1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <regex.h> 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <linux/compiler.h> 13 #include <linux/list.h> 14 #include <linux/kernel.h> 15 #include <linux/bitops.h> 16 #include <linux/string.h> 17 #include <linux/stringify.h> 18 #include <linux/zalloc.h> 19 #include <sys/stat.h> 20 #include <sys/utsname.h> 21 #include <linux/time64.h> 22 #include <dirent.h> 23 #ifdef HAVE_LIBBPF_SUPPORT 24 #include <bpf/libbpf.h> 25 #endif 26 #include <perf/cpumap.h> 27 #include <tools/libc_compat.h> // reallocarray 28 29 #include "dso.h" 30 #include "evlist.h" 31 #include "evsel.h" 32 #include "util/evsel_fprintf.h" 33 #include "header.h" 34 #include "memswap.h" 35 #include "trace-event.h" 36 #include "session.h" 37 #include "symbol.h" 38 #include "debug.h" 39 #include "cpumap.h" 40 #include "pmu.h" 41 #include "pmus.h" 42 #include "vdso.h" 43 #include "strbuf.h" 44 #include "build-id.h" 45 #include "data.h" 46 #include <api/fs/fs.h> 47 #include "asm/bug.h" 48 #include "tool.h" 49 #include "time-utils.h" 50 #include "units.h" 51 #include "util/util.h" // perf_exe() 52 #include "cputopo.h" 53 #include "bpf-event.h" 54 #include "bpf-utils.h" 55 #include "clockid.h" 56 57 #include <linux/ctype.h> 58 #include <internal/lib.h> 59 60 #ifdef HAVE_LIBTRACEEVENT 61 #include <traceevent/event-parse.h> 62 #endif 63 64 /* 65 * magic2 = "PERFILE2" 66 * must be a numerical value to let the endianness 67 * determine the memory layout. That way we are able 68 * to detect endianness when reading the perf.data file 69 * back. 70 * 71 * we check for legacy (PERFFILE) format. 72 */ 73 static const char *__perf_magic1 = "PERFFILE"; 74 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 75 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 76 77 #define PERF_MAGIC __perf_magic2 78 79 const char perf_version_string[] = PERF_VERSION; 80 81 struct perf_file_attr { 82 struct perf_event_attr attr; 83 struct perf_file_section ids; 84 }; 85 86 void perf_header__set_feat(struct perf_header *header, int feat) 87 { 88 __set_bit(feat, header->adds_features); 89 } 90 91 void perf_header__clear_feat(struct perf_header *header, int feat) 92 { 93 __clear_bit(feat, header->adds_features); 94 } 95 96 bool perf_header__has_feat(const struct perf_header *header, int feat) 97 { 98 return test_bit(feat, header->adds_features); 99 } 100 101 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 102 { 103 ssize_t ret = writen(ff->fd, buf, size); 104 105 if (ret != (ssize_t)size) 106 return ret < 0 ? (int)ret : -1; 107 return 0; 108 } 109 110 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 111 { 112 /* struct perf_event_header::size is u16 */ 113 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 114 size_t new_size = ff->size; 115 void *addr; 116 117 if (size + ff->offset > max_size) 118 return -E2BIG; 119 120 while (size > (new_size - ff->offset)) 121 new_size <<= 1; 122 new_size = min(max_size, new_size); 123 124 if (ff->size < new_size) { 125 addr = realloc(ff->buf, new_size); 126 if (!addr) 127 return -ENOMEM; 128 ff->buf = addr; 129 ff->size = new_size; 130 } 131 132 memcpy(ff->buf + ff->offset, buf, size); 133 ff->offset += size; 134 135 return 0; 136 } 137 138 /* Return: 0 if succeeded, -ERR if failed. */ 139 int do_write(struct feat_fd *ff, const void *buf, size_t size) 140 { 141 if (!ff->buf) 142 return __do_write_fd(ff, buf, size); 143 return __do_write_buf(ff, buf, size); 144 } 145 146 /* Return: 0 if succeeded, -ERR if failed. */ 147 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 148 { 149 u64 *p = (u64 *) set; 150 int i, ret; 151 152 ret = do_write(ff, &size, sizeof(size)); 153 if (ret < 0) 154 return ret; 155 156 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 157 ret = do_write(ff, p + i, sizeof(*p)); 158 if (ret < 0) 159 return ret; 160 } 161 162 return 0; 163 } 164 165 /* Return: 0 if succeeded, -ERR if failed. */ 166 int write_padded(struct feat_fd *ff, const void *bf, 167 size_t count, size_t count_aligned) 168 { 169 static const char zero_buf[NAME_ALIGN]; 170 int err = do_write(ff, bf, count); 171 172 if (!err) 173 err = do_write(ff, zero_buf, count_aligned - count); 174 175 return err; 176 } 177 178 #define string_size(str) \ 179 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 180 181 /* Return: 0 if succeeded, -ERR if failed. */ 182 static int do_write_string(struct feat_fd *ff, const char *str) 183 { 184 u32 len, olen; 185 int ret; 186 187 olen = strlen(str) + 1; 188 len = PERF_ALIGN(olen, NAME_ALIGN); 189 190 /* write len, incl. \0 */ 191 ret = do_write(ff, &len, sizeof(len)); 192 if (ret < 0) 193 return ret; 194 195 return write_padded(ff, str, olen, len); 196 } 197 198 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 199 { 200 ssize_t ret = readn(ff->fd, addr, size); 201 202 if (ret != size) 203 return ret < 0 ? (int)ret : -1; 204 return 0; 205 } 206 207 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 208 { 209 if (size > (ssize_t)ff->size - ff->offset) 210 return -1; 211 212 memcpy(addr, ff->buf + ff->offset, size); 213 ff->offset += size; 214 215 return 0; 216 217 } 218 219 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 220 { 221 if (!ff->buf) 222 return __do_read_fd(ff, addr, size); 223 return __do_read_buf(ff, addr, size); 224 } 225 226 static int do_read_u32(struct feat_fd *ff, u32 *addr) 227 { 228 int ret; 229 230 ret = __do_read(ff, addr, sizeof(*addr)); 231 if (ret) 232 return ret; 233 234 if (ff->ph->needs_swap) 235 *addr = bswap_32(*addr); 236 return 0; 237 } 238 239 static int do_read_u64(struct feat_fd *ff, u64 *addr) 240 { 241 int ret; 242 243 ret = __do_read(ff, addr, sizeof(*addr)); 244 if (ret) 245 return ret; 246 247 if (ff->ph->needs_swap) 248 *addr = bswap_64(*addr); 249 return 0; 250 } 251 252 static char *do_read_string(struct feat_fd *ff) 253 { 254 u32 len; 255 char *buf; 256 257 if (do_read_u32(ff, &len)) 258 return NULL; 259 260 buf = malloc(len); 261 if (!buf) 262 return NULL; 263 264 if (!__do_read(ff, buf, len)) { 265 /* 266 * strings are padded by zeroes 267 * thus the actual strlen of buf 268 * may be less than len 269 */ 270 return buf; 271 } 272 273 free(buf); 274 return NULL; 275 } 276 277 /* Return: 0 if succeeded, -ERR if failed. */ 278 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 279 { 280 unsigned long *set; 281 u64 size, *p; 282 int i, ret; 283 284 ret = do_read_u64(ff, &size); 285 if (ret) 286 return ret; 287 288 set = bitmap_zalloc(size); 289 if (!set) 290 return -ENOMEM; 291 292 p = (u64 *) set; 293 294 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 295 ret = do_read_u64(ff, p + i); 296 if (ret < 0) { 297 free(set); 298 return ret; 299 } 300 } 301 302 *pset = set; 303 *psize = size; 304 return 0; 305 } 306 307 #ifdef HAVE_LIBTRACEEVENT 308 static int write_tracing_data(struct feat_fd *ff, 309 struct evlist *evlist) 310 { 311 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 312 return -1; 313 314 return read_tracing_data(ff->fd, &evlist->core.entries); 315 } 316 #endif 317 318 static int write_build_id(struct feat_fd *ff, 319 struct evlist *evlist __maybe_unused) 320 { 321 struct perf_session *session; 322 int err; 323 324 session = container_of(ff->ph, struct perf_session, header); 325 326 if (!perf_session__read_build_ids(session, true)) 327 return -1; 328 329 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 330 return -1; 331 332 err = perf_session__write_buildid_table(session, ff); 333 if (err < 0) { 334 pr_debug("failed to write buildid table\n"); 335 return err; 336 } 337 perf_session__cache_build_ids(session); 338 339 return 0; 340 } 341 342 static int write_hostname(struct feat_fd *ff, 343 struct evlist *evlist __maybe_unused) 344 { 345 struct utsname uts; 346 int ret; 347 348 ret = uname(&uts); 349 if (ret < 0) 350 return -1; 351 352 return do_write_string(ff, uts.nodename); 353 } 354 355 static int write_osrelease(struct feat_fd *ff, 356 struct evlist *evlist __maybe_unused) 357 { 358 struct utsname uts; 359 int ret; 360 361 ret = uname(&uts); 362 if (ret < 0) 363 return -1; 364 365 return do_write_string(ff, uts.release); 366 } 367 368 static int write_arch(struct feat_fd *ff, 369 struct evlist *evlist __maybe_unused) 370 { 371 struct utsname uts; 372 int ret; 373 374 ret = uname(&uts); 375 if (ret < 0) 376 return -1; 377 378 return do_write_string(ff, uts.machine); 379 } 380 381 static int write_version(struct feat_fd *ff, 382 struct evlist *evlist __maybe_unused) 383 { 384 return do_write_string(ff, perf_version_string); 385 } 386 387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 388 { 389 FILE *file; 390 char *buf = NULL; 391 char *s, *p; 392 const char *search = cpuinfo_proc; 393 size_t len = 0; 394 int ret = -1; 395 396 if (!search) 397 return -1; 398 399 file = fopen("/proc/cpuinfo", "r"); 400 if (!file) 401 return -1; 402 403 while (getline(&buf, &len, file) > 0) { 404 ret = strncmp(buf, search, strlen(search)); 405 if (!ret) 406 break; 407 } 408 409 if (ret) { 410 ret = -1; 411 goto done; 412 } 413 414 s = buf; 415 416 p = strchr(buf, ':'); 417 if (p && *(p+1) == ' ' && *(p+2)) 418 s = p + 2; 419 p = strchr(s, '\n'); 420 if (p) 421 *p = '\0'; 422 423 /* squash extra space characters (branding string) */ 424 p = s; 425 while (*p) { 426 if (isspace(*p)) { 427 char *r = p + 1; 428 char *q = skip_spaces(r); 429 *p = ' '; 430 if (q != (p+1)) 431 while ((*r++ = *q++)); 432 } 433 p++; 434 } 435 ret = do_write_string(ff, s); 436 done: 437 free(buf); 438 fclose(file); 439 return ret; 440 } 441 442 static int write_cpudesc(struct feat_fd *ff, 443 struct evlist *evlist __maybe_unused) 444 { 445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 446 #define CPUINFO_PROC { "cpu", } 447 #elif defined(__s390__) 448 #define CPUINFO_PROC { "vendor_id", } 449 #elif defined(__sh__) 450 #define CPUINFO_PROC { "cpu type", } 451 #elif defined(__alpha__) || defined(__mips__) 452 #define CPUINFO_PROC { "cpu model", } 453 #elif defined(__arm__) 454 #define CPUINFO_PROC { "model name", "Processor", } 455 #elif defined(__arc__) 456 #define CPUINFO_PROC { "Processor", } 457 #elif defined(__xtensa__) 458 #define CPUINFO_PROC { "core ID", } 459 #elif defined(__loongarch__) 460 #define CPUINFO_PROC { "Model Name", } 461 #else 462 #define CPUINFO_PROC { "model name", } 463 #endif 464 const char *cpuinfo_procs[] = CPUINFO_PROC; 465 #undef CPUINFO_PROC 466 unsigned int i; 467 468 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 469 int ret; 470 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 471 if (ret >= 0) 472 return ret; 473 } 474 return -1; 475 } 476 477 478 static int write_nrcpus(struct feat_fd *ff, 479 struct evlist *evlist __maybe_unused) 480 { 481 long nr; 482 u32 nrc, nra; 483 int ret; 484 485 nrc = cpu__max_present_cpu().cpu; 486 487 nr = sysconf(_SC_NPROCESSORS_ONLN); 488 if (nr < 0) 489 return -1; 490 491 nra = (u32)(nr & UINT_MAX); 492 493 ret = do_write(ff, &nrc, sizeof(nrc)); 494 if (ret < 0) 495 return ret; 496 497 return do_write(ff, &nra, sizeof(nra)); 498 } 499 500 static int write_event_desc(struct feat_fd *ff, 501 struct evlist *evlist) 502 { 503 struct evsel *evsel; 504 u32 nre, nri, sz; 505 int ret; 506 507 nre = evlist->core.nr_entries; 508 509 /* 510 * write number of events 511 */ 512 ret = do_write(ff, &nre, sizeof(nre)); 513 if (ret < 0) 514 return ret; 515 516 /* 517 * size of perf_event_attr struct 518 */ 519 sz = (u32)sizeof(evsel->core.attr); 520 ret = do_write(ff, &sz, sizeof(sz)); 521 if (ret < 0) 522 return ret; 523 524 evlist__for_each_entry(evlist, evsel) { 525 ret = do_write(ff, &evsel->core.attr, sz); 526 if (ret < 0) 527 return ret; 528 /* 529 * write number of unique id per event 530 * there is one id per instance of an event 531 * 532 * copy into an nri to be independent of the 533 * type of ids, 534 */ 535 nri = evsel->core.ids; 536 ret = do_write(ff, &nri, sizeof(nri)); 537 if (ret < 0) 538 return ret; 539 540 /* 541 * write event string as passed on cmdline 542 */ 543 ret = do_write_string(ff, evsel__name(evsel)); 544 if (ret < 0) 545 return ret; 546 /* 547 * write unique ids for this event 548 */ 549 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 550 if (ret < 0) 551 return ret; 552 } 553 return 0; 554 } 555 556 static int write_cmdline(struct feat_fd *ff, 557 struct evlist *evlist __maybe_unused) 558 { 559 char pbuf[MAXPATHLEN], *buf; 560 int i, ret, n; 561 562 /* actual path to perf binary */ 563 buf = perf_exe(pbuf, MAXPATHLEN); 564 565 /* account for binary path */ 566 n = perf_env.nr_cmdline + 1; 567 568 ret = do_write(ff, &n, sizeof(n)); 569 if (ret < 0) 570 return ret; 571 572 ret = do_write_string(ff, buf); 573 if (ret < 0) 574 return ret; 575 576 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 577 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 578 if (ret < 0) 579 return ret; 580 } 581 return 0; 582 } 583 584 585 static int write_cpu_topology(struct feat_fd *ff, 586 struct evlist *evlist __maybe_unused) 587 { 588 struct cpu_topology *tp; 589 u32 i; 590 int ret, j; 591 592 tp = cpu_topology__new(); 593 if (!tp) 594 return -1; 595 596 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists)); 597 if (ret < 0) 598 goto done; 599 600 for (i = 0; i < tp->package_cpus_lists; i++) { 601 ret = do_write_string(ff, tp->package_cpus_list[i]); 602 if (ret < 0) 603 goto done; 604 } 605 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists)); 606 if (ret < 0) 607 goto done; 608 609 for (i = 0; i < tp->core_cpus_lists; i++) { 610 ret = do_write_string(ff, tp->core_cpus_list[i]); 611 if (ret < 0) 612 break; 613 } 614 615 ret = perf_env__read_cpu_topology_map(&perf_env); 616 if (ret < 0) 617 goto done; 618 619 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 620 ret = do_write(ff, &perf_env.cpu[j].core_id, 621 sizeof(perf_env.cpu[j].core_id)); 622 if (ret < 0) 623 return ret; 624 ret = do_write(ff, &perf_env.cpu[j].socket_id, 625 sizeof(perf_env.cpu[j].socket_id)); 626 if (ret < 0) 627 return ret; 628 } 629 630 if (!tp->die_cpus_lists) 631 goto done; 632 633 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists)); 