1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <stdio.h> 10 #include <stdlib.h> 11 #include <linux/compiler.h> 12 #include <linux/list.h> 13 #include <linux/kernel.h> 14 #include <linux/bitops.h> 15 #include <linux/string.h> 16 #include <linux/stringify.h> 17 #include <linux/zalloc.h> 18 #include <sys/stat.h> 19 #include <sys/utsname.h> 20 #include <linux/time64.h> 21 #include <dirent.h> 22 #ifdef HAVE_LIBBPF_SUPPORT 23 #include <bpf/libbpf.h> 24 #endif 25 #include <perf/cpumap.h> 26 27 #include "dso.h" 28 #include "evlist.h" 29 #include "evsel.h" 30 #include "util/evsel_fprintf.h" 31 #include "header.h" 32 #include "memswap.h" 33 #include "trace-event.h" 34 #include "session.h" 35 #include "symbol.h" 36 #include "debug.h" 37 #include "cpumap.h" 38 #include "pmu.h" 39 #include "vdso.h" 40 #include "strbuf.h" 41 #include "build-id.h" 42 #include "data.h" 43 #include <api/fs/fs.h> 44 #include "asm/bug.h" 45 #include "tool.h" 46 #include "time-utils.h" 47 #include "units.h" 48 #include "util/util.h" // perf_exe() 49 #include "cputopo.h" 50 #include "bpf-event.h" 51 #include "bpf-utils.h" 52 #include "clockid.h" 53 #include "pmu-hybrid.h" 54 55 #include <linux/ctype.h> 56 #include <internal/lib.h> 57 58 /* 59 * magic2 = "PERFILE2" 60 * must be a numerical value to let the endianness 61 * determine the memory layout. That way we are able 62 * to detect endianness when reading the perf.data file 63 * back. 64 * 65 * we check for legacy (PERFFILE) format. 66 */ 67 static const char *__perf_magic1 = "PERFFILE"; 68 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 69 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 70 71 #define PERF_MAGIC __perf_magic2 72 73 const char perf_version_string[] = PERF_VERSION; 74 75 struct perf_file_attr { 76 struct perf_event_attr attr; 77 struct perf_file_section ids; 78 }; 79 80 void perf_header__set_feat(struct perf_header *header, int feat) 81 { 82 set_bit(feat, header->adds_features); 83 } 84 85 void perf_header__clear_feat(struct perf_header *header, int feat) 86 { 87 clear_bit(feat, header->adds_features); 88 } 89 90 bool perf_header__has_feat(const struct perf_header *header, int feat) 91 { 92 return test_bit(feat, header->adds_features); 93 } 94 95 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 96 { 97 ssize_t ret = writen(ff->fd, buf, size); 98 99 if (ret != (ssize_t)size) 100 return ret < 0 ? (int)ret : -1; 101 return 0; 102 } 103 104 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 105 { 106 /* struct perf_event_header::size is u16 */ 107 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 108 size_t new_size = ff->size; 109 void *addr; 110 111 if (size + ff->offset > max_size) 112 return -E2BIG; 113 114 while (size > (new_size - ff->offset)) 115 new_size <<= 1; 116 new_size = min(max_size, new_size); 117 118 if (ff->size < new_size) { 119 addr = realloc(ff->buf, new_size); 120 if (!addr) 121 return -ENOMEM; 122 ff->buf = addr; 123 ff->size = new_size; 124 } 125 126 memcpy(ff->buf + ff->offset, buf, size); 127 ff->offset += size; 128 129 return 0; 130 } 131 132 /* Return: 0 if succeeded, -ERR if failed. */ 133 int do_write(struct feat_fd *ff, const void *buf, size_t size) 134 { 135 if (!ff->buf) 136 return __do_write_fd(ff, buf, size); 137 return __do_write_buf(ff, buf, size); 138 } 139 140 /* Return: 0 if succeeded, -ERR if failed. */ 141 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 142 { 143 u64 *p = (u64 *) set; 144 int i, ret; 145 146 ret = do_write(ff, &size, sizeof(size)); 147 if (ret < 0) 148 return ret; 149 150 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 151 ret = do_write(ff, p + i, sizeof(*p)); 152 if (ret < 0) 153 return ret; 154 } 155 156 return 0; 157 } 158 159 /* Return: 0 if succeeded, -ERR if failed. */ 160 int write_padded(struct feat_fd *ff, const void *bf, 161 size_t count, size_t count_aligned) 162 { 163 static const char zero_buf[NAME_ALIGN]; 164 int err = do_write(ff, bf, count); 165 166 if (!err) 167 err = do_write(ff, zero_buf, count_aligned - count); 168 169 return err; 170 } 171 172 #define string_size(str) \ 173 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 174 175 /* Return: 0 if succeeded, -ERR if failed. */ 176 static int do_write_string(struct feat_fd *ff, const char *str) 177 { 178 u32 len, olen; 179 int ret; 180 181 olen = strlen(str) + 1; 182 len = PERF_ALIGN(olen, NAME_ALIGN); 183 184 /* write len, incl. \0 */ 185 ret = do_write(ff, &len, sizeof(len)); 186 if (ret < 0) 187 return ret; 188 189 return write_padded(ff, str, olen, len); 190 } 191 192 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 193 { 194 ssize_t ret = readn(ff->fd, addr, size); 195 196 if (ret != size) 197 return ret < 0 ? (int)ret : -1; 198 return 0; 199 } 200 201 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 202 { 203 if (size > (ssize_t)ff->size - ff->offset) 204 return -1; 205 206 memcpy(addr, ff->buf + ff->offset, size); 207 ff->offset += size; 208 209 return 0; 210 211 } 212 213 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 214 { 215 if (!ff->buf) 216 return __do_read_fd(ff, addr, size); 217 return __do_read_buf(ff, addr, size); 218 } 219 220 static int do_read_u32(struct feat_fd *ff, u32 *addr) 221 { 222 int ret; 223 224 ret = __do_read(ff, addr, sizeof(*addr)); 225 if (ret) 226 return ret; 227 228 if (ff->ph->needs_swap) 229 *addr = bswap_32(*addr); 230 return 0; 231 } 232 233 static int do_read_u64(struct feat_fd *ff, u64 *addr) 234 { 235 int ret; 236 237 ret = __do_read(ff, addr, sizeof(*addr)); 238 if (ret) 239 return ret; 240 241 if (ff->ph->needs_swap) 242 *addr = bswap_64(*addr); 243 return 0; 244 } 245 246 static char *do_read_string(struct feat_fd *ff) 247 { 248 u32 len; 249 char *buf; 250 251 if (do_read_u32(ff, &len)) 252 return NULL; 253 254 buf = malloc(len); 255 if (!buf) 256 return NULL; 257 258 if (!__do_read(ff, buf, len)) { 259 /* 260 * strings are padded by zeroes 261 * thus the actual strlen of buf 262 * may be less than len 263 */ 264 return buf; 265 } 266 267 free(buf); 268 return NULL; 269 } 270 271 /* Return: 0 if succeeded, -ERR if failed. */ 272 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 273 { 274 unsigned long *set; 275 u64 size, *p; 276 int i, ret; 277 278 ret = do_read_u64(ff, &size); 279 if (ret) 280 return ret; 281 282 set = bitmap_zalloc(size); 283 if (!set) 284 return -ENOMEM; 285 286 p = (u64 *) set; 287 288 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 289 ret = do_read_u64(ff, p + i); 290 if (ret < 0) { 291 free(set); 292 return ret; 293 } 294 } 295 296 *pset = set; 297 *psize = size; 298 return 0; 299 } 300 301 static int write_tracing_data(struct feat_fd *ff, 302 struct evlist *evlist) 303 { 304 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 305 return -1; 306 307 return read_tracing_data(ff->fd, &evlist->core.entries); 308 } 309 310 static int write_build_id(struct feat_fd *ff, 311 struct evlist *evlist __maybe_unused) 312 { 313 struct perf_session *session; 314 int err; 315 316 session = container_of(ff->ph, struct perf_session, header); 317 318 if (!perf_session__read_build_ids(session, true)) 319 return -1; 320 321 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 322 return -1; 323 324 err = perf_session__write_buildid_table(session, ff); 325 if (err < 0) { 326 pr_debug("failed to write buildid table\n"); 327 return err; 328 } 329 perf_session__cache_build_ids(session); 330 331 return 0; 332 } 333 334 static int write_hostname(struct feat_fd *ff, 335 struct evlist *evlist __maybe_unused) 336 { 337 struct utsname uts; 338 int ret; 339 340 ret = uname(&uts); 341 if (ret < 0) 342 return -1; 343 344 return do_write_string(ff, uts.nodename); 345 } 346 347 static int write_osrelease(struct feat_fd *ff, 348 struct evlist *evlist __maybe_unused) 349 { 350 struct utsname uts; 351 int ret; 352 353 ret = uname(&uts); 354 if (ret < 0) 355 return -1; 356 357 return do_write_string(ff, uts.release); 358 } 359 360 static int write_arch(struct feat_fd *ff, 361 struct evlist *evlist __maybe_unused) 362 { 363 struct utsname uts; 364 int ret; 365 366 ret = uname(&uts); 367 if (ret < 0) 368 return -1; 369 370 return do_write_string(ff, uts.machine); 371 } 372 373 static int write_version(struct feat_fd *ff, 374 struct evlist *evlist __maybe_unused) 375 { 376 return do_write_string(ff, perf_version_string); 377 } 378 379 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 380 { 381 FILE *file; 382 char *buf = NULL; 383 char *s, *p; 384 const char *search = cpuinfo_proc; 385 size_t len = 0; 386 int ret = -1; 387 388 if (!search) 389 return -1; 390 391 file = fopen("/proc/cpuinfo", "r"); 392 if (!file) 393 return -1; 394 395 while (getline(&buf, &len, file) > 0) { 396 ret = strncmp(buf, search, strlen(search)); 397 if (!ret) 398 break; 399 } 400 401 if (ret) { 402 ret = -1; 403 goto done; 404 } 405 406 s = buf; 407 408 p = strchr(buf, ':'); 409 if (p && *(p+1) == ' ' && *(p+2)) 410 s = p + 2; 411 p = strchr(s, '\n'); 412 if (p) 413 *p = '\0'; 414 415 /* squash extra space characters (branding string) */ 416 p = s; 417 while (*p) { 418 if (isspace(*p)) { 419 char *r = p + 1; 420 char *q = skip_spaces(r); 421 *p = ' '; 422 if (q != (p+1)) 423 while ((*r++ = *q++)); 424 } 425 p++; 426 } 427 ret = do_write_string(ff, s); 428 done: 429 free(buf); 430 fclose(file); 431 return ret; 432 } 433 434 static int write_cpudesc(struct feat_fd *ff, 435 struct evlist *evlist __maybe_unused) 436 { 437 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 438 #define CPUINFO_PROC { "cpu", } 439 #elif defined(__s390__) 440 #define CPUINFO_PROC { "vendor_id", } 441 #elif defined(__sh__) 442 #define CPUINFO_PROC { "cpu type", } 443 #elif defined(__alpha__) || defined(__mips__) 444 #define CPUINFO_PROC { "cpu model", } 445 #elif defined(__arm__) 446 #define CPUINFO_PROC { "model name", "Processor", } 447 #elif defined(__arc__) 448 #define CPUINFO_PROC { "Processor", } 449 #elif defined(__xtensa__) 450 #define CPUINFO_PROC { "core ID", } 451 #else 452 #define CPUINFO_PROC { "model name", } 453 #endif 454 const char *cpuinfo_procs[] = CPUINFO_PROC; 455 #undef CPUINFO_PROC 456 unsigned int i; 457 458 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 459 int ret; 460 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 461 if (ret >= 0) 462 return ret; 463 } 464 return -1; 465 } 466 467 468 static int write_nrcpus(struct feat_fd *ff, 469 struct evlist *evlist __maybe_unused) 470 { 471 long nr; 472 u32 nrc, nra; 473 int ret; 474 475 nrc = cpu__max_present_cpu().cpu; 476 477 nr = sysconf(_SC_NPROCESSORS_ONLN); 478 if (nr < 0) 479 return -1; 480 481 nra = (u32)(nr & UINT_MAX); 482 483 ret = do_write(ff, &nrc, sizeof(nrc)); 484 if (ret < 0) 485 return ret; 486 487 return do_write(ff, &nra, sizeof(nra)); 488 } 489 490 static int write_event_desc(struct feat_fd *ff, 491 struct evlist *evlist) 492 { 493 struct evsel *evsel; 494 u32 nre, nri, sz; 495 int ret; 496 497 nre = evlist->core.nr_entries; 498 499 /* 500 * write number of events 501 */ 502 ret = do_write(ff, &nre, sizeof(nre)); 503 if (ret < 0) 504 return ret; 505 506 /* 507 * size of perf_event_attr struct 508 */ 509 sz = (u32)sizeof(evsel->core.attr); 510 ret = do_write(ff, &sz, sizeof(sz)); 511 if (ret < 0) 512 return ret; 513 514 evlist__for_each_entry(evlist, evsel) { 515 ret = do_write(ff, &evsel->core.attr, sz); 516 if (ret < 0) 517 return ret; 518 /* 519 * write number of unique id per event 520 * there is one id per instance of an event 521 * 522 * copy into an nri to be independent of the 523 * type of ids, 524 */ 525 nri = evsel->core.ids; 526 ret = do_write(ff, &nri, sizeof(nri)); 527 if (ret < 0) 528 return ret; 529 530 /* 531 * write event string as passed on cmdline 532 */ 533 ret = do_write_string(ff, evsel__name(evsel)); 534 if (ret < 0) 535 return ret; 536 /* 537 * write unique ids for this event 538 */ 539 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 540 if (ret < 0) 541 return ret; 542 } 543 return 0; 544 } 545 546 static int write_cmdline(struct feat_fd *ff, 547 struct evlist *evlist __maybe_unused) 548 { 549 char pbuf[MAXPATHLEN], *buf; 550 int i, ret, n; 551 552 /* actual path to perf binary */ 553 buf = perf_exe(pbuf, MAXPATHLEN); 554 555 /* account for binary path */ 556 n = perf_env.nr_cmdline + 1; 557 558 ret = do_write(ff, &n, sizeof(n)); 559 if (ret < 0) 560 return ret; 561 562 ret = do_write_string(ff, buf); 563 if (ret < 0) 564 return ret; 565 566 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 567 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 568 if (ret < 0) 569 return ret; 570 } 571 return 0; 572 } 573 574 575 static int write_cpu_topology(struct feat_fd *ff, 576 struct evlist *evlist __maybe_unused) 577 { 578 struct cpu_topology *tp; 579 u32 i; 580 int ret, j; 581 582 tp = cpu_topology__new(); 583 if (!tp) 584 return -1; 585 586 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists)); 587 if (ret < 0) 588 goto done; 589 590 for (i = 0; i < tp->package_cpus_lists; i++) { 591 ret = do_write_string(ff, tp->package_cpus_list[i]); 592 if (ret < 0) 593 goto done; 594 } 595 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists)); 596 if (ret < 0) 597 goto done; 598 599 for (i = 0; i < tp->core_cpus_lists; i++) { 600 ret = do_write_string(ff, tp->core_cpus_list[i]); 601 if (ret < 0) 602 break; 603 } 604 605 ret = perf_env__read_cpu_topology_map(&perf_env); 606 if (ret < 0) 607 goto done; 608 609 