1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <regex.h> 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <linux/compiler.h> 13 #include <linux/list.h> 14 #include <linux/kernel.h> 15 #include <linux/bitops.h> 16 #include <linux/string.h> 17 #include <linux/stringify.h> 18 #include <linux/zalloc.h> 19 #include <sys/stat.h> 20 #include <sys/utsname.h> 21 #include <linux/time64.h> 22 #include <dirent.h> 23 #ifdef HAVE_LIBBPF_SUPPORT 24 #include <bpf/libbpf.h> 25 #endif 26 #include <perf/cpumap.h> 27 #include <tools/libc_compat.h> // reallocarray 28 29 #include "dso.h" 30 #include "evlist.h" 31 #include "evsel.h" 32 #include "util/evsel_fprintf.h" 33 #include "header.h" 34 #include "memswap.h" 35 #include "trace-event.h" 36 #include "session.h" 37 #include "symbol.h" 38 #include "debug.h" 39 #include "cpumap.h" 40 #include "pmu.h" 41 #include "pmus.h" 42 #include "vdso.h" 43 #include "strbuf.h" 44 #include "build-id.h" 45 #include "data.h" 46 #include <api/fs/fs.h> 47 #include <api/io_dir.h> 48 #include "asm/bug.h" 49 #include "tool.h" 50 #include "time-utils.h" 51 #include "units.h" 52 #include "util/util.h" // perf_exe() 53 #include "cputopo.h" 54 #include "bpf-event.h" 55 #include "bpf-utils.h" 56 #include "clockid.h" 57 58 #include <linux/ctype.h> 59 #include <internal/lib.h> 60 61 #ifdef HAVE_LIBTRACEEVENT 62 #include <event-parse.h> 63 #endif 64 65 /* 66 * magic2 = "PERFILE2" 67 * must be a numerical value to let the endianness 68 * determine the memory layout. That way we are able 69 * to detect endianness when reading the perf.data file 70 * back. 71 * 72 * we check for legacy (PERFFILE) format. 73 */ 74 static const char *__perf_magic1 = "PERFFILE"; 75 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 76 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 77 78 #define PERF_MAGIC __perf_magic2 79 80 const char perf_version_string[] = PERF_VERSION; 81 82 struct perf_file_attr { 83 struct perf_event_attr attr; 84 struct perf_file_section ids; 85 }; 86 87 void perf_header__set_feat(struct perf_header *header, int feat) 88 { 89 __set_bit(feat, header->adds_features); 90 } 91 92 void perf_header__clear_feat(struct perf_header *header, int feat) 93 { 94 __clear_bit(feat, header->adds_features); 95 } 96 97 bool perf_header__has_feat(const struct perf_header *header, int feat) 98 { 99 return test_bit(feat, header->adds_features); 100 } 101 102 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 103 { 104 ssize_t ret = writen(ff->fd, buf, size); 105 106 if (ret != (ssize_t)size) 107 return ret < 0 ? (int)ret : -1; 108 return 0; 109 } 110 111 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 112 { 113 /* struct perf_event_header::size is u16 */ 114 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 115 size_t new_size = ff->size; 116 void *addr; 117 118 if (size + ff->offset > max_size) 119 return -E2BIG; 120 121 while (size > (new_size - ff->offset)) 122 new_size <<= 1; 123 new_size = min(max_size, new_size); 124 125 if (ff->size < new_size) { 126 addr = realloc(ff->buf, new_size); 127 if (!addr) 128 return -ENOMEM; 129 ff->buf = addr; 130 ff->size = new_size; 131 } 132 133 memcpy(ff->buf + ff->offset, buf, size); 134 ff->offset += size; 135 136 return 0; 137 } 138 139 /* Return: 0 if succeeded, -ERR if failed. */ 140 int do_write(struct feat_fd *ff, const void *buf, size_t size) 141 { 142 if (!ff->buf) 143 return __do_write_fd(ff, buf, size); 144 return __do_write_buf(ff, buf, size); 145 } 146 147 /* Return: 0 if succeeded, -ERR if failed. */ 148 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 149 { 150 u64 *p = (u64 *) set; 151 int i, ret; 152 153 ret = do_write(ff, &size, sizeof(size)); 154 if (ret < 0) 155 return ret; 156 157 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 158 ret = do_write(ff, p + i, sizeof(*p)); 159 if (ret < 0) 160 return ret; 161 } 162 163 return 0; 164 } 165 166 /* Return: 0 if succeeded, -ERR if failed. */ 167 int write_padded(struct feat_fd *ff, const void *bf, 168 size_t count, size_t count_aligned) 169 { 170 static const char zero_buf[NAME_ALIGN]; 171 int err = do_write(ff, bf, count); 172 173 if (!err) 174 err = do_write(ff, zero_buf, count_aligned - count); 175 176 return err; 177 } 178 179 #define string_size(str) \ 180 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 181 182 /* Return: 0 if succeeded, -ERR if failed. */ 183 static int do_write_string(struct feat_fd *ff, const char *str) 184 { 185 u32 len, olen; 186 int ret; 187 188 olen = strlen(str) + 1; 189 len = PERF_ALIGN(olen, NAME_ALIGN); 190 191 /* write len, incl. \0 */ 192 ret = do_write(ff, &len, sizeof(len)); 193 if (ret < 0) 194 return ret; 195 196 return write_padded(ff, str, olen, len); 197 } 198 199 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 200 { 201 ssize_t ret = readn(ff->fd, addr, size); 202 203 if (ret != size) 204 return ret < 0 ? (int)ret : -1; 205 return 0; 206 } 207 208 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 209 { 210 if (size > (ssize_t)ff->size - ff->offset) 211 return -1; 212 213 memcpy(addr, ff->buf + ff->offset, size); 214 ff->offset += size; 215 216 return 0; 217 218 } 219 220 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 221 { 222 if (!ff->buf) 223 return __do_read_fd(ff, addr, size); 224 return __do_read_buf(ff, addr, size); 225 } 226 227 static int do_read_u32(struct feat_fd *ff, u32 *addr) 228 { 229 int ret; 230 231 ret = __do_read(ff, addr, sizeof(*addr)); 232 if (ret) 233 return ret; 234 235 if (ff->ph->needs_swap) 236 *addr = bswap_32(*addr); 237 return 0; 238 } 239 240 static int do_read_u64(struct feat_fd *ff, u64 *addr) 241 { 242 int ret; 243 244 ret = __do_read(ff, addr, sizeof(*addr)); 245 if (ret) 246 return ret; 247 248 if (ff->ph->needs_swap) 249 *addr = bswap_64(*addr); 250 return 0; 251 } 252 253 static char *do_read_string(struct feat_fd *ff) 254 { 255 u32 len; 256 char *buf; 257 258 if (do_read_u32(ff, &len)) 259 return NULL; 260 261 buf = malloc(len); 262 if (!buf) 263 return NULL; 264 265 if (!__do_read(ff, buf, len)) { 266 /* 267 * strings are padded by zeroes 268 * thus the actual strlen of buf 269 * may be less than len 270 */ 271 return buf; 272 } 273 274 free(buf); 275 return NULL; 276 } 277 278 /* Return: 0 if succeeded, -ERR if failed. */ 279 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 280 { 281 unsigned long *set; 282 u64 size, *p; 283 int i, ret; 284 285 ret = do_read_u64(ff, &size); 286 if (ret) 287 return ret; 288 289 set = bitmap_zalloc(size); 290 if (!set) 291 return -ENOMEM; 292 293 p = (u64 *) set; 294 295 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 296 ret = do_read_u64(ff, p + i); 297 if (ret < 0) { 298 free(set); 299 return ret; 300 } 301 } 302 303 *pset = set; 304 *psize = size; 305 return 0; 306 } 307 308 #ifdef HAVE_LIBTRACEEVENT 309 static int write_tracing_data(struct feat_fd *ff, 310 struct evlist *evlist) 311 { 312 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 313 return -1; 314 315 return read_tracing_data(ff->fd, &evlist->core.entries); 316 } 317 #endif 318 319 static int write_build_id(struct feat_fd *ff, 320 struct evlist *evlist __maybe_unused) 321 { 322 struct perf_session *session; 323 int err; 324 325 session = container_of(ff->ph, struct perf_session, header); 326 327 if (!perf_session__read_build_ids(session, true)) 328 return -1; 329 330 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 331 return -1; 332 333 err = perf_session__write_buildid_table(session, ff); 334 if (err < 0) { 335 pr_debug("failed to write buildid table\n"); 336 return err; 337 } 338 perf_session__cache_build_ids(session); 339 340 return 0; 341 } 342 343 static int write_hostname(struct feat_fd *ff, 344 struct evlist *evlist __maybe_unused) 345 { 346 struct utsname uts; 347 int ret; 348 349 ret = uname(&uts); 350 if (ret < 0) 351 return -1; 352 353 return do_write_string(ff, uts.nodename); 354 } 355 356 static int write_osrelease(struct feat_fd *ff, 357 struct evlist *evlist __maybe_unused) 358 { 359 struct utsname uts; 360 int ret; 361 362 ret = uname(&uts); 363 if (ret < 0) 364 return -1; 365 366 return do_write_string(ff, uts.release); 367 } 368 369 static int write_arch(struct feat_fd *ff, 370 struct evlist *evlist __maybe_unused) 371 { 372 struct utsname uts; 373 int ret; 374 375 ret = uname(&uts); 376 if (ret < 0) 377 return -1; 378 379 return do_write_string(ff, uts.machine); 380 } 381 382 static int write_version(struct feat_fd *ff, 383 struct evlist *evlist __maybe_unused) 384 { 385 return do_write_string(ff, perf_version_string); 386 } 387 388 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 389 { 390 FILE *file; 391 char *buf = NULL; 392 char *s, *p; 393 const char *search = cpuinfo_proc; 394 size_t len = 0; 395 int ret = -1; 396 397 if (!search) 398 return -1; 399 400 file = fopen("/proc/cpuinfo", "r"); 401 if (!file) 402 return -1; 403 404 while (getline(&buf, &len, file) > 0) { 405 ret = strncmp(buf, search, strlen(search)); 406 if (!ret) 407 break; 408 } 409 410 if (ret) { 411 ret = -1; 412 goto done; 413 } 414 415 s = buf; 416 417 p = strchr(buf, ':'); 418 if (p && *(p+1) == ' ' && *(p+2)) 419 s = p + 2; 420 p = strchr(s, '\n'); 421 if (p) 422 *p = '\0'; 423 424 /* squash extra space characters (branding string) */ 425 p = s; 426 while (*p) { 427 if (isspace(*p)) { 428 char *r = p + 1; 429 char *q = skip_spaces(r); 430 *p = ' '; 431 if (q != (p+1)) 432 while ((*r++ = *q++)); 433 } 434 p++; 435 } 436 ret = do_write_string(ff, s); 437 done: 438 free(buf); 439 fclose(file); 440 return ret; 441 } 442 443 static int write_cpudesc(struct feat_fd *ff, 444 struct evlist *evlist __maybe_unused) 445 { 446 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 447 #define CPUINFO_PROC { "cpu", } 448 #elif defined(__s390__) 449 #define CPUINFO_PROC { "vendor_id", } 450 #elif defined(__sh__) 451 #define CPUINFO_PROC { "cpu type", } 452 #elif defined(__alpha__) || defined(__mips__) 453 #define CPUINFO_PROC { "cpu model", } 454 #elif defined(__arm__) 455 #define CPUINFO_PROC { "model name", "Processor", } 456 #elif defined(__arc__) 457 #define CPUINFO_PROC { "Processor", } 458 #elif defined(__xtensa__) 459 #define CPUINFO_PROC { "core ID", } 460 #elif defined(__loongarch__) 461 #define CPUINFO_PROC { "Model Name", } 462 #else 463 #define CPUINFO_PROC { "model name", } 464 #endif 465 const char *cpuinfo_procs[] = CPUINFO_PROC; 466 #undef CPUINFO_PROC 467 unsigned int i; 468 469 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 470 int ret; 471 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 472 if (ret >= 0) 473 return ret; 474 } 475 return -1; 476 } 477 478 479 static int write_nrcpus(struct feat_fd *ff, 480 struct evlist *evlist __maybe_unused) 481 { 482 long nr; 483 u32 nrc, nra; 484 int ret; 485 486 nrc = cpu__max_present_cpu().cpu; 487 488 nr = sysconf(_SC_NPROCESSORS_ONLN); 489 if (nr < 0) 490 return -1; 491 492 nra = (u32)(nr & UINT_MAX); 493 494 ret = do_write(ff, &nrc, sizeof(nrc)); 495 if (ret < 0) 496 return ret; 497 498 return do_write(ff, &nra, sizeof(nra)); 499 } 500 501 static int write_event_desc(struct feat_fd *ff, 502 struct evlist *evlist) 503 { 504 struct evsel *evsel; 505 u32 nre, nri, sz; 506 int ret; 507 508 nre = evlist->core.nr_entries; 509 510 /* 511 * write number of events 512 */ 513 ret = do_write(ff, &nre, sizeof(nre)); 514 if (ret < 0) 515 return ret; 516 517 /* 518 * size of perf_event_attr struct 519 */ 520 sz = (u32)sizeof(evsel->core.attr); 521 ret = do_write(ff, &sz, sizeof(sz)); 522 if (ret < 0) 523 return ret; 524 525 evlist__for_each_entry(evlist, evsel) { 526 ret = do_write(ff, &evsel->core.attr, sz); 527 if (ret < 0) 528 return ret; 529 /* 530 * write number of unique id per event 531 * there is one id per instance of an event 532 * 533 * copy into an nri to be independent of the 534 * type of ids, 535 */ 536 nri = evsel->core.ids; 537 ret = do_write(ff, &nri, sizeof(nri)); 538 if (ret < 0) 539 return ret; 540 541 /* 542 * write event string as passed on cmdline 543 */ 544 ret = do_write_string(ff, evsel__name(evsel)); 545 if (ret < 0) 546 return ret; 547 /* 548 * write unique ids for this event 549 */ 550 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 551 if (ret < 0) 552 return ret; 553 } 554 return 0; 555 } 556 557 static int write_cmdline(struct feat_fd *ff, 558 struct evlist *evlist __maybe_unused) 559 { 560 struct perf_env *env = &ff->ph->env; 561 char pbuf[MAXPATHLEN], *buf; 562 int i, ret, n; 563 564 /* actual path to perf binary */ 565 buf = perf_exe(pbuf, MAXPATHLEN); 566 567 /* account for binary path */ 568 n = env->nr_cmdline + 1; 569 570 ret = do_write(ff, &n, sizeof(n)); 571 if (ret < 0) 572 return ret; 573 574 ret = do_write_string(ff, buf); 575 if (ret < 0) 576 return ret; 577 578 for (i = 0 ; i < env->nr_cmdline; i++) { 579 ret = do_write_string(ff, env->cmdline_argv[i]); 580 if (ret < 0) 581 return ret; 582 } 583 return 0; 584 } 585 586 587 static int write_cpu_topology(struct feat_fd *ff, 588 struct evlist *evlist __maybe_unused) 589 { 590 struct perf_env *env = &ff->ph->env; 591 struct cpu_topology *tp; 592 u32 i; 593 int ret, j; 594 595 tp = cpu_topology__new(); 596 if (!tp) 597 return -1; 598 599 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists)); 600 if (ret < 0) 601 goto done; 602 603 for (i = 0; i < tp->package_cpus_lists; i++) { 604 ret = do_write_string(ff, tp->package_cpus_list[i]); 605 if (ret < 0) 606 goto done; 607 } 608 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists)); 609 if (ret < 0) 610 goto done; 611 612 for (i = 0; i < tp->core_cpus_lists; i++) { 613 ret = do_write_string(ff, tp->core_cpus_list[i]); 614 if (ret < 0) 615 break; 616 } 617 618 ret = perf_env__read_cpu_topology_map(env); 619 if (ret < 0) 620 goto done; 621 622 for (j = 0; j < env->nr_cpus_avail; j++) { 623 ret = do_write(ff, &env->cpu[j].core_id, 