xref: /linux/tools/perf/util/header.c (revision 31ca5d49264ba6197aa48a926f6a035ed08b3715)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 
28 #include "dso.h"
29 #include "evlist.h"
30 #include "evsel.h"
31 #include "util/evsel_fprintf.h"
32 #include "header.h"
33 #include "memswap.h"
34 #include "trace-event.h"
35 #include "session.h"
36 #include "symbol.h"
37 #include "debug.h"
38 #include "cpumap.h"
39 #include "pmu.h"
40 #include "vdso.h"
41 #include "strbuf.h"
42 #include "build-id.h"
43 #include "data.h"
44 #include <api/fs/fs.h>
45 #include "asm/bug.h"
46 #include "tool.h"
47 #include "time-utils.h"
48 #include "units.h"
49 #include "util/util.h" // perf_exe()
50 #include "cputopo.h"
51 #include "bpf-event.h"
52 #include "bpf-utils.h"
53 #include "clockid.h"
54 #include "pmu-hybrid.h"
55 
56 #include <linux/ctype.h>
57 #include <internal/lib.h>
58 
59 #ifdef HAVE_LIBTRACEEVENT
60 #include <traceevent/event-parse.h>
61 #endif
62 
63 /*
64  * magic2 = "PERFILE2"
65  * must be a numerical value to let the endianness
66  * determine the memory layout. That way we are able
67  * to detect endianness when reading the perf.data file
68  * back.
69  *
70  * we check for legacy (PERFFILE) format.
71  */
72 static const char *__perf_magic1 = "PERFFILE";
73 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
74 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
75 
76 #define PERF_MAGIC	__perf_magic2
77 
78 const char perf_version_string[] = PERF_VERSION;
79 
80 struct perf_file_attr {
81 	struct perf_event_attr	attr;
82 	struct perf_file_section	ids;
83 };
84 
85 void perf_header__set_feat(struct perf_header *header, int feat)
86 {
87 	__set_bit(feat, header->adds_features);
88 }
89 
90 void perf_header__clear_feat(struct perf_header *header, int feat)
91 {
92 	__clear_bit(feat, header->adds_features);
93 }
94 
95 bool perf_header__has_feat(const struct perf_header *header, int feat)
96 {
97 	return test_bit(feat, header->adds_features);
98 }
99 
100 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
101 {
102 	ssize_t ret = writen(ff->fd, buf, size);
103 
104 	if (ret != (ssize_t)size)
105 		return ret < 0 ? (int)ret : -1;
106 	return 0;
107 }
108 
109 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
110 {
111 	/* struct perf_event_header::size is u16 */
112 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
113 	size_t new_size = ff->size;
114 	void *addr;
115 
116 	if (size + ff->offset > max_size)
117 		return -E2BIG;
118 
119 	while (size > (new_size - ff->offset))
120 		new_size <<= 1;
121 	new_size = min(max_size, new_size);
122 
123 	if (ff->size < new_size) {
124 		addr = realloc(ff->buf, new_size);
125 		if (!addr)
126 			return -ENOMEM;
127 		ff->buf = addr;
128 		ff->size = new_size;
129 	}
130 
131 	memcpy(ff->buf + ff->offset, buf, size);
132 	ff->offset += size;
133 
134 	return 0;
135 }
136 
137 /* Return: 0 if succeeded, -ERR if failed. */
138 int do_write(struct feat_fd *ff, const void *buf, size_t size)
139 {
140 	if (!ff->buf)
141 		return __do_write_fd(ff, buf, size);
142 	return __do_write_buf(ff, buf, size);
143 }
144 
145 /* Return: 0 if succeeded, -ERR if failed. */
146 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
147 {
148 	u64 *p = (u64 *) set;
149 	int i, ret;
150 
151 	ret = do_write(ff, &size, sizeof(size));
152 	if (ret < 0)
153 		return ret;
154 
155 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
156 		ret = do_write(ff, p + i, sizeof(*p));
157 		if (ret < 0)
158 			return ret;
159 	}
160 
161 	return 0;
162 }
163 
164 /* Return: 0 if succeeded, -ERR if failed. */
165 int write_padded(struct feat_fd *ff, const void *bf,
166 		 size_t count, size_t count_aligned)
167 {
168 	static const char zero_buf[NAME_ALIGN];
169 	int err = do_write(ff, bf, count);
170 
171 	if (!err)
172 		err = do_write(ff, zero_buf, count_aligned - count);
173 
174 	return err;
175 }
176 
177 #define string_size(str)						\
178 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
179 
180 /* Return: 0 if succeeded, -ERR if failed. */
181 static int do_write_string(struct feat_fd *ff, const char *str)
182 {
183 	u32 len, olen;
184 	int ret;
185 
186 	olen = strlen(str) + 1;
187 	len = PERF_ALIGN(olen, NAME_ALIGN);
188 
189 	/* write len, incl. \0 */
190 	ret = do_write(ff, &len, sizeof(len));
191 	if (ret < 0)
192 		return ret;
193 
194 	return write_padded(ff, str, olen, len);
195 }
196 
197 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
198 {
199 	ssize_t ret = readn(ff->fd, addr, size);
200 
201 	if (ret != size)
202 		return ret < 0 ? (int)ret : -1;
203 	return 0;
204 }
205 
206 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
207 {
208 	if (size > (ssize_t)ff->size - ff->offset)
209 		return -1;
210 
211 	memcpy(addr, ff->buf + ff->offset, size);
212 	ff->offset += size;
213 
214 	return 0;
215 
216 }
217 
218 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
219 {
220 	if (!ff->buf)
221 		return __do_read_fd(ff, addr, size);
222 	return __do_read_buf(ff, addr, size);
223 }
224 
225 static int do_read_u32(struct feat_fd *ff, u32 *addr)
226 {
227 	int ret;
228 
229 	ret = __do_read(ff, addr, sizeof(*addr));
230 	if (ret)
231 		return ret;
232 
233 	if (ff->ph->needs_swap)
234 		*addr = bswap_32(*addr);
235 	return 0;
236 }
237 
238 static int do_read_u64(struct feat_fd *ff, u64 *addr)
239 {
240 	int ret;
241 
242 	ret = __do_read(ff, addr, sizeof(*addr));
243 	if (ret)
244 		return ret;
245 
246 	if (ff->ph->needs_swap)
247 		*addr = bswap_64(*addr);
248 	return 0;
249 }
250 
251 static char *do_read_string(struct feat_fd *ff)
252 {
253 	u32 len;
254 	char *buf;
255 
256 	if (do_read_u32(ff, &len))
257 		return NULL;
258 
259 	buf = malloc(len);
260 	if (!buf)
261 		return NULL;
262 
263 	if (!__do_read(ff, buf, len)) {
264 		/*
265 		 * strings are padded by zeroes
266 		 * thus the actual strlen of buf
267 		 * may be less than len
268 		 */
269 		return buf;
270 	}
271 
272 	free(buf);
273 	return NULL;
274 }
275 
276 /* Return: 0 if succeeded, -ERR if failed. */
277 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
278 {
279 	unsigned long *set;
280 	u64 size, *p;
281 	int i, ret;
282 
283 	ret = do_read_u64(ff, &size);
284 	if (ret)
285 		return ret;
286 
287 	set = bitmap_zalloc(size);
288 	if (!set)
289 		return -ENOMEM;
290 
291 	p = (u64 *) set;
292 
293 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
294 		ret = do_read_u64(ff, p + i);
295 		if (ret < 0) {
296 			free(set);
297 			return ret;
298 		}
299 	}
300 
301 	*pset  = set;
302 	*psize = size;
303 	return 0;
304 }
305 
306 #ifdef HAVE_LIBTRACEEVENT
307 static int write_tracing_data(struct feat_fd *ff,
308 			      struct evlist *evlist)
309 {
310 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
311 		return -1;
312 
313 	return read_tracing_data(ff->fd, &evlist->core.entries);
314 }
315 #endif
316 
317 static int write_build_id(struct feat_fd *ff,
318 			  struct evlist *evlist __maybe_unused)
319 {
320 	struct perf_session *session;
321 	int err;
322 
323 	session = container_of(ff->ph, struct perf_session, header);
324 
325 	if (!perf_session__read_build_ids(session, true))
326 		return -1;
327 
328 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
329 		return -1;
330 
331 	err = perf_session__write_buildid_table(session, ff);
332 	if (err < 0) {
333 		pr_debug("failed to write buildid table\n");
334 		return err;
335 	}
336 	perf_session__cache_build_ids(session);
337 
338 	return 0;
339 }
340 
341 static int write_hostname(struct feat_fd *ff,
342 			  struct evlist *evlist __maybe_unused)
343 {
344 	struct utsname uts;
345 	int ret;
346 
347 	ret = uname(&uts);
348 	if (ret < 0)
349 		return -1;
350 
351 	return do_write_string(ff, uts.nodename);
352 }
353 
354 static int write_osrelease(struct feat_fd *ff,
355 			   struct evlist *evlist __maybe_unused)
356 {
357 	struct utsname uts;
358 	int ret;
359 
360 	ret = uname(&uts);
361 	if (ret < 0)
362 		return -1;
363 
364 	return do_write_string(ff, uts.release);
365 }
366 
367 static int write_arch(struct feat_fd *ff,
368 		      struct evlist *evlist __maybe_unused)
369 {
370 	struct utsname uts;
371 	int ret;
372 
373 	ret = uname(&uts);
374 	if (ret < 0)
375 		return -1;
376 
377 	return do_write_string(ff, uts.machine);
378 }
379 
380 static int write_version(struct feat_fd *ff,
381 			 struct evlist *evlist __maybe_unused)
382 {
383 	return do_write_string(ff, perf_version_string);
384 }
385 
386 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
387 {
388 	FILE *file;
389 	char *buf = NULL;
390 	char *s, *p;
391 	const char *search = cpuinfo_proc;
392 	size_t len = 0;
393 	int ret = -1;
394 
395 	if (!search)
396 		return -1;
397 
398 	file = fopen("/proc/cpuinfo", "r");
399 	if (!file)
400 		return -1;
401 
402 	while (getline(&buf, &len, file) > 0) {
403 		ret = strncmp(buf, search, strlen(search));
404 		if (!ret)
405 			break;
406 	}
407 
408 	if (ret) {
409 		ret = -1;
410 		goto done;
411 	}
412 
413 	s = buf;
414 
415 	p = strchr(buf, ':');
416 	if (p && *(p+1) == ' ' && *(p+2))
417 		s = p + 2;
418 	p = strchr(s, '\n');
419 	if (p)
420 		*p = '\0';
421 
422 	/* squash extra space characters (branding string) */
423 	p = s;
424 	while (*p) {
425 		if (isspace(*p)) {
426 			char *r = p + 1;
427 			char *q = skip_spaces(r);
428 			*p = ' ';
429 			if (q != (p+1))
430 				while ((*r++ = *q++));
431 		}
432 		p++;
433 	}
434 	ret = do_write_string(ff, s);
435 done:
436 	free(buf);
437 	fclose(file);
438 	return ret;
439 }
440 
441 static int write_cpudesc(struct feat_fd *ff,
442 		       struct evlist *evlist __maybe_unused)
443 {
444 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
445 #define CPUINFO_PROC	{ "cpu", }
446 #elif defined(__s390__)
447 #define CPUINFO_PROC	{ "vendor_id", }
448 #elif defined(__sh__)
449 #define CPUINFO_PROC	{ "cpu type", }
450 #elif defined(__alpha__) || defined(__mips__)
451 #define CPUINFO_PROC	{ "cpu model", }
452 #elif defined(__arm__)
453 #define CPUINFO_PROC	{ "model name", "Processor", }
454 #elif defined(__arc__)
455 #define CPUINFO_PROC	{ "Processor", }
456 #elif defined(__xtensa__)
457 #define CPUINFO_PROC	{ "core ID", }
458 #else
459 #define CPUINFO_PROC	{ "model name", }
460 #endif
461 	const char *cpuinfo_procs[] = CPUINFO_PROC;
462 #undef CPUINFO_PROC
463 	unsigned int i;
464 
465 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
466 		int ret;
467 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
468 		if (ret >= 0)
469 			return ret;
470 	}
471 	return -1;
472 }
473 
474 
475 static int write_nrcpus(struct feat_fd *ff,
476 			struct evlist *evlist __maybe_unused)
477 {
478 	long nr;
479 	u32 nrc, nra;
480 	int ret;
481 
482 	nrc = cpu__max_present_cpu().cpu;
483 
484 	nr = sysconf(_SC_NPROCESSORS_ONLN);
485 	if (nr < 0)
486 		return -1;
487 
488 	nra = (u32)(nr & UINT_MAX);
489 
490 	ret = do_write(ff, &nrc, sizeof(nrc));
491 	if (ret < 0)
492 		return ret;
493 
494 	return do_write(ff, &nra, sizeof(nra));
495 }
496 
497 static int write_event_desc(struct feat_fd *ff,
498 			    struct evlist *evlist)
499 {
500 	struct evsel *evsel;
501 	u32 nre, nri, sz;
502 	int ret;
503 
504 	nre = evlist->core.nr_entries;
505 
506 	/*
507 	 * write number of events
508 	 */
509 	ret = do_write(ff, &nre, sizeof(nre));
510 	if (ret < 0)
511 		return ret;
512 
513 	/*
514 	 * size of perf_event_attr struct
515 	 */
516 	sz = (u32)sizeof(evsel->core.attr);
517 	ret = do_write(ff, &sz, sizeof(sz));
518 	if (ret < 0)
519 		return ret;
520 
521 	evlist__for_each_entry(evlist, evsel) {
522 		ret = do_write(ff, &evsel->core.attr, sz);
523 		if (ret < 0)
524 			return ret;
525 		/*
526 		 * write number of unique id per event
527 		 * there is one id per instance of an event
528 		 *
529 		 * copy into an nri to be independent of the
530 		 * type of ids,
531 		 */
532 		nri = evsel->core.ids;
533 		ret = do_write(ff, &nri, sizeof(nri));
534 		if (ret < 0)
535 			return ret;
536 
537 		/*
538 		 * write event string as passed on cmdline
539 		 */
540 		ret = do_write_string(ff, evsel__name(evsel));
541 		if (ret < 0)
542 			return ret;
543 		/*
544 		 * write unique ids for this event
545 		 */
546 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
547 		if (ret < 0)
548 			return ret;
549 	}
550 	return 0;
551 }
552 
553 static int write_cmdline(struct feat_fd *ff,
554 			 struct evlist *evlist __maybe_unused)
555 {
556 	char pbuf[MAXPATHLEN], *buf;
557 	int i, ret, n;
558 
559 	/* actual path to perf binary */
560 	buf = perf_exe(pbuf, MAXPATHLEN);
561 
562 	/* account for binary path */
563 	n = perf_env.nr_cmdline + 1;
564 
565 	ret = do_write(ff, &n, sizeof(n));
566 	if (ret < 0)
567 		return ret;
568 
569 	ret = do_write_string(ff, buf);
570 	if (ret < 0)
571 		return ret;
572 
573 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
574 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
575 		if (ret < 0)
576 			return ret;
577 	}
578 	return 0;
579 }
580 
581 
582 static int write_cpu_topology(struct feat_fd *ff,
583 			      struct evlist *evlist __maybe_unused)
584 {
585 	struct cpu_topology *tp;
586 	u32 i;
587 	int ret, j;
588 
589 	tp = cpu_topology__new();
590 	if (!tp)
591 		return -1;
592 
593 	ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
594 	if (ret < 0)
595 		goto done;
596 
597 	for (i = 0; i < tp->package_cpus_lists; i++) {
598 		ret = do_write_string(ff, tp->package_cpus_list[i]);
599 		if (ret < 0)
600 			goto done;
601 	}
602 	ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
603 	if (ret < 0)
604 		goto done;
605 
606 	for (i = 0; i < tp->core_cpus_lists; i++) {
607 		ret = do_write_string(ff, tp->core_cpus_list[i]);
608 		if (ret < 0)
609 			break;
610 	}
611 
612 	ret = perf_env__read_cpu_topology_map(&perf_env);
613 	if (ret < 0)
614 		goto done;
615 
616 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
617 		ret = do_write(ff, &perf_env.cpu[j].core_id,
618 			       sizeof(perf_env.cpu[j].core_id));
619 		if (ret < 0)
620 			return ret;
621 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
622 			       sizeof(perf_env.cpu[j].socket_id));
623 		if (ret < 0)
624 			return ret;
625 	}
626 
627 	if (!tp->die_cpus_lists)
628 		goto done;
629 
630 	ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
631 	if (ret < 0)
632 		goto done;
633 
634 	for (i = 0; i < tp->die_cpus_lists; i++) {
635 		ret = do_write_string(ff, tp->die_cpus_list[i]);
636 		if (ret < 0)
637 			goto done;
638 	}
639 
640 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
641 		ret = do_write(ff, &perf_env.cpu[j].die_id,
642 			       sizeof(perf_env.cpu[j].die_id));
643 		if (ret < 0)
644 			return ret;
645 	}
646 
647 done:
648 	cpu_topology__delete(tp);
649 	return ret;
650 }
651 
652 
653 
654 static int write_total_mem(struct feat_fd *ff,
655 			   struct evlist *evlist __maybe_unused)
656 {
657 	char *buf = NULL;
658 	FILE *fp;
659 	size_t len = 0;
660 	int ret = -1, n;
661 	uint64_t mem;
662 
663 	fp = fopen("/proc/meminfo", "r");
664 	if (!fp)
665 		return -1;
666 
667 	while (getline(&buf, &len, fp) > 0) {
668 		ret = strncmp(buf, "MemTotal:", 9);
669 		if (!ret)
670 			break;
671 	}
672 	if (!ret) {
673 		n = sscanf(buf, "%*s %"PRIu64, &mem);
674 		if (n == 1)
675 			ret = do_write(ff, &mem, sizeof(mem));
676 	} else
677 		ret = -1;
678 	free(buf);
679 	fclose(fp);
680 	return ret;
681 }
682 
683 static int write_numa_topology(struct feat_fd *ff,
684 			       struct evlist *evlist __maybe_unused)
685 {
686 	struct numa_topology *tp;
687 	int ret = -1;
688 	u32 i;
689 
690 	tp = numa_topology__new();
691 	if (!tp)
692 		return -ENOMEM;
693 
694 	ret = do_write(ff, &tp->nr, sizeof(u32));
695 	if (ret < 0)
696 		goto err;
697 
698 	for (i = 0; i < tp->nr; i++) {
699 		struct numa_topology_node *n = &tp->nodes[i];
700 
701 		ret = do_write(ff, &n->node, sizeof(u32));
702 		if (ret < 0)
703 			goto err;
704 
705 		ret = do_write(ff, &n->mem_total, sizeof(u64));
706 		if (ret)
707 			goto err;
708 
709 		ret = do_write(ff, &n->mem_free, sizeof(u64));
710 		if (ret)
711 			goto err;
712 
713 		ret = do_write_string(ff, n->cpus);
714 		if (ret < 0)
715 			goto err;
716 	}
717 
718 	ret = 0;
719 
720 err:
721 	numa_topology__delete(tp);
722 	return ret;
723 }
724 
725 /*
726  * File format:
727  *
728  * struct pmu_mappings {
729  *	u32	pmu_num;
730  *	struct pmu_map {
731  *		u32	type;
732  *		char	name[];
733  *	}[pmu_num];
734  * };
735  */
736 
737 static int write_pmu_mappings(struct feat_fd *ff,
738 			      struct evlist *evlist __maybe_unused)
739 {
740 	struct perf_pmu *pmu = NULL;
741 	u32 pmu_num = 0;
742 	int ret;
743 
744 	/*
745 	 * Do a first pass to count number of pmu to avoid lseek so this
746 	 * works in pipe mode as well.
