1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <regex.h> 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <linux/compiler.h> 13 #include <linux/list.h> 14 #include <linux/kernel.h> 15 #include <linux/bitops.h> 16 #include <linux/string.h> 17 #include <linux/stringify.h> 18 #include <linux/zalloc.h> 19 #include <sys/stat.h> 20 #include <sys/utsname.h> 21 #include <linux/time64.h> 22 #include <dirent.h> 23 #ifdef HAVE_LIBBPF_SUPPORT 24 #include <bpf/libbpf.h> 25 #endif 26 #include <perf/cpumap.h> 27 28 #include "dso.h" 29 #include "evlist.h" 30 #include "evsel.h" 31 #include "util/evsel_fprintf.h" 32 #include "header.h" 33 #include "memswap.h" 34 #include "trace-event.h" 35 #include "session.h" 36 #include "symbol.h" 37 #include "debug.h" 38 #include "cpumap.h" 39 #include "pmu.h" 40 #include "vdso.h" 41 #include "strbuf.h" 42 #include "build-id.h" 43 #include "data.h" 44 #include <api/fs/fs.h> 45 #include "asm/bug.h" 46 #include "tool.h" 47 #include "time-utils.h" 48 #include "units.h" 49 #include "util/util.h" // perf_exe() 50 #include "cputopo.h" 51 #include "bpf-event.h" 52 #include "bpf-utils.h" 53 #include "clockid.h" 54 #include "pmu-hybrid.h" 55 56 #include <linux/ctype.h> 57 #include <internal/lib.h> 58 59 #ifdef HAVE_LIBTRACEEVENT 60 #include <traceevent/event-parse.h> 61 #endif 62 63 /* 64 * magic2 = "PERFILE2" 65 * must be a numerical value to let the endianness 66 * determine the memory layout. That way we are able 67 * to detect endianness when reading the perf.data file 68 * back. 69 * 70 * we check for legacy (PERFFILE) format. 71 */ 72 static const char *__perf_magic1 = "PERFFILE"; 73 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 74 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 75 76 #define PERF_MAGIC __perf_magic2 77 78 const char perf_version_string[] = PERF_VERSION; 79 80 struct perf_file_attr { 81 struct perf_event_attr attr; 82 struct perf_file_section ids; 83 }; 84 85 void perf_header__set_feat(struct perf_header *header, int feat) 86 { 87 __set_bit(feat, header->adds_features); 88 } 89 90 void perf_header__clear_feat(struct perf_header *header, int feat) 91 { 92 __clear_bit(feat, header->adds_features); 93 } 94 95 bool perf_header__has_feat(const struct perf_header *header, int feat) 96 { 97 return test_bit(feat, header->adds_features); 98 } 99 100 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 101 { 102 ssize_t ret = writen(ff->fd, buf, size); 103 104 if (ret != (ssize_t)size) 105 return ret < 0 ? (int)ret : -1; 106 return 0; 107 } 108 109 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 110 { 111 /* struct perf_event_header::size is u16 */ 112 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 113 size_t new_size = ff->size; 114 void *addr; 115 116 if (size + ff->offset > max_size) 117 return -E2BIG; 118 119 while (size > (new_size - ff->offset)) 120 new_size <<= 1; 121 new_size = min(max_size, new_size); 122 123 if (ff->size < new_size) { 124 addr = realloc(ff->buf, new_size); 125 if (!addr) 126 return -ENOMEM; 127 ff->buf = addr; 128 ff->size = new_size; 129 } 130 131 memcpy(ff->buf + ff->offset, buf, size); 132 ff->offset += size; 133 134 return 0; 135 } 136 137 /* Return: 0 if succeeded, -ERR if failed. */ 138 int do_write(struct feat_fd *ff, const void *buf, size_t size) 139 { 140 if (!ff->buf) 141 return __do_write_fd(ff, buf, size); 142 return __do_write_buf(ff, buf, size); 143 } 144 145 /* Return: 0 if succeeded, -ERR if failed. */ 146 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 147 { 148 u64 *p = (u64 *) set; 149 int i, ret; 150 151 ret = do_write(ff, &size, sizeof(size)); 152 if (ret < 0) 153 return ret; 154 155 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 156 ret = do_write(ff, p + i, sizeof(*p)); 157 if (ret < 0) 158 return ret; 159 } 160 161 return 0; 162 } 163 164 /* Return: 0 if succeeded, -ERR if failed. */ 165 int write_padded(struct feat_fd *ff, const void *bf, 166 size_t count, size_t count_aligned) 167 { 168 static const char zero_buf[NAME_ALIGN]; 169 int err = do_write(ff, bf, count); 170 171 if (!err) 172 err = do_write(ff, zero_buf, count_aligned - count); 173 174 return err; 175 } 176 177 #define string_size(str) \ 178 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 179 180 /* Return: 0 if succeeded, -ERR if failed. */ 181 static int do_write_string(struct feat_fd *ff, const char *str) 182 { 183 u32 len, olen; 184 int ret; 185 186 olen = strlen(str) + 1; 187 len = PERF_ALIGN(olen, NAME_ALIGN); 188 189 /* write len, incl. \0 */ 190 ret = do_write(ff, &len, sizeof(len)); 191 if (ret < 0) 192 return ret; 193 194 return write_padded(ff, str, olen, len); 195 } 196 197 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 198 { 199 ssize_t ret = readn(ff->fd, addr, size); 200 201 if (ret != size) 202 return ret < 0 ? (int)ret : -1; 203 return 0; 204 } 205 206 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 207 { 208 if (size > (ssize_t)ff->size - ff->offset) 209 return -1; 210 211 memcpy(addr, ff->buf + ff->offset, size); 212 ff->offset += size; 213 214 return 0; 215 216 } 217 218 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 219 { 220 if (!ff->buf) 221 return __do_read_fd(ff, addr, size); 222 return __do_read_buf(ff, addr, size); 223 } 224 225 static int do_read_u32(struct feat_fd *ff, u32 *addr) 226 { 227 int ret; 228 229 ret = __do_read(ff, addr, sizeof(*addr)); 230 if (ret) 231 return ret; 232 233 if (ff->ph->needs_swap) 234 *addr = bswap_32(*addr); 235 return 0; 236 } 237 238 static int do_read_u64(struct feat_fd *ff, u64 *addr) 239 { 240 int ret; 241 242 ret = __do_read(ff, addr, sizeof(*addr)); 243 if (ret) 244 return ret; 245 246 if (ff->ph->needs_swap) 247 *addr = bswap_64(*addr); 248 return 0; 249 } 250 251 static char *do_read_string(struct feat_fd *ff) 252 { 253 u32 len; 254 char *buf; 255 256 if (do_read_u32(ff, &len)) 257 return NULL; 258 259 buf = malloc(len); 260 if (!buf) 261 return NULL; 262 263 if (!__do_read(ff, buf, len)) { 264 /* 265 * strings are padded by zeroes 266 * thus the actual strlen of buf 267 * may be less than len 268 */ 269 return buf; 270 } 271 272 free(buf); 273 return NULL; 274 } 275 276 /* Return: 0 if succeeded, -ERR if failed. */ 277 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 278 { 279 unsigned long *set; 280 u64 size, *p; 281 int i, ret; 282 283 ret = do_read_u64(ff, &size); 284 if (ret) 285 return ret; 286 287 set = bitmap_zalloc(size); 288 if (!set) 289 return -ENOMEM; 290 291 p = (u64 *) set; 292 293 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 294 ret = do_read_u64(ff, p + i); 295 if (ret < 0) { 296 free(set); 297 return ret; 298 } 299 } 300 301 *pset = set; 302 *psize = size; 303 return 0; 304 } 305 306 #ifdef HAVE_LIBTRACEEVENT 307 static int write_tracing_data(struct feat_fd *ff, 308 struct evlist *evlist) 309 { 310 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 311 return -1; 312 313 return read_tracing_data(ff->fd, &evlist->core.entries); 314 } 315 #endif 316 317 static int write_build_id(struct feat_fd *ff, 318 struct evlist *evlist __maybe_unused) 319 { 320 struct perf_session *session; 321 int err; 322 323 session = container_of(ff->ph, struct perf_session, header); 324 325 if (!perf_session__read_build_ids(session, true)) 326 return -1; 327 328 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 329 return -1; 330 331 err = perf_session__write_buildid_table(session, ff); 332 if (err < 0) { 333 pr_debug("failed to write buildid table\n"); 334 return err; 335 } 336 perf_session__cache_build_ids(session); 337 338 return 0; 339 } 340 341 static int write_hostname(struct feat_fd *ff, 342 struct evlist *evlist __maybe_unused) 343 { 344 struct utsname uts; 345 int ret; 346 347 ret = uname(&uts); 348 if (ret < 0) 349 return -1; 350 351 return do_write_string(ff, uts.nodename); 352 } 353 354 static int write_osrelease(struct feat_fd *ff, 355 struct evlist *evlist __maybe_unused) 356 { 357 struct utsname uts; 358 int ret; 359 360 ret = uname(&uts); 361 if (ret < 0) 362 return -1; 363 364 return do_write_string(ff, uts.release); 365 } 366 367 static int write_arch(struct feat_fd *ff, 368 struct evlist *evlist __maybe_unused) 369 { 370 struct utsname uts; 371 int ret; 372 373 ret = uname(&uts); 374 if (ret < 0) 375 return -1; 376 377 return do_write_string(ff, uts.machine); 378 } 379 380 static int write_version(struct feat_fd *ff, 381 struct evlist *evlist __maybe_unused) 382 { 383 return do_write_string(ff, perf_version_string); 384 } 385 386 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 387 { 388 FILE *file; 389 char *buf = NULL; 390 char *s, *p; 391 const char *search = cpuinfo_proc; 392 size_t len = 0; 393 int ret = -1; 394 395 if (!search) 396 return -1; 397 398 file = fopen("/proc/cpuinfo", "r"); 399 if (!file) 400 return -1; 401 402 while (getline(&buf, &len, file) > 0) { 403 ret = strncmp(buf, search, strlen(search)); 404 if (!ret) 405 break; 406 } 407 408 if (ret) { 409 ret = -1; 410 goto done; 411 } 412 413 s = buf; 414 415 p = strchr(buf, ':'); 416 if (p && *(p+1) == ' ' && *(p+2)) 417 s = p + 2; 418 p = strchr(s, '\n'); 419 if (p) 420 *p = '\0'; 421 422 /* squash extra space characters (branding string) */ 423 p = s; 424 while (*p) { 425 if (isspace(*p)) { 426 char *r = p + 1; 427 char *q = skip_spaces(r); 428 *p = ' '; 429 if (q != (p+1)) 430 while ((*r++ = *q++)); 431 } 432 p++; 433 } 434 ret = do_write_string(ff, s); 435 done: 436 free(buf); 437 fclose(file); 438 return ret; 439 } 440 441 static int write_cpudesc(struct feat_fd *ff, 442 struct evlist *evlist __maybe_unused) 443 { 444 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 445 #define CPUINFO_PROC { "cpu", } 446 #elif defined(__s390__) 447 #define CPUINFO_PROC { "vendor_id", } 448 #elif defined(__sh__) 449 #define CPUINFO_PROC { "cpu type", } 450 #elif defined(__alpha__) || defined(__mips__) 451 #define CPUINFO_PROC { "cpu model", } 452 #elif defined(__arm__) 453 #define CPUINFO_PROC { "model name", "Processor", } 454 #elif defined(__arc__) 455 #define CPUINFO_PROC { "Processor", } 456 #elif defined(__xtensa__) 457 #define CPUINFO_PROC { "core ID", } 458 #else 459 #define CPUINFO_PROC { "model name", } 460 #endif 461 const char *cpuinfo_procs[] = CPUINFO_PROC; 462 #undef CPUINFO_PROC 463 unsigned int i; 464 465 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 466 int ret; 467 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 468 if (ret >= 0) 469 return ret; 470 } 471 return -1; 472 } 473 474 475 static int write_nrcpus(struct feat_fd *ff, 476 struct evlist *evlist __maybe_unused) 477 { 478 long nr; 479 u32 nrc, nra; 480 int ret; 481 482 nrc = cpu__max_present_cpu().cpu; 483 484 nr = sysconf(_SC_NPROCESSORS_ONLN); 485 if (nr < 0) 486 return -1; 487 488 nra = (u32)(nr & UINT_MAX); 489 490 ret = do_write(ff, &nrc, sizeof(nrc)); 491 if (ret < 0) 492 return ret; 493 494 return do_write(ff, &nra, sizeof(nra)); 495 } 496 497 static int write_event_desc(struct feat_fd *ff, 498 struct evlist *evlist) 499 { 500 struct evsel *evsel; 501 u32 nre, nri, sz; 502 int ret; 503 504 nre = evlist->core.nr_entries; 505 506 /* 507 * write number of events 508 */ 509 ret = do_write(ff, &nre, sizeof(nre)); 510 if (ret < 0) 511 return ret; 512 513 /* 514 * size of perf_event_attr struct 515 */ 516 sz = (u32)sizeof(evsel->core.attr); 517 ret = do_write(ff, &sz, sizeof(sz)); 518 if (ret < 0) 519 return ret; 520 521 evlist__for_each_entry(evlist, evsel) { 522 ret = do_write(ff, &evsel->core.attr, sz); 523 if (ret < 0) 524 return ret; 525 /* 526 * write number of unique id per event 527 * there is one id per instance of an event 528 * 529 * copy into an nri to be independent of the 530 * type of ids, 531 */ 532 nri = evsel->core.ids; 533 ret = do_write(ff, &nri, sizeof(nri)); 534 if (ret < 0) 535 return ret; 536 537 /* 538 * write event string as passed on cmdline 539 */ 540 ret = do_write_string(ff, evsel__name(evsel)); 541 if (ret < 0) 542 return ret; 543 /* 544 * write unique ids for this event 545 */ 546 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 547 if (ret < 0) 548 return ret; 549 } 550 return 0; 551 } 552 553 static int write_cmdline(struct feat_fd *ff, 554 struct evlist *evlist __maybe_unused) 555 { 556 char pbuf[MAXPATHLEN], *buf; 557 int i, ret, n; 558 559 /* actual path to perf binary */ 560 buf = perf_exe(pbuf, MAXPATHLEN); 561 562 /* account for binary path */ 563 n = perf_env.nr_cmdline + 1; 564 565 ret = do_write(ff, &n, sizeof(n)); 566 if (ret < 0) 567 return ret; 568 569 ret = do_write_string(ff, buf); 570 if (ret < 0) 571 return ret; 572 573 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 574 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 575 if (ret < 0) 576 return ret; 577 } 578 return 0; 579 } 580 581 582 static int write_cpu_topology(struct feat_fd *ff, 583 struct evlist *evlist __maybe_unused) 584 { 585 struct cpu_topology *tp; 586 u32 i; 587 int ret, j; 588 589 tp = cpu_topology__new(); 590 if (!tp) 591 return -1; 592 593 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists)); 594 if (ret < 0) 595 goto done; 596 597 for (i = 0; i < tp->package_cpus_lists; i++) { 598 ret = do_write_string(ff, tp->package_cpus_list[i]); 599 if (ret < 0) 600 goto done; 601 } 602 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists)); 603 if (ret < 0) 604 goto done; 605 606 for (i = 0; i < tp->core_cpus_lists; i++) { 607 ret = do_write_string(ff, tp->core_cpus_list[i]); 608 if (ret < 0) 609 break; 610 } 611 612 ret = perf_env__read_cpu_topology_map(&perf_env); 613 if (ret < 0) 614 goto done; 615 616 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 617 ret = do_write(ff, &perf_env.cpu[j].core_id, 618 sizeof(perf_env.cpu[j].core_id)); 619 if (ret < 0) 620 return ret; 621 ret = do_write(ff, &perf_env.cpu[j].socket_id, 622 sizeof(perf_env.cpu[j].socket_id)); 