634 if (ret < 0) 635 goto done; 636 637 for (i = 0; i < tp->die_cpus_lists; i++) { 638 ret = do_write_string(ff, tp->die_cpus_list[i]); 639 if (ret < 0) 640 goto done; 641 } 642 643 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 644 ret = do_write(ff, &perf_env.cpu[j].die_id, 645 sizeof(perf_env.cpu[j].die_id)); 646 if (ret < 0) 647 return ret; 648 } 649 650 done: 651 cpu_topology__delete(tp); 652 return ret; 653 } 654 655 656 657 static int write_total_mem(struct feat_fd *ff, 658 struct evlist *evlist __maybe_unused) 659 { 660 char *buf = NULL; 661 FILE *fp; 662 size_t len = 0; 663 int ret = -1, n; 664 uint64_t mem; 665 666 fp = fopen("/proc/meminfo", "r"); 667 if (!fp) 668 return -1; 669 670 while (getline(&buf, &len, fp) > 0) { 671 ret = strncmp(buf, "MemTotal:", 9); 672 if (!ret) 673 break; 674 } 675 if (!ret) { 676 n = sscanf(buf, "%*s %"PRIu64, &mem); 677 if (n == 1) 678 ret = do_write(ff, &mem, sizeof(mem)); 679 } else 680 ret = -1; 681 free(buf); 682 fclose(fp); 683 return ret; 684 } 685 686 static int write_numa_topology(struct feat_fd *ff, 687 struct evlist *evlist __maybe_unused) 688 { 689 struct numa_topology *tp; 690 int ret = -1; 691 u32 i; 692 693 tp = numa_topology__new(); 694 if (!tp) 695 return -ENOMEM; 696 697 ret = do_write(ff, &tp->nr, sizeof(u32)); 698 if (ret < 0) 699 goto err; 700 701 for (i = 0; i < tp->nr; i++) { 702 struct numa_topology_node *n = &tp->nodes[i]; 703 704 ret = do_write(ff, &n->node, sizeof(u32)); 705 if (ret < 0) 706 goto err; 707 708 ret = do_write(ff, &n->mem_total, sizeof(u64)); 709 if (ret) 710 goto err; 711 712 ret = do_write(ff, &n->mem_free, sizeof(u64)); 713 if (ret) 714 goto err; 715 716 ret = do_write_string(ff, n->cpus); 717 if (ret < 0) 718 goto err; 719 } 720 721 ret = 0; 722 723 err: 724 numa_topology__delete(tp); 725 return ret; 726 } 727 728 /* 729 * File format: 730 * 731 * struct pmu_mappings { 732 * u32 pmu_num; 733 * struct pmu_map { 734 * u32 type; 735 * char name[]; 736 * }[pmu_num]; 737 * }; 738 */ 739 740 static int write_pmu_mappings(struct feat_fd *ff, 741 struct evlist *evlist __maybe_unused) 742 { 743 struct perf_pmu *pmu = NULL; 744 u32 pmu_num = 0; 745 int ret; 746 747 /* 748 * Do a first pass to count number of pmu to avoid lseek so this 749 * works in pipe mode as well. 750 */ 751 while ((pmu = perf_pmus__scan(pmu))) 752 pmu_num++; 753 754 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 755 if (ret < 0) 756 return ret; 757 758 while ((pmu = perf_pmus__scan(pmu))) { 759 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 760 if (ret < 0) 761 return ret; 762 763 ret = do_write_string(ff, pmu->name); 764 if (ret < 0) 765 return ret; 766 } 767 768 return 0; 769 } 770 771 /* 772 * File format: 773 * 774 * struct group_descs { 775 * u32 nr_groups; 776 * struct group_desc { 777 * char name[]; 778 * u32 leader_idx; 779 * u32 nr_members; 780 * }[nr_groups]; 781 * }; 782 */ 783 static int write_group_desc(struct feat_fd *ff, 784 struct evlist *evlist) 785 { 786 u32 nr_groups = evlist__nr_groups(evlist); 787 struct evsel *evsel; 788 int ret; 789 790 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 791 if (ret < 0) 792 return ret; 793 794 evlist__for_each_entry(evlist, evsel) { 795 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 796 const char *name = evsel->group_name ?: "{anon_group}"; 797 u32 leader_idx = evsel->core.idx; 798 u32 nr_members = evsel->core.nr_members; 799 800 ret = do_write_string(ff, name); 801 if (ret < 0) 802 return ret; 803 804 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 805 if (ret < 0) 806 return ret; 807 808 ret = do_write(ff, &nr_members, sizeof(nr_members)); 809 if (ret < 0) 810 return ret; 811 } 812 } 813 return 0; 814 } 815 816 /* 817 * Return the CPU id as a raw string. 818 * 819 * Each architecture should provide a more precise id string that 820 * can be use to match the architecture's "mapfile". 821 */ 822 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 823 { 824 return NULL; 825 } 826 827 /* Return zero when the cpuid from the mapfile.csv matches the 828 * cpuid string generated on this platform. 829 * Otherwise return non-zero. 830 */ 831 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 832 { 833 regex_t re; 834 regmatch_t pmatch[1]; 835 int match; 836 837 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 838 /* Warn unable to generate match particular string. */ 839 pr_info("Invalid regular expression %s\n", mapcpuid); 840 return 1; 841 } 842 843 match = !regexec(&re, cpuid, 1, pmatch, 0); 844 regfree(&re); 845 if (match) { 846 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 847 848 /* Verify the entire string matched. */ 849 if (match_len == strlen(cpuid)) 850 return 0; 851 } 852 return 1; 853 } 854 855 /* 856 * default get_cpuid(): nothing gets recorded 857 * actual implementation must be in arch/$(SRCARCH)/util/header.c 858 */ 859 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 860 { 861 return ENOSYS; /* Not implemented */ 862 } 863 864 static int write_cpuid(struct feat_fd *ff, 865 struct evlist *evlist __maybe_unused) 866 { 867 char buffer[64]; 868 int ret; 869 870 ret = get_cpuid(buffer, sizeof(buffer)); 871 if (ret) 872 return -1; 873 874 return do_write_string(ff, buffer); 875 } 876 877 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 878 struct evlist *evlist __maybe_unused) 879 { 880 return 0; 881 } 882 883 static int write_auxtrace(struct feat_fd *ff, 884 struct evlist *evlist __maybe_unused) 885 { 886 struct perf_session *session; 887 int err; 888 889 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 890 return -1; 891 892 session = container_of(ff->ph, struct perf_session, header); 893 894 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 895 if (err < 0) 896 pr_err("Failed to write auxtrace index\n"); 897 return err; 898 } 899 900 static int write_clockid(struct feat_fd *ff, 901 struct evlist *evlist __maybe_unused) 902 { 903 return do_write(ff, &ff->ph->env.clock.clockid_res_ns, 904 sizeof(ff->ph->env.clock.clockid_res_ns)); 905 } 906 907 static int write_clock_data(struct feat_fd *ff, 908 struct evlist *evlist __maybe_unused) 909 { 910 u64 *data64; 911 u32 data32; 912 int ret; 913 914 /* version */ 915 data32 = 1; 916 917 ret = do_write(ff, &data32, sizeof(data32)); 918 if (ret < 0) 919 return ret; 920 921 /* clockid */ 922 data32 = ff->ph->env.clock.clockid; 923 924 ret = do_write(ff, &data32, sizeof(data32)); 925 if (ret < 0) 926 return ret; 927 928 /* TOD ref time */ 929 data64 = &ff->ph->env.clock.tod_ns; 930 931 ret = do_write(ff, data64, sizeof(*data64)); 932 if (ret < 0) 933 return ret; 934 935 /* clockid ref time */ 936 data64 = &ff->ph->env.clock.clockid_ns; 937 938 return do_write(ff, data64, sizeof(*data64)); 939 } 940 941 static int write_hybrid_topology(struct feat_fd *ff, 942 struct evlist *evlist __maybe_unused) 943 { 944 struct hybrid_topology *tp; 945 int ret; 946 u32 i; 947 948 tp = hybrid_topology__new(); 949 if (!tp) 950 return -ENOENT; 951 952 ret = do_write(ff, &tp->nr, sizeof(u32)); 953 if (ret < 0) 954 goto err; 955 956 for (i = 0; i < tp->nr; i++) { 957 struct hybrid_topology_node *n = &tp->nodes[i]; 958 959 ret = do_write_string(ff, n->pmu_name); 960 if (ret < 0) 961 goto err; 962 963 ret = do_write_string(ff, n->cpus); 964 if (ret < 0) 965 goto err; 966 } 967 968 ret = 0; 969 970 err: 971 hybrid_topology__delete(tp); 972 return ret; 973 } 974 975 static int write_dir_format(struct feat_fd *ff, 976 struct evlist *evlist __maybe_unused) 977 { 978 struct perf_session *session; 979 struct perf_data *data; 980 981 session = container_of(ff->ph, struct perf_session, header); 982 data = session->data; 983 984 if (WARN_ON(!perf_data__is_dir(data))) 985 return -1; 986 987 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 988 } 989 990 /* 991 * Check whether a CPU is online 992 * 993 * Returns: 994 * 1 -> if CPU is online 995 * 0 -> if CPU is offline 996 * -1 -> error case 997 */ 998 int is_cpu_online(unsigned int cpu) 999 { 1000 char *str; 1001 size_t strlen; 1002 char buf[256]; 1003 int status = -1; 1004 struct stat statbuf; 1005 1006 snprintf(buf, sizeof(buf), 1007 "/sys/devices/system/cpu/cpu%d", cpu); 1008 if (stat(buf, &statbuf) != 0) 1009 return 0; 1010 1011 /* 1012 * Check if /sys/devices/system/cpu/cpux/online file 1013 * exists. Some cases cpu0 won't have online file since 1014 * it is not expected to be turned off generally. 1015 * In kernels without CONFIG_HOTPLUG_CPU, this 1016 * file won't exist 1017 */ 1018 snprintf(buf, sizeof(buf), 1019 "/sys/devices/system/cpu/cpu%d/online", cpu); 1020 if (stat(buf, &statbuf) != 0) 1021 return 1; 1022 1023 /* 1024 * Read online file using sysfs__read_str. 1025 * If read or open fails, return -1. 1026 * If read succeeds, return value from file 1027 * which gets stored in "str" 1028 */ 1029 snprintf(buf, sizeof(buf), 1030 "devices/system/cpu/cpu%d/online", cpu); 1031 1032 if (sysfs__read_str(buf, &str, &strlen) < 0) 1033 return status; 1034 1035 status = atoi(str); 1036 1037 free(str); 1038 return status; 1039 } 1040 1041 #ifdef HAVE_LIBBPF_SUPPORT 1042 static int write_bpf_prog_info(struct feat_fd *ff, 1043 struct evlist *evlist __maybe_unused) 1044 { 1045 struct perf_env *env = &ff->ph->env; 1046 struct rb_root *root; 1047 struct rb_node *next; 1048 int ret; 1049 1050 down_read(&env->bpf_progs.lock); 1051 1052 ret = do_write(ff, &env->bpf_progs.infos_cnt, 1053 sizeof(env->bpf_progs.infos_cnt)); 1054 if (ret < 0) 1055 goto out; 1056 1057 root = &env->bpf_progs.infos; 1058 next = rb_first(root); 1059 while (next) { 1060 struct bpf_prog_info_node *node; 1061 size_t len; 1062 1063 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1064 next = rb_next(&node->rb_node); 1065 len = sizeof(struct perf_bpil) + 1066 node->info_linear->data_len; 1067 1068 /* before writing to file, translate address to offset */ 1069 bpil_addr_to_offs(node->info_linear); 1070 ret = do_write(ff, node->info_linear, len); 1071 /* 1072 * translate back to address even when do_write() fails, 1073 * so that this function never changes the data. 1074 */ 1075 bpil_offs_to_addr(node->info_linear); 1076 if (ret < 0) 1077 goto out; 1078 } 1079 out: 1080 up_read(&env->bpf_progs.lock); 1081 return ret; 1082 } 1083 1084 static int write_bpf_btf(struct feat_fd *ff, 1085 struct evlist *evlist __maybe_unused) 1086 { 1087 struct perf_env *env = &ff->ph->env; 1088 struct rb_root *root; 1089 struct rb_node *next; 1090 int ret; 1091 1092 down_read(&env->bpf_progs.lock); 1093 1094 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 1095 sizeof(env->bpf_progs.btfs_cnt)); 1096 1097 if (ret < 0) 1098 goto out; 1099 1100 root = &env->bpf_progs.btfs; 1101 next = rb_first(root); 1102 while (next) { 1103 struct btf_node *node; 1104 1105 node = rb_entry(next, struct btf_node, rb_node); 1106 next = rb_next(&node->rb_node); 1107 ret = do_write(ff, &node->id, 1108 sizeof(u32) * 2 + node->data_size); 1109 if (ret < 0) 1110 goto out; 1111 } 1112 out: 1113 up_read(&env->bpf_progs.lock); 1114 return ret; 1115 } 1116 #endif // HAVE_LIBBPF_SUPPORT 1117 1118 static int cpu_cache_level__sort(const void *a, const void *b) 1119 { 1120 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1121 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1122 1123 return cache_a->level - cache_b->level; 1124 } 1125 1126 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1127 { 1128 if (a->level != b->level) 1129 return false; 1130 1131 if (a->line_size != b->line_size) 1132 return false; 1133 1134 if (a->sets != b->sets) 1135 return false; 1136 1137 if (a->ways != b->ways) 1138 return false; 1139 1140 if (strcmp(a->type, b->type)) 1141 return false; 1142 1143 if (strcmp(a->size, b->size)) 1144 return false; 1145 1146 if (strcmp(a->map, b->map)) 1147 return false; 1148 1149 return true; 1150 } 1151 1152 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1153 { 1154 char path[PATH_MAX], file[PATH_MAX]; 1155 struct stat st; 1156 size_t len; 1157 1158 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1159 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1160 1161 if (stat(file, &st)) 1162 return 1; 1163 1164 scnprintf(file, PATH_MAX, "%s/level", path); 1165 if (sysfs__read_int(file, (int *) &cache->level)) 1166 return -1; 1167 1168 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1169 if (sysfs__read_int(file, (int *) &cache->line_size)) 1170 return -1; 1171 1172 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1173 if (sysfs__read_int(file, (int *) &cache->sets)) 1174 return -1; 1175 1176 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1177 if (sysfs__read_int(file, (int *) &cache->ways)) 1178 return -1; 1179 1180 scnprintf(file, PATH_MAX, "%s/type", path); 1181 if (sysfs__read_str(file, &cache->type, &len)) 1182 return -1; 1183 1184 cache->type[len] = 0; 1185 cache->type = strim(cache->type); 1186 1187 scnprintf(file, PATH_MAX, "%s/size", path); 1188 if (sysfs__read_str(file, &cache->size, &len)) { 1189 zfree(&cache->type); 1190 return -1; 1191 } 1192 1193 cache->size[len] = 0; 1194 cache->size = strim(cache->size); 1195 1196 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1197 if (sysfs__read_str(file, &cache->map, &len)) { 1198 zfree(&cache->size); 1199 zfree(&cache->type); 1200 return -1; 1201 } 1202 1203 cache->map[len] = 0; 1204 cache->map = strim(cache->map); 1205 return 0; 1206 } 1207 1208 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1209 { 1210 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1211 } 1212 1213 /* 1214 * Build caches levels for a particular CPU from the data in 1215 * /sys/devices/system/cpu/cpu<cpu>/cache/ 1216 * The cache level data is stored in caches[] from index at 1217 * *cntp. 1218 */ 1219 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp) 1220 { 1221 u16 level; 1222 1223 for (level = 0; level < MAX_CACHE_LVL; level++) { 1224 struct cpu_cache_level c; 1225 int err; 1226 u32 i; 1227 1228 err = cpu_cache_level__read(&c, cpu, level); 1229 if (err < 0) 1230 return err; 1231 1232 if (err == 1) 1233 break; 1234 1235 for (i = 0; i < *cntp; i++) { 1236 if (cpu_cache_level__cmp(&c, &caches[i])) 1237 break; 1238 } 1239 1240 if (i == *cntp) { 1241 caches[*cntp] = c; 1242 *cntp = *cntp + 1; 1243 } else 1244 cpu_cache_level__free(&c); 1245 } 1246 1247 return 0; 1248 } 1249 1250 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1251 { 1252 u32 nr, cpu, cnt = 0; 1253 1254 nr = cpu__max_cpu().cpu; 1255 1256 for (cpu = 0; cpu < nr; cpu++) { 1257 int ret = build_caches_for_cpu(cpu, caches, &cnt); 1258 1259 if (ret) 1260 return ret; 1261 } 1262 *cntp = cnt; 1263 return 0; 1264 } 1265 1266 static int write_cache(struct feat_fd *ff, 1267 struct evlist *evlist __maybe_unused) 1268 { 1269 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL; 1270 struct cpu_cache_level caches[max_caches]; 1271 u32 cnt = 0, i, version = 1; 1272 int ret; 1273 1274 ret = build_caches(caches, &cnt); 1275 if (ret) 1276 goto out; 1277 1278 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1279 1280 ret = do_write(ff, &version, sizeof(u32)); 1281 if (ret < 0) 1282 goto out; 1283 1284 ret = do_write(ff, &cnt, sizeof(u32)); 1285 if (ret < 0) 1286 goto out; 1287 1288 for (i = 0; i < cnt; i++) { 1289 struct cpu_cache_level *c = &caches[i]; 1290 1291 #define _W(v) \ 1292 ret = do_write(ff, &c->v, sizeof(u32)); \ 1293 if (ret < 0) \ 1294 goto out; 1295 1296 _W(level) 1297 _W(line_size) 1298 _W(sets) 1299 _W(ways) 1300 #undef _W 1301 1302 #define _W(v) \ 1303 ret = do_write_string(ff, (const char *) c->v); \ 1304 if (ret < 0) \ 1305 goto out; 1306 1307 _W(type) 1308 _W(size) 1309 _W(map) 1310 #undef _W 1311 } 1312 1313 out: 1314 for (i = 0; i < cnt; i++) 1315 cpu_cache_level__free(&caches[i]); 1316 return ret; 1317 } 1318 1319 static int write_stat(struct feat_fd *ff __maybe_unused, 1320 struct evlist *evlist __maybe_unused) 1321 { 1322 return 0; 1323 } 1324 1325 static int write_sample_time(struct feat_fd *ff, 1326 struct evlist *evlist) 1327 { 1328 int ret; 1329 1330 ret = do_write(ff, &evlist->first_sample_time, 1331 sizeof(evlist->first_sample_time)); 1332 if (ret < 0) 1333 return ret; 1334 1335 return do_write(ff, &evlist->last_sample_time, 1336 sizeof(evlist->last_sample_time)); 1337 } 1338 1339 1340 static int memory_node__read(struct memory_node *n, unsigned long idx) 1341 { 1342 unsigned int phys, size = 0; 1343 char path[PATH_MAX]; 1344 struct dirent *ent; 1345 DIR *dir; 1346 1347 #define for_each_memory(mem, dir) \ 1348 while ((ent = readdir(dir))) \ 1349 if (strcmp(ent->d_name, ".") && \ 1350 strcmp(ent->d_name, "..") && \ 1351 sscanf(ent->d_name, "memory%u", &mem) == 1) 1352 1353 scnprintf(path, PATH_MAX, 1354 "%s/devices/system/node/node%lu", 1355 sysfs__mountpoint(), idx); 1356 1357 dir = opendir(path); 1358 if (!dir) { 1359 pr_warning("failed: can't open memory sysfs data\n"); 1360 return -1; 1361 } 1362 1363 for_each_memory(phys, dir) { 1364 size = max(phys, size); 1365 } 1366 1367 size++; 1368 1369 n->set = bitmap_zalloc(size); 1370 if (!n->set) { 1371 closedir(dir); 1372 return -ENOMEM; 1373 } 1374 1375 n->node = idx; 1376 n->size = size; 1377 1378 rewinddir(dir); 1379 1380 for_each_memory(phys, dir) { 1381 __set_bit(phys, n->set); 1382 } 1383 1384 closedir(dir); 1385 return 0; 1386 } 1387 1388 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt) 1389 { 1390 for (u64 i = 0; i < cnt; i++) 1391 bitmap_free(nodesp[i].set); 1392 1393 free(nodesp); 1394 } 1395 1396 static int memory_node__sort(const void *a, const void *b) 1397 { 1398 const struct memory_node *na = a; 1399 const struct memory_node *nb = b; 1400 1401 return na->node - nb->node; 1402 } 1403 1404 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp) 1405 { 1406 char path[PATH_MAX]; 1407 struct dirent *ent; 1408 DIR *dir; 1409 int ret = 0; 1410 size_t cnt = 0, size = 0; 1411 struct memory_node *nodes = NULL; 1412 1413 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1414 sysfs__mountpoint()); 1415 1416 dir = opendir(path); 1417 if (!dir) { 1418 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n", 1419 __func__, path); 1420 return -1; 1421 } 1422 1423 while (!ret && (ent = readdir(dir))) { 1424 unsigned int idx; 1425 int r; 1426 1427 if (!strcmp(ent->d_name, ".") || 1428 !strcmp(ent->d_name, "..")) 1429 continue; 1430 1431 r = sscanf(ent->d_name, "node%u", &idx); 1432 if (r != 1) 1433 continue; 1434 1435 if (cnt >= size) { 1436 struct memory_node *new_nodes = 1437 reallocarray(nodes, cnt + 4, sizeof(*nodes)); 1438 1439 if (!new_nodes) { 1440 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size); 1441 ret = -ENOMEM; 1442 goto out; 1443 } 1444 nodes = new_nodes; 1445 size += 4; 1446 } 1447 ret = memory_node__read(&nodes[cnt], idx); 1448 if (!ret) 1449 cnt += 1; 1450 } 1451 out: 1452 closedir(dir); 1453 if (!ret) { 1454 *cntp = cnt; 1455 *nodesp = nodes; 1456 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1457 } else 1458 memory_node__delete_nodes(nodes, cnt); 1459 1460 return ret; 1461 } 1462 1463 /* 1464 * The MEM_TOPOLOGY holds physical memory map for every 1465 * node in system. The format of data is as follows: 1466 * 1467 * 0 - version | for future changes 1468 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1469 * 16 - count | number of nodes 1470 * 1471 * For each node we store map of physical indexes for 1472 * each node: 1473 * 1474 * 32 - node id | node index 1475 * 40 - size | size of bitmap 1476 * 48 - bitmap | bitmap of memory indexes that belongs to node 1477 */ 1478 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1479 struct evlist *evlist __maybe_unused) 1480 { 1481 struct memory_node *nodes = NULL; 1482 u64 bsize, version = 1, i, nr = 0; 1483 int ret; 1484 1485 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1486 (unsigned long long *) &bsize); 1487 if (ret) 1488 return ret; 1489 1490 ret = build_mem_topology(&nodes, &nr); 1491 if (ret) 1492 return ret; 1493 1494 ret = do_write(ff, &version, sizeof(version)); 1495 if (ret < 0) 1496 goto out; 1497 1498 ret = do_write(ff, &bsize, sizeof(bsize)); 1499 if (ret < 0) 1500 goto out; 1501 1502 ret = do_write(ff, &nr, sizeof(nr)); 1503 if (ret < 0) 1504 goto out; 1505 1506 for (i = 0; i < nr; i++) { 1507 struct memory_node *n = &nodes[i]; 1508 1509 #define _W(v) \ 1510 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1511 if (ret < 0) \ 1512 goto out; 1513 1514 _W(node) 1515 _W(size) 1516 1517 #undef _W 1518 1519 ret = do_write_bitmap(ff, n->set, n->size); 1520 if (ret < 0) 1521 goto out; 1522 } 1523 1524 out: 1525 memory_node__delete_nodes(nodes, nr); 1526 return ret; 1527 } 1528 1529 static int write_compressed(struct feat_fd *ff __maybe_unused, 1530 struct evlist *evlist __maybe_unused) 1531 { 1532 int ret; 1533 1534 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1535 if (ret) 1536 return ret; 1537 1538 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1539 if (ret) 1540 return ret; 1541 1542 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1543 if (ret) 1544 return ret; 1545 1546 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1547 if (ret) 1548 return ret; 1549 1550 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1551 } 1552 1553 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu, 1554 bool write_pmu) 1555 { 1556 struct perf_pmu_caps *caps = NULL; 1557 int ret; 1558 1559 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps)); 1560 if (ret < 0) 1561 return ret; 1562 1563 list_for_each_entry(caps, &pmu->caps, list) { 1564 ret = do_write_string(ff, caps->name); 1565 if (ret < 0) 1566 return ret; 1567 1568 ret = do_write_string(ff, caps->value); 1569 if (ret < 0) 1570 return ret; 1571 } 1572 1573 if (write_pmu) { 1574 ret = do_write_string(ff, pmu->name); 1575 if (ret < 0) 1576 return ret; 1577 } 1578 1579 return ret; 1580 } 1581 1582 static int write_cpu_pmu_caps(struct feat_fd *ff, 1583 struct evlist *evlist __maybe_unused) 1584 { 1585 struct perf_pmu *cpu_pmu = perf_pmus__find("cpu"); 1586 int ret; 1587 1588 if (!cpu_pmu) 1589 return -ENOENT; 1590 1591 ret = perf_pmu__caps_parse(cpu_pmu); 1592 if (ret < 0) 1593 return ret; 1594 1595 return __write_pmu_caps(ff, cpu_pmu, false); 1596 } 1597 1598 static int write_pmu_caps(struct feat_fd *ff, 1599 struct evlist *evlist __maybe_unused) 1600 { 1601 struct perf_pmu *pmu = NULL; 1602 int nr_pmu = 0; 1603 int ret; 1604 1605 while ((pmu = perf_pmus__scan(pmu))) { 1606 if (!strcmp(pmu->name, "cpu")) { 1607 /* 1608 * The "cpu" PMU is special and covered by 1609 * HEADER_CPU_PMU_CAPS. Note, core PMUs are 1610 * counted/written here for ARM, s390 and Intel hybrid. 1611 */ 1612 continue; 1613 } 1614 if (perf_pmu__caps_parse(pmu) <= 0) 1615 continue; 1616 nr_pmu++; 1617 } 1618 1619 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu)); 1620 if (ret < 0) 1621 return ret; 1622 1623 if (!nr_pmu) 1624 return 0; 1625 1626 /* 1627 * Note older perf tools assume core PMUs come first, this is a property 1628 * of perf_pmus__scan. 1629 */ 1630 pmu = NULL; 1631 while ((pmu = perf_pmus__scan(pmu))) { 1632 if (!strcmp(pmu->name, "cpu")) { 1633 /* Skip as above. */ 1634 continue; 1635 } 1636 if (perf_pmu__caps_parse(pmu) <= 0) 1637 continue; 1638 ret = __write_pmu_caps(ff, pmu, true); 1639 if (ret < 0) 1640 return ret; 1641 } 1642 return 0; 1643 } 1644 1645 static void print_hostname(struct feat_fd *ff, FILE *fp) 1646 { 1647 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1648 } 1649 1650 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1651 { 1652 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1653 } 1654 1655 static void print_arch(struct feat_fd *ff, FILE *fp) 1656 { 1657 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1658 } 1659 1660 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1661 { 1662 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1663 } 1664 1665 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1666 { 1667 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1668 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1669 } 1670 1671 static void print_version(struct feat_fd *ff, FILE *fp) 1672 { 1673 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1674 } 1675 1676 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1677 { 1678 int nr, i; 1679 1680 nr = ff->ph->env.nr_cmdline; 1681 1682 fprintf(fp, "# cmdline : "); 1683 1684 for (i = 0; i < nr; i++) { 1685 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1686 if (!argv_i) { 1687 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1688 } else { 1689 char *mem = argv_i; 1690 do { 1691 char *quote = strchr(argv_i, '\''); 1692 if (!quote) 1693 break; 1694 *quote++ = '\0'; 1695 fprintf(fp, "%s\\\'", argv_i); 1696 argv_i = quote; 1697 } while (1); 1698 fprintf(fp, "%s ", argv_i); 1699 free(mem); 1700 } 1701 } 1702 fputc('\n', fp); 1703 } 1704 1705 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1706 { 1707 struct perf_header *ph = ff->ph; 1708 int cpu_nr = ph->env.nr_cpus_avail; 1709 int nr, i; 1710 char *str; 1711 1712 nr = ph->env.nr_sibling_cores; 1713 str = ph->env.sibling_cores; 1714 1715 for (i = 0; i < nr; i++) { 1716 fprintf(fp, "# sibling sockets : %s\n", str); 1717 str += strlen(str) + 1; 1718 } 1719 1720 if (ph->env.nr_sibling_dies) { 1721 nr = ph->env.nr_sibling_dies; 1722 str = ph->env.sibling_dies; 1723 1724 for (i = 0; i < nr; i++) { 1725 fprintf(fp, "# sibling dies : %s\n", str); 1726 str += strlen(str) + 1; 1727 } 1728 } 1729 1730 nr = ph->env.nr_sibling_threads; 1731 str = ph->env.sibling_threads; 1732 1733 for (i = 0; i < nr; i++) { 1734 fprintf(fp, "# sibling threads : %s\n", str); 1735 str += strlen(str) + 1; 1736 } 1737 1738 if (ph->env.nr_sibling_dies) { 1739 if (ph->env.cpu != NULL) { 1740 for (i = 0; i < cpu_nr; i++) 1741 fprintf(fp, "# CPU %d: Core ID %d, " 1742 "Die ID %d, Socket ID %d\n", 1743 i, ph->env.cpu[i].core_id, 1744 ph->env.cpu[i].die_id, 1745 ph->env.cpu[i].socket_id); 1746 } else 1747 fprintf(fp, "# Core ID, Die ID and Socket ID " 1748 "information is not available\n"); 1749 } else { 1750 if (ph->env.cpu != NULL) { 1751 for (i = 0; i < cpu_nr; i++) 1752 fprintf(fp, "# CPU %d: Core ID %d, " 1753 "Socket ID %d\n", 1754 i, ph->env.cpu[i].core_id, 1755 ph->env.cpu[i].socket_id); 1756 } else 1757 fprintf(fp, "# Core ID and Socket ID " 1758 "information is not available\n"); 1759 } 1760 } 1761 1762 static void print_clockid(struct feat_fd *ff, FILE *fp) 1763 { 1764 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1765 ff->ph->env.clock.clockid_res_ns * 1000); 1766 } 1767 1768 static void print_clock_data(struct feat_fd *ff, FILE *fp) 1769 { 1770 struct timespec clockid_ns; 1771 char tstr[64], date[64]; 1772 struct timeval tod_ns; 1773 clockid_t clockid; 1774 struct tm ltime; 1775 u64 ref; 1776 1777 if (!ff->ph->env.clock.enabled) { 1778 fprintf(fp, "# reference time disabled\n"); 1779 return; 1780 } 1781 1782 /* Compute TOD time. */ 1783 ref = ff->ph->env.clock.tod_ns; 1784 tod_ns.tv_sec = ref / NSEC_PER_SEC; 1785 ref -= tod_ns.tv_sec * NSEC_PER_SEC; 1786 tod_ns.tv_usec = ref / NSEC_PER_USEC; 1787 1788 /* Compute clockid time. */ 1789 ref = ff->ph->env.clock.clockid_ns; 1790 clockid_ns.tv_sec = ref / NSEC_PER_SEC; 1791 ref -= clockid_ns.tv_sec * NSEC_PER_SEC; 1792 clockid_ns.tv_nsec = ref; 1793 1794 clockid = ff->ph->env.clock.clockid; 1795 1796 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) 1797 snprintf(tstr, sizeof(tstr), "<error>"); 1798 else { 1799 strftime(date, sizeof(date), "%F %T", <ime); 1800 scnprintf(tstr, sizeof(tstr), "%s.