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 610 ret = do_write(ff, &perf_env.cpu[j].core_id, 611 sizeof(perf_env.cpu[j].core_id)); 612 if (ret < 0) 613 return ret; 614 ret = do_write(ff, &perf_env.cpu[j].socket_id, 615 sizeof(perf_env.cpu[j].socket_id)); 616 if (ret < 0) 617 return ret; 618 } 619 620 if (!tp->die_cpus_lists) 621 goto done; 622 623 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists)); 624 if (ret < 0) 625 goto done; 626 627 for (i = 0; i < tp->die_cpus_lists; i++) { 628 ret = do_write_string(ff, tp->die_cpus_list[i]); 629 if (ret < 0) 630 goto done; 631 } 632 633 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 634 ret = do_write(ff, &perf_env.cpu[j].die_id, 635 sizeof(perf_env.cpu[j].die_id)); 636 if (ret < 0) 637 return ret; 638 } 639 640 done: 641 cpu_topology__delete(tp); 642 return ret; 643 } 644 645 646 647 static int write_total_mem(struct feat_fd *ff, 648 struct evlist *evlist __maybe_unused) 649 { 650 char *buf = NULL; 651 FILE *fp; 652 size_t len = 0; 653 int ret = -1, n; 654 uint64_t mem; 655 656 fp = fopen("/proc/meminfo", "r"); 657 if (!fp) 658 return -1; 659 660 while (getline(&buf, &len, fp) > 0) { 661 ret = strncmp(buf, "MemTotal:", 9); 662 if (!ret) 663 break; 664 } 665 if (!ret) { 666 n = sscanf(buf, "%*s %"PRIu64, &mem); 667 if (n == 1) 668 ret = do_write(ff, &mem, sizeof(mem)); 669 } else 670 ret = -1; 671 free(buf); 672 fclose(fp); 673 return ret; 674 } 675 676 static int write_numa_topology(struct feat_fd *ff, 677 struct evlist *evlist __maybe_unused) 678 { 679 struct numa_topology *tp; 680 int ret = -1; 681 u32 i; 682 683 tp = numa_topology__new(); 684 if (!tp) 685 return -ENOMEM; 686 687 ret = do_write(ff, &tp->nr, sizeof(u32)); 688 if (ret < 0) 689 goto err; 690 691 for (i = 0; i < tp->nr; i++) { 692 struct numa_topology_node *n = &tp->nodes[i]; 693 694 ret = do_write(ff, &n->node, sizeof(u32)); 695 if (ret < 0) 696 goto err; 697 698 ret = do_write(ff, &n->mem_total, sizeof(u64)); 699 if (ret) 700 goto err; 701 702 ret = do_write(ff, &n->mem_free, sizeof(u64)); 703 if (ret) 704 goto err; 705 706 ret = do_write_string(ff, n->cpus); 707 if (ret < 0) 708 goto err; 709 } 710 711 ret = 0; 712 713 err: 714 numa_topology__delete(tp); 715 return ret; 716 } 717 718 /* 719 * File format: 720 * 721 * struct pmu_mappings { 722 * u32 pmu_num; 723 * struct pmu_map { 724 * u32 type; 725 * char name[]; 726 * }[pmu_num]; 727 * }; 728 */ 729 730 static int write_pmu_mappings(struct feat_fd *ff, 731 struct evlist *evlist __maybe_unused) 732 { 733 struct perf_pmu *pmu = NULL; 734 u32 pmu_num = 0; 735 int ret; 736 737 /* 738 * Do a first pass to count number of pmu to avoid lseek so this 739 * works in pipe mode as well. 740 */ 741 while ((pmu = perf_pmu__scan(pmu))) { 742 if (!pmu->name) 743 continue; 744 pmu_num++; 745 } 746 747 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 748 if (ret < 0) 749 return ret; 750 751 while ((pmu = perf_pmu__scan(pmu))) { 752 if (!pmu->name) 753 continue; 754 755 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 756 if (ret < 0) 757 return ret; 758 759 ret = do_write_string(ff, pmu->name); 760 if (ret < 0) 761 return ret; 762 } 763 764 return 0; 765 } 766 767 /* 768 * File format: 769 * 770 * struct group_descs { 771 * u32 nr_groups; 772 * struct group_desc { 773 * char name[]; 774 * u32 leader_idx; 775 * u32 nr_members; 776 * }[nr_groups]; 777 * }; 778 */ 779 static int write_group_desc(struct feat_fd *ff, 780 struct evlist *evlist) 781 { 782 u32 nr_groups = evlist->core.nr_groups; 783 struct evsel *evsel; 784 int ret; 785 786 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 787 if (ret < 0) 788 return ret; 789 790 evlist__for_each_entry(evlist, evsel) { 791 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 792 const char *name = evsel->group_name ?: "{anon_group}"; 793 u32 leader_idx = evsel->core.idx; 794 u32 nr_members = evsel->core.nr_members; 795 796 ret = do_write_string(ff, name); 797 if (ret < 0) 798 return ret; 799 800 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 801 if (ret < 0) 802 return ret; 803 804 ret = do_write(ff, &nr_members, sizeof(nr_members)); 805 if (ret < 0) 806 return ret; 807 } 808 } 809 return 0; 810 } 811 812 /* 813 * Return the CPU id as a raw string. 814 * 815 * Each architecture should provide a more precise id string that 816 * can be use to match the architecture's "mapfile". 817 */ 818 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 819 { 820 return NULL; 821 } 822 823 /* Return zero when the cpuid from the mapfile.csv matches the 824 * cpuid string generated on this platform. 825 * Otherwise return non-zero. 826 */ 827 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 828 { 829 regex_t re; 830 regmatch_t pmatch[1]; 831 int match; 832 833 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 834 /* Warn unable to generate match particular string. */ 835 pr_info("Invalid regular expression %s\n", mapcpuid); 836 return 1; 837 } 838 839 match = !regexec(&re, cpuid, 1, pmatch, 0); 840 regfree(&re); 841 if (match) { 842 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 843 844 /* Verify the entire string matched. */ 845 if (match_len == strlen(cpuid)) 846 return 0; 847 } 848 return 1; 849 } 850 851 /* 852 * default get_cpuid(): nothing gets recorded 853 * actual implementation must be in arch/$(SRCARCH)/util/header.c 854 */ 855 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 856 { 857 return ENOSYS; /* Not implemented */ 858 } 859 860 static int write_cpuid(struct feat_fd *ff, 861 struct evlist *evlist __maybe_unused) 862 { 863 char buffer[64]; 864 int ret; 865 866 ret = get_cpuid(buffer, sizeof(buffer)); 867 if (ret) 868 return -1; 869 870 return do_write_string(ff, buffer); 871 } 872 873 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 874 struct evlist *evlist __maybe_unused) 875 { 876 return 0; 877 } 878 879 static int write_auxtrace(struct feat_fd *ff, 880 struct evlist *evlist __maybe_unused) 881 { 882 struct perf_session *session; 883 int err; 884 885 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 886 return -1; 887 888 session = container_of(ff->ph, struct perf_session, header); 889 890 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 891 if (err < 0) 892 pr_err("Failed to write auxtrace index\n"); 893 return err; 894 } 895 896 static int write_clockid(struct feat_fd *ff, 897 struct evlist *evlist __maybe_unused) 898 { 899 return do_write(ff, &ff->ph->env.clock.clockid_res_ns, 900 sizeof(ff->ph->env.clock.clockid_res_ns)); 901 } 902 903 static int write_clock_data(struct feat_fd *ff, 904 struct evlist *evlist __maybe_unused) 905 { 906 u64 *data64; 907 u32 data32; 908 int ret; 909 910 /* version */ 911 data32 = 1; 912 913 ret = do_write(ff, &data32, sizeof(data32)); 914 if (ret < 0) 915 return ret; 916 917 /* clockid */ 918 data32 = ff->ph->env.clock.clockid; 919 920 ret = do_write(ff, &data32, sizeof(data32)); 921 if (ret < 0) 922 return ret; 923 924 /* TOD ref time */ 925 data64 = &ff->ph->env.clock.tod_ns; 926 927 ret = do_write(ff, data64, sizeof(*data64)); 928 if (ret < 0) 929 return ret; 930 931 /* clockid ref time */ 932 data64 = &ff->ph->env.clock.clockid_ns; 933 934 return do_write(ff, data64, sizeof(*data64)); 935 } 936 937 static int write_hybrid_topology(struct feat_fd *ff, 938 struct evlist *evlist __maybe_unused) 939 { 940 struct hybrid_topology *tp; 941 int ret; 942 u32 i; 943 944 tp = hybrid_topology__new(); 945 if (!tp) 946 return -ENOENT; 947 948 ret = do_write(ff, &tp->nr, sizeof(u32)); 949 if (ret < 0) 950 goto err; 951 952 for (i = 0; i < tp->nr; i++) { 953 struct hybrid_topology_node *n = &tp->nodes[i]; 954 955 ret = do_write_string(ff, n->pmu_name); 956 if (ret < 0) 957 goto err; 958 959 ret = do_write_string(ff, n->cpus); 960 if (ret < 0) 961 goto err; 962 } 963 964 ret = 0; 965 966 err: 967 hybrid_topology__delete(tp); 968 return ret; 969 } 970 971 static int write_dir_format(struct feat_fd *ff, 972 struct evlist *evlist __maybe_unused) 973 { 974 struct perf_session *session; 975 struct perf_data *data; 976 977 session = container_of(ff->ph, struct perf_session, header); 978 data = session->data; 979 980 if (WARN_ON(!perf_data__is_dir(data))) 981 return -1; 982 983 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 984 } 985 986 #ifdef HAVE_LIBBPF_SUPPORT 987 static int write_bpf_prog_info(struct feat_fd *ff, 988 struct evlist *evlist __maybe_unused) 989 { 990 struct perf_env *env = &ff->ph->env; 991 struct rb_root *root; 992 struct rb_node *next; 993 int ret; 994 995 down_read(&env->bpf_progs.lock); 996 997 ret = do_write(ff, &env->bpf_progs.infos_cnt, 998 sizeof(env->bpf_progs.infos_cnt)); 999 if (ret < 0) 1000 goto out; 1001 1002 root = &env->bpf_progs.infos; 1003 next = rb_first(root); 1004 while (next) { 1005 struct bpf_prog_info_node *node; 1006 size_t len; 1007 1008 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1009 next = rb_next(&node->rb_node); 1010 len = sizeof(struct perf_bpil) + 1011 node->info_linear->data_len; 1012 1013 /* before writing to file, translate address to offset */ 1014 bpil_addr_to_offs(node->info_linear); 1015 ret = do_write(ff, node->info_linear, len); 1016 /* 1017 * translate back to address even when do_write() fails, 1018 * so that this function never changes the data. 1019 */ 1020 bpil_offs_to_addr(node->info_linear); 1021 if (ret < 0) 1022 goto out; 1023 } 1024 out: 1025 up_read(&env->bpf_progs.lock); 1026 return ret; 1027 } 1028 1029 static int write_bpf_btf(struct feat_fd *ff, 1030 struct evlist *evlist __maybe_unused) 1031 { 1032 struct perf_env *env = &ff->ph->env; 1033 struct rb_root *root; 1034 struct rb_node *next; 1035 int ret; 1036 1037 down_read(&env->bpf_progs.lock); 1038 1039 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 1040 sizeof(env->bpf_progs.btfs_cnt)); 1041 1042 if (ret < 0) 1043 goto out; 1044 1045 root = &env->bpf_progs.btfs; 1046 next = rb_first(root); 1047 while (next) { 1048 struct btf_node *node; 1049 1050 node = rb_entry(next, struct btf_node, rb_node); 1051 next = rb_next(&node->rb_node); 1052 ret = do_write(ff, &node->id, 1053 sizeof(u32) * 2 + node->data_size); 1054 if (ret < 0) 1055 goto out; 1056 } 1057 out: 1058 up_read(&env->bpf_progs.lock); 1059 return ret; 1060 } 1061 #endif // HAVE_LIBBPF_SUPPORT 1062 1063 static int cpu_cache_level__sort(const void *a, const void *b) 1064 { 1065 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1066 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1067 1068 return cache_a->level - cache_b->level; 1069 } 1070 1071 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1072 { 1073 if (a->level != b->level) 1074 return false; 1075 1076 if (a->line_size != b->line_size) 1077 return false; 1078 1079 if (a->sets != b->sets) 1080 return false; 1081 1082 if (a->ways != b->ways) 1083 return false; 1084 1085 if (strcmp(a->type, b->type)) 1086 return false; 1087 1088 if (strcmp(a->size, b->size)) 1089 return false; 1090 1091 if (strcmp(a->map, b->map)) 1092 return false; 1093 1094 return true; 1095 } 1096 1097 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1098 { 1099 char path[PATH_MAX], file[PATH_MAX]; 1100 struct stat st; 1101 size_t len; 1102 1103 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1104 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1105 1106 if (stat(file, &st)) 1107 return 1; 1108 1109 scnprintf(file, PATH_MAX, "%s/level", path); 1110 if (sysfs__read_int(file, (int *) &cache->level)) 1111 return -1; 1112 1113 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1114 if (sysfs__read_int(file, (int *) &cache->line_size)) 1115 return -1; 1116 1117 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1118 if (sysfs__read_int(file, (int *) &cache->sets)) 1119 return -1; 1120 1121 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1122 if (sysfs__read_int(file, (int *) &cache->ways)) 1123 return -1; 1124 1125 scnprintf(file, PATH_MAX, "%s/type", path); 1126 if (sysfs__read_str(file, &cache->type, &len)) 1127 return -1; 1128 1129 cache->type[len] = 0; 1130 cache->type = strim(cache->type); 1131 1132 scnprintf(file, PATH_MAX, "%s/size", path); 1133 if (sysfs__read_str(file, &cache->size, &len)) { 1134 zfree(&cache->type); 1135 return -1; 1136 } 1137 1138 cache->size[len] = 0; 1139 cache->size = strim(cache->size); 1140 1141 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1142 if (sysfs__read_str(file, &cache->map, &len)) { 1143 zfree(&cache->size); 1144 zfree(&cache->type); 1145 return -1; 1146 } 1147 1148 cache->map[len] = 0; 1149 cache->map = strim(cache->map); 1150 return 0; 1151 } 1152 1153 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1154 { 1155 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1156 } 1157 1158 #define MAX_CACHE_LVL 4 1159 1160 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1161 { 1162 u32 i, cnt = 0; 1163 u32 nr, cpu; 1164 u16 level; 1165 1166 nr = cpu__max_cpu().cpu; 1167 1168 for (cpu = 0; cpu < nr; cpu++) { 1169 for (level = 0; level < MAX_CACHE_LVL; level++) { 1170 struct cpu_cache_level c; 1171 int err; 1172 1173 err = cpu_cache_level__read(&c, cpu, level); 1174 if (err < 0) 1175 return err; 1176 1177 if (err == 1) 1178 break; 1179 1180 for (i = 0; i < cnt; i++) { 1181 if (cpu_cache_level__cmp(&c, &caches[i])) 1182 break; 1183 } 1184 1185 if (i == cnt) 1186 caches[cnt++] = c; 1187 else 1188 cpu_cache_level__free(&c); 1189 } 1190 } 1191 *cntp = cnt; 1192 return 0; 1193 } 1194 1195 static int write_cache(struct feat_fd *ff, 1196 struct evlist *evlist __maybe_unused) 1197 { 1198 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL; 1199 struct cpu_cache_level caches[max_caches]; 1200 u32 cnt = 0, i, version = 1; 1201 int ret; 1202 1203 ret = build_caches(caches, &cnt); 1204 if (ret) 1205 goto out; 1206 1207 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1208 1209 ret = do_write(ff, &version, sizeof(u32)); 1210 if (ret < 0) 1211 goto out; 1212 1213 ret = do_write(ff, &cnt, sizeof(u32)); 1214 if (ret < 0) 1215 goto out; 1216 1217 for (i = 0; i < cnt; i++) { 1218 struct cpu_cache_level *c = &caches[i]; 1219 1220 #define _W(v) \ 1221 ret = do_write(ff, &c->v, sizeof(u32)); \ 1222 if (ret < 0) \ 1223 goto out; 1224 1225 _W(level) 1226 _W(line_size) 1227 _W(sets) 1228 _W(ways) 1229 #undef _W 1230 1231 #define _W(v) \ 1232 ret = do_write_string(ff, (const char *) c->v); \ 1233 if (ret < 0) \ 1234 goto out; 1235 1236 _W(type) 1237 _W(size) 1238 _W(map) 1239 #undef _W 1240 } 1241 1242 out: 1243 for (i = 0; i < cnt; i++) 1244 cpu_cache_level__free(&caches[i]); 1245 return ret; 1246 } 1247 1248 static int write_stat(struct feat_fd *ff __maybe_unused, 1249 struct evlist *evlist __maybe_unused) 1250 { 1251 return 0; 1252 } 1253 1254 static int write_sample_time(struct feat_fd *ff, 1255 struct evlist *evlist) 1256 { 1257 int ret; 1258 1259 ret = do_write(ff, &evlist->first_sample_time, 1260 sizeof(evlist->first_sample_time)); 1261 if (ret < 0) 1262 return ret; 1263 1264 return do_write(ff, &evlist->last_sample_time, 1265 sizeof(evlist->last_sample_time)); 1266 } 1267 1268 1269 static int memory_node__read(struct memory_node *n, unsigned long idx) 1270 { 1271 unsigned int phys, size = 0; 1272 char path[PATH_MAX]; 1273 struct dirent *ent; 1274 DIR *dir; 1275 1276 #define for_each_memory(mem, dir) \ 1277 while ((ent = readdir(dir))) \ 1278 if (strcmp(ent->d_name, ".") && \ 1279 strcmp(ent->d_name, "..") && \ 1280 sscanf(ent->d_name, "memory%u", &mem) == 1) 1281 1282 scnprintf(path, PATH_MAX, 1283 "%s/devices/system/node/node%lu", 1284 sysfs__mountpoint(), idx); 1285 1286 dir = opendir(path); 1287 if (!dir) { 1288 pr_warning("failed: can't open memory sysfs data\n"); 1289 return -1; 1290 } 1291 1292 for_each_memory(phys, dir) { 1293 size = max(phys, size); 1294 } 1295 1296 size++; 1297 1298 n->set = bitmap_zalloc(size); 1299 if (!n->set) { 1300 closedir(dir); 1301 return -ENOMEM; 1302 } 1303 1304 n->node = idx; 1305 n->size = size; 1306 1307 rewinddir(dir); 1308 1309 for_each_memory(phys, dir) { 1310 set_bit(phys, n->set); 1311 } 1312 1313 closedir(dir); 1314 return 0; 1315 } 1316 1317 static int memory_node__sort(const void *a, const void *b) 1318 { 1319 const struct memory_node *na = a; 1320 const struct memory_node *nb = b; 1321 1322 return na->node - nb->node; 1323 } 1324 1325 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1326 { 1327 char path[PATH_MAX]; 1328 struct dirent *ent; 1329 DIR *dir; 1330 u64 cnt = 0; 1331 int ret = 0; 1332 1333 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1334 sysfs__mountpoint()); 1335 1336 dir = opendir(path); 1337 if (!dir) { 1338 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n", 1339 __func__, path); 1340 return -1; 1341 } 1342 1343 while (!ret && (ent = readdir(dir))) { 1344 unsigned int idx; 1345 int r; 1346 1347 if (!strcmp(ent->d_name, ".") || 1348 !strcmp(ent->d_name, "..")) 1349 continue; 1350 1351 r = sscanf(ent->d_name, "node%u", &idx); 1352 if (r != 1) 1353 continue; 1354 1355 if (WARN_ONCE(cnt >= size, 1356 "failed to write MEM_TOPOLOGY, way too many nodes\n")) { 1357 closedir(dir); 1358 return -1; 1359 } 1360 1361 ret = memory_node__read(&nodes[cnt++], idx); 1362 } 1363 1364 *cntp = cnt; 1365 closedir(dir); 1366 1367 if (!ret) 1368 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1369 1370 return ret; 1371 } 1372 1373 #define MAX_MEMORY_NODES 2000 1374 1375 /* 1376 * The MEM_TOPOLOGY holds physical memory map for every 1377 * node in system. The format of data is as follows: 1378 * 1379 * 0 - version | for future changes 1380 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1381 * 16 - count | number of nodes 1382 * 1383 * For each node we store map of physical indexes for 1384 * each node: 1385 * 1386 * 32 - node id | node index 1387 * 40 - size | size of bitmap 1388 * 48 - bitmap | bitmap of memory indexes that belongs to node 1389 */ 1390 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1391 struct evlist *evlist __maybe_unused) 1392 { 1393 static struct memory_node nodes[MAX_MEMORY_NODES]; 1394 u64 bsize, version = 1, i, nr; 1395 int ret; 1396 1397 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1398 (unsigned long long *) &bsize); 1399 if (ret) 1400 return ret; 1401 1402 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1403 if (ret) 1404 return ret; 1405 1406 ret = do_write(ff, &version, sizeof(version)); 1407 if (ret < 0) 1408 goto out; 1409 1410 ret = do_write(ff, &bsize, sizeof(bsize)); 1411 if (ret < 0) 1412 goto out; 1413 1414 ret = do_write(ff, &nr, sizeof(nr)); 1415 if (ret < 0) 1416 goto out; 1417 1418 for (i = 0; i < nr; i++) { 1419 struct memory_node *n = &nodes[i]; 1420 1421 #define _W(v) \ 1422 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1423 if (ret < 0) \ 1424 goto out; 1425 1426 _W(node) 1427 _W(size) 1428 1429 #undef _W 1430 1431 ret = do_write_bitmap(ff, n->set, n->size); 1432 if (ret < 0) 1433 goto out; 1434 } 1435 1436 out: 1437 return ret; 1438 } 1439 1440 static int write_compressed(struct feat_fd *ff __maybe_unused, 1441 struct evlist *evlist __maybe_unused) 1442 { 1443 int ret; 1444 1445 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1446 if (ret) 1447 return ret; 1448 1449 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1450 if (ret) 1451 return ret; 1452 1453 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1454 if (ret) 1455 return ret; 1456 1457 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1458 if (ret) 1459 return ret; 1460 1461 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1462 } 1463 1464 static int write_per_cpu_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu, 1465 bool write_pmu) 1466 { 1467 struct perf_pmu_caps *caps = NULL; 1468 int nr_caps; 1469 int ret; 1470 1471 nr_caps = perf_pmu__caps_parse(pmu); 1472 if (nr_caps < 0) 1473 return nr_caps; 1474 1475 ret = do_write(ff, &nr_caps, sizeof(nr_caps)); 1476 if (ret < 0) 1477 return ret; 1478 1479 list_for_each_entry(caps, &pmu->caps, list) { 1480 ret = do_write_string(ff, caps->name); 1481 if (ret < 0) 1482 return ret; 1483 1484 ret = do_write_string(ff, caps->value); 1485 if (ret < 0) 1486 return ret; 1487 } 1488 1489 if (write_pmu) { 1490 ret = do_write_string(ff, pmu->name); 1491 if (ret < 0) 1492 return ret; 1493 } 1494 1495 return ret; 1496 } 1497 1498 static int write_cpu_pmu_caps(struct feat_fd *ff, 1499 struct evlist *evlist __maybe_unused) 1500 { 1501 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu"); 1502 1503 if (!cpu_pmu) 1504 return -ENOENT; 1505 1506 return write_per_cpu_pmu_caps(ff, cpu_pmu, false); 1507 } 1508 1509 static int write_hybrid_cpu_pmu_caps(struct feat_fd *ff, 1510 struct evlist *evlist __maybe_unused) 1511 { 1512 struct perf_pmu *pmu; 1513 u32 nr_pmu = perf_pmu__hybrid_pmu_num(); 1514 int ret; 1515 1516 if (nr_pmu == 0) 1517 return -ENOENT; 1518 1519 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu)); 1520 if (ret < 0) 1521 return ret; 1522 1523 perf_pmu__for_each_hybrid_pmu(pmu) { 1524 ret = write_per_cpu_pmu_caps(ff, pmu, true); 1525 if (ret < 0) 1526 return ret; 1527 } 1528 1529 return 0; 1530 } 1531 1532 static void print_hostname(struct feat_fd *ff, FILE *fp) 1533 { 1534 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1535 } 1536 1537 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1538 { 1539 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1540 } 1541 1542 static void print_arch(struct feat_fd *ff, FILE *fp) 1543 { 1544 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1545 } 1546 1547 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1548 { 1549 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1550 } 1551 1552 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1553 { 1554 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1555 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1556 } 1557 1558 static void print_version(struct feat_fd *ff, FILE *fp) 1559 { 1560 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1561 } 1562 1563 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1564 { 1565 int nr, i; 1566 1567 nr = ff->ph->env.nr_cmdline; 1568 1569 fprintf(fp, "# cmdline : "); 1570 1571 for (i = 0; i < nr; i++) { 1572 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1573 if (!argv_i) { 1574 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1575 } else { 1576 char *mem = argv_i; 1577 do { 1578 char *quote = strchr(argv_i, '\''); 1579 if (!quote) 1580 break; 1581 *quote++ = '\0'; 1582 fprintf(fp, "%s\\\'", argv_i); 1583 argv_i = quote; 1584 } while (1); 1585 fprintf(fp, "%s ", argv_i); 1586 free(mem); 1587 } 1588 } 1589 fputc('\n', fp); 1590 } 1591 1592 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1593 { 1594 struct perf_header *ph = ff->ph; 1595 int cpu_nr = ph->env.nr_cpus_avail; 1596 int nr, i; 1597 char *str; 1598 1599 nr = ph->env.nr_sibling_cores; 1600 str = ph->env.sibling_cores; 1601 1602 for (i = 0; i < nr; i++) { 1603 fprintf(fp, "# sibling sockets : %s\n", str); 1604 str += strlen(str) + 1; 1605 } 1606 1607 if (ph->env.nr_sibling_dies) { 1608 nr = ph->env.nr_sibling_dies; 1609 str = ph->env.sibling_dies; 1610 1611 for (i = 0; i < nr; i++) { 1612 fprintf(fp, "# sibling dies : %s\n", str); 1613 str += strlen(str) + 1; 1614 } 1615 } 1616 1617 nr = ph->env.nr_sibling_threads; 1618 str = ph->env.sibling_threads; 1619 1620 for (i = 0; i < nr; i++) { 1621 fprintf(fp, "# sibling threads : %s\n", str); 1622 str += strlen(str) + 1; 1623 } 1624 1625 if (ph->env.nr_sibling_dies) { 1626 if (ph->env.cpu != NULL) { 1627 for (i = 0; i < cpu_nr; i++) 1628 fprintf(fp, "# CPU %d: Core ID %d, " 1629 "Die ID %d, Socket ID %d\n", 1630 i, ph->env.cpu[i].core_id, 1631 ph->env.cpu[i].die_id, 1632 ph->env.cpu[i].socket_id); 1633 } else 1634 fprintf(fp, "# Core ID, Die ID and Socket ID " 1635 "information is not available\n"); 1636 } else { 1637 if (ph->env.cpu != NULL) { 1638 for (i = 0; i < cpu_nr; i++) 1639 fprintf(fp, "# CPU %d: Core ID %d, " 1640 "Socket ID %d\n", 1641 i, ph->env.cpu[i].core_id, 1642 ph->env.cpu[i].socket_id); 1643 } else 1644 fprintf(fp, "# Core ID and Socket ID " 1645 "information is not available\n"); 1646 } 1647 } 1648 1649 static void print_clockid(struct feat_fd *ff, FILE *fp) 1650 { 1651 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1652 ff->ph->env.clock.clockid_res_ns * 1000); 1653 } 1654 1655 static void print_clock_data(struct feat_fd *ff, FILE *fp) 1656 { 1657 struct timespec clockid_ns; 1658 char tstr[64], date[64]; 1659 struct timeval tod_ns; 1660 clockid_t clockid; 1661 struct tm ltime; 1662 u64 ref; 1663 1664 if (!ff->ph->env.clock.enabled) { 1665 fprintf(fp, "# reference time disabled\n"); 1666 return; 1667 } 1668 1669 /* Compute TOD time. */ 1670 ref = ff->ph->env.clock.tod_ns; 1671 tod_ns.tv_sec = ref / NSEC_PER_SEC; 1672 ref -= tod_ns.tv_sec * NSEC_PER_SEC; 1673 tod_ns.tv_usec = ref / NSEC_PER_USEC; 1674 1675 /* Compute clockid time. */ 1676 ref = ff->ph->env.clock.clockid_ns; 1677 clockid_ns.tv_sec = ref / NSEC_PER_SEC; 1678 ref -= clockid_ns.tv_sec * NSEC_PER_SEC; 1679 clockid_ns.tv_nsec = ref; 1680 1681 clockid = ff->ph->env.clock.clockid; 1682 1683 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) 1684 snprintf(tstr, sizeof(tstr), "<error>"); 1685 else { 1686 strftime(date, sizeof(date), "%F %T", <ime); 1687 scnprintf(tstr, sizeof(tstr), "%s.%06d", 1688 date, (int) tod_ns.tv_usec); 1689 } 1690 1691 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); 1692 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", 1693 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec, 1694 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec, 1695 clockid_name(clockid)); 1696 } 1697 1698 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp) 1699 { 1700 int i; 1701 struct hybrid_node *n; 1702 1703 fprintf(fp, "# hybrid cpu system:\n"); 1704 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) { 1705 n = &ff->ph->env.hybrid_nodes[i]; 1706 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus); 1707 } 1708 } 1709 1710 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1711 { 1712 struct perf_session *session; 1713 struct perf_data *data; 1714 1715 session = container_of(ff->ph, struct perf_session, header); 1716 data = session->data; 1717 1718 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1719 } 1720 1721 #ifdef HAVE_LIBBPF_SUPPORT 1722 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1723 { 1724 struct perf_env *env = &ff->ph->env; 1725 struct rb_root *root; 1726 struct rb_node *next; 1727 1728 down_read(&env->bpf_progs.lock); 1729 1730 root = &env->bpf_progs.infos; 1731 next = rb_first(root); 1732 1733 while (next) { 1734 struct bpf_prog_info_node *node; 1735 1736 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1737 next = rb_next(&node->rb_node); 1738 1739 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1740 env, fp); 1741 } 1742 1743 up_read(&env->bpf_progs.lock); 1744 } 1745 1746 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1747 { 1748 struct perf_env *env = &ff->ph->env; 1749 struct rb_root *root; 1750 struct rb_node *next; 1751 1752 down_read(&env->bpf_progs.lock); 1753 1754 root = &env->bpf_progs.btfs; 1755 next = rb_first(root); 1756 1757 while (next) { 1758 struct btf_node *node; 1759 1760 node = rb_entry(next, struct btf_node, rb_node); 1761 next = rb_next(&node->rb_node); 1762 fprintf(fp, "# btf info of id %u\n", node->id); 1763 } 1764 1765 up_read(&env->bpf_progs.lock); 1766 } 1767 #endif // HAVE_LIBBPF_SUPPORT 1768 1769 static void free_event_desc(struct evsel *events) 1770 { 1771 struct evsel *evsel; 1772 1773 if (!events) 1774 return; 1775 1776 for (evsel = events; evsel->core.attr.size; evsel++) { 1777 zfree(&evsel->name); 1778 zfree(&evsel->core.id); 1779 } 1780 1781 free(events); 1782 } 1783 1784 static bool perf_attr_check(struct perf_event_attr *attr) 1785 { 1786 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1787 pr_warning("Reserved bits are set unexpectedly. " 1788 "Please update perf tool.