624 sizeof(env->cpu[j].core_id)); 625 if (ret < 0) 626 return ret; 627 ret = do_write(ff, &env->cpu[j].socket_id, 628 sizeof(env->cpu[j].socket_id)); 629 if (ret < 0) 630 return ret; 631 } 632 633 if (!tp->die_cpus_lists) 634 goto done; 635 636 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists)); 637 if (ret < 0) 638 goto done; 639 640 for (i = 0; i < tp->die_cpus_lists; i++) { 641 ret = do_write_string(ff, tp->die_cpus_list[i]); 642 if (ret < 0) 643 goto done; 644 } 645 646 for (j = 0; j < env->nr_cpus_avail; j++) { 647 ret = do_write(ff, &env->cpu[j].die_id, 648 sizeof(env->cpu[j].die_id)); 649 if (ret < 0) 650 return ret; 651 } 652 653 done: 654 cpu_topology__delete(tp); 655 return ret; 656 } 657 658 659 660 static int write_total_mem(struct feat_fd *ff, 661 struct evlist *evlist __maybe_unused) 662 { 663 char *buf = NULL; 664 FILE *fp; 665 size_t len = 0; 666 int ret = -1, n; 667 uint64_t mem; 668 669 fp = fopen("/proc/meminfo", "r"); 670 if (!fp) 671 return -1; 672 673 while (getline(&buf, &len, fp) > 0) { 674 ret = strncmp(buf, "MemTotal:", 9); 675 if (!ret) 676 break; 677 } 678 if (!ret) { 679 n = sscanf(buf, "%*s %"PRIu64, &mem); 680 if (n == 1) 681 ret = do_write(ff, &mem, sizeof(mem)); 682 } else 683 ret = -1; 684 free(buf); 685 fclose(fp); 686 return ret; 687 } 688 689 static int write_numa_topology(struct feat_fd *ff, 690 struct evlist *evlist __maybe_unused) 691 { 692 struct numa_topology *tp; 693 int ret = -1; 694 u32 i; 695 696 tp = numa_topology__new(); 697 if (!tp) 698 return -ENOMEM; 699 700 ret = do_write(ff, &tp->nr, sizeof(u32)); 701 if (ret < 0) 702 goto err; 703 704 for (i = 0; i < tp->nr; i++) { 705 struct numa_topology_node *n = &tp->nodes[i]; 706 707 ret = do_write(ff, &n->node, sizeof(u32)); 708 if (ret < 0) 709 goto err; 710 711 ret = do_write(ff, &n->mem_total, sizeof(u64)); 712 if (ret) 713 goto err; 714 715 ret = do_write(ff, &n->mem_free, sizeof(u64)); 716 if (ret) 717 goto err; 718 719 ret = do_write_string(ff, n->cpus); 720 if (ret < 0) 721 goto err; 722 } 723 724 ret = 0; 725 726 err: 727 numa_topology__delete(tp); 728 return ret; 729 } 730 731 /* 732 * File format: 733 * 734 * struct pmu_mappings { 735 * u32 pmu_num; 736 * struct pmu_map { 737 * u32 type; 738 * char name[]; 739 * }[pmu_num]; 740 * }; 741 */ 742 743 static int write_pmu_mappings(struct feat_fd *ff, 744 struct evlist *evlist __maybe_unused) 745 { 746 struct perf_pmu *pmu = NULL; 747 u32 pmu_num = 0; 748 int ret; 749 750 /* 751 * Do a first pass to count number of pmu to avoid lseek so this 752 * works in pipe mode as well. 753 */ 754 while ((pmu = perf_pmus__scan(pmu))) 755 pmu_num++; 756 757 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 758 if (ret < 0) 759 return ret; 760 761 while ((pmu = perf_pmus__scan(pmu))) { 762 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 763 if (ret < 0) 764 return ret; 765 766 ret = do_write_string(ff, pmu->name); 767 if (ret < 0) 768 return ret; 769 } 770 771 return 0; 772 } 773 774 /* 775 * File format: 776 * 777 * struct group_descs { 778 * u32 nr_groups; 779 * struct group_desc { 780 * char name[]; 781 * u32 leader_idx; 782 * u32 nr_members; 783 * }[nr_groups]; 784 * }; 785 */ 786 static int write_group_desc(struct feat_fd *ff, 787 struct evlist *evlist) 788 { 789 u32 nr_groups = evlist__nr_groups(evlist); 790 struct evsel *evsel; 791 int ret; 792 793 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 794 if (ret < 0) 795 return ret; 796 797 evlist__for_each_entry(evlist, evsel) { 798 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 799 const char *name = evsel->group_name ?: "{anon_group}"; 800 u32 leader_idx = evsel->core.idx; 801 u32 nr_members = evsel->core.nr_members; 802 803 ret = do_write_string(ff, name); 804 if (ret < 0) 805 return ret; 806 807 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 808 if (ret < 0) 809 return ret; 810 811 ret = do_write(ff, &nr_members, sizeof(nr_members)); 812 if (ret < 0) 813 return ret; 814 } 815 } 816 return 0; 817 } 818 819 /* 820 * Return the CPU id as a raw string. 821 * 822 * Each architecture should provide a more precise id string that 823 * can be use to match the architecture's "mapfile". 824 */ 825 char * __weak get_cpuid_str(struct perf_cpu cpu __maybe_unused) 826 { 827 return NULL; 828 } 829 830 char *get_cpuid_allow_env_override(struct perf_cpu cpu) 831 { 832 char *cpuid; 833 static bool printed; 834 835 cpuid = getenv("PERF_CPUID"); 836 if (cpuid) 837 cpuid = strdup(cpuid); 838 if (!cpuid) 839 cpuid = get_cpuid_str(cpu); 840 if (!cpuid) 841 return NULL; 842 843 if (!printed) { 844 pr_debug("Using CPUID %s\n", cpuid); 845 printed = true; 846 } 847 return cpuid; 848 } 849 850 /* Return zero when the cpuid from the mapfile.csv matches the 851 * cpuid string generated on this platform. 852 * Otherwise return non-zero. 853 */ 854 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 855 { 856 regex_t re; 857 regmatch_t pmatch[1]; 858 int match; 859 860 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 861 /* Warn unable to generate match particular string. */ 862 pr_info("Invalid regular expression %s\n", mapcpuid); 863 return 1; 864 } 865 866 match = !regexec(&re, cpuid, 1, pmatch, 0); 867 regfree(&re); 868 if (match) { 869 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 870 871 /* Verify the entire string matched. */ 872 if (match_len == strlen(cpuid)) 873 return 0; 874 } 875 return 1; 876 } 877 878 /* 879 * default get_cpuid(): nothing gets recorded 880 * actual implementation must be in arch/$(SRCARCH)/util/header.c 881 */ 882 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused, 883 struct perf_cpu cpu __maybe_unused) 884 { 885 return ENOSYS; /* Not implemented */ 886 } 887 888 static int write_cpuid(struct feat_fd *ff, struct evlist *evlist) 889 { 890 struct perf_cpu cpu = perf_cpu_map__min(evlist->core.all_cpus); 891 char buffer[64]; 892 int ret; 893 894 ret = get_cpuid(buffer, sizeof(buffer), cpu); 895 if (ret) 896 return -1; 897 898 return do_write_string(ff, buffer); 899 } 900 901 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 902 struct evlist *evlist __maybe_unused) 903 { 904 return 0; 905 } 906 907 static int write_auxtrace(struct feat_fd *ff, 908 struct evlist *evlist __maybe_unused) 909 { 910 struct perf_session *session; 911 int err; 912 913 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 914 return -1; 915 916 session = container_of(ff->ph, struct perf_session, header); 917 918 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 919 if (err < 0) 920 pr_err("Failed to write auxtrace index\n"); 921 return err; 922 } 923 924 static int write_clockid(struct feat_fd *ff, 925 struct evlist *evlist __maybe_unused) 926 { 927 return do_write(ff, &ff->ph->env.clock.clockid_res_ns, 928 sizeof(ff->ph->env.clock.clockid_res_ns)); 929 } 930 931 static int write_clock_data(struct feat_fd *ff, 932 struct evlist *evlist __maybe_unused) 933 { 934 u64 *data64; 935 u32 data32; 936 int ret; 937 938 /* version */ 939 data32 = 1; 940 941 ret = do_write(ff, &data32, sizeof(data32)); 942 if (ret < 0) 943 return ret; 944 945 /* clockid */ 946 data32 = ff->ph->env.clock.clockid; 947 948 ret = do_write(ff, &data32, sizeof(data32)); 949 if (ret < 0) 950 return ret; 951 952 /* TOD ref time */ 953 data64 = &ff->ph->env.clock.tod_ns; 954 955 ret = do_write(ff, data64, sizeof(*data64)); 956 if (ret < 0) 957 return ret; 958 959 /* clockid ref time */ 960 data64 = &ff->ph->env.clock.clockid_ns; 961 962 return do_write(ff, data64, sizeof(*data64)); 963 } 964 965 static int write_hybrid_topology(struct feat_fd *ff, 966 struct evlist *evlist __maybe_unused) 967 { 968 struct hybrid_topology *tp; 969 int ret; 970 u32 i; 971 972 tp = hybrid_topology__new(); 973 if (!tp) 974 return -ENOENT; 975 976 ret = do_write(ff, &tp->nr, sizeof(u32)); 977 if (ret < 0) 978 goto err; 979 980 for (i = 0; i < tp->nr; i++) { 981 struct hybrid_topology_node *n = &tp->nodes[i]; 982 983 ret = do_write_string(ff, n->pmu_name); 984 if (ret < 0) 985 goto err; 986 987 ret = do_write_string(ff, n->cpus); 988 if (ret < 0) 989 goto err; 990 } 991 992 ret = 0; 993 994 err: 995 hybrid_topology__delete(tp); 996 return ret; 997 } 998 999 static int write_dir_format(struct feat_fd *ff, 1000 struct evlist *evlist __maybe_unused) 1001 { 1002 struct perf_session *session; 1003 struct perf_data *data; 1004 1005 session = container_of(ff->ph, struct perf_session, header); 1006 data = session->data; 1007 1008 if (WARN_ON(!perf_data__is_dir(data))) 1009 return -1; 1010 1011 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 1012 } 1013 1014 #ifdef HAVE_LIBBPF_SUPPORT 1015 static int write_bpf_prog_info(struct feat_fd *ff, 1016 struct evlist *evlist __maybe_unused) 1017 { 1018 struct perf_env *env = &ff->ph->env; 1019 struct rb_root *root; 1020 struct rb_node *next; 1021 int ret = 0; 1022 1023 down_read(&env->bpf_progs.lock); 1024 1025 if (env->bpf_progs.infos_cnt == 0) 1026 goto out; 1027 1028 ret = do_write(ff, &env->bpf_progs.infos_cnt, 1029 sizeof(env->bpf_progs.infos_cnt)); 1030 if (ret < 0) 1031 goto out; 1032 1033 root = &env->bpf_progs.infos; 1034 next = rb_first(root); 1035 while (next) { 1036 struct bpf_prog_info_node *node; 1037 size_t len; 1038 1039 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1040 next = rb_next(&node->rb_node); 1041 len = sizeof(struct perf_bpil) + 1042 node->info_linear->data_len; 1043 1044 /* before writing to file, translate address to offset */ 1045 bpil_addr_to_offs(node->info_linear); 1046 ret = do_write(ff, node->info_linear, len); 1047 /* 1048 * translate back to address even when do_write() fails, 1049 * so that this function never changes the data. 1050 */ 1051 bpil_offs_to_addr(node->info_linear); 1052 if (ret < 0) 1053 goto out; 1054 } 1055 out: 1056 up_read(&env->bpf_progs.lock); 1057 return ret; 1058 } 1059 1060 static int write_bpf_btf(struct feat_fd *ff, 1061 struct evlist *evlist __maybe_unused) 1062 { 1063 struct perf_env *env = &ff->ph->env; 1064 struct rb_root *root; 1065 struct rb_node *next; 1066 int ret = 0; 1067 1068 down_read(&env->bpf_progs.lock); 1069 1070 if (env->bpf_progs.btfs_cnt == 0) 1071 goto out; 1072 1073 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 1074 sizeof(env->bpf_progs.btfs_cnt)); 1075 1076 if (ret < 0) 1077 goto out; 1078 1079 root = &env->bpf_progs.btfs; 1080 next = rb_first(root); 1081 while (next) { 1082 struct btf_node *node; 1083 1084 node = rb_entry(next, struct btf_node, rb_node); 1085 next = rb_next(&node->rb_node); 1086 ret = do_write(ff, &node->id, 1087 sizeof(u32) * 2 + node->data_size); 1088 if (ret < 0) 1089 goto out; 1090 } 1091 out: 1092 up_read(&env->bpf_progs.lock); 1093 return ret; 1094 } 1095 #endif // HAVE_LIBBPF_SUPPORT 1096 1097 static int cpu_cache_level__sort(const void *a, const void *b) 1098 { 1099 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1100 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1101 1102 return cache_a->level - cache_b->level; 1103 } 1104 1105 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1106 { 1107 if (a->level != b->level) 1108 return false; 1109 1110 if (a->line_size != b->line_size) 1111 return false; 1112 1113 if (a->sets != b->sets) 1114 return false; 1115 1116 if (a->ways != b->ways) 1117 return false; 1118 1119 if (strcmp(a->type, b->type)) 1120 return false; 1121 1122 if (strcmp(a->size, b->size)) 1123 return false; 1124 1125 if (strcmp(a->map, b->map)) 1126 return false; 1127 1128 return true; 1129 } 1130 1131 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1132 { 1133 char path[PATH_MAX], file[PATH_MAX]; 1134 struct stat st; 1135 size_t len; 1136 1137 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1138 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1139 1140 if (stat(file, &st)) 1141 return 1; 1142 1143 scnprintf(file, PATH_MAX, "%s/level", path); 1144 if (sysfs__read_int(file, (int *) &cache->level)) 1145 return -1; 1146 1147 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1148 if (sysfs__read_int(file, (int *) &cache->line_size)) 1149 return -1; 1150 1151 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1152 if (sysfs__read_int(file, (int *) &cache->sets)) 1153 return -1; 1154 1155 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1156 if (sysfs__read_int(file, (int *) &cache->ways)) 1157 return -1; 1158 1159 scnprintf(file, PATH_MAX, "%s/type", path); 1160 if (sysfs__read_str(file, &cache->type, &len)) 1161 return -1; 1162 1163 cache->type[len] = 0; 1164 cache->type = strim(cache->type); 1165 1166 scnprintf(file, PATH_MAX, "%s/size", path); 1167 if (sysfs__read_str(file, &cache->size, &len)) { 1168 zfree(&cache->type); 1169 return -1; 1170 } 1171 1172 cache->size[len] = 0; 1173 cache->size = strim(cache->size); 1174 1175 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1176 if (sysfs__read_str(file, &cache->map, &len)) { 1177 zfree(&cache->size); 1178 zfree(&cache->type); 1179 return -1; 1180 } 1181 1182 cache->map[len] = 0; 1183 cache->map = strim(cache->map); 1184 return 0; 1185 } 1186 1187 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1188 { 1189 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1190 } 1191 1192 /* 1193 * Build caches levels for a particular CPU from the data in 1194 * /sys/devices/system/cpu/cpu<cpu>/cache/ 1195 * The cache level data is stored in caches[] from index at 1196 * *cntp. 1197 */ 1198 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp) 1199 { 1200 u16 level; 1201 1202 for (level = 0; level < MAX_CACHE_LVL; level++) { 1203 struct cpu_cache_level c; 1204 int err; 1205 u32 i; 1206 1207 err = cpu_cache_level__read(&c, cpu, level); 1208 if (err < 0) 1209 return err; 1210 1211 if (err == 1) 1212 break; 1213 1214 for (i = 0; i < *cntp; i++) { 1215 if (cpu_cache_level__cmp(&c, &caches[i])) 1216 break; 1217 } 1218 1219 if (i == *cntp) { 1220 