747 	 */
748 	while ((pmu = perf_pmu__scan(pmu))) {
749 		if (!pmu->name)
750 			continue;
751 		pmu_num++;
752 	}
753 
754 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
755 	if (ret < 0)
756 		return ret;
757 
758 	while ((pmu = perf_pmu__scan(pmu))) {
759 		if (!pmu->name)
760 			continue;
761 
762 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
763 		if (ret < 0)
764 			return ret;
765 
766 		ret = do_write_string(ff, pmu->name);
767 		if (ret < 0)
768 			return ret;
769 	}
770 
771 	return 0;
772 }
773 
774 /*
775  * File format:
776  *
777  * struct group_descs {
778  *	u32	nr_groups;
779  *	struct group_desc {
780  *		char	name[];
781  *		u32	leader_idx;
782  *		u32	nr_members;
783  *	}[nr_groups];
784  * };
785  */
786 static int write_group_desc(struct feat_fd *ff,
787 			    struct evlist *evlist)
788 {
789 	u32 nr_groups = evlist__nr_groups(evlist);
790 	struct evsel *evsel;
791 	int ret;
792 
793 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
794 	if (ret < 0)
795 		return ret;
796 
797 	evlist__for_each_entry(evlist, evsel) {
798 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
799 			const char *name = evsel->group_name ?: "{anon_group}";
800 			u32 leader_idx = evsel->core.idx;
801 			u32 nr_members = evsel->core.nr_members;
802 
803 			ret = do_write_string(ff, name);
804 			if (ret < 0)
805 				return ret;
806 
807 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
808 			if (ret < 0)
809 				return ret;
810 
811 			ret = do_write(ff, &nr_members, sizeof(nr_members));
812 			if (ret < 0)
813 				return ret;
814 		}
815 	}
816 	return 0;
817 }
818 
819 /*
820  * Return the CPU id as a raw string.
821  *
822  * Each architecture should provide a more precise id string that
823  * can be use to match the architecture's "mapfile".
824  */
825 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
826 {
827 	return NULL;
828 }
829 
830 /* Return zero when the cpuid from the mapfile.csv matches the
831  * cpuid string generated on this platform.
832  * Otherwise return non-zero.
833  */
834 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
835 {
836 	regex_t re;
837 	regmatch_t pmatch[1];
838 	int match;
839 
840 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
841 		/* Warn unable to generate match particular string. */
842 		pr_info("Invalid regular expression %s\n", mapcpuid);
843 		return 1;
844 	}
845 
846 	match = !regexec(&re, cpuid, 1, pmatch, 0);
847 	regfree(&re);
848 	if (match) {
849 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
850 
851 		/* Verify the entire string matched. */
852 		if (match_len == strlen(cpuid))
853 			return 0;
854 	}
855 	return 1;
856 }
857 
858 /*
859  * default get_cpuid(): nothing gets recorded
860  * actual implementation must be in arch/$(SRCARCH)/util/header.c
861  */
862 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
863 {
864 	return ENOSYS; /* Not implemented */
865 }
866 
867 static int write_cpuid(struct feat_fd *ff,
868 		       struct evlist *evlist __maybe_unused)
869 {
870 	char buffer[64];
871 	int ret;
872 
873 	ret = get_cpuid(buffer, sizeof(buffer));
874 	if (ret)
875 		return -1;
876 
877 	return do_write_string(ff, buffer);
878 }
879 
880 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
881 			      struct evlist *evlist __maybe_unused)
882 {
883 	return 0;
884 }
885 
886 static int write_auxtrace(struct feat_fd *ff,
887 			  struct evlist *evlist __maybe_unused)
888 {
889 	struct perf_session *session;
890 	int err;
891 
892 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
893 		return -1;
894 
895 	session = container_of(ff->ph, struct perf_session, header);
896 
897 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
898 	if (err < 0)
899 		pr_err("Failed to write auxtrace index\n");
900 	return err;
901 }
902 
903 static int write_clockid(struct feat_fd *ff,
904 			 struct evlist *evlist __maybe_unused)
905 {
906 	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
907 			sizeof(ff->ph->env.clock.clockid_res_ns));
908 }
909 
910 static int write_clock_data(struct feat_fd *ff,
911 			    struct evlist *evlist __maybe_unused)
912 {
913 	u64 *data64;
914 	u32 data32;
915 	int ret;
916 
917 	/* version */
918 	data32 = 1;
919 
920 	ret = do_write(ff, &data32, sizeof(data32));
921 	if (ret < 0)
922 		return ret;
923 
924 	/* clockid */
925 	data32 = ff->ph->env.clock.clockid;
926 
927 	ret = do_write(ff, &data32, sizeof(data32));
928 	if (ret < 0)
929 		return ret;
930 
931 	/* TOD ref time */
932 	data64 = &ff->ph->env.clock.tod_ns;
933 
934 	ret = do_write(ff, data64, sizeof(*data64));
935 	if (ret < 0)
936 		return ret;
937 
938 	/* clockid ref time */
939 	data64 = &ff->ph->env.clock.clockid_ns;
940 
941 	return do_write(ff, data64, sizeof(*data64));
942 }
943 
944 static int write_hybrid_topology(struct feat_fd *ff,
945 				 struct evlist *evlist __maybe_unused)
946 {
947 	struct hybrid_topology *tp;
948 	int ret;
949 	u32 i;
950 
951 	tp = hybrid_topology__new();
952 	if (!tp)
953 		return -ENOENT;
954 
955 	ret = do_write(ff, &tp->nr, sizeof(u32));
956 	if (ret < 0)
957 		goto err;
958 
959 	for (i = 0; i < tp->nr; i++) {
960 		struct hybrid_topology_node *n = &tp->nodes[i];
961 
962 		ret = do_write_string(ff, n->pmu_name);
963 		if (ret < 0)
964 			goto err;
965 
966 		ret = do_write_string(ff, n->cpus);
967 		if (ret < 0)
968 			goto err;
969 	}
970 
971 	ret = 0;
972 
973 err:
974 	hybrid_topology__delete(tp);
975 	return ret;
976 }
977 
978 static int write_dir_format(struct feat_fd *ff,
979 			    struct evlist *evlist __maybe_unused)
980 {
981 	struct perf_session *session;
982 	struct perf_data *data;
983 
984 	session = container_of(ff->ph, struct perf_session, header);
985 	data = session->data;
986 
987 	if (WARN_ON(!perf_data__is_dir(data)))
988 		return -1;
989 
990 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
991 }
992 
993 /*
994  * Check whether a CPU is online
995  *
996  * Returns:
997  *     1 -> if CPU is online
998  *     0 -> if CPU is offline
999  *    -1 -> error case
1000  */
1001 int is_cpu_online(unsigned int cpu)
1002 {
1003 	char *str;
1004 	size_t strlen;
1005 	char buf[256];
1006 	int status = -1;
1007 	struct stat statbuf;
1008 
1009 	snprintf(buf, sizeof(buf),
1010 		"/sys/devices/system/cpu/cpu%d", cpu);
1011 	if (stat(buf, &statbuf) != 0)
1012 		return 0;
1013 
1014 	/*
1015 	 * Check if /sys/devices/system/cpu/cpux/online file
1016 	 * exists. Some cases cpu0 won't have online file since
1017 	 * it is not expected to be turned off generally.
1018 	 * In kernels without CONFIG_HOTPLUG_CPU, this
1019 	 * file won't exist
1020 	 */
1021 	snprintf(buf, sizeof(buf),
1022 		"/sys/devices/system/cpu/cpu%d/online", cpu);
1023 	if (stat(buf, &statbuf) != 0)
1024 		return 1;
1025 
1026 	/*
1027 	 * Read online file using sysfs__read_str.
1028 	 * If read or open fails, return -1.
1029 	 * If read succeeds, return value from file
1030 	 * which gets stored in "str"
1031 	 */
1032 	snprintf(buf, sizeof(buf),
1033 		"devices/system/cpu/cpu%d/online", cpu);
1034 
1035 	if (sysfs__read_str(buf, &str, &strlen) < 0)
1036 		return status;
1037 
1038 	status = atoi(str);
1039 
1040 	free(str);
1041 	return status;
1042 }
1043 
1044 #ifdef HAVE_LIBBPF_SUPPORT
1045 static int write_bpf_prog_info(struct feat_fd *ff,
1046 			       struct evlist *evlist __maybe_unused)
1047 {
1048 	struct perf_env *env = &ff->ph->env;
1049 	struct rb_root *root;
1050 	struct rb_node *next;
1051 	int ret;
1052 
1053 	down_read(&env->bpf_progs.lock);
1054 
1055 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
1056 		       sizeof(env->bpf_progs.infos_cnt));
1057 	if (ret < 0)
1058 		goto out;
1059 
1060 	root = &env->bpf_progs.infos;
1061 	next = rb_first(root);
1062 	while (next) {
1063 		struct bpf_prog_info_node *node;
1064 		size_t len;
1065 
1066 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1067 		next = rb_next(&node->rb_node);
1068 		len = sizeof(struct perf_bpil) +
1069 			node->info_linear->data_len;
1070 
1071 		/* before writing to file, translate address to offset */
1072 		bpil_addr_to_offs(node->info_linear);
1073 		ret = do_write(ff, node->info_linear, len);
1074 		/*
1075 		 * translate back to address even when do_write() fails,
1076 		 * so that this function never changes the data.