\n"); 1789 return false; 1790 } 1791 1792 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1793 pr_warning("Unknown sample type (0x%llx) is detected. " 1794 "Please update perf tool.\n", 1795 attr->sample_type); 1796 return false; 1797 } 1798 1799 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1800 pr_warning("Unknown read format (0x%llx) is detected. " 1801 "Please update perf tool.\n", 1802 attr->read_format); 1803 return false; 1804 } 1805 1806 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1807 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1808 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1809 "Please update perf tool.\n", 1810 attr->branch_sample_type); 1811 1812 return false; 1813 } 1814 1815 return true; 1816 } 1817 1818 static struct evsel *read_event_desc(struct feat_fd *ff) 1819 { 1820 struct evsel *evsel, *events = NULL; 1821 u64 *id; 1822 void *buf = NULL; 1823 u32 nre, sz, nr, i, j; 1824 size_t msz; 1825 1826 /* number of events */ 1827 if (do_read_u32(ff, &nre)) 1828 goto error; 1829 1830 if (do_read_u32(ff, &sz)) 1831 goto error; 1832 1833 /* buffer to hold on file attr struct */ 1834 buf = malloc(sz); 1835 if (!buf) 1836 goto error; 1837 1838 /* the last event terminates with evsel->core.attr.size == 0: */ 1839 events = calloc(nre + 1, sizeof(*events)); 1840 if (!events) 1841 goto error; 1842 1843 msz = sizeof(evsel->core.attr); 1844 if (sz < msz) 1845 msz = sz; 1846 1847 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1848 evsel->core.idx = i; 1849 1850 /* 1851 * must read entire on-file attr struct to 1852 * sync up with layout. 1853 */ 1854 if (__do_read(ff, buf, sz)) 1855 goto error; 1856 1857 if (ff->ph->needs_swap) 1858 perf_event__attr_swap(buf); 1859 1860 memcpy(&evsel->core.attr, buf, msz); 1861 1862 if (!perf_attr_check(&evsel->core.attr)) 1863 goto error; 1864 1865 if (do_read_u32(ff, &nr)) 1866 goto error; 1867 1868 if (ff->ph->needs_swap) 1869 evsel->needs_swap = true; 1870 1871 evsel->name = do_read_string(ff); 1872 if (!evsel->name) 1873 goto error; 1874 1875 if (!nr) 1876 continue; 1877 1878 id = calloc(nr, sizeof(*id)); 1879 if (!id) 1880 goto error; 1881 evsel->core.ids = nr; 1882 evsel->core.id = id; 1883 1884 for (j = 0 ; j < nr; j++) { 1885 if (do_read_u64(ff, id)) 1886 goto error; 1887 id++; 1888 } 1889 } 1890 out: 1891 free(buf); 1892 return events; 1893 error: 1894 free_event_desc(events); 1895 events = NULL; 1896 goto out; 1897 } 1898 1899 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1900 void *priv __maybe_unused) 1901 { 1902 return fprintf(fp, ", %s = %s", name, val); 1903 } 1904 1905 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1906 { 1907 struct evsel *evsel, *events; 1908 u32 j; 1909 u64 *id; 1910 1911 if (ff->events) 1912 events = ff->events; 1913 else 1914 events = read_event_desc(ff); 1915 1916 if (!events) { 1917 fprintf(fp, "# event desc: not available or unable to read\n"); 1918 return; 1919 } 1920 1921 for (evsel = events; evsel->core.attr.size; evsel++) { 1922 fprintf(fp, "# event : name = %s, ", evsel->name); 1923 1924 if (evsel->core.ids) { 1925 fprintf(fp, ", id = {"); 1926 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 1927 if (j) 1928 fputc(',', fp); 1929 fprintf(fp, " %"PRIu64, *id); 1930 } 1931 fprintf(fp, " }"); 1932 } 1933 1934 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 1935 1936 fputc('\n', fp); 1937 } 1938 1939 free_event_desc(events); 1940 ff->events = NULL; 1941 } 1942 1943 static void print_total_mem(struct feat_fd *ff, FILE *fp) 1944 { 1945 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 1946 } 1947 1948 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 1949 { 1950 int i; 1951 struct numa_node *n; 1952 1953 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 1954 n = &ff->ph->env.numa_nodes[i]; 1955 1956 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 1957 " free = %"PRIu64" kB\n", 1958 n->node, n->mem_total, n->mem_free); 1959 1960 fprintf(fp, "# node%u cpu list : ", n->node); 1961 cpu_map__fprintf(n->map, fp); 1962 } 1963 } 1964 1965 static void print_cpuid(struct feat_fd *ff, FILE *fp) 1966 { 1967 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 1968 } 1969 1970 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 1971 { 1972 fprintf(fp, "# contains samples with branch stack\n"); 1973 } 1974 1975 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 1976 { 1977 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 1978 } 1979 1980 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 1981 { 1982 fprintf(fp, "# contains stat data\n"); 1983 } 1984 1985 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 1986 { 1987 int i; 1988 1989 fprintf(fp, "# CPU cache info:\n"); 1990 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 1991 fprintf(fp, "# "); 1992 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 1993 } 1994 } 1995 1996 static void print_compressed(struct feat_fd *ff, FILE *fp) 1997 { 1998 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 1999 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 2000 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 2001 } 2002 2003 static void print_per_cpu_pmu_caps(FILE *fp, int nr_caps, char *cpu_pmu_caps, 2004 char *pmu_name) 2005 { 2006 const char *delimiter; 2007 char *str, buf[128]; 2008 2009 if (!nr_caps) { 2010 if (!pmu_name) 2011 fprintf(fp, "# cpu pmu capabilities: not available\n"); 2012 else 2013 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name); 2014 return; 2015 } 2016 2017 if (!pmu_name) 2018 scnprintf(buf, sizeof(buf), "# cpu pmu capabilities: "); 2019 else 2020 scnprintf(buf, sizeof(buf), "# %s pmu capabilities: ", pmu_name); 2021 2022 delimiter = buf; 2023 2024 str = cpu_pmu_caps; 2025 while (nr_caps--) { 2026 fprintf(fp, "%s%s", delimiter, str); 2027 delimiter = ", "; 2028 str += strlen(str) + 1; 2029 } 2030 2031 fprintf(fp, "\n"); 2032 } 2033 2034 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2035 { 2036 print_per_cpu_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps, 2037 ff->ph->env.cpu_pmu_caps, NULL); 2038 } 2039 2040 static void print_hybrid_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2041 { 2042 struct hybrid_cpc_node *n; 2043 2044 for (int i = 0; i < ff->ph->env.nr_hybrid_cpc_nodes; i++) { 2045 n = &ff->ph->env.hybrid_cpc_nodes[i]; 2046 print_per_cpu_pmu_caps(fp, n->nr_cpu_pmu_caps, 2047 n->cpu_pmu_caps, 2048 n->pmu_name); 2049 } 2050 } 2051 2052 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 2053 { 2054 const char *delimiter = "# pmu mappings: "; 2055 char *str, *tmp; 2056 u32 pmu_num; 2057 u32 type; 2058 2059 pmu_num = ff->ph->env.nr_pmu_mappings; 2060 if (!pmu_num) { 2061 fprintf(fp, "# pmu mappings: not available\n"); 2062 return; 2063 } 2064 2065 str = ff->ph->env.pmu_mappings; 2066 2067 while (pmu_num) { 2068 type = strtoul(str, &tmp, 0); 2069 if (*tmp != ':') 2070 goto error; 2071 2072 str = tmp + 1; 2073 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 2074 2075 delimiter = ", "; 2076 str += strlen(str) + 1; 2077 pmu_num--; 2078 } 2079 2080 fprintf(fp, "\n"); 2081 2082 if (!pmu_num) 2083 return; 2084 error: 2085 fprintf(fp, "# pmu mappings: unable to read\n"); 2086 } 2087 2088 static void print_group_desc(struct feat_fd *ff, FILE *fp) 2089 { 2090 struct perf_session *session; 2091 struct evsel *evsel; 2092 u32 nr = 0; 2093 2094 session = container_of(ff->ph, struct perf_session, header); 2095 2096 evlist__for_each_entry(session->evlist, evsel) { 2097 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 2098 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); 2099 2100 nr = evsel->core.nr_members - 1; 2101 } else if (nr) { 2102 fprintf(fp, ",%s", evsel__name(evsel)); 2103 2104 if (--nr == 0) 2105 fprintf(fp, "}\n"); 2106 } 2107 } 2108 } 2109 2110 static void print_sample_time(struct feat_fd *ff, FILE *fp) 2111 { 2112 struct perf_session *session; 2113 char time_buf[32]; 2114 double d; 2115 2116 session = container_of(ff->ph, struct perf_session, header); 2117 2118 timestamp__scnprintf_usec(session->evlist->first_sample_time, 2119 time_buf, sizeof(time_buf)); 2120 fprintf(fp, "# time of first sample : %s\n", time_buf); 2121 2122 timestamp__scnprintf_usec(session->evlist->last_sample_time, 2123 time_buf, sizeof(time_buf)); 2124 fprintf(fp, "# time of last sample : %s\n", time_buf); 2125 2126 d = (double)(session->evlist->last_sample_time - 2127 session->evlist->first_sample_time) / NSEC_PER_MSEC; 2128 2129 fprintf(fp, "# sample duration : %10.3f ms\n", d); 2130 } 2131 2132 static void memory_node__fprintf(struct memory_node *n, 2133 unsigned long long bsize, FILE *fp) 2134 { 2135 char buf_map[100], buf_size[50]; 2136 unsigned long long size; 2137 2138 size = bsize * bitmap_weight(n->set, n->size); 2139 unit_number__scnprintf(buf_size, 50, size); 2140 2141 bitmap_scnprintf(n->set, n->size, buf_map, 100); 2142 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 2143 } 2144 2145 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 2146 { 2147 struct memory_node *nodes; 2148 int i, nr; 2149 2150 nodes = ff->ph->env.memory_nodes; 2151 nr = ff->ph->env.nr_memory_nodes; 2152 2153 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 2154 nr, ff->ph->env.memory_bsize); 2155 2156 for (i = 0; i < nr; i++) { 2157 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 2158 } 2159 } 2160 2161 static int __event_process_build_id(struct perf_record_header_build_id *bev, 2162 char *filename, 2163 struct perf_session *session) 2164 { 2165 int err = -1; 2166 struct machine *machine; 2167 u16 cpumode; 2168 struct dso *dso; 2169 enum dso_space_type dso_space; 2170 2171 machine = perf_session__findnew_machine(session, bev->pid); 2172 if (!machine) 2173 goto out; 2174 2175 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2176 2177 switch (cpumode) { 2178 case PERF_RECORD_MISC_KERNEL: 2179 dso_space = DSO_SPACE__KERNEL; 2180 break; 2181 case PERF_RECORD_MISC_GUEST_KERNEL: 2182 dso_space = DSO_SPACE__KERNEL_GUEST; 2183 break; 2184 case PERF_RECORD_MISC_USER: 2185 case PERF_RECORD_MISC_GUEST_USER: 2186 dso_space = DSO_SPACE__USER; 2187 break; 2188 default: 2189 goto out; 2190 } 2191 2192 dso = machine__findnew_dso(machine, filename); 2193 if (dso != NULL) { 2194 char sbuild_id[SBUILD_ID_SIZE]; 2195 struct build_id bid; 2196 size_t size = BUILD_ID_SIZE; 2197 2198 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) 2199 size = bev->size; 2200 2201 build_id__init(&bid, bev->data, size); 2202 dso__set_build_id(dso, &bid); 2203 dso->header_build_id = 1; 2204 2205 if (dso_space != DSO_SPACE__USER) { 2206 struct kmod_path m = { .name = NULL, }; 2207 2208 if (!kmod_path__parse_name(&m, filename) && m.kmod) 2209 dso__set_module_info(dso, &m, machine); 2210 2211 dso->kernel = dso_space; 2212 free(m.name); 2213 } 2214 2215 build_id__sprintf(&dso->bid, sbuild_id); 2216 pr_debug("build id event received for %s: %s [%zu]\n", 2217 dso->long_name, sbuild_id, size); 2218 dso__put(dso); 2219 } 2220 2221 err = 0; 2222 out: 2223 return err; 2224 } 2225 2226 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 2227 int input, u64 offset, u64 size) 2228 { 2229 struct perf_session *session = container_of(header, struct perf_session, header); 2230 struct { 2231 struct perf_event_header header; 2232 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 2233 char filename[0]; 2234 } old_bev; 2235 struct perf_record_header_build_id bev; 2236 char filename[PATH_MAX]; 2237 u64 limit = offset + size; 2238 2239 while (offset < limit) { 2240 ssize_t len; 2241 2242 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2243 return -1; 2244 2245 if (header->needs_swap) 2246 perf_event_header__bswap(&old_bev.header); 2247 2248 len = old_bev.header.size - sizeof(old_bev); 2249 if (readn(input, filename, len) != len) 2250 return -1; 2251 2252 bev.header = old_bev.header; 2253 2254 /* 2255 * As the pid is the missing value, we need to fill 2256 * it properly. The header.misc value give us nice hint. 2257 */ 2258 bev.pid = HOST_KERNEL_ID; 2259 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2260 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2261 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2262 2263 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2264 __event_process_build_id(&bev, filename, session); 2265 2266 offset += bev.header.size; 2267 } 2268 2269 return 0; 2270 } 2271 2272 static int perf_header__read_build_ids(struct perf_header *header, 2273 int input, u64 offset, u64 size) 2274 { 2275 struct perf_session *session = container_of(header, struct perf_session, header); 2276 struct perf_record_header_build_id bev; 2277 char filename[PATH_MAX]; 2278 u64 limit = offset + size, orig_offset = offset; 2279 int err = -1; 2280 2281 while (offset < limit) { 2282 ssize_t len; 2283 2284 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2285 goto out; 2286 2287 if (header->needs_swap) 2288 perf_event_header__bswap(&bev.header); 2289 2290 len = bev.header.size - sizeof(bev); 2291 if (readn(input, filename, len) != len) 2292 goto out; 2293 /* 2294 * The a1645ce1 changeset: 2295 * 2296 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2297 * 2298 * Added a field to struct perf_record_header_build_id that broke the file 2299 * format. 