caches[*cntp] = c; 1221 *cntp = *cntp + 1; 1222 } else 1223 cpu_cache_level__free(&c); 1224 } 1225 1226 return 0; 1227 } 1228 1229 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1230 { 1231 u32 nr, cpu, cnt = 0; 1232 1233 nr = cpu__max_cpu().cpu; 1234 1235 for (cpu = 0; cpu < nr; cpu++) { 1236 int ret = build_caches_for_cpu(cpu, caches, &cnt); 1237 1238 if (ret) 1239 return ret; 1240 } 1241 *cntp = cnt; 1242 return 0; 1243 } 1244 1245 static int write_cache(struct feat_fd *ff, 1246 struct evlist *evlist __maybe_unused) 1247 { 1248 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL; 1249 struct cpu_cache_level caches[max_caches]; 1250 u32 cnt = 0, i, version = 1; 1251 int ret; 1252 1253 ret = build_caches(caches, &cnt); 1254 if (ret) 1255 goto out; 1256 1257 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1258 1259 ret = do_write(ff, &version, sizeof(u32)); 1260 if (ret < 0) 1261 goto out; 1262 1263 ret = do_write(ff, &cnt, sizeof(u32)); 1264 if (ret < 0) 1265 goto out; 1266 1267 for (i = 0; i < cnt; i++) { 1268 struct cpu_cache_level *c = &caches[i]; 1269 1270 #define _W(v) \ 1271 ret = do_write(ff, &c->v, sizeof(u32)); \ 1272 if (ret < 0) \ 1273 goto out; 1274 1275 _W(level) 1276 _W(line_size) 1277 _W(sets) 1278 _W(ways) 1279 #undef _W 1280 1281 #define _W(v) \ 1282 ret = do_write_string(ff, (const char *) c->v); \ 1283 if (ret < 0) \ 1284 goto out; 1285 1286 _W(type) 1287 _W(size) 1288 _W(map) 1289 #undef _W 1290 } 1291 1292 out: 1293 for (i = 0; i < cnt; i++) 1294 cpu_cache_level__free(&caches[i]); 1295 return ret; 1296 } 1297 1298 static int write_stat(struct feat_fd *ff __maybe_unused, 1299 struct evlist *evlist __maybe_unused) 1300 { 1301 return 0; 1302 } 1303 1304 static int write_sample_time(struct feat_fd *ff, 1305 struct evlist *evlist) 1306 { 1307 int ret; 1308 1309 ret = do_write(ff, &evlist->first_sample_time, 1310 sizeof(evlist->first_sample_time)); 1311 if (ret < 0) 1312 return ret; 1313 1314 return do_write(ff, &evlist->last_sample_time, 1315 sizeof(evlist->last_sample_time)); 1316 } 1317 1318 1319 static int memory_node__read(struct memory_node *n, unsigned long idx) 1320 { 1321 unsigned int phys, size = 0; 1322 char path[PATH_MAX]; 1323 struct io_dirent64 *ent; 1324 struct io_dir dir; 1325 1326 #define for_each_memory(mem, dir) \ 1327 while ((ent = io_dir__readdir(&dir)) != NULL) \ 1328 if (strcmp(ent->d_name, ".") && \ 1329 strcmp(ent->d_name, "..") && \ 1330 sscanf(ent->d_name, "memory%u", &mem) == 1) 1331 1332 scnprintf(path, PATH_MAX, 1333 "%s/devices/system/node/node%lu", 1334 sysfs__mountpoint(), idx); 1335 1336 io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY)); 1337 if (dir.dirfd < 0) { 1338 pr_warning("failed: can't open memory sysfs data '%s'\n", path); 1339 return -1; 1340 } 1341 1342 for_each_memory(phys, dir) { 1343 size = max(phys, size); 1344 } 1345 1346 size++; 1347 1348 n->set = bitmap_zalloc(size); 1349 if (!n->set) { 1350 close(dir.dirfd); 1351 return -ENOMEM; 1352 } 1353 1354 n->node = idx; 1355 n->size = size; 1356 1357 io_dir__rewinddir(&dir); 1358 1359 for_each_memory(phys, dir) { 1360 __set_bit(phys, n->set); 1361 } 1362 1363 close(dir.dirfd); 1364 return 0; 1365 } 1366 1367 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt) 1368 { 1369 for (u64 i = 0; i < cnt; i++) 1370 bitmap_free(nodesp[i].set); 1371 1372 free(nodesp); 1373 } 1374 1375 static int memory_node__sort(const void *a, const void *b) 1376 { 1377 const struct memory_node *na = a; 1378 const struct memory_node *nb = b; 1379 1380 return na->node - nb->node; 1381 } 1382 1383 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp) 1384 { 1385 char path[PATH_MAX]; 1386 struct io_dirent64 *ent; 1387 struct io_dir dir; 1388 int ret = 0; 1389 size_t cnt = 0, size = 0; 1390 struct memory_node *nodes = NULL; 1391 1392 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1393 sysfs__mountpoint()); 1394 1395 io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY)); 1396 if (dir.dirfd < 0) { 1397 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n", 1398 __func__, path); 1399 return -1; 1400 } 1401 1402 while (!ret && (ent = io_dir__readdir(&dir))) { 1403 unsigned int idx; 1404 int r; 1405 1406 if (!strcmp(ent->d_name, ".") || 1407 !strcmp(ent->d_name, "..")) 1408 continue; 1409 1410 r = sscanf(ent->d_name, "node%u", &idx); 1411 if (r != 1) 1412 continue; 1413 1414 if (cnt >= size) { 1415 struct memory_node *new_nodes = 1416 reallocarray(nodes, cnt + 4, sizeof(*nodes)); 1417 1418 if (!new_nodes) { 1419 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size); 1420 ret = -ENOMEM; 1421 goto out; 1422 } 1423 nodes = new_nodes; 1424 size += 4; 1425 } 1426 ret = memory_node__read(&nodes[cnt], idx); 1427 if (!ret) 1428 cnt += 1; 1429 } 1430 out: 1431 close(dir.dirfd); 1432 if (!ret) { 1433 *cntp = cnt; 1434 *nodesp = nodes; 1435 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1436 } else 1437 memory_node__delete_nodes(nodes, cnt); 1438 1439 return ret; 1440 } 1441 1442 /* 1443 * The MEM_TOPOLOGY holds physical memory map for every 1444 * node in system. The format of data is as follows: 1445 * 1446 * 0 - version | for future changes 1447 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1448 * 16 - count | number of nodes 1449 * 1450 * For each node we store map of physical indexes for 1451 * each node: 1452 * 1453 * 32 - node id | node index 1454 * 40 - size | size of bitmap 1455 * 48 - bitmap | bitmap of memory indexes that belongs to node 1456 */ 1457 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1458 struct evlist *evlist __maybe_unused) 1459 { 1460 struct memory_node *nodes = NULL; 1461 u64 bsize, version = 1, i, nr = 0; 1462 int ret; 1463 1464 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1465 (unsigned long long *) &bsize); 1466 if (ret) 1467 return ret; 1468 1469 ret = build_mem_topology(&nodes, &nr); 1470 if (ret) 1471 return ret; 1472 1473 ret = do_write(ff, &version, sizeof(version)); 1474 if (ret < 0) 1475 goto out; 1476 1477 ret = do_write(ff, &bsize, sizeof(bsize)); 1478 if (ret < 0) 1479 goto out; 1480 1481 ret = do_write(ff, &nr, sizeof(nr)); 1482 if (ret < 0) 1483 goto out; 1484 1485 for (i = 0; i < nr; i++) { 1486 struct memory_node *n = &nodes[i]; 1487 1488 #define _W(v) \ 1489 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1490 if (ret < 0) \ 1491 goto out; 1492 1493 _W(node) 1494 _W(size) 1495 1496 #undef _W 1497 1498 ret = do_write_bitmap(ff, n->set, n->size); 1499 if (ret < 0) 1500 goto out; 1501 } 1502 1503 out: 1504 memory_node__delete_nodes(nodes, nr); 1505 return ret; 1506 } 1507 1508 static int write_compressed(struct feat_fd *ff __maybe_unused, 1509 struct evlist *evlist __maybe_unused) 1510 { 1511 int ret; 1512 1513 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1514 if (ret) 1515 return ret; 1516 1517 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1518 if (ret) 1519 return ret; 1520 1521 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1522 if (ret) 1523 return ret; 1524 1525 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1526 if (ret) 1527 return ret; 1528 1529 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1530 } 1531 1532 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu, 1533 bool write_pmu) 1534 { 1535 struct perf_pmu_caps *caps = NULL; 1536 int ret; 1537 1538 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps)); 1539 if (ret < 0) 1540 return ret; 1541 1542 list_for_each_entry(caps, &pmu->caps, list) { 1543 ret = do_write_string(ff, caps->name); 1544 if (ret < 0) 1545 return ret; 1546 1547 ret = do_write_string(ff, caps->value); 1548 if (ret < 0) 1549 return ret; 1550 } 1551 1552 if (write_pmu) { 1553 ret = do_write_string(ff, pmu->name); 1554 if (ret < 0) 1555 return ret; 1556 } 1557 1558 return ret; 1559 } 1560 1561 static int write_cpu_pmu_caps(struct feat_fd *ff, 1562 struct evlist *evlist __maybe_unused) 1563 { 1564 struct perf_pmu *cpu_pmu = perf_pmus__find("cpu"); 1565 int ret; 1566 1567 if (!cpu_pmu) 1568 return -ENOENT; 1569 1570 ret = perf_pmu__caps_parse(cpu_pmu); 1571 if (ret < 0) 1572 return ret; 1573 1574 return __write_pmu_caps(ff, cpu_pmu, false); 1575 } 1576 1577 static int write_pmu_caps(struct feat_fd *ff, 1578 struct evlist *evlist __maybe_unused) 1579 { 1580 struct perf_pmu *pmu = NULL; 1581 int nr_pmu = 0; 1582 int ret; 1583 1584 while ((pmu = perf_pmus__scan(pmu))) { 1585 if (!strcmp(pmu->name, "cpu")) { 1586 /* 1587 * The "cpu" PMU is special and covered by 1588 * HEADER_CPU_PMU_CAPS. Note, core PMUs are 1589 * counted/written here for ARM, s390 and Intel hybrid. 1590 */ 1591 continue; 1592 } 1593 if (perf_pmu__caps_parse(pmu) <= 0) 1594 continue; 1595 nr_pmu++; 1596 } 1597 1598 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu)); 1599 if (ret < 0) 1600 return ret; 1601 1602 if (!nr_pmu) 1603 return 0; 1604 1605 /* 1606 * Note older perf tools assume core PMUs come first, this is a property 1607 * of perf_pmus__scan. 1608 */ 1609 pmu = NULL; 1610 while ((pmu = perf_pmus__scan(pmu))) { 1611 if (!strcmp(pmu->name, "cpu")) { 1612 /* Skip as above. */ 1613 continue; 1614 } 1615 if (perf_pmu__caps_parse(pmu) <= 0) 1616 continue; 1617 ret = __write_pmu_caps(ff, pmu, true); 1618 if (ret < 0) 1619 return ret; 1620 } 1621 return 0; 1622 } 1623 1624 static void print_hostname(struct feat_fd *ff, FILE *fp) 1625 { 1626 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1627 } 1628 1629 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1630 { 1631 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1632 } 1633 1634 static void print_arch(struct feat_fd *ff, FILE *fp) 1635 { 1636 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1637 } 1638 1639 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1640 { 1641 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1642 } 1643 1644 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1645 { 1646 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1647 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1648 } 1649 1650 static void print_version(struct feat_fd *ff, FILE *fp) 1651 { 1652 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1653 } 1654 1655 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1656 { 1657 int nr, i; 1658 1659 nr = ff->ph->env.nr_cmdline; 1660 1661 fprintf(fp, "# cmdline : "); 1662 1663 for (i = 0; i < nr; i++) { 1664 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1665 if (!argv_i) { 1666 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1667 } else { 1668 char *mem = argv_i; 1669 do { 1670 char *quote = strchr(argv_i, '\''); 1671 if (!quote) 1672 break; 1673 *quote++ = '\0'; 1674 fprintf(fp, "%s\\\'", argv_i); 1675 argv_i = quote; 1676 } while (1); 1677 fprintf(fp, "%s ", argv_i); 1678 free(mem); 1679 } 1680 } 1681 fputc('\n', fp); 1682 } 1683 1684 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1685 { 1686 struct perf_header *ph = ff->ph; 1687 int cpu_nr = ph->env.nr_cpus_avail; 1688 int nr, i; 1689 char *str; 1690 1691 nr = ph->env.nr_sibling_cores; 1692 str = ph->env.sibling_cores; 1693 1694 for (i = 0; i < nr; i++) { 1695 fprintf(fp, "# sibling sockets : %s\n", str); 1696 str += strlen(str) + 1; 1697 } 1698 1699 if (ph->env.nr_sibling_dies) { 1700 nr = ph->env.nr_sibling_dies; 1701 str = ph->env.sibling_dies; 1702 1703 for (i = 0; i < nr; i++) { 1704 fprintf(fp, "# sibling dies : %s\n", str); 1705 str += strlen(str) + 1; 1706 } 1707 } 1708 1709 nr = ph->env.nr_sibling_threads; 1710 str = ph->env.sibling_threads; 1711 1712 for (i = 0; i < nr; i++) { 1713 fprintf(fp, "# sibling threads : %s\n", str); 1714 str += strlen(str) + 1; 1715 } 1716 1717 if (ph->env.nr_sibling_dies) { 1718 if (ph->env.cpu != NULL) { 1719 for (i = 0; i < cpu_nr; i++) 1720 fprintf(fp, "# CPU %d: Core ID %d, " 1721 "Die ID %d, Socket ID %d\n", 1722 i, ph->env.cpu[i].core_id, 1723 ph->env.cpu[i].die_id, 1724 ph->env.cpu[i].socket_id); 1725 } else 1726 fprintf(fp, "# Core ID, Die ID and Socket ID " 1727 "information is not available\n"); 1728 } else { 1729 if (ph->env.cpu != NULL) { 1730 for (i = 0; i < cpu_nr; i++) 1731 fprintf(fp, "# CPU %d: Core ID %d, " 1732 "Socket ID %d\n", 1733 i, ph->env.cpu[i].core_id, 1734 ph->env.cpu[i].socket_id); 1735 } else 1736 fprintf(fp, "# Core ID and Socket ID " 1737 "information is not available\n"); 1738 } 1739 } 1740 1741 static void print_clockid(struct feat_fd *ff, FILE *fp) 1742 { 1743 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1744 ff->ph->env.clock.clockid_res_ns * 1000); 1745 } 1746 1747 static void print_clock_data(struct feat_fd *ff, FILE *fp) 1748 { 1749 struct timespec clockid_ns; 1750 char tstr[64], date[64]; 1751 struct timeval tod_ns; 1752 clockid_t clockid; 1753 struct tm ltime; 1754 u64 ref; 1755 1756 if (!ff->ph->env.clock.enabled) { 1757 fprintf(fp, "# reference time disabled\n"); 1758 return; 1759 } 1760 1761 /* Compute TOD time. */ 1762 ref = ff->ph->env.clock.tod_ns; 1763 tod_ns.tv_sec = ref / NSEC_PER_SEC; 1764 ref -= tod_ns.tv_sec * NSEC_PER_SEC; 1765 tod_ns.tv_usec = ref / NSEC_PER_USEC; 1766 1767 /* Compute clockid time. */ 1768 ref = ff->ph->env.clock.clockid_ns; 1769 clockid_ns.tv_sec = ref / NSEC_PER_SEC; 1770 ref -= clockid_ns.tv_sec * NSEC_PER_SEC; 1771 clockid_ns.tv_nsec = ref; 1772 1773 clockid = ff->ph->env.clock.clockid; 1774 1775 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) 1776 snprintf(tstr, sizeof(tstr), "<error>"); 1777 else { 1778 strftime(date, sizeof(date), "%F %T", <ime); 1779 scnprintf(tstr, sizeof(tstr), "%s.