623 if (ret < 0) 624 return ret; 625 } 626 627 if (!tp->die_cpus_lists) 628 goto done; 629 630 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists)); 631 if (ret < 0) 632 goto done; 633 634 for (i = 0; i < tp->die_cpus_lists; i++) { 635 ret = do_write_string(ff, tp->die_cpus_list[i]); 636 if (ret < 0) 637 goto done; 638 } 639 640 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 641 ret = do_write(ff, &perf_env.cpu[j].die_id, 642 sizeof(perf_env.cpu[j].die_id)); 643 if (ret < 0) 644 return ret; 645 } 646 647 done: 648 cpu_topology__delete(tp); 649 return ret; 650 } 651 652 653 654 static int write_total_mem(struct feat_fd *ff, 655 struct evlist *evlist __maybe_unused) 656 { 657 char *buf = NULL; 658 FILE *fp; 659 size_t len = 0; 660 int ret = -1, n; 661 uint64_t mem; 662 663 fp = fopen("/proc/meminfo", "r"); 664 if (!fp) 665 return -1; 666 667 while (getline(&buf, &len, fp) > 0) { 668 ret = strncmp(buf, "MemTotal:", 9); 669 if (!ret) 670 break; 671 } 672 if (!ret) { 673 n = sscanf(buf, "%*s %"PRIu64, &mem); 674 if (n == 1) 675 ret = do_write(ff, &mem, sizeof(mem)); 676 } else 677 ret = -1; 678 free(buf); 679 fclose(fp); 680 return ret; 681 } 682 683 static int write_numa_topology(struct feat_fd *ff, 684 struct evlist *evlist __maybe_unused) 685 { 686 struct numa_topology *tp; 687 int ret = -1; 688 u32 i; 689 690 tp = numa_topology__new(); 691 if (!tp) 692 return -ENOMEM; 693 694 ret = do_write(ff, &tp->nr, sizeof(u32)); 695 if (ret < 0) 696 goto err; 697 698 for (i = 0; i < tp->nr; i++) { 699 struct numa_topology_node *n = &tp->nodes[i]; 700 701 ret = do_write(ff, &n->node, sizeof(u32)); 702 if (ret < 0) 703 goto err; 704 705 ret = do_write(ff, &n->mem_total, sizeof(u64)); 706 if (ret) 707 goto err; 708 709 ret = do_write(ff, &n->mem_free, sizeof(u64)); 710 if (ret) 711 goto err; 712 713 ret = do_write_string(ff, n->cpus); 714 if (ret < 0) 715 goto err; 716 } 717 718 ret = 0; 719 720 err: 721 numa_topology__delete(tp); 722 return ret; 723 } 724 725 /* 726 * File format: 727 * 728 * struct pmu_mappings { 729 * u32 pmu_num; 730 * struct pmu_map { 731 * u32 type; 732 * char name[]; 733 * }[pmu_num]; 734 * }; 735 */ 736 737 static int write_pmu_mappings(struct feat_fd *ff, 738 struct evlist *evlist __maybe_unused) 739 { 740 struct perf_pmu *pmu = NULL; 741 u32 pmu_num = 0; 742 int ret; 743 744 /* 745 * Do a first pass to count number of pmu to avoid lseek so this 746 * works in pipe mode as well. 747 */ 748 while ((pmu = perf_pmu__scan(pmu))) { 749 if (!pmu->name) 750 continue; 751 pmu_num++; 752 } 753 754 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 755 if (ret < 0) 756 return ret; 757 758 while ((pmu = perf_pmu__scan(pmu))) { 759 if (!pmu->name) 760 continue; 761 762 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 763 if (ret < 0) 764 return ret; 765 766 ret = do_write_string(ff, pmu->name); 767 if (ret < 0) 768 return ret; 769 } 770 771 return 0; 772 } 773 774 /* 775 * File format: 776 * 777 * struct group_descs { 778 * u32 nr_groups; 779 * struct group_desc { 780 * char name[]; 781 * u32 leader_idx; 782 * u32 nr_members; 783 * }[nr_groups]; 784 * }; 785 */ 786 static int write_group_desc(struct feat_fd *ff, 787 struct evlist *evlist) 788 { 789 u32 nr_groups = evlist__nr_groups(evlist); 790 struct evsel *evsel; 791 int ret; 792 793 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 794 if (ret < 0) 795 return ret; 796 797 evlist__for_each_entry(evlist, evsel) { 798 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 799 const char *name = evsel->group_name ?: "{anon_group}"; 800 u32 leader_idx = evsel->core.idx; 801 u32 nr_members = evsel->core.nr_members; 802 803 ret = do_write_string(ff, name); 804 if (ret < 0) 805 return ret; 806 807 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 808 if (ret < 0) 809 return ret; 810 811 ret = do_write(ff, &nr_members, sizeof(nr_members)); 812 if (ret < 0) 813 return ret; 814 } 815 } 816 return 0; 817 } 818 819 /* 820 * Return the CPU id as a raw string. 821 * 822 * Each architecture should provide a more precise id string that 823 * can be use to match the architecture's "mapfile". 824 */ 825 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 826 { 827 return NULL; 828 } 829 830 /* Return zero when the cpuid from the mapfile.csv matches the 831 * cpuid string generated on this platform. 832 * Otherwise return non-zero. 833 */ 834 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 835 { 836 regex_t re; 837 regmatch_t pmatch[1]; 838 int match; 839 840 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 841 /* Warn unable to generate match particular string. */ 842 pr_info("Invalid regular expression %s\n", mapcpuid); 843 return 1; 844 } 845 846 match = !regexec(&re, cpuid, 1, pmatch, 0); 847 regfree(&re); 848 if (match) { 849 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 850 851 /* Verify the entire string matched. */ 852 if (match_len == strlen(cpuid)) 853 return 0; 854 } 855 return 1; 856 } 857 858 /* 859 * default get_cpuid(): nothing gets recorded 860 * actual implementation must be in arch/$(SRCARCH)/util/header.c 861 */ 862 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 863 { 864 return ENOSYS; /* Not implemented */ 865 } 866 867 static int write_cpuid(struct feat_fd *ff, 868 struct evlist *evlist __maybe_unused) 869 { 870 char buffer[64]; 871 int ret; 872 873 ret = get_cpuid(buffer, sizeof(buffer)); 874 if (ret) 875 return -1; 876 877 return do_write_string(ff, buffer); 878 } 879 880 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 881 struct evlist *evlist __maybe_unused) 882 { 883 return 0; 884 } 885 886 static int write_auxtrace(struct feat_fd *ff, 887 struct evlist *evlist __maybe_unused) 888 { 889 struct perf_session *session; 890 int err; 891 892 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 893 return -1; 894 895 session = container_of(ff->ph, struct perf_session, header); 896 897 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 898 if (err < 0) 899 pr_err("Failed to write auxtrace index\n"); 900 return err; 901 } 902 903 static int write_clockid(struct feat_fd *ff, 904 struct evlist *evlist __maybe_unused) 905 { 906 return do_write(ff, &ff->ph->env.clock.clockid_res_ns, 907 sizeof(ff->ph->env.clock.clockid_res_ns)); 908 } 909 910 static int write_clock_data(struct feat_fd *ff, 911 struct evlist *evlist __maybe_unused) 912 { 913 u64 *data64; 914 u32 data32; 915 int ret; 916 917 /* version */ 918 data32 = 1; 919 920 ret = do_write(ff, &data32, sizeof(data32)); 921 if (ret < 0) 922 return ret; 923 924 /* clockid */ 925 data32 = ff->ph->env.clock.clockid; 926 927 ret = do_write(ff, &data32, sizeof(data32)); 928 if (ret < 0) 929 return ret; 930 931 /* TOD ref time */ 932 data64 = &ff->ph->env.clock.tod_ns; 933 934 ret = do_write(ff, data64, sizeof(*data64)); 935 if (ret < 0) 936 return ret; 937 938 /* clockid ref time */ 939 data64 = &ff->ph->env.clock.clockid_ns; 940 941 return do_write(ff, data64, sizeof(*data64)); 942 } 943 944 static int write_hybrid_topology(struct feat_fd *ff, 945 struct evlist *evlist __maybe_unused) 946 { 947 struct hybrid_topology *tp; 948 int ret; 949 u32 i; 950 951 tp = hybrid_topology__new(); 952 if (!tp) 953 return -ENOENT; 954 955 ret = do_write(ff, &tp->nr, sizeof(u32)); 956 if (ret < 0) 957 goto err; 958 959 for (i = 0; i < tp->nr; i++) { 960 struct hybrid_topology_node *n = &tp->nodes[i]; 961 962 ret = do_write_string(ff, n->pmu_name); 963 if (ret < 0) 964 goto err; 965 966 ret = do_write_string(ff, n->cpus); 967 if (ret < 0) 968 goto err; 969 } 970 971 ret = 0; 972 973 err: 974 hybrid_topology__delete(tp); 975 return ret; 976 } 977 978 static int write_dir_format(struct feat_fd *ff, 979 struct evlist *evlist __maybe_unused) 980 { 981 struct perf_session *session; 982 struct perf_data *data; 983 984 session = container_of(ff->ph, struct perf_session, header); 985 data = session->data; 986 987 if (WARN_ON(!perf_data__is_dir(data))) 988 return -1; 989 990 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 991 } 992 993 /* 994 * Check whether a CPU is online 995 * 996 * Returns: 997 * 1 -> if CPU is online 998 * 0 -> if CPU is offline 999 * -1 -> error case 1000 */ 1001 int is_cpu_online(unsigned int cpu) 1002 { 1003 char *str; 1004 size_t strlen; 1005 char buf[256]; 1006 int status = -1; 1007 struct stat statbuf; 1008 1009 snprintf(buf, sizeof(buf), 1010 "/sys/devices/system/cpu/cpu%d", cpu); 1011 if (stat(buf, &statbuf) != 0) 1012 return 0; 1013 1014 /* 1015 * Check if /sys/devices/system/cpu/cpux/online file 1016 * exists. Some cases cpu0 won't have online file since 1017 * it is not expected to be turned off generally. 1018 * In kernels without CONFIG_HOTPLUG_CPU, this 1019 * file won't exist 1020 */ 1021 snprintf(buf, sizeof(buf), 1022 "/sys/devices/system/cpu/cpu%d/online", cpu); 1023 if (stat(buf, &statbuf) != 0) 1024 return 1; 1025 1026 /* 1027 * Read online file using sysfs__read_str. 1028 * If read or open fails, return -1. 1029 * If read succeeds, return value from file 1030 * which gets stored in "str" 1031 */ 1032 snprintf(buf, sizeof(buf), 1033 "devices/system/cpu/cpu%d/online", cpu); 1034 1035 if (sysfs__read_str(buf, &str, &strlen) < 0) 1036 return status; 1037 1038 status = atoi(str); 1039 1040 free(str); 1041 return status; 1042 } 1043 1044 #ifdef HAVE_LIBBPF_SUPPORT 1045 static int write_bpf_prog_info(struct feat_fd *ff, 1046 struct evlist *evlist __maybe_unused) 1047 { 1048 struct perf_env *env = &ff->ph->env; 1049 struct rb_root *root; 1050 struct rb_node *next; 1051 int ret; 1052 1053 down_read(&env->bpf_progs.lock); 1054 1055 ret = do_write(ff, &env->bpf_progs.infos_cnt, 1056 sizeof(env->bpf_progs.infos_cnt)); 1057 if (ret < 0) 1058 goto out; 1059 1060 root = &env->bpf_progs.infos; 1061 next = rb_first(root); 1062 while (next) { 1063 struct bpf_prog_info_node *node; 1064 size_t len; 1065 1066 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1067 next = rb_next(&node->rb_node); 1068 len = sizeof(struct perf_bpil) + 1069 node->info_linear->data_len; 1070 1071 /* before writing to file, translate address to offset */ 1072 bpil_addr_to_offs(node->info_linear); 1073 ret = do_write(ff, node->info_linear, len); 1074 /* 1075 * translate back to address even when do_write() fails, 1076 * so that this function never changes the data. 1077 */ 1078 bpil_offs_to_addr(node->info_linear); 1079 if (ret < 0) 1080 goto out; 1081 } 1082 out: 1083 up_read(&env->bpf_progs.lock); 1084 return ret; 1085 } 1086 1087 static int write_bpf_btf(struct feat_fd *ff, 1088 struct evlist *evlist __maybe_unused) 1089 { 1090 struct perf_env *env = &ff->ph->env; 1091 struct rb_root *root; 1092 struct rb_node *next; 1093 int ret; 1094 1095 down_read(&env->bpf_progs.lock); 1096 1097 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 1098 sizeof(env->bpf_progs.btfs_cnt)); 1099 1100 if (ret < 0) 1101 goto out; 1102 1103 root = &env->bpf_progs.btfs; 1104 next = rb_first(root); 1105 while (next) { 1106 struct btf_node *node; 1107 1108 node = rb_entry(next, struct btf_node, rb_node); 1109 next = rb_next(&node->rb_node); 1110 ret = do_write(ff, &node->id, 1111 sizeof(u32) * 2 + node->data_size); 1112 if (ret < 0) 1113 goto out; 1114 } 1115 out: 1116 up_read(&env->bpf_progs.lock); 1117 return ret; 1118 } 1119 #endif // HAVE_LIBBPF_SUPPORT 1120 1121 static int cpu_cache_level__sort(const void *a, const void *b) 1122 { 1123 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1124 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1125 1126 return cache_a->level - cache_b->level; 1127 } 1128 1129 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1130 { 1131 if (a->level != b->level) 1132 return false; 1133 1134 if (a->line_size != b->line_size) 1135 return false; 1136 1137 if (a->sets != b->sets) 1138 return false; 1139 1140 if (a->ways != b->ways) 1141 return false; 1142 1143 if (strcmp(a->type, b->type)) 1144 return false; 1145 1146 if (strcmp(a->size, b->size)) 1147 return false; 1148 1149 if (strcmp(a->map, b->map)) 1150 return false; 1151 1152 return true; 1153 } 1154 1155 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1156 { 1157 char path[PATH_MAX], file[PATH_MAX]; 1158 struct stat st; 1159 size_t len; 1160 1161 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1162 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1163 1164 if (stat(file, &st)) 1165 return 1; 1166 1167 scnprintf(file, PATH_MAX, "%s/level", path); 1168 if (sysfs__read_int(file, (int *) &cache->level)) 1169 return -1; 1170 1171 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1172 if (sysfs__read_int(file, (int *) &cache->line_size)) 1173 return -1; 1174 1175 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1176 if (sysfs__read_int(file, (int *) &cache->sets)) 1177 return -1; 1178 1179 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1180 if (sysfs__read_int(file, (int *) &cache->ways)) 1181 return -1; 1182 1183 scnprintf(file, PATH_MAX, "%s/type", path); 1184 if (sysfs__read_str(file, &cache->type, &len)) 1185 return -1; 1186 1187 cache->type[len] = 0; 1188 cache->type = strim(cache->type); 1189 1190 scnprintf(file, PATH_MAX, "%s/size", path); 1191 if (sysfs__read_str(file, &cache->size, &len)) { 1192 zfree(&cache->type); 1193 return -1; 1194 } 1195 1196 cache->size[len] = 0; 1197 cache->size = strim(cache->size); 1198 1199 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1200 if (sysfs__read_str(file, &cache->map, &len)) { 1201 zfree(&cache->size); 1202 zfree(&cache->type); 1203 return -1; 1204 } 1205 1206 cache->map[len] = 0; 1207 cache->map = strim(cache->map); 1208 return 0; 1209 } 1210 1211 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1212 { 1213 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1214 } 1215 1216 #define MAX_CACHE_LVL 4 1217 1218 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1219 { 1220 u32 i, cnt = 0; 1221 u32 nr, cpu; 1222 u16 level; 1223 1224 nr = cpu__max_cpu().cpu; 1225 1226 for (cpu = 0; cpu < nr; cpu++) { 1227 for (level = 0; level < MAX_CACHE_LVL; level++) { 1228 struct cpu_cache_level c; 1229 int err; 1230 1231 err = cpu_cache_level__read(&c, cpu, level); 1232 if (err < 0) 1233 return err; 1234 1235 if (err == 1) 1236 break; 1237 1238 for (i = 0; i < cnt; i++) { 1239 if (cpu_cache_level__cmp(&c, &caches[i])) 1240 break; 1241 } 1242 1243 if (i == cnt) 1244 caches[cnt++] = c; 1245 else 1246 cpu_cache_level__free(&c); 1247 } 1248 } 1249 *cntp = cnt; 1250 return 0; 1251 } 1252 1253 static int write_cache(struct feat_fd *ff, 1254 struct evlist *evlist __maybe_unused) 1255 { 1256 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL; 1257 struct cpu_cache_level caches[max_caches]; 1258 u32 cnt = 0, i, version = 1; 1259 int ret; 1260 1261 ret = build_caches(caches, &cnt); 1262 if (ret) 1263 goto out; 1264 1265 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1266 1267 ret = do_write(ff, &version, sizeof(u32)); 1268 if (ret < 0) 1269 goto out; 1270 1271 ret = do_write(ff, &cnt, sizeof(u32)); 1272 if (ret < 0) 1273 goto out; 1274 1275 for (i = 0; i < cnt; i++) { 1276 struct cpu_cache_level *c = &caches[i]; 1277 1278 #define _W(v) \ 1279 ret = do_write(ff, &c->v, sizeof(u32)); \ 1280 if (ret < 0) \ 1281 goto out; 1282 1283 _W(level) 1284 _W(line_size) 1285 _W(sets) 1286 _W(ways) 1287 #undef _W 1288 1289 #define _W(v) \ 1290 ret = do_write_string(ff, (const char *) c->v); \ 1291 if (ret < 0) \ 1292 goto out; 1293 1294 _W(type) 1295 _W(size) 1296 _W(map) 1297 #undef _W 1298 } 1299 1300 out: 1301 for (i = 0; i < cnt; i++) 1302 cpu_cache_level__free(&caches[i]); 1303 return ret; 1304 } 1305 1306 static int write_stat(struct feat_fd *ff __maybe_unused, 1307 struct evlist *evlist __maybe_unused) 1308 { 1309 return 0; 1310 } 1311 1312 static int write_sample_time(struct feat_fd *ff, 1313 struct evlist *evlist) 1314 { 1315 int ret; 1316 1317 ret = do_write(ff, &evlist->first_sample_time, 1318 sizeof(evlist->first_sample_time)); 1319 if (ret < 0) 1320 return ret; 1321 1322 return do_write(ff, &evlist->last_sample_time, 1323 sizeof(evlist->last_sample_time)); 1324 } 1325 1326 1327 static int memory_node__read(struct memory_node *n, unsigned long idx) 1328 { 1329 unsigned int phys, size = 0; 1330 char path[PATH_MAX]; 1331 struct dirent *ent; 1332 DIR *dir; 1333 1334 #define for_each_memory(mem, dir) \ 1335 while ((ent = readdir(dir))) \ 1336 if (strcmp(ent->d_name, ".") && \ 1337 strcmp(ent->d_name, "..") && \ 1338 sscanf(ent->d_name, "memory%u", &mem) == 1) 1339 1340 scnprintf(path, PATH_MAX, 1341 "%s/devices/system/node/node%lu", 1342 sysfs__mountpoint(), idx); 1343 1344 dir = opendir(path); 1345 if (!dir) { 1346 pr_warning("failed: can't open memory sysfs data\n"); 1347 return -1; 1348 } 1349 1350 for_each_memory(phys, dir) { 1351 size = max(phys, size); 1352 } 1353 1354 size++; 1355 1356 n->set = bitmap_zalloc(size); 1357 if (!n->set) { 1358 closedir(dir); 1359 return -ENOMEM; 1360 } 1361 1362 n->node = idx; 1363 n->size = size; 1364 1365 rewinddir(dir); 1366 1367 for_each_memory(phys, dir) { 1368 __set_bit(phys, n->set); 1369 } 1370 1371 closedir(dir); 1372 return 0; 1373 } 1374 1375 static int memory_node__sort(const void *a, const void *b) 1376 { 1377 const struct memory_node *na = a; 1378 const struct memory_node *nb = b; 1379 1380 return na->node - nb->node; 1381 } 1382 1383 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1384 { 1385 char path[PATH_MAX]; 1386 struct dirent *ent; 1387 DIR *dir; 1388 u64 cnt = 0; 1389 int ret = 0; 1390 1391 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1392 sysfs__mountpoint()); 1393 1394 dir = opendir(path); 1395 if (!dir) { 1396 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n", 1397 __func__, path); 1398 return -1; 1399 } 1400 1401 while (!ret && (ent = readdir(dir))) { 1402 unsigned int idx; 1403 int r; 1404 1405 if (!strcmp(ent->d_name, ".") || 1406 !strcmp(ent->d_name, "..")) 1407 continue; 1408 1409 r = sscanf(ent->d_name, "node%u", &idx); 1410 if (r != 1) 1411 continue; 1412 1413 if (WARN_ONCE(cnt >= size, 1414 "failed to write MEM_TOPOLOGY, way too many nodes\n")) { 1415 closedir(dir); 1416 return -1; 1417 } 1418 1419 ret = memory_node__read(&nodes[cnt++], idx); 1420 } 1421 1422 *cntp = cnt; 1423 closedir(dir); 1424 1425 if (!ret) 1426 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1427 1428 return ret; 1429 } 1430 1431 #define MAX_MEMORY_NODES 2000 1432 1433 /* 1434 * The MEM_TOPOLOGY holds physical memory map for every 1435 * node in system. The format of data is as follows: 1436 * 1437 * 0 - version | for future changes 1438 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1439 * 16 - count | number of nodes 1440 * 1441 * For each node we store map of physical indexes for 1442 * each node: 1443 * 1444 * 32 - node id | node index 1445 * 40 - size | size of bitmap 1446 * 48 - bitmap | bitmap of memory indexes that belongs to node 1447 */ 1448 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1449 struct evlist *evlist __maybe_unused) 1450 { 1451 static struct memory_node nodes[MAX_MEMORY_NODES]; 1452 u64 bsize, version = 1, i, nr; 1453 int ret; 1454 1455 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1456 (unsigned long long *) &bsize); 1457 if (ret) 1458 return ret; 1459 1460 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1461 if (ret) 1462 return ret; 1463 1464 ret = do_write(ff, &version, sizeof(version)); 1465 if (ret < 0) 1466 goto out; 1467 1468 ret = do_write(ff, &bsize, sizeof(bsize)); 1469 if (ret < 0) 1470 goto out; 1471 1472 ret = do_write(ff, &nr, sizeof(nr)); 1473 if (ret < 0) 1474 goto out; 1475 1476 for (i = 0; i < nr; i++) { 1477 struct memory_node *n = &nodes[i]; 1478 1479 #define _W(v) \ 1480 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1481 if (ret < 0) \ 1482 goto out; 1483 1484 _W(node) 1485 _W(size) 1486 1487 #undef _W 1488 1489 ret = do_write_bitmap(ff, n->set, n->size); 1490 if (ret < 0) 1491 goto out; 1492 } 1493 1494 out: 1495 return ret; 1496 } 1497 1498 static int write_compressed(struct feat_fd *ff __maybe_unused, 1499 struct evlist *evlist __maybe_unused) 1500 { 1501 int ret; 1502 1503 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1504 if (ret) 1505 return ret; 1506 1507 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1508 if (ret) 1509 return ret; 1510 1511 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1512 if (ret) 1513 return ret; 1514 1515 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1516 if (ret) 1517 return ret; 1518 1519 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1520 } 1521 1522 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu, 1523 bool write_pmu) 1524 { 1525 struct perf_pmu_caps *caps = NULL; 1526 int ret; 1527 1528 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps)); 1529 if (ret < 0) 1530 return ret; 1531 1532 list_for_each_entry(caps, &pmu->caps, list) { 1533 ret = do_write_string(ff, caps->name); 1534 if (ret < 0) 1535 return ret; 1536 1537 ret = do_write_string(ff, caps->value); 1538 if (ret < 0) 1539 return ret; 1540 } 1541 1542 if (write_pmu) { 1543 ret = do_write_string(ff, pmu->name); 1544 if (ret < 0) 1545 return ret; 1546 } 1547 1548 return ret; 1549 } 1550 1551 static int write_cpu_pmu_caps(struct feat_fd *ff, 1552 struct evlist *evlist __maybe_unused) 1553 { 1554 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu"); 1555 int ret; 1556 1557 if (!cpu_pmu) 1558 return -ENOENT; 1559 1560 ret = perf_pmu__caps_parse(cpu_pmu); 1561 if (ret < 0) 1562 return ret; 1563 1564 return __write_pmu_caps(ff, cpu_pmu, false); 1565 } 1566 1567 static int write_pmu_caps(struct feat_fd *ff, 1568 struct evlist *evlist __maybe_unused) 1569 { 1570 struct perf_pmu *pmu = NULL; 1571 int nr_pmu = 0; 1572 int ret; 1573 1574 while ((pmu = perf_pmu__scan(pmu))) { 1575 if (!pmu->name || !strcmp(pmu->name, "cpu") || 1576 perf_pmu__caps_parse(pmu) <= 0) 1577 continue; 1578 nr_pmu++; 1579 } 1580 1581 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu)); 1582 if (ret < 0) 1583 return ret; 1584 1585 if (!nr_pmu) 1586 return 0; 1587 1588 /* 1589 * Write hybrid pmu caps first to maintain compatibility with 1590 * older perf tool. 1591 */ 1592 pmu = NULL; 1593 perf_pmu__for_each_hybrid_pmu(pmu) { 1594 ret = __write_pmu_caps(ff, pmu, true); 1595 if (ret < 0) 1596 return ret; 1597 } 1598 1599 pmu = NULL; 1600 while ((pmu = perf_pmu__scan(pmu))) { 1601 if (!pmu->name || !strcmp(pmu->name, "cpu") || 1602 !pmu->nr_caps || perf_pmu__is_hybrid(pmu->name)) 1603 continue; 1604 1605 ret = __write_pmu_caps(ff, pmu, true); 1606 if (ret < 0) 1607 return ret; 1608 } 1609 return 0; 1610 } 1611 1612 static void print_hostname(struct feat_fd *ff, FILE *fp) 1613 { 1614 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1615 } 1616 1617 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1618 { 1619 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1620 } 1621 1622 static void print_arch(struct feat_fd *ff, FILE *fp) 1623 { 1624 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1625 } 1626 1627 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1628 { 1629 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1630 } 1631 1632 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1633 { 1634 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1635 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1636 } 1637 1638 static void print_version(struct feat_fd *ff, FILE *fp) 1639 { 1640 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1641 } 1642 1643 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1644 { 1645 int nr, i; 1646 1647 nr = ff->ph->env.nr_cmdline; 1648 1649 fprintf(fp, "# cmdline : "); 1650 1651 for (i = 0; i < nr; i++) { 1652 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1653 if (!argv_i) { 1654 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1655 } else { 1656 char *mem = argv_i; 1657 do { 1658 char *quote = strchr(argv_i, '\''); 1659 if (!quote) 1660 break; 1661 *quote++ = '\0'; 1662 fprintf(fp, "%s\\\'", argv_i); 1663 argv_i = quote; 1664 } while (1); 1665 fprintf(fp, "%s ", argv_i); 1666 free(mem); 1667 } 1668 } 1669 fputc('\n', fp); 1670 } 1671 1672 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1673 { 1674 struct perf_header *ph = ff->ph; 1675 int cpu_nr = ph->env.nr_cpus_avail; 1676 int nr, i; 1677 char *str; 1678 1679 nr = ph->env.nr_sibling_cores; 1680 str = ph->env.sibling_cores; 1681 1682 for (i = 0; i < nr; i++) { 1683 fprintf(fp, "# sibling sockets : %s\n", str); 1684 str += strlen(str) + 1; 1685 } 1686 1687 if (ph->env.nr_sibling_dies) { 1688 nr = ph->env.nr_sibling_dies; 1689 str = ph->env.sibling_dies; 1690 1691 for (i = 0; i < nr; i++) { 1692 fprintf(fp, "# sibling dies : %s\n", str); 1693 str += strlen(str) + 1; 1694 } 1695 } 1696 1697 nr = ph->env.nr_sibling_threads; 1698 str = ph->env.sibling_threads; 1699 1700 for (i = 0; i < nr; i++) { 1701 fprintf(fp, "# sibling threads : %s\n", str); 1702 str += strlen(str) + 1; 1703 } 1704 1705 if (ph->env.nr_sibling_dies) { 1706 if (ph->env.cpu != NULL) { 1707 for (i = 0; i < cpu_nr; i++) 1708 fprintf(fp, "# CPU %d: Core ID %d, " 1709 "Die ID %d, Socket ID %d\n", 1710 i, ph->env.cpu[i].core_id, 1711 ph->env.cpu[i].die_id, 1712 ph->env.cpu[i].socket_id); 1713 } else 1714 fprintf(fp, "# Core ID, Die ID and Socket ID " 1715 "information is not available\n"); 1716 } else { 1717 if (ph->env.cpu != NULL) { 1718 for (i = 0; i < cpu_nr; i++) 1719 fprintf(fp, "# CPU %d: Core ID %d, " 1720 "Socket ID %d\n", 1721 i, ph->env.cpu[i].core_id, 1722 ph->env.cpu[i].socket_id); 1723 } else 1724 fprintf(fp, "# Core ID and Socket ID " 1725 "information is not available\n"); 1726 } 1727 } 1728 1729 static void print_clockid(struct feat_fd *ff, FILE *fp) 1730 { 1731 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1732 ff->ph->env.clock.clockid_res_ns * 1000); 1733 } 1734 1735 static void print_clock_data(struct feat_fd *ff, FILE *fp) 1736 { 1737 struct timespec clockid_ns; 1738 char tstr[64], date[64]; 1739 struct timeval tod_ns; 1740 clockid_t clockid; 1741 struct tm ltime; 1742 u64 ref; 1743 1744 if (!ff->ph->env.clock.enabled) { 1745 fprintf(fp, "# reference time disabled\n"); 1746 return; 1747 } 1748 1749 /* Compute TOD time. */ 1750 ref = ff->ph->env.clock.tod_ns; 1751 tod_ns.tv_sec = ref / NSEC_PER_SEC; 1752 ref -= tod_ns.tv_sec * NSEC_PER_SEC; 1753 tod_ns.tv_usec = ref / NSEC_PER_USEC; 1754 1755 /* Compute clockid time. */ 1756 ref = ff->ph->env.clock.clockid_ns; 1757 clockid_ns.tv_sec = ref / NSEC_PER_SEC; 1758 ref -= clockid_ns.tv_sec * NSEC_PER_SEC; 1759 clockid_ns.tv_nsec = ref; 1760 1761 clockid = ff->ph->env.clock.clockid; 1762 1763 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) 1764 snprintf(tstr, sizeof(tstr), "<error>"); 1765 else { 1766 strftime(date, sizeof(date), "%F %T", <ime); 1767 scnprintf(tstr, sizeof(tstr), "%s.