2300 * 2301 * Since the kernel build-id is the first entry, process the 2302 * table using the old format if the well known 2303 * '[kernel.kallsyms]' string for the kernel build-id has the 2304 * first 4 characters chopped off (where the pid_t sits). 2305 */ 2306 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2307 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2308 return -1; 2309 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2310 } 2311 2312 __event_process_build_id(&bev, filename, session); 2313 2314 offset += bev.header.size; 2315 } 2316 err = 0; 2317 out: 2318 return err; 2319 } 2320 2321 /* Macro for features that simply need to read and store a string. */ 2322 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2323 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2324 {\ 2325 free(ff->ph->env.__feat_env); \ 2326 ff->ph->env.__feat_env = do_read_string(ff); \ 2327 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2328 } 2329 2330 FEAT_PROCESS_STR_FUN(hostname, hostname); 2331 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2332 FEAT_PROCESS_STR_FUN(version, version); 2333 FEAT_PROCESS_STR_FUN(arch, arch); 2334 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2335 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2336 2337 static int process_tracing_data(struct feat_fd *ff, void *data) 2338 { 2339 ssize_t ret = trace_report(ff->fd, data, false); 2340 2341 return ret < 0 ? -1 : 0; 2342 } 2343 2344 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2345 { 2346 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2347 pr_debug("Failed to read buildids, continuing...\n"); 2348 return 0; 2349 } 2350 2351 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2352 { 2353 int ret; 2354 u32 nr_cpus_avail, nr_cpus_online; 2355 2356 ret = do_read_u32(ff, &nr_cpus_avail); 2357 if (ret) 2358 return ret; 2359 2360 ret = do_read_u32(ff, &nr_cpus_online); 2361 if (ret) 2362 return ret; 2363 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2364 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2365 return 0; 2366 } 2367 2368 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2369 { 2370 u64 total_mem; 2371 int ret; 2372 2373 ret = do_read_u64(ff, &total_mem); 2374 if (ret) 2375 return -1; 2376 ff->ph->env.total_mem = (unsigned long long)total_mem; 2377 return 0; 2378 } 2379 2380 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) 2381 { 2382 struct evsel *evsel; 2383 2384 evlist__for_each_entry(evlist, evsel) { 2385 if (evsel->core.idx == idx) 2386 return evsel; 2387 } 2388 2389 return NULL; 2390 } 2391 2392 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event) 2393 { 2394 struct evsel *evsel; 2395 2396 if (!event->name) 2397 return; 2398 2399 evsel = evlist__find_by_index(evlist, event->core.idx); 2400 if (!evsel) 2401 return; 2402 2403 if (evsel->name) 2404 return; 2405 2406 evsel->name = strdup(event->name); 2407 } 2408 2409 static int 2410 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2411 { 2412 struct perf_session *session; 2413 struct evsel *evsel, *events = read_event_desc(ff); 2414 2415 if (!events) 2416 return 0; 2417 2418 session = container_of(ff->ph, struct perf_session, header); 2419 2420 if (session->data->is_pipe) { 2421 /* Save events for reading later by print_event_desc, 2422 * since they can't be read again in pipe mode. */ 2423 ff->events = events; 2424 } 2425 2426 for (evsel = events; evsel->core.attr.size; evsel++) 2427 evlist__set_event_name(session->evlist, evsel); 2428 2429 if (!session->data->is_pipe) 2430 free_event_desc(events); 2431 2432 return 0; 2433 } 2434 2435 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2436 { 2437 char *str, *cmdline = NULL, **argv = NULL; 2438 u32 nr, i, len = 0; 2439 2440 if (do_read_u32(ff, &nr)) 2441 return -1; 2442 2443 ff->ph->env.nr_cmdline = nr; 2444 2445 cmdline = zalloc(ff->size + nr + 1); 2446 if (!cmdline) 2447 return -1; 2448 2449 argv = zalloc(sizeof(char *) * (nr + 1)); 2450 if (!argv) 2451 goto error; 2452 2453 for (i = 0; i < nr; i++) { 2454 str = do_read_string(ff); 2455 if (!str) 2456 goto error; 2457 2458 argv[i] = cmdline + len; 2459 memcpy(argv[i], str, strlen(str) + 1); 2460 len += strlen(str) + 1; 2461 free(str); 2462 } 2463 ff->ph->env.cmdline = cmdline; 2464 ff->ph->env.cmdline_argv = (const char **) argv; 2465 return 0; 2466 2467 error: 2468 free(argv); 2469 free(cmdline); 2470 return -1; 2471 } 2472 2473 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2474 { 2475 u32 nr, i; 2476 char *str; 2477 struct strbuf sb; 2478 int cpu_nr = ff->ph->env.nr_cpus_avail; 2479 u64 size = 0; 2480 struct perf_header *ph = ff->ph; 2481 bool do_core_id_test = true; 2482 2483 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2484 if (!ph->env.cpu) 2485 return -1; 2486 2487 if (do_read_u32(ff, &nr)) 2488 goto free_cpu; 2489 2490 ph->env.nr_sibling_cores = nr; 2491 size += sizeof(u32); 2492 if (strbuf_init(&sb, 128) < 0) 2493 goto free_cpu; 2494 2495 for (i = 0; i < nr; i++) { 2496 str = do_read_string(ff); 2497 if (!str) 2498 goto error; 2499 2500 /* include a NULL character at the end */ 2501 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2502 goto error; 2503 size += string_size(str); 2504 free(str); 2505 } 2506 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2507 2508 if (do_read_u32(ff, &nr)) 2509 return -1; 2510 2511 ph->env.nr_sibling_threads = nr; 2512 size += sizeof(u32); 2513 2514 for (i = 0; i < nr; i++) { 2515 str = do_read_string(ff); 2516 if (!str) 2517 goto error; 2518 2519 /* include a NULL character at the end */ 2520 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2521 goto error; 2522 size += string_size(str); 2523 free(str); 2524 } 2525 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2526 2527 /* 2528 * The header may be from old perf, 2529 * which doesn't include core id and socket id information. 2530 */ 2531 if (ff->size <= size) { 2532 zfree(&ph->env.cpu); 2533 return 0; 2534 } 2535 2536 /* On s390 the socket_id number is not related to the numbers of cpus. 2537 * The socket_id number might be higher than the numbers of cpus. 2538 * This depends on the configuration. 2539 * AArch64 is the same. 2540 */ 2541 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2542 || !strncmp(ph->env.arch, "aarch64", 7))) 2543 do_core_id_test = false; 2544 2545 for (i = 0; i < (u32)cpu_nr; i++) { 2546 if (do_read_u32(ff, &nr)) 2547 goto free_cpu; 2548 2549 ph->env.cpu[i].core_id = nr; 2550 size += sizeof(u32); 2551 2552 if (do_read_u32(ff, &nr)) 2553 goto free_cpu; 2554 2555 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2556 pr_debug("socket_id number is too big." 2557 "You may need to upgrade the perf tool.\n"); 2558 goto free_cpu; 2559 } 2560 2561 ph->env.cpu[i].socket_id = nr; 2562 size += sizeof(u32); 2563 } 2564 2565 /* 2566 * The header may be from old perf, 2567 * which doesn't include die information. 2568 */ 2569 if (ff->size <= size) 2570 return 0; 2571 2572 if (do_read_u32(ff, &nr)) 2573 return -1; 2574 2575 ph->env.nr_sibling_dies = nr; 2576 size += sizeof(u32); 2577 2578 for (i = 0; i < nr; i++) { 2579 str = do_read_string(ff); 2580 if (!str) 2581 goto error; 2582 2583 /* include a NULL character at the end */ 2584 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2585 goto error; 2586 size += string_size(str); 2587 free(str); 2588 } 2589 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2590 2591 for (i = 0; i < (u32)cpu_nr; i++) { 2592 if (do_read_u32(ff, &nr)) 2593 goto free_cpu; 2594 2595 ph->env.cpu[i].die_id = nr; 2596 } 2597 2598 return 0; 2599 2600 error: 2601 strbuf_release(&sb); 2602 free_cpu: 2603 zfree(&ph->env.cpu); 2604 return -1; 2605 } 2606 2607 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2608 { 2609 struct numa_node *nodes, *n; 2610 u32 nr, i; 2611 char *str; 2612 2613 /* nr nodes */ 2614 if (do_read_u32(ff, &nr)) 2615 return -1; 2616 2617 nodes = zalloc(sizeof(*nodes) * nr); 2618 if (!nodes) 2619 return -ENOMEM; 2620 2621 for (i = 0; i < nr; i++) { 2622 n = &nodes[i]; 2623 2624 /* node number */ 2625 if (do_read_u32(ff, &n->node)) 2626 goto error; 2627 2628 if (do_read_u64(ff, &n->mem_total)) 2629 goto error; 2630 2631 if (do_read_u64(ff, &n->mem_free)) 2632 goto error; 2633 2634 str = do_read_string(ff); 2635 if (!str) 2636 goto error; 2637 2638 n->map = perf_cpu_map__new(str); 2639 if (!n->map) 2640 goto error; 2641 2642 free(str); 2643 } 2644 ff->ph->env.nr_numa_nodes = nr; 2645 ff->ph->env.numa_nodes = nodes; 2646 return 0; 2647 2648 error: 2649 free(nodes); 2650 return -1; 2651 } 2652 2653 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2654 { 2655 char *name; 2656 u32 pmu_num; 2657 u32 type; 2658 struct strbuf sb; 2659 2660 if (do_read_u32(ff, &pmu_num)) 2661 return -1; 2662 2663 if (!pmu_num) { 2664 pr_debug("pmu mappings not available\n"); 2665 return 0; 2666 } 2667 2668 ff->ph->env.nr_pmu_mappings = pmu_num; 2669 if (strbuf_init(&sb, 128) < 0) 2670 return -1; 2671 2672 while (pmu_num) { 2673 if (do_read_u32(ff, &type)) 2674 goto error; 2675 2676 name = do_read_string(ff); 2677 if (!name) 2678 goto error; 2679 2680 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2681 goto error; 2682 /* include a NULL character at the end */ 2683 if (strbuf_add(&sb, "", 1) < 0) 2684 goto error; 2685 2686 if (!strcmp(name, "msr")) 2687 ff->ph->env.msr_pmu_type = type; 2688 2689 free(name); 2690 pmu_num--; 2691 } 2692 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2693 return 0; 2694 2695 error: 2696 strbuf_release(&sb); 2697 return -1; 2698 } 2699 2700 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2701 { 2702 size_t ret = -1; 2703 u32 i, nr, nr_groups; 2704 struct perf_session *session; 2705 struct evsel *evsel, *leader = NULL; 2706 struct group_desc { 2707 char *name; 2708 u32 leader_idx; 2709 u32 nr_members; 2710 } *desc; 2711 2712 if (do_read_u32(ff, &nr_groups)) 2713 return -1; 2714 2715 ff->ph->env.nr_groups = nr_groups; 2716 if (!nr_groups) { 2717 pr_debug("group desc not available\n"); 2718 return 0; 2719 } 2720 2721 desc = calloc(nr_groups, sizeof(*desc)); 2722 if (!desc) 2723 return -1; 2724 2725 for (i = 0; i < nr_groups; i++) { 2726 desc[i].name = do_read_string(ff); 2727 if (!desc[i].name) 2728 goto out_free; 2729 2730 if (do_read_u32(ff, &desc[i].leader_idx)) 2731 goto out_free; 2732 2733 if (do_read_u32(ff, &desc[i].nr_members)) 2734 goto out_free; 2735 } 2736 2737 /* 2738 * Rebuild group relationship based on the group_desc 2739 */ 2740 session = container_of(ff->ph, struct perf_session, header); 2741 session->evlist->core.nr_groups = nr_groups; 2742 2743 i = nr = 0; 2744 evlist__for_each_entry(session->evlist, evsel) { 2745 if (evsel->core.idx == (int) desc[i].leader_idx) { 2746 evsel__set_leader(evsel, evsel); 2747 /* {anon_group} is a dummy name */ 2748 if (strcmp(desc[i].name, "{anon_group}")) { 2749 evsel->group_name = desc[i].name; 2750 desc[i].name = NULL; 2751 } 2752 evsel->core.nr_members = desc[i].nr_members; 2753 2754 if (i >= nr_groups || nr > 0) { 2755 pr_debug("invalid group desc\n"); 2756 goto out_free; 2757 } 2758 2759 leader = evsel; 2760 nr = evsel->core.nr_members - 1; 2761 i++; 2762 } else if (nr) { 2763 /* This is a group member */ 2764 evsel__set_leader(evsel, leader); 2765 2766 nr--; 2767 } 2768 } 2769 2770 if (i != nr_groups || nr != 0) { 2771 pr_debug("invalid group desc\n"); 2772 goto out_free; 2773 } 2774 2775 ret = 0; 2776 out_free: 2777 for (i = 0; i < nr_groups; i++) 2778 zfree(&desc[i].name); 2779 free(desc); 2780 2781 return ret; 2782 } 2783 2784 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2785 { 2786 struct perf_session *session; 2787 int err; 2788 2789 session = container_of(ff->ph, struct perf_session, header); 2790 2791 err = auxtrace_index__process(ff->fd, ff->size, session, 2792 ff->ph->needs_swap); 2793 if (err < 0) 2794 pr_err("Failed to process auxtrace index\n"); 2795 return err; 2796 } 2797 2798 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2799 { 2800 struct cpu_cache_level *caches; 2801 u32 cnt, i, version; 2802 2803 if (do_read_u32(ff, &version)) 2804 return -1; 2805 2806 if (version != 1) 2807 return -1; 2808 2809 if (do_read_u32(ff, &cnt)) 2810 return -1; 2811 2812 caches = zalloc(sizeof(*caches) * cnt); 2813 if (!caches) 2814 return -1; 2815 2816 for (i = 0; i < cnt; i++) { 2817 struct cpu_cache_level c; 2818 2819 #define _R(v) \ 2820 if (do_read_u32(ff, &c.v))\ 2821 goto out_free_caches; \ 2822 2823 _R(level) 2824 _R(line_size) 2825 _R(sets) 2826 _R(ways) 