event *ev; 3821 struct event_update_event_scale *ev_data; 3822 int err; 3823 3824 ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]); 3825 if (ev == NULL) 3826 return -ENOMEM; 3827 3828 ev_data = (struct event_update_event_scale *) ev->data; 3829 ev_data->scale = evsel->scale; 3830 err = process(tool, (union perf_event*) ev, NULL, NULL); 3831 free(ev); 3832 return err; 3833 } 3834 3835 int 3836 perf_event__synthesize_event_update_name(struct perf_tool *tool, 3837 struct evsel *evsel, 3838 perf_event__handler_t process) 3839 { 3840 struct event_update_event *ev; 3841 size_t len = strlen(evsel->name); 3842 int err; 3843 3844 ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]); 3845 if (ev == NULL) 3846 return -ENOMEM; 3847 3848 strlcpy(ev->data, evsel->name, len + 1); 3849 err = process(tool, (union perf_event*) ev, NULL, NULL); 3850 free(ev); 3851 return err; 3852 } 3853 3854 int 3855 perf_event__synthesize_event_update_cpus(struct perf_tool *tool, 3856 struct evsel *evsel, 3857 perf_event__handler_t process) 3858 { 3859 size_t size = sizeof(struct event_update_event); 3860 struct event_update_event *ev; 3861 int max, err; 3862 u16 type; 3863 3864 if (!evsel->core.own_cpus) 3865 return 0; 3866 3867 ev = cpu_map_data__alloc(evsel->core.own_cpus, &size, &type, &max); 3868 if (!ev) 3869 return -ENOMEM; 3870 3871 ev->header.type = PERF_RECORD_EVENT_UPDATE; 3872 ev->header.size = (u16)size; 3873 ev->type = PERF_EVENT_UPDATE__CPUS; 3874 ev->id = evsel->id[0]; 3875 3876 cpu_map_data__synthesize((struct cpu_map_data *) ev->data, 3877 evsel->core.own_cpus, 3878 type, max); 3879 3880 err = process(tool, (union perf_event*) ev, NULL, NULL); 3881 free(ev); 3882 return err; 3883 } 3884 3885 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 3886 { 3887 struct event_update_event *ev = &event->event_update; 3888 struct event_update_event_scale *ev_scale; 3889 struct event_update_event_cpus *ev_cpus; 3890 struct perf_cpu_map *map; 3891 size_t ret; 3892 3893 ret = fprintf(fp, "\n... id: %" PRIu64 "\n", ev->id); 3894 3895 switch (ev->type) { 3896 case PERF_EVENT_UPDATE__SCALE: 3897 ev_scale = (struct event_update_event_scale *) ev->data; 3898 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale); 3899 break; 3900 case PERF_EVENT_UPDATE__UNIT: 3901 ret += fprintf(fp, "... unit: %s\n", ev->data); 3902 break; 3903 case PERF_EVENT_UPDATE__NAME: 3904 ret += fprintf(fp, "... name: %s\n", ev->data); 3905 break; 3906 case PERF_EVENT_UPDATE__CPUS: 3907 ev_cpus = (struct event_update_event_cpus *) ev->data; 3908 ret += fprintf(fp, "... "); 3909 3910 map = cpu_map__new_data(&ev_cpus->cpus); 3911 if (map) 3912 ret += cpu_map__fprintf(map, fp); 3913 else 3914 ret += fprintf(fp, "failed to get cpus\n"); 3915 break; 3916 default: 3917 ret += fprintf(fp, "... unknown type\n"); 3918 break; 3919 } 3920 3921 return ret; 3922 } 3923 3924 int perf_event__synthesize_attrs(struct perf_tool *tool, 3925 struct evlist *evlist, 3926 perf_event__handler_t process) 3927 { 3928 struct evsel *evsel; 3929 int err = 0; 3930 3931 evlist__for_each_entry(evlist, evsel) { 3932 err = perf_event__synthesize_attr(tool, &evsel->core.attr, evsel->ids, 3933 evsel->id, process); 3934 if (err) { 3935 pr_debug("failed to create perf header attribute\n"); 3936 return err; 3937 } 3938 } 3939 3940 return err; 3941 } 3942 3943 static bool has_unit(struct evsel *counter) 3944 { 3945 return counter->unit && *counter->unit; 3946 } 3947 3948 static bool has_scale(struct evsel *counter) 3949 { 3950 return counter->scale != 1; 3951 } 3952 3953 int perf_event__synthesize_extra_attr(struct perf_tool *tool, 3954 struct evlist *evsel_list, 3955 perf_event__handler_t process, 3956 bool is_pipe) 3957 { 3958 struct evsel *counter; 3959 int err; 3960 3961 /* 3962 * Synthesize other events stuff not carried within 3963 * attr event - unit, scale, name 3964 */ 3965 evlist__for_each_entry(evsel_list, counter) { 3966 if (!counter->supported) 3967 continue; 3968 3969 /* 3970 * Synthesize unit and scale only if it's defined. 