1077 		 */
1078 		bpil_offs_to_addr(node->info_linear);
1079 		if (ret < 0)
1080 			goto out;
1081 	}
1082 out:
1083 	up_read(&env->bpf_progs.lock);
1084 	return ret;
1085 }
1086 
1087 static int write_bpf_btf(struct feat_fd *ff,
1088 			 struct evlist *evlist __maybe_unused)
1089 {
1090 	struct perf_env *env = &ff->ph->env;
1091 	struct rb_root *root;
1092 	struct rb_node *next;
1093 	int ret;
1094 
1095 	down_read(&env->bpf_progs.lock);
1096 
1097 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1098 		       sizeof(env->bpf_progs.btfs_cnt));
1099 
1100 	if (ret < 0)
1101 		goto out;
1102 
1103 	root = &env->bpf_progs.btfs;
1104 	next = rb_first(root);
1105 	while (next) {
1106 		struct btf_node *node;
1107 
1108 		node = rb_entry(next, struct btf_node, rb_node);
1109 		next = rb_next(&node->rb_node);
1110 		ret = do_write(ff, &node->id,
1111 			       sizeof(u32) * 2 + node->data_size);
1112 		if (ret < 0)
1113 			goto out;
1114 	}
1115 out:
1116 	up_read(&env->bpf_progs.lock);
1117 	return ret;
1118 }
1119 #endif // HAVE_LIBBPF_SUPPORT
1120 
1121 static int cpu_cache_level__sort(const void *a, const void *b)
1122 {
1123 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1124 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1125 
1126 	return cache_a->level - cache_b->level;
1127 }
1128 
1129 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1130 {
1131 	if (a->level != b->level)
1132 		return false;
1133 
1134 	if (a->line_size != b->line_size)
1135 		return false;
1136 
1137 	if (a->sets != b->sets)
1138 		return false;
1139 
1140 	if (a->ways != b->ways)
1141 		return false;
1142 
1143 	if (strcmp(a->type, b->type))
1144 		return false;
1145 
1146 	if (strcmp(a->size, b->size))
1147 		return false;
1148 
1149 	if (strcmp(a->map, b->map))
1150 		return false;
1151 
1152 	return true;
1153 }
1154 
1155 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1156 {
1157 	char path[PATH_MAX], file[PATH_MAX];
1158 	struct stat st;
1159 	size_t len;
1160 
1161 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1162 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1163 
1164 	if (stat(file, &st))
1165 		return 1;
1166 
1167 	scnprintf(file, PATH_MAX, "%s/level", path);
1168 	if (sysfs__read_int(file, (int *) &cache->level))
1169 		return -1;
1170 
1171 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1172 	if (sysfs__read_int(file, (int *) &cache->line_size))
1173 		return -1;
1174 
1175 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1176 	if (sysfs__read_int(file, (int *) &cache->sets))
1177 		return -1;
1178 
1179 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1180 	if (sysfs__read_int(file, (int *) &cache->ways))
1181 		return -1;
1182 
1183 	scnprintf(file, PATH_MAX, "%s/type", path);
1184 	if (sysfs__read_str(file, &cache->type, &len))
1185 		return -1;
1186 
1187 	cache->type[len] = 0;
1188 	cache->type = strim(cache->type);
1189 
1190 	scnprintf(file, PATH_MAX, "%s/size", path);
1191 	if (sysfs__read_str(file, &cache->size, &len)) {
1192 		zfree(&cache->type);
1193 		return -1;
1194 	}
1195 
1196 	cache->size[len] = 0;
1197 	cache->size = strim(cache->size);
1198 
1199 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1200 	if (sysfs__read_str(file, &cache->map, &len)) {
1201 		zfree(&cache->size);
1202 		zfree(&cache->type);
1203 		return -1;
1204 	}
1205 
1206 	cache->map[len] = 0;
1207 	cache->map = strim(cache->map);
1208 	return 0;
1209 }
1210 
1211 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1212 {
1213 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1214 }
1215 
1216 #define MAX_CACHE_LVL 4
1217 
1218 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1219 {
1220 	u32 i, cnt = 0;
1221 	u32 nr, cpu;
1222 	u16 level;
1223 
1224 	nr = cpu__max_cpu().cpu;
1225 
1226 	for (cpu = 0; cpu < nr; cpu++) {
1227 		for (level = 0; level < MAX_CACHE_LVL; level++) {
1228 			struct cpu_cache_level c;
1229 			int err;
1230 
1231 			err = cpu_cache_level__read(&c, cpu, level);
1232 			if (err < 0)
1233 				return err;
1234 
1235 			if (err == 1)
1236 				break;
1237 
1238 			for (i = 0; i < cnt; i++) {
1239 				if (cpu_cache_level__cmp(&c, &caches[i]))
1240 					break;
1241 			}
1242 
1243 			if (i == cnt)
1244 				caches[cnt++] = c;
1245 			else
1246 				cpu_cache_level__free(&c);
1247 		}
1248 	}
1249 	*cntp = cnt;
1250 	return 0;
1251 }
1252 
1253 static int write_cache(struct feat_fd *ff,
1254 		       struct evlist *evlist __maybe_unused)
1255 {
1256 	u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1257 	struct cpu_cache_level caches[max_caches];
1258 	u32 cnt = 0, i, version = 1;
1259 	int ret;
1260 
1261 	ret = build_caches(caches, &cnt);
1262 	if (ret)
1263 		goto out;
1264 
1265 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1266 
1267 	ret = do_write(ff, &version, sizeof(u32));
1268 	if (ret < 0)
1269 		goto out;
1270 
1271 	ret = do_write(ff, &cnt, sizeof(u32));
1272 	if (ret < 0)
1273 		goto out;
1274 
1275 	for (i = 0; i < cnt; i++) {
1276 		struct cpu_cache_level *c = &caches[i];
1277 
1278 		#define _W(v)					\
1279 			ret = do_write(ff, &c->v, sizeof(u32));	\
1280 			if (ret < 0)				\
1281 				goto out;
1282 
1283 		_W(level)
1284 		_W(line_size)
1285 		_W(sets)
1286 		_W(ways)
1287 		#undef _W
1288 
1289 		#define _W(v)						\
1290 			ret = do_write_string(ff, (const char *) c->v);	\
1291 			if (ret < 0)					\
1292 				goto out;
1293 
1294 		_W(type)
1295 		_W(size)
1296 		_W(map)
1297 		#undef _W
1298 	}
1299 
1300 out:
1301 	for (i = 0; i < cnt; i++)
1302 		cpu_cache_level__free(&caches[i]);
1303 	return ret;
1304 }
1305 
1306 static int write_stat(struct feat_fd *ff __maybe_unused,
1307 		      struct evlist *evlist __maybe_unused)
1308 {
1309 	return 0;
1310 }
1311 
1312 static int write_sample_time(struct feat_fd *ff,
1313 			     struct evlist *evlist)
1314 {
1315 	int ret;
1316 
1317 	ret = do_write(ff, &evlist->first_sample_time,
1318 		       sizeof(evlist->first_sample_time));
1319 	if (ret < 0)
1320 		return ret;
1321 
1322 	return do_write(ff, &evlist->last_sample_time,
1323 			sizeof(evlist->last_sample_time));
1324 }
1325 
1326 
1327 static int memory_node__read(struct memory_node *n, unsigned long idx)
1328 {
1329 	unsigned int phys, size = 0;
1330 	char path[PATH_MAX];
1331 	struct dirent *ent;
1332 	DIR *dir;
1333 
1334 #define for_each_memory(mem, dir)					\
1335 	while ((ent = readdir(dir)))					\
1336 		if (strcmp(ent->d_name, ".") &&				\
1337 		    strcmp(ent->d_name, "..") &&			\
1338 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1339 
1340 	scnprintf(path, PATH_MAX,
1341 		  "%s/devices/system/node/node%lu",
1342 		  sysfs__mountpoint(), idx);
1343 
1344 	dir = opendir(path);
1345 	if (!dir) {
1346 		pr_warning("failed: can't open memory sysfs data\n");
1347 		return -1;
1348 	}
1349 
1350 	for_each_memory(phys, dir) {
1351 		size = max(phys, size);
1352 	}
1353 
1354 	size++;
1355 
1356 	n->set = bitmap_zalloc(size);
1357 	if (!n->set) {
1358 		closedir(dir);
1359 		return -ENOMEM;
1360 	}
1361 
1362 	n->node = idx;
1363 	n->size = size;
1364 
1365 	rewinddir(dir);
1366 
1367 	for_each_memory(phys, dir) {
1368 		__set_bit(phys, n->set);
1369 	}
1370 
1371 	closedir(dir);
1372 	return 0;
1373 }
1374 
1375 static int memory_node__sort(const void *a, const void *b)
1376 {
1377 	const struct memory_node *na = a;
1378 	const struct memory_node *nb = b;
1379 
1380 	return na->node - nb->node;
1381 }
1382 
1383 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1384 {
1385 	char path[PATH_MAX];
1386 	struct dirent *ent;
1387 	DIR *dir;
1388 	u64 cnt = 0;
1389 	int ret = 0;
1390 
1391 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1392 		  sysfs__mountpoint());
1393 
1394 	dir = opendir(path);
1395 	if (!dir) {
1396 		pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1397 			  __func__, path);
1398 		return -1;
1399 	}
1400 
1401 	while (!ret && (ent = readdir(dir))) {
1402 		unsigned int idx;
1403 		int r;
1404 
1405 		if (!strcmp(ent->d_name, ".") ||
1406 		    !strcmp(ent->d_name, ".."))
1407 			continue;
1408 
1409 		r = sscanf(ent->d_name, "node%u", &idx);
1410 		if (r != 1)
1411 			continue;
1412 
1413 		if (WARN_ONCE(cnt >= size,
1414 			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1415 			closedir(dir);
1416 			return -1;
1417 		}
1418 
1419 		ret = memory_node__read(&nodes[cnt++], idx);
1420 	}
1421 
1422 	*cntp = cnt;
1423 	closedir(dir);
1424 
1425 	if (!ret)
1426 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1427 
1428 	return ret;
1429 }
1430 
1431 #define MAX_MEMORY_NODES 2000
1432 
1433 /*
1434  * The MEM_TOPOLOGY holds physical memory map for every
1435  * node in system. The format of data is as follows:
1436  *
1437  *  0 - version          | for future changes
1438  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1439  * 16 - count            | number of nodes
1440  *
1441  * For each node we store map of physical indexes for
1442  * each node:
1443  *
1444  * 32 - node id          | node index
1445  * 40 - size             | size of bitmap
1446  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1447  */
1448 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1449 			      struct evlist *evlist __maybe_unused)
1450 {
1451 	static struct memory_node nodes[MAX_MEMORY_NODES];
1452 	u64 bsize, version = 1, i, nr;
1453 	int ret;
1454 
1455 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1456 			      (unsigned long long *) &bsize);
1457 	if (ret)
1458 		return ret;
1459 
1460 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1461 	if (ret)
1462 		return ret;
1463 
1464 	ret = do_write(ff, &version, sizeof(version));
1465 	if (ret < 0)
1466 		goto out;
1467 
1468 	ret = do_write(ff, &bsize, sizeof(bsize));
1469 	if (ret < 0)
1470 		goto out;
1471 
1472 	ret = do_write(ff, &nr, sizeof(nr));
1473 	if (ret < 0)
1474 		goto out;
1475 
1476 	for (i = 0; i < nr; i++) {
1477 		struct memory_node *n = &nodes[i];
1478 
1479 		#define _W(v)						\
1480 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1481 			if (ret < 0)					\
1482 				goto out;
1483 
1484 		_W(node)
1485 		_W(size)
1486 
1487 		#undef _W
1488 
1489 		ret = do_write_bitmap(ff, n->set, n->size);
1490 		if (ret < 0)
1491 			goto out;
1492 	}
1493 
1494 out:
1495 	return ret;
1496 }
1497 
1498 static int write_compressed(struct feat_fd *ff __maybe_unused,
1499 			    struct evlist *evlist __maybe_unused)
1500 {
1501 	int ret;
1502 
1503 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1504 	if (ret)
1505 		return ret;
1506 
1507 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1508 	if (ret)
1509 		return ret;
1510 
1511 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1512 	if (ret)
1513 		return ret;
1514 
1515 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1516 	if (ret)
1517 		return ret;
1518 
1519 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1520 }
1521 
1522 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1523 			    bool write_pmu)
1524 {
1525 	struct perf_pmu_caps *caps = NULL;
1526 	int ret;
1527 
1528 	ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1529 	if (ret < 0)
1530 		return ret;
1531 
1532 	list_for_each_entry(caps, &pmu->caps, list) {
1533 		ret = do_write_string(ff, caps->name);
1534 		if (ret < 0)
1535 			return ret;
1536 
1537 		ret = do_write_string(ff, caps->value);
1538 		if (ret < 0)
1539 			return ret;
1540 	}
1541 
1542 	if (write_pmu) {
1543 		ret = do_write_string(ff, pmu->name);
1544 		if (ret < 0)
1545 			return ret;
1546 	}
1547 
1548 	return ret;
1549 }
1550 
1551 static int write_cpu_pmu_caps(struct feat_fd *ff,
1552 			      struct evlist *evlist __maybe_unused)
1553 {
1554 	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1555 	int ret;
1556 
1557 	if (!cpu_pmu)
1558 		return -ENOENT;
1559 
1560 	ret = perf_pmu__caps_parse(cpu_pmu);
1561 	if (ret < 0)
1562 		return ret;
1563 
1564 	return __write_pmu_caps(ff, cpu_pmu, false);
1565 }
1566 
1567 static int write_pmu_caps(struct feat_fd *ff,
1568 			  struct evlist *evlist __maybe_unused)
1569 {
1570 	struct perf_pmu *pmu = NULL;
1571 	int nr_pmu = 0;
1572 	int ret;
1573 
1574 	while ((pmu = perf_pmu__scan(pmu))) {
1575 		if (!pmu->name || !strcmp(pmu->name, "cpu") ||
1576 		    perf_pmu__caps_parse(pmu) <= 0)
1577 			continue;
1578 		nr_pmu++;
1579 	}
1580 
1581 	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1582 	if (ret < 0)
1583 		return ret;
1584 
1585 	if (!nr_pmu)
1586 		return 0;
1587 
1588 	/*
1589 	 * Write hybrid pmu caps first to maintain compatibility with
1590 	 * older perf tool.
1591 	 */
1592 	pmu = NULL;
1593 	perf_pmu__for_each_hybrid_pmu(pmu) {
1594 		ret = __write_pmu_caps(ff, pmu, true);
1595 		if (ret < 0)
1596 			return ret;
1597 	}
1598 
1599 	pmu = NULL;
1600 	while ((pmu = perf_pmu__scan(pmu))) {
1601 		if (!pmu->name || !strcmp(pmu->name, "cpu") ||
1602 		    !pmu->nr_caps || perf_pmu__is_hybrid(pmu->name))
1603 			continue;
1604 
1605 		ret = __write_pmu_caps(ff, pmu, true);
1606 		if (ret < 0)
1607 			return ret;
1608 	}
1609 	return 0;
1610 }
1611 
1612 static void print_hostname(struct feat_fd *ff, FILE *fp)
1613 {
1614 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1615 }
1616 
1617 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1618 {
1619 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1620 }
1621 
1622 static void print_arch(struct feat_fd *ff, FILE *fp)
1623 {
1624 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1625 }
1626 
1627 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1628 {
1629 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1630 }
1631 
1632 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1633 {
1634 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1635 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1636 }
1637 
1638 static void print_version(struct feat_fd *ff, FILE *fp)
1639 {
1640 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1641 }
1642 
1643 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1644 {
1645 	int nr, i;
1646 
1647 	nr = ff->ph->env.nr_cmdline;
1648 
1649 	fprintf(fp, "# cmdline : ");
1650 
1651 	for (i = 0; i < nr; i++) {
1652 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1653 		if (!argv_i) {
1654 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1655 		} else {
1656 			char *mem = argv_i;
1657 			do {
1658 				char *quote = strchr(argv_i, '\'');
1659 				if (!quote)
1660 					break;
1661 				*quote++ = '\0';
1662 				fprintf(fp, "%s\\\'", argv_i);
1663 				argv_i = quote;
1664 			} while (1);
1665 			fprintf(fp, "%s ", argv_i);
1666 			free(mem);
1667 		}
1668 	}
1669 	fputc('\n', fp);
1670 }
1671 
1672 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1673 {
1674 	struct perf_header *ph = ff->ph;
1675 	int cpu_nr = ph->env.nr_cpus_avail;
1676 	int nr, i;
1677 	char *str;
1678 
1679 	nr = ph->env.nr_sibling_cores;
1680 	str = ph->env.sibling_cores;
1681 
1682 	for (i = 0; i < nr; i++) {
1683 		fprintf(fp, "# sibling sockets : %s\n", str);
1684 		str += strlen(str) + 1;
1685 	}
1686 
1687 	if (ph->env.nr_sibling_dies) {
1688 		nr = ph->env.nr_sibling_dies;
1689 		str = ph->env.sibling_dies;
1690 
1691 		for (i = 0; i < nr; i++) {
1692 			fprintf(fp, "# sibling dies    : %s\n", str);
1693 			str += strlen(str) + 1;
1694 		}
1695 	}
1696 
1697 	nr = ph->env.nr_sibling_threads;
1698 	str = ph->env.sibling_threads;
1699 
1700 	for (i = 0; i < nr; i++) {
1701 		fprintf(fp, "# sibling threads : %s\n", str);
1702 		str += strlen(str) + 1;
1703 	}
1704 
1705 	if (ph->env.nr_sibling_dies) {
1706 		if (ph->env.cpu != NULL) {
1707 			for (i = 0; i < cpu_nr; i++)
1708 				fprintf(fp, "# CPU %d: Core ID %d, "
1709 					    "Die ID %d, Socket ID %d\n",
1710 					    i, ph->env.cpu[i].core_id,
1711 					    ph->env.cpu[i].die_id,
1712 					    ph->env.cpu[i].socket_id);
1713 		} else
1714 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1715 				    "information is not available\n");
1716 	} else {
1717 		if (ph->env.cpu != NULL) {
1718 			for (i = 0; i < cpu_nr; i++)
1719 				fprintf(fp, "# CPU %d: Core ID %d, "
1720 					    "Socket ID %d\n",
1721 					    i, ph->env.cpu[i].core_id,
1722 					    ph->env.cpu[i].socket_id);
1723 		} else
1724 			fprintf(fp, "# Core ID and Socket ID "
1725 				    "information is not available\n");
1726 	}
1727 }
1728 
1729 static void print_clockid(struct feat_fd *ff, FILE *fp)
1730 {
1731 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1732 		ff->ph->env.clock.clockid_res_ns * 1000);
1733 }
1734 
1735 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1736 {
1737 	struct timespec clockid_ns;
1738 	char tstr[64], date[64];
1739 	struct timeval tod_ns;
1740 	clockid_t clockid;
1741 	struct tm ltime;
1742 	u64 ref;
1743 
1744 	if (!ff->ph->env.clock.enabled) {
1745 		fprintf(fp, "# reference time disabled\n");
1746 		return;
1747 	}
1748 
1749 	/* Compute TOD time. */
1750 	ref = ff->ph->env.clock.tod_ns;