%06d", 1780 date, (int) tod_ns.tv_usec); 1781 } 1782 1783 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); 1784 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", 1785 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec, 1786 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec, 1787 clockid_name(clockid)); 1788 } 1789 1790 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp) 1791 { 1792 int i; 1793 struct hybrid_node *n; 1794 1795 fprintf(fp, "# hybrid cpu system:\n"); 1796 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) { 1797 n = &ff->ph->env.hybrid_nodes[i]; 1798 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus); 1799 } 1800 } 1801 1802 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1803 { 1804 struct perf_session *session; 1805 struct perf_data *data; 1806 1807 session = container_of(ff->ph, struct perf_session, header); 1808 data = session->data; 1809 1810 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1811 } 1812 1813 #ifdef HAVE_LIBBPF_SUPPORT 1814 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1815 { 1816 struct perf_env *env = &ff->ph->env; 1817 struct rb_root *root; 1818 struct rb_node *next; 1819 1820 down_read(&env->bpf_progs.lock); 1821 1822 root = &env->bpf_progs.infos; 1823 next = rb_first(root); 1824 1825 if (!next) 1826 printf("# bpf_prog_info empty\n"); 1827 1828 while (next) { 1829 struct bpf_prog_info_node *node; 1830 1831 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1832 next = rb_next(&node->rb_node); 1833 1834 __bpf_event__print_bpf_prog_info(&node->info_linear->info, 1835 env, fp); 1836 } 1837 1838 up_read(&env->bpf_progs.lock); 1839 } 1840 1841 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1842 { 1843 struct perf_env *env = &ff->ph->env; 1844 struct rb_root *root; 1845 struct rb_node *next; 1846 1847 down_read(&env->bpf_progs.lock); 1848 1849 root = &env->bpf_progs.btfs; 1850 next = rb_first(root); 1851 1852 if (!next) 1853 printf("# btf info empty\n"); 1854 1855 while (next) { 1856 struct btf_node *node; 1857 1858 node = rb_entry(next, struct btf_node, rb_node); 1859 next = rb_next(&node->rb_node); 1860 fprintf(fp, "# btf info of id %u\n", node->id); 1861 } 1862 1863 up_read(&env->bpf_progs.lock); 1864 } 1865 #endif // HAVE_LIBBPF_SUPPORT 1866 1867 static void free_event_desc(struct evsel *events) 1868 { 1869 struct evsel *evsel; 1870 1871 if (!events) 1872 return; 1873 1874 for (evsel = events; evsel->core.attr.size; evsel++) { 1875 zfree(&evsel->name); 1876 zfree(&evsel->core.id); 1877 } 1878 1879 free(events); 1880 } 1881 1882 static bool perf_attr_check(struct perf_event_attr *attr) 1883 { 1884 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1885 pr_warning("Reserved bits are set unexpectedly. " 1886 "Please update perf tool.\n"); 1887 return false; 1888 } 1889 1890 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1891 pr_warning("Unknown sample type (0x%llx) is detected. " 1892 "Please update perf tool.\n", 1893 attr->sample_type); 1894 return false; 1895 } 1896 1897 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1898 pr_warning("Unknown read format (0x%llx) is detected. " 1899 "Please update perf tool.\n", 1900 attr->read_format); 1901 return false; 1902 } 1903 1904 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1905 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1906 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1907 "Please update perf tool.\n", 1908 attr->branch_sample_type); 1909 1910 return false; 1911 } 1912 1913 return true; 1914 } 1915 1916 static struct evsel *read_event_desc(struct feat_fd *ff) 1917 { 1918 struct evsel *evsel, *events = NULL; 1919 u64 *id; 1920 void *buf = NULL; 1921 u32 nre, sz, nr, i, j; 1922 size_t msz; 1923 1924 /* number of events */ 1925 if (do_read_u32(ff, &nre)) 1926 goto error; 1927 1928 if (do_read_u32(ff, &sz)) 1929 goto error; 1930 1931 /* buffer to hold on file attr struct */ 1932 buf = malloc(sz); 1933 if (!buf) 1934 goto error; 1935 1936 /* the last event terminates with evsel->core.attr.size == 0: */ 1937 events = calloc(nre + 1, sizeof(*events)); 1938 if (!events) 1939 goto error; 1940 1941 msz = sizeof(evsel->core.attr); 1942 if (sz < msz) 1943 msz = sz; 1944 1945 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1946 evsel->core.idx = i; 1947 1948 /* 1949 * must read entire on-file attr struct to 1950 * sync up with layout. 1951 */ 1952 if (__do_read(ff, buf, sz)) 1953 goto error; 1954 1955 if (ff->ph->needs_swap) 1956 perf_event__attr_swap(buf); 1957 1958 memcpy(&evsel->core.attr, buf, msz); 1959 1960 if (!perf_attr_check(&evsel->core.attr)) 1961 goto error; 1962 1963 if (do_read_u32(ff, &nr)) 1964 goto error; 1965 1966 if (ff->ph->needs_swap) 1967 evsel->needs_swap = true; 1968 1969 evsel->name = do_read_string(ff); 1970 if (!evsel->name) 1971 goto error; 1972 1973 if (!nr) 1974 continue; 1975 1976 id = calloc(nr, sizeof(*id)); 1977 if (!id) 1978 goto error; 1979 evsel->core.ids = nr; 1980 evsel->core.id = id; 1981 1982 for (j = 0 ; j < nr; j++) { 1983 if (do_read_u64(ff, id)) 1984 goto error; 1985 id++; 1986 } 1987 } 1988 out: 1989 free(buf); 1990 return events; 1991 error: 1992 free_event_desc(events); 1993 events = NULL; 1994 goto out; 1995 } 1996 1997 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1998 void *priv __maybe_unused) 1999 { 2000 return fprintf(fp, ", %s = %s", name, val); 2001 } 2002 2003 static void print_event_desc(struct feat_fd *ff, FILE *fp) 2004 { 2005 struct evsel *evsel, *events; 2006 u32 j; 2007 u64 *id; 2008 2009 if (ff->events) 2010 events = ff->events; 2011 else 2012 events = read_event_desc(ff); 2013 2014 if (!events) { 2015 fprintf(fp, "# event desc: not available or unable to read\n"); 2016 return; 2017 } 2018 2019 for (evsel = events; evsel->core.attr.size; evsel++) { 2020 fprintf(fp, "# event : name = %s, ", evsel->name); 2021 2022 if (evsel->core.ids) { 2023 fprintf(fp, ", id = {"); 2024 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 2025 if (j) 2026 fputc(',', fp); 2027 fprintf(fp, " %"PRIu64, *id); 2028 } 2029 fprintf(fp, " }"); 2030 } 2031 2032 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 2033 2034 fputc('\n', fp); 2035 } 2036 2037 free_event_desc(events); 2038 ff->events = NULL; 2039 } 2040 2041 static void print_total_mem(struct feat_fd *ff, FILE *fp) 2042 { 2043 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 2044 } 2045 2046 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 2047 { 2048 int i; 2049 struct numa_node *n; 2050 2051 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 2052 n = &ff->ph->env.numa_nodes[i]; 2053 2054 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 2055 " free = %"PRIu64" kB\n", 2056 n->node, n->mem_total, n->mem_free); 2057 2058 fprintf(fp, "# node%u cpu list : ", n->node); 2059 cpu_map__fprintf(n->map, fp); 2060 } 2061 } 2062 2063 static void print_cpuid(struct feat_fd *ff, FILE *fp) 2064 { 2065 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 2066 } 2067 2068 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 2069 { 2070 fprintf(fp, "# contains samples with branch stack\n"); 2071 } 2072 2073 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 2074 { 2075 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 2076 } 2077 2078 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 2079 { 2080 fprintf(fp, "# contains stat data\n"); 2081 } 2082 2083 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 2084 { 2085 int i; 2086 2087 fprintf(fp, "# CPU cache info:\n"); 2088 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 2089 fprintf(fp, "# "); 2090 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 2091 } 2092 } 2093 2094 static void print_compressed(struct feat_fd *ff, FILE *fp) 2095 { 2096 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 2097 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 2098 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 2099 } 2100 2101 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name) 2102 { 2103 const char *delimiter = ""; 2104 int i; 2105 2106 if (!nr_caps) { 2107 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name); 2108 return; 2109 } 2110 2111 fprintf(fp, "# %s pmu capabilities: ", pmu_name); 2112 for (i = 0; i < nr_caps; i++) { 2113 fprintf(fp, "%s%s", delimiter, caps[i]); 2114 delimiter = ", "; 2115 } 2116 2117 fprintf(fp, "\n"); 2118 } 2119 2120 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2121 { 2122 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps, 2123 ff->ph->env.cpu_pmu_caps, (char *)"cpu"); 2124 } 2125 2126 static void print_pmu_caps(struct feat_fd *ff, FILE *fp) 2127 { 2128 struct perf_env *env = &ff->ph->env; 2129 struct pmu_caps *pmu_caps; 2130 2131 for (int i = 0; i < env->nr_pmus_with_caps; i++) { 2132 pmu_caps = &env->pmu_caps[i]; 2133 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps, 2134 pmu_caps->pmu_name); 2135 } 2136 2137 if (strcmp(perf_env__arch(env), "x86") == 0 && 2138 perf_env__has_pmu_mapping(env, "ibs_op")) { 2139 char *max_precise = perf_env__find_pmu_cap(env, "cpu", "max_precise"); 2140 2141 if (max_precise != NULL && atoi(max_precise) == 0) 2142 fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n"); 2143 } 2144 } 2145 2146 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 2147 { 2148 struct perf_env *env = &ff->ph->env; 2149 const char *delimiter = "# pmu mappings: "; 2150 char *str, *tmp; 2151 u32 pmu_num; 2152 u32 type; 2153 2154 pmu_num = env->nr_pmu_mappings; 2155 if (!pmu_num) { 2156 fprintf(fp, "# pmu mappings: not available\n"); 2157 return; 2158 } 2159 2160 str = env->pmu_mappings; 2161 2162 while (pmu_num) { 2163 type = strtoul(str, &tmp, 0); 2164 if (*tmp != ':') 2165 goto error; 2166 2167 str = tmp + 1; 2168 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 2169 2170 delimiter = ", "; 2171 str += strlen(str) + 1; 2172 pmu_num--; 2173 } 2174 2175 fprintf(fp, "\n"); 2176 2177 if (!pmu_num) 2178 return; 2179 error: 2180 fprintf(fp, "# pmu mappings: unable to read\n"); 2181 } 2182 2183 static void print_group_desc(struct feat_fd *ff, FILE *fp) 2184 { 2185 struct perf_session *session; 2186 struct evsel *evsel; 2187 u32 nr = 0; 2188 2189 session = container_of(ff->ph, struct perf_session, header); 2190 2191 evlist__for_each_entry(session->evlist, evsel) { 2192 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 2193 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); 2194 2195 nr = evsel->core.nr_members - 1; 2196 } else if (nr) { 2197 fprintf(fp, ",%s", evsel__name(evsel)); 2198 2199 if (--nr == 0) 2200 fprintf(fp, "}\n"); 2201 } 2202 } 2203 } 2204 2205 static void print_sample_time(struct feat_fd *ff, FILE *fp) 2206 { 2207 struct perf_session *session; 2208 char time_buf[32]; 2209 double d; 2210 2211 session = container_of(ff->ph, struct perf_session, header); 2212 2213 timestamp__scnprintf_usec(session->evlist->first_sample_time, 2214 time_buf, sizeof(time_buf)); 2215 fprintf(fp, "# time of first sample : %s\n", time_buf); 2216 2217 timestamp__scnprintf_usec(session->evlist->last_sample_time, 2218 time_buf, sizeof(time_buf)); 2219 fprintf(fp, "# time of last sample : %s\n", time_buf); 2220 2221 d = (double)(session->evlist->last_sample_time - 2222 session->evlist->first_sample_time) / NSEC_PER_MSEC; 2223 2224 fprintf(fp, "# sample duration : %10.3f ms\n", d); 2225 } 2226 2227 static void memory_node__fprintf(struct memory_node *n, 2228 unsigned long long bsize, FILE *fp) 2229 { 2230 char buf_map[100], buf_size[50]; 2231 unsigned long long size; 2232 2233 size = bsize * bitmap_weight(n->set, n->size); 2234 unit_number__scnprintf(buf_size, 50, size); 2235 2236 bitmap_scnprintf(n->set, n->size, buf_map, 100); 2237 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 2238 } 2239 2240 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 2241 { 2242 struct perf_env *env = &ff->ph->env; 2243 struct memory_node *nodes; 2244 int i, nr; 2245 2246 nodes = env->memory_nodes; 2247 nr = env->nr_memory_nodes; 2248 2249 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 2250 nr, env->memory_bsize); 2251 2252 for (i = 0; i < nr; i++) { 2253 memory_node__fprintf(&nodes[i], env->memory_bsize, fp); 2254 } 2255 } 2256 2257 static int __event_process_build_id(struct perf_record_header_build_id *bev, 2258 char *filename, 2259 struct perf_session *session) 2260 { 2261 int err = -1; 2262 struct machine *machine; 2263 u16 cpumode; 2264 struct dso *dso; 2265 enum dso_space_type dso_space; 2266 2267 machine = perf_session__findnew_machine(session, bev->pid); 2268 if (!machine) 2269 goto out; 2270 2271 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2272 2273 switch (cpumode) { 2274 case PERF_RECORD_MISC_KERNEL: 2275 dso_space = DSO_SPACE__KERNEL; 2276 break; 2277 case PERF_RECORD_MISC_GUEST_KERNEL: 2278 dso_space = DSO_SPACE__KERNEL_GUEST; 2279 break; 2280 case PERF_RECORD_MISC_USER: 2281 case PERF_RECORD_MISC_GUEST_USER: 2282 dso_space = DSO_SPACE__USER; 2283 break; 2284 default: 2285 goto out; 2286 } 2287 2288 dso = machine__findnew_dso(machine, filename); 2289 if (dso != NULL) { 2290 char sbuild_id[SBUILD_ID_SIZE]; 2291 struct build_id bid; 2292 size_t size = BUILD_ID_SIZE; 2293 2294 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) 2295 size = bev->size; 2296 2297 build_id__init(&bid, bev->data, size); 2298 dso__set_build_id(dso, &bid); 2299 dso__set_header_build_id(dso, true); 2300 2301 if (dso_space != DSO_SPACE__USER) { 2302 struct kmod_path m = { .name = NULL, }; 2303 2304 if (!kmod_path__parse_name(&m, filename) && m.kmod) 2305 dso__set_module_info(dso, &m, machine); 2306 2307 dso__set_kernel(dso, dso_space); 2308 free(m.name); 2309 } 2310 2311 build_id__snprintf(dso__bid(dso), sbuild_id, sizeof(sbuild_id)); 2312 pr_debug("build id event received for %s: %s [%zu]\n", 2313 dso__long_name(dso), sbuild_id, size); 2314 dso__put(dso); 2315 } 2316 2317 err = 0; 2318 out: 2319 return err; 2320 } 2321 2322 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 2323 int input, u64 offset, u64 size) 2324 { 2325 struct perf_session *session = container_of(header, struct perf_session, header); 2326 struct { 2327 struct perf_event_header header; 2328 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 2329 char filename[0]; 2330 } old_bev; 2331 struct perf_record_header_build_id bev; 2332 char filename[PATH_MAX]; 2333 u64 limit = offset + size; 2334 2335 while (offset < limit) { 2336 ssize_t len; 2337 2338 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2339 return -1; 2340 2341 if (header->needs_swap) 2342 perf_event_header__bswap(&old_bev.header); 2343 2344 len = old_bev.header.size - sizeof(old_bev); 2345 if (readn(input, filename, len) != len) 2346 return -1; 2347 2348 bev.header = old_bev.header; 2349 2350 /* 2351 * As the pid is the missing value, we need to fill 2352 * it properly. The header.misc value give us nice hint. 2353 */ 2354 bev.pid = HOST_KERNEL_ID; 2355 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2356 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2357 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2358 2359 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2360 __event_process_build_id(&bev, filename, session); 2361 2362 offset += bev.header.size; 2363 } 2364 2365 return 0; 2366 } 2367 2368 static int perf_header__read_build_ids(struct perf_header *header, 2369 int input, u64 offset, u64 size) 2370 { 2371 struct perf_session *session = container_of(header, struct perf_session, header); 2372 struct perf_record_header_build_id bev; 2373 char filename[PATH_MAX]; 2374 u64 limit = offset + size, orig_offset = offset; 2375 int err = -1; 2376 2377 while (offset < limit) { 2378 ssize_t len; 2379 2380 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2381 goto out; 2382 2383 if (header->needs_swap) 2384 perf_event_header__bswap(&bev.header); 2385 2386 len = bev.header.size - sizeof(bev); 2387 if (readn(input, filename, len) != len) 2388 goto out; 2389 /* 2390 * The a1645ce1 changeset: 2391 * 2392 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2393 * 2394 * Added a field to struct perf_record_header_build_id that broke the file 2395 * format. 