%06d", 1801 date, (int) tod_ns.tv_usec); 1802 } 1803 1804 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); 1805 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", 1806 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec, 1807 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec, 1808 clockid_name(clockid)); 1809 } 1810 1811 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp) 1812 { 1813 int i; 1814 struct hybrid_node *n; 1815 1816 fprintf(fp, "# hybrid cpu system:\n"); 1817 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) { 1818 n = &ff->ph->env.hybrid_nodes[i]; 1819 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus); 1820 } 1821 } 1822 1823 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1824 { 1825 struct perf_session *session; 1826 struct perf_data *data; 1827 1828 session = container_of(ff->ph, struct perf_session, header); 1829 data = session->data; 1830 1831 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1832 } 1833 1834 #ifdef HAVE_LIBBPF_SUPPORT 1835 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1836 { 1837 struct perf_env *env = &ff->ph->env; 1838 struct rb_root *root; 1839 struct rb_node *next; 1840 1841 down_read(&env->bpf_progs.lock); 1842 1843 root = &env->bpf_progs.infos; 1844 next = rb_first(root); 1845 1846 while (next) { 1847 struct bpf_prog_info_node *node; 1848 1849 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1850 next = rb_next(&node->rb_node); 1851 1852 __bpf_event__print_bpf_prog_info(&node->info_linear->info, 1853 env, fp); 1854 } 1855 1856 up_read(&env->bpf_progs.lock); 1857 } 1858 1859 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1860 { 1861 struct perf_env *env = &ff->ph->env; 1862 struct rb_root *root; 1863 struct rb_node *next; 1864 1865 down_read(&env->bpf_progs.lock); 1866 1867 root = &env->bpf_progs.btfs; 1868 next = rb_first(root); 1869 1870 while (next) { 1871 struct btf_node *node; 1872 1873 node = rb_entry(next, struct btf_node, rb_node); 1874 next = rb_next(&node->rb_node); 1875 fprintf(fp, "# btf info of id %u\n", node->id); 1876 } 1877 1878 up_read(&env->bpf_progs.lock); 1879 } 1880 #endif // HAVE_LIBBPF_SUPPORT 1881 1882 static void free_event_desc(struct evsel *events) 1883 { 1884 struct evsel *evsel; 1885 1886 if (!events) 1887 return; 1888 1889 for (evsel = events; evsel->core.attr.size; evsel++) { 1890 zfree(&evsel->name); 1891 zfree(&evsel->core.id); 1892 } 1893 1894 free(events); 1895 } 1896 1897 static bool perf_attr_check(struct perf_event_attr *attr) 1898 { 1899 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1900 pr_warning("Reserved bits are set unexpectedly. " 1901 "Please update perf tool.\n"); 1902 return false; 1903 } 1904 1905 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1906 pr_warning("Unknown sample type (0x%llx) is detected. " 1907 "Please update perf tool.\n", 1908 attr->sample_type); 1909 return false; 1910 } 1911 1912 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1913 pr_warning("Unknown read format (0x%llx) is detected. " 1914 "Please update perf tool.\n", 1915 attr->read_format); 1916 return false; 1917 } 1918 1919 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1920 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1921 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1922 "Please update perf tool.\n", 1923 attr->branch_sample_type); 1924 1925 return false; 1926 } 1927 1928 return true; 1929 } 1930 1931 static struct evsel *read_event_desc(struct feat_fd *ff) 1932 { 1933 struct evsel *evsel, *events = NULL; 1934 u64 *id; 1935 void *buf = NULL; 1936 u32 nre, sz, nr, i, j; 1937 size_t msz; 1938 1939 /* number of events */ 1940 if (do_read_u32(ff, &nre)) 1941 goto error; 1942 1943 if (do_read_u32(ff, &sz)) 1944 goto error; 1945 1946 /* buffer to hold on file attr struct */ 1947 buf = malloc(sz); 1948 if (!buf) 1949 goto error; 1950 1951 /* the last event terminates with evsel->core.attr.size == 0: */ 1952 events = calloc(nre + 1, sizeof(*events)); 1953 if (!events) 1954 goto error; 1955 1956 msz = sizeof(evsel->core.attr); 1957 if (sz < msz) 1958 msz = sz; 1959 1960 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1961 evsel->core.idx = i; 1962 1963 /* 1964 * must read entire on-file attr struct to 1965 * sync up with layout. 1966 */ 1967 if (__do_read(ff, buf, sz)) 1968 goto error; 1969 1970 if (ff->ph->needs_swap) 1971 perf_event__attr_swap(buf); 1972 1973 memcpy(&evsel->core.attr, buf, msz); 1974 1975 if (!perf_attr_check(&evsel->core.attr)) 1976 goto error; 1977 1978 if (do_read_u32(ff, &nr)) 1979 goto error; 1980 1981 if (ff->ph->needs_swap) 1982 evsel->needs_swap = true; 1983 1984 evsel->name = do_read_string(ff); 1985 if (!evsel->name) 1986 goto error; 1987 1988 if (!nr) 1989 continue; 1990 1991 id = calloc(nr, sizeof(*id)); 1992 if (!id) 1993 goto error; 1994 evsel->core.ids = nr; 1995 evsel->core.id = id; 1996 1997 for (j = 0 ; j < nr; j++) { 1998 if (do_read_u64(ff, id)) 1999 goto error; 2000 id++; 2001 } 2002 } 2003 out: 2004 free(buf); 2005 return events; 2006 error: 2007 free_event_desc(events); 2008 events = NULL; 2009 goto out; 2010 } 2011 2012 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 2013 void *priv __maybe_unused) 2014 { 2015 return fprintf(fp, ", %s = %s", name, val); 2016 } 2017 2018 static void print_event_desc(struct feat_fd *ff, FILE *fp) 2019 { 2020 struct evsel *evsel, *events; 2021 u32 j; 2022 u64 *id; 2023 2024 if (ff->events) 2025 events = ff->events; 2026 else 2027 events = read_event_desc(ff); 2028 2029 if (!events) { 2030 fprintf(fp, "# event desc: not available or unable to read\n"); 2031 return; 2032 } 2033 2034 for (evsel = events; evsel->core.attr.size; evsel++) { 2035 fprintf(fp, "# event : name = %s, ", evsel->name); 2036 2037 if (evsel->core.ids) { 2038 fprintf(fp, ", id = {"); 2039 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 2040 if (j) 2041 fputc(',', fp); 2042 fprintf(fp, " %"PRIu64, *id); 2043 } 2044 fprintf(fp, " }"); 2045 } 2046 2047 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 2048 2049 fputc('\n', fp); 2050 } 2051 2052 free_event_desc(events); 2053 ff->events = NULL; 2054 } 2055 2056 static void print_total_mem(struct feat_fd *ff, FILE *fp) 2057 { 2058 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 2059 } 2060 2061 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 2062 { 2063 int i; 2064 struct numa_node *n; 2065 2066 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 2067 n = &ff->ph->env.numa_nodes[i]; 2068 2069 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 2070 " free = %"PRIu64" kB\n", 2071 n->node, n->mem_total, n->mem_free); 2072 2073 fprintf(fp, "# node%u cpu list : ", n->node); 2074 cpu_map__fprintf(n->map, fp); 2075 } 2076 } 2077 2078 static void print_cpuid(struct feat_fd *ff, FILE *fp) 2079 { 2080 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 2081 } 2082 2083 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 2084 { 2085 fprintf(fp, "# contains samples with branch stack\n"); 2086 } 2087 2088 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 2089 { 2090 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 2091 } 2092 2093 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 2094 { 2095 fprintf(fp, "# contains stat data\n"); 2096 } 2097 2098 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 2099 { 2100 int i; 2101 2102 fprintf(fp, "# CPU cache info:\n"); 2103 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 2104 fprintf(fp, "# "); 2105 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 2106 } 2107 } 2108 2109 static void print_compressed(struct feat_fd *ff, FILE *fp) 2110 { 2111 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 2112 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 2113 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 2114 } 2115 2116 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name) 2117 { 2118 const char *delimiter = ""; 2119 int i; 2120 2121 if (!nr_caps) { 2122 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name); 2123 return; 2124 } 2125 2126 fprintf(fp, "# %s pmu capabilities: ", pmu_name); 2127 for (i = 0; i < nr_caps; i++) { 2128 fprintf(fp, "%s%s", delimiter, caps[i]); 2129 delimiter = ", "; 2130 } 2131 2132 fprintf(fp, "\n"); 2133 } 2134 2135 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2136 { 2137 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps, 2138 ff->ph->env.cpu_pmu_caps, (char *)"cpu"); 2139 } 2140 2141 static void print_pmu_caps(struct feat_fd *ff, FILE *fp) 2142 { 2143 struct pmu_caps *pmu_caps; 2144 2145 for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) { 2146 pmu_caps = &ff->ph->env.pmu_caps[i]; 2147 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps, 2148 pmu_caps->pmu_name); 2149 } 2150 2151 if (strcmp(perf_env__arch(&ff->ph->env), "x86") == 0 && 2152 perf_env__has_pmu_mapping(&ff->ph->env, "ibs_op")) { 2153 char *max_precise = perf_env__find_pmu_cap(&ff->ph->env, "cpu", "max_precise"); 2154 2155 if (max_precise != NULL && atoi(max_precise) == 0) 2156 fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n"); 2157 } 2158 } 2159 2160 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 2161 { 2162 const char *delimiter = "# pmu mappings: "; 2163 char *str, *tmp; 2164 u32 pmu_num; 2165 u32 type; 2166 2167 pmu_num = ff->ph->env.nr_pmu_mappings; 2168 if (!pmu_num) { 2169 fprintf(fp, "# pmu mappings: not available\n"); 2170 return; 2171 } 2172 2173 str = ff->ph->env.pmu_mappings; 2174 2175 while (pmu_num) { 2176 type = strtoul(str, &tmp, 0); 2177 if (*tmp != ':') 2178 goto error; 2179 2180 str = tmp + 1; 2181 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 2182 2183 delimiter = ", "; 2184 str += strlen(str) + 1; 2185 pmu_num--; 2186 } 2187 2188 fprintf(fp, "\n"); 2189 2190 if (!pmu_num) 2191 return; 2192 error: 2193 fprintf(fp, "# pmu mappings: unable to read\n"); 2194 } 2195 2196 static void print_group_desc(struct feat_fd *ff, FILE *fp) 2197 { 2198 struct perf_session *session; 2199 struct evsel *evsel; 2200 u32 nr = 0; 2201 2202 session = container_of(ff->ph, struct perf_session, header); 2203 2204 evlist__for_each_entry(session->evlist, evsel) { 2205 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 2206 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); 2207 2208 nr = evsel->core.nr_members - 1; 2209 } else if (nr) { 2210 fprintf(fp, ",%s", evsel__name(evsel)); 2211 2212 if (--nr == 0) 2213 fprintf(fp, "}\n"); 2214 } 2215 } 2216 } 2217 2218 static void print_sample_time(struct feat_fd *ff, FILE *fp) 2219 { 2220 struct perf_session *session; 2221 char time_buf[32]; 2222 double d; 2223 2224 session = container_of(ff->ph, struct perf_session, header); 2225 2226 timestamp__scnprintf_usec(session->evlist->first_sample_time, 2227 time_buf, sizeof(time_buf)); 2228 fprintf(fp, "# time of first sample : %s\n", time_buf); 2229 2230 timestamp__scnprintf_usec(session->evlist->last_sample_time, 2231 time_buf, sizeof(time_buf)); 2232 fprintf(fp, "# time of last sample : %s\n", time_buf); 2233 2234 d = (double)(session->evlist->last_sample_time - 2235 session->evlist->first_sample_time) / NSEC_PER_MSEC; 2236 2237 fprintf(fp, "# sample duration : %10.3f ms\n", d); 2238 } 2239 2240 static void memory_node__fprintf(struct memory_node *n, 2241 unsigned long long bsize, FILE *fp) 2242 { 2243 char buf_map[100], buf_size[50]; 2244 unsigned long long size; 2245 2246 size = bsize * bitmap_weight(n->set, n->size); 2247 unit_number__scnprintf(buf_size, 50, size); 2248 2249 bitmap_scnprintf(n->set, n->size, buf_map, 100); 2250 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 2251 } 2252 2253 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 2254 { 2255 struct memory_node *nodes; 2256 int i, nr; 2257 2258 nodes = ff->ph->env.memory_nodes; 2259 nr = ff->ph->env.nr_memory_nodes; 2260 2261 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 2262 nr, ff->ph->env.memory_bsize); 2263 2264 for (i = 0; i < nr; i++) { 2265 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 2266 } 2267 } 2268 2269 static int __event_process_build_id(struct perf_record_header_build_id *bev, 2270 char *filename, 2271 struct perf_session *session) 2272 { 2273 int err = -1; 2274 struct machine *machine; 2275 u16 cpumode; 2276 struct dso *dso; 2277 enum dso_space_type dso_space; 2278 2279 machine = perf_session__findnew_machine(session, bev->pid); 2280 if (!machine) 2281 goto out; 2282 2283 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2284 2285 switch (cpumode) { 2286 case PERF_RECORD_MISC_KERNEL: 2287 dso_space = DSO_SPACE__KERNEL; 2288 break; 2289 case PERF_RECORD_MISC_GUEST_KERNEL: 2290 dso_space = DSO_SPACE__KERNEL_GUEST; 2291 break; 2292 case PERF_RECORD_MISC_USER: 2293 case PERF_RECORD_MISC_GUEST_USER: 2294 dso_space = DSO_SPACE__USER; 2295 break; 2296 default: 2297 goto out; 2298 } 2299 2300 dso = machine__findnew_dso(machine, filename); 2301 if (dso != NULL) { 2302 char sbuild_id[SBUILD_ID_SIZE]; 2303 struct build_id bid; 2304 size_t size = BUILD_ID_SIZE; 2305 2306 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) 2307 size = bev->size; 2308 2309 build_id__init(&bid, bev->data, size); 2310 dso__set_build_id(dso, &bid); 2311 dso__set_header_build_id(dso, true); 2312 2313 if (dso_space != DSO_SPACE__USER) { 2314 struct kmod_path m = { .name = NULL, }; 2315 2316 if (!kmod_path__parse_name(&m, filename) && m.kmod) 2317 dso__set_module_info(dso, &m, machine); 2318 2319 dso__set_kernel(dso, dso_space); 2320 free(m.name); 2321 } 2322 2323 build_id__sprintf(dso__bid(dso), sbuild_id); 2324 pr_debug("build id event received for %s: %s [%zu]\n", 2325 dso__long_name(dso), sbuild_id, size); 2326 dso__put(dso); 2327 } 2328 2329 err = 0; 2330 out: 2331 return err; 2332 } 2333 2334 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 2335 int input, u64 offset, u64 size) 2336 { 2337 struct perf_session *session = container_of(header, struct perf_session, header); 2338 struct { 2339 struct perf_event_header header; 2340 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 2341 char filename[0]; 2342 } old_bev; 2343 struct perf_record_header_build_id bev; 2344 char filename[PATH_MAX]; 2345 u64 limit = offset + size; 2346 2347 while (offset < limit) { 2348 ssize_t len; 2349 2350 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2351 return -1; 2352 2353 if (header->needs_swap) 2354 perf_event_header__bswap(&old_bev.header); 2355 2356 len = old_bev.header.size - sizeof(old_bev); 2357 if (readn(input, filename, len) != len) 2358 return -1; 2359 2360 bev.header = old_bev.header; 2361 2362 /* 2363 * As the pid is the missing value, we need to fill 2364 * it properly. The header.misc value give us nice hint. 2365 */ 2366 bev.pid = HOST_KERNEL_ID; 2367 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2368 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2369 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2370 2371 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2372 __event_process_build_id(&bev, filename, session); 2373 2374 offset += bev.header.size; 2375 } 2376 2377 return 0; 2378 } 2379 2380 static int perf_header__read_build_ids(struct perf_header *header, 2381 int input, u64 offset, u64 size) 2382 { 2383 struct perf_session *session = container_of(header, struct perf_session, header); 2384 struct perf_record_header_build_id bev; 2385 char filename[PATH_MAX]; 2386 u64 limit = offset + size, orig_offset = offset; 2387 int err = -1; 2388 2389 while (offset < limit) { 2390 ssize_t len; 2391 2392 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2393 goto out; 2394 2395 if (header->needs_swap) 2396 perf_event_header__bswap(&bev.header); 2397 2398 len = bev.header.size - sizeof(bev); 2399 if (readn(input, filename, len) != len) 2400 goto out; 2401 /* 2402 * The a1645ce1 changeset: 2403 * 2404 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2405 * 2406 * Added a field to struct perf_record_header_build_id that broke the file 2407 * format. 