1751 	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1752 	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1753 	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1754 
1755 	/* Compute clockid time. */
1756 	ref = ff->ph->env.clock.clockid_ns;
1757 	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1758 	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1759 	clockid_ns.tv_nsec = ref;
1760 
1761 	clockid = ff->ph->env.clock.clockid;
1762 
1763 	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1764 		snprintf(tstr, sizeof(tstr), "<error>");
1765 	else {
1766 		strftime(date, sizeof(date), "%F %T", &ltime);
1767 		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1768 			  date, (int) tod_ns.tv_usec);
1769 	}
1770 
1771 	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1772 	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1773 		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1774 		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1775 		    clockid_name(clockid));
1776 }
1777 
1778 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1779 {
1780 	int i;
1781 	struct hybrid_node *n;
1782 
1783 	fprintf(fp, "# hybrid cpu system:\n");
1784 	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1785 		n = &ff->ph->env.hybrid_nodes[i];
1786 		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1787 	}
1788 }
1789 
1790 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1791 {
1792 	struct perf_session *session;
1793 	struct perf_data *data;
1794 
1795 	session = container_of(ff->ph, struct perf_session, header);
1796 	data = session->data;
1797 
1798 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1799 }
1800 
1801 #ifdef HAVE_LIBBPF_SUPPORT
1802 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1803 {
1804 	struct perf_env *env = &ff->ph->env;
1805 	struct rb_root *root;
1806 	struct rb_node *next;
1807 
1808 	down_read(&env->bpf_progs.lock);
1809 
1810 	root = &env->bpf_progs.infos;
1811 	next = rb_first(root);
1812 
1813 	while (next) {
1814 		struct bpf_prog_info_node *node;
1815 
1816 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1817 		next = rb_next(&node->rb_node);
1818 
1819 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1820 					       env, fp);
1821 	}
1822 
1823 	up_read(&env->bpf_progs.lock);
1824 }
1825 
1826 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1827 {
1828 	struct perf_env *env = &ff->ph->env;
1829 	struct rb_root *root;
1830 	struct rb_node *next;
1831 
1832 	down_read(&env->bpf_progs.lock);
1833 
1834 	root = &env->bpf_progs.btfs;
1835 	next = rb_first(root);
1836 
1837 	while (next) {
1838 		struct btf_node *node;
1839 
1840 		node = rb_entry(next, struct btf_node, rb_node);
1841 		next = rb_next(&node->rb_node);
1842 		fprintf(fp, "# btf info of id %u\n", node->id);
1843 	}
1844 
1845 	up_read(&env->bpf_progs.lock);
1846 }
1847 #endif // HAVE_LIBBPF_SUPPORT
1848 
1849 static void free_event_desc(struct evsel *events)
1850 {
1851 	struct evsel *evsel;
1852 
1853 	if (!events)
1854 		return;
1855 
1856 	for (evsel = events; evsel->core.attr.size; evsel++) {
1857 		zfree(&evsel->name);
1858 		zfree(&evsel->core.id);
1859 	}
1860 
1861 	free(events);
1862 }
1863 
1864 static bool perf_attr_check(struct perf_event_attr *attr)
1865 {
1866 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1867 		pr_warning("Reserved bits are set unexpectedly. "
1868 			   "Please update perf tool.\n");
1869 		return false;
1870 	}
1871 
1872 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1873 		pr_warning("Unknown sample type (0x%llx) is detected. "
1874 			   "Please update perf tool.\n",
1875 			   attr->sample_type);
1876 		return false;
1877 	}
1878 
1879 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1880 		pr_warning("Unknown read format (0x%llx) is detected. "
1881 			   "Please update perf tool.\n",
1882 			   attr->read_format);
1883 		return false;
1884 	}
1885 
1886 	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1887 	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1888 		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1889 			   "Please update perf tool.\n",
1890 			   attr->branch_sample_type);
1891 
1892 		return false;
1893 	}
1894 
1895 	return true;
1896 }
1897 
1898 static struct evsel *read_event_desc(struct feat_fd *ff)
1899 {
1900 	struct evsel *evsel, *events = NULL;
1901 	u64 *id;
1902 	void *buf = NULL;
1903 	u32 nre, sz, nr, i, j;
1904 	size_t msz;
1905 
1906 	/* number of events */
1907 	if (do_read_u32(ff, &nre))
1908 		goto error;
1909 
1910 	if (do_read_u32(ff, &sz))
1911 		goto error;
1912 
1913 	/* buffer to hold on file attr struct */
1914 	buf = malloc(sz);
1915 	if (!buf)
1916 		goto error;
1917 
1918 	/* the last event terminates with evsel->core.attr.size == 0: */
1919 	events = calloc(nre + 1, sizeof(*events));
1920 	if (!events)
1921 		goto error;
1922 
1923 	msz = sizeof(evsel->core.attr);
1924 	if (sz < msz)
1925 		msz = sz;
1926 
1927 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1928 		evsel->core.idx = i;
1929 
1930 		/*
1931 		 * must read entire on-file attr struct to
1932 		 * sync up with layout.
1933 		 */
1934 		if (__do_read(ff, buf, sz))
1935 			goto error;
1936 
1937 		if (ff->ph->needs_swap)
1938 			perf_event__attr_swap(buf);
1939 
1940 		memcpy(&evsel->core.attr, buf, msz);
1941 
1942 		if (!perf_attr_check(&evsel->core.attr))
1943 			goto error;
1944 
1945 		if (do_read_u32(ff, &nr))
1946 			goto error;
1947 
1948 		if (ff->ph->needs_swap)
1949 			evsel->needs_swap = true;
1950 
1951 		evsel->name = do_read_string(ff);
1952 		if (!evsel->name)
1953 			goto error;
1954 
1955 		if (!nr)
1956 			continue;
1957 
1958 		id = calloc(nr, sizeof(*id));
1959 		if (!id)
1960 			goto error;
1961 		evsel->core.ids = nr;
1962 		evsel->core.id = id;
1963 
1964 		for (j = 0 ; j < nr; j++) {
1965 			if (do_read_u64(ff, id))
1966 				goto error;
1967 			id++;
1968 		}
1969 	}
1970 out:
1971 	free(buf);
1972 	return events;
1973 error:
1974 	free_event_desc(events);
1975 	events = NULL;
1976 	goto out;
1977 }
1978 
1979 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1980 				void *priv __maybe_unused)
1981 {
1982 	return fprintf(fp, ", %s = %s", name, val);
1983 }
1984 
1985 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1986 {
1987 	struct evsel *evsel, *events;
1988 	u32 j;
1989 	u64 *id;
1990 
1991 	if (ff->events)
1992 		events = ff->events;
1993 	else
1994 		events = read_event_desc(ff);
1995 
1996 	if (!events) {
1997 		fprintf(fp, "# event desc: not available or unable to read\n");
1998 		return;
1999 	}
2000 
2001 	for (evsel = events; evsel->core.attr.size; evsel++) {
2002 		fprintf(fp, "# event : name = %s, ", evsel->name);
2003 
2004 		if (evsel->core.ids) {
2005 			fprintf(fp, ", id = {");
2006 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2007 				if (j)
2008 					fputc(',', fp);
2009 				fprintf(fp, " %"PRIu64, *id);
2010 			}
2011 			fprintf(fp, " }");
2012 		}
2013 
2014 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2015 
2016 		fputc('\n', fp);
2017 	}
2018 
2019 	free_event_desc(events);
2020 	ff->events = NULL;
2021 }
2022 
2023 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2024 {
2025 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2026 }
2027 
2028 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2029 {
2030 	int i;
2031 	struct numa_node *n;
2032 
2033 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2034 		n = &ff->ph->env.numa_nodes[i];
2035 
2036 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2037 			    " free = %"PRIu64" kB\n",
2038 			n->node, n->mem_total, n->mem_free);
2039 
2040 		fprintf(fp, "# node%u cpu list : ", n->node);
2041 		cpu_map__fprintf(n->map, fp);
2042 	}
2043 }
2044 
2045 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2046 {
2047 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2048 }
2049 
2050 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2051 {
2052 	fprintf(fp, "# contains samples with branch stack\n");
2053 }
2054 
2055 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2056 {
2057 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2058 }
2059 
2060 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2061 {
2062 	fprintf(fp, "# contains stat data\n");
2063 }
2064 
2065 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2066 {
2067 	int i;
2068 
2069 	fprintf(fp, "# CPU cache info:\n");
2070 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2071 		fprintf(fp, "#  ");
2072 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2073 	}
2074 }
2075 
2076 static void print_compressed(struct feat_fd *ff, FILE *fp)
2077 {
2078 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2079 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2080 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2081 }
2082 
2083 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2084 {
2085 	const char *delimiter = "";
2086 	int i;
2087 
2088 	if (!nr_caps) {
2089 		fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2090 		return;
2091 	}
2092 
2093 	fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2094 	for (i = 0; i < nr_caps; i++) {
2095 		fprintf(fp, "%s%s", delimiter, caps[i]);
2096 		delimiter = ", ";
2097 	}
2098 
2099 	fprintf(fp, "\n");
2100 }
2101 
2102 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2103 {
2104 	__print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2105 			 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2106 }
2107 
2108 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2109 {
2110 	struct pmu_caps *pmu_caps;
2111 
2112 	for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2113 		pmu_caps = &ff->ph->env.pmu_caps[i];
2114 		__print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2115 				 pmu_caps->pmu_name);
2116 	}
2117 }
2118 
2119 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2120 {
2121 	const char *delimiter = "# pmu mappings: ";
2122 	char *str, *tmp;
2123 	u32 pmu_num;
2124 	u32 type;
2125 
2126 	pmu_num = ff->ph->env.nr_pmu_mappings;
2127 	if (!pmu_num) {
2128 		fprintf(fp, "# pmu mappings: not available\n");
2129 		return;
2130 	}
2131 
2132 	str = ff->ph->env.pmu_mappings;
2133 
2134 	while (pmu_num) {
2135 		type = strtoul(str, &tmp, 0);
2136 		if (*tmp != ':')
2137 			goto error;
2138 
2139 		str = tmp + 1;
2140 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2141 
2142 		delimiter = ", ";
2143 		str += strlen(str) + 1;
2144 		pmu_num--;
2145 	}
2146 
2147 	fprintf(fp, "\n");
2148 
2149 	if (!pmu_num)
2150 		return;
2151 error:
2152 	fprintf(fp, "# pmu mappings: unable to read\n");
2153 }
2154 
2155 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2156 {
2157 	struct perf_session *session;
2158 	struct evsel *evsel;
2159 	u32 nr = 0;
2160 
2161 	session = container_of(ff->ph, struct perf_session, header);
2162 
2163 	evlist__for_each_entry(session->evlist, evsel) {
2164 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2165 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2166 
2167 			nr = evsel->core.nr_members - 1;
2168 		} else if (nr) {
2169 			fprintf(fp, ",%s", evsel__name(evsel));
2170 
2171 			if (--nr == 0)
2172 				fprintf(fp, "}\n");
2173 		}
2174 	}
2175 }
2176 
2177 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2178 {
2179 	struct perf_session *session;
2180 	char time_buf[32];
2181 	double d;
2182 
2183 	session = container_of(ff->ph, struct perf_session, header);
2184 
2185 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2186 				  time_buf, sizeof(time_buf));
2187 	fprintf(fp, "# time of first sample : %s\n", time_buf);
2188 
2189 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2190 				  time_buf, sizeof(time_buf));
2191 	fprintf(fp, "# time of last sample : %s\n", time_buf);
2192 
2193 	d = (double)(session->evlist->last_sample_time -
2194 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2195 
2196 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2197 }
2198 
2199 static void memory_node__fprintf(struct memory_node *n,
2200 				 unsigned long long bsize, FILE *fp)
2201 {
2202 	char buf_map[100], buf_size[50];
2203 	unsigned long long size;
2204 
2205 	size = bsize * bitmap_weight(n->set, n->size);
2206 	unit_number__scnprintf(buf_size, 50, size);
2207 
2208 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2209 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2210 }
2211 
2212 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2213 {
2214 	struct memory_node *nodes;
2215 	int i, nr;
2216 
2217 	nodes = ff->ph->env.memory_nodes;
2218 	nr    = ff->ph->env.nr_memory_nodes;
2219 
2220 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2221 		nr, ff->ph->env.memory_bsize);
2222 
2223 	for (i = 0; i < nr; i++) {
2224 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2225 	}
2226 }
2227 
2228 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2229 				    char *filename,
2230 				    struct perf_session *session)
2231 {
2232 	int err = -1;
2233 	struct machine *machine;
2234 	u16 cpumode;
2235 	struct dso *dso;
2236 	enum dso_space_type dso_space;
2237 
2238 	machine = perf_session__findnew_machine(session, bev->pid);
2239 	if (!machine)
2240 		goto out;
2241 
2242 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2243 
2244 	switch (cpumode) {
2245 	case PERF_RECORD_MISC_KERNEL:
2246 		dso_space = DSO_SPACE__KERNEL;
2247 		break;
2248 	case PERF_RECORD_MISC_GUEST_KERNEL:
2249 		dso_space = DSO_SPACE__KERNEL_GUEST;
2250 		break;
2251 	case PERF_RECORD_MISC_USER:
2252 	case PERF_RECORD_MISC_GUEST_USER:
2253 		dso_space = DSO_SPACE__USER;
2254 		break;
2255 	default:
2256 		goto out;
2257 	}
2258 
2259 	dso = machine__findnew_dso(machine, filename);
2260 	if (dso != NULL) {
2261 		char sbuild_id[SBUILD_ID_SIZE];
2262 		struct build_id bid;
2263 		size_t size = BUILD_ID_SIZE;
2264 
2265 		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2266 			size = bev->size;
2267 
2268 		build_id__init(&bid, bev->data, size);
2269 		dso__set_build_id(dso, &bid);
2270 		dso->header_build_id = 1;
2271 
2272 		if (dso_space != DSO_SPACE__USER) {
2273 			struct kmod_path m = { .name = NULL, };
2274 
2275 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2276 				dso__set_module_info(dso, &m, machine);
2277 
2278 			dso->kernel = dso_space;
2279 			free(m.name);
2280 		}
2281 
2282 		build_id__sprintf(&dso->bid, sbuild_id);
2283 		pr_debug("build id event received for %s: %s [%zu]\n",
2284 			 dso->long_name, sbuild_id, size);
2285 		dso__put(dso);
2286 	}
2287 
2288 	err = 0;
2289 out:
2290 	return err;
2291 }
2292 
2293 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2294 						 int input, u64 offset, u64 size)
2295 {
2296 	struct perf_session *session = container_of(header, struct perf_session, header);
2297 	struct {
2298 		struct perf_event_header   header;
2299 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2300 		char			   filename[0];
2301 	} old_bev;
2302 	struct perf_record_header_build_id bev;
2303 	char filename[PATH_MAX];
2304 	u64 limit = offset + size;
2305 
2306 	while (offset < limit) {
2307 		ssize_t len;
2308 
2309 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2310 			return -1;
2311 
2312 		if (header->needs_swap)
2313 			perf_event_header__bswap(&old_bev.header);
2314 
2315 		len = old_bev.header.size - sizeof(old_bev);
2316 		if (readn(input, filename, len) != len)
2317 			return -1;
2318 
2319 		bev.header = old_bev.header;
2320 
2321 		/*
2322 		 * As the pid is the missing value, we need to fill
2323 		 * it properly. The header.misc value give us nice hint.
2324 		 */
2325 		bev.pid	= HOST_KERNEL_ID;
2326 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2327 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2328 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2329 
2330 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2331 		__event_process_build_id(&bev, filename, session);
2332 
2333 		offset += bev.header.size;
2334 	}
2335 
2336 	return 0;
2337 }
2338 
2339 static int perf_header__read_build_ids(struct perf_header *header,
2340 				       int input, u64 offset, u64 size)
2341 {
2342 	struct perf_session *session = container_of(header, struct perf_session, header);
2343 	struct perf_record_header_build_id bev;
2344 	char filename[PATH_MAX];
2345 	u64 limit = offset + size, orig_offset = offset;
2346 	int err = -1;
2347 
2348 	while (offset < limit) {
2349 		ssize_t len;
2350 
2351 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2352 			goto out;
2353 
2354 		if (header->needs_swap)
2355 			perf_event_header__bswap(&bev.header);
2356 
2357 		len = bev.header.size - sizeof(bev);
2358 		if (readn(input, filename, len) != len)
2359 			goto out;
2360 		/*
2361 		 * The a1645ce1 changeset:
2362 		 *
2363 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2364 		 *
2365 		 * Added a field to struct perf_record_header_build_id that broke the file
2366 		 * format.