2396 * 2397 * Since the kernel build-id is the first entry, process the 2398 * table using the old format if the well known 2399 * '[kernel.kallsyms]' string for the kernel build-id has the 2400 * first 4 characters chopped off (where the pid_t sits). 2401 */ 2402 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2403 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2404 return -1; 2405 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2406 } 2407 2408 __event_process_build_id(&bev, filename, session); 2409 2410 offset += bev.header.size; 2411 } 2412 err = 0; 2413 out: 2414 return err; 2415 } 2416 2417 /* Macro for features that simply need to read and store a string. */ 2418 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2419 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2420 {\ 2421 free(ff->ph->env.__feat_env); \ 2422 ff->ph->env.__feat_env = do_read_string(ff); \ 2423 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2424 } 2425 2426 FEAT_PROCESS_STR_FUN(hostname, hostname); 2427 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2428 FEAT_PROCESS_STR_FUN(version, version); 2429 FEAT_PROCESS_STR_FUN(arch, arch); 2430 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2431 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2432 2433 #ifdef HAVE_LIBTRACEEVENT 2434 static int process_tracing_data(struct feat_fd *ff, void *data) 2435 { 2436 ssize_t ret = trace_report(ff->fd, data, false); 2437 2438 return ret < 0 ? -1 : 0; 2439 } 2440 #endif 2441 2442 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2443 { 2444 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2445 pr_debug("Failed to read buildids, continuing...\n"); 2446 return 0; 2447 } 2448 2449 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2450 { 2451 struct perf_env *env = &ff->ph->env; 2452 int ret; 2453 u32 nr_cpus_avail, nr_cpus_online; 2454 2455 ret = do_read_u32(ff, &nr_cpus_avail); 2456 if (ret) 2457 return ret; 2458 2459 ret = do_read_u32(ff, &nr_cpus_online); 2460 if (ret) 2461 return ret; 2462 env->nr_cpus_avail = (int)nr_cpus_avail; 2463 env->nr_cpus_online = (int)nr_cpus_online; 2464 return 0; 2465 } 2466 2467 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2468 { 2469 struct perf_env *env = &ff->ph->env; 2470 u64 total_mem; 2471 int ret; 2472 2473 ret = do_read_u64(ff, &total_mem); 2474 if (ret) 2475 return -1; 2476 env->total_mem = (unsigned long long)total_mem; 2477 return 0; 2478 } 2479 2480 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) 2481 { 2482 struct evsel *evsel; 2483 2484 evlist__for_each_entry(evlist, evsel) { 2485 if (evsel->core.idx == idx) 2486 return evsel; 2487 } 2488 2489 return NULL; 2490 } 2491 2492 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event) 2493 { 2494 struct evsel *evsel; 2495 2496 if (!event->name) 2497 return; 2498 2499 evsel = evlist__find_by_index(evlist, event->core.idx); 2500 if (!evsel) 2501 return; 2502 2503 if (evsel->name) 2504 return; 2505 2506 evsel->name = strdup(event->name); 2507 } 2508 2509 static int 2510 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2511 { 2512 struct perf_session *session; 2513 struct evsel *evsel, *events = read_event_desc(ff); 2514 2515 if (!events) 2516 return 0; 2517 2518 session = container_of(ff->ph, struct perf_session, header); 2519 2520 if (session->data->is_pipe) { 2521 /* Save events for reading later by print_event_desc, 2522 * since they can't be read again in pipe mode. */ 2523 ff->events = events; 2524 } 2525 2526 for (evsel = events; evsel->core.attr.size; evsel++) 2527 evlist__set_event_name(session->evlist, evsel); 2528 2529 if (!session->data->is_pipe) 2530 free_event_desc(events); 2531 2532 return 0; 2533 } 2534 2535 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2536 { 2537 struct perf_env *env = &ff->ph->env; 2538 char *str, *cmdline = NULL, **argv = NULL; 2539 u32 nr, i, len = 0; 2540 2541 if (do_read_u32(ff, &nr)) 2542 return -1; 2543 2544 env->nr_cmdline = nr; 2545 2546 cmdline = zalloc(ff->size + nr + 1); 2547 if (!cmdline) 2548 return -1; 2549 2550 argv = zalloc(sizeof(char *) * (nr + 1)); 2551 if (!argv) 2552 goto error; 2553 2554 for (i = 0; i < nr; i++) { 2555 str = do_read_string(ff); 2556 if (!str) 2557 goto error; 2558 2559 argv[i] = cmdline + len; 2560 memcpy(argv[i], str, strlen(str) + 1); 2561 len += strlen(str) + 1; 2562 free(str); 2563 } 2564 env->cmdline = cmdline; 2565 env->cmdline_argv = (const char **) argv; 2566 return 0; 2567 2568 error: 2569 free(argv); 2570 free(cmdline); 2571 return -1; 2572 } 2573 2574 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2575 { 2576 u32 nr, i; 2577 char *str = NULL; 2578 struct strbuf sb; 2579 struct perf_env *env = &ff->ph->env; 2580 int cpu_nr = env->nr_cpus_avail; 2581 u64 size = 0; 2582 2583 env->cpu = calloc(cpu_nr, sizeof(*env->cpu)); 2584 if (!env->cpu) 2585 return -1; 2586 2587 if (do_read_u32(ff, &nr)) 2588 goto free_cpu; 2589 2590 env->nr_sibling_cores = nr; 2591 size += sizeof(u32); 2592 if (strbuf_init(&sb, 128) < 0) 2593 goto free_cpu; 2594 2595 for (i = 0; i < nr; i++) { 2596 str = do_read_string(ff); 2597 if (!str) 2598 goto error; 2599 2600 /* include a NULL character at the end */ 2601 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2602 goto error; 2603 size += string_size(str); 2604 zfree(&str); 2605 } 2606 env->sibling_cores = strbuf_detach(&sb, NULL); 2607 2608 if (do_read_u32(ff, &nr)) 2609 return -1; 2610 2611 env->nr_sibling_threads = nr; 2612 size += sizeof(u32); 2613 2614 for (i = 0; i < nr; i++) { 2615 str = do_read_string(ff); 2616 if (!str) 2617 goto error; 2618 2619 /* include a NULL character at the end */ 2620 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2621 goto error; 2622 size += string_size(str); 2623 zfree(&str); 2624 } 2625 env->sibling_threads = strbuf_detach(&sb, NULL); 2626 2627 /* 2628 * The header may be from old perf, 2629 * which doesn't include core id and socket id information. 2630 */ 2631 if (ff->size <= size) { 2632 zfree(&env->cpu); 2633 return 0; 2634 } 2635 2636 for (i = 0; i < (u32)cpu_nr; i++) { 2637 if (do_read_u32(ff, &nr)) 2638 goto free_cpu; 2639 2640 env->cpu[i].core_id = nr; 2641 size += sizeof(u32); 2642 2643 if (do_read_u32(ff, &nr)) 2644 goto free_cpu; 2645 2646 env->cpu[i].socket_id = nr; 2647 size += sizeof(u32); 2648 } 2649 2650 /* 2651 * The header may be from old perf, 2652 * which doesn't include die information. 2653 */ 2654 if (ff->size <= size) 2655 return 0; 2656 2657 if (do_read_u32(ff, &nr)) 2658 return -1; 2659 2660 env->nr_sibling_dies = nr; 2661 size += sizeof(u32); 2662 2663 for (i = 0; i < nr; i++) { 2664 str = do_read_string(ff); 2665 if (!str) 2666 goto error; 2667 2668 /* include a NULL character at the end */ 2669 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2670 goto error; 2671 size += string_size(str); 2672 zfree(&str); 2673 } 2674 env->sibling_dies = strbuf_detach(&sb, NULL); 2675 2676 for (i = 0; i < (u32)cpu_nr; i++) { 2677 if (do_read_u32(ff, &nr)) 2678 goto free_cpu; 2679 2680 env->cpu[i].die_id = nr; 2681 } 2682 2683 return 0; 2684 2685 error: 2686 strbuf_release(&sb); 2687 zfree(&str); 2688 free_cpu: 2689 zfree(&env->cpu); 2690 return -1; 2691 } 2692 2693 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2694 { 2695 struct perf_env *env = &ff->ph->env; 2696 struct numa_node *nodes, *n; 2697 u32 nr, i; 2698 char *str; 2699 2700 /* nr nodes */ 2701 if (do_read_u32(ff, &nr)) 2702 return -1; 2703 2704 nodes = zalloc(sizeof(*nodes) * nr); 2705 if (!nodes) 2706 return -ENOMEM; 2707 2708 for (i = 0; i < nr; i++) { 2709 n = &nodes[i]; 2710 2711 /* node number */ 2712 if (do_read_u32(ff, &n->node)) 2713 goto error; 2714 2715 if (do_read_u64(ff, &n->mem_total)) 2716 goto error; 2717 2718 if (do_read_u64(ff, &n->mem_free)) 2719 goto error; 2720 2721 str = do_read_string(ff); 2722 if (!str) 2723 goto error; 2724 2725 n->map = perf_cpu_map__new(str); 2726 free(str); 2727 if (!n->map) 2728 goto error; 2729 } 2730 env->nr_numa_nodes = nr; 2731 env->numa_nodes = nodes; 2732 return 0; 2733 2734 error: 2735 free(nodes); 2736 return -1; 2737 } 2738 2739 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2740 { 2741 struct perf_env *env = &ff->ph->env; 2742 char *name; 2743 u32 pmu_num; 2744 u32 type; 2745 struct strbuf sb; 2746 2747 if (do_read_u32(ff, &pmu_num)) 2748 return -1; 2749 2750 if (!pmu_num) { 2751 pr_debug("pmu mappings not available\n"); 2752 return 0; 2753 } 2754 2755 env->nr_pmu_mappings = pmu_num; 2756 if (strbuf_init(&sb, 128) < 0) 2757 return -1; 2758 2759 while (pmu_num) { 2760 if (do_read_u32(ff, &type)) 2761 goto error; 2762 2763 name = do_read_string(ff); 2764 if (!name) 2765 goto error; 2766 2767 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2768 goto error; 2769 /* include a NULL character at the end */ 2770 if (strbuf_add(&sb, "", 1) < 0) 2771 goto error; 2772 2773 if (!strcmp(name, "msr")) 2774 env->msr_pmu_type = type; 2775 2776 free(name); 2777 pmu_num--; 2778 } 2779 /* AMD may set it by evlist__has_amd_ibs() from perf_session__new() */ 2780 free(env->pmu_mappings); 2781 env->pmu_mappings = strbuf_detach(&sb, NULL); 2782 return 0; 2783 2784 error: 2785 strbuf_release(&sb); 2786 return -1; 2787 } 2788 2789 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2790 { 2791 struct perf_env *env = &ff->ph->env; 2792 size_t ret = -1; 2793 u32 i, nr, nr_groups; 2794 struct perf_session *session; 2795 struct evsel *evsel, *leader = NULL; 2796 struct group_desc { 2797 char *name; 2798 u32 leader_idx; 2799 u32 nr_members; 2800 } *desc; 2801 2802 if (do_read_u32(ff, &nr_groups)) 2803 return -1; 2804 2805 env->nr_groups = nr_groups; 2806 if (!nr_groups) { 2807 pr_debug("group desc not available\n"); 2808 return 0; 2809 } 2810 2811 desc = calloc(nr_groups, sizeof(*desc)); 2812 if (!desc) 2813 return -1; 2814 2815 for (i = 0; i < nr_groups; i++) { 2816 desc[i].name = do_read_string(ff); 2817 if (!desc[i].name) 2818 goto out_free; 2819 2820 if (do_read_u32(ff, &desc[i].leader_idx)) 2821 goto out_free; 2822 2823 if (do_read_u32(ff, &desc[i].nr_members)) 2824 goto out_free; 2825 } 2826 2827 /* 2828 * Rebuild group relationship based on the group_desc 2829 */ 2830 session = container_of(ff->ph, struct perf_session, header); 2831 2832 i = nr = 0; 2833 evlist__for_each_entry(session->evlist, evsel) { 2834 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) { 2835 evsel__set_leader(evsel, evsel); 2836 /* {anon_group} is a dummy name */ 2837 if (strcmp(desc[i].name, "{anon_group}")) { 2838 evsel->group_name = desc[i].name; 2839 desc[i].name = NULL; 2840 } 2841 evsel->core.nr_members = desc[i].nr_members; 2842 2843 if (i >= nr_groups || nr > 0) { 2844 pr_debug("invalid group desc\n"); 2845 goto out_free; 2846 } 2847 2848 leader = evsel; 2849 nr = evsel->core.nr_members - 1; 2850 i++; 2851 } else if (nr) { 2852 /* This is a group member */ 2853 evsel__set_leader(evsel, leader); 2854 2855 nr--; 2856 } 2857 } 2858 2859 if (i != nr_groups || nr != 0) { 2860 pr_debug("invalid group desc\n"); 2861 goto out_free; 2862 } 2863 2864 ret = 0; 2865 out_free: 2866 for (i = 0; i < nr_groups; i++) 2867 zfree(&desc[i].name); 2868 free(desc); 2869 2870 return ret; 2871 } 2872 2873 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2874 { 2875 struct perf_session *session; 2876 int err; 2877 2878 session = container_of(ff->ph, struct perf_session, header); 2879 2880 err = auxtrace_index__process(ff->fd, ff->size, session, 2881 ff->ph->needs_swap); 2882 if (err < 0) 2883 pr_err("Failed to process auxtrace index\n"); 2884 return err; 2885 } 2886 2887 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2888 { 2889 struct perf_env *env = &ff->ph->env; 2890 struct cpu_cache_level *caches; 2891 u32 cnt, i, version; 2892 2893 if (do_read_u32(ff, &version)) 2894 return -1; 2895 2896 if (version != 1) 2897 return -1; 2898 2899 if (do_read_u32(ff, &cnt)) 2900 return -1; 2901 2902 caches = zalloc(sizeof(*caches) * cnt); 