2827 #undef _R 2828 2829 #define _R(v) \ 2830 c.v = do_read_string(ff); \ 2831 if (!c.v) \ 2832 goto out_free_caches; 2833 2834 _R(type) 2835 _R(size) 2836 _R(map) 2837 #undef _R 2838 2839 caches[i] = c; 2840 } 2841 2842 ff->ph->env.caches = caches; 2843 ff->ph->env.caches_cnt = cnt; 2844 return 0; 2845 out_free_caches: 2846 free(caches); 2847 return -1; 2848 } 2849 2850 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2851 { 2852 struct perf_session *session; 2853 u64 first_sample_time, last_sample_time; 2854 int ret; 2855 2856 session = container_of(ff->ph, struct perf_session, header); 2857 2858 ret = do_read_u64(ff, &first_sample_time); 2859 if (ret) 2860 return -1; 2861 2862 ret = do_read_u64(ff, &last_sample_time); 2863 if (ret) 2864 return -1; 2865 2866 session->evlist->first_sample_time = first_sample_time; 2867 session->evlist->last_sample_time = last_sample_time; 2868 return 0; 2869 } 2870 2871 static int process_mem_topology(struct feat_fd *ff, 2872 void *data __maybe_unused) 2873 { 2874 struct memory_node *nodes; 2875 u64 version, i, nr, bsize; 2876 int ret = -1; 2877 2878 if (do_read_u64(ff, &version)) 2879 return -1; 2880 2881 if (version != 1) 2882 return -1; 2883 2884 if (do_read_u64(ff, &bsize)) 2885 return -1; 2886 2887 if (do_read_u64(ff, &nr)) 2888 return -1; 2889 2890 nodes = zalloc(sizeof(*nodes) * nr); 2891 if (!nodes) 2892 return -1; 2893 2894 for (i = 0; i < nr; i++) { 2895 struct memory_node n; 2896 2897 #define _R(v) \ 2898 if (do_read_u64(ff, &n.v)) \ 2899 goto out; \ 2900 2901 _R(node) 2902 _R(size) 2903 2904 #undef _R 2905 2906 if (do_read_bitmap(ff, &n.set, &n.size)) 2907 goto out; 2908 2909 nodes[i] = n; 2910 } 2911 2912 ff->ph->env.memory_bsize = bsize; 2913 ff->ph->env.memory_nodes = nodes; 2914 ff->ph->env.nr_memory_nodes = nr; 2915 ret = 0; 2916 2917 out: 2918 if (ret) 2919 free(nodes); 2920 return ret; 2921 } 2922 2923 static int process_clockid(struct feat_fd *ff, 2924 void *data __maybe_unused) 2925 { 2926 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns)) 2927 return -1; 2928 2929 return 0; 2930 } 2931 2932 static int process_clock_data(struct feat_fd *ff, 2933 void *_data __maybe_unused) 2934 { 2935 u32 data32; 2936 u64 data64; 2937 2938 /* version */ 2939 if (do_read_u32(ff, &data32)) 2940 return -1; 2941 2942 if (data32 != 1) 2943 return -1; 2944 2945 /* clockid */ 2946 if (do_read_u32(ff, &data32)) 2947 return -1; 2948 2949 ff->ph->env.clock.clockid = data32; 2950 2951 /* TOD ref time */ 2952 if (do_read_u64(ff, &data64)) 2953 return -1; 2954 2955 ff->ph->env.clock.tod_ns = data64; 2956 2957 /* clockid ref time */ 2958 if (do_read_u64(ff, &data64)) 2959 return -1; 2960 2961 ff->ph->env.clock.clockid_ns = data64; 2962 ff->ph->env.clock.enabled = true; 2963 return 0; 2964 } 2965 2966 static int process_hybrid_topology(struct feat_fd *ff, 2967 void *data __maybe_unused) 2968 { 2969 struct hybrid_node *nodes, *n; 2970 u32 nr, i; 2971 2972 /* nr nodes */ 2973 if (do_read_u32(ff, &nr)) 2974 return -1; 2975 2976 nodes = zalloc(sizeof(*nodes) * nr); 2977 if (!nodes) 2978 return -ENOMEM; 2979 2980 for (i = 0; i < nr; i++) { 2981 n = &nodes[i]; 2982 2983 n->pmu_name = do_read_string(ff); 2984 if (!n->pmu_name) 2985 goto error; 2986 2987 n->cpus = do_read_string(ff); 2988 if (!n->cpus) 2989 goto error; 2990 } 2991 2992 ff->ph->env.nr_hybrid_nodes = nr; 2993 ff->ph->env.hybrid_nodes = nodes; 2994 return 0; 2995 2996 error: 2997 for (i = 0; i < nr; i++) { 2998 free(nodes[i].pmu_name); 2999 free(nodes[i].cpus); 3000 } 3001 3002 free(nodes); 3003 return -1; 3004 } 3005 3006 static int process_dir_format(struct feat_fd *ff, 3007 void *_data __maybe_unused) 3008 { 3009 struct perf_session *session; 3010 struct perf_data *data; 3011 3012 session = container_of(ff->ph, struct perf_session, header); 3013 data = session->data; 3014 3015 if (WARN_ON(!perf_data__is_dir(data))) 3016 return -1; 3017 3018 return do_read_u64(ff, &data->dir.version); 3019 } 3020 3021 #ifdef HAVE_LIBBPF_SUPPORT 3022 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 3023 { 3024 struct bpf_prog_info_node *info_node; 3025 struct perf_env *env = &ff->ph->env; 3026 struct perf_bpil *info_linear; 3027 u32 count, i; 3028 int err = -1; 3029 3030 if (ff->ph->needs_swap) { 3031 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n"); 3032 return 0; 3033 } 3034 3035 if (do_read_u32(ff, &count)) 3036 return -1; 3037 3038 down_write(&env->bpf_progs.lock); 3039 3040 for (i = 0; i < count; ++i) { 3041 u32 info_len, data_len; 3042 3043 info_linear = NULL; 3044 info_node = NULL; 3045 if (do_read_u32(ff, &info_len)) 3046 goto out; 3047 if (do_read_u32(ff, &data_len)) 3048 goto out; 3049 3050 if (info_len > sizeof(struct bpf_prog_info)) { 3051 pr_warning("detected invalid bpf_prog_info\n"); 3052 goto out; 3053 } 3054 3055 info_linear = malloc(sizeof(struct perf_bpil) + 3056 data_len); 3057 if (!info_linear) 3058 goto out; 3059 info_linear->info_len = sizeof(struct bpf_prog_info); 3060 info_linear->data_len = data_len; 3061 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 3062 goto out; 3063 if (__do_read(ff, &info_linear->info, info_len)) 3064 goto out; 3065 if (info_len < sizeof(struct bpf_prog_info)) 3066 memset(((void *)(&info_linear->info)) + info_len, 0, 3067 sizeof(struct bpf_prog_info) - info_len); 3068 3069 if (__do_read(ff, info_linear->data, data_len)) 3070 goto out; 3071 3072 info_node = malloc(sizeof(struct bpf_prog_info_node)); 3073 if (!info_node) 3074 goto out; 3075 3076 /* after reading from file, translate offset to address */ 3077 bpil_offs_to_addr(info_linear); 3078 info_node->info_linear = info_linear; 3079 perf_env__insert_bpf_prog_info(env, info_node); 3080 } 3081 3082 up_write(&env->bpf_progs.lock); 3083 return 0; 3084 out: 3085 free(info_linear); 3086 free(info_node); 3087 up_write(&env->bpf_progs.lock); 3088 return err; 3089 } 3090 3091 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 3092 { 3093 struct perf_env *env = &ff->ph->env; 3094 struct btf_node *node = NULL; 3095 u32 count, i; 3096 int err = -1; 3097 3098 if (ff->ph->needs_swap) { 3099 pr_warning("interpreting btf from systems with endianness is not yet supported\n"); 3100 return 0; 3101 } 3102 3103 if (do_read_u32(ff, &count)) 3104 return -1; 3105 3106 down_write(&env->bpf_progs.lock); 3107 3108 for (i = 0; i < count; ++i) { 3109 u32 id, data_size; 3110 3111 if (do_read_u32(ff, &id)) 3112 goto out; 3113 if (do_read_u32(ff, &data_size)) 3114 goto out; 3115 3116 node = malloc(sizeof(struct btf_node) + data_size); 3117 if (!node) 3118 goto out; 3119 3120 node->id = id; 3121 node->data_size = data_size; 3122 3123 if (__do_read(ff, node->data, data_size)) 3124 goto out; 3125 3126 perf_env__insert_btf(env, node); 3127 node = NULL; 3128 } 3129 3130 err = 0; 3131 out: 3132 up_write(&env->bpf_progs.lock); 3133 free(node); 3134 return err; 3135 } 3136 #endif // HAVE_LIBBPF_SUPPORT 3137 3138 static int process_compressed(struct feat_fd *ff, 3139 void *data __maybe_unused) 3140 { 3141 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 3142 return -1; 3143 3144 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 3145 return -1; 3146 3147 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 3148 return -1; 3149 3150 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 3151 return -1; 3152 3153 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 3154 return -1; 3155 3156 return 0; 3157 } 3158 3159 static int process_per_cpu_pmu_caps(struct feat_fd *ff, int *nr_cpu_pmu_caps, 3160 char **cpu_pmu_caps, 3161 unsigned int *max_branches) 3162 { 3163 char *name, *value; 3164 struct strbuf sb; 3165 u32 nr_caps; 3166 3167 if (do_read_u32(ff, &nr_caps)) 3168 return -1; 3169 3170 if (!nr_caps) { 3171 pr_debug("cpu pmu capabilities not available\n"); 3172 return 0; 3173 } 3174 3175 *nr_cpu_pmu_caps = nr_caps; 3176 3177 if (strbuf_init(&sb, 128) < 0) 3178 return -1; 3179 3180 while (nr_caps--) { 3181 name = do_read_string(ff); 3182 if (!name) 3183 goto error; 3184 3185 value = do_read_string(ff); 3186 if (!value) 3187 goto free_name; 3188 3189 if (strbuf_addf(&sb, "%s=%s", name, value) < 0) 3190 goto free_value; 3191 3192 /* include a NULL character at the end */ 3193 if (strbuf_add(&sb, "", 1) < 0) 3194 goto free_value; 3195 3196 if (!strcmp(name, "branches")) 3197 *max_branches = atoi(value); 3198 3199 free(value); 3200 free(name); 3201 } 3202 *cpu_pmu_caps = strbuf_detach(&sb, NULL); 3203 return 0; 3204 3205 free_value: 3206 free(value); 3207 free_name: 3208 free(name); 3209 error: 3210 strbuf_release(&sb); 3211 return -1; 3212 } 3213 3214 static int process_cpu_pmu_caps(struct feat_fd *ff, 3215 void *data __maybe_unused) 3216 { 3217 return process_per_cpu_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps, 3218 &ff->ph->env.cpu_pmu_caps, 3219 &ff->ph->env.max_branches); 3220 } 3221 3222 static int process_hybrid_cpu_pmu_caps(struct feat_fd *ff, 3223 void *data __maybe_unused) 3224 { 3225 struct hybrid_cpc_node *nodes; 3226 u32 nr_pmu, i; 3227 int ret; 3228 3229 if (do_read_u32(ff, &nr_pmu)) 3230 return -1; 3231 3232 if (!nr_pmu) { 3233 pr_debug("hybrid cpu pmu capabilities not available\n"); 3234 return 0; 3235 } 3236 3237 nodes = zalloc(sizeof(*nodes) * nr_pmu); 3238 if (!nodes) 3239 return -ENOMEM; 3240 3241 for (i = 0; i < nr_pmu; i++) { 3242 struct hybrid_cpc_node *n = &nodes[i]; 3243 3244 ret = process_per_cpu_pmu_caps(ff, &n->nr_cpu_pmu_caps, 3245 &n->cpu_pmu_caps, 3246 &n->max_branches); 3247 if (ret) 3248 goto err; 3249 3250 n->pmu_name = do_read_string(ff); 3251 if (!n->pmu_name) { 3252 ret = -1; 3253 goto err; 3254 } 3255 } 3256 3257 ff->ph->env.nr_hybrid_cpc_nodes = nr_pmu; 3258 ff->ph->env.hybrid_cpc_nodes = nodes; 3259 return 0; 3260 3261 err: 3262 for (i = 0; i < nr_pmu; i++) { 3263 free(nodes[i].cpu_pmu_caps); 3264 free(nodes[i].pmu_name); 3265 } 3266 3267 free(nodes); 3268 return ret; 3269 } 3270 3271 #define FEAT_OPR(n, func, __full_only) \ 3272 [HEADER_##n] = { \ 3273 .name = __stringify(n), \ 3274 .write = write_##func, \ 3275 .print = print_##func, \ 3276 .full_only = __full_only, \ 3277 .process = process_##func, \ 3278 .synthesize = true \ 3279 } 3280 3281 #define FEAT_OPN(n, func, __full_only) \ 3282 [HEADER_##n] = { \ 3283 .name = __stringify(n), \ 3284 .write = write_##func, \ 3285 .print = print_##func, \ 3286 .full_only = __full_only, \ 3287 .process = process_##func \ 3288 } 3289 3290 /* feature_ops not implemented: */ 3291 #define print_tracing_data NULL 3292 #define print_build_id NULL 3293 3294 #define process_branch_stack NULL 3295 #define process_stat NULL 3296 3297 // Only used in util/synthetic-events.c 3298 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 3299 3300 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 3301 FEAT_OPN(TRACING_DATA, tracing_data, false), 3302 FEAT_OPN(BUILD_ID, build_id, false), 3303 FEAT_OPR(HOSTNAME, hostname, false), 3304 FEAT_OPR(OSRELEASE, osrelease, false), 3305 FEAT_OPR(VERSION, version, false), 3306 FEAT_OPR(ARCH, arch, false), 3307 FEAT_OPR(NRCPUS, nrcpus, false), 3308 FEAT_OPR(CPUDESC, cpudesc, false), 3309 FEAT_OPR(CPUID, cpuid, false), 3310 FEAT_OPR(TOTAL_MEM, total_mem, false), 3311 FEAT_OPR(EVENT_DESC, event_desc, false), 3312 FEAT_OPR(CMDLINE, cmdline, false), 3313 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 3314 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 3315 FEAT_OPN(BRANCH_STACK, branch_stack, false), 3316 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 3317 FEAT_OPR(GROUP_DESC, group_desc, false), 3318 FEAT_OPN(AUXTRACE, auxtrace, false), 3319 FEAT_OPN(STAT, stat, false), 3320 FEAT_OPN(CACHE, cache, true), 3321 FEAT_OPR(SAMPLE_TIME, sample_time, false), 3322 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 3323 FEAT_OPR(CLOCKID, clockid, false), 3324 FEAT_OPN(DIR_FORMAT, dir_format, false), 3325 #ifdef HAVE_LIBBPF_SUPPORT 3326 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 3327 FEAT_OPR(BPF_BTF, bpf_btf, false), 3328 #endif 3329 FEAT_OPR(COMPRESSED, compressed, false), 3330 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), 3331 FEAT_OPR(CLOCK_DATA, clock_data, false), 3332 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true), 3333 FEAT_OPR(HYBRID_CPU_PMU_CAPS, hybrid_cpu_pmu_caps, false), 3334 }; 3335 3336 struct header_print_data { 3337 FILE *fp; 3338 bool full; /* extended list of headers */ 3339 }; 3340 3341 static int perf_file_section__fprintf_info(struct perf_file_section *section, 3342 struct perf_header *ph, 3343 int feat, int fd, void *data) 3344 { 3345 struct header_print_data *hd = data; 3346 struct feat_fd ff; 3347 3348 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3349 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3350 "%d, continuing...