2367 		 *
2368 		 * Since the kernel build-id is the first entry, process the
2369 		 * table using the old format if the well known
2370 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2371 		 * first 4 characters chopped off (where the pid_t sits).
2372 		 */
2373 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2374 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2375 				return -1;
2376 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2377 		}
2378 
2379 		__event_process_build_id(&bev, filename, session);
2380 
2381 		offset += bev.header.size;
2382 	}
2383 	err = 0;
2384 out:
2385 	return err;
2386 }
2387 
2388 /* Macro for features that simply need to read and store a string. */
2389 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2390 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2391 {\
2392 	free(ff->ph->env.__feat_env);		     \
2393 	ff->ph->env.__feat_env = do_read_string(ff); \
2394 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2395 }
2396 
2397 FEAT_PROCESS_STR_FUN(hostname, hostname);
2398 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2399 FEAT_PROCESS_STR_FUN(version, version);
2400 FEAT_PROCESS_STR_FUN(arch, arch);
2401 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2402 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2403 
2404 #ifdef HAVE_LIBTRACEEVENT
2405 static int process_tracing_data(struct feat_fd *ff, void *data)
2406 {
2407 	ssize_t ret = trace_report(ff->fd, data, false);
2408 
2409 	return ret < 0 ? -1 : 0;
2410 }
2411 #endif
2412 
2413 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2414 {
2415 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2416 		pr_debug("Failed to read buildids, continuing...\n");
2417 	return 0;
2418 }
2419 
2420 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2421 {
2422 	int ret;
2423 	u32 nr_cpus_avail, nr_cpus_online;
2424 
2425 	ret = do_read_u32(ff, &nr_cpus_avail);
2426 	if (ret)
2427 		return ret;
2428 
2429 	ret = do_read_u32(ff, &nr_cpus_online);
2430 	if (ret)
2431 		return ret;
2432 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2433 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2434 	return 0;
2435 }
2436 
2437 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2438 {
2439 	u64 total_mem;
2440 	int ret;
2441 
2442 	ret = do_read_u64(ff, &total_mem);
2443 	if (ret)
2444 		return -1;
2445 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2446 	return 0;
2447 }
2448 
2449 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2450 {
2451 	struct evsel *evsel;
2452 
2453 	evlist__for_each_entry(evlist, evsel) {
2454 		if (evsel->core.idx == idx)
2455 			return evsel;
2456 	}
2457 
2458 	return NULL;
2459 }
2460 
2461 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2462 {
2463 	struct evsel *evsel;
2464 
2465 	if (!event->name)
2466 		return;
2467 
2468 	evsel = evlist__find_by_index(evlist, event->core.idx);
2469 	if (!evsel)
2470 		return;
2471 
2472 	if (evsel->name)
2473 		return;
2474 
2475 	evsel->name = strdup(event->name);
2476 }
2477 
2478 static int
2479 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2480 {
2481 	struct perf_session *session;
2482 	struct evsel *evsel, *events = read_event_desc(ff);
2483 
2484 	if (!events)
2485 		return 0;
2486 
2487 	session = container_of(ff->ph, struct perf_session, header);
2488 
2489 	if (session->data->is_pipe) {
2490 		/* Save events for reading later by print_event_desc,
2491 		 * since they can't be read again in pipe mode. */
2492 		ff->events = events;
2493 	}
2494 
2495 	for (evsel = events; evsel->core.attr.size; evsel++)
2496 		evlist__set_event_name(session->evlist, evsel);
2497 
2498 	if (!session->data->is_pipe)
2499 		free_event_desc(events);
2500 
2501 	return 0;
2502 }
2503 
2504 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2505 {
2506 	char *str, *cmdline = NULL, **argv = NULL;
2507 	u32 nr, i, len = 0;
2508 
2509 	if (do_read_u32(ff, &nr))
2510 		return -1;
2511 
2512 	ff->ph->env.nr_cmdline = nr;
2513 
2514 	cmdline = zalloc(ff->size + nr + 1);
2515 	if (!cmdline)
2516 		return -1;
2517 
2518 	argv = zalloc(sizeof(char *) * (nr + 1));
2519 	if (!argv)
2520 		goto error;
2521 
2522 	for (i = 0; i < nr; i++) {
2523 		str = do_read_string(ff);
2524 		if (!str)
2525 			goto error;
2526 
2527 		argv[i] = cmdline + len;
2528 		memcpy(argv[i], str, strlen(str) + 1);
2529 		len += strlen(str) + 1;
2530 		free(str);
2531 	}
2532 	ff->ph->env.cmdline = cmdline;
2533 	ff->ph->env.cmdline_argv = (const char **) argv;
2534 	return 0;
2535 
2536 error:
2537 	free(argv);
2538 	free(cmdline);
2539 	return -1;
2540 }
2541 
2542 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2543 {
2544 	u32 nr, i;
2545 	char *str;
2546 	struct strbuf sb;
2547 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2548 	u64 size = 0;
2549 	struct perf_header *ph = ff->ph;
2550 	bool do_core_id_test = true;
2551 
2552 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2553 	if (!ph->env.cpu)
2554 		return -1;
2555 
2556 	if (do_read_u32(ff, &nr))
2557 		goto free_cpu;
2558 
2559 	ph->env.nr_sibling_cores = nr;
2560 	size += sizeof(u32);
2561 	if (strbuf_init(&sb, 128) < 0)
2562 		goto free_cpu;
2563 
2564 	for (i = 0; i < nr; i++) {
2565 		str = do_read_string(ff);
2566 		if (!str)
2567 			goto error;
2568 
2569 		/* include a NULL character at the end */
2570 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2571 			goto error;
2572 		size += string_size(str);
2573 		free(str);
2574 	}
2575 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2576 
2577 	if (do_read_u32(ff, &nr))
2578 		return -1;
2579 
2580 	ph->env.nr_sibling_threads = nr;
2581 	size += sizeof(u32);
2582 
2583 	for (i = 0; i < nr; i++) {
2584 		str = do_read_string(ff);
2585 		if (!str)
2586 			goto error;
2587 
2588 		/* include a NULL character at the end */
2589 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2590 			goto error;
2591 		size += string_size(str);
2592 		free(str);
2593 	}
2594 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2595 
2596 	/*
2597 	 * The header may be from old perf,
2598 	 * which doesn't include core id and socket id information.
2599 	 */
2600 	if (ff->size <= size) {
2601 		zfree(&ph->env.cpu);
2602 		return 0;
2603 	}
2604 
2605 	/* On s390 the socket_id number is not related to the numbers of cpus.
2606 	 * The socket_id number might be higher than the numbers of cpus.
2607 	 * This depends on the configuration.
2608 	 * AArch64 is the same.
2609 	 */
2610 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2611 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2612 		do_core_id_test = false;
2613 
2614 	for (i = 0; i < (u32)cpu_nr; i++) {
2615 		if (do_read_u32(ff, &nr))
2616 			goto free_cpu;
2617 
2618 		ph->env.cpu[i].core_id = nr;
2619 		size += sizeof(u32);
2620 
2621 		if (do_read_u32(ff, &nr))
2622 			goto free_cpu;
2623 
2624 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2625 			pr_debug("socket_id number is too big."
2626 				 "You may need to upgrade the perf tool.\n");
2627 			goto free_cpu;
2628 		}
2629 
2630 		ph->env.cpu[i].socket_id = nr;
2631 		size += sizeof(u32);
2632 	}
2633 
2634 	/*
2635 	 * The header may be from old perf,
2636 	 * which doesn't include die information.
2637 	 */
2638 	if (ff->size <= size)
2639 		return 0;
2640 
2641 	if (do_read_u32(ff, &nr))
2642 		return -1;
2643 
2644 	ph->env.nr_sibling_dies = nr;
2645 	size += sizeof(u32);
2646 
2647 	for (i = 0; i < nr; i++) {
2648 		str = do_read_string(ff);
2649 		if (!str)
2650 			goto error;
2651 
2652 		/* include a NULL character at the end */
2653 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2654 			goto error;
2655 		size += string_size(str);
2656 		free(str);
2657 	}
2658 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2659 
2660 	for (i = 0; i < (u32)cpu_nr; i++) {
2661 		if (do_read_u32(ff, &nr))
2662 			goto free_cpu;
2663 
2664 		ph->env.cpu[i].die_id = nr;
2665 	}
2666 
2667 	return 0;
2668 
2669 error:
2670 	strbuf_release(&sb);
2671 free_cpu:
2672 	zfree(&ph->env.cpu);
2673 	return -1;
2674 }
2675 
2676 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2677 {
2678 	struct numa_node *nodes, *n;
2679 	u32 nr, i;
2680 	char *str;
2681 
2682 	/* nr nodes */
2683 	if (do_read_u32(ff, &nr))
2684 		return -1;
2685 
2686 	nodes = zalloc(sizeof(*nodes) * nr);
2687 	if (!nodes)
2688 		return -ENOMEM;
2689 
2690 	for (i = 0; i < nr; i++) {
2691 		n = &nodes[i];
2692 
2693 		/* node number */
2694 		if (do_read_u32(ff, &n->node))
2695 			goto error;
2696 
2697 		if (do_read_u64(ff, &n->mem_total))
2698 			goto error;
2699 
2700 		if (do_read_u64(ff, &n->mem_free))
2701 			goto error;
2702 
2703 		str = do_read_string(ff);
2704 		if (!str)
2705 			goto error;
2706 
2707 		n->map = perf_cpu_map__new(str);
2708 		if (!n->map)
2709 			goto error;
2710 
2711 		free(str);
2712 	}
2713 	ff->ph->env.nr_numa_nodes = nr;
2714 	ff->ph->env.numa_nodes = nodes;
2715 	return 0;
2716 
2717 error:
2718 	free(nodes);
2719 	return -1;
2720 }
2721 
2722 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2723 {
2724 	char *name;
2725 	u32 pmu_num;
2726 	u32 type;
2727 	struct strbuf sb;
2728 
2729 	if (do_read_u32(ff, &pmu_num))
2730 		return -1;
2731 
2732 	if (!pmu_num) {
2733 		pr_debug("pmu mappings not available\n");
2734 		return 0;
2735 	}
2736 
2737 	ff->ph->env.nr_pmu_mappings = pmu_num;
2738 	if (strbuf_init(&sb, 128) < 0)
2739 		return -1;
2740 
2741 	while (pmu_num) {
2742 		if (do_read_u32(ff, &type))
2743 			goto error;
2744 
2745 		name = do_read_string(ff);
2746 		if (!name)
2747 			goto error;
2748 
2749 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2750 			goto error;
2751 		/* include a NULL character at the end */
2752 		if (strbuf_add(&sb, "", 1) < 0)
2753 			goto error;
2754 
2755 		if (!strcmp(name, "msr"))
2756 			ff->ph->env.msr_pmu_type = type;
2757 
2758 		free(name);
2759 		pmu_num--;
2760 	}
2761 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2762 	return 0;
2763 
2764 error:
2765 	strbuf_release(&sb);
2766 	return -1;
2767 }
2768 
2769 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2770 {
2771 	size_t ret = -1;
2772 	u32 i, nr, nr_groups;
2773 	struct perf_session *session;
2774 	struct evsel *evsel, *leader = NULL;
2775 	struct group_desc {
2776 		char *name;
2777 		u32 leader_idx;
2778 		u32 nr_members;
2779 	} *desc;
2780 
2781 	if (do_read_u32(ff, &nr_groups))
2782 		return -1;
2783 
2784 	ff->ph->env.nr_groups = nr_groups;
2785 	if (!nr_groups) {
2786 		pr_debug("group desc not available\n");
2787 		return 0;
2788 	}
2789 
2790 	desc = calloc(nr_groups, sizeof(*desc));
2791 	if (!desc)
2792 		return -1;
2793 
2794 	for (i = 0; i < nr_groups; i++) {
2795 		desc[i].name = do_read_string(ff);
2796 		if (!desc[i].name)
2797 			goto out_free;
2798 
2799 		if (do_read_u32(ff, &desc[i].leader_idx))
2800 			goto out_free;
2801 
2802 		if (do_read_u32(ff, &desc[i].nr_members))
2803 			goto out_free;
2804 	}
2805 
2806 	/*
2807 	 * Rebuild group relationship based on the group_desc
2808 	 */
2809 	session = container_of(ff->ph, struct perf_session, header);
2810 
2811 	i = nr = 0;
2812 	evlist__for_each_entry(session->evlist, evsel) {
2813 		if (evsel->core.idx == (int) desc[i].leader_idx) {
2814 			evsel__set_leader(evsel, evsel);
2815 			/* {anon_group} is a dummy name */
2816 			if (strcmp(desc[i].name, "{anon_group}")) {
2817 				evsel->group_name = desc[i].name;
2818 				desc[i].name = NULL;
2819 			}
2820 			evsel->core.nr_members = desc[i].nr_members;
2821 
2822 			if (i >= nr_groups || nr > 0) {
2823 				pr_debug("invalid group desc\n");
2824 				goto out_free;
2825 			}
2826 
2827 			leader = evsel;
2828 			nr = evsel->core.nr_members - 1;
2829 			i++;
2830 		} else if (nr) {
2831 			/* This is a group member */
2832 			evsel__set_leader(evsel, leader);
2833 
2834 			nr--;
2835 		}
2836 	}
2837 
2838 	if (i != nr_groups || nr != 0) {
2839 		pr_debug("invalid group desc\n");
2840 		goto out_free;
2841 	}
2842 
2843 	ret = 0;
2844 out_free:
2845 	for (i = 0; i < nr_groups; i++)
2846 		zfree(&desc[i].name);
2847 	free(desc);
2848 
2849 	return ret;
2850 }
2851 
2852 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2853 {
2854 	struct perf_session *session;
2855 	int err;
2856 
2857 	session = container_of(ff->ph, struct perf_session, header);
2858 
2859 	err = auxtrace_index__process(ff->fd, ff->size, session,
2860 				      ff->ph->needs_swap);
2861 	if (err < 0)
2862 		pr_err("Failed to process auxtrace index\n");
2863 	return err;
2864 }
2865 
2866 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2867 {
2868 	struct cpu_cache_level *caches;
2869 	u32 cnt, i, version;
2870 
2871 	if (do_read_u32(ff, &version))
2872 		return -1;
2873 
2874 	if (version != 1)
2875 		return -1;
2876 
2877 	if (do_read_u32(ff, &cnt))
2878 		return -1;
2879 
2880 	caches = zalloc(sizeof(*caches) * cnt);
2881 	if (!caches)
2882 		return -1;
2883 
2884 	for (i = 0; i < cnt; i++) {
2885 		struct cpu_cache_level c;
2886 
2887 		#define _R(v)						\
2888 			if (do_read_u32(ff, &c.v))\
2889 				goto out_free_caches;			\
2890 
2891 		_R(level)
2892 		_R(line_size)
2893 		_R(sets)
2894 		_R(ways)
2895 		#undef _R
2896 
2897 		#define _R(v)					\
2898 			c.v = do_read_string(ff);		\
2899 			if (!c.v)				\
2900 				goto out_free_caches;
2901 
2902 		_R(type)
2903 		_R(size)
2904 		_R(map)
2905 		#undef _R
2906 
2907 		caches[i] = c;
2908 	}
2909 
2910 	ff->ph->env.caches = caches;
2911 	ff->ph->env.caches_cnt = cnt;
2912 	return 0;
2913 out_free_caches:
2914 	free(caches);
2915 	return -1;
2916 }
2917 
2918 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2919 {
2920 	struct perf_session *session;
2921 	u64 first_sample_time, last_sample_time;
2922 	int ret;
2923 
2924 	session = container_of(ff->ph, struct perf_session, header);
2925 
2926 	ret = do_read_u64(ff, &first_sample_time);
2927 	if (ret)
2928 		return -1;
2929 
2930 	ret = do_read_u64(ff, &last_sample_time);
2931 	if (ret)
2932 		return -1;
2933 
2934 	session->evlist->first_sample_time = first_sample_time;
2935 	session->evlist->last_sample_time = last_sample_time;
2936 	return 0;
2937 }
2938 
2939 static int process_mem_topology(struct feat_fd *ff,
2940 				void *data __maybe_unused)
2941 {
2942 	struct memory_node *nodes;
2943 	u64 version, i, nr, bsize;
2944 	int ret = -1;
2945 
2946 	if (do_read_u64(ff, &version))
2947 		return -1;
2948 
2949 	if (version != 1)
2950 		return -1;
2951 
2952 	if (do_read_u64(ff, &bsize))
2953 		return -1;
2954 
2955 	if (do_read_u64(ff, &nr))
2956 		return -1;
2957 
2958 	nodes = zalloc(sizeof(*nodes) * nr);
2959 	if (!nodes)
2960 		return -1;
2961 
2962 	for (i = 0; i < nr; i++) {
2963 		struct memory_node n;
2964 