%06d", 1768 date, (int) tod_ns.tv_usec); 1769 } 1770 1771 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); 1772 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", 1773 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec, 1774 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec, 1775 clockid_name(clockid)); 1776 } 1777 1778 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp) 1779 { 1780 int i; 1781 struct hybrid_node *n; 1782 1783 fprintf(fp, "# hybrid cpu system:\n"); 1784 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) { 1785 n = &ff->ph->env.hybrid_nodes[i]; 1786 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus); 1787 } 1788 } 1789 1790 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1791 { 1792 struct perf_session *session; 1793 struct perf_data *data; 1794 1795 session = container_of(ff->ph, struct perf_session, header); 1796 data = session->data; 1797 1798 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1799 } 1800 1801 #ifdef HAVE_LIBBPF_SUPPORT 1802 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1803 { 1804 struct perf_env *env = &ff->ph->env; 1805 struct rb_root *root; 1806 struct rb_node *next; 1807 1808 down_read(&env->bpf_progs.lock); 1809 1810 root = &env->bpf_progs.infos; 1811 next = rb_first(root); 1812 1813 while (next) { 1814 struct bpf_prog_info_node *node; 1815 1816 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1817 next = rb_next(&node->rb_node); 1818 1819 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1820 env, fp); 1821 } 1822 1823 up_read(&env->bpf_progs.lock); 1824 } 1825 1826 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1827 { 1828 struct perf_env *env = &ff->ph->env; 1829 struct rb_root *root; 1830 struct rb_node *next; 1831 1832 down_read(&env->bpf_progs.lock); 1833 1834 root = &env->bpf_progs.btfs; 1835 next = rb_first(root); 1836 1837 while (next) { 1838 struct btf_node *node; 1839 1840 node = rb_entry(next, struct btf_node, rb_node); 1841 next = rb_next(&node->rb_node); 1842 fprintf(fp, "# btf info of id %u\n", node->id); 1843 } 1844 1845 up_read(&env->bpf_progs.lock); 1846 } 1847 #endif // HAVE_LIBBPF_SUPPORT 1848 1849 static void free_event_desc(struct evsel *events) 1850 { 1851 struct evsel *evsel; 1852 1853 if (!events) 1854 return; 1855 1856 for (evsel = events; evsel->core.attr.size; evsel++) { 1857 zfree(&evsel->name); 1858 zfree(&evsel->core.id); 1859 } 1860 1861 free(events); 1862 } 1863 1864 static bool perf_attr_check(struct perf_event_attr *attr) 1865 { 1866 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1867 pr_warning("Reserved bits are set unexpectedly. " 1868 "Please update perf tool.\n"); 1869 return false; 1870 } 1871 1872 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1873 pr_warning("Unknown sample type (0x%llx) is detected. " 1874 "Please update perf tool.\n", 1875 attr->sample_type); 1876 return false; 1877 } 1878 1879 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1880 pr_warning("Unknown read format (0x%llx) is detected. " 1881 "Please update perf tool.\n", 1882 attr->read_format); 1883 return false; 1884 } 1885 1886 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1887 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1888 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1889 "Please update perf tool.\n", 1890 attr->branch_sample_type); 1891 1892 return false; 1893 } 1894 1895 return true; 1896 } 1897 1898 static struct evsel *read_event_desc(struct feat_fd *ff) 1899 { 1900 struct evsel *evsel, *events = NULL; 1901 u64 *id; 1902 void *buf = NULL; 1903 u32 nre, sz, nr, i, j; 1904 size_t msz; 1905 1906 /* number of events */ 1907 if (do_read_u32(ff, &nre)) 1908 goto error; 1909 1910 if (do_read_u32(ff, &sz)) 1911 goto error; 1912 1913 /* buffer to hold on file attr struct */ 1914 buf = malloc(sz); 1915 if (!buf) 1916 goto error; 1917 1918 /* the last event terminates with evsel->core.attr.size == 0: */ 1919 events = calloc(nre + 1, sizeof(*events)); 1920 if (!events) 1921 goto error; 1922 1923 msz = sizeof(evsel->core.attr); 1924 if (sz < msz) 1925 msz = sz; 1926 1927 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1928 evsel->core.idx = i; 1929 1930 /* 1931 * must read entire on-file attr struct to 1932 * sync up with layout. 1933 */ 1934 if (__do_read(ff, buf, sz)) 1935 goto error; 1936 1937 if (ff->ph->needs_swap) 1938 perf_event__attr_swap(buf); 1939 1940 memcpy(&evsel->core.attr, buf, msz); 1941 1942 if (!perf_attr_check(&evsel->core.attr)) 1943 goto error; 1944 1945 if (do_read_u32(ff, &nr)) 1946 goto error; 1947 1948 if (ff->ph->needs_swap) 1949 evsel->needs_swap = true; 1950 1951 evsel->name = do_read_string(ff); 1952 if (!evsel->name) 1953 goto error; 1954 1955 if (!nr) 1956 continue; 1957 1958 id = calloc(nr, sizeof(*id)); 1959 if (!id) 1960 goto error; 1961 evsel->core.ids = nr; 1962 evsel->core.id = id; 1963 1964 for (j = 0 ; j < nr; j++) { 1965 if (do_read_u64(ff, id)) 1966 goto error; 1967 id++; 1968 } 1969 } 1970 out: 1971 free(buf); 1972 return events; 1973 error: 1974 free_event_desc(events); 1975 events = NULL; 1976 goto out; 1977 } 1978 1979 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1980 void *priv __maybe_unused) 1981 { 1982 return fprintf(fp, ", %s = %s", name, val); 1983 } 1984 1985 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1986 { 1987 struct evsel *evsel, *events; 1988 u32 j; 1989 u64 *id; 1990 1991 if (ff->events) 1992 events = ff->events; 1993 else 1994 events = read_event_desc(ff); 1995 1996 if (!events) { 1997 fprintf(fp, "# event desc: not available or unable to read\n"); 1998 return; 1999 } 2000 2001 for (evsel = events; evsel->core.attr.size; evsel++) { 2002 fprintf(fp, "# event : name = %s, ", evsel->name); 2003 2004 if (evsel->core.ids) { 2005 fprintf(fp, ", id = {"); 2006 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 2007 if (j) 2008 fputc(',', fp); 2009 fprintf(fp, " %"PRIu64, *id); 2010 } 2011 fprintf(fp, " }"); 2012 } 2013 2014 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 2015 2016 fputc('\n', fp); 2017 } 2018 2019 free_event_desc(events); 2020 ff->events = NULL; 2021 } 2022 2023 static void print_total_mem(struct feat_fd *ff, FILE *fp) 2024 { 2025 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 2026 } 2027 2028 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 2029 { 2030 int i; 2031 struct numa_node *n; 2032 2033 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 2034 n = &ff->ph->env.numa_nodes[i]; 2035 2036 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 2037 " free = %"PRIu64" kB\n", 2038 n->node, n->mem_total, n->mem_free); 2039 2040 fprintf(fp, "# node%u cpu list : ", n->node); 2041 cpu_map__fprintf(n->map, fp); 2042 } 2043 } 2044 2045 static void print_cpuid(struct feat_fd *ff, FILE *fp) 2046 { 2047 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 2048 } 2049 2050 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 2051 { 2052 fprintf(fp, "# contains samples with branch stack\n"); 2053 } 2054 2055 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 2056 { 2057 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 2058 } 2059 2060 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 2061 { 2062 fprintf(fp, "# contains stat data\n"); 2063 } 2064 2065 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 2066 { 2067 int i; 2068 2069 fprintf(fp, "# CPU cache info:\n"); 2070 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 2071 fprintf(fp, "# "); 2072 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 2073 } 2074 } 2075 2076 static void print_compressed(struct feat_fd *ff, FILE *fp) 2077 { 2078 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 2079 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 2080 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 2081 } 2082 2083 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name) 2084 { 2085 const char *delimiter = ""; 2086 int i; 2087 2088 if (!nr_caps) { 2089 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name); 2090 return; 2091 } 2092 2093 fprintf(fp, "# %s pmu capabilities: ", pmu_name); 2094 for (i = 0; i < nr_caps; i++) { 2095 fprintf(fp, "%s%s", delimiter, caps[i]); 2096 delimiter = ", "; 2097 } 2098 2099 fprintf(fp, "\n"); 2100 } 2101 2102 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2103 { 2104 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps, 2105 ff->ph->env.cpu_pmu_caps, (char *)"cpu"); 2106 } 2107 2108 static void print_pmu_caps(struct feat_fd *ff, FILE *fp) 2109 { 2110 struct pmu_caps *pmu_caps; 2111 2112 for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) { 2113 pmu_caps = &ff->ph->env.pmu_caps[i]; 2114 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps, 2115 pmu_caps->pmu_name); 2116 } 2117 } 2118 2119 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 2120 { 2121 const char *delimiter = "# pmu mappings: "; 2122 char *str, *tmp; 2123 u32 pmu_num; 2124 u32 type; 2125 2126 pmu_num = ff->ph->env.nr_pmu_mappings; 2127 if (!pmu_num) { 2128 fprintf(fp, "# pmu mappings: not available\n"); 2129 return; 2130 } 2131 2132 str = ff->ph->env.pmu_mappings; 2133 2134 while (pmu_num) { 2135 type = strtoul(str, &tmp, 0); 2136 if (*tmp != ':') 2137 goto error; 2138 2139 str = tmp + 1; 2140 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 2141 2142 delimiter = ", "; 2143 str += strlen(str) + 1; 2144 pmu_num--; 2145 } 2146 2147 fprintf(fp, "\n"); 2148 2149 if (!pmu_num) 2150 return; 2151 error: 2152 fprintf(fp, "# pmu mappings: unable to read\n"); 2153 } 2154 2155 static void print_group_desc(struct feat_fd *ff, FILE *fp) 2156 { 2157 struct perf_session *session; 2158 struct evsel *evsel; 2159 u32 nr = 0; 2160 2161 session = container_of(ff->ph, struct perf_session, header); 2162 2163 evlist__for_each_entry(session->evlist, evsel) { 2164 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 2165 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); 2166 2167 nr = evsel->core.nr_members - 1; 2168 } else if (nr) { 2169 fprintf(fp, ",%s", evsel__name(evsel)); 2170 2171 if (--nr == 0) 2172 fprintf(fp, "}\n"); 2173 } 2174 } 2175 } 2176 2177 static void print_sample_time(struct feat_fd *ff, FILE *fp) 2178 { 2179 struct perf_session *session; 2180 char time_buf[32]; 2181 double d; 2182 2183 session = container_of(ff->ph, struct perf_session, header); 2184 2185 timestamp__scnprintf_usec(session->evlist->first_sample_time, 2186 time_buf, sizeof(time_buf)); 2187 fprintf(fp, "# time of first sample : %s\n", time_buf); 2188 2189 timestamp__scnprintf_usec(session->evlist->last_sample_time, 2190 time_buf, sizeof(time_buf)); 2191 fprintf(fp, "# time of last sample : %s\n", time_buf); 2192 2193 d = (double)(session->evlist->last_sample_time - 2194 session->evlist->first_sample_time) / NSEC_PER_MSEC; 2195 2196 fprintf(fp, "# sample duration : %10.3f ms\n", d); 2197 } 2198 2199 static void memory_node__fprintf(struct memory_node *n, 2200 unsigned long long bsize, FILE *fp) 2201 { 2202 char buf_map[100], buf_size[50]; 2203 unsigned long long size; 2204 2205 size = bsize * bitmap_weight(n->set, n->size); 2206 unit_number__scnprintf(buf_size, 50, size); 2207 2208 bitmap_scnprintf(n->set, n->size, buf_map, 100); 2209 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 2210 } 2211 2212 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 2213 { 2214 struct memory_node *nodes; 2215 int i, nr; 2216 2217 nodes = ff->ph->env.memory_nodes; 2218 nr = ff->ph->env.nr_memory_nodes; 2219 2220 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 2221 nr, ff->ph->env.memory_bsize); 2222 2223 for (i = 0; i < nr; i++) { 2224 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 2225 } 2226 } 2227 2228 static int __event_process_build_id(struct perf_record_header_build_id *bev, 2229 char *filename, 2230 struct perf_session *session) 2231 { 2232 int err = -1; 2233 struct machine *machine; 2234 u16 cpumode; 2235 struct dso *dso; 2236 enum dso_space_type dso_space; 2237 2238 machine = perf_session__findnew_machine(session, bev->pid); 2239 if (!machine) 2240 goto out; 2241 2242 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2243 2244 switch (cpumode) { 2245 case PERF_RECORD_MISC_KERNEL: 2246 dso_space = DSO_SPACE__KERNEL; 2247 break; 2248 case PERF_RECORD_MISC_GUEST_KERNEL: 2249 dso_space = DSO_SPACE__KERNEL_GUEST; 2250 break; 2251 case PERF_RECORD_MISC_USER: 2252 case PERF_RECORD_MISC_GUEST_USER: 2253 dso_space = DSO_SPACE__USER; 2254 break; 2255 default: 2256 goto out; 2257 } 2258 2259 dso = machine__findnew_dso(machine, filename); 2260 if (dso != NULL) { 2261 char sbuild_id[SBUILD_ID_SIZE]; 2262 struct build_id bid; 2263 size_t size = BUILD_ID_SIZE; 2264 2265 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) 2266 size = bev->size; 2267 2268 build_id__init(&bid, bev->data, size); 2269 dso__set_build_id(dso, &bid); 2270 dso->header_build_id = 1; 2271 2272 if (dso_space != DSO_SPACE__USER) { 2273 struct kmod_path m = { .name = NULL, }; 2274 2275 if (!kmod_path__parse_name(&m, filename) && m.kmod) 2276 dso__set_module_info(dso, &m, machine); 2277 2278 dso->kernel = dso_space; 2279 free(m.name); 2280 } 2281 2282 build_id__sprintf(&dso->bid, sbuild_id); 2283 pr_debug("build id event received for %s: %s [%zu]\n", 2284 dso->long_name, sbuild_id, size); 2285 dso__put(dso); 2286 } 2287 2288 err = 0; 2289 out: 2290 return err; 2291 } 2292 2293 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 2294 int input, u64 offset, u64 size) 2295 { 2296 struct perf_session *session = container_of(header, struct perf_session, header); 2297 struct { 2298 struct perf_event_header header; 2299 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 2300 char filename[0]; 2301 } old_bev; 2302 struct perf_record_header_build_id bev; 2303 char filename[PATH_MAX]; 2304 u64 limit = offset + size; 2305 2306 while (offset < limit) { 2307 ssize_t len; 2308 2309 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2310 return -1; 2311 2312 if (header->needs_swap) 2313 perf_event_header__bswap(&old_bev.header); 2314 2315 len = old_bev.header.size - sizeof(old_bev); 2316 if (readn(input, filename, len) != len) 2317 return -1; 2318 2319 bev.header = old_bev.header; 2320 2321 /* 2322 * As the pid is the missing value, we need to fill 2323 * it properly. The header.misc value give us nice hint. 2324 */ 2325 bev.pid = HOST_KERNEL_ID; 2326 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2327 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2328 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2329 2330 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2331 __event_process_build_id(&bev, filename, session); 2332 2333 offset += bev.header.size; 2334 } 2335 2336 return 0; 2337 } 2338 2339 static int perf_header__read_build_ids(struct perf_header *header, 2340 int input, u64 offset, u64 size) 2341 { 2342 struct perf_session *session = container_of(header, struct perf_session, header); 2343 struct perf_record_header_build_id bev; 2344 char filename[PATH_MAX]; 2345 u64 limit = offset + size, orig_offset = offset; 2346 int err = -1; 2347 2348 while (offset < limit) { 2349 ssize_t len; 2350 2351 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2352 goto out; 2353 2354 if (header->needs_swap) 2355 perf_event_header__bswap(&bev.header); 2356 2357 len = bev.header.size - sizeof(bev); 2358 if (readn(input, filename, len) != len) 2359 goto out; 2360 /* 2361 * The a1645ce1 changeset: 2362 * 2363 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2364 * 2365 * Added a field to struct perf_record_header_build_id that broke the file 2366 * format. 