3971 */ 3972 if (has_unit(counter)) { 3973 err = perf_event__synthesize_event_update_unit(tool, counter, process); 3974 if (err < 0) { 3975 pr_err("Couldn't synthesize evsel unit.\n"); 3976 return err; 3977 } 3978 } 3979 3980 if (has_scale(counter)) { 3981 err = perf_event__synthesize_event_update_scale(tool, counter, process); 3982 if (err < 0) { 3983 pr_err("Couldn't synthesize evsel counter.\n"); 3984 return err; 3985 } 3986 } 3987 3988 if (counter->core.own_cpus) { 3989 err = perf_event__synthesize_event_update_cpus(tool, counter, process); 3990 if (err < 0) { 3991 pr_err("Couldn't synthesize evsel cpus.\n"); 3992 return err; 3993 } 3994 } 3995 3996 /* 3997 * Name is needed only for pipe output, 3998 * perf.data carries event names. 3999 */ 4000 if (is_pipe) { 4001 err = perf_event__synthesize_event_update_name(tool, counter, process); 4002 if (err < 0) { 4003 pr_err("Couldn't synthesize evsel name.\n"); 4004 return err; 4005 } 4006 } 4007 } 4008 return 0; 4009 } 4010 4011 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 4012 union perf_event *event, 4013 struct evlist **pevlist) 4014 { 4015 u32 i, ids, n_ids; 4016 struct evsel *evsel; 4017 struct evlist *evlist = *pevlist; 4018 4019 if (evlist == NULL) { 4020 *pevlist = evlist = evlist__new(); 4021 if (evlist == NULL) 4022 return -ENOMEM; 4023 } 4024 4025 evsel = evsel__new(&event->attr.attr); 4026 if (evsel == NULL) 4027 return -ENOMEM; 4028 4029 evlist__add(evlist, evsel); 4030 4031 ids = event->header.size; 4032 ids -= (void *)&event->attr.id - (void *)event; 4033 n_ids = ids / sizeof(u64); 4034 /* 4035 * We don't have the cpu and thread maps on the header, so 4036 * for allocating the perf_sample_id table we fake 1 cpu and 4037 * hattr->ids threads. 4038 */ 4039 if (perf_evsel__alloc_id(evsel, 1, n_ids)) 4040 return -ENOMEM; 4041 4042 for (i = 0; i < n_ids; i++) { 4043 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]); 4044 } 4045 4046 return 0; 4047 } 4048 4049 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 4050 union perf_event *event, 4051 struct evlist **pevlist) 4052 { 4053 struct event_update_event *ev = &event->event_update; 4054 struct event_update_event_scale *ev_scale; 4055 struct event_update_event_cpus *ev_cpus; 4056 struct evlist *evlist; 4057 struct evsel *evsel; 4058 struct perf_cpu_map *map; 4059 4060 if (!pevlist || *pevlist == NULL) 4061 return -EINVAL; 4062 4063 evlist = *pevlist; 4064 4065 evsel = perf_evlist__id2evsel(evlist, ev->id); 4066 if (evsel == NULL) 4067 return -EINVAL; 4068 4069 switch (ev->type) { 4070 case PERF_EVENT_UPDATE__UNIT: 4071 evsel->unit = strdup(ev->data); 4072 break; 4073 case PERF_EVENT_UPDATE__NAME: 4074 evsel->name = strdup(ev->data); 4075 break; 4076 case PERF_EVENT_UPDATE__SCALE: 4077 ev_scale = (struct event_update_event_scale *) ev->data; 4078 evsel->scale = ev_scale->scale; 4079 break; 4080 case PERF_EVENT_UPDATE__CPUS: 4081 ev_cpus = (struct event_update_event_cpus *) ev->data; 4082 4083 map = cpu_map__new_data(&ev_cpus->cpus); 4084 if (map) 4085 evsel->core.own_cpus = map; 4086 else 4087 pr_err("failed to get event_update cpus\n"); 4088 default: 4089 break; 4090 } 4091 4092 return 0; 4093 } 4094 4095 