2903 if (!caches) 2904 return -1; 2905 2906 for (i = 0; i < cnt; i++) { 2907 struct cpu_cache_level *c = &caches[i]; 2908 2909 #define _R(v) \ 2910 if (do_read_u32(ff, &c->v)) \ 2911 goto out_free_caches; \ 2912 2913 _R(level) 2914 _R(line_size) 2915 _R(sets) 2916 _R(ways) 2917 #undef _R 2918 2919 #define _R(v) \ 2920 c->v = do_read_string(ff); \ 2921 if (!c->v) \ 2922 goto out_free_caches; \ 2923 2924 _R(type) 2925 _R(size) 2926 _R(map) 2927 #undef _R 2928 } 2929 2930 env->caches = caches; 2931 env->caches_cnt = cnt; 2932 return 0; 2933 out_free_caches: 2934 for (i = 0; i < cnt; i++) { 2935 free(caches[i].type); 2936 free(caches[i].size); 2937 free(caches[i].map); 2938 } 2939 free(caches); 2940 return -1; 2941 } 2942 2943 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2944 { 2945 struct perf_session *session; 2946 u64 first_sample_time, last_sample_time; 2947 int ret; 2948 2949 session = container_of(ff->ph, struct perf_session, header); 2950 2951 ret = do_read_u64(ff, &first_sample_time); 2952 if (ret) 2953 return -1; 2954 2955 ret = do_read_u64(ff, &last_sample_time); 2956 if (ret) 2957 return -1; 2958 2959 session->evlist->first_sample_time = first_sample_time; 2960 session->evlist->last_sample_time = last_sample_time; 2961 return 0; 2962 } 2963 2964 static int process_mem_topology(struct feat_fd *ff, 2965 void *data __maybe_unused) 2966 { 2967 struct perf_env *env = &ff->ph->env; 2968 struct memory_node *nodes; 2969 u64 version, i, nr, bsize; 2970 int ret = -1; 2971 2972 if (do_read_u64(ff, &version)) 2973 return -1; 2974 2975 if (version != 1) 2976 return -1; 2977 2978 if (do_read_u64(ff, &bsize)) 2979 return -1; 2980 2981 if (do_read_u64(ff, &nr)) 2982 return -1; 2983 2984 nodes = zalloc(sizeof(*nodes) * nr); 2985 if (!nodes) 2986 return -1; 2987 2988 for (i = 0; i < nr; i++) { 2989 struct memory_node n; 2990 2991 #define _R(v) \ 2992 if (do_read_u64(ff, &n.v)) \ 2993 goto out; \ 2994 2995 _R(node) 2996 _R(size) 2997 2998 #undef _R 2999 3000 if (do_read_bitmap(ff, &n.set, &n.size)) 3001 goto out; 3002 3003 nodes[i] = n; 3004 } 3005 3006 env->memory_bsize = bsize; 3007 env->memory_nodes = nodes; 3008 env->nr_memory_nodes = nr; 3009 ret = 0; 3010 3011 out: 3012 if (ret) 3013 free(nodes); 3014 return ret; 3015 } 3016 3017 static int process_clockid(struct feat_fd *ff, 3018 void *data __maybe_unused) 3019 { 3020 struct perf_env *env = &ff->ph->env; 3021 3022 if (do_read_u64(ff, &env->clock.clockid_res_ns)) 3023 return -1; 3024 3025 return 0; 3026 } 3027 3028 static int process_clock_data(struct feat_fd *ff, 3029 void *_data __maybe_unused) 3030 { 3031 struct perf_env *env = &ff->ph->env; 3032 u32 data32; 3033 u64 data64; 3034 3035 /* version */ 3036 if (do_read_u32(ff, &data32)) 3037 return -1; 3038 3039 if (data32 != 1) 3040 return -1; 3041 3042 /* clockid */ 3043 if (do_read_u32(ff, &data32)) 3044 return -1; 3045 3046 env->clock.clockid = data32; 3047 3048 /* TOD ref time */ 3049 if (do_read_u64(ff, &data64)) 3050 return -1; 3051 3052 env->clock.tod_ns = data64; 3053 3054 /* clockid ref time */ 3055 if (do_read_u64(ff, &data64)) 3056 return -1; 3057 3058 env->clock.clockid_ns = data64; 3059 env->clock.enabled = true; 3060 return 0; 3061 } 3062 3063 static int process_hybrid_topology(struct feat_fd *ff, 3064 void *data __maybe_unused) 3065 { 3066 struct perf_env *env = &ff->ph->env; 3067 struct hybrid_node *nodes, *n; 3068 u32 nr, i; 3069 3070 /* nr nodes */ 3071 if (do_read_u32(ff, &nr)) 3072 return -1; 3073 3074 nodes = zalloc(sizeof(*nodes) * nr); 3075 if (!nodes) 3076 return -ENOMEM; 3077 3078 for (i = 0; i < nr; i++) { 3079 n = &nodes[i]; 3080 3081 n->pmu_name = do_read_string(ff); 3082 if (!n->pmu_name) 3083 goto error; 3084 3085 n->cpus = do_read_string(ff); 3086 if (!n->cpus) 3087 goto error; 3088 } 3089 3090 env->nr_hybrid_nodes = nr; 3091 env->hybrid_nodes = nodes; 3092 return 0; 3093 3094 error: 3095 for (i = 0; i < nr; i++) { 3096 free(nodes[i].pmu_name); 3097 free(nodes[i].cpus); 3098 } 3099 3100 free(nodes); 3101 return -1; 3102 } 3103 3104 static int process_dir_format(struct feat_fd *ff, 3105 void *_data __maybe_unused) 3106 { 3107 struct perf_session *session; 3108 struct perf_data *data; 3109 3110 session = container_of(ff->ph, struct perf_session, header); 3111 data = session->data; 3112 3113 if (WARN_ON(!perf_data__is_dir(data))) 3114 return -1; 3115 3116 return do_read_u64(ff, &data->dir.version); 3117 } 3118 3119 #ifdef HAVE_LIBBPF_SUPPORT 3120 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 3121 { 3122 struct bpf_prog_info_node *info_node; 3123 struct perf_env *env = &ff->ph->env; 3124 struct perf_bpil *info_linear; 3125 u32 count, i; 3126 int err = -1; 3127 3128 if (ff->ph->needs_swap) { 3129 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n"); 3130 return 0; 3131 } 3132 3133 if (do_read_u32(ff, &count)) 3134 return -1; 3135 3136 down_write(&env->bpf_progs.lock); 3137 3138 for (i = 0; i < count; ++i) { 3139 u32 info_len, data_len; 3140 3141 info_linear = NULL; 3142 info_node = NULL; 3143 if (do_read_u32(ff, &info_len)) 3144 goto out; 3145 if (do_read_u32(ff, &data_len)) 3146 goto out; 3147 3148 if (info_len > sizeof(struct bpf_prog_info)) { 3149 pr_warning("detected invalid bpf_prog_info\n"); 3150 goto out; 3151 } 3152 3153 info_linear = malloc(sizeof(struct perf_bpil) + 3154 data_len); 3155 if (!info_linear) 3156 goto out; 3157 info_linear->info_len = sizeof(struct bpf_prog_info); 3158 info_linear->data_len = data_len; 3159 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 3160 goto out; 3161 if (__do_read(ff, &info_linear->info, info_len)) 3162 goto out; 3163 if (info_len < sizeof(struct bpf_prog_info)) 3164 memset(((void *)(&info_linear->info)) + info_len, 0, 3165 sizeof(struct bpf_prog_info) - info_len); 3166 3167 if (__do_read(ff, info_linear->data, data_len)) 3168 goto out; 3169 3170 info_node = malloc(sizeof(struct bpf_prog_info_node)); 3171 if (!info_node) 3172 goto out; 3173 3174 /* after reading from file, translate offset to address */ 3175 bpil_offs_to_addr(info_linear); 3176 info_node->info_linear = info_linear; 3177 info_node->metadata = NULL; 3178 if (!__perf_env__insert_bpf_prog_info(env, info_node)) { 3179 free(info_linear); 3180 free(info_node); 3181 } 3182 } 3183 3184 up_write(&env->bpf_progs.lock); 3185 return 0; 3186 out: 3187 free(info_linear); 3188 free(info_node); 3189 up_write(&env->bpf_progs.lock); 3190 return err; 3191 } 3192 3193 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 3194 { 3195 struct perf_env *env = &ff->ph->env; 3196 struct btf_node *node = NULL; 3197 u32 count, i; 3198 int err = -1; 3199 3200 if (ff->ph->needs_swap) { 3201 pr_warning("interpreting btf from systems with endianness is not yet supported\n"); 3202 return 0; 3203 } 3204 3205 if (do_read_u32(ff, &count)) 3206 return -1; 3207 3208 down_write(&env->bpf_progs.lock); 3209 3210 for (i = 0; i < count; ++i) { 3211 u32 id, data_size; 3212 3213 if (do_read_u32(ff, &id)) 3214 goto out; 3215 if (do_read_u32(ff, &data_size)) 3216 goto out; 3217 3218 node = malloc(sizeof(struct btf_node) + data_size); 3219 if (!node) 3220 goto out; 3221 3222 node->id = id; 3223 node->data_size = data_size; 3224 3225 if (__do_read(ff, node->data, data_size)) 3226 goto out; 3227 3228 if (!__perf_env__insert_btf(env, node)) 3229 free(node); 3230 node = NULL; 3231 } 3232 3233 err = 0; 3234 out: 3235 up_write(&env->bpf_progs.lock); 3236 free(node); 3237 return err; 3238 } 3239 #endif // HAVE_LIBBPF_SUPPORT 3240 3241 static int process_compressed(struct feat_fd *ff, 3242 void *data __maybe_unused) 3243 { 3244 struct perf_env *env = &ff->ph->env; 3245 3246 if (do_read_u32(ff, &(env->comp_ver))) 3247 return -1; 3248 3249 if (do_read_u32(ff, &(env->comp_type))) 3250 return -1; 3251 3252 if (do_read_u32(ff, &(env->comp_level))) 3253 return -1; 3254 3255 if (do_read_u32(ff, &(env->comp_ratio))) 3256 return -1; 3257 3258 if (do_read_u32(ff, &(env->comp_mmap_len))) 3259 return -1; 3260 3261 return 0; 3262 } 3263 3264 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps, 3265 char ***caps, unsigned int *max_branches, 3266 unsigned int *br_cntr_nr, 3267 unsigned int *br_cntr_width) 3268 { 3269 char *name, *value, *ptr; 3270 u32 nr_pmu_caps, i; 3271 3272 *nr_caps = 0; 3273 *caps = NULL; 3274 3275 if (do_read_u32(ff, &nr_pmu_caps)) 3276 return -1; 3277 3278 if (!nr_pmu_caps) 3279 return 0; 3280 3281 *caps = zalloc(sizeof(char *) * nr_pmu_caps); 3282 if (!*caps) 3283 return -1; 3284 3285 for (i = 0; i < nr_pmu_caps; i++) { 3286 name = do_read_string(ff); 3287 if (!name) 3288 goto error; 3289 3290 value = do_read_string(ff); 3291 if (!value) 3292 goto free_name; 3293 3294 if (asprintf(&ptr, "%s=%s", name, value) < 0) 3295 goto free_value; 3296 3297 (*caps)[i] = ptr; 3298 3299 if (!strcmp(name, "branches")) 3300 *max_branches = atoi(value); 3301 3302 if (!strcmp(name, "branch_counter_nr")) 3303 *br_cntr_nr = atoi(value); 3304 3305 if (!strcmp(name, "branch_counter_width")) 3306 *br_cntr_width = atoi(value); 3307 3308 free(value); 3309 free(name); 3310 } 3311 *nr_caps = nr_pmu_caps; 3312 return 0; 3313 3314 free_value: 3315 free(value); 3316 free_name: 3317 free(name); 3318 error: 3319 for (; i > 0; i--) 3320 free((*caps)[i - 1]); 3321 free(*caps); 3322 *caps = NULL; 3323 *nr_caps = 0; 3324 return -1; 3325 } 3326 3327 static int process_cpu_pmu_caps(struct feat_fd *ff, 3328 void *data __maybe_unused) 3329 { 3330 struct perf_env *env = &ff->ph->env; 3331 int ret = __process_pmu_caps(ff, &env->nr_cpu_pmu_caps, 3332 &env->cpu_pmu_caps, 3333 &env->max_branches, 3334 &env->br_cntr_nr, 3335 &env->br_cntr_width); 3336 3337 if (!ret && !env->cpu_pmu_caps) 3338 pr_debug("cpu pmu capabilities not available\n"); 3339 return ret; 3340 } 3341 3342 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused) 3343 { 3344 struct perf_env *env = &ff->ph->env; 3345 struct pmu_caps *pmu_caps; 3346 u32 nr_pmu, i; 3347 int ret; 3348 int j; 3349 3350 if (do_read_u32(ff, &nr_pmu)) 3351 return -1; 3352 3353 if (!nr_pmu) { 3354 pr_debug("pmu capabilities not available\n"); 3355 return 0; 3356 } 3357 3358 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu); 3359 if (!pmu_caps) 3360 return -ENOMEM; 3361 3362 for (i = 0; i < nr_pmu; i++) { 3363 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps, 3364 &pmu_caps[i].caps, 3365 &pmu_caps[i].max_branches, 3366 &pmu_caps[i].br_cntr_nr, 3367 &pmu_caps[i].br_cntr_width); 3368 if (ret) 3369 goto err; 3370 3371 pmu_caps[i].pmu_name = do_read_string(ff); 3372 if (!pmu_caps[i].pmu_name) { 3373 ret = -1; 3374 goto err; 3375 } 3376 if (!pmu_caps[i].nr_caps) { 3377 pr_debug("%s pmu capabilities not available\n", 3378 pmu_caps[i].pmu_name); 3379 } 3380 } 3381 3382 env->nr_pmus_with_caps = nr_pmu; 3383 env->pmu_caps = pmu_caps; 3384 return 0; 3385 3386 err: 3387 for (i = 0; i < nr_pmu; i++) { 3388 for (j = 0; j < pmu_caps[i].nr_caps; j++) 3389 free(pmu_caps[i].caps[j]); 3390 free(pmu_caps[i].caps); 3391 free(pmu_caps[i].pmu_name); 3392 } 3393 3394 free(pmu_caps); 3395 return ret; 3396 } 3397 3398 #define FEAT_OPR(n, func, __full_only) \ 3399 [HEADER_##n] = { \ 3400 .name = __stringify(n), \ 3401 .write = write_##func, \ 3402 .print = print_##func, \ 3403 .full_only = __full_only, \ 3404 .process = process_##func, \ 3405 .synthesize = true \ 3406 } 3407 3408 #define FEAT_OPN(n, func, __full_only) \ 3409 [HEADER_##n] = { \ 3410 .name = __stringify(n), \ 3411 .write = write_##func, \ 3412 .print = print_##func, \ 3413 .full_only = __full_only, \ 3414 .process = process_##func \ 3415 } 3416 3417 /* feature_ops not implemented: */ 3418 #define print_tracing_data NULL 3419 #define print_build_id NULL 3420 3421 #define process_branch_stack NULL 3422 #define process_stat NULL 3423 3424 // Only used in util/synthetic-events.c 3425 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 3426 3427 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 3428 #ifdef HAVE_LIBTRACEEVENT 3429 FEAT_OPN(TRACING_DATA, tracing_data, false), 3430 #endif 3431 FEAT_OPN(BUILD_ID, build_id, false), 3432 FEAT_OPR(HOSTNAME, hostname, false), 3433 FEAT_OPR(OSRELEASE, osrelease, false), 3434 FEAT_OPR(VERSION, version, false), 3435 FEAT_OPR(ARCH, arch, false), 3436 FEAT_OPR(NRCPUS, nrcpus, false), 3437 FEAT_OPR(CPUDESC, cpudesc, false), 3438 FEAT_OPR(CPUID, cpuid, false), 3439 FEAT_OPR(TOTAL_MEM, total_mem, false), 3440 FEAT_OPR(EVENT_DESC, event_desc, false), 3441 FEAT_OPR(CMDLINE, cmdline, false), 3442 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 3443 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 3444 FEAT_OPN(BRANCH_STACK, branch_stack, false), 3445 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 3446 FEAT_OPR(GROUP_DESC, group_desc, false), 3447 FEAT_OPN(AUXTRACE, auxtrace, false), 3448 FEAT_OPN(STAT, stat, false), 3449 FEAT_OPN(CACHE, cache, true), 3450 FEAT_OPR(SAMPLE_TIME, sample_time, false), 3451 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 3452 FEAT_OPR(CLOCKID, clockid, false), 3453 FEAT_OPN(DIR_FORMAT, dir_format, false), 3454 #ifdef HAVE_LIBBPF_SUPPORT 3455 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 3456 FEAT_OPR(BPF_BTF, bpf_btf, false), 3457 #endif 3458 FEAT_OPR(COMPRESSED, compressed, false), 3459 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), 3460 FEAT_OPR(CLOCK_DATA, clock_data, false), 3461 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true), 3462 FEAT_OPR(PMU_CAPS, pmu_caps, false), 3463 }; 3464 3465 struct header_print_data { 3466 FILE *fp; 3467 bool full; /* extended list of headers */ 3468 }; 3469 3470 static int perf_file_section__fprintf_info(struct perf_file_section *section, 3471 struct perf_header *ph, 3472 int feat, int fd, void *data) 3473 { 3474 struct header_print_data *hd = data; 3475 struct feat_fd ff; 3476 3477 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3478 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3479 "%d, continuing...