2367 * 2368 * Since the kernel build-id is the first entry, process the 2369 * table using the old format if the well known 2370 * '[kernel.kallsyms]' string for the kernel build-id has the 2371 * first 4 characters chopped off (where the pid_t sits). 2372 */ 2373 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2374 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2375 return -1; 2376 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2377 } 2378 2379 __event_process_build_id(&bev, filename, session); 2380 2381 offset += bev.header.size; 2382 } 2383 err = 0; 2384 out: 2385 return err; 2386 } 2387 2388 /* Macro for features that simply need to read and store a string. */ 2389 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2390 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2391 {\ 2392 free(ff->ph->env.__feat_env); \ 2393 ff->ph->env.__feat_env = do_read_string(ff); \ 2394 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2395 } 2396 2397 FEAT_PROCESS_STR_FUN(hostname, hostname); 2398 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2399 FEAT_PROCESS_STR_FUN(version, version); 2400 FEAT_PROCESS_STR_FUN(arch, arch); 2401 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2402 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2403 2404 #ifdef HAVE_LIBTRACEEVENT 2405 static int process_tracing_data(struct feat_fd *ff, void *data) 2406 { 2407 ssize_t ret = trace_report(ff->fd, data, false); 2408 2409 return ret < 0 ? -1 : 0; 2410 } 2411 #endif 2412 2413 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2414 { 2415 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2416 pr_debug("Failed to read buildids, continuing...\n"); 2417 return 0; 2418 } 2419 2420 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2421 { 2422 int ret; 2423 u32 nr_cpus_avail, nr_cpus_online; 2424 2425 ret = do_read_u32(ff, &nr_cpus_avail); 2426 if (ret) 2427 return ret; 2428 2429 ret = do_read_u32(ff, &nr_cpus_online); 2430 if (ret) 2431 return ret; 2432 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2433 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2434 return 0; 2435 } 2436 2437 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2438 { 2439 u64 total_mem; 2440 int ret; 2441 2442 ret = do_read_u64(ff, &total_mem); 2443 if (ret) 2444 return -1; 2445 ff->ph->env.total_mem = (unsigned long long)total_mem; 2446 return 0; 2447 } 2448 2449 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) 2450 { 2451 struct evsel *evsel; 2452 2453 evlist__for_each_entry(evlist, evsel) { 2454 if (evsel->core.idx == idx) 2455 return evsel; 2456 } 2457 2458 return NULL; 2459 } 2460 2461 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event) 2462 { 2463 struct evsel *evsel; 2464 2465 if (!event->name) 2466 return; 2467 2468 evsel = evlist__find_by_index(evlist, event->core.idx); 2469 if (!evsel) 2470 return; 2471 2472 if (evsel->name) 2473 return; 2474 2475 evsel->name = strdup(event->name); 2476 } 2477 2478 static int 2479 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2480 { 2481 struct perf_session *session; 2482 struct evsel *evsel, *events = read_event_desc(ff); 2483 2484 if (!events) 2485 return 0; 2486 2487 session = container_of(ff->ph, struct perf_session, header); 2488 2489 if (session->data->is_pipe) { 2490 /* Save events for reading later by print_event_desc, 2491 * since they can't be read again in pipe mode. */ 2492 ff->events = events; 2493 } 2494 2495 for (evsel = events; evsel->core.attr.size; evsel++) 2496 evlist__set_event_name(session->evlist, evsel); 2497 2498 if (!session->data->is_pipe) 2499 free_event_desc(events); 2500 2501 return 0; 2502 } 2503 2504 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2505 { 2506 char *str, *cmdline = NULL, **argv = NULL; 2507 u32 nr, i, len = 0; 2508 2509 if (do_read_u32(ff, &nr)) 2510 return -1; 2511 2512 ff->ph->env.nr_cmdline = nr; 2513 2514 cmdline = zalloc(ff->size + nr + 1); 2515 if (!cmdline) 2516 return -1; 2517 2518 argv = zalloc(sizeof(char *) * (nr + 1)); 2519 if (!argv) 2520 goto error; 2521 2522 for (i = 0; i < nr; i++) { 2523 str = do_read_string(ff); 2524 if (!str) 2525 goto error; 2526 2527 argv[i] = cmdline + len; 2528 memcpy(argv[i], str, strlen(str) + 1); 2529 len += strlen(str) + 1; 2530 free(str); 2531 } 2532 ff->ph->env.cmdline = cmdline; 2533 ff->ph->env.cmdline_argv = (const char **) argv; 2534 return 0; 2535 2536 error: 2537 free(argv); 2538 free(cmdline); 2539 return -1; 2540 } 2541 2542 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2543 { 2544 u32 nr, i; 2545 char *str; 2546 struct strbuf sb; 2547 int cpu_nr = ff->ph->env.nr_cpus_avail; 2548 u64 size = 0; 2549 struct perf_header *ph = ff->ph; 2550 bool do_core_id_test = true; 2551 2552 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2553 if (!ph->env.cpu) 2554 return -1; 2555 2556 if (do_read_u32(ff, &nr)) 2557 goto free_cpu; 2558 2559 ph->env.nr_sibling_cores = nr; 2560 size += sizeof(u32); 2561 if (strbuf_init(&sb, 128) < 0) 2562 goto free_cpu; 2563 2564 for (i = 0; i < nr; i++) { 2565 str = do_read_string(ff); 2566 if (!str) 2567 goto error; 2568 2569 /* include a NULL character at the end */ 2570 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2571 goto error; 2572 size += string_size(str); 2573 free(str); 2574 } 2575 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2576 2577 if (do_read_u32(ff, &nr)) 2578 return -1; 2579 2580 ph->env.nr_sibling_threads = nr; 2581 size += sizeof(u32); 2582 2583 for (i = 0; i < nr; i++) { 2584 str = do_read_string(ff); 2585 if (!str) 2586 goto error; 2587 2588 /* include a NULL character at the end */ 2589 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2590 goto error; 2591 size += string_size(str); 2592 free(str); 2593 } 2594 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2595 2596 /* 2597 * The header may be from old perf, 2598 * which doesn't include core id and socket id information. 2599 */ 2600 if (ff->size <= size) { 2601 zfree(&ph->env.cpu); 2602 return 0; 2603 } 2604 2605 /* On s390 the socket_id number is not related to the numbers of cpus. 2606 * The socket_id number might be higher than the numbers of cpus. 2607 * This depends on the configuration. 2608 * AArch64 is the same. 2609 */ 2610 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2611 || !strncmp(ph->env.arch, "aarch64", 7))) 2612 do_core_id_test = false; 2613 2614 for (i = 0; i < (u32)cpu_nr; i++) { 2615 if (do_read_u32(ff, &nr)) 2616 goto free_cpu; 2617 2618 ph->env.cpu[i].core_id = nr; 2619 size += sizeof(u32); 2620 2621 if (do_read_u32(ff, &nr)) 2622 goto free_cpu; 2623 2624 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2625 pr_debug("socket_id number is too big." 2626 "You may need to upgrade the perf tool.\n"); 2627 goto free_cpu; 2628 } 2629 2630 ph->env.cpu[i].socket_id = nr; 2631 size += sizeof(u32); 2632 } 2633 2634 /* 2635 * The header may be from old perf, 2636 * which doesn't include die information. 2637 */ 2638 if (ff->size <= size) 2639 return 0; 2640 2641 if (do_read_u32(ff, &nr)) 2642 return -1; 2643 2644 ph->env.nr_sibling_dies = nr; 2645 size += sizeof(u32); 2646 2647 for (i = 0; i < nr; i++) { 2648 str = do_read_string(ff); 2649 if (!str) 2650 goto error; 2651 2652 /* include a NULL character at the end */ 2653 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2654 goto error; 2655 size += string_size(str); 2656 free(str); 2657 } 2658 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2659 2660 for (i = 0; i < (u32)cpu_nr; i++) { 2661 if (do_read_u32(ff, &nr)) 2662 goto free_cpu; 2663 2664 ph->env.cpu[i].die_id = nr; 2665 } 2666 2667 return 0; 2668 2669 error: 2670 strbuf_release(&sb); 2671 free_cpu: 2672 zfree(&ph->env.cpu); 2673 return -1; 2674 } 2675 2676 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2677 { 2678 struct numa_node *nodes, *n; 2679 u32 nr, i; 2680 char *str; 2681 2682 /* nr nodes */ 2683 if (do_read_u32(ff, &nr)) 2684 return -1; 2685 2686 nodes = zalloc(sizeof(*nodes) * nr); 2687 if (!nodes) 2688 return -ENOMEM; 2689 2690 for (i = 0; i < nr; i++) { 2691 n = &nodes[i]; 2692 2693 /* node number */ 2694 if (do_read_u32(ff, &n->node)) 2695 goto error; 2696 2697 if (do_read_u64(ff, &n->mem_total)) 2698 goto error; 2699 2700 if (do_read_u64(ff, &n->mem_free)) 2701 goto error; 2702 2703 str = do_read_string(ff); 2704 if (!str) 2705 goto error; 2706 2707 n->map = perf_cpu_map__new(str); 2708 if (!n->map) 2709 goto error; 2710 2711 free(str); 2712 } 2713 ff->ph->env.nr_numa_nodes = nr; 2714 ff->ph->env.numa_nodes = nodes; 2715 return 0; 2716 2717 error: 2718 free(nodes); 2719 return -1; 2720 } 2721 2722 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2723 { 2724 char *name; 2725 u32 pmu_num; 2726 u32 type; 2727 struct strbuf sb; 2728 2729 if (do_read_u32(ff, &pmu_num)) 2730 return -1; 2731 2732 if (!pmu_num) { 2733 pr_debug("pmu mappings not available\n"); 2734 return 0; 2735 } 2736 2737 ff->ph->env.nr_pmu_mappings = pmu_num; 2738 if (strbuf_init(&sb, 128) < 0) 2739 return -1; 2740 2741 while (pmu_num) { 2742 if (do_read_u32(ff, &type)) 2743 goto error; 2744 2745 name = do_read_string(ff); 2746 if (!name) 2747 goto error; 2748 2749 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2750 goto error; 2751 /* include a NULL character at the end */ 2752 if (strbuf_add(&sb, "", 1) < 0) 2753 goto error; 2754 2755 if (!strcmp(name, "msr")) 2756 ff->ph->env.msr_pmu_type = type; 2757 2758 free(name); 2759 pmu_num--; 2760 } 2761 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2762 return 0; 2763 2764 error: 2765 strbuf_release(&sb); 2766 return -1; 2767 } 2768 2769 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2770 { 2771 size_t ret = -1; 2772 u32 i, nr, nr_groups; 2773 struct perf_session *session; 2774 struct evsel *evsel, *leader = NULL; 2775 struct group_desc { 2776 char *name; 2777 u32 leader_idx; 2778 u32 nr_members; 2779 } *desc; 2780 2781 if (do_read_u32(ff, &nr_groups)) 2782 return -1; 2783 2784 ff->ph->env.nr_groups = nr_groups; 2785 if (!nr_groups) { 2786 pr_debug("group desc not available\n"); 2787 return 0; 2788 } 2789 2790 desc = calloc(nr_groups, sizeof(*desc)); 2791 if (!desc) 2792 return -1; 2793 2794 for (i = 0; i < nr_groups; i++) { 2795 desc[i].name = do_read_string(ff); 2796 if (!desc[i].name) 2797 goto out_free; 2798 2799 if (do_read_u32(ff, &desc[i].leader_idx)) 2800 goto out_free; 2801 2802 if (do_read_u32(ff, &desc[i].nr_members)) 2803 goto out_free; 2804 } 2805 2806 /* 2807 * Rebuild group relationship based on the group_desc 2808 */ 2809 session = container_of(ff->ph, struct perf_session, header); 2810 2811 i = nr = 0; 2812 evlist__for_each_entry(session->evlist, evsel) { 2813 if (evsel->core.idx == (int) desc[i].leader_idx) { 2814 evsel__set_leader(evsel, evsel); 2815 /* {anon_group} is a dummy name */ 2816 if (strcmp(desc[i].name, "{anon_group}")) { 2817 evsel->group_name = desc[i].name; 2818 desc[i].name = NULL; 2819 } 2820 evsel->core.nr_members = desc[i].nr_members; 2821 2822 if (i >= nr_groups || nr > 0) { 2823 pr_debug("invalid group desc\n"); 2824 goto out_free; 2825 } 2826 2827 leader = evsel; 2828 nr = evsel->core.nr_members - 1; 2829 i++; 2830 } else if (nr) { 2831 /* This is a group member */ 2832 evsel__set_leader(evsel, leader); 2833 2834 nr--; 2835 } 2836 } 2837 2838 if (i != nr_groups || nr != 0) { 2839 pr_debug("invalid group desc\n"); 2840 goto out_free; 2841 } 2842 2843 ret = 0; 2844 out_free: 2845 for (i = 0; i < nr_groups; i++) 2846 zfree(&desc[i].name); 2847 free(desc); 2848 2849 return ret; 2850 } 2851 2852 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2853 { 2854 struct perf_session *session; 2855 int err; 2856 2857 session = container_of(ff->ph, struct perf_session, header); 2858 2859 err = auxtrace_index__process(ff->fd, ff->size, session, 2860 ff->ph->needs_swap); 2861 if (err < 0) 2862 pr_err("Failed to process auxtrace index\n"); 2863 return err; 2864 } 2865 2866 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2867 { 2868 struct cpu_cache_level *caches; 2869 u32 cnt, i, version; 2870 2871 if (do_read_u32(ff, &version)) 2872 return -1; 2873 2874 if (version != 1) 2875 return -1; 2876 2877 if (do_read_u32(ff, &cnt)) 2878 return -1; 2879 2880 caches = zalloc(sizeof(*caches) * cnt); 2881 if (!caches) 2882 return -1; 2883 2884 for (i = 0; i < cnt; i++) { 2885 struct cpu_cache_level c; 2886 2887 #define _R(v) \ 2888 if (do_read_u32(ff, &c.v))\ 2889 goto out_free_caches; \ 2890 2891 _R(level) 2892 _R(line_size) 2893 _R(sets) 2894 _R(ways) 2895 #undef _R 2896 2897 #define _R(v) \ 2898 c.v = do_read_string(ff); \ 2899 if (!c.v) \ 2900 goto out_free_caches; 2901 2902 _R(type) 2903 _R(size) 2904 _R(map) 2905 #undef _R 2906 2907 caches[i] = c; 2908 } 2909 2910 ff->ph->env.caches = caches; 2911 ff->ph->env.caches_cnt = cnt; 2912 return 0; 2913 out_free_caches: 2914 free(caches); 2915 return -1; 2916 } 2917 2918 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2919 { 2920 struct perf_session *session; 2921 u64 first_sample_time, last_sample_time; 2922 int ret; 2923 2924 session = container_of(ff->ph, struct perf_session, header); 2925 2926 ret = do_read_u64(ff, &first_sample_time); 2927 if (ret) 2928 return -1; 2929 2930 ret = do_read_u64(ff, &last_sample_time); 2931 if (ret) 2932 return -1; 2933 2934 session->evlist->first_sample_time = first_sample_time; 2935 session->evlist->last_sample_time = last_sample_time; 2936 return 0; 2937 } 2938 2939 static int process_mem_topology(struct feat_fd *ff, 2940 void *data __maybe_unused) 2941 { 2942 struct memory_node *nodes; 2943 u64 version, i, nr, bsize; 2944 int ret = -1; 2945 2946 if (do_read_u64(ff, &version)) 2947 return -1; 2948 2949 if (version != 1) 2950 return -1; 2951 2952 if (do_read_u64(ff, &bsize)) 2953 return -1; 2954 2955 if (do_read_u64(ff, &nr)) 2956 return -1; 2957 2958 nodes = zalloc(sizeof(*nodes) * nr); 2959 if (!nodes) 2960 return -1; 2961 2962 for (i = 0; i < nr; i++) { 2963 struct memory_node n; 2964 2965 #define _R(v) \ 2966 if (do_read_u64(ff, &n.v)) \ 2967 goto out; \ 2968 2969 _R(node) 2970 _R(size) 2971 2972 #undef _R 2973 2974 if (do_read_bitmap(ff, &n.set, &n.size)) 2975 goto out; 2976 2977 nodes[i] = n; 2978 } 2979 2980 ff->ph->env.memory_bsize = bsize; 2981 ff->ph->env.memory_nodes = nodes; 2982 ff->ph->env.nr_memory_nodes = nr; 2983 ret = 0; 2984 2985 out: 2986 if (ret) 2987 free(nodes); 2988 return ret; 2989 } 2990 2991 static int process_clockid(struct feat_fd *ff, 2992 void *data __maybe_unused) 2993 { 2994 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns)) 2995 return -1; 2996 2997 return 0; 2998 } 2999 3000 static int process_clock_data(struct feat_fd *ff, 3001 void *_data __maybe_unused) 3002 { 3003 u32 data32; 3004 u64 data64; 3005 3006 /* version */ 3007 if (do_read_u32(ff, &data32)) 3008 return -1; 3009 3010 if (data32 != 1) 3011 return -1; 3012 3013 /* clockid */ 3014 if (do_read_u32(ff, &data32)) 3015 return -1; 3016 3017 ff->ph->env.clock.clockid = data32; 3018 3019 /* TOD ref time */ 3020 if (do_read_u64(ff, &data64)) 3021 return -1; 3022 3023 ff->ph->env.clock.tod_ns = data64; 3024 3025 /* clockid ref time */ 3026 if (do_read_u64(ff, &data64)) 3027 return -1; 3028 3029 ff->ph->env.clock.clockid_ns = data64; 3030 ff->ph->env.clock.enabled = true; 3031 return 0; 3032 } 3033 3034 static int process_hybrid_topology(struct feat_fd *ff, 3035 void *data __maybe_unused) 3036 { 3037 struct hybrid_node *nodes, *n; 3038 u32 nr, i; 3039 3040 /* nr nodes */ 3041 if (do_read_u32(ff, &nr)) 3042 return -1; 3043 3044 nodes = zalloc(sizeof(*nodes) * nr); 3045 if (!nodes) 3046 return -ENOMEM; 3047 3048 for (i = 0; i < nr; i++) { 3049 n = &nodes[i]; 3050 3051 n->pmu_name = do_read_string(ff); 3052 if (!n->pmu_name) 3053 goto error; 3054 3055 n->cpus = do_read_string(ff); 3056 if (!n->cpus) 3057 goto error; 3058 } 3059 3060 ff->ph->env.nr_hybrid_nodes = nr; 3061 ff->ph->env.hybrid_nodes = nodes; 3062 return 0; 3063 3064 error: 3065 for (i = 0; i < nr; i++) { 3066 free(nodes[i].pmu_name); 3067 free(nodes[i].cpus); 3068 } 3069 3070 free(nodes); 3071 return -1; 3072 } 3073 3074 static int process_dir_format(struct feat_fd *ff, 3075 void *_data __maybe_unused) 3076 { 3077 struct perf_session *session; 3078 struct perf_data *data; 3079 3080 session = container_of(ff->ph, struct perf_session, header); 3081 data = session->data; 3082 3083 if (WARN_ON(!perf_data__is_dir(data))) 3084 return -1; 3085 3086 return do_read_u64(ff, &data->dir.version); 3087 } 3088 3089 #ifdef HAVE_LIBBPF_SUPPORT 3090 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 3091 { 3092 struct bpf_prog_info_node *info_node; 3093 struct perf_env *env = &ff->ph->env; 3094 struct perf_bpil *info_linear; 3095 u32 count, i; 3096 int err = -1; 3097 3098 if (ff->ph->needs_swap) { 3099 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n"); 3100 return 0; 3101 } 3102 3103 if (do_read_u32(ff, &count)) 3104 return -1; 3105 3106 down_write(&env->bpf_progs.lock); 3107 3108 for (i = 0; i < count; ++i) { 3109 u32 info_len, data_len; 3110 3111 info_linear = NULL; 3112 info_node = NULL; 3113 if (do_read_u32(ff, &info_len)) 3114 goto out; 3115 if (do_read_u32(ff, &data_len)) 3116 goto out; 3117 3118 if (info_len > sizeof(struct bpf_prog_info)) { 3119 pr_warning("detected invalid bpf_prog_info\n"); 3120 goto out; 3121 } 3122 3123 info_linear = malloc(sizeof(struct perf_bpil) + 3124 data_len); 3125 if (!info_linear) 3126 goto out; 3127 info_linear->info_len = sizeof(struct bpf_prog_info); 3128 info_linear->data_len = data_len; 3129 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 3130 goto out; 3131 if (__do_read(ff, &info_linear->info, info_len)) 3132 goto out; 3133 if (info_len < sizeof(struct bpf_prog_info)) 3134 memset(((void *)(&info_linear->info)) + info_len, 0, 3135 sizeof(struct bpf_prog_info) - info_len); 3136 3137 if (__do_read(ff, info_linear->data, data_len)) 3138 goto out; 3139 3140 info_node = malloc(sizeof(struct bpf_prog_info_node)); 3141 if (!info_node) 3142 goto out; 3143 3144 /* after reading from file, translate offset to address */ 3145 bpil_offs_to_addr(info_linear); 3146 info_node->info_linear = info_linear; 3147 perf_env__insert_bpf_prog_info(env, info_node); 3148 } 3149 3150 up_write(&env->bpf_progs.lock); 3151 return 0; 3152 out: 3153 free(info_linear); 3154 free(info_node); 3155 up_write(&env->bpf_progs.lock); 3156 return err; 3157 } 3158 3159 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 3160 { 3161 struct perf_env *env = &ff->ph->env; 3162 struct btf_node *node = NULL; 3163 u32 count, i; 3164 int err = -1; 3165 3166 if (ff->ph->needs_swap) { 3167 pr_warning("interpreting btf from systems with endianness is not yet supported\n"); 3168 return 0; 3169 } 3170 3171 if (do_read_u32(ff, &count)) 3172 return -1; 3173 3174 down_write(&env->bpf_progs.lock); 3175 3176 for (i = 0; i < count; ++i) { 3177 u32 id, data_size; 3178 3179 if (do_read_u32(ff, &id)) 3180 goto out; 3181 if (do_read_u32(ff, &data_size)) 3182 goto out; 3183 3184 node = malloc(sizeof(struct btf_node) + data_size); 3185 if (!node) 3186 goto out; 3187 3188 node->id = id; 3189 node->data_size = data_size; 3190 3191 if (__do_read(ff, node->data, data_size)) 3192 goto out; 3193 3194 perf_env__insert_btf(env, node); 3195 node = NULL; 3196 } 3197 3198 err = 0; 3199 out: 3200 up_write(&env->bpf_progs.lock); 3201 free(node); 3202 return err; 3203 } 3204 #endif // HAVE_LIBBPF_SUPPORT 3205 3206 static int process_compressed(struct feat_fd *ff, 3207 void *data __maybe_unused) 3208 { 3209 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 3210 return -1; 3211 3212 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 3213 return -1; 3214 3215 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 3216 return -1; 3217 3218 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 3219 return -1; 3220 3221 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 3222 return -1; 3223 3224 return 0; 3225 } 3226 3227 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps, 3228 char ***caps, unsigned int *max_branches) 3229 { 3230 char *name, *value, *ptr; 3231 u32 nr_pmu_caps, i; 3232 3233 *nr_caps = 0; 3234 *caps = NULL; 3235 3236 if (do_read_u32(ff, &nr_pmu_caps)) 3237 return -1; 3238 3239 if (!nr_pmu_caps) 3240 return 0; 3241 3242 *caps = zalloc(sizeof(char *) * nr_pmu_caps); 3243 if (!*caps) 3244 return -1; 3245 3246 for (i = 0; i < nr_pmu_caps; i++) { 3247 name = do_read_string(ff); 3248 if (!name) 3249 goto error; 3250 3251 value = do_read_string(ff); 3252 if (!value) 3253 goto free_name; 3254 3255 if (asprintf(&ptr, "%s=%s", name, value) < 0) 3256 goto free_value; 3257 3258 (*caps)[i] = ptr; 3259 3260 if (!strcmp(name, "branches")) 3261 *max_branches = atoi(value); 3262 3263 free(value); 3264 free(name); 3265 } 3266 *nr_caps = nr_pmu_caps; 3267 return 0; 3268 3269 free_value: 3270 free(value); 3271 free_name: 3272 free(name); 3273 error: 3274 for (; i > 0; i--) 3275 free((*caps)[i - 1]); 3276 free(*caps); 3277 *caps = NULL; 3278 *nr_caps = 0; 3279 return -1; 3280 } 3281 3282 static int process_cpu_pmu_caps(struct feat_fd *ff, 3283 void *data __maybe_unused) 3284 { 3285 int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps, 3286 &ff->ph->env.cpu_pmu_caps, 3287 &ff->ph->env.max_branches); 3288 3289 if (!ret && !ff->ph->env.cpu_pmu_caps) 3290 pr_debug("cpu pmu capabilities not available\n"); 3291 return ret; 3292 } 3293 3294 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused) 3295 { 3296 struct pmu_caps *pmu_caps; 3297 u32 nr_pmu, i; 3298 int ret; 3299 int j; 3300 3301 if (do_read_u32(ff, &nr_pmu)) 3302 return -1; 3303 3304 if (!nr_pmu) { 3305 pr_debug("pmu capabilities not available\n"); 3306 return 0; 3307 } 3308 3309 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu); 3310 if (!pmu_caps) 3311 return -ENOMEM; 3312 3313 for (i = 0; i < nr_pmu; i++) { 3314 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps, 3315 &pmu_caps[i].caps, 3316 &pmu_caps[i].max_branches); 3317 if (ret) 3318 goto err; 3319 3320 pmu_caps[i].pmu_name = do_read_string(ff); 3321 if (!pmu_caps[i].pmu_name) { 3322 ret = -1; 3323 goto err; 3324 } 3325 if (!pmu_caps[i].nr_caps) { 3326 pr_debug("%s pmu capabilities not available\n", 3327 pmu_caps[i].pmu_name); 3328 } 3329 } 3330 3331 ff->ph->env.nr_pmus_with_caps = nr_pmu; 3332 ff->ph->env.pmu_caps = pmu_caps; 3333 return 0; 3334 3335 err: 3336 for (i = 0; i < nr_pmu; i++) { 3337 for (j = 0; j < pmu_caps[i].nr_caps; j++) 3338 free(pmu_caps[i].caps[j]); 3339 free(pmu_caps[i].caps); 3340 free(pmu_caps[i].pmu_name); 3341 } 3342 3343 free(pmu_caps); 3344 return ret; 3345 } 3346 3347 #define FEAT_OPR(n, func, __full_only) \ 3348 [HEADER_##n] = { \ 3349 .name = __stringify(n), \ 3350 .write = write_##func, \ 3351 .print = print_##func, \ 3352 .full_only = __full_only, \ 3353 .process = process_##func, \ 3354 .synthesize = true \ 3355 } 3356 3357 #define FEAT_OPN(n, func, __full_only) \ 3358 [HEADER_##n] = { \ 3359 .name = __stringify(n), \ 3360 .write = write_##func, \ 3361 .print = print_##func, \ 3362 .full_only = __full_only, \ 3363 .process = process_##func \ 3364 } 3365 3366 /* feature_ops not implemented: */ 3367 #define print_tracing_data NULL 3368 #define print_build_id NULL 3369 3370 #define process_branch_stack NULL 3371 #define process_stat NULL 3372 3373 // Only used in util/synthetic-events.c 3374 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 3375 3376 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 3377 #ifdef HAVE_LIBTRACEEVENT 3378 FEAT_OPN(TRACING_DATA, tracing_data, false), 3379 #endif 3380 FEAT_OPN(BUILD_ID, build_id, false), 3381 FEAT_OPR(HOSTNAME, hostname, false), 3382 FEAT_OPR(OSRELEASE, osrelease, false), 3383 FEAT_OPR(VERSION, version, false), 3384 FEAT_OPR(ARCH, arch, false), 3385 FEAT_OPR(NRCPUS, nrcpus, false), 3386 FEAT_OPR(CPUDESC, cpudesc, false), 3387 FEAT_OPR(CPUID, cpuid, false), 3388 FEAT_OPR(TOTAL_MEM, total_mem, false), 3389 FEAT_OPR(EVENT_DESC, event_desc, false), 3390 FEAT_OPR(CMDLINE, cmdline, false), 3391 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 3392 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 3393 FEAT_OPN(BRANCH_STACK, branch_stack, false), 3394 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 3395 FEAT_OPR(GROUP_DESC, group_desc, false), 3396 FEAT_OPN(AUXTRACE, auxtrace, false), 3397 FEAT_OPN(STAT, stat, false), 3398 FEAT_OPN(CACHE, cache, true), 3399 FEAT_OPR(SAMPLE_TIME, sample_time, false), 3400 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 3401 FEAT_OPR(CLOCKID, clockid, false), 3402 FEAT_OPN(DIR_FORMAT, dir_format, false), 3403 #ifdef HAVE_LIBBPF_SUPPORT 3404 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 3405 FEAT_OPR(BPF_BTF, bpf_btf, false), 3406 #endif 3407 FEAT_OPR(COMPRESSED, compressed, false), 3408 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), 3409 FEAT_OPR(CLOCK_DATA, clock_data, false), 3410 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true), 3411 FEAT_OPR(PMU_CAPS, pmu_caps, false), 3412 }; 3413 3414 struct header_print_data { 3415 FILE *fp; 3416 bool full; /* extended list of headers */ 3417 }; 3418 3419 static int perf_file_section__fprintf_info(struct perf_file_section *section, 3420 struct perf_header *ph, 3421 int feat, int fd, void *data) 3422 { 3423 struct header_print_data *hd = data; 3424 struct feat_fd ff; 3425 3426 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3427 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3428 "%d, continuing...