2965 		#define _R(v)				\
2966 			if (do_read_u64(ff, &n.v))	\
2967 				goto out;		\
2968 
2969 		_R(node)
2970 		_R(size)
2971 
2972 		#undef _R
2973 
2974 		if (do_read_bitmap(ff, &n.set, &n.size))
2975 			goto out;
2976 
2977 		nodes[i] = n;
2978 	}
2979 
2980 	ff->ph->env.memory_bsize    = bsize;
2981 	ff->ph->env.memory_nodes    = nodes;
2982 	ff->ph->env.nr_memory_nodes = nr;
2983 	ret = 0;
2984 
2985 out:
2986 	if (ret)
2987 		free(nodes);
2988 	return ret;
2989 }
2990 
2991 static int process_clockid(struct feat_fd *ff,
2992 			   void *data __maybe_unused)
2993 {
2994 	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2995 		return -1;
2996 
2997 	return 0;
2998 }
2999 
3000 static int process_clock_data(struct feat_fd *ff,
3001 			      void *_data __maybe_unused)
3002 {
3003 	u32 data32;
3004 	u64 data64;
3005 
3006 	/* version */
3007 	if (do_read_u32(ff, &data32))
3008 		return -1;
3009 
3010 	if (data32 != 1)
3011 		return -1;
3012 
3013 	/* clockid */
3014 	if (do_read_u32(ff, &data32))
3015 		return -1;
3016 
3017 	ff->ph->env.clock.clockid = data32;
3018 
3019 	/* TOD ref time */
3020 	if (do_read_u64(ff, &data64))
3021 		return -1;
3022 
3023 	ff->ph->env.clock.tod_ns = data64;
3024 
3025 	/* clockid ref time */
3026 	if (do_read_u64(ff, &data64))
3027 		return -1;
3028 
3029 	ff->ph->env.clock.clockid_ns = data64;
3030 	ff->ph->env.clock.enabled = true;
3031 	return 0;
3032 }
3033 
3034 static int process_hybrid_topology(struct feat_fd *ff,
3035 				   void *data __maybe_unused)
3036 {
3037 	struct hybrid_node *nodes, *n;
3038 	u32 nr, i;
3039 
3040 	/* nr nodes */
3041 	if (do_read_u32(ff, &nr))
3042 		return -1;
3043 
3044 	nodes = zalloc(sizeof(*nodes) * nr);
3045 	if (!nodes)
3046 		return -ENOMEM;
3047 
3048 	for (i = 0; i < nr; i++) {
3049 		n = &nodes[i];
3050 
3051 		n->pmu_name = do_read_string(ff);
3052 		if (!n->pmu_name)
3053 			goto error;
3054 
3055 		n->cpus = do_read_string(ff);
3056 		if (!n->cpus)
3057 			goto error;
3058 	}
3059 
3060 	ff->ph->env.nr_hybrid_nodes = nr;
3061 	ff->ph->env.hybrid_nodes = nodes;
3062 	return 0;
3063 
3064 error:
3065 	for (i = 0; i < nr; i++) {
3066 		free(nodes[i].pmu_name);
3067 		free(nodes[i].cpus);
3068 	}
3069 
3070 	free(nodes);
3071 	return -1;
3072 }
3073 
3074 static int process_dir_format(struct feat_fd *ff,
3075 			      void *_data __maybe_unused)
3076 {
3077 	struct perf_session *session;
3078 	struct perf_data *data;
3079 
3080 	session = container_of(ff->ph, struct perf_session, header);
3081 	data = session->data;
3082 
3083 	if (WARN_ON(!perf_data__is_dir(data)))
3084 		return -1;
3085 
3086 	return do_read_u64(ff, &data->dir.version);
3087 }
3088 
3089 #ifdef HAVE_LIBBPF_SUPPORT
3090 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3091 {
3092 	struct bpf_prog_info_node *info_node;
3093 	struct perf_env *env = &ff->ph->env;
3094 	struct perf_bpil *info_linear;
3095 	u32 count, i;
3096 	int err = -1;
3097 
3098 	if (ff->ph->needs_swap) {
3099 		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3100 		return 0;
3101 	}
3102 
3103 	if (do_read_u32(ff, &count))
3104 		return -1;
3105 
3106 	down_write(&env->bpf_progs.lock);
3107 
3108 	for (i = 0; i < count; ++i) {
3109 		u32 info_len, data_len;
3110 
3111 		info_linear = NULL;
3112 		info_node = NULL;
3113 		if (do_read_u32(ff, &info_len))
3114 			goto out;
3115 		if (do_read_u32(ff, &data_len))
3116 			goto out;
3117 
3118 		if (info_len > sizeof(struct bpf_prog_info)) {
3119 			pr_warning("detected invalid bpf_prog_info\n");
3120 			goto out;
3121 		}
3122 
3123 		info_linear = malloc(sizeof(struct perf_bpil) +
3124 				     data_len);
3125 		if (!info_linear)
3126 			goto out;
3127 		info_linear->info_len = sizeof(struct bpf_prog_info);
3128 		info_linear->data_len = data_len;
3129 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3130 			goto out;
3131 		if (__do_read(ff, &info_linear->info, info_len))
3132 			goto out;
3133 		if (info_len < sizeof(struct bpf_prog_info))
3134 			memset(((void *)(&info_linear->info)) + info_len, 0,
3135 			       sizeof(struct bpf_prog_info) - info_len);
3136 
3137 		if (__do_read(ff, info_linear->data, data_len))
3138 			goto out;
3139 
3140 		info_node = malloc(sizeof(struct bpf_prog_info_node));
3141 		if (!info_node)
3142 			goto out;
3143 
3144 		/* after reading from file, translate offset to address */
3145 		bpil_offs_to_addr(info_linear);
3146 		info_node->info_linear = info_linear;
3147 		perf_env__insert_bpf_prog_info(env, info_node);
3148 	}
3149 
3150 	up_write(&env->bpf_progs.lock);
3151 	return 0;
3152 out:
3153 	free(info_linear);
3154 	free(info_node);
3155 	up_write(&env->bpf_progs.lock);
3156 	return err;
3157 }
3158 
3159 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3160 {
3161 	struct perf_env *env = &ff->ph->env;
3162 	struct btf_node *node = NULL;
3163 	u32 count, i;
3164 	int err = -1;
3165 
3166 	if (ff->ph->needs_swap) {
3167 		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3168 		return 0;
3169 	}
3170 
3171 	if (do_read_u32(ff, &count))
3172 		return -1;
3173 
3174 	down_write(&env->bpf_progs.lock);
3175 
3176 	for (i = 0; i < count; ++i) {
3177 		u32 id, data_size;
3178 
3179 		if (do_read_u32(ff, &id))
3180 			goto out;
3181 		if (do_read_u32(ff, &data_size))
3182 			goto out;
3183 
3184 		node = malloc(sizeof(struct btf_node) + data_size);
3185 		if (!node)
3186 			goto out;
3187 
3188 		node->id = id;
3189 		node->data_size = data_size;
3190 
3191 		if (__do_read(ff, node->data, data_size))
3192 			goto out;
3193 
3194 		perf_env__insert_btf(env, node);
3195 		node = NULL;
3196 	}
3197 
3198 	err = 0;
3199 out:
3200 	up_write(&env->bpf_progs.lock);
3201 	free(node);
3202 	return err;
3203 }
3204 #endif // HAVE_LIBBPF_SUPPORT
3205 
3206 static int process_compressed(struct feat_fd *ff,
3207 			      void *data __maybe_unused)
3208 {
3209 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3210 		return -1;
3211 
3212 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3213 		return -1;
3214 
3215 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3216 		return -1;
3217 
3218 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3219 		return -1;
3220 
3221 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3222 		return -1;
3223 
3224 	return 0;
3225 }
3226 
3227 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3228 			      char ***caps, unsigned int *max_branches)
3229 {
3230 	char *name, *value, *ptr;
3231 	u32 nr_pmu_caps, i;
3232 
3233 	*nr_caps = 0;
3234 	*caps = NULL;
3235 
3236 	if (do_read_u32(ff, &nr_pmu_caps))
3237 		return -1;
3238 
3239 	if (!nr_pmu_caps)
3240 		return 0;
3241 
3242 	*caps = zalloc(sizeof(char *) * nr_pmu_caps);
3243 	if (!*caps)
3244 		return -1;
3245 
3246 	for (i = 0; i < nr_pmu_caps; i++) {
3247 		name = do_read_string(ff);
3248 		if (!name)
3249 			goto error;
3250 
3251 		value = do_read_string(ff);
3252 		if (!value)
3253 			goto free_name;
3254 
3255 		if (asprintf(&ptr, "%s=%s", name, value) < 0)
3256 			goto free_value;
3257 
3258 		(*caps)[i] = ptr;
3259 
3260 		if (!strcmp(name, "branches"))
3261 			*max_branches = atoi(value);
3262 
3263 		free(value);
3264 		free(name);
3265 	}
3266 	*nr_caps = nr_pmu_caps;
3267 	return 0;
3268 
3269 free_value:
3270 	free(value);
3271 free_name:
3272 	free(name);
3273 error:
3274 	for (; i > 0; i--)
3275 		free((*caps)[i - 1]);
3276 	free(*caps);
3277 	*caps = NULL;
3278 	*nr_caps = 0;
3279 	return -1;
3280 }
3281 
3282 static int process_cpu_pmu_caps(struct feat_fd *ff,
3283 				void *data __maybe_unused)
3284 {
3285 	int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3286 				     &ff->ph->env.cpu_pmu_caps,
3287 				     &ff->ph->env.max_branches);
3288 
3289 	if (!ret && !ff->ph->env.cpu_pmu_caps)
3290 		pr_debug("cpu pmu capabilities not available\n");
3291 	return ret;
3292 }
3293 
3294 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3295 {
3296 	struct pmu_caps *pmu_caps;
3297 	u32 nr_pmu, i;
3298 	int ret;
3299 	int j;
3300 
3301 	if (do_read_u32(ff, &nr_pmu))
3302 		return -1;
3303 
3304 	if (!nr_pmu) {
3305 		pr_debug("pmu capabilities not available\n");
3306 		return 0;
3307 	}
3308 
3309 	pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3310 	if (!pmu_caps)
3311 		return -ENOMEM;
3312 
3313 	for (i = 0; i < nr_pmu; i++) {
3314 		ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3315 					 &pmu_caps[i].caps,
3316 					 &pmu_caps[i].max_branches);
3317 		if (ret)
3318 			goto err;
3319 
3320 		pmu_caps[i].pmu_name = do_read_string(ff);
3321 		if (!pmu_caps[i].pmu_name) {
3322 			ret = -1;
3323 			goto err;
3324 		}
3325 		if (!pmu_caps[i].nr_caps) {
3326 			pr_debug("%s pmu capabilities not available\n",
3327 				 pmu_caps[i].pmu_name);
3328 		}
3329 	}
3330 
3331 	ff->ph->env.nr_pmus_with_caps = nr_pmu;
3332 	ff->ph->env.pmu_caps = pmu_caps;
3333 	return 0;
3334 
3335 err:
3336 	for (i = 0; i < nr_pmu; i++) {
3337 		for (j = 0; j < pmu_caps[i].nr_caps; j++)
3338 			free(pmu_caps[i].caps[j]);
3339 		free(pmu_caps[i].caps);
3340 		free(pmu_caps[i].pmu_name);
3341 	}
3342 
3343 	free(pmu_caps);
3344 	return ret;
3345 }
3346 
3347 #define FEAT_OPR(n, func, __full_only) \
3348 	[HEADER_##n] = {					\
3349 		.name	    = __stringify(n),			\
3350 		.write	    = write_##func,			\
3351 		.print	    = print_##func,			\
3352 		.full_only  = __full_only,			\
3353 		.process    = process_##func,			\
3354 		.synthesize = true				\
3355 	}
3356 
3357 #define FEAT_OPN(n, func, __full_only) \
3358 	[HEADER_##n] = {					\
3359 		.name	    = __stringify(n),			\
3360 		.write	    = write_##func,			\
3361 		.print	    = print_##func,			\
3362 		.full_only  = __full_only,			\
3363 		.process    = process_##func			\
3364 	}
3365 
3366 /* feature_ops not implemented: */
3367 #define print_tracing_data	NULL
3368 #define print_build_id		NULL
3369 
3370 #define process_branch_stack	NULL
3371 #define process_stat		NULL
3372 
3373 // Only used in util/synthetic-events.c
3374 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3375 
3376 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3377 #ifdef HAVE_LIBTRACEEVENT
3378 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3379 #endif
3380 	FEAT_OPN(BUILD_ID,	build_id,	false),
3381 	FEAT_OPR(HOSTNAME,	hostname,	false),
3382 	FEAT_OPR(OSRELEASE,	osrelease,	false),
3383 	FEAT_OPR(VERSION,	version,	false),
3384 	FEAT_OPR(ARCH,		arch,		false),
3385 	FEAT_OPR(NRCPUS,	nrcpus,		false),
3386 	FEAT_OPR(CPUDESC,	cpudesc,	false),
3387 	FEAT_OPR(CPUID,		cpuid,		false),
3388 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3389 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3390 	FEAT_OPR(CMDLINE,	cmdline,	false),
3391 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3392 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3393 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3394 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3395 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3396 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3397 	FEAT_OPN(STAT,		stat,		false),
3398 	FEAT_OPN(CACHE,		cache,		true),
3399 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3400 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3401 	FEAT_OPR(CLOCKID,	clockid,	false),
3402 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3403 #ifdef HAVE_LIBBPF_SUPPORT
3404 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3405 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3406 #endif
3407 	FEAT_OPR(COMPRESSED,	compressed,	false),
3408 	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3409 	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3410 	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3411 	FEAT_OPR(PMU_CAPS,	pmu_caps,	false),
3412 };
3413 
3414 struct header_print_data {
3415 	FILE *fp;
3416 	bool full; /* extended list of headers */
3417 };
3418 
3419 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3420 					   struct perf_header *ph,
3421 					   int feat, int fd, void *data)
3422 {
3423 	struct header_print_data *hd = data;
3424 	struct feat_fd ff;
3425 
3426 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3427 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3428 				"%d, continuing...\n", section->offset, feat);
3429 		return 0;
3430 	}
3431 	if (feat >= HEADER_LAST_FEATURE) {
3432 		pr_warning("unknown feature %d\n", feat);
3433 		return 0;
3434 	}
3435 	if (!feat_ops[feat].print)
3436 		return 0;
3437 
3438 	ff = (struct  feat_fd) {
3439 		.fd = fd,
3440 		.ph = ph,
3441 	};
3442 
3443 	if (!feat_ops[feat].full_only || hd->full)
3444 		feat_ops[feat].print(&ff, hd->fp);
3445 	else
3446 		fprintf(hd->fp, "# %s info available, use -I to display\n",
3447 			feat_ops[feat].name);
3448 
3449 	return 0;
3450 }
3451 
3452 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3453 {
3454 	struct header_print_data hd;
3455 	struct perf_header *header = &session->header;
3456 	int fd = perf_data__fd(session->data);
3457 	struct stat st;
3458 	time_t stctime;
3459 	int ret, bit;
3460 
3461 	hd.fp = fp;
3462 	hd.full = full;
3463 
3464 	ret = fstat(fd, &st);
3465 	if (ret == -1)
3466 		return -1;
3467 
3468 	stctime = st.st_mtime;
3469 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3470 
3471 	fprintf(fp, "# header version : %u\n", header->version);
3472 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3473 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3474 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3475 
3476 	perf_header__process_sections(header, fd, &hd,
3477 				      perf_file_section__fprintf_info);
3478 
3479 	if (session->data->is_pipe)
3480 		return 0;
3481 
3482 	fprintf(fp, "# missing features: ");
3483 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3484 		if (bit)
3485 			fprintf(fp, "%s ", feat_ops[bit].name);
3486 	}
3487 
3488 	fprintf(fp, "\n");
3489 	return 0;
3490 }
3491 
3492 struct header_fw {
3493 	struct feat_writer	fw;
3494 	struct feat_fd		*ff;
3495 };
3496 
3497 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3498 {
3499 	struct header_fw *h = container_of(fw, struct header_fw, fw);
3500 
3501 	return do_write(h->ff, buf, sz);
3502 }
3503 
3504 static int do_write_feat(struct feat_fd *ff, int type,
3505 			 struct perf_file_section **p,
3506 			 struct evlist *evlist,
3507 			 struct feat_copier *fc)
3508 {
3509 	int err;
3510 	int ret = 0;
3511 
3512 	if (perf_header__has_feat(ff->ph, type)) {
3513 		if (!feat_ops[type].write)
3514 			return -1;
3515 
3516 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3517 			return -1;
3518 
3519 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3520 
3521 		/*
3522 		 * Hook to let perf inject copy features sections from the input
3523 		 * file.