\n", section->offset, feat); 3480 return 0; 3481 } 3482 if (feat >= HEADER_LAST_FEATURE) { 3483 pr_warning("unknown feature %d\n", feat); 3484 return 0; 3485 } 3486 if (!feat_ops[feat].print) 3487 return 0; 3488 3489 ff = (struct feat_fd) { 3490 .fd = fd, 3491 .ph = ph, 3492 }; 3493 3494 if (!feat_ops[feat].full_only || hd->full) 3495 feat_ops[feat].print(&ff, hd->fp); 3496 else 3497 fprintf(hd->fp, "# %s info available, use -I to display\n", 3498 feat_ops[feat].name); 3499 3500 return 0; 3501 } 3502 3503 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 3504 { 3505 struct header_print_data hd; 3506 struct perf_header *header = &session->header; 3507 int fd = perf_data__fd(session->data); 3508 struct stat st; 3509 time_t stctime; 3510 int ret, bit; 3511 3512 hd.fp = fp; 3513 hd.full = full; 3514 3515 ret = fstat(fd, &st); 3516 if (ret == -1) 3517 return -1; 3518 3519 stctime = st.st_mtime; 3520 fprintf(fp, "# captured on : %s", ctime(&stctime)); 3521 3522 fprintf(fp, "# header version : %u\n", header->version); 3523 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 3524 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 3525 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 3526 3527 perf_header__process_sections(header, fd, &hd, 3528 perf_file_section__fprintf_info); 3529 3530 if (session->data->is_pipe) 3531 return 0; 3532 3533 fprintf(fp, "# missing features: "); 3534 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 3535 if (bit) 3536 fprintf(fp, "%s ", feat_ops[bit].name); 3537 } 3538 3539 fprintf(fp, "\n"); 3540 return 0; 3541 } 3542 3543 struct header_fw { 3544 struct feat_writer fw; 3545 struct feat_fd *ff; 3546 }; 3547 3548 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz) 3549 { 3550 struct header_fw *h = container_of(fw, struct header_fw, fw); 3551 3552 return do_write(h->ff, buf, sz); 3553 } 3554 3555 static int do_write_feat(struct feat_fd *ff, int type, 3556 struct perf_file_section **p, 3557 struct evlist *evlist, 3558 struct feat_copier *fc) 3559 { 3560 int err; 3561 int ret = 0; 3562 3563 if (perf_header__has_feat(ff->ph, type)) { 3564 if (!feat_ops[type].write) 3565 return -1; 3566 3567 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 3568 return -1; 3569 3570 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3571 3572 /* 3573 * Hook to let perf inject copy features sections from the input 3574 * file. 3575 */ 3576 if (fc && fc->copy) { 3577 struct header_fw h = { 3578 .fw.write = feat_writer_cb, 3579 .ff = ff, 3580 }; 3581 3582 /* ->copy() returns 0 if the feature was not copied */ 3583 err = fc->copy(fc, type, &h.fw); 3584 } else { 3585 err = 0; 3586 } 3587 if (!err) 3588 err = feat_ops[type].write(ff, evlist); 3589 if (err < 0) { 3590 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3591 3592 /* undo anything written */ 3593 lseek(ff->fd, (*p)->offset, SEEK_SET); 3594 3595 return -1; 3596 } 3597 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3598 (*p)++; 3599 } 3600 return ret; 3601 } 3602 3603 static int perf_header__adds_write(struct perf_header *header, 3604 struct evlist *evlist, int fd, 3605 struct feat_copier *fc) 3606 { 3607 int nr_sections; 3608 struct feat_fd ff = { 3609 .fd = fd, 3610 .ph = header, 3611 }; 3612 struct perf_file_section *feat_sec, *p; 3613 int sec_size; 3614 u64 sec_start; 3615 int feat; 3616 int err; 3617 3618 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3619 if (!nr_sections) 3620 return 0; 3621 3622 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3623 if (feat_sec == NULL) 3624 return -ENOMEM; 3625 3626 sec_size = sizeof(*feat_sec) * nr_sections; 3627 3628 sec_start = header->feat_offset; 3629 lseek(fd, sec_start + sec_size, SEEK_SET); 3630 3631 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3632 if (do_write_feat(&ff, feat, &p, evlist, fc)) 3633 perf_header__clear_feat(header, feat); 3634 } 3635 3636 lseek(fd, sec_start, SEEK_SET); 3637 /* 3638 * may write more than needed due to dropped feature, but 3639 * this is okay, reader will skip the missing entries 3640 */ 3641 err = do_write(&ff, feat_sec, sec_size); 3642 if (err < 0) 3643 pr_debug("failed to write feature section\n"); 3644 free(ff.buf); /* TODO: added to silence clang-tidy. */ 3645 free(feat_sec); 3646 return err; 3647 } 3648 3649 int perf_header__write_pipe(int fd) 3650 { 3651 struct perf_pipe_file_header f_header; 3652 struct feat_fd ff = { 3653 .fd = fd, 3654 }; 3655 int err; 3656 3657 f_header = (struct perf_pipe_file_header){ 3658 .magic = PERF_MAGIC, 3659 .size = sizeof(f_header), 3660 }; 3661 3662 err = do_write(&ff, &f_header, sizeof(f_header)); 3663 if (err < 0) { 3664 pr_debug("failed to write perf pipe header\n"); 3665 return err; 3666 } 3667 free(ff.buf); 3668 return 0; 3669 } 3670 3671 static int perf_session__do_write_header(struct perf_session *session, 3672 struct evlist *evlist, 3673 int fd, bool at_exit, 3674 struct feat_copier *fc, 3675 bool write_attrs_after_data) 3676 { 3677 struct perf_file_header f_header; 3678 struct perf_header *header = &session->header; 3679 struct evsel *evsel; 3680 struct feat_fd ff = { 3681 .ph = header, 3682 .fd = fd, 3683 }; 3684 u64 attr_offset = sizeof(f_header), attr_size = 0; 3685 int err; 3686 3687 if (write_attrs_after_data && at_exit) { 3688 /* 3689 * Write features at the end of the file first so that 3690 * attributes may come after them. 3691 */ 3692 if (!header->data_offset && header->data_size) { 3693 pr_err("File contains data but offset unknown\n"); 3694 err = -1; 3695 goto err_out; 3696 } 3697 header->feat_offset = header->data_offset + header->data_size; 3698 err = perf_header__adds_write(header, evlist, fd, fc); 3699 if (err < 0) 3700 goto err_out; 3701 attr_offset = lseek(fd, 0, SEEK_CUR); 3702 } else { 3703 lseek(fd, attr_offset, SEEK_SET); 3704 } 3705 3706 evlist__for_each_entry(session->evlist, evsel) { 3707 evsel->id_offset = attr_offset; 3708 /* Avoid writing at the end of the file until the session is exiting. */ 3709 if (!write_attrs_after_data || at_exit) { 3710 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3711 if (err < 0) { 3712 pr_debug("failed to write perf header\n"); 3713 goto err_out; 3714 } 3715 } 3716 attr_offset += evsel->core.ids * sizeof(u64); 3717 } 3718 3719 evlist__for_each_entry(evlist, evsel) { 3720 if (evsel->core.attr.size < sizeof(evsel->core.attr)) { 3721 /* 3722 * We are likely in "perf inject" and have read 3723 * from an older file. Update attr size so that 3724 * reader gets the right offset to the ids. 3725 */ 3726 evsel->core.attr.size = sizeof(evsel->core.attr); 3727 } 3728 /* Avoid writing at the end of the file until the session is exiting. */ 3729 if (!write_attrs_after_data || at_exit) { 3730 struct perf_file_attr f_attr = { 3731 .attr = evsel->core.attr, 3732 .ids = { 3733 .offset = evsel->id_offset, 3734 .size = evsel->core.ids * sizeof(u64), 3735 } 3736 }; 3737 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3738 if (err < 0) { 3739 pr_debug("failed to write perf header attribute\n"); 3740 goto err_out; 3741 } 3742 } 3743 attr_size += sizeof(struct perf_file_attr); 3744 } 3745 3746 if (!header->data_offset) { 3747 if (write_attrs_after_data) 3748 header->data_offset = sizeof(f_header); 3749 else 3750 header->data_offset = attr_offset + attr_size; 3751 } 3752 header->feat_offset = header->data_offset + header->data_size; 3753 3754 if (!write_attrs_after_data && at_exit) { 3755 /* Write features now feat_offset is known. */ 3756 err = perf_header__adds_write(header, evlist, fd, fc); 3757 if (err < 0) 3758 goto err_out; 3759 } 3760 3761 f_header = (struct perf_file_header){ 3762 .magic = PERF_MAGIC, 3763 .size = sizeof(f_header), 3764 .attr_size = sizeof(struct perf_file_attr), 3765 .attrs = { 3766 .offset = attr_offset, 3767 .size = attr_size, 3768 }, 3769 .data = { 3770 .offset = header->data_offset, 3771 .size = header->data_size, 3772 }, 3773 /* event_types is ignored, store zeros */ 3774 }; 3775 3776 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3777 3778 lseek(fd, 0, SEEK_SET); 3779 err = do_write(&ff, &f_header, sizeof(f_header)); 3780 if (err < 0) { 3781 pr_debug("failed to write perf header\n"); 3782 goto err_out; 3783 } else { 3784 lseek(fd, 0, SEEK_END); 3785 err = 0; 3786 } 3787 err_out: 3788 free(ff.buf); 3789 return err; 3790 } 3791 3792 int perf_session__write_header(struct perf_session *session, 3793 struct evlist *evlist, 3794 int fd, bool at_exit) 3795 { 3796 return perf_session__do_write_header(session, evlist, fd, at_exit, /*fc=*/NULL, 3797 /*write_attrs_after_data=*/false); 3798 } 3799 3800 size_t perf_session__data_offset(const struct evlist *evlist) 3801 { 3802 struct evsel *evsel; 3803 size_t data_offset; 3804 3805 data_offset = sizeof(struct perf_file_header); 3806 evlist__for_each_entry(evlist, evsel) { 3807 data_offset += evsel->core.ids * sizeof(u64); 3808 } 3809 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr); 3810 3811 return data_offset; 3812 } 3813 3814 int perf_session__inject_header(struct perf_session *session, 3815 struct evlist *evlist, 3816 int fd, 3817 struct feat_copier *fc, 3818 bool write_attrs_after_data) 3819 { 3820 return perf_session__do_write_header(session, evlist, fd, true, fc, 3821 write_attrs_after_data); 3822 } 3823 3824 static int perf_header__getbuffer64(struct perf_header *header, 3825 int fd, void *buf, size_t size) 3826 { 3827 if (readn(fd, buf, size) <= 0) 3828 return -1; 3829 3830 if (header->needs_swap) 3831 mem_bswap_64(buf, size); 3832 3833 return 0; 3834 } 3835 3836 int perf_header__process_sections(struct perf_header *header, int fd, 3837 void *data, 3838 int (*process)(struct perf_file_section *section, 3839 struct perf_header *ph, 3840 int feat, int fd, void *data)) 3841 { 3842 struct perf_file_section *feat_sec, *sec; 3843 int nr_sections; 3844 int sec_size; 3845 int feat; 3846 int err; 3847 3848 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3849 if (!nr_sections) 3850 return 0; 3851 3852 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3853 if (!feat_sec) 3854 return -1; 3855 3856 sec_size = sizeof(*feat_sec) * nr_sections; 3857 3858 lseek(fd, header->feat_offset, SEEK_SET); 3859 3860 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3861 if (err < 0) 3862 goto out_free; 3863 3864 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3865 err = process(sec++, header, feat, fd, data); 3866 if (err < 0) 3867 goto out_free; 3868 } 3869 err = 0; 3870 out_free: 3871 free(feat_sec); 3872 return err; 3873 } 3874 3875 static const int attr_file_abi_sizes[] = { 3876 [0] = PERF_ATTR_SIZE_VER0, 3877 [1] = PERF_ATTR_SIZE_VER1, 3878 [2] = PERF_ATTR_SIZE_VER2, 3879 [3] = PERF_ATTR_SIZE_VER3, 3880 [4] = PERF_ATTR_SIZE_VER4, 3881 0, 3882 }; 3883 3884 /* 3885 * In the legacy file format, the magic number is not used to encode endianness. 3886 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3887 * on ABI revisions, we need to try all combinations for all endianness to 3888 * detect the endianness. 3889 */ 3890 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3891 { 3892 uint64_t ref_size, attr_size; 3893 int i; 3894 3895 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3896 ref_size = attr_file_abi_sizes[i] 3897 + sizeof(struct perf_file_section); 3898 if (hdr_sz != ref_size) { 3899 attr_size = bswap_64(hdr_sz); 3900 if (attr_size != ref_size) 3901 continue; 3902 3903 ph->needs_swap = true; 3904 } 3905 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3906 i, 3907 ph->needs_swap); 3908 return 0; 3909 } 3910 /* could not determine endianness */ 3911 return -1; 3912 } 3913 3914 #define PERF_PIPE_HDR_VER0 16 3915 3916 static const size_t attr_pipe_abi_sizes[] = { 3917 [0] = PERF_PIPE_HDR_VER0, 3918 0, 3919 }; 3920 3921 /* 3922 * In the legacy pipe format, there is an implicit assumption that endianness 3923 * between host recording the samples, and host parsing the samples is the 3924 * same. This is not always the case given that the pipe output may always be 3925 * redirected into a file and analyzed on a different machine with possibly a 3926 * different endianness and perf_event ABI revisions in the perf tool itself. 