2408 * 2409 * Since the kernel build-id is the first entry, process the 2410 * table using the old format if the well known 2411 * '[kernel.kallsyms]' string for the kernel build-id has the 2412 * first 4 characters chopped off (where the pid_t sits). 2413 */ 2414 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2415 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2416 return -1; 2417 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2418 } 2419 2420 __event_process_build_id(&bev, filename, session); 2421 2422 offset += bev.header.size; 2423 } 2424 err = 0; 2425 out: 2426 return err; 2427 } 2428 2429 /* Macro for features that simply need to read and store a string. */ 2430 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2431 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2432 {\ 2433 free(ff->ph->env.__feat_env); \ 2434 ff->ph->env.__feat_env = do_read_string(ff); \ 2435 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2436 } 2437 2438 FEAT_PROCESS_STR_FUN(hostname, hostname); 2439 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2440 FEAT_PROCESS_STR_FUN(version, version); 2441 FEAT_PROCESS_STR_FUN(arch, arch); 2442 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2443 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2444 2445 #ifdef HAVE_LIBTRACEEVENT 2446 static int process_tracing_data(struct feat_fd *ff, void *data) 2447 { 2448 ssize_t ret = trace_report(ff->fd, data, false); 2449 2450 return ret < 0 ? -1 : 0; 2451 } 2452 #endif 2453 2454 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2455 { 2456 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2457 pr_debug("Failed to read buildids, continuing...\n"); 2458 return 0; 2459 } 2460 2461 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2462 { 2463 int ret; 2464 u32 nr_cpus_avail, nr_cpus_online; 2465 2466 ret = do_read_u32(ff, &nr_cpus_avail); 2467 if (ret) 2468 return ret; 2469 2470 ret = do_read_u32(ff, &nr_cpus_online); 2471 if (ret) 2472 return ret; 2473 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2474 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2475 return 0; 2476 } 2477 2478 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2479 { 2480 u64 total_mem; 2481 int ret; 2482 2483 ret = do_read_u64(ff, &total_mem); 2484 if (ret) 2485 return -1; 2486 ff->ph->env.total_mem = (unsigned long long)total_mem; 2487 return 0; 2488 } 2489 2490 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) 2491 { 2492 struct evsel *evsel; 2493 2494 evlist__for_each_entry(evlist, evsel) { 2495 if (evsel->core.idx == idx) 2496 return evsel; 2497 } 2498 2499 return NULL; 2500 } 2501 2502 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event) 2503 { 2504 struct evsel *evsel; 2505 2506 if (!event->name) 2507 return; 2508 2509 evsel = evlist__find_by_index(evlist, event->core.idx); 2510 if (!evsel) 2511 return; 2512 2513 if (evsel->name) 2514 return; 2515 2516 evsel->name = strdup(event->name); 2517 } 2518 2519 static int 2520 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2521 { 2522 struct perf_session *session; 2523 struct evsel *evsel, *events = read_event_desc(ff); 2524 2525 if (!events) 2526 return 0; 2527 2528 session = container_of(ff->ph, struct perf_session, header); 2529 2530 if (session->data->is_pipe) { 2531 /* Save events for reading later by print_event_desc, 2532 * since they can't be read again in pipe mode. */ 2533 ff->events = events; 2534 } 2535 2536 for (evsel = events; evsel->core.attr.size; evsel++) 2537 evlist__set_event_name(session->evlist, evsel); 2538 2539 if (!session->data->is_pipe) 2540 free_event_desc(events); 2541 2542 return 0; 2543 } 2544 2545 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2546 { 2547 char *str, *cmdline = NULL, **argv = NULL; 2548 u32 nr, i, len = 0; 2549 2550 if (do_read_u32(ff, &nr)) 2551 return -1; 2552 2553 ff->ph->env.nr_cmdline = nr; 2554 2555 cmdline = zalloc(ff->size + nr + 1); 2556 if (!cmdline) 2557 return -1; 2558 2559 argv = zalloc(sizeof(char *) * (nr + 1)); 2560 if (!argv) 2561 goto error; 2562 2563 for (i = 0; i < nr; i++) { 2564 str = do_read_string(ff); 2565 if (!str) 2566 goto error; 2567 2568 argv[i] = cmdline + len; 2569 memcpy(argv[i], str, strlen(str) + 1); 2570 len += strlen(str) + 1; 2571 free(str); 2572 } 2573 ff->ph->env.cmdline = cmdline; 2574 ff->ph->env.cmdline_argv = (const char **) argv; 2575 return 0; 2576 2577 error: 2578 free(argv); 2579 free(cmdline); 2580 return -1; 2581 } 2582 2583 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2584 { 2585 u32 nr, i; 2586 char *str = NULL; 2587 struct strbuf sb; 2588 int cpu_nr = ff->ph->env.nr_cpus_avail; 2589 u64 size = 0; 2590 struct perf_header *ph = ff->ph; 2591 bool do_core_id_test = true; 2592 2593 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2594 if (!ph->env.cpu) 2595 return -1; 2596 2597 if (do_read_u32(ff, &nr)) 2598 goto free_cpu; 2599 2600 ph->env.nr_sibling_cores = nr; 2601 size += sizeof(u32); 2602 if (strbuf_init(&sb, 128) < 0) 2603 goto free_cpu; 2604 2605 for (i = 0; i < nr; i++) { 2606 str = do_read_string(ff); 2607 if (!str) 2608 goto error; 2609 2610 /* include a NULL character at the end */ 2611 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2612 goto error; 2613 size += string_size(str); 2614 zfree(&str); 2615 } 2616 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2617 2618 if (do_read_u32(ff, &nr)) 2619 return -1; 2620 2621 ph->env.nr_sibling_threads = nr; 2622 size += sizeof(u32); 2623 2624 for (i = 0; i < nr; i++) { 2625 str = do_read_string(ff); 2626 if (!str) 2627 goto error; 2628 2629 /* include a NULL character at the end */ 2630 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2631 goto error; 2632 size += string_size(str); 2633 zfree(&str); 2634 } 2635 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2636 2637 /* 2638 * The header may be from old perf, 2639 * which doesn't include core id and socket id information. 2640 */ 2641 if (ff->size <= size) { 2642 zfree(&ph->env.cpu); 2643 return 0; 2644 } 2645 2646 /* On s390 the socket_id number is not related to the numbers of cpus. 2647 * The socket_id number might be higher than the numbers of cpus. 2648 * This depends on the configuration. 2649 * AArch64 is the same. 2650 */ 2651 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2652 || !strncmp(ph->env.arch, "aarch64", 7))) 2653 do_core_id_test = false; 2654 2655 for (i = 0; i < (u32)cpu_nr; i++) { 2656 if (do_read_u32(ff, &nr)) 2657 goto free_cpu; 2658 2659 ph->env.cpu[i].core_id = nr; 2660 size += sizeof(u32); 2661 2662 if (do_read_u32(ff, &nr)) 2663 goto free_cpu; 2664 2665 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2666 pr_debug("socket_id number is too big." 2667 "You may need to upgrade the perf tool.\n"); 2668 goto free_cpu; 2669 } 2670 2671 ph->env.cpu[i].socket_id = nr; 2672 size += sizeof(u32); 2673 } 2674 2675 /* 2676 * The header may be from old perf, 2677 * which doesn't include die information. 2678 */ 2679 if (ff->size <= size) 2680 return 0; 2681 2682 if (do_read_u32(ff, &nr)) 2683 return -1; 2684 2685 ph->env.nr_sibling_dies = nr; 2686 size += sizeof(u32); 2687 2688 for (i = 0; i < nr; i++) { 2689 str = do_read_string(ff); 2690 if (!str) 2691 goto error; 2692 2693 /* include a NULL character at the end */ 2694 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2695 goto error; 2696 size += string_size(str); 2697 zfree(&str); 2698 } 2699 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2700 2701 for (i = 0; i < (u32)cpu_nr; i++) { 2702 if (do_read_u32(ff, &nr)) 2703 goto free_cpu; 2704 2705 ph->env.cpu[i].die_id = nr; 2706 } 2707 2708 return 0; 2709 2710 error: 2711 strbuf_release(&sb); 2712 zfree(&str); 2713 free_cpu: 2714 zfree(&ph->env.cpu); 2715 return -1; 2716 } 2717 2718 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2719 { 2720 struct numa_node *nodes, *n; 2721 u32 nr, i; 2722 char *str; 2723 2724 /* nr nodes */ 2725 if (do_read_u32(ff, &nr)) 2726 return -1; 2727 2728 nodes = zalloc(sizeof(*nodes) * nr); 2729 if (!nodes) 2730 return -ENOMEM; 2731 2732 for (i = 0; i < nr; i++) { 2733 n = &nodes[i]; 2734 2735 /* node number */ 2736 if (do_read_u32(ff, &n->node)) 2737 goto error; 2738 2739 if (do_read_u64(ff, &n->mem_total)) 2740 goto error; 2741 2742 if (do_read_u64(ff, &n->mem_free)) 2743 goto error; 2744 2745 str = do_read_string(ff); 2746 if (!str) 2747 goto error; 2748 2749 n->map = perf_cpu_map__new(str); 2750 free(str); 2751 if (!n->map) 2752 goto error; 2753 } 2754 ff->ph->env.nr_numa_nodes = nr; 2755 ff->ph->env.numa_nodes = nodes; 2756 return 0; 2757 2758 error: 2759 free(nodes); 2760 return -1; 2761 } 2762 2763 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2764 { 2765 char *name; 2766 u32 pmu_num; 2767 u32 type; 2768 struct strbuf sb; 2769 2770 if (do_read_u32(ff, &pmu_num)) 2771 return -1; 2772 2773 if (!pmu_num) { 2774 pr_debug("pmu mappings not available\n"); 2775 return 0; 2776 } 2777 2778 ff->ph->env.nr_pmu_mappings = pmu_num; 2779 if (strbuf_init(&sb, 128) < 0) 2780 return -1; 2781 2782 while (pmu_num) { 2783 if (do_read_u32(ff, &type)) 2784 goto error; 2785 2786 name = do_read_string(ff); 2787 if (!name) 2788 goto error; 2789 2790 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2791 goto error; 2792 /* include a NULL character at the end */ 2793 if (strbuf_add(&sb, "", 1) < 0) 2794 goto error; 2795 2796 if (!strcmp(name, "msr")) 2797 ff->ph->env.msr_pmu_type = type; 2798 2799 free(name); 2800 pmu_num--; 2801 } 2802 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2803 return 0; 2804 2805 error: 2806 strbuf_release(&sb); 2807 return -1; 2808 } 2809 2810 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2811 { 2812 size_t ret = -1; 2813 u32 i, nr, nr_groups; 2814 struct perf_session *session; 2815 struct evsel *evsel, *leader = NULL; 2816 struct group_desc { 2817 char *name; 2818 u32 leader_idx; 2819 u32 nr_members; 2820 } *desc; 2821 2822 if (do_read_u32(ff, &nr_groups)) 2823 return -1; 2824 2825 ff->ph->env.nr_groups = nr_groups; 2826 if (!nr_groups) { 2827 pr_debug("group desc not available\n"); 2828 return 0; 2829 } 2830 2831 desc = calloc(nr_groups, sizeof(*desc)); 2832 if (!desc) 2833 return -1; 2834 2835 for (i = 0; i < nr_groups; i++) { 2836 desc[i].name = do_read_string(ff); 2837 if (!desc[i].name) 2838 goto out_free; 2839 2840 if (do_read_u32(ff, &desc[i].leader_idx)) 2841 goto out_free; 2842 2843 if (do_read_u32(ff, &desc[i].nr_members)) 2844 goto out_free; 2845 } 2846 2847 /* 2848 * Rebuild group relationship based on the group_desc 2849 */ 2850 session = container_of(ff->ph, struct perf_session, header); 2851 2852 i = nr = 0; 2853 evlist__for_each_entry(session->evlist, evsel) { 2854 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) { 2855 evsel__set_leader(evsel, evsel); 2856 /* {anon_group} is a dummy name */ 2857 if (strcmp(desc[i].name, "{anon_group}")) { 2858 evsel->group_name = desc[i].name; 2859 desc[i].name = NULL; 2860 } 2861 evsel->core.nr_members = desc[i].nr_members; 2862 2863 if (i >= nr_groups || nr > 0) { 2864 pr_debug("invalid group desc\n"); 2865 goto out_free; 2866 } 2867 2868 leader = evsel; 2869 nr = evsel->core.nr_members - 1; 2870 i++; 2871 } else if (nr) { 2872 /* This is a group member */ 2873 evsel__set_leader(evsel, leader); 2874 2875 nr--; 2876 } 2877 } 2878 2879 if (i != nr_groups || nr != 0) { 2880 pr_debug("invalid group desc\n"); 2881 goto out_free; 2882 } 2883 2884 ret = 0; 2885 out_free: 2886 for (i = 0; i < nr_groups; i++) 2887 zfree(&desc[i].name); 2888 free(desc); 2889 2890 return ret; 2891 } 2892 2893 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2894 { 2895 struct perf_session *session; 2896 int err; 2897 2898 session = container_of(ff->ph, struct perf_session, header); 2899 2900 err = auxtrace_index__process(ff->fd, ff->size, session, 2901 ff->ph->needs_swap); 2902 if (err < 0) 2903 pr_err("Failed to process auxtrace index\n"); 2904 return err; 2905 } 2906 2907 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2908 { 2909 struct cpu_cache_level *caches; 2910 u32 cnt, i, version; 2911 2912 if (do_read_u32(ff, &version)) 2913 return -1; 2914 2915 if (version != 1) 2916 return -1; 2917 2918 if (do_read_u32(ff, &cnt)) 2919 return -1; 2920 2921 caches = zalloc(sizeof(*caches) * cnt); 2922 if (!caches) 2923 return -1; 2924 2925 for (i = 0; i < cnt; i++) { 2926 struct cpu_cache_level *c = &caches[i]; 2927 2928 #define _R(v) \ 2929 if (do_read_u32(ff, &c->v)) \ 2930 goto out_free_caches; \ 2931 2932 _R(level) 2933 _R(line_size) 2934 _R(sets) 2935 _R(ways) 2936 #undef _R 2937 2938 #define _R(v) \ 2939 c->v = do_read_string(ff); \ 2940 if (!c->v) \ 2941 goto out_free_caches; \ 2942 2943 _R(type) 2944 _R(size) 2945 _R(map) 2946 #undef _R 2947 } 2948 2949 ff->ph->env.caches = caches; 2950 ff->ph->env.caches_cnt = cnt; 2951 return 0; 2952 out_free_caches: 2953 for (i = 0; i < cnt; i++) { 2954 free(caches[i].type); 2955 free(caches[i].size); 2956 free(caches[i].map); 2957 } 2958 free(caches); 2959 return -1; 2960 } 2961 2962 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2963 { 2964 struct perf_session *session; 2965 u64 first_sample_time, last_sample_time; 2966 int ret; 2967 2968 session = container_of(ff->ph, struct perf_session, header); 2969 2970 ret = do_read_u64(ff, &first_sample_time); 2971 if (ret) 2972 return -1; 2973 2974 ret = do_read_u64(ff, &last_sample_time); 2975 if (ret) 2976 return -1; 2977 2978 session->evlist->first_sample_time = first_sample_time; 2979 session->evlist->last_sample_time = last_sample_time; 2980 return 0; 2981 } 2982 2983 static int process_mem_topology(struct feat_fd *ff, 2984 void *data __maybe_unused) 2985 { 2986 struct memory_node *nodes; 2987 u64 version, i, nr, bsize; 2988 int ret = -1; 2989 2990 if (do_read_u64(ff, &version)) 2991 return -1; 2992 2993 if (version != 1) 2994 return -1; 2995 2996 if (do_read_u64(ff, &bsize)) 2997 return -1; 2998 2999 if (do_read_u64(ff, &nr)) 3000 return -1; 3001 3002 nodes = zalloc(sizeof(*nodes) * nr); 3003 if (!nodes) 3004 return -1; 3005 3006 for (i = 0; i < nr; i++) { 3007 struct memory_node n; 3008 3009 #define _R(v) \ 3010 if (do_read_u64(ff, &n.v)) \ 3011 goto out; \ 3012 3013 _R(node) 3014 _R(size) 3015 3016 #undef _R 3017 3018 if (do_read_bitmap(ff, &n.set, &n.size)) 3019 goto out; 3020 3021 nodes[i] = n; 3022 } 3023 3024 ff->ph->env.memory_bsize = bsize; 3025 ff->ph->env.memory_nodes = nodes; 3026 ff->ph->env.nr_memory_nodes = nr; 3027 ret = 0; 3028 3029 out: 3030 if (ret) 3031 free(nodes); 3032 return ret; 3033 } 3034 3035 static int process_clockid(struct feat_fd *ff, 3036 void *data __maybe_unused) 3037 { 3038 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns)) 3039 return -1; 3040 3041 return 0; 3042 } 3043 3044 static int process_clock_data(struct feat_fd *ff, 3045 void *_data __maybe_unused) 3046 { 3047 u32 data32; 3048 u64 data64; 3049 3050 /* version */ 3051 if (do_read_u32(ff, &data32)) 3052 return -1; 3053 3054 if (data32 != 1) 3055 return -1; 3056 3057 /* clockid */ 3058 if (do_read_u32(ff, &data32)) 3059 return -1; 3060 3061 ff->ph->env.clock.clockid = data32; 3062 3063 /* TOD ref time */ 3064 if (do_read_u64(ff, &data64)) 3065 return -1; 3066 3067 ff->ph->env.clock.tod_ns = data64; 3068 3069 /* clockid ref time */ 3070 if (do_read_u64(ff, &data64)) 3071 return -1; 3072 3073 ff->ph->env.clock.clockid_ns = data64; 3074 ff->ph->env.clock.enabled = true; 3075 return 0; 3076 } 3077 3078 static int process_hybrid_topology(struct feat_fd *ff, 3079 void *data __maybe_unused) 3080 { 3081 struct hybrid_node *nodes, *n; 3082 u32 nr, i; 3083 3084 /* nr nodes */ 3085 if (do_read_u32(ff, &nr)) 3086 return -1; 3087 3088 nodes = zalloc(sizeof(*nodes) * nr); 3089 if (!nodes) 3090 return -ENOMEM; 3091 3092 for (i = 0; i < nr; i++) { 3093 n = &nodes[i]; 3094 3095 n->pmu_name = do_read_string(ff); 3096 if (!n->pmu_name) 3097 goto error; 3098 3099 n->cpus = do_read_string(ff); 3100 if (!n->cpus) 3101 goto error; 3102 } 3103 3104 ff->ph->env.nr_hybrid_nodes = nr; 3105 ff->ph->env.hybrid_nodes = nodes; 3106 return 0; 3107 3108 error: 3109 for (i = 0; i < nr; i++) { 3110 free(nodes[i].pmu_name); 3111 free(nodes[i].cpus); 3112 } 3113 3114 free(nodes); 3115 return -1; 3116 } 3117 3118 static int process_dir_format(struct feat_fd *ff, 3119 void *_data __maybe_unused) 3120 { 3121 struct perf_session *session; 3122 struct perf_data *data; 3123 3124 session = container_of(ff->ph, struct perf_session, header); 3125 data = session->data; 3126 3127 if (WARN_ON(!perf_data__is_dir(data))) 3128 return -1; 3129 3130 return do_read_u64(ff, &data->dir.version); 3131 } 3132 3133 #ifdef HAVE_LIBBPF_SUPPORT 3134 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 3135 { 3136 struct bpf_prog_info_node *info_node; 3137 struct perf_env *env = &ff->ph->env; 3138 struct perf_bpil *info_linear; 3139 u32 count, i; 3140 int err = -1; 3141 3142 if (ff->ph->needs_swap) { 3143 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n"); 3144 return 0; 3145 } 3146 3147 if (do_read_u32(ff, &count)) 3148 return -1; 3149 3150 down_write(&env->bpf_progs.lock); 3151 3152 for (i = 0; i < count; ++i) { 3153 u32 info_len, data_len; 3154 3155 info_linear = NULL; 3156 info_node = NULL; 3157 if (do_read_u32(ff, &info_len)) 3158 goto out; 3159 if (do_read_u32(ff, &data_len)) 3160 goto out; 3161 3162 if (info_len > sizeof(struct bpf_prog_info)) { 3163 pr_warning("detected invalid bpf_prog_info\n"); 3164 goto out; 3165 } 3166 3167 info_linear = malloc(sizeof(struct perf_bpil) + 3168 data_len); 3169 if (!info_linear) 3170 goto out; 3171 info_linear->info_len = sizeof(struct bpf_prog_info); 3172 info_linear->data_len = data_len; 3173 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 3174 goto out; 3175 if (__do_read(ff, &info_linear->info, info_len)) 3176 goto out; 3177 if (info_len < sizeof(struct bpf_prog_info)) 3178 memset(((void *)(&info_linear->info)) + info_len, 0, 3179 sizeof(struct bpf_prog_info) - info_len); 3180 3181 if (__do_read(ff, info_linear->data, data_len)) 3182 goto out; 3183 3184 info_node = malloc(sizeof(struct bpf_prog_info_node)); 3185 if (!info_node) 3186 goto out; 3187 3188 /* after reading from file, translate offset to address */ 3189 bpil_offs_to_addr(info_linear); 3190 info_node->info_linear = info_linear; 3191 __perf_env__insert_bpf_prog_info(env, info_node); 3192 } 3193 3194 up_write(&env->bpf_progs.lock); 3195 return 0; 3196 out: 3197 free(info_linear); 3198 free(info_node); 3199 up_write(&env->bpf_progs.lock); 3200 return err; 3201 } 3202 3203 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 3204 { 3205 struct perf_env *env = &ff->ph->env; 3206 struct btf_node *node = NULL; 3207 u32 count, i; 3208 int err = -1; 3209 3210 if (ff->ph->needs_swap) { 3211 pr_warning("interpreting btf from systems with endianness is not yet supported\n"); 3212 return 0; 3213 } 3214 3215 if (do_read_u32(ff, &count)) 3216 return -1; 3217 3218 down_write(&env->bpf_progs.lock); 3219 3220 for (i = 0; i < count; ++i) { 3221 u32 id, data_size; 3222 3223 if (do_read_u32(ff, &id)) 3224 goto out; 3225 if (do_read_u32(ff, &data_size)) 3226 goto out; 3227 3228 node = malloc(sizeof(struct btf_node) + data_size); 3229 if (!node) 3230 goto out; 3231 3232 node->id = id; 3233 node->data_size = data_size; 3234 3235 if (__do_read(ff, node->data, data_size)) 3236 goto out; 3237 3238 __perf_env__insert_btf(env, node); 3239 node = NULL; 3240 } 3241 3242 err = 0; 3243 out: 3244 up_write(&env->bpf_progs.lock); 3245 free(node); 3246 return err; 3247 } 3248 #endif // HAVE_LIBBPF_SUPPORT 3249 3250 static int process_compressed(struct feat_fd *ff, 3251 void *data __maybe_unused) 3252 { 3253 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 3254 return -1; 3255 3256 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 3257 return -1; 3258 3259 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 3260 return -1; 3261 3262 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 3263 return -1; 3264 3265 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 3266 return -1; 3267 3268 return 0; 3269 } 3270 3271 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps, 3272 char ***caps, unsigned int *max_branches, 3273 unsigned int *br_cntr_nr, 3274 unsigned int *br_cntr_width) 3275 { 3276 char *name, *value, *ptr; 3277 u32 nr_pmu_caps, i; 3278 3279 *nr_caps = 0; 3280 *caps = NULL; 3281 3282 if (do_read_u32(ff, &nr_pmu_caps)) 3283 return -1; 3284 3285 if (!nr_pmu_caps) 3286 return 0; 3287 3288 *caps = zalloc(sizeof(char *) * nr_pmu_caps); 3289 if (!*caps) 3290 return -1; 3291 3292 for (i = 0; i < nr_pmu_caps; i++) { 3293 name = do_read_string(ff); 3294 if (!name) 3295 goto error; 3296 3297 value = do_read_string(ff); 3298 if (!value) 3299 goto free_name; 3300 3301 if (asprintf(&ptr, "%s=%s", name, value) < 0) 3302 goto free_value; 3303 3304 (*caps)[i] = ptr; 3305 3306 if (!strcmp(name, "branches")) 3307 *max_branches = atoi(value); 3308 3309 if (!strcmp(name, "branch_counter_nr")) 3310 *br_cntr_nr = atoi(value); 3311 3312 if (!strcmp(name, "branch_counter_width")) 3313 *br_cntr_width = atoi(value); 3314 3315 free(value); 3316 free(name); 3317 } 3318 *nr_caps = nr_pmu_caps; 3319 return 0; 3320 3321 free_value: 3322 free(value); 3323 free_name: 3324 free(name); 3325 error: 3326 for (; i > 0; i--) 3327 free((*caps)[i - 1]); 3328 free(*caps); 3329 *caps = NULL; 3330 *nr_caps = 0; 3331 return -1; 3332 } 3333 3334 static int process_cpu_pmu_caps(struct feat_fd *ff, 3335 void *data __maybe_unused) 3336 { 3337 int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps, 3338 &ff->ph->env.cpu_pmu_caps, 3339 &ff->ph->env.max_branches, 3340 &ff->ph->env.br_cntr_nr, 3341 &ff->ph->env.br_cntr_width); 3342 3343 if (!ret && !ff->ph->env.cpu_pmu_caps) 3344 pr_debug("cpu pmu capabilities not available\n"); 3345 return ret; 3346 } 3347 3348 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused) 3349 { 3350 struct pmu_caps *pmu_caps; 3351 u32 nr_pmu, i; 3352 int ret; 3353 int j; 3354 3355 if (do_read_u32(ff, &nr_pmu)) 3356 return -1; 3357 3358 if (!nr_pmu) { 3359 pr_debug("pmu capabilities not available\n"); 3360 return 0; 3361 } 3362 3363 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu); 3364 if (!pmu_caps) 3365 return -ENOMEM; 3366 3367 for (i = 0; i < nr_pmu; i++) { 3368 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps, 3369 &pmu_caps[i].caps, 3370 &pmu_caps[i].max_branches, 3371 &pmu_caps[i].br_cntr_nr, 3372 &pmu_caps[i].br_cntr_width); 3373 if (ret) 3374 goto err; 3375 3376 pmu_caps[i].pmu_name = do_read_string(ff); 3377 if (!pmu_caps[i].pmu_name) { 3378 ret = -1; 3379 goto err; 3380 } 3381 if (!pmu_caps[i].nr_caps) { 3382 pr_debug("%s pmu capabilities not available\n", 3383 pmu_caps[i].pmu_name); 3384 } 3385 } 3386 3387 ff->ph->env.nr_pmus_with_caps = nr_pmu; 3388 ff->ph->env.pmu_caps = pmu_caps; 3389 return 0; 3390 3391 err: 3392 for (i = 0; i < nr_pmu; i++) { 3393 for (j = 0; j < pmu_caps[i].nr_caps; j++) 3394 free(pmu_caps[i].caps[j]); 3395 free(pmu_caps[i].caps); 3396 free(pmu_caps[i].pmu_name); 3397 } 3398 3399 free(pmu_caps); 3400 return ret; 3401 } 3402 3403 #define FEAT_OPR(n, func, __full_only) \ 3404 [HEADER_##n] = { \ 3405 .name = __stringify(n), \ 3406 .write = write_##func, \ 3407 .print = print_##func, \ 3408 .full_only = __full_only, \ 3409 .process = process_##func, \ 3410 .synthesize = true \ 3411 } 3412 3413 #define FEAT_OPN(n, func, __full_only) \ 3414 [HEADER_##n] = { \ 3415 .name = __stringify(n), \ 3416 .write = write_##func, \ 3417 .print = print_##func, \ 3418 .full_only = __full_only, \ 3419 .process = process_##func \ 3420 } 3421 3422 /* feature_ops not implemented: */ 3423 #define print_tracing_data NULL 3424 #define print_build_id NULL 3425 3426 #define process_branch_stack NULL 3427 #define process_stat NULL 3428 3429 // Only used in util/synthetic-events.c 3430 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 3431 3432 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 3433 #ifdef HAVE_LIBTRACEEVENT 3434 FEAT_OPN(TRACING_DATA, tracing_data, false), 3435 #endif 3436 FEAT_OPN(BUILD_ID, build_id, false), 3437 FEAT_OPR(HOSTNAME, hostname, false), 3438 FEAT_OPR(OSRELEASE, osrelease, false), 3439 FEAT_OPR(VERSION, version, false), 3440 FEAT_OPR(ARCH, arch, false), 3441 FEAT_OPR(NRCPUS, nrcpus, false), 3442 FEAT_OPR(CPUDESC, cpudesc, false), 3443 FEAT_OPR(CPUID, cpuid, false), 3444 FEAT_OPR(TOTAL_MEM, total_mem, false), 3445 FEAT_OPR(EVENT_DESC, event_desc, false), 3446 FEAT_OPR(CMDLINE, cmdline, false), 3447 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 3448 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 3449 FEAT_OPN(BRANCH_STACK, branch_stack, false), 3450 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 3451 FEAT_OPR(GROUP_DESC, group_desc, false), 3452 FEAT_OPN(AUXTRACE, auxtrace, false), 3453 FEAT_OPN(STAT, stat, false), 3454 FEAT_OPN(CACHE, cache, true), 3455 FEAT_OPR(SAMPLE_TIME, sample_time, false), 3456 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 3457 FEAT_OPR(CLOCKID, clockid, false), 3458 FEAT_OPN(DIR_FORMAT, dir_format, false), 3459 #ifdef HAVE_LIBBPF_SUPPORT 3460 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 3461 FEAT_OPR(BPF_BTF, bpf_btf, false), 3462 #endif 3463 FEAT_OPR(COMPRESSED, compressed, false), 3464 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), 3465 FEAT_OPR(CLOCK_DATA, clock_data, false), 3466 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true), 3467 FEAT_OPR(PMU_CAPS, pmu_caps, false), 3468 }; 3469 3470 struct header_print_data { 3471 FILE *fp; 3472 bool full; /* extended list of headers */ 3473 }; 3474 3475 static int perf_file_section__fprintf_info(struct perf_file_section *section, 3476 struct perf_header *ph, 3477 int feat, int fd, void *data) 3478 { 3479 struct header_print_data *hd = data; 3480 struct feat_fd ff; 3481 3482 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3483 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3484 "%d, continuing...