3524 		 */
3525 		if (fc && fc->copy) {
3526 			struct header_fw h = {
3527 				.fw.write = feat_writer_cb,
3528 				.ff = ff,
3529 			};
3530 
3531 			/* ->copy() returns 0 if the feature was not copied */
3532 			err = fc->copy(fc, type, &h.fw);
3533 		} else {
3534 			err = 0;
3535 		}
3536 		if (!err)
3537 			err = feat_ops[type].write(ff, evlist);
3538 		if (err < 0) {
3539 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3540 
3541 			/* undo anything written */
3542 			lseek(ff->fd, (*p)->offset, SEEK_SET);
3543 
3544 			return -1;
3545 		}
3546 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3547 		(*p)++;
3548 	}
3549 	return ret;
3550 }
3551 
3552 static int perf_header__adds_write(struct perf_header *header,
3553 				   struct evlist *evlist, int fd,
3554 				   struct feat_copier *fc)
3555 {
3556 	int nr_sections;
3557 	struct feat_fd ff;
3558 	struct perf_file_section *feat_sec, *p;
3559 	int sec_size;
3560 	u64 sec_start;
3561 	int feat;
3562 	int err;
3563 
3564 	ff = (struct feat_fd){
3565 		.fd  = fd,
3566 		.ph = header,
3567 	};
3568 
3569 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3570 	if (!nr_sections)
3571 		return 0;
3572 
3573 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3574 	if (feat_sec == NULL)
3575 		return -ENOMEM;
3576 
3577 	sec_size = sizeof(*feat_sec) * nr_sections;
3578 
3579 	sec_start = header->feat_offset;
3580 	lseek(fd, sec_start + sec_size, SEEK_SET);
3581 
3582 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3583 		if (do_write_feat(&ff, feat, &p, evlist, fc))
3584 			perf_header__clear_feat(header, feat);
3585 	}
3586 
3587 	lseek(fd, sec_start, SEEK_SET);
3588 	/*
3589 	 * may write more than needed due to dropped feature, but
3590 	 * this is okay, reader will skip the missing entries
3591 	 */
3592 	err = do_write(&ff, feat_sec, sec_size);
3593 	if (err < 0)
3594 		pr_debug("failed to write feature section\n");
3595 	free(feat_sec);
3596 	return err;
3597 }
3598 
3599 int perf_header__write_pipe(int fd)
3600 {
3601 	struct perf_pipe_file_header f_header;
3602 	struct feat_fd ff;
3603 	int err;
3604 
3605 	ff = (struct feat_fd){ .fd = fd };
3606 
3607 	f_header = (struct perf_pipe_file_header){
3608 		.magic	   = PERF_MAGIC,
3609 		.size	   = sizeof(f_header),
3610 	};
3611 
3612 	err = do_write(&ff, &f_header, sizeof(f_header));
3613 	if (err < 0) {
3614 		pr_debug("failed to write perf pipe header\n");
3615 		return err;
3616 	}
3617 
3618 	return 0;
3619 }
3620 
3621 static int perf_session__do_write_header(struct perf_session *session,
3622 					 struct evlist *evlist,
3623 					 int fd, bool at_exit,
3624 					 struct feat_copier *fc)
3625 {
3626 	struct perf_file_header f_header;
3627 	struct perf_file_attr   f_attr;
3628 	struct perf_header *header = &session->header;
3629 	struct evsel *evsel;
3630 	struct feat_fd ff;
3631 	u64 attr_offset;
3632 	int err;
3633 
3634 	ff = (struct feat_fd){ .fd = fd};
3635 	lseek(fd, sizeof(f_header), SEEK_SET);
3636 
3637 	evlist__for_each_entry(session->evlist, evsel) {
3638 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3639 		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3640 		if (err < 0) {
3641 			pr_debug("failed to write perf header\n");
3642 			return err;
3643 		}
3644 	}
3645 
3646 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3647 
3648 	evlist__for_each_entry(evlist, evsel) {
3649 		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3650 			/*
3651 			 * We are likely in "perf inject" and have read
3652 			 * from an older file. Update attr size so that
3653 			 * reader gets the right offset to the ids.
3654 			 */
3655 			evsel->core.attr.size = sizeof(evsel->core.attr);
3656 		}
3657 		f_attr = (struct perf_file_attr){
3658 			.attr = evsel->core.attr,
3659 			.ids  = {
3660 				.offset = evsel->id_offset,
3661 				.size   = evsel->core.ids * sizeof(u64),
3662 			}
3663 		};
3664 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3665 		if (err < 0) {
3666 			pr_debug("failed to write perf header attribute\n");
3667 			return err;
3668 		}
3669 	}
3670 
3671 	if (!header->data_offset)
3672 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3673 	header->feat_offset = header->data_offset + header->data_size;
3674 
3675 	if (at_exit) {
3676 		err = perf_header__adds_write(header, evlist, fd, fc);
3677 		if (err < 0)
3678 			return err;
3679 	}
3680 
3681 	f_header = (struct perf_file_header){
3682 		.magic	   = PERF_MAGIC,
3683 		.size	   = sizeof(f_header),
3684 		.attr_size = sizeof(f_attr),
3685 		.attrs = {
3686 			.offset = attr_offset,
3687 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3688 		},
3689 		.data = {
3690 			.offset = header->data_offset,
3691 			.size	= header->data_size,
3692 		},
3693 		/* event_types is ignored, store zeros */
3694 	};
3695 
3696 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3697 
3698 	lseek(fd, 0, SEEK_SET);
3699 	err = do_write(&ff, &f_header, sizeof(f_header));
3700 	if (err < 0) {
3701 		pr_debug("failed to write perf header\n");
3702 		return err;
3703 	}
3704 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3705 
3706 	return 0;
3707 }
3708 
3709 int perf_session__write_header(struct perf_session *session,
3710 			       struct evlist *evlist,
3711 			       int fd, bool at_exit)
3712 {
3713 	return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3714 }
3715 
3716 size_t perf_session__data_offset(const struct evlist *evlist)
3717 {
3718 	struct evsel *evsel;
3719 	size_t data_offset;
3720 
3721 	data_offset = sizeof(struct perf_file_header);
3722 	evlist__for_each_entry(evlist, evsel) {
3723 		data_offset += evsel->core.ids * sizeof(u64);
3724 	}
3725 	data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3726 
3727 	return data_offset;
3728 }
3729 
3730 int perf_session__inject_header(struct perf_session *session,
3731 				struct evlist *evlist,
3732 				int fd,
3733 				struct feat_copier *fc)
3734 {
3735 	return perf_session__do_write_header(session, evlist, fd, true, fc);
3736 }
3737 
3738 static int perf_header__getbuffer64(struct perf_header *header,
3739 				    int fd, void *buf, size_t size)
3740 {
3741 	if (readn(fd, buf, size) <= 0)
3742 		return -1;
3743 
3744 	if (header->needs_swap)
3745 		mem_bswap_64(buf, size);
3746 
3747 	return 0;
3748 }
3749 
3750 int perf_header__process_sections(struct perf_header *header, int fd,
3751 				  void *data,
3752 				  int (*process)(struct perf_file_section *section,
3753 						 struct perf_header *ph,
3754 						 int feat, int fd, void *data))
3755 {
3756 	struct perf_file_section *feat_sec, *sec;
3757 	int nr_sections;
3758 	int sec_size;
3759 	int feat;
3760 	int err;
3761 
3762 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3763 	if (!nr_sections)
3764 		return 0;
3765 
3766 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3767 	if (!feat_sec)
3768 		return -1;
3769 
3770 	sec_size = sizeof(*feat_sec) * nr_sections;
3771 
3772 	lseek(fd, header->feat_offset, SEEK_SET);
3773 
3774 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3775 	if (err < 0)
3776 		goto out_free;
3777 
3778 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3779 		err = process(sec++, header, feat, fd, data);
3780 		if (err < 0)
3781 			goto out_free;
3782 	}
3783 	err = 0;
3784 out_free:
3785 	free(feat_sec);
3786 	return err;
3787 }
3788 
3789 static const int attr_file_abi_sizes[] = {
3790 	[0] = PERF_ATTR_SIZE_VER0,
3791 	[1] = PERF_ATTR_SIZE_VER1,
3792 	[2] = PERF_ATTR_SIZE_VER2,
3793 	[3] = PERF_ATTR_SIZE_VER3,
3794 	[4] = PERF_ATTR_SIZE_VER4,
3795 	0,
3796 };
3797 
3798 /*
3799  * In the legacy file format, the magic number is not used to encode endianness.
3800  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3801  * on ABI revisions, we need to try all combinations for all endianness to
3802  * detect the endianness.
3803  */
3804 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3805 {
3806 	uint64_t ref_size, attr_size;
3807 	int i;
3808 
3809 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3810 		ref_size = attr_file_abi_sizes[i]
3811 			 + sizeof(struct perf_file_section);
3812 		if (hdr_sz != ref_size) {
3813 			attr_size = bswap_64(hdr_sz);
3814 			if (attr_size != ref_size)
3815 				continue;
3816 
3817 			ph->needs_swap = true;
3818 		}
3819 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3820 			 i,
3821 			 ph->needs_swap);
3822 		return 0;
3823 	}
3824 	/* could not determine endianness */
3825 	return -1;
3826 }
3827 
3828 #define PERF_PIPE_HDR_VER0	16
3829 
3830 static const size_t attr_pipe_abi_sizes[] = {
3831 	[0] = PERF_PIPE_HDR_VER0,
3832 	0,
3833 };
3834 
3835 /*
3836  * In the legacy pipe format, there is an implicit assumption that endianness
3837  * between host recording the samples, and host parsing the samples is the
3838  * same. This is not always the case given that the pipe output may always be
3839  * redirected into a file and analyzed on a different machine with possibly a
3840  * different endianness and perf_event ABI revisions in the perf tool itself.
3841  */
3842 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3843 {
3844 	u64 attr_size;
3845 	int i;
3846 
3847 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3848 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3849 			attr_size = bswap_64(hdr_sz);
3850 			if (attr_size != hdr_sz)
3851 				continue;
3852 
3853 			ph->needs_swap = true;
3854 		}
3855 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3856 		return 0;
3857 	}
3858 	return -1;
3859 }
3860 
3861 bool is_perf_magic(u64 magic)
3862 {
3863 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3864 		|| magic == __perf_magic2
3865 		|| magic == __perf_magic2_sw)
3866 		return true;
3867 
3868 	return false;
3869 }
3870 
3871 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3872 			      bool is_pipe, struct perf_header *ph)
3873 {
3874 	int ret;
3875 
3876 	/* check for legacy format */
3877 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3878 	if (ret == 0) {
3879 		ph->version = PERF_HEADER_VERSION_1;
3880 		pr_debug("legacy perf.data format\n");
3881 		if (is_pipe)
3882 			return try_all_pipe_abis(hdr_sz, ph);
3883 
3884 		return try_all_file_abis(hdr_sz, ph);
3885 	}
3886 	/*
3887 	 * the new magic number serves two purposes:
3888 	 * - unique number to identify actual perf.data files
3889 	 * - encode endianness of file
3890 	 */
3891 	ph->version = PERF_HEADER_VERSION_2;
3892 
3893 	/* check magic number with one endianness */
3894 	if (magic == __perf_magic2)
3895 		return 0;
3896 
3897 	/* check magic number with opposite endianness */
3898 	if (magic != __perf_magic2_sw)
3899 		return -1;
3900 
3901 	ph->needs_swap = true;
3902 
3903 	return 0;
3904 }
3905 
3906 int perf_file_header__read(struct perf_file_header *header,
3907 			   struct perf_header *ph, int fd)
3908 {
3909 	ssize_t ret;
3910 
3911 	lseek(fd, 0, SEEK_SET);
3912 
3913 	ret = readn(fd, header, sizeof(*header));
3914 	if (ret <= 0)
3915 		return -1;
3916 
3917 	if (check_magic_endian(header->magic,
3918 			       header->attr_size, false, ph) < 0) {
3919 		pr_debug("magic/endian check failed\n");
3920 		return -1;
3921 	}
3922 
3923 	if (ph->needs_swap) {
3924 		mem_bswap_64(header, offsetof(struct perf_file_header,
3925 			     adds_features));
3926 	}
3927 
3928 	if (header->size != sizeof(*header)) {
3929 		/* Support the previous format */
3930 		if (header->size == offsetof(typeof(*header), adds_features))
3931 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3932 		else
3933 			return -1;
3934 	} else if (ph->needs_swap) {
3935 		/*
3936 		 * feature bitmap is declared as an array of unsigned longs --
3937 		 * not good since its size can differ between the host that
3938 		 * generated the data file and the host analyzing the file.
3939 		 *
3940 		 * We need to handle endianness, but we don't know the size of
3941 		 * the unsigned long where the file was generated. Take a best
3942 		 * guess at determining it: try 64-bit swap first (ie., file
3943 		 * created on a 64-bit host), and check if the hostname feature
3944 		 * bit is set (this feature bit is forced on as of fbe96f2).
3945 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3946 		 * swap. If the hostname bit is still not set (e.g., older data
3947 		 * file), punt and fallback to the original behavior --
3948 		 * clearing all feature bits and setting buildid.