\n", section->offset, feat); 3429 return 0; 3430 } 3431 if (feat >= HEADER_LAST_FEATURE) { 3432 pr_warning("unknown feature %d\n", feat); 3433 return 0; 3434 } 3435 if (!feat_ops[feat].print) 3436 return 0; 3437 3438 ff = (struct feat_fd) { 3439 .fd = fd, 3440 .ph = ph, 3441 }; 3442 3443 if (!feat_ops[feat].full_only || hd->full) 3444 feat_ops[feat].print(&ff, hd->fp); 3445 else 3446 fprintf(hd->fp, "# %s info available, use -I to display\n", 3447 feat_ops[feat].name); 3448 3449 return 0; 3450 } 3451 3452 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 3453 { 3454 struct header_print_data hd; 3455 struct perf_header *header = &session->header; 3456 int fd = perf_data__fd(session->data); 3457 struct stat st; 3458 time_t stctime; 3459 int ret, bit; 3460 3461 hd.fp = fp; 3462 hd.full = full; 3463 3464 ret = fstat(fd, &st); 3465 if (ret == -1) 3466 return -1; 3467 3468 stctime = st.st_mtime; 3469 fprintf(fp, "# captured on : %s", ctime(&stctime)); 3470 3471 fprintf(fp, "# header version : %u\n", header->version); 3472 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 3473 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 3474 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 3475 3476 perf_header__process_sections(header, fd, &hd, 3477 perf_file_section__fprintf_info); 3478 3479 if (session->data->is_pipe) 3480 return 0; 3481 3482 fprintf(fp, "# missing features: "); 3483 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 3484 if (bit) 3485 fprintf(fp, "%s ", feat_ops[bit].name); 3486 } 3487 3488 fprintf(fp, "\n"); 3489 return 0; 3490 } 3491 3492 struct header_fw { 3493 struct feat_writer fw; 3494 struct feat_fd *ff; 3495 }; 3496 3497 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz) 3498 { 3499 struct header_fw *h = container_of(fw, struct header_fw, fw); 3500 3501 return do_write(h->ff, buf, sz); 3502 } 3503 3504 static int do_write_feat(struct feat_fd *ff, int type, 3505 struct perf_file_section **p, 3506 struct evlist *evlist, 3507 struct feat_copier *fc) 3508 { 3509 int err; 3510 int ret = 0; 3511 3512 if (perf_header__has_feat(ff->ph, type)) { 3513 if (!feat_ops[type].write) 3514 return -1; 3515 3516 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 3517 return -1; 3518 3519 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3520 3521 /* 3522 * Hook to let perf inject copy features sections from the input 3523 * file. 3524 */ 3525 if (fc && fc->copy) { 3526 struct header_fw h = { 3527 .fw.write = feat_writer_cb, 3528 .ff = ff, 3529 }; 3530 3531 /* ->copy() returns 0 if the feature was not copied */ 3532 err = fc->copy(fc, type, &h.fw); 3533 } else { 3534 err = 0; 3535 } 3536 if (!err) 3537 err = feat_ops[type].write(ff, evlist); 3538 if (err < 0) { 3539 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3540 3541 /* undo anything written */ 3542 lseek(ff->fd, (*p)->offset, SEEK_SET); 3543 3544 return -1; 3545 } 3546 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3547 (*p)++; 3548 } 3549 return ret; 3550 } 3551 3552 static int perf_header__adds_write(struct perf_header *header, 3553 struct evlist *evlist, int fd, 3554 struct feat_copier *fc) 3555 { 3556 int nr_sections; 3557 struct feat_fd ff; 3558 struct perf_file_section *feat_sec, *p; 3559 int sec_size; 3560 u64 sec_start; 3561 int feat; 3562 int err; 3563 3564 ff = (struct feat_fd){ 3565 .fd = fd, 3566 .ph = header, 3567 }; 3568 3569 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3570 if (!nr_sections) 3571 return 0; 3572 3573 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3574 if (feat_sec == NULL) 3575 return -ENOMEM; 3576 3577 sec_size = sizeof(*feat_sec) * nr_sections; 3578 3579 sec_start = header->feat_offset; 3580 lseek(fd, sec_start + sec_size, SEEK_SET); 3581 3582 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3583 if (do_write_feat(&ff, feat, &p, evlist, fc)) 3584 perf_header__clear_feat(header, feat); 3585 } 3586 3587 lseek(fd, sec_start, SEEK_SET); 3588 /* 3589 * may write more than needed due to dropped feature, but 3590 * this is okay, reader will skip the missing entries 3591 */ 3592 err = do_write(&ff, feat_sec, sec_size); 3593 if (err < 0) 3594 pr_debug("failed to write feature section\n"); 3595 free(feat_sec); 3596 return err; 3597 } 3598 3599 int perf_header__write_pipe(int fd) 3600 { 3601 struct perf_pipe_file_header f_header; 3602 struct feat_fd ff; 3603 int err; 3604 3605 ff = (struct feat_fd){ .fd = fd }; 3606 3607 f_header = (struct perf_pipe_file_header){ 3608 .magic = PERF_MAGIC, 3609 .size = sizeof(f_header), 3610 }; 3611 3612 err = do_write(&ff, &f_header, sizeof(f_header)); 3613 if (err < 0) { 3614 pr_debug("failed to write perf pipe header\n"); 3615 return err; 3616 } 3617 3618 return 0; 3619 } 3620 3621 static int perf_session__do_write_header(struct perf_session *session, 3622 struct evlist *evlist, 3623 int fd, bool at_exit, 3624 struct feat_copier *fc) 3625 { 3626 struct perf_file_header f_header; 3627 struct perf_file_attr f_attr; 3628 struct perf_header *header = &session->header; 3629 struct evsel *evsel; 3630 struct feat_fd ff; 3631 u64 attr_offset; 3632 int err; 3633 3634 ff = (struct feat_fd){ .fd = fd}; 3635 lseek(fd, sizeof(f_header), SEEK_SET); 3636 3637 evlist__for_each_entry(session->evlist, evsel) { 3638 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3639 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3640 if (err < 0) { 3641 pr_debug("failed to write perf header\n"); 3642 return err; 3643 } 3644 } 3645 3646 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3647 3648 evlist__for_each_entry(evlist, evsel) { 3649 if (evsel->core.attr.size < sizeof(evsel->core.attr)) { 3650 /* 3651 * We are likely in "perf inject" and have read 3652 * from an older file. Update attr size so that 3653 * reader gets the right offset to the ids. 3654 */ 3655 evsel->core.attr.size = sizeof(evsel->core.attr); 3656 } 3657 f_attr = (struct perf_file_attr){ 3658 .attr = evsel->core.attr, 3659 .ids = { 3660 .offset = evsel->id_offset, 3661 .size = evsel->core.ids * sizeof(u64), 3662 } 3663 }; 3664 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3665 if (err < 0) { 3666 pr_debug("failed to write perf header attribute\n"); 3667 return err; 3668 } 3669 } 3670 3671 if (!header->data_offset) 3672 header->data_offset = lseek(fd, 0, SEEK_CUR); 3673 header->feat_offset = header->data_offset + header->data_size; 3674 3675 if (at_exit) { 3676 err = perf_header__adds_write(header, evlist, fd, fc); 3677 if (err < 0) 3678 return err; 3679 } 3680 3681 f_header = (struct perf_file_header){ 3682 .magic = PERF_MAGIC, 3683 .size = sizeof(f_header), 3684 .attr_size = sizeof(f_attr), 3685 .attrs = { 3686 .offset = attr_offset, 3687 .size = evlist->core.nr_entries * sizeof(f_attr), 3688 }, 3689 .data = { 3690 .offset = header->data_offset, 3691 .size = header->data_size, 3692 }, 3693 /* event_types is ignored, store zeros */ 3694 }; 3695 3696 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3697 3698 lseek(fd, 0, SEEK_SET); 3699 err = do_write(&ff, &f_header, sizeof(f_header)); 3700 if (err < 0) { 3701 pr_debug("failed to write perf header\n"); 3702 return err; 3703 } 3704 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3705 3706 return 0; 3707 } 3708 3709 int perf_session__write_header(struct perf_session *session, 3710 struct evlist *evlist, 3711 int fd, bool at_exit) 3712 { 3713 return perf_session__do_write_header(session, evlist, fd, at_exit, NULL); 3714 } 3715 3716 size_t perf_session__data_offset(const struct evlist *evlist) 3717 { 3718 struct evsel *evsel; 3719 size_t data_offset; 3720 3721 data_offset = sizeof(struct perf_file_header); 3722 evlist__for_each_entry(evlist, evsel) { 3723 data_offset += evsel->core.ids * sizeof(u64); 3724 } 3725 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr); 3726 3727 return data_offset; 3728 } 3729 3730 int perf_session__inject_header(struct perf_session *session, 3731 struct evlist *evlist, 3732 int fd, 3733 struct feat_copier *fc) 3734 { 3735 return perf_session__do_write_header(session, evlist, fd, true, fc); 3736 } 3737 3738 static int perf_header__getbuffer64(struct perf_header *header, 3739 int fd, void *buf, size_t size) 3740 { 3741 if (readn(fd, buf, size) <= 0) 3742 return -1; 3743 3744 if (header->needs_swap) 3745 mem_bswap_64(buf, size); 3746 3747 return 0; 3748 } 3749 3750 int perf_header__process_sections(struct perf_header *header, int fd, 3751 void *data, 3752 int (*process)(struct perf_file_section *section, 3753 struct perf_header *ph, 3754 int feat, int fd, void *data)) 3755 { 3756 struct perf_file_section *feat_sec, *sec; 3757 int nr_sections; 3758 int sec_size; 3759 int feat; 3760 int err; 3761 3762 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3763 if (!nr_sections) 3764 return 0; 3765 3766 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3767 if (!feat_sec) 3768 return -1; 3769 3770 sec_size = sizeof(*feat_sec) * nr_sections; 3771 3772 lseek(fd, header->feat_offset, SEEK_SET); 3773 3774 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3775 if (err < 0) 3776 goto out_free; 3777 3778 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3779 err = process(sec++, header, feat, fd, data); 3780 if (err < 0) 3781 goto out_free; 3782 } 3783 err = 0; 3784 out_free: 3785 free(feat_sec); 3786 return err; 3787 } 3788 3789 static const int attr_file_abi_sizes[] = { 3790 [0] = PERF_ATTR_SIZE_VER0, 3791 [1] = PERF_ATTR_SIZE_VER1, 3792 [2] = PERF_ATTR_SIZE_VER2, 3793 [3] = PERF_ATTR_SIZE_VER3, 3794 [4] = PERF_ATTR_SIZE_VER4, 3795 0, 3796 }; 3797 3798 /* 3799 * In the legacy file format, the magic number is not used to encode endianness. 3800 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3801 * on ABI revisions, we need to try all combinations for all endianness to 3802 * detect the endianness. 3803 */ 3804 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3805 { 3806 uint64_t ref_size, attr_size; 3807 int i; 3808 3809 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3810 ref_size = attr_file_abi_sizes[i] 3811 + sizeof(struct perf_file_section); 3812 if (hdr_sz != ref_size) { 3813 attr_size = bswap_64(hdr_sz); 3814 if (attr_size != ref_size) 3815 continue; 3816 3817 ph->needs_swap = true; 3818 } 3819 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3820 i, 3821 ph->needs_swap); 3822 return 0; 3823 } 3824 /* could not determine endianness */ 3825 return -1; 3826 } 3827 3828 #define PERF_PIPE_HDR_VER0 16 3829 3830 static const size_t attr_pipe_abi_sizes[] = { 3831 [0] = PERF_PIPE_HDR_VER0, 3832 0, 3833 }; 3834 3835 /* 3836 * In the legacy pipe format, there is an implicit assumption that endianness 3837 * between host recording the samples, and host parsing the samples is the 3838 * same. This is not always the case given that the pipe output may always be 3839 * redirected into a file and analyzed on a different machine with possibly a 3840 * different endianness and perf_event ABI revisions in the perf tool itself. 3841 */ 3842 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3843 { 3844 u64 attr_size; 3845 int i; 3846 3847 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3848 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3849 attr_size = bswap_64(hdr_sz); 3850 if (attr_size != hdr_sz) 3851 continue; 3852 3853 ph->needs_swap = true; 3854 } 3855 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3856 return 0; 3857 } 3858 return -1; 3859 } 3860 3861 bool is_perf_magic(u64 magic) 3862 { 3863 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3864 || magic == __perf_magic2 3865 || magic == __perf_magic2_sw) 3866 return true; 3867 3868 return false; 3869 } 3870 3871 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3872 bool is_pipe, struct perf_header *ph) 3873 { 3874 int ret; 3875 3876 /* check for legacy format */ 3877 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3878 if (ret == 0) { 3879 ph->version = PERF_HEADER_VERSION_1; 3880 pr_debug("legacy perf.data format\n"); 3881 if (is_pipe) 3882 return try_all_pipe_abis(hdr_sz, ph); 3883 3884 return try_all_file_abis(hdr_sz, ph); 3885 } 3886 /* 3887 * the new magic number serves two purposes: 3888 * - unique number to identify actual perf.data files 3889 * - encode endianness of file 3890 */ 3891 ph->version = PERF_HEADER_VERSION_2; 3892 3893 /* check magic number with one endianness */ 3894 if (magic == __perf_magic2) 3895 return 0; 3896 3897 /* check magic number with opposite endianness */ 3898 if (magic != __perf_magic2_sw) 3899 return -1; 3900 3901 ph->needs_swap = true; 3902 3903 return 0; 3904 } 3905 3906 int perf_file_header__read(struct perf_file_header *header, 3907 struct perf_header *ph, int fd) 3908 { 3909 ssize_t ret; 3910 3911 lseek(fd, 0, SEEK_SET); 3912 3913 ret = readn(fd, header, sizeof(*header)); 3914 if (ret <= 0) 3915 return -1; 3916 3917 if (check_magic_endian(header->magic, 3918 header->attr_size, false, ph) < 0) { 3919 pr_debug("magic/endian check failed\n"); 3920 return -1; 3921 } 3922 3923 if (ph->needs_swap) { 3924 mem_bswap_64(header, offsetof(struct perf_file_header, 3925 adds_features)); 3926 } 3927 3928 if (header->size != sizeof(*header)) { 3929 /* Support the previous format */ 3930 if (header->size == offsetof(typeof(*header), adds_features)) 3931 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3932 else 3933 return -1; 3934 } else if (ph->needs_swap) { 3935 /* 3936 * feature bitmap is declared as an array of unsigned longs -- 3937 * not good since its size can differ between the host that 3938 * generated the data file and the host analyzing the file. 3939 * 3940 * We need to handle endianness, but we don't know the size of 3941 * the unsigned long where the file was generated. Take a best 3942 * guess at determining it: try 64-bit swap first (ie., file 3943 * created on a 64-bit host), and check if the hostname feature 3944 * bit is set (this feature bit is forced on as of fbe96f2). 3945 * If the bit is not, undo the 64-bit swap and try a 32-bit 3946 * swap. If the hostname bit is still not set (e.g., older data 3947 * file), punt and fallback to the original behavior -- 3948 * clearing all feature bits and setting buildid. 3949 */ 3950 mem_bswap_64(&header->adds_features, 3951 BITS_TO_U64(HEADER_FEAT_BITS)); 3952 3953 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3954 /* unswap as u64 */ 3955 mem_bswap_64(&header->adds_features, 3956 BITS_TO_U64(HEADER_FEAT_BITS)); 3957 3958 /* unswap as u32 */ 3959 mem_bswap_32(&header->adds_features, 3960 BITS_TO_U32(HEADER_FEAT_BITS)); 3961 } 3962 3963 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3964 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3965 __set_bit(HEADER_BUILD_ID, header->adds_features); 3966 } 3967 } 3968 3969 memcpy(&ph->adds_features, &header->adds_features, 3970 sizeof(ph->adds_features)); 3971 3972 ph->data_offset = header->data.offset; 3973 ph->data_size = header->data.size; 3974 ph->feat_offset = header->data.offset + header->data.size; 3975 return 0; 3976 } 3977 3978 static int perf_file_section__process(struct perf_file_section *section, 3979 struct perf_header *ph, 3980 int feat, int fd, void *data) 3981 { 3982 struct feat_fd fdd = { 3983 .fd = fd, 3984 .ph = ph, 3985 .size = section->size, 3986 .offset = section->offset, 3987 }; 3988 3989 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3990 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3991 "%d, continuing...