\n", section->offset, feat); 3485 return 0; 3486 } 3487 if (feat >= HEADER_LAST_FEATURE) { 3488 pr_warning("unknown feature %d\n", feat); 3489 return 0; 3490 } 3491 if (!feat_ops[feat].print) 3492 return 0; 3493 3494 ff = (struct feat_fd) { 3495 .fd = fd, 3496 .ph = ph, 3497 }; 3498 3499 if (!feat_ops[feat].full_only || hd->full) 3500 feat_ops[feat].print(&ff, hd->fp); 3501 else 3502 fprintf(hd->fp, "# %s info available, use -I to display\n", 3503 feat_ops[feat].name); 3504 3505 return 0; 3506 } 3507 3508 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 3509 { 3510 struct header_print_data hd; 3511 struct perf_header *header = &session->header; 3512 int fd = perf_data__fd(session->data); 3513 struct stat st; 3514 time_t stctime; 3515 int ret, bit; 3516 3517 hd.fp = fp; 3518 hd.full = full; 3519 3520 ret = fstat(fd, &st); 3521 if (ret == -1) 3522 return -1; 3523 3524 stctime = st.st_mtime; 3525 fprintf(fp, "# captured on : %s", ctime(&stctime)); 3526 3527 fprintf(fp, "# header version : %u\n", header->version); 3528 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 3529 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 3530 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 3531 3532 perf_header__process_sections(header, fd, &hd, 3533 perf_file_section__fprintf_info); 3534 3535 if (session->data->is_pipe) 3536 return 0; 3537 3538 fprintf(fp, "# missing features: "); 3539 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 3540 if (bit) 3541 fprintf(fp, "%s ", feat_ops[bit].name); 3542 } 3543 3544 fprintf(fp, "\n"); 3545 return 0; 3546 } 3547 3548 struct header_fw { 3549 struct feat_writer fw; 3550 struct feat_fd *ff; 3551 }; 3552 3553 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz) 3554 { 3555 struct header_fw *h = container_of(fw, struct header_fw, fw); 3556 3557 return do_write(h->ff, buf, sz); 3558 } 3559 3560 static int do_write_feat(struct feat_fd *ff, int type, 3561 struct perf_file_section **p, 3562 struct evlist *evlist, 3563 struct feat_copier *fc) 3564 { 3565 int err; 3566 int ret = 0; 3567 3568 if (perf_header__has_feat(ff->ph, type)) { 3569 if (!feat_ops[type].write) 3570 return -1; 3571 3572 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 3573 return -1; 3574 3575 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3576 3577 /* 3578 * Hook to let perf inject copy features sections from the input 3579 * file. 3580 */ 3581 if (fc && fc->copy) { 3582 struct header_fw h = { 3583 .fw.write = feat_writer_cb, 3584 .ff = ff, 3585 }; 3586 3587 /* ->copy() returns 0 if the feature was not copied */ 3588 err = fc->copy(fc, type, &h.fw); 3589 } else { 3590 err = 0; 3591 } 3592 if (!err) 3593 err = feat_ops[type].write(ff, evlist); 3594 if (err < 0) { 3595 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3596 3597 /* undo anything written */ 3598 lseek(ff->fd, (*p)->offset, SEEK_SET); 3599 3600 return -1; 3601 } 3602 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3603 (*p)++; 3604 } 3605 return ret; 3606 } 3607 3608 static int perf_header__adds_write(struct perf_header *header, 3609 struct evlist *evlist, int fd, 3610 struct feat_copier *fc) 3611 { 3612 int nr_sections; 3613 struct feat_fd ff = { 3614 .fd = fd, 3615 .ph = header, 3616 }; 3617 struct perf_file_section *feat_sec, *p; 3618 int sec_size; 3619 u64 sec_start; 3620 int feat; 3621 int err; 3622 3623 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3624 if (!nr_sections) 3625 return 0; 3626 3627 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3628 if (feat_sec == NULL) 3629 return -ENOMEM; 3630 3631 sec_size = sizeof(*feat_sec) * nr_sections; 3632 3633 sec_start = header->feat_offset; 3634 lseek(fd, sec_start + sec_size, SEEK_SET); 3635 3636 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3637 if (do_write_feat(&ff, feat, &p, evlist, fc)) 3638 perf_header__clear_feat(header, feat); 3639 } 3640 3641 lseek(fd, sec_start, SEEK_SET); 3642 /* 3643 * may write more than needed due to dropped feature, but 3644 * this is okay, reader will skip the missing entries 3645 */ 3646 err = do_write(&ff, feat_sec, sec_size); 3647 if (err < 0) 3648 pr_debug("failed to write feature section\n"); 3649 free(ff.buf); /* TODO: added to silence clang-tidy. */ 3650 free(feat_sec); 3651 return err; 3652 } 3653 3654 int perf_header__write_pipe(int fd) 3655 { 3656 struct perf_pipe_file_header f_header; 3657 struct feat_fd ff = { 3658 .fd = fd, 3659 }; 3660 int err; 3661 3662 f_header = (struct perf_pipe_file_header){ 3663 .magic = PERF_MAGIC, 3664 .size = sizeof(f_header), 3665 }; 3666 3667 err = do_write(&ff, &f_header, sizeof(f_header)); 3668 if (err < 0) { 3669 pr_debug("failed to write perf pipe header\n"); 3670 return err; 3671 } 3672 free(ff.buf); 3673 return 0; 3674 } 3675 3676 static int perf_session__do_write_header(struct perf_session *session, 3677 struct evlist *evlist, 3678 int fd, bool at_exit, 3679 struct feat_copier *fc) 3680 { 3681 struct perf_file_header f_header; 3682 struct perf_file_attr f_attr; 3683 struct perf_header *header = &session->header; 3684 struct evsel *evsel; 3685 struct feat_fd ff = { 3686 .fd = fd, 3687 }; 3688 u64 attr_offset; 3689 int err; 3690 3691 lseek(fd, sizeof(f_header), SEEK_SET); 3692 3693 evlist__for_each_entry(session->evlist, evsel) { 3694 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3695 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3696 if (err < 0) { 3697 pr_debug("failed to write perf header\n"); 3698 free(ff.buf); 3699 return err; 3700 } 3701 } 3702 3703 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3704 3705 evlist__for_each_entry(evlist, evsel) { 3706 if (evsel->core.attr.size < sizeof(evsel->core.attr)) { 3707 /* 3708 * We are likely in "perf inject" and have read 3709 * from an older file. Update attr size so that 3710 * reader gets the right offset to the ids. 3711 */ 3712 evsel->core.attr.size = sizeof(evsel->core.attr); 3713 } 3714 f_attr = (struct perf_file_attr){ 3715 .attr = evsel->core.attr, 3716 .ids = { 3717 .offset = evsel->id_offset, 3718 .size = evsel->core.ids * sizeof(u64), 3719 } 3720 }; 3721 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3722 if (err < 0) { 3723 pr_debug("failed to write perf header attribute\n"); 3724 free(ff.buf); 3725 return err; 3726 } 3727 } 3728 3729 if (!header->data_offset) 3730 header->data_offset = lseek(fd, 0, SEEK_CUR); 3731 header->feat_offset = header->data_offset + header->data_size; 3732 3733 if (at_exit) { 3734 err = perf_header__adds_write(header, evlist, fd, fc); 3735 if (err < 0) { 3736 free(ff.buf); 3737 return err; 3738 } 3739 } 3740 3741 f_header = (struct perf_file_header){ 3742 .magic = PERF_MAGIC, 3743 .size = sizeof(f_header), 3744 .attr_size = sizeof(f_attr), 3745 .attrs = { 3746 .offset = attr_offset, 3747 .size = evlist->core.nr_entries * sizeof(f_attr), 3748 }, 3749 .data = { 3750 .offset = header->data_offset, 3751 .size = header->data_size, 3752 }, 3753 /* event_types is ignored, store zeros */ 3754 }; 3755 3756 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3757 3758 lseek(fd, 0, SEEK_SET); 3759 err = do_write(&ff, &f_header, sizeof(f_header)); 3760 free(ff.buf); 3761 if (err < 0) { 3762 pr_debug("failed to write perf header\n"); 3763 return err; 3764 } 3765 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3766 3767 return 0; 3768 } 3769 3770 int perf_session__write_header(struct perf_session *session, 3771 struct evlist *evlist, 3772 int fd, bool at_exit) 3773 { 3774 return perf_session__do_write_header(session, evlist, fd, at_exit, NULL); 3775 } 3776 3777 size_t perf_session__data_offset(const struct evlist *evlist) 3778 { 3779 struct evsel *evsel; 3780 size_t data_offset; 3781 3782 data_offset = sizeof(struct perf_file_header); 3783 evlist__for_each_entry(evlist, evsel) { 3784 data_offset += evsel->core.ids * sizeof(u64); 3785 } 3786 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr); 3787 3788 return data_offset; 3789 } 3790 3791 int perf_session__inject_header(struct perf_session *session, 3792 struct evlist *evlist, 3793 int fd, 3794 struct feat_copier *fc) 3795 { 3796 return perf_session__do_write_header(session, evlist, fd, true, fc); 3797 } 3798 3799 static int perf_header__getbuffer64(struct perf_header *header, 3800 int fd, void *buf, size_t size) 3801 { 3802 if (readn(fd, buf, size) <= 0) 3803 return -1; 3804 3805 if (header->needs_swap) 3806 mem_bswap_64(buf, size); 3807 3808 return 0; 3809 } 3810 3811 int perf_header__process_sections(struct perf_header *header, int fd, 3812 void *data, 3813 int (*process)(struct perf_file_section *section, 3814 struct perf_header *ph, 3815 int feat, int fd, void *data)) 3816 { 3817 struct perf_file_section *feat_sec, *sec; 3818 int nr_sections; 3819 int sec_size; 3820 int feat; 3821 int err; 3822 3823 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3824 if (!nr_sections) 3825 return 0; 3826 3827 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3828 if (!feat_sec) 3829 return -1; 3830 3831 sec_size = sizeof(*feat_sec) * nr_sections; 3832 3833 lseek(fd, header->feat_offset, SEEK_SET); 3834 3835 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3836 if (err < 0) 3837 goto out_free; 3838 3839 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3840 err = process(sec++, header, feat, fd, data); 3841 if (err < 0) 3842 goto out_free; 3843 } 3844 err = 0; 3845 out_free: 3846 free(feat_sec); 3847 return err; 3848 } 3849 3850 static const int attr_file_abi_sizes[] = { 3851 [0] = PERF_ATTR_SIZE_VER0, 3852 [1] = PERF_ATTR_SIZE_VER1, 3853 [2] = PERF_ATTR_SIZE_VER2, 3854 [3] = PERF_ATTR_SIZE_VER3, 3855 [4] = PERF_ATTR_SIZE_VER4, 3856 0, 3857 }; 3858 3859 /* 3860 * In the legacy file format, the magic number is not used to encode endianness. 3861 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3862 * on ABI revisions, we need to try all combinations for all endianness to 3863 * detect the endianness. 3864 */ 3865 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3866 { 3867 uint64_t ref_size, attr_size; 3868 int i; 3869 3870 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3871 ref_size = attr_file_abi_sizes[i] 3872 + sizeof(struct perf_file_section); 3873 if (hdr_sz != ref_size) { 3874 attr_size = bswap_64(hdr_sz); 3875 if (attr_size != ref_size) 3876 continue; 3877 3878 ph->needs_swap = true; 3879 } 3880 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3881 i, 3882 ph->needs_swap); 3883 return 0; 3884 } 3885 /* could not determine endianness */ 3886 return -1; 3887 } 3888 3889 #define PERF_PIPE_HDR_VER0 16 3890 3891 static const size_t attr_pipe_abi_sizes[] = { 3892 [0] = PERF_PIPE_HDR_VER0, 3893 0, 3894 }; 3895 3896 /* 3897 * In the legacy pipe format, there is an implicit assumption that endianness 3898 * between host recording the samples, and host parsing the samples is the 3899 * same. This is not always the case given that the pipe output may always be 3900 * redirected into a file and analyzed on a different machine with possibly a 3901 * different endianness and perf_event ABI revisions in the perf tool itself. 3902 */ 3903 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3904 { 3905 u64 attr_size; 3906 int i; 3907 3908 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3909 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3910 attr_size = bswap_64(hdr_sz); 3911 if (attr_size != hdr_sz) 3912 continue; 3913 3914 ph->needs_swap = true; 3915 } 3916 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3917 return 0; 3918 } 3919 return -1; 3920 } 3921 3922 bool is_perf_magic(u64 magic) 3923 { 3924 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3925 || magic == __perf_magic2 3926 || magic == __perf_magic2_sw) 3927 return true; 3928 3929 return false; 3930 } 3931 3932 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3933 bool is_pipe, struct perf_header *ph) 3934 { 3935 int ret; 3936 3937 /* check for legacy format */ 3938 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3939 if (ret == 0) { 3940 ph->version = PERF_HEADER_VERSION_1; 3941 pr_debug("legacy perf.data format\n"); 3942 if (is_pipe) 3943 return try_all_pipe_abis(hdr_sz, ph); 3944 3945 return try_all_file_abis(hdr_sz, ph); 3946 } 3947 /* 3948 * the new magic number serves two purposes: 3949 * - unique number to identify actual perf.data files 3950 * - encode endianness of file 3951 */ 3952 ph->version = PERF_HEADER_VERSION_2; 3953 3954 /* check magic number with one endianness */ 3955 if (magic == __perf_magic2) 3956 return 0; 3957 3958 /* check magic number with opposite endianness */ 3959 if (magic != __perf_magic2_sw) 3960 return -1; 3961 3962 ph->needs_swap = true; 3963 3964 return 0; 3965 } 3966 3967 int perf_file_header__read(struct perf_file_header *header, 3968 struct perf_header *ph, int fd) 3969 { 3970 ssize_t ret; 3971 3972 lseek(fd, 0, SEEK_SET); 3973 3974 ret = readn(fd, header, sizeof(*header)); 3975 if (ret <= 0) 3976 return -1; 3977 3978 if (check_magic_endian(header->magic, 3979 header->attr_size, false, ph) < 0) { 3980 pr_debug("magic/endian check failed\n"); 3981 return -1; 3982 } 3983 3984 if (ph->needs_swap) { 3985 mem_bswap_64(header, offsetof(struct perf_file_header, 3986 adds_features)); 3987 } 3988 3989 if (header->size != sizeof(*header)) { 3990 /* Support the previous format */ 3991 if (header->size == offsetof(typeof(*header), adds_features)) 3992 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3993 else 3994 return -1; 3995 } else if (ph->needs_swap) { 3996 /* 3997 * feature bitmap is declared as an array of unsigned longs -- 3998 * not good since its size can differ between the host that 3999 * generated the data file and the host analyzing the file. 4000 * 4001 * We need to handle endianness, but we don't know the size of 4002 * the unsigned long where the file was generated. Take a best 4003 * guess at determining it: try 64-bit swap first (ie., file 4004 * created on a 64-bit host), and check if the hostname feature 4005 * bit is set (this feature bit is forced on as of fbe96f2). 4006 * If the bit is not, undo the 64-bit swap and try a 32-bit 4007 * swap. If the hostname bit is still not set (e.g., older data 4008 * file), punt and fallback to the original behavior -- 4009 * clearing all feature bits and setting buildid. 4010 */ 4011 mem_bswap_64(&header->adds_features, 4012 BITS_TO_U64(HEADER_FEAT_BITS)); 4013 4014 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 4015 /* unswap as u64 */ 4016 mem_bswap_64(&header->adds_features, 4017 BITS_TO_U64(HEADER_FEAT_BITS)); 4018 4019 /* unswap as u32 */ 4020 mem_bswap_32(&header->adds_features, 4021 BITS_TO_U32(HEADER_FEAT_BITS)); 4022 } 4023 4024 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 4025 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 4026 __set_bit(HEADER_BUILD_ID, header->adds_features); 4027 } 4028 } 4029 4030 memcpy(&ph->adds_features, &header->adds_features, 4031 sizeof(ph->adds_features)); 4032 4033 ph->data_offset = header->data.offset; 4034 ph->data_size = header->data.size; 4035 ph->feat_offset = header->data.offset + header->data.size; 4036 return 0; 4037 } 4038 4039 static int perf_file_section__process(struct perf_file_section *section, 4040 struct perf_header *ph, 4041 int feat, int fd, void *data) 4042 { 4043 struct feat_fd fdd = { 4044 .fd = fd, 4045 .ph = ph, 4046 .size = section->size, 4047 .offset = section->offset, 4048 }; 4049 4050 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 4051 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 4052 "%d, continuing...