3949 		 */
3950 		mem_bswap_64(&header->adds_features,
3951 			    BITS_TO_U64(HEADER_FEAT_BITS));
3952 
3953 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3954 			/* unswap as u64 */
3955 			mem_bswap_64(&header->adds_features,
3956 				    BITS_TO_U64(HEADER_FEAT_BITS));
3957 
3958 			/* unswap as u32 */
3959 			mem_bswap_32(&header->adds_features,
3960 				    BITS_TO_U32(HEADER_FEAT_BITS));
3961 		}
3962 
3963 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3964 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3965 			__set_bit(HEADER_BUILD_ID, header->adds_features);
3966 		}
3967 	}
3968 
3969 	memcpy(&ph->adds_features, &header->adds_features,
3970 	       sizeof(ph->adds_features));
3971 
3972 	ph->data_offset  = header->data.offset;
3973 	ph->data_size	 = header->data.size;
3974 	ph->feat_offset  = header->data.offset + header->data.size;
3975 	return 0;
3976 }
3977 
3978 static int perf_file_section__process(struct perf_file_section *section,
3979 				      struct perf_header *ph,
3980 				      int feat, int fd, void *data)
3981 {
3982 	struct feat_fd fdd = {
3983 		.fd	= fd,
3984 		.ph	= ph,
3985 		.size	= section->size,
3986 		.offset	= section->offset,
3987 	};
3988 
3989 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3990 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3991 			  "%d, continuing...\n", section->offset, feat);
3992 		return 0;
3993 	}
3994 
3995 	if (feat >= HEADER_LAST_FEATURE) {
3996 		pr_debug("unknown feature %d, continuing...\n", feat);
3997 		return 0;
3998 	}
3999 
4000 	if (!feat_ops[feat].process)
4001 		return 0;
4002 
4003 	return feat_ops[feat].process(&fdd, data);
4004 }
4005 
4006 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4007 				       struct perf_header *ph,
4008 				       struct perf_data* data,
4009 				       bool repipe, int repipe_fd)
4010 {
4011 	struct feat_fd ff = {
4012 		.fd = repipe_fd,
4013 		.ph = ph,
4014 	};
4015 	ssize_t ret;
4016 
4017 	ret = perf_data__read(data, header, sizeof(*header));
4018 	if (ret <= 0)
4019 		return -1;
4020 
4021 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4022 		pr_debug("endian/magic failed\n");
4023 		return -1;
4024 	}
4025 
4026 	if (ph->needs_swap)
4027 		header->size = bswap_64(header->size);
4028 
4029 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4030 		return -1;
4031 
4032 	return 0;
4033 }
4034 
4035 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4036 {
4037 	struct perf_header *header = &session->header;
4038 	struct perf_pipe_file_header f_header;
4039 
4040 	if (perf_file_header__read_pipe(&f_header, header, session->data,
4041 					session->repipe, repipe_fd) < 0) {
4042 		pr_debug("incompatible file format\n");
4043 		return -EINVAL;
4044 	}
4045 
4046 	return f_header.size == sizeof(f_header) ? 0 : -1;
4047 }
4048 
4049 static int read_attr(int fd, struct perf_header *ph,
4050 		     struct perf_file_attr *f_attr)
4051 {
4052 	struct perf_event_attr *attr = &f_attr->attr;
4053 	size_t sz, left;
4054 	size_t our_sz = sizeof(f_attr->attr);
4055 	ssize_t ret;
4056 
4057 	memset(f_attr, 0, sizeof(*f_attr));
4058 
4059 	/* read minimal guaranteed structure */
4060 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4061 	if (ret <= 0) {
4062 		pr_debug("cannot read %d bytes of header attr\n",
4063 			 PERF_ATTR_SIZE_VER0);
4064 		return -1;
4065 	}
4066 
4067 	/* on file perf_event_attr size */
4068 	sz = attr->size;
4069 
4070 	if (ph->needs_swap)
4071 		sz = bswap_32(sz);
4072 
4073 	if (sz == 0) {
4074 		/* assume ABI0 */
4075 		sz =  PERF_ATTR_SIZE_VER0;
4076 	} else if (sz > our_sz) {
4077 		pr_debug("file uses a more recent and unsupported ABI"
4078 			 " (%zu bytes extra)\n", sz - our_sz);
4079 		return -1;
4080 	}
4081 	/* what we have not yet read and that we know about */
4082 	left = sz - PERF_ATTR_SIZE_VER0;
4083 	if (left) {
4084 		void *ptr = attr;
4085 		ptr += PERF_ATTR_SIZE_VER0;
4086 
4087 		ret = readn(fd, ptr, left);
4088 	}
4089 	/* read perf_file_section, ids are read in caller */
4090 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4091 
4092 	return ret <= 0 ? -1 : 0;
4093 }
4094 
4095 #ifdef HAVE_LIBTRACEEVENT
4096 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4097 {
4098 	struct tep_event *event;
4099 	char bf[128];
4100 
4101 	/* already prepared */
4102 	if (evsel->tp_format)
4103 		return 0;
4104 
4105 	if (pevent == NULL) {
4106 		pr_debug("broken or missing trace data\n");
4107 		return -1;
4108 	}
4109 
4110 	event = tep_find_event(pevent, evsel->core.attr.config);
4111 	if (event == NULL) {
4112 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4113 		return -1;
4114 	}
4115 
4116 	if (!evsel->name) {
4117 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4118 		evsel->name = strdup(bf);
4119 		if (evsel->name == NULL)
4120 			return -1;
4121 	}
4122 
4123 	evsel->tp_format = event;
4124 	return 0;
4125 }
4126 
4127 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4128 {
4129 	struct evsel *pos;
4130 
4131 	evlist__for_each_entry(evlist, pos) {
4132 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4133 		    evsel__prepare_tracepoint_event(pos, pevent))
4134 			return -1;
4135 	}
4136 
4137 	return 0;
4138 }
4139 #endif
4140 
4141 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4142 {
4143 	struct perf_data *data = session->data;
4144 	struct perf_header *header = &session->header;
4145 	struct perf_file_header	f_header;
4146 	struct perf_file_attr	f_attr;
4147 	u64			f_id;
4148 	int nr_attrs, nr_ids, i, j, err;
4149 	int fd = perf_data__fd(data);
4150 
4151 	session->evlist = evlist__new();
4152 	if (session->evlist == NULL)
4153 		return -ENOMEM;
4154 
4155 	session->evlist->env = &header->env;
4156 	session->machines.host.env = &header->env;
4157 
4158 	/*
4159 	 * We can read 'pipe' data event from regular file,
4160 	 * check for the pipe header regardless of source.
4161 	 */
4162 	err = perf_header__read_pipe(session, repipe_fd);
4163 	if (!err || perf_data__is_pipe(data)) {
4164 		data->is_pipe = true;
4165 		return err;
4166 	}
4167 
4168 	if (perf_file_header__read(&f_header, header, fd) < 0)
4169 		return -EINVAL;
4170 
4171 	if (header->needs_swap && data->in_place_update) {
4172 		pr_err("In-place update not supported when byte-swapping is required\n");
4173 		return -EINVAL;
4174 	}
4175 
4176 	/*
4177 	 * Sanity check that perf.data was written cleanly; data size is
4178 	 * initialized to 0 and updated only if the on_exit function is run.
4179 	 * If data size is still 0 then the file contains only partial
4180 	 * information.  Just warn user and process it as much as it can.
4181 	 */
4182 	if (f_header.data.size == 0) {
4183 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4184 			   "Was the 'perf record' command properly terminated?\n",
4185 			   data->file.path);
4186 	}
4187 
4188 	if (f_header.attr_size == 0) {
4189 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4190 		       "Was the 'perf record' command properly terminated?\n",
4191 		       data->file.path);
4192 		return -EINVAL;
4193 	}
4194 
4195 	nr_attrs = f_header.attrs.size / f_header.attr_size;
4196 	lseek(fd, f_header.attrs.offset, SEEK_SET);
4197 
4198 	for (i = 0; i < nr_attrs; i++) {
4199 		struct evsel *evsel;
4200 		off_t tmp;
4201 
4202 		if (read_attr(fd, header, &f_attr) < 0)
4203 			goto out_errno;
4204 
4205 		if (header->needs_swap) {
4206 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4207 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4208 			perf_event__attr_swap(&f_attr.attr);
4209 		}
4210 
4211 		tmp = lseek(fd, 0, SEEK_CUR);
4212 		evsel = evsel__new(&f_attr.attr);
4213 
4214 		if (evsel == NULL)
4215 			goto out_delete_evlist;
4216 
4217 		evsel->needs_swap = header->needs_swap;
4218 		/*
4219 		 * Do it before so that if perf_evsel__alloc_id fails, this
4220 		 * entry gets purged too at evlist__delete().
4221 		 */
4222 		evlist__add(session->evlist, evsel);
4223 
4224 		nr_ids = f_attr.ids.size / sizeof(u64);
4225 		/*
4226 		 * We don't have the cpu and thread maps on the header, so
4227 		 * for allocating the perf_sample_id table we fake 1 cpu and
4228 		 * hattr->ids threads.
4229 		 */
4230 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4231 			goto out_delete_evlist;
4232 
4233 		lseek(fd, f_attr.ids.offset, SEEK_SET);
4234 
4235 		for (j = 0; j < nr_ids; j++) {
4236 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4237 				goto out_errno;
4238 
4239 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4240 		}
4241 
4242 		lseek(fd, tmp, SEEK_SET);
4243 	}
4244 
4245 #ifdef HAVE_LIBTRACEEVENT
4246 	perf_header__process_sections(header, fd, &session->tevent,
4247 				      perf_file_section__process);
4248 
4249 	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4250 		goto out_delete_evlist;
4251 #else
4252 	perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4253 #endif
4254 
4255 	return 0;
4256 out_errno:
4257 	return -errno;
4258 
4259 out_delete_evlist:
4260 	evlist__delete(session->evlist);
4261 	session->evlist = NULL;
4262 	return -ENOMEM;
4263 }
4264 
4265 int perf_event__process_feature(struct perf_session *session,
4266 				union perf_event *event)
4267 {
4268 	struct perf_tool *tool = session->tool;
4269 	struct feat_fd ff = { .fd = 0 };
4270 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4271 	int type = fe->header.type;
4272 	u64 feat = fe->feat_id;
4273 	int ret = 0;
4274 
4275 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4276 		pr_warning("invalid record type %d in pipe-mode\n", type);
4277 		return 0;
4278 	}
4279 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4280 		pr_warning("invalid record type %d in pipe-mode\n", type);
4281 		return -1;
4282 	}
4283 
4284 	if (!feat_ops[feat].process)
4285 		return 0;
4286 
4287 	ff.buf  = (void *)fe->data;
4288 	ff.size = event->header.size - sizeof(*fe);
4289 	ff.ph = &session->header;
4290 
4291 	if (feat_ops[feat].process(&ff, NULL)) {
4292 		ret = -1;
4293 		goto out;
4294 	}
4295 
4296 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
4297 		goto out;
4298 
4299 	if (!feat_ops[feat].full_only ||
4300 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4301 		feat_ops[feat].print(&ff, stdout);
4302 	} else {
4303 		fprintf(stdout, "# %s info available, use -I to display\n",
4304 			feat_ops[feat].name);
4305 	}
4306 out:
4307 	free_event_desc(ff.events);
4308 	return ret;
4309 }
4310 
4311 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4312 {
4313 	struct perf_record_event_update *ev = &event->event_update;
4314 	struct perf_cpu_map *map;
4315 	size_t ret;
4316 
4317 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4318 
4319 	switch (ev->type) {
4320 	case PERF_EVENT_UPDATE__SCALE:
4321 		ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4322 		break;
4323 	case PERF_EVENT_UPDATE__UNIT:
4324 		ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4325 		break;
4326 	case PERF_EVENT_UPDATE__NAME:
4327 		ret += fprintf(fp, "... name:  %s\n", ev->name);
4328 		break;
4329 	case PERF_EVENT_UPDATE__CPUS:
4330 		ret += fprintf(fp, "... ");
4331 
4332 		map = cpu_map__new_data(&ev->cpus.cpus);
4333 		if (map)
4334 			ret += cpu_map__fprintf(map, fp);
4335 		else
4336 			ret += fprintf(fp, "failed to get cpus\n");
4337 		break;
4338 	default:
4339 		ret += fprintf(fp, "... unknown type\n");
4340 		break;
4341 	}
4342 
4343 	return ret;
4344 }
4345 
4346 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4347 			     union perf_event *event,
4348 			     struct evlist **pevlist)
4349 {
4350 	u32 i, ids, n_ids;
4351 	struct evsel *evsel;
4352 	struct evlist *evlist = *pevlist;
4353 
4354 	if (evlist == NULL) {
4355 		*pevlist = evlist = evlist__new();
4356 		if (evlist == NULL)
4357 			return -ENOMEM;
4358 	}
4359 
4360 	evsel = evsel__new(&event->attr.attr);
4361 	if (evsel == NULL)
4362 		return -ENOMEM;
4363 
4364 	evlist__add(evlist, evsel);
4365 
4366 	ids = event->header.size;
4367 	ids -= (void *)&event->attr.id - (void *)event;
4368 	n_ids = ids / sizeof(u64);
4369 	/*
4370 	 * We don't have the cpu and thread maps on the header, so
4371 	 * for allocating the perf_sample_id table we fake 1 cpu and
4372 	 * hattr->ids threads.
4373 	 */
4374 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4375 		return -ENOMEM;
4376 
4377 	for (i = 0; i < n_ids; i++) {
4378 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4379 	}
4380 
4381 	return 0;
4382 }
4383 
4384 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4385 				     union perf_event *event,
4386 				     struct evlist **pevlist)
4387 {
4388 	struct perf_record_event_update *ev = &event->event_update;
4389 	struct evlist *evlist;
4390 	struct evsel *evsel;
4391 	struct perf_cpu_map *map;
4392 
4393 	if (dump_trace)
4394 		perf_event__fprintf_event_update(event, stdout);
4395 
4396 	if (!pevlist || *pevlist == NULL)
4397 		return -EINVAL;
4398 
4399 	evlist = *pevlist;
4400 
4401 	evsel = evlist__id2evsel(evlist, ev->id);
4402 	if (evsel == NULL)
4403 		return -EINVAL;
4404 
4405 	switch (ev->type) {
4406 	case PERF_EVENT_UPDATE__UNIT:
4407 		free((char *)evsel->unit);
4408 		evsel->unit = strdup(ev->unit);
4409 		break;
4410 	case PERF_EVENT_UPDATE__NAME:
4411 		free(evsel->name);
4412 		evsel->name = strdup(ev->name);
4413 		break;
4414 	case PERF_EVENT_UPDATE__SCALE:
4415 		evsel->scale = ev->scale.scale;
4416 		break;
4417 	case PERF_EVENT_UPDATE__CPUS:
4418 		map = cpu_map__new_data(&ev->cpus.cpus);
4419 		if (map) {
4420 			perf_cpu_map__put(evsel->core.own_cpus);
4421 			evsel->core.own_cpus = map;
4422 		} else
4423 			pr_err("failed to get event_update cpus\n");
4424 	default:
4425 		break;
4426 	}
4427 
4428 	return 0;
4429 }
4430 
4431 #ifdef HAVE_LIBTRACEEVENT
4432 int perf_event__process_tracing_data(struct perf_session *session,
4433 				     union perf_event *event)
4434 {
4435 	ssize_t size_read, padding, size = event->tracing_data.size;
4436 	int fd = perf_data__fd(session->data);
4437 	char buf[BUFSIZ];
4438 
4439 	/*
4440 	 * The pipe fd is already in proper place and in any case
4441 	 * we can't move it, and we'd screw the case where we read
4442 	 * 'pipe' data from regular file. The trace_report reads
4443 	 * data from 'fd' so we need to set it directly behind the
4444 	 * event, where the tracing data starts.
4445 	 */
4446 	if (!perf_data__is_pipe(session->data)) {
4447 		off_t offset = lseek(fd, 0, SEEK_CUR);
4448 
4449 		/* setup for reading amidst mmap */
4450 		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4451 		      SEEK_SET);
4452 	}
4453 
4454 	size_read = trace_report(fd, &session->tevent,
4455 				 session->repipe);
4456 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4457 
4458 	if (readn(fd, buf, padding) < 0) {
4459 		pr_err("%s: reading input file", __func__);
4460 		return -1;
4461 	}
4462 	if (session->repipe) {
4463 		int retw = write(STDOUT_FILENO, buf, padding);
4464 		if (retw <= 0 || retw != padding) {
4465 			pr_err("%s: repiping tracing data padding", __func__);
4466 			return -1;
4467 		}
4468 	}
4469 
4470 	if (size_read + padding != size) {
4471 		pr_err("%s: tracing data size mismatch", __func__);
4472 		return -1;
4473 	}
4474 
4475 	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4476 
4477 	return size_read + padding;
4478 }
4479 #endif
4480 
4481 int perf_event__process_build_id(struct perf_session *session,
4482 				 union perf_event *event)
4483 {
4484 	__event_process_build_id(&event->build_id,
4485 				 event->build_id.filename,
4486 				 session);
4487 	return 0;
4488 }
4489