\n", section->offset, feat); 3992 return 0; 3993 } 3994 3995 if (feat >= HEADER_LAST_FEATURE) { 3996 pr_debug("unknown feature %d, continuing...\n", feat); 3997 return 0; 3998 } 3999 4000 if (!feat_ops[feat].process) 4001 return 0; 4002 4003 return feat_ops[feat].process(&fdd, data); 4004 } 4005 4006 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 4007 struct perf_header *ph, 4008 struct perf_data* data, 4009 bool repipe, int repipe_fd) 4010 { 4011 struct feat_fd ff = { 4012 .fd = repipe_fd, 4013 .ph = ph, 4014 }; 4015 ssize_t ret; 4016 4017 ret = perf_data__read(data, header, sizeof(*header)); 4018 if (ret <= 0) 4019 return -1; 4020 4021 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 4022 pr_debug("endian/magic failed\n"); 4023 return -1; 4024 } 4025 4026 if (ph->needs_swap) 4027 header->size = bswap_64(header->size); 4028 4029 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 4030 return -1; 4031 4032 return 0; 4033 } 4034 4035 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd) 4036 { 4037 struct perf_header *header = &session->header; 4038 struct perf_pipe_file_header f_header; 4039 4040 if (perf_file_header__read_pipe(&f_header, header, session->data, 4041 session->repipe, repipe_fd) < 0) { 4042 pr_debug("incompatible file format\n"); 4043 return -EINVAL; 4044 } 4045 4046 return f_header.size == sizeof(f_header) ? 0 : -1; 4047 } 4048 4049 static int read_attr(int fd, struct perf_header *ph, 4050 struct perf_file_attr *f_attr) 4051 { 4052 struct perf_event_attr *attr = &f_attr->attr; 4053 size_t sz, left; 4054 size_t our_sz = sizeof(f_attr->attr); 4055 ssize_t ret; 4056 4057 memset(f_attr, 0, sizeof(*f_attr)); 4058 4059 /* read minimal guaranteed structure */ 4060 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 4061 if (ret <= 0) { 4062 pr_debug("cannot read %d bytes of header attr\n", 4063 PERF_ATTR_SIZE_VER0); 4064 return -1; 4065 } 4066 4067 /* on file perf_event_attr size */ 4068 sz = attr->size; 4069 4070 if (ph->needs_swap) 4071 sz = bswap_32(sz); 4072 4073 if (sz == 0) { 4074 /* assume ABI0 */ 4075 sz = PERF_ATTR_SIZE_VER0; 4076 } else if (sz > our_sz) { 4077 pr_debug("file uses a more recent and unsupported ABI" 4078 " (%zu bytes extra)\n", sz - our_sz); 4079 return -1; 4080 } 4081 /* what we have not yet read and that we know about */ 4082 left = sz - PERF_ATTR_SIZE_VER0; 4083 if (left) { 4084 void *ptr = attr; 4085 ptr += PERF_ATTR_SIZE_VER0; 4086 4087 ret = readn(fd, ptr, left); 4088 } 4089 /* read perf_file_section, ids are read in caller */ 4090 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 4091 4092 return ret <= 0 ? -1 : 0; 4093 } 4094 4095 #ifdef HAVE_LIBTRACEEVENT 4096 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) 4097 { 4098 struct tep_event *event; 4099 char bf[128]; 4100 4101 /* already prepared */ 4102 if (evsel->tp_format) 4103 return 0; 4104 4105 if (pevent == NULL) { 4106 pr_debug("broken or missing trace data\n"); 4107 return -1; 4108 } 4109 4110 event = tep_find_event(pevent, evsel->core.attr.config); 4111 if (event == NULL) { 4112 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 4113 return -1; 4114 } 4115 4116 if (!evsel->name) { 4117 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 4118 evsel->name = strdup(bf); 4119 if (evsel->name == NULL) 4120 return -1; 4121 } 4122 4123 evsel->tp_format = event; 4124 return 0; 4125 } 4126 4127 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent) 4128 { 4129 struct evsel *pos; 4130 4131 evlist__for_each_entry(evlist, pos) { 4132 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 4133 evsel__prepare_tracepoint_event(pos, pevent)) 4134 return -1; 4135 } 4136 4137 return 0; 4138 } 4139 #endif 4140 4141 int perf_session__read_header(struct perf_session *session, int repipe_fd) 4142 { 4143 struct perf_data *data = session->data; 4144 struct perf_header *header = &session->header; 4145 struct perf_file_header f_header; 4146 struct perf_file_attr f_attr; 4147 u64 f_id; 4148 int nr_attrs, nr_ids, i, j, err; 4149 int fd = perf_data__fd(data); 4150 4151 session->evlist = evlist__new(); 4152 if (session->evlist == NULL) 4153 return -ENOMEM; 4154 4155 session->evlist->env = &header->env; 4156 session->machines.host.env = &header->env; 4157 4158 /* 4159 * We can read 'pipe' data event from regular file, 4160 * check for the pipe header regardless of source. 4161 */ 4162 err = perf_header__read_pipe(session, repipe_fd); 4163 if (!err || perf_data__is_pipe(data)) { 4164 data->is_pipe = true; 4165 return err; 4166 } 4167 4168 if (perf_file_header__read(&f_header, header, fd) < 0) 4169 return -EINVAL; 4170 4171 if (header->needs_swap && data->in_place_update) { 4172 pr_err("In-place update not supported when byte-swapping is required\n"); 4173 return -EINVAL; 4174 } 4175 4176 /* 4177 * Sanity check that perf.data was written cleanly; data size is 4178 * initialized to 0 and updated only if the on_exit function is run. 4179 * If data size is still 0 then the file contains only partial 4180 * information. Just warn user and process it as much as it can. 4181 */ 4182 if (f_header.data.size == 0) { 4183 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 4184 "Was the 'perf record' command properly terminated?\n", 4185 data->file.path); 4186 } 4187 4188 if (f_header.attr_size == 0) { 4189 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 4190 "Was the 'perf record' command properly terminated?\n", 4191 data->file.path); 4192 return -EINVAL; 4193 } 4194 4195 nr_attrs = f_header.attrs.size / f_header.attr_size; 4196 lseek(fd, f_header.attrs.offset, SEEK_SET); 4197 4198 for (i = 0; i < nr_attrs; i++) { 4199 struct evsel *evsel; 4200 off_t tmp; 4201 4202 if (read_attr(fd, header, &f_attr) < 0) 4203 goto out_errno; 4204 4205 if (header->needs_swap) { 4206 f_attr.ids.size = bswap_64(f_attr.ids.size); 4207 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 4208 perf_event__attr_swap(&f_attr.attr); 4209 } 4210 4211 tmp = lseek(fd, 0, SEEK_CUR); 4212 evsel = evsel__new(&f_attr.attr); 4213 4214 if (evsel == NULL) 4215 goto out_delete_evlist; 4216 4217 evsel->needs_swap = header->needs_swap; 4218 /* 4219 * Do it before so that if perf_evsel__alloc_id fails, this 4220 * entry gets purged too at evlist__delete(). 4221 */ 4222 evlist__add(session->evlist, evsel); 4223 4224 nr_ids = f_attr.ids.size / sizeof(u64); 4225 /* 4226 * We don't have the cpu and thread maps on the header, so 4227 * for allocating the perf_sample_id table we fake 1 cpu and 4228 * hattr->ids threads. 4229 */ 4230 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 4231 goto out_delete_evlist; 4232 4233 lseek(fd, f_attr.ids.offset, SEEK_SET); 4234 4235 for (j = 0; j < nr_ids; j++) { 4236 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 4237 goto out_errno; 4238 4239 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 4240 } 4241 4242 lseek(fd, tmp, SEEK_SET); 4243 } 4244 4245 #ifdef HAVE_LIBTRACEEVENT 4246 perf_header__process_sections(header, fd, &session->tevent, 4247 perf_file_section__process); 4248 4249 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) 4250 goto out_delete_evlist; 4251 #else 4252 perf_header__process_sections(header, fd, NULL, perf_file_section__process); 4253 #endif 4254 4255 return 0; 4256 out_errno: 4257 return -errno; 4258 4259 out_delete_evlist: 4260 evlist__delete(session->evlist); 4261 session->evlist = NULL; 4262 return -ENOMEM; 4263 } 4264 4265 int perf_event__process_feature(struct perf_session *session, 4266 union perf_event *event) 4267 { 4268 struct perf_tool *tool = session->tool; 4269 struct feat_fd ff = { .fd = 0 }; 4270 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 4271 int type = fe->header.type; 4272 u64 feat = fe->feat_id; 4273 int ret = 0; 4274 4275 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 4276 pr_warning("invalid record type %d in pipe-mode\n", type); 4277 return 0; 4278 } 4279 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 4280 pr_warning("invalid record type %d in pipe-mode\n", type); 4281 return -1; 4282 } 4283 4284 if (!feat_ops[feat].process) 4285 return 0; 4286 4287 ff.buf = (void *)fe->data; 4288 ff.size = event->header.size - sizeof(*fe); 4289 ff.ph = &session->header; 4290 4291 if (feat_ops[feat].process(&ff, NULL)) { 4292 ret = -1; 4293 goto out; 4294 } 4295 4296 if (!feat_ops[feat].print || !tool->show_feat_hdr) 4297 goto out; 4298 4299 if (!feat_ops[feat].full_only || 4300 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 4301 feat_ops[feat].print(&ff, stdout); 4302 } else { 4303 fprintf(stdout, "# %s info available, use -I to display\n", 4304 feat_ops[feat].name); 4305 } 4306 out: 4307 free_event_desc(ff.events); 4308 return ret; 4309 } 4310 4311 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 4312 { 4313 struct perf_record_event_update *ev = &event->event_update; 4314 struct perf_cpu_map *map; 4315 size_t ret; 4316 4317 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 4318 4319 switch (ev->type) { 4320 case PERF_EVENT_UPDATE__SCALE: 4321 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale); 4322 break; 4323 case PERF_EVENT_UPDATE__UNIT: 4324 ret += fprintf(fp, "... unit: %s\n", ev->unit); 4325 break; 4326 case PERF_EVENT_UPDATE__NAME: 4327 ret += fprintf(fp, "... name: %s\n", ev->name); 4328 break; 4329 case PERF_EVENT_UPDATE__CPUS: 4330 ret += fprintf(fp, "... "); 4331 4332 map = cpu_map__new_data(&ev->cpus.cpus); 4333 if (map) 4334 ret += cpu_map__fprintf(map, fp); 4335 else 4336 ret += fprintf(fp, "failed to get cpus\n"); 4337 break; 4338 default: 4339 ret += fprintf(fp, "... unknown type\n"); 4340 break; 4341 } 4342 4343 return ret; 4344 } 4345 4346 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 4347 union perf_event *event, 4348 struct evlist **pevlist) 4349 { 4350 u32 i, ids, n_ids; 4351 struct evsel *evsel; 4352 struct evlist *evlist = *pevlist; 4353 4354 if (evlist == NULL) { 4355 *pevlist = evlist = evlist__new(); 4356 if (evlist == NULL) 4357 return -ENOMEM; 4358 } 4359 4360 evsel = evsel__new(&event->attr.attr); 4361 if (evsel == NULL) 4362 return -ENOMEM; 4363 4364 evlist__add(evlist, evsel); 4365 4366 ids = event->header.size; 4367 ids -= (void *)&event->attr.id - (void *)event; 4368 n_ids = ids / sizeof(u64); 4369 /* 4370 * We don't have the cpu and thread maps on the header, so 4371 * for allocating the perf_sample_id table we fake 1 cpu and 4372 * hattr->ids threads. 4373 */ 4374 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 4375 return -ENOMEM; 4376 4377 for (i = 0; i < n_ids; i++) { 4378 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]); 4379 } 4380 4381 return 0; 4382 } 4383 4384 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 4385 union perf_event *event, 4386 struct evlist **pevlist) 4387 { 4388 struct perf_record_event_update *ev = &event->event_update; 4389 struct evlist *evlist; 4390 struct evsel *evsel; 4391 struct perf_cpu_map *map; 4392 4393 if (dump_trace) 4394 perf_event__fprintf_event_update(event, stdout); 4395 4396 if (!pevlist || *pevlist == NULL) 4397 return -EINVAL; 4398 4399 evlist = *pevlist; 4400 4401 evsel = evlist__id2evsel(evlist, ev->id); 4402 if (evsel == NULL) 4403 return -EINVAL; 4404 4405 switch (ev->type) { 4406 case PERF_EVENT_UPDATE__UNIT: 4407 free((char *)evsel->unit); 4408 evsel->unit = strdup(ev->unit); 4409 break; 4410 case PERF_EVENT_UPDATE__NAME: 4411 free(evsel->name); 4412 evsel->name = strdup(ev->name); 4413 break; 4414 case PERF_EVENT_UPDATE__SCALE: 4415 evsel->scale = ev->scale.scale; 4416 break; 4417 case PERF_EVENT_UPDATE__CPUS: 4418 map = cpu_map__new_data(&ev->cpus.cpus); 4419 if (map) { 4420 perf_cpu_map__put(evsel->core.own_cpus); 4421 evsel->core.own_cpus = map; 4422 } else 4423 pr_err("failed to get event_update cpus\n"); 4424 default: 4425 break; 4426 } 4427 4428 return 0; 4429 } 4430 4431 #ifdef HAVE_LIBTRACEEVENT 4432 int perf_event__process_tracing_data(struct perf_session *session, 4433 union perf_event *event) 4434 { 4435 ssize_t size_read, padding, size = event->tracing_data.size; 4436 int fd = perf_data__fd(session->data); 4437 char buf[BUFSIZ]; 4438 4439 /* 4440 * The pipe fd is already in proper place and in any case 4441 * we can't move it, and we'd screw the case where we read 4442 * 'pipe' data from regular file. The trace_report reads 4443 * data from 'fd' so we need to set it directly behind the 4444 * event, where the tracing data starts. 4445 */ 4446 if (!perf_data__is_pipe(session->data)) { 4447 off_t offset = lseek(fd, 0, SEEK_CUR); 4448 4449 /* setup for reading amidst mmap */ 4450 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 4451 SEEK_SET); 4452 } 4453 4454 size_read = trace_report(fd, &session->tevent, 4455 session->repipe); 4456 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4457 4458 if (readn(fd, buf, padding) < 0) { 4459 pr_err("%s: reading input file", __func__); 4460 return -1; 4461 } 4462 if (session->repipe) { 4463 int retw = write(STDOUT_FILENO, buf, padding); 4464 if (retw <= 0 || retw != padding) { 4465 pr_err("%s: repiping tracing data padding", __func__); 4466 return -1; 4467 } 4468 } 4469 4470 if (size_read + padding != size) { 4471 pr_err("%s: tracing data size mismatch", __func__); 4472 return -1; 4473 } 4474 4475 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); 4476 4477 return size_read + padding; 4478 } 4479 #endif 4480 4481 int perf_event__process_build_id(struct perf_session *session, 4482 union perf_event *event) 4483 { 4484 __event_process_build_id(&event->build_id, 4485 event->build_id.filename, 4486 session); 4487 return 0; 4488 } 4489