\n", section->offset, feat); 4053 return 0; 4054 } 4055 4056 if (feat >= HEADER_LAST_FEATURE) { 4057 pr_debug("unknown feature %d, continuing...\n", feat); 4058 return 0; 4059 } 4060 4061 if (!feat_ops[feat].process) 4062 return 0; 4063 4064 return feat_ops[feat].process(&fdd, data); 4065 } 4066 4067 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 4068 struct perf_header *ph, 4069 struct perf_data* data, 4070 bool repipe, int repipe_fd) 4071 { 4072 struct feat_fd ff = { 4073 .fd = repipe_fd, 4074 .ph = ph, 4075 }; 4076 ssize_t ret; 4077 4078 ret = perf_data__read(data, header, sizeof(*header)); 4079 if (ret <= 0) 4080 return -1; 4081 4082 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 4083 pr_debug("endian/magic failed\n"); 4084 return -1; 4085 } 4086 4087 if (ph->needs_swap) 4088 header->size = bswap_64(header->size); 4089 4090 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 4091 return -1; 4092 4093 return 0; 4094 } 4095 4096 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd) 4097 { 4098 struct perf_header *header = &session->header; 4099 struct perf_pipe_file_header f_header; 4100 4101 if (perf_file_header__read_pipe(&f_header, header, session->data, 4102 session->repipe, repipe_fd) < 0) { 4103 pr_debug("incompatible file format\n"); 4104 return -EINVAL; 4105 } 4106 4107 return f_header.size == sizeof(f_header) ? 0 : -1; 4108 } 4109 4110 static int read_attr(int fd, struct perf_header *ph, 4111 struct perf_file_attr *f_attr) 4112 { 4113 struct perf_event_attr *attr = &f_attr->attr; 4114 size_t sz, left; 4115 size_t our_sz = sizeof(f_attr->attr); 4116 ssize_t ret; 4117 4118 memset(f_attr, 0, sizeof(*f_attr)); 4119 4120 /* read minimal guaranteed structure */ 4121 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 4122 if (ret <= 0) { 4123 pr_debug("cannot read %d bytes of header attr\n", 4124 PERF_ATTR_SIZE_VER0); 4125 return -1; 4126 } 4127 4128 /* on file perf_event_attr size */ 4129 sz = attr->size; 4130 4131 if (ph->needs_swap) 4132 sz = bswap_32(sz); 4133 4134 if (sz == 0) { 4135 /* assume ABI0 */ 4136 sz = PERF_ATTR_SIZE_VER0; 4137 } else if (sz > our_sz) { 4138 pr_debug("file uses a more recent and unsupported ABI" 4139 " (%zu bytes extra)\n", sz - our_sz); 4140 return -1; 4141 } 4142 /* what we have not yet read and that we know about */ 4143 left = sz - PERF_ATTR_SIZE_VER0; 4144 if (left) { 4145 void *ptr = attr; 4146 ptr += PERF_ATTR_SIZE_VER0; 4147 4148 ret = readn(fd, ptr, left); 4149 } 4150 /* read perf_file_section, ids are read in caller */ 4151 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 4152 4153 return ret <= 0 ? -1 : 0; 4154 } 4155 4156 #ifdef HAVE_LIBTRACEEVENT 4157 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) 4158 { 4159 struct tep_event *event; 4160 char bf[128]; 4161 4162 /* already prepared */ 4163 if (evsel->tp_format) 4164 return 0; 4165 4166 if (pevent == NULL) { 4167 pr_debug("broken or missing trace data\n"); 4168 return -1; 4169 } 4170 4171 event = tep_find_event(pevent, evsel->core.attr.config); 4172 if (event == NULL) { 4173 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 4174 return -1; 4175 } 4176 4177 if (!evsel->name) { 4178 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 4179 evsel->name = strdup(bf); 4180 if (evsel->name == NULL) 4181 return -1; 4182 } 4183 4184 evsel->tp_format = event; 4185 return 0; 4186 } 4187 4188 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent) 4189 { 4190 struct evsel *pos; 4191 4192 evlist__for_each_entry(evlist, pos) { 4193 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 4194 evsel__prepare_tracepoint_event(pos, pevent)) 4195 return -1; 4196 } 4197 4198 return 0; 4199 } 4200 #endif 4201 4202 int perf_session__read_header(struct perf_session *session, int repipe_fd) 4203 { 4204 struct perf_data *data = session->data; 4205 struct perf_header *header = &session->header; 4206 struct perf_file_header f_header; 4207 struct perf_file_attr f_attr; 4208 u64 f_id; 4209 int nr_attrs, nr_ids, i, j, err; 4210 int fd = perf_data__fd(data); 4211 4212 session->evlist = evlist__new(); 4213 if (session->evlist == NULL) 4214 return -ENOMEM; 4215 4216 session->evlist->env = &header->env; 4217 session->machines.host.env = &header->env; 4218 4219 /* 4220 * We can read 'pipe' data event from regular file, 4221 * check for the pipe header regardless of source. 4222 */ 4223 err = perf_header__read_pipe(session, repipe_fd); 4224 if (!err || perf_data__is_pipe(data)) { 4225 data->is_pipe = true; 4226 return err; 4227 } 4228 4229 if (perf_file_header__read(&f_header, header, fd) < 0) 4230 return -EINVAL; 4231 4232 if (header->needs_swap && data->in_place_update) { 4233 pr_err("In-place update not supported when byte-swapping is required\n"); 4234 return -EINVAL; 4235 } 4236 4237 /* 4238 * Sanity check that perf.data was written cleanly; data size is 4239 * initialized to 0 and updated only if the on_exit function is run. 4240 * If data size is still 0 then the file contains only partial 4241 * information. Just warn user and process it as much as it can. 4242 */ 4243 if (f_header.data.size == 0) { 4244 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 4245 "Was the 'perf record' command properly terminated?\n", 4246 data->file.path); 4247 } 4248 4249 if (f_header.attr_size == 0) { 4250 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 4251 "Was the 'perf record' command properly terminated?\n", 4252 data->file.path); 4253 return -EINVAL; 4254 } 4255 4256 nr_attrs = f_header.attrs.size / f_header.attr_size; 4257 lseek(fd, f_header.attrs.offset, SEEK_SET); 4258 4259 for (i = 0; i < nr_attrs; i++) { 4260 struct evsel *evsel; 4261 off_t tmp; 4262 4263 if (read_attr(fd, header, &f_attr) < 0) 4264 goto out_errno; 4265 4266 if (header->needs_swap) { 4267 f_attr.ids.size = bswap_64(f_attr.ids.size); 4268 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 4269 perf_event__attr_swap(&f_attr.attr); 4270 } 4271 4272 tmp = lseek(fd, 0, SEEK_CUR); 4273 evsel = evsel__new(&f_attr.attr); 4274 4275 if (evsel == NULL) 4276 goto out_delete_evlist; 4277 4278 evsel->needs_swap = header->needs_swap; 4279 /* 4280 * Do it before so that if perf_evsel__alloc_id fails, this 4281 * entry gets purged too at evlist__delete(). 4282 */ 4283 evlist__add(session->evlist, evsel); 4284 4285 nr_ids = f_attr.ids.size / sizeof(u64); 4286 /* 4287 * We don't have the cpu and thread maps on the header, so 4288 * for allocating the perf_sample_id table we fake 1 cpu and 4289 * hattr->ids threads. 4290 */ 4291 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 4292 goto out_delete_evlist; 4293 4294 lseek(fd, f_attr.ids.offset, SEEK_SET); 4295 4296 for (j = 0; j < nr_ids; j++) { 4297 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 4298 goto out_errno; 4299 4300 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 4301 } 4302 4303 lseek(fd, tmp, SEEK_SET); 4304 } 4305 4306 #ifdef HAVE_LIBTRACEEVENT 4307 perf_header__process_sections(header, fd, &session->tevent, 4308 perf_file_section__process); 4309 4310 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) 4311 goto out_delete_evlist; 4312 #else 4313 perf_header__process_sections(header, fd, NULL, perf_file_section__process); 4314 #endif 4315 4316 return 0; 4317 out_errno: 4318 return -errno; 4319 4320 out_delete_evlist: 4321 evlist__delete(session->evlist); 4322 session->evlist = NULL; 4323 return -ENOMEM; 4324 } 4325 4326 int perf_event__process_feature(struct perf_session *session, 4327 union perf_event *event) 4328 { 4329 struct perf_tool *tool = session->tool; 4330 struct feat_fd ff = { .fd = 0 }; 4331 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 4332 int type = fe->header.type; 4333 u64 feat = fe->feat_id; 4334 int ret = 0; 4335 4336 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 4337 pr_warning("invalid record type %d in pipe-mode\n", type); 4338 return 0; 4339 } 4340 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 4341 pr_warning("invalid record type %d in pipe-mode\n", type); 4342 return -1; 4343 } 4344 4345 if (!feat_ops[feat].process) 4346 return 0; 4347 4348 ff.buf = (void *)fe->data; 4349 ff.size = event->header.size - sizeof(*fe); 4350 ff.ph = &session->header; 4351 4352 if (feat_ops[feat].process(&ff, NULL)) { 4353 ret = -1; 4354 goto out; 4355 } 4356 4357 if (!feat_ops[feat].print || !tool->show_feat_hdr) 4358 goto out; 4359 4360 if (!feat_ops[feat].full_only || 4361 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 4362 feat_ops[feat].print(&ff, stdout); 4363 } else { 4364 fprintf(stdout, "# %s info available, use -I to display\n", 4365 feat_ops[feat].name); 4366 } 4367 out: 4368 free_event_desc(ff.events); 4369 return ret; 4370 } 4371 4372 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 4373 { 4374 struct perf_record_event_update *ev = &event->event_update; 4375 struct perf_cpu_map *map; 4376 size_t ret; 4377 4378 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 4379 4380 switch (ev->type) { 4381 case PERF_EVENT_UPDATE__SCALE: 4382 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale); 4383 break; 4384 case PERF_EVENT_UPDATE__UNIT: 4385 ret += fprintf(fp, "... unit: %s\n", ev->unit); 4386 break; 4387 case PERF_EVENT_UPDATE__NAME: 4388 ret += fprintf(fp, "... name: %s\n", ev->name); 4389 break; 4390 case PERF_EVENT_UPDATE__CPUS: 4391 ret += fprintf(fp, "... "); 4392 4393 map = cpu_map__new_data(&ev->cpus.cpus); 4394 if (map) { 4395 ret += cpu_map__fprintf(map, fp); 4396 perf_cpu_map__put(map); 4397 } else 4398 ret += fprintf(fp, "failed to get cpus\n"); 4399 break; 4400 default: 4401 ret += fprintf(fp, "... unknown type\n"); 4402 break; 4403 } 4404 4405 return ret; 4406 } 4407 4408 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 4409 union perf_event *event, 4410 struct evlist **pevlist) 4411 { 4412 u32 i, n_ids; 4413 u64 *ids; 4414 struct evsel *evsel; 4415 struct evlist *evlist = *pevlist; 4416 4417 if (evlist == NULL) { 4418 *pevlist = evlist = evlist__new(); 4419 if (evlist == NULL) 4420 return -ENOMEM; 4421 } 4422 4423 evsel = evsel__new(&event->attr.attr); 4424 if (evsel == NULL) 4425 return -ENOMEM; 4426 4427 evlist__add(evlist, evsel); 4428 4429 n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size; 4430 n_ids = n_ids / sizeof(u64); 4431 /* 4432 * We don't have the cpu and thread maps on the header, so 4433 * for allocating the perf_sample_id table we fake 1 cpu and 4434 * hattr->ids threads. 4435 */ 4436 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 4437 return -ENOMEM; 4438 4439 ids = perf_record_header_attr_id(event); 4440 for (i = 0; i < n_ids; i++) { 4441 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]); 4442 } 4443 4444 return 0; 4445 } 4446 4447 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 4448 union perf_event *event, 4449 struct evlist **pevlist) 4450 { 4451 struct perf_record_event_update *ev = &event->event_update; 4452 struct evlist *evlist; 4453 struct evsel *evsel; 4454 struct perf_cpu_map *map; 4455 4456 if (dump_trace) 4457 perf_event__fprintf_event_update(event, stdout); 4458 4459 if (!pevlist || *pevlist == NULL) 4460 return -EINVAL; 4461 4462 evlist = *pevlist; 4463 4464 evsel = evlist__id2evsel(evlist, ev->id); 4465 if (evsel == NULL) 4466 return -EINVAL; 4467 4468 switch (ev->type) { 4469 case PERF_EVENT_UPDATE__UNIT: 4470 free((char *)evsel->unit); 4471 evsel->unit = strdup(ev->unit); 4472 break; 4473 case PERF_EVENT_UPDATE__NAME: 4474 free(evsel->name); 4475 evsel->name = strdup(ev->name); 4476 break; 4477 case PERF_EVENT_UPDATE__SCALE: 4478 evsel->scale = ev->scale.scale; 4479 break; 4480 case PERF_EVENT_UPDATE__CPUS: 4481 map = cpu_map__new_data(&ev->cpus.cpus); 4482 if (map) { 4483 perf_cpu_map__put(evsel->core.own_cpus); 4484 evsel->core.own_cpus = map; 4485 } else 4486 pr_err("failed to get event_update cpus\n"); 4487 default: 4488 break; 4489 } 4490 4491 return 0; 4492 } 4493 4494 #ifdef HAVE_LIBTRACEEVENT 4495 int perf_event__process_tracing_data(struct perf_session *session, 4496 union perf_event *event) 4497 { 4498 ssize_t size_read, padding, size = event->tracing_data.size; 4499 int fd = perf_data__fd(session->data); 4500 char buf[BUFSIZ]; 4501 4502 /* 4503 * The pipe fd is already in proper place and in any case 4504 * we can't move it, and we'd screw the case where we read 4505 * 'pipe' data from regular file. The trace_report reads 4506 * data from 'fd' so we need to set it directly behind the 4507 * event, where the tracing data starts. 4508 */ 4509 if (!perf_data__is_pipe(session->data)) { 4510 off_t offset = lseek(fd, 0, SEEK_CUR); 4511 4512 /* setup for reading amidst mmap */ 4513 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 4514 SEEK_SET); 4515 } 4516 4517 size_read = trace_report(fd, &session->tevent, 4518 session->repipe); 4519 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4520 4521 if (readn(fd, buf, padding) < 0) { 4522 pr_err("%s: reading input file", __func__); 4523 return -1; 4524 } 4525 if (session->repipe) { 4526 int retw = write(STDOUT_FILENO, buf, padding); 4527 if (retw <= 0 || retw != padding) { 4528 pr_err("%s: repiping tracing data padding", __func__); 4529 return -1; 4530 } 4531 } 4532 4533 if (size_read + padding != size) { 4534 pr_err("%s: tracing data size mismatch", __func__); 4535 return -1; 4536 } 4537 4538 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); 4539 4540 return size_read + padding; 4541 } 4542 #endif 4543 4544 int perf_event__process_build_id(struct perf_session *session, 4545 union perf_event *event) 4546 { 4547 __event_process_build_id(&event->build_id, 4548 event->build_id.filename, 4549 session); 4550 return 0; 4551 } 4552