\n", section->offset, feat); 3351 return 0; 3352 } 3353 if (feat >= HEADER_LAST_FEATURE) { 3354 pr_warning("unknown feature %d\n", feat); 3355 return 0; 3356 } 3357 if (!feat_ops[feat].print) 3358 return 0; 3359 3360 ff = (struct feat_fd) { 3361 .fd = fd, 3362 .ph = ph, 3363 }; 3364 3365 if (!feat_ops[feat].full_only || hd->full) 3366 feat_ops[feat].print(&ff, hd->fp); 3367 else 3368 fprintf(hd->fp, "# %s info available, use -I to display\n", 3369 feat_ops[feat].name); 3370 3371 return 0; 3372 } 3373 3374 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 3375 { 3376 struct header_print_data hd; 3377 struct perf_header *header = &session->header; 3378 int fd = perf_data__fd(session->data); 3379 struct stat st; 3380 time_t stctime; 3381 int ret, bit; 3382 3383 hd.fp = fp; 3384 hd.full = full; 3385 3386 ret = fstat(fd, &st); 3387 if (ret == -1) 3388 return -1; 3389 3390 stctime = st.st_mtime; 3391 fprintf(fp, "# captured on : %s", ctime(&stctime)); 3392 3393 fprintf(fp, "# header version : %u\n", header->version); 3394 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 3395 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 3396 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 3397 3398 perf_header__process_sections(header, fd, &hd, 3399 perf_file_section__fprintf_info); 3400 3401 if (session->data->is_pipe) 3402 return 0; 3403 3404 fprintf(fp, "# missing features: "); 3405 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 3406 if (bit) 3407 fprintf(fp, "%s ", feat_ops[bit].name); 3408 } 3409 3410 fprintf(fp, "\n"); 3411 return 0; 3412 } 3413 3414 static int do_write_feat(struct feat_fd *ff, int type, 3415 struct perf_file_section **p, 3416 struct evlist *evlist) 3417 { 3418 int err; 3419 int ret = 0; 3420 3421 if (perf_header__has_feat(ff->ph, type)) { 3422 if (!feat_ops[type].write) 3423 return -1; 3424 3425 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 3426 return -1; 3427 3428 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3429 3430 err = feat_ops[type].write(ff, evlist); 3431 if (err < 0) { 3432 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3433 3434 /* undo anything written */ 3435 lseek(ff->fd, (*p)->offset, SEEK_SET); 3436 3437 return -1; 3438 } 3439 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3440 (*p)++; 3441 } 3442 return ret; 3443 } 3444 3445 static int perf_header__adds_write(struct perf_header *header, 3446 struct evlist *evlist, int fd) 3447 { 3448 int nr_sections; 3449 struct feat_fd ff; 3450 struct perf_file_section *feat_sec, *p; 3451 int sec_size; 3452 u64 sec_start; 3453 int feat; 3454 int err; 3455 3456 ff = (struct feat_fd){ 3457 .fd = fd, 3458 .ph = header, 3459 }; 3460 3461 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3462 if (!nr_sections) 3463 return 0; 3464 3465 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3466 if (feat_sec == NULL) 3467 return -ENOMEM; 3468 3469 sec_size = sizeof(*feat_sec) * nr_sections; 3470 3471 sec_start = header->feat_offset; 3472 lseek(fd, sec_start + sec_size, SEEK_SET); 3473 3474 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3475 if (do_write_feat(&ff, feat, &p, evlist)) 3476 perf_header__clear_feat(header, feat); 3477 } 3478 3479 lseek(fd, sec_start, SEEK_SET); 3480 /* 3481 * may write more than needed due to dropped feature, but 3482 * this is okay, reader will skip the missing entries 3483 */ 3484 err = do_write(&ff, feat_sec, sec_size); 3485 if (err < 0) 3486 pr_debug("failed to write feature section\n"); 3487 free(feat_sec); 3488 return err; 3489 } 3490 3491 int perf_header__write_pipe(int fd) 3492 { 3493 struct perf_pipe_file_header f_header; 3494 struct feat_fd ff; 3495 int err; 3496 3497 ff = (struct feat_fd){ .fd = fd }; 3498 3499 f_header = (struct perf_pipe_file_header){ 3500 .magic = PERF_MAGIC, 3501 .size = sizeof(f_header), 3502 }; 3503 3504 err = do_write(&ff, &f_header, sizeof(f_header)); 3505 if (err < 0) { 3506 pr_debug("failed to write perf pipe header\n"); 3507 return err; 3508 } 3509 3510 return 0; 3511 } 3512 3513 int perf_session__write_header(struct perf_session *session, 3514 struct evlist *evlist, 3515 int fd, bool at_exit) 3516 { 3517 struct perf_file_header f_header; 3518 struct perf_file_attr f_attr; 3519 struct perf_header *header = &session->header; 3520 struct evsel *evsel; 3521 struct feat_fd ff; 3522 u64 attr_offset; 3523 int err; 3524 3525 ff = (struct feat_fd){ .fd = fd}; 3526 lseek(fd, sizeof(f_header), SEEK_SET); 3527 3528 evlist__for_each_entry(session->evlist, evsel) { 3529 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3530 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3531 if (err < 0) { 3532 pr_debug("failed to write perf header\n"); 3533 return err; 3534 } 3535 } 3536 3537 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3538 3539 evlist__for_each_entry(evlist, evsel) { 3540 if (evsel->core.attr.size < sizeof(evsel->core.attr)) { 3541 /* 3542 * We are likely in "perf inject" and have read 3543 * from an older file. Update attr size so that 3544 * reader gets the right offset to the ids. 3545 */ 3546 evsel->core.attr.size = sizeof(evsel->core.attr); 3547 } 3548 f_attr = (struct perf_file_attr){ 3549 .attr = evsel->core.attr, 3550 .ids = { 3551 .offset = evsel->id_offset, 3552 .size = evsel->core.ids * sizeof(u64), 3553 } 3554 }; 3555 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3556 if (err < 0) { 3557 pr_debug("failed to write perf header attribute\n"); 3558 return err; 3559 } 3560 } 3561 3562 if (!header->data_offset) 3563 header->data_offset = lseek(fd, 0, SEEK_CUR); 3564 header->feat_offset = header->data_offset + header->data_size; 3565 3566 if (at_exit) { 3567 err = perf_header__adds_write(header, evlist, fd); 3568 if (err < 0) 3569 return err; 3570 } 3571 3572 f_header = (struct perf_file_header){ 3573 .magic = PERF_MAGIC, 3574 .size = sizeof(f_header), 3575 .attr_size = sizeof(f_attr), 3576 .attrs = { 3577 .offset = attr_offset, 3578 .size = evlist->core.nr_entries * sizeof(f_attr), 3579 }, 3580 .data = { 3581 .offset = header->data_offset, 3582 .size = header->data_size, 3583 }, 3584 /* event_types is ignored, store zeros */ 3585 }; 3586 3587 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3588 3589 lseek(fd, 0, SEEK_SET); 3590 err = do_write(&ff, &f_header, sizeof(f_header)); 3591 if (err < 0) { 3592 pr_debug("failed to write perf header\n"); 3593 return err; 3594 } 3595 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3596 3597 return 0; 3598 } 3599 3600 static int perf_header__getbuffer64(struct perf_header *header, 3601 int fd, void *buf, size_t size) 3602 { 3603 if (readn(fd, buf, size) <= 0) 3604 return -1; 3605 3606 if (header->needs_swap) 3607 mem_bswap_64(buf, size); 3608 3609 return 0; 3610 } 3611 3612 int perf_header__process_sections(struct perf_header *header, int fd, 3613 void *data, 3614 int (*process)(struct perf_file_section *section, 3615 struct perf_header *ph, 3616 int feat, int fd, void *data)) 3617 { 3618 struct perf_file_section *feat_sec, *sec; 3619 int nr_sections; 3620 int sec_size; 3621 int feat; 3622 int err; 3623 3624 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3625 if (!nr_sections) 3626 return 0; 3627 3628 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3629 if (!feat_sec) 3630 return -1; 3631 3632 sec_size = sizeof(*feat_sec) * nr_sections; 3633 3634 lseek(fd, header->feat_offset, SEEK_SET); 3635 3636 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3637 if (err < 0) 3638 goto out_free; 3639 3640 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3641 err = process(sec++, header, feat, fd, data); 3642 if (err < 0) 3643 goto out_free; 3644 } 3645 err = 0; 3646 out_free: 3647 free(feat_sec); 3648 return err; 3649 } 3650 3651 static const int attr_file_abi_sizes[] = { 3652 [0] = PERF_ATTR_SIZE_VER0, 3653 [1] = PERF_ATTR_SIZE_VER1, 3654 [2] = PERF_ATTR_SIZE_VER2, 3655 [3] = PERF_ATTR_SIZE_VER3, 3656 [4] = PERF_ATTR_SIZE_VER4, 3657 0, 3658 }; 3659 3660 /* 3661 * In the legacy file format, the magic number is not used to encode endianness. 3662 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3663 * on ABI revisions, we need to try all combinations for all endianness to 3664 * detect the endianness. 3665 */ 3666 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3667 { 3668 uint64_t ref_size, attr_size; 3669 int i; 3670 3671 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3672 ref_size = attr_file_abi_sizes[i] 3673 + sizeof(struct perf_file_section); 3674 if (hdr_sz != ref_size) { 3675 attr_size = bswap_64(hdr_sz); 3676 if (attr_size != ref_size) 3677 continue; 3678 3679 ph->needs_swap = true; 3680 } 3681 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3682 i, 3683 ph->needs_swap); 3684 return 0; 3685 } 3686 /* could not determine endianness */ 3687 return -1; 3688 } 3689 3690 #define PERF_PIPE_HDR_VER0 16 3691 3692 static const size_t attr_pipe_abi_sizes[] = { 3693 [0] = PERF_PIPE_HDR_VER0, 3694 0, 3695 }; 3696 3697 /* 3698 * In the legacy pipe format, there is an implicit assumption that endianness 3699 * between host recording the samples, and host parsing the samples is the 3700 * same. This is not always the case given that the pipe output may always be 3701 * redirected into a file and analyzed on a different machine with possibly a 3702 * different endianness and perf_event ABI revisions in the perf tool itself. 3703 */ 3704 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3705 { 3706 u64 attr_size; 3707 int i; 3708 3709 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3710 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3711 attr_size = bswap_64(hdr_sz); 3712 if (attr_size != hdr_sz) 3713 continue; 3714 3715 ph->needs_swap = true; 3716 } 3717 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3718 return 0; 3719 } 3720 return -1; 3721 } 3722 3723 bool is_perf_magic(u64 magic) 3724 { 3725 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3726 || magic == __perf_magic2 3727 || magic == __perf_magic2_sw) 3728 return true; 3729 3730 return false; 3731 } 3732 3733 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3734 bool is_pipe, struct perf_header *ph) 3735 { 3736 int ret; 3737 3738 /* check for legacy format */ 3739 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3740 if (ret == 0) { 3741 ph->version = PERF_HEADER_VERSION_1; 3742 pr_debug("legacy perf.data format\n"); 3743 if (is_pipe) 3744 return try_all_pipe_abis(hdr_sz, ph); 3745 3746 return try_all_file_abis(hdr_sz, ph); 3747 } 3748 /* 3749 * the new magic number serves two purposes: 3750 * - unique number to identify actual perf.data files 3751 * - encode endianness of file 3752 */ 3753 ph->version = PERF_HEADER_VERSION_2; 3754 3755 /* check magic number with one endianness */ 3756 if (magic == __perf_magic2) 3757 return 0; 3758 3759 /* check magic number with opposite endianness */ 3760 if (magic != __perf_magic2_sw) 3761 return -1; 3762 3763 ph->needs_swap = true; 3764 3765 return 0; 3766 } 3767 3768 int perf_file_header__read(struct perf_file_header *header, 3769 struct perf_header *ph, int fd) 3770 { 3771 ssize_t ret; 3772 3773 lseek(fd, 0, SEEK_SET); 3774 3775 ret = readn(fd, header, sizeof(*header)); 3776 if (ret <= 0) 3777 return -1; 3778 3779 if (check_magic_endian(header->magic, 3780 header->attr_size, false, ph) < 0) { 3781 pr_debug("magic/endian check failed\n"); 3782 return -1; 3783 } 3784 3785 if (ph->needs_swap) { 3786 mem_bswap_64(header, offsetof(struct perf_file_header, 3787 adds_features)); 3788 } 3789 3790 if (header->size != sizeof(*header)) { 3791 /* Support the previous format */ 3792 if (header->size == offsetof(typeof(*header), adds_features)) 3793 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3794 else 3795 return -1; 3796 } else if (ph->needs_swap) { 3797 /* 3798 * feature bitmap is declared as an array of unsigned longs -- 3799 * not good since its size can differ between the host that 3800 * generated the data file and the host analyzing the file. 3801 * 3802 * We need to handle endianness, but we don't know the size of 3803 * the unsigned long where the file was generated. Take a best 3804 * guess at determining it: try 64-bit swap first (ie., file 3805 * created on a 64-bit host), and check if the hostname feature 3806 * bit is set (this feature bit is forced on as of fbe96f2). 3807 * If the bit is not, undo the 64-bit swap and try a 32-bit 3808 * swap. If the hostname bit is still not set (e.g., older data 3809 * file), punt and fallback to the original behavior -- 3810 * clearing all feature bits and setting buildid. 3811 */ 3812 mem_bswap_64(&header->adds_features, 3813 BITS_TO_U64(HEADER_FEAT_BITS)); 3814 3815 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3816 /* unswap as u64 */ 3817 mem_bswap_64(&header->adds_features, 3818 BITS_TO_U64(HEADER_FEAT_BITS)); 3819 3820 /* unswap as u32 */ 3821 mem_bswap_32(&header->adds_features, 3822 BITS_TO_U32(HEADER_FEAT_BITS)); 3823 } 3824 3825 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3826 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3827 set_bit(HEADER_BUILD_ID, header->adds_features); 3828 } 3829 } 3830 3831 memcpy(&ph->adds_features, &header->adds_features, 3832 sizeof(ph->adds_features)); 3833 3834 ph->data_offset = header->data.offset; 3835 ph->data_size = header->data.size; 3836 ph->feat_offset = header->data.offset + header->data.size; 3837 return 0; 3838 } 3839 3840 static int perf_file_section__process(struct perf_file_section *section, 3841 struct perf_header *ph, 3842 int feat, int fd, void *data) 3843 { 3844 struct feat_fd fdd = { 3845 .fd = fd, 3846 .ph = ph, 3847 .size = section->size, 3848 .offset = section->offset, 3849 }; 3850 3851 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3852 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3853 "%d, continuing...\n", section->offset, feat); 3854 return 0; 3855 } 3856 3857 if (feat >= HEADER_LAST_FEATURE) { 3858 pr_debug("unknown feature %d, continuing...