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd, 4096 struct evlist *evlist, 4097 perf_event__handler_t process) 4098 { 4099 union perf_event ev; 4100 struct tracing_data *tdata; 4101 ssize_t size = 0, aligned_size = 0, padding; 4102 struct feat_fd ff; 4103 int err __maybe_unused = 0; 4104 4105 /* 4106 * We are going to store the size of the data followed 4107 * by the data contents. Since the fd descriptor is a pipe, 4108 * we cannot seek back to store the size of the data once 4109 * we know it. Instead we: 4110 * 4111 * - write the tracing data to the temp file 4112 * - get/write the data size to pipe 4113 * - write the tracing data from the temp file 4114 * to the pipe 4115 */ 4116 tdata = tracing_data_get(&evlist->core.entries, fd, true); 4117 if (!tdata) 4118 return -1; 4119 4120 memset(&ev, 0, sizeof(ev)); 4121 4122 ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA; 4123 size = tdata->size; 4124 aligned_size = PERF_ALIGN(size, sizeof(u64)); 4125 padding = aligned_size - size; 4126 ev.tracing_data.header.size = sizeof(ev.tracing_data); 4127 ev.tracing_data.size = aligned_size; 4128 4129 process(tool, &ev, NULL, NULL); 4130 4131 /* 4132 * The put function will copy all the tracing data 4133 * stored in temp file to the pipe. 4134 */ 4135 tracing_data_put(tdata); 4136 4137 ff = (struct feat_fd){ .fd = fd }; 4138 if (write_padded(&ff, NULL, 0, padding)) 4139 return -1; 4140 4141 return aligned_size; 4142 } 4143 4144 int perf_event__process_tracing_data(struct perf_session *session, 4145 union perf_event *event) 4146 { 4147 ssize_t size_read, padding, size = event->tracing_data.size; 4148 int fd = perf_data__fd(session->data); 4149 off_t offset = lseek(fd, 0, SEEK_CUR); 4150 char buf[BUFSIZ]; 4151 4152 /* setup for reading amidst mmap */ 4153 lseek(fd, offset + sizeof(struct tracing_data_event), 4154 SEEK_SET); 4155 4156 size_read = trace_report(fd, &session->tevent, 4157 session->repipe); 4158 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4159 4160 if (readn(fd, buf, padding) < 0) { 4161 pr_err("%s: reading input file", __func__); 4162 return -1; 4163 } 4164 if (session->repipe) { 4165 int retw = write(STDOUT_FILENO, buf, padding); 4166 if (retw <= 0 || retw != padding) { 4167 pr_err("%s: repiping tracing data padding", __func__); 4168 return -1; 4169 } 4170 } 4171 4172 if (size_read + padding != size) { 4173 pr_err("%s: tracing data size mismatch", __func__); 4174 return -1; 4175 } 4176 4177 perf_evlist__prepare_tracepoint_events(session->evlist, 4178 session->tevent.pevent); 4179 4180 return size_read + padding; 4181 } 4182 4183 int perf_event__synthesize_build_id(struct perf_tool *tool, 4184 struct dso *pos, u16 misc, 4185 perf_event__handler_t process, 4186 struct machine *machine) 4187 { 4188 union perf_event ev; 4189 size_t len; 4190 int err = 0; 4191 4192 if (!pos->hit) 4193 return err; 4194 4195 memset(&ev, 0, sizeof(ev)); 4196 4197 len = pos->long_name_len + 1; 4198 len = PERF_ALIGN(len, NAME_ALIGN); 4199 memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id)); 4200 ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID; 4201 ev.build_id.header.misc = misc; 4202 ev.build_id.pid = machine->pid; 4203 ev.build_id.header.size = sizeof(ev.build_id) + len; 4204 memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len); 4205 4206 err = process(tool, &ev, NULL, machine); 4207 4208 return err; 4209 } 4210 4211 int perf_event__process_build_id(struct perf_session *session, 4212 union perf_event *event) 4213 { 4214 __event_process_build_id(&event->build_id, 4215 event->build_id.filename, 4216 session); 4217 return 0; 4218 } 4219