\n", feat); 3859 return 0; 3860 } 3861 3862 if (!feat_ops[feat].process) 3863 return 0; 3864 3865 return feat_ops[feat].process(&fdd, data); 3866 } 3867 3868 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 3869 struct perf_header *ph, 3870 struct perf_data* data, 3871 bool repipe, int repipe_fd) 3872 { 3873 struct feat_fd ff = { 3874 .fd = repipe_fd, 3875 .ph = ph, 3876 }; 3877 ssize_t ret; 3878 3879 ret = perf_data__read(data, header, sizeof(*header)); 3880 if (ret <= 0) 3881 return -1; 3882 3883 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 3884 pr_debug("endian/magic failed\n"); 3885 return -1; 3886 } 3887 3888 if (ph->needs_swap) 3889 header->size = bswap_64(header->size); 3890 3891 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 3892 return -1; 3893 3894 return 0; 3895 } 3896 3897 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd) 3898 { 3899 struct perf_header *header = &session->header; 3900 struct perf_pipe_file_header f_header; 3901 3902 if (perf_file_header__read_pipe(&f_header, header, session->data, 3903 session->repipe, repipe_fd) < 0) { 3904 pr_debug("incompatible file format\n"); 3905 return -EINVAL; 3906 } 3907 3908 return f_header.size == sizeof(f_header) ? 0 : -1; 3909 } 3910 3911 static int read_attr(int fd, struct perf_header *ph, 3912 struct perf_file_attr *f_attr) 3913 { 3914 struct perf_event_attr *attr = &f_attr->attr; 3915 size_t sz, left; 3916 size_t our_sz = sizeof(f_attr->attr); 3917 ssize_t ret; 3918 3919 memset(f_attr, 0, sizeof(*f_attr)); 3920 3921 /* read minimal guaranteed structure */ 3922 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 3923 if (ret <= 0) { 3924 pr_debug("cannot read %d bytes of header attr\n", 3925 PERF_ATTR_SIZE_VER0); 3926 return -1; 3927 } 3928 3929 /* on file perf_event_attr size */ 3930 sz = attr->size; 3931 3932 if (ph->needs_swap) 3933 sz = bswap_32(sz); 3934 3935 if (sz == 0) { 3936 /* assume ABI0 */ 3937 sz = PERF_ATTR_SIZE_VER0; 3938 } else if (sz > our_sz) { 3939 pr_debug("file uses a more recent and unsupported ABI" 3940 " (%zu bytes extra)\n", sz - our_sz); 3941 return -1; 3942 } 3943 /* what we have not yet read and that we know about */ 3944 left = sz - PERF_ATTR_SIZE_VER0; 3945 if (left) { 3946 void *ptr = attr; 3947 ptr += PERF_ATTR_SIZE_VER0; 3948 3949 ret = readn(fd, ptr, left); 3950 } 3951 /* read perf_file_section, ids are read in caller */ 3952 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 3953 3954 return ret <= 0 ? -1 : 0; 3955 } 3956 3957 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) 3958 { 3959 struct tep_event *event; 3960 char bf[128]; 3961 3962 /* already prepared */ 3963 if (evsel->tp_format) 3964 return 0; 3965 3966 if (pevent == NULL) { 3967 pr_debug("broken or missing trace data\n"); 3968 return -1; 3969 } 3970 3971 event = tep_find_event(pevent, evsel->core.attr.config); 3972 if (event == NULL) { 3973 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 3974 return -1; 3975 } 3976 3977 if (!evsel->name) { 3978 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 3979 evsel->name = strdup(bf); 3980 if (evsel->name == NULL) 3981 return -1; 3982 } 3983 3984 evsel->tp_format = event; 3985 return 0; 3986 } 3987 3988 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent) 3989 { 3990 struct evsel *pos; 3991 3992 evlist__for_each_entry(evlist, pos) { 3993 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 3994 evsel__prepare_tracepoint_event(pos, pevent)) 3995 return -1; 3996 } 3997 3998 return 0; 3999 } 4000 4001 int perf_session__read_header(struct perf_session *session, int repipe_fd) 4002 { 4003 struct perf_data *data = session->data; 4004 struct perf_header *header = &session->header; 4005 struct perf_file_header f_header; 4006 struct perf_file_attr f_attr; 4007 u64 f_id; 4008 int nr_attrs, nr_ids, i, j, err; 4009 int fd = perf_data__fd(data); 4010 4011 session->evlist = evlist__new(); 4012 if (session->evlist == NULL) 4013 return -ENOMEM; 4014 4015 session->evlist->env = &header->env; 4016 session->machines.host.env = &header->env; 4017 4018 /* 4019 * We can read 'pipe' data event from regular file, 4020 * check for the pipe header regardless of source. 4021 */ 4022 err = perf_header__read_pipe(session, repipe_fd); 4023 if (!err || perf_data__is_pipe(data)) { 4024 data->is_pipe = true; 4025 return err; 4026 } 4027 4028 if (perf_file_header__read(&f_header, header, fd) < 0) 4029 return -EINVAL; 4030 4031 if (header->needs_swap && data->in_place_update) { 4032 pr_err("In-place update not supported when byte-swapping is required\n"); 4033 return -EINVAL; 4034 } 4035 4036 /* 4037 * Sanity check that perf.data was written cleanly; data size is 4038 * initialized to 0 and updated only if the on_exit function is run. 4039 * If data size is still 0 then the file contains only partial 4040 * information. Just warn user and process it as much as it can. 4041 */ 4042 if (f_header.data.size == 0) { 4043 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 4044 "Was the 'perf record' command properly terminated?\n", 4045 data->file.path); 4046 } 4047 4048 if (f_header.attr_size == 0) { 4049 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 4050 "Was the 'perf record' command properly terminated?\n", 4051 data->file.path); 4052 return -EINVAL; 4053 } 4054 4055 nr_attrs = f_header.attrs.size / f_header.attr_size; 4056 lseek(fd, f_header.attrs.offset, SEEK_SET); 4057 4058 for (i = 0; i < nr_attrs; i++) { 4059 struct evsel *evsel; 4060 off_t tmp; 4061 4062 if (read_attr(fd, header, &f_attr) < 0) 4063 goto out_errno; 4064 4065 if (header->needs_swap) { 4066 f_attr.ids.size = bswap_64(f_attr.ids.size); 4067 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 4068 perf_event__attr_swap(&f_attr.attr); 4069 } 4070 4071 tmp = lseek(fd, 0, SEEK_CUR); 4072 evsel = evsel__new(&f_attr.attr); 4073 4074 if (evsel == NULL) 4075 goto out_delete_evlist; 4076 4077 evsel->needs_swap = header->needs_swap; 4078 /* 4079 * Do it before so that if perf_evsel__alloc_id fails, this 4080 * entry gets purged too at evlist__delete(). 4081 */ 4082 evlist__add(session->evlist, evsel); 4083 4084 nr_ids = f_attr.ids.size / sizeof(u64); 4085 /* 4086 * We don't have the cpu and thread maps on the header, so 4087 * for allocating the perf_sample_id table we fake 1 cpu and 4088 * hattr->ids threads. 4089 */ 4090 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 4091 goto out_delete_evlist; 4092 4093 lseek(fd, f_attr.ids.offset, SEEK_SET); 4094 4095 for (j = 0; j < nr_ids; j++) { 4096 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 4097 goto out_errno; 4098 4099 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 4100 } 4101 4102 lseek(fd, tmp, SEEK_SET); 4103 } 4104 4105 perf_header__process_sections(header, fd, &session->tevent, 4106 perf_file_section__process); 4107 4108 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) 4109 goto out_delete_evlist; 4110 4111 return 0; 4112 out_errno: 4113 return -errno; 4114 4115 out_delete_evlist: 4116 evlist__delete(session->evlist); 4117 session->evlist = NULL; 4118 return -ENOMEM; 4119 } 4120 4121 int perf_event__process_feature(struct perf_session *session, 4122 union perf_event *event) 4123 { 4124 struct perf_tool *tool = session->tool; 4125 struct feat_fd ff = { .fd = 0 }; 4126 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 4127 int type = fe->header.type; 4128 u64 feat = fe->feat_id; 4129 int ret = 0; 4130 4131 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 4132 pr_warning("invalid record type %d in pipe-mode\n", type); 4133 return 0; 4134 } 4135 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 4136 pr_warning("invalid record type %d in pipe-mode\n", type); 4137 return -1; 4138 } 4139 4140 if (!feat_ops[feat].process) 4141 return 0; 4142 4143 ff.buf = (void *)fe->data; 4144 ff.size = event->header.size - sizeof(*fe); 4145 ff.ph = &session->header; 4146 4147 if (feat_ops[feat].process(&ff, NULL)) { 4148 ret = -1; 4149 goto out; 4150 } 4151 4152 if (!feat_ops[feat].print || !tool->show_feat_hdr) 4153 goto out; 4154 4155 if (!feat_ops[feat].full_only || 4156 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 4157 feat_ops[feat].print(&ff, stdout); 4158 } else { 4159 fprintf(stdout, "# %s info available, use -I to display\n", 4160 feat_ops[feat].name); 4161 } 4162 out: 4163 free_event_desc(ff.events); 4164 return ret; 4165 } 4166 4167 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 4168 { 4169 struct perf_record_event_update *ev = &event->event_update; 4170 struct perf_record_event_update_scale *ev_scale; 4171 struct perf_record_event_update_cpus *ev_cpus; 4172 struct perf_cpu_map *map; 4173 size_t ret; 4174 4175 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 4176 4177 switch (ev->type) { 4178 case PERF_EVENT_UPDATE__SCALE: 4179 ev_scale = (struct perf_record_event_update_scale *)ev->data; 4180 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale); 4181 break; 4182 case PERF_EVENT_UPDATE__UNIT: 4183 ret += fprintf(fp, "... unit: %s\n", ev->data); 4184 break; 4185 case PERF_EVENT_UPDATE__NAME: 4186 ret += fprintf(fp, "... name: %s\n", ev->data); 4187 break; 4188 case PERF_EVENT_UPDATE__CPUS: 4189 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 4190 ret += fprintf(fp, "... "); 4191 4192 map = cpu_map__new_data(&ev_cpus->cpus); 4193 if (map) 4194 ret += cpu_map__fprintf(map, fp); 4195 else 4196 ret += fprintf(fp, "failed to get cpus\n"); 4197 break; 4198 default: 4199 ret += fprintf(fp, "... unknown type\n"); 4200 break; 4201 } 4202 4203 return ret; 4204 } 4205 4206 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 4207 union perf_event *event, 4208 struct evlist **pevlist) 4209 { 4210 u32 i, ids, n_ids; 4211 struct evsel *evsel; 4212 struct evlist *evlist = *pevlist; 4213 4214 if (evlist == NULL) { 4215 *pevlist = evlist = evlist__new(); 4216 if (evlist == NULL) 4217 return -ENOMEM; 4218 } 4219 4220 evsel = evsel__new(&event->attr.attr); 4221 if (evsel == NULL) 4222 return -ENOMEM; 4223 4224 evlist__add(evlist, evsel); 4225 4226 ids = event->header.size; 4227 ids -= (void *)&event->attr.id - (void *)event; 4228 n_ids = ids / sizeof(u64); 4229 /* 4230 * We don't have the cpu and thread maps on the header, so 4231 * for allocating the perf_sample_id table we fake 1 cpu and 4232 * hattr->ids threads. 4233 */ 4234 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 4235 return -ENOMEM; 4236 4237 for (i = 0; i < n_ids; i++) { 4238 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]); 4239 } 4240 4241 return 0; 4242 } 4243 4244 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 4245 union perf_event *event, 4246 struct evlist **pevlist) 4247 { 4248 struct perf_record_event_update *ev = &event->event_update; 4249 struct perf_record_event_update_scale *ev_scale; 4250 struct perf_record_event_update_cpus *ev_cpus; 4251 struct evlist *evlist; 4252 struct evsel *evsel; 4253 struct perf_cpu_map *map; 4254 4255 if (!pevlist || *pevlist == NULL) 4256 return -EINVAL; 4257 4258 evlist = *pevlist; 4259 4260 evsel = evlist__id2evsel(evlist, ev->id); 4261 if (evsel == NULL) 4262 return -EINVAL; 4263 4264 switch (ev->type) { 4265 case PERF_EVENT_UPDATE__UNIT: 4266 free((char *)evsel->unit); 4267 evsel->unit = strdup(ev->data); 4268 break; 4269 case PERF_EVENT_UPDATE__NAME: 4270 free(evsel->name); 4271 evsel->name = strdup(ev->data); 4272 break; 4273 case PERF_EVENT_UPDATE__SCALE: 4274 ev_scale = (struct perf_record_event_update_scale *)ev->data; 4275 evsel->scale = ev_scale->scale; 4276 break; 4277 case PERF_EVENT_UPDATE__CPUS: 4278 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 4279 map = cpu_map__new_data(&ev_cpus->cpus); 4280 if (map) { 4281 perf_cpu_map__put(evsel->core.own_cpus); 4282 evsel->core.own_cpus = map; 4283 } else 4284 pr_err("failed to get event_update cpus\n"); 4285 default: 4286 break; 4287 } 4288 4289 return 0; 4290 } 4291 4292 int perf_event__process_tracing_data(struct perf_session *session, 4293 union perf_event *event) 4294 { 4295 ssize_t size_read, padding, size = event->tracing_data.size; 4296 int fd = perf_data__fd(session->data); 4297 char buf[BUFSIZ]; 4298 4299 /* 4300 * The pipe fd is already in proper place and in any case 4301 * we can't move it, and we'd screw the case where we read 4302 * 'pipe' data from regular file. The trace_report reads 4303 * data from 'fd' so we need to set it directly behind the 4304 * event, where the tracing data starts. 4305 */ 4306 if (!perf_data__is_pipe(session->data)) { 4307 off_t offset = lseek(fd, 0, SEEK_CUR); 4308 4309 /* setup for reading amidst mmap */ 4310 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 4311 SEEK_SET); 4312 } 4313 4314 size_read = trace_report(fd, &session->tevent, 4315 session->repipe); 4316 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4317 4318 if (readn(fd, buf, padding) < 0) { 4319 pr_err("%s: reading input file", __func__); 4320 return -1; 4321 } 4322 if (session->repipe) { 4323 int retw = write(STDOUT_FILENO, buf, padding); 4324 if (retw <= 0 || retw != padding) { 4325 pr_err("%s: repiping tracing data padding", __func__); 4326 return -1; 4327 } 4328 } 4329 4330 if (size_read + padding != size) { 4331 pr_err("%s: tracing data size mismatch", __func__); 4332 return -1; 4333 } 4334 4335 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); 4336 4337 return size_read + padding; 4338 } 4339 4340 int perf_event__process_build_id(struct perf_session *session, 4341 union perf_event *event) 4342 { 4343 __event_process_build_id(&event->build_id, 4344 event->build_id.filename, 4345 session); 4346 return 0; 4347 } 4348