3927 */ 3928 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3929 { 3930 u64 attr_size; 3931 int i; 3932 3933 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3934 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3935 attr_size = bswap_64(hdr_sz); 3936 if (attr_size != hdr_sz) 3937 continue; 3938 3939 ph->needs_swap = true; 3940 } 3941 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3942 return 0; 3943 } 3944 return -1; 3945 } 3946 3947 bool is_perf_magic(u64 magic) 3948 { 3949 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3950 || magic == __perf_magic2 3951 || magic == __perf_magic2_sw) 3952 return true; 3953 3954 return false; 3955 } 3956 3957 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3958 bool is_pipe, struct perf_header *ph) 3959 { 3960 int ret; 3961 3962 /* check for legacy format */ 3963 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3964 if (ret == 0) { 3965 ph->version = PERF_HEADER_VERSION_1; 3966 pr_debug("legacy perf.data format\n"); 3967 if (is_pipe) 3968 return try_all_pipe_abis(hdr_sz, ph); 3969 3970 return try_all_file_abis(hdr_sz, ph); 3971 } 3972 /* 3973 * the new magic number serves two purposes: 3974 * - unique number to identify actual perf.data files 3975 * - encode endianness of file 3976 */ 3977 ph->version = PERF_HEADER_VERSION_2; 3978 3979 /* check magic number with one endianness */ 3980 if (magic == __perf_magic2) 3981 return 0; 3982 3983 /* check magic number with opposite endianness */ 3984 if (magic != __perf_magic2_sw) 3985 return -1; 3986 3987 ph->needs_swap = true; 3988 3989 return 0; 3990 } 3991 3992 int perf_file_header__read(struct perf_file_header *header, 3993 struct perf_header *ph, int fd) 3994 { 3995 ssize_t ret; 3996 3997 lseek(fd, 0, SEEK_SET); 3998 3999 ret = readn(fd, header, sizeof(*header)); 4000 if (ret <= 0) 4001 return -1; 4002 4003 if (check_magic_endian(header->magic, 4004 header->attr_size, false, ph) < 0) { 4005 pr_debug("magic/endian check failed\n"); 4006 return -1; 4007 } 4008 4009 if (ph->needs_swap) { 4010 mem_bswap_64(header, offsetof(struct perf_file_header, 4011 adds_features)); 4012 } 4013 4014 if (header->size > header->attrs.offset) { 4015 pr_err("Perf file header corrupt: header overlaps attrs\n"); 4016 return -1; 4017 } 4018 4019 if (header->size > header->data.offset) { 4020 pr_err("Perf file header corrupt: header overlaps data\n"); 4021 return -1; 4022 } 4023 4024 if ((header->attrs.offset <= header->data.offset && 4025 header->attrs.offset + header->attrs.size > header->data.offset) || 4026 (header->attrs.offset > header->data.offset && 4027 header->data.offset + header->data.size > header->attrs.offset)) { 4028 pr_err("Perf file header corrupt: Attributes and data overlap\n"); 4029 return -1; 4030 } 4031 4032 if (header->size != sizeof(*header)) { 4033 /* Support the previous format */ 4034 if (header->size == offsetof(typeof(*header), adds_features)) 4035 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 4036 else 4037 return -1; 4038 } else if (ph->needs_swap) { 4039 /* 4040 * feature bitmap is declared as an array of unsigned longs -- 4041 * not good since its size can differ between the host that 4042 * generated the data file and the host analyzing the file. 4043 * 4044 * We need to handle endianness, but we don't know the size of 4045 * the unsigned long where the file was generated. Take a best 4046 * guess at determining it: try 64-bit swap first (ie., file 4047 * created on a 64-bit host), and check if the hostname feature 4048 * bit is set (this feature bit is forced on as of fbe96f2). 4049 * If the bit is not, undo the 64-bit swap and try a 32-bit 4050 * swap. If the hostname bit is still not set (e.g., older data 4051 * file), punt and fallback to the original behavior -- 4052 * clearing all feature bits and setting buildid. 4053 */ 4054 mem_bswap_64(&header->adds_features, 4055 BITS_TO_U64(HEADER_FEAT_BITS)); 4056 4057 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 4058 /* unswap as u64 */ 4059 mem_bswap_64(&header->adds_features, 4060 BITS_TO_U64(HEADER_FEAT_BITS)); 4061 4062 /* unswap as u32 */ 4063 mem_bswap_32(&header->adds_features, 4064 BITS_TO_U32(HEADER_FEAT_BITS)); 4065 } 4066 4067 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 4068 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 4069 __set_bit(HEADER_BUILD_ID, header->adds_features); 4070 } 4071 } 4072 4073 memcpy(&ph->adds_features, &header->adds_features, 4074 sizeof(ph->adds_features)); 4075 4076 ph->data_offset = header->data.offset; 4077 ph->data_size = header->data.size; 4078 ph->feat_offset = header->data.offset + header->data.size; 4079 return 0; 4080 } 4081 4082 static int perf_file_section__process(struct perf_file_section *section, 4083 struct perf_header *ph, 4084 int feat, int fd, void *data) 4085 { 4086 struct feat_fd fdd = { 4087 .fd = fd, 4088 .ph = ph, 4089 .size = section->size, 4090 .offset = section->offset, 4091 }; 4092 4093 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 4094 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 4095 "%d, continuing...\n", section->offset, feat); 4096 return 0; 4097 } 4098 4099 if (feat >= HEADER_LAST_FEATURE) { 4100 pr_debug("unknown feature %d, continuing...\n", feat); 4101 return 0; 4102 } 4103 4104 if (!feat_ops[feat].process) 4105 return 0; 4106 4107 return feat_ops[feat].process(&fdd, data); 4108 } 4109 4110 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 4111 struct perf_header *ph, 4112 struct perf_data *data) 4113 { 4114 ssize_t ret; 4115 4116 ret = perf_data__read(data, header, sizeof(*header)); 4117 if (ret <= 0) 4118 return -1; 4119 4120 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 4121 pr_debug("endian/magic failed\n"); 4122 return -1; 4123 } 4124 4125 if (ph->needs_swap) 4126 header->size = bswap_64(header->size); 4127 4128 return 0; 4129 } 4130 4131 static int perf_header__read_pipe(struct perf_session *session) 4132 { 4133 struct perf_header *header = &session->header; 4134 struct perf_pipe_file_header f_header; 4135 4136 if (perf_file_header__read_pipe(&f_header, header, session->data) < 0) { 4137 pr_debug("incompatible file format\n"); 4138 return -EINVAL; 4139 } 4140 4141 return f_header.size == sizeof(f_header) ? 0 : -1; 4142 } 4143 4144 static int read_attr(int fd, struct perf_header *ph, 4145 struct perf_file_attr *f_attr) 4146 { 4147 struct perf_event_attr *attr = &f_attr->attr; 4148 size_t sz, left; 4149 size_t our_sz = sizeof(f_attr->attr); 4150 ssize_t ret; 4151 4152 memset(f_attr, 0, sizeof(*f_attr)); 4153 4154 /* read minimal guaranteed structure */ 4155 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 4156 if (ret <= 0) { 4157 pr_debug("cannot read %d bytes of header attr\n", 4158 PERF_ATTR_SIZE_VER0); 4159 return -1; 4160 } 4161 4162 /* on file perf_event_attr size */ 4163 sz = attr->size; 4164 4165 if (ph->needs_swap) 4166 sz = bswap_32(sz); 4167 4168 if (sz == 0) { 4169 /* assume ABI0 */ 4170 sz = PERF_ATTR_SIZE_VER0; 4171 } else if (sz > our_sz) { 4172 pr_debug("file uses a more recent and unsupported ABI" 4173 " (%zu bytes extra)\n", sz - our_sz); 4174 return -1; 4175 } 4176 /* what we have not yet read and that we know about */ 4177 left = sz - PERF_ATTR_SIZE_VER0; 4178 if (left) { 4179 void *ptr = attr; 4180 ptr += PERF_ATTR_SIZE_VER0; 4181 4182 ret = readn(fd, ptr, left); 4183 } 4184 /* read perf_file_section, ids are read in caller */ 4185 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 4186 4187 return ret <= 0 ? -1 : 0; 4188 } 4189 4190 #ifdef HAVE_LIBTRACEEVENT 4191 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) 4192 { 4193 struct tep_event *event; 4194 char bf[128]; 4195 4196 /* already prepared */ 4197 if (evsel->tp_format) 4198 return 0; 4199 4200 if (pevent == NULL) { 4201 pr_debug("broken or missing trace data\n"); 4202 return -1; 4203 } 4204 4205 event = tep_find_event(pevent, evsel->core.attr.config); 4206 if (event == NULL) { 4207 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 4208 return -1; 4209 } 4210 4211 if (!evsel->name) { 4212 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 4213 evsel->name = strdup(bf); 4214 if (evsel->name == NULL) 4215 return -1; 4216 } 4217 4218 evsel->tp_format = event; 4219 return 0; 4220 } 4221 4222 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent) 4223 { 4224 struct evsel *pos; 4225 4226 evlist__for_each_entry(evlist, pos) { 4227 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 4228 evsel__prepare_tracepoint_event(pos, pevent)) 4229 return -1; 4230 } 4231 4232 return 0; 4233 } 4234 #endif 4235 4236 int perf_session__read_header(struct perf_session *session) 4237 { 4238 struct perf_data *data = session->data; 4239 struct perf_header *header = &session->header; 4240 struct perf_file_header f_header; 4241 struct perf_file_attr f_attr; 4242 u64 f_id; 4243 int nr_attrs, nr_ids, i, j, err; 4244 int fd = perf_data__fd(data); 4245 4246 session->evlist = evlist__new(); 4247 if (session->evlist == NULL) 4248 return -ENOMEM; 4249 4250 session->evlist->session = session; 4251 session->machines.host.env = &header->env; 4252 4253 /* 4254 * We can read 'pipe' data event from regular file, 4255 * check for the pipe header regardless of source. 4256 */ 4257 err = perf_header__read_pipe(session); 4258 if (!err || perf_data__is_pipe(data)) { 4259 data->is_pipe = true; 4260 return err; 4261 } 4262 4263 if (perf_file_header__read(&f_header, header, fd) < 0) 4264 return -EINVAL; 4265 4266 if (header->needs_swap && data->in_place_update) { 4267 pr_err("In-place update not supported when byte-swapping is required\n"); 4268 return -EINVAL; 4269 } 4270 4271 /* 4272 * Sanity check that perf.data was written cleanly; data size is 4273 * initialized to 0 and updated only if the on_exit function is run. 4274 * If data size is still 0 then the file contains only partial 4275 * information. Just warn user and process it as much as it can. 4276 */ 4277 if (f_header.data.size == 0) { 4278 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 4279 "Was the 'perf record' command properly terminated?\n", 4280 data->file.path); 4281 } 4282 4283 if (f_header.attr_size == 0) { 4284 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 4285 "Was the 'perf record' command properly terminated?\n", 4286 data->file.path); 4287 return -EINVAL; 4288 } 4289 4290 nr_attrs = f_header.attrs.size / f_header.attr_size; 4291 lseek(fd, f_header.attrs.offset, SEEK_SET); 4292 4293 for (i = 0; i < nr_attrs; i++) { 4294 struct evsel *evsel; 4295 off_t tmp; 4296 4297 if (read_attr(fd, header, &f_attr) < 0) 4298 goto out_errno; 4299 4300 if (header->needs_swap) { 4301 f_attr.ids.size = bswap_64(f_attr.ids.size); 4302 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 4303 perf_event__attr_swap(&f_attr.attr); 4304 } 4305 4306 tmp = lseek(fd, 0, SEEK_CUR); 4307 evsel = evsel__new(&f_attr.attr); 4308 4309 if (evsel == NULL) 4310 goto out_delete_evlist; 4311 4312 evsel->needs_swap = header->needs_swap; 4313 /* 4314 * Do it before so that if perf_evsel__alloc_id fails, this 4315 * entry gets purged too at evlist__delete(). 4316 */ 4317 evlist__add(session->evlist, evsel); 4318 4319 nr_ids = f_attr.ids.size / sizeof(u64); 4320 /* 4321 * We don't have the cpu and thread maps on the header, so 4322 * for allocating the perf_sample_id table we fake 1 cpu and 4323 * hattr->ids threads. 4324 */ 4325 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 4326 goto out_delete_evlist; 4327 4328 lseek(fd, f_attr.ids.offset, SEEK_SET); 4329 4330 for (j = 0; j < nr_ids; j++) { 4331 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 4332 goto out_errno; 4333 4334 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 4335 } 4336 4337 lseek(fd, tmp, SEEK_SET); 4338 } 4339 4340 #ifdef HAVE_LIBTRACEEVENT 4341 perf_header__process_sections(header, fd, &session->tevent, 4342 perf_file_section__process); 4343 4344 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) 4345 goto out_delete_evlist; 4346 #else 4347 perf_header__process_sections(header, fd, NULL, perf_file_section__process); 4348 #endif 4349 4350 return 0; 4351 out_errno: 4352 return -errno; 4353 4354 out_delete_evlist: 4355 evlist__delete(session->evlist); 4356 session->evlist = NULL; 4357 return -ENOMEM; 4358 } 4359 4360 int perf_event__process_feature(struct perf_session *session, 4361 union perf_event *event) 4362 { 4363 struct feat_fd ff = { .fd = 0 }; 4364 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 4365 int type = fe->header.type; 4366 u64 feat = fe->feat_id; 4367 int ret = 0; 4368 bool print = dump_trace; 4369 4370 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 4371 pr_warning("invalid record type %d in pipe-mode\n", type); 4372 return 0; 4373 } 4374 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 4375 pr_warning("invalid record type %d in pipe-mode\n", type); 4376 return -1; 4377 } 4378 4379 ff.buf = (void *)fe->data; 4380 ff.size = event->header.size - sizeof(*fe); 4381 ff.ph = &session->header; 4382 4383 if (feat_ops[feat].process && feat_ops[feat].process(&ff, NULL)) { 4384 ret = -1; 4385 goto out; 4386 } 4387 4388 if (session->tool->show_feat_hdr) { 4389 if (!feat_ops[feat].full_only || 4390 session->tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 4391 print = true; 4392 } else { 4393 fprintf(stdout, "# %s info available, use -I to display\n", 4394 feat_ops[feat].name); 4395 } 4396 } 4397 4398 if (dump_trace) 4399 printf(", "); 4400 4401 if (print) { 4402 if (feat_ops[feat].print) 4403 feat_ops[feat].print(&ff, stdout); 4404 else 4405 printf("# %s", feat_ops[feat].name); 4406 } 4407 4408 out: 4409 free_event_desc(ff.events); 4410 return ret; 4411 } 4412 4413 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 4414 { 4415 struct perf_record_event_update *ev = &event->event_update; 4416 struct perf_cpu_map *map; 4417 size_t ret; 4418 4419 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 4420 4421 switch (ev->type) { 4422 case PERF_EVENT_UPDATE__SCALE: 4423 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale); 4424 break; 4425 case PERF_EVENT_UPDATE__UNIT: 4426 ret += fprintf(fp, "... unit: %s\n", ev->unit); 4427 break; 4428 case PERF_EVENT_UPDATE__NAME: 4429 ret += fprintf(fp, "... name: %s\n", ev->name); 4430 break; 4431 case PERF_EVENT_UPDATE__CPUS: 4432 ret += fprintf(fp, "... "); 4433 4434 map = cpu_map__new_data(&ev->cpus.cpus); 4435 if (map) { 4436 ret += cpu_map__fprintf(map, fp); 4437 perf_cpu_map__put(map); 4438 } else 4439 ret += fprintf(fp, "failed to get cpus\n"); 4440 break; 4441 default: 4442 ret += fprintf(fp, "... unknown type\n"); 4443 break; 4444 } 4445 4446 return ret; 4447 } 4448 4449 size_t perf_event__fprintf_attr(union perf_event *event, FILE *fp) 4450 { 4451 return perf_event_attr__fprintf(fp, &event->attr.attr, __desc_attr__fprintf, NULL); 4452 } 4453 4454 int perf_event__process_attr(const struct perf_tool *tool __maybe_unused, 4455 union perf_event *event, 4456 struct evlist **pevlist) 4457 { 4458 u32 i, n_ids; 4459 u64 *ids; 4460 struct evsel *evsel; 4461 struct evlist *evlist = *pevlist; 4462 4463 if (dump_trace) 4464 perf_event__fprintf_attr(event, stdout); 4465 4466 if (evlist == NULL) { 4467 *pevlist = evlist = evlist__new(); 4468 if (evlist == NULL) 4469 return -ENOMEM; 4470 } 4471 4472 evsel = evsel__new(&event->attr.attr); 4473 if (evsel == NULL) 4474 return -ENOMEM; 4475 4476 evlist__add(evlist, evsel); 4477 4478 n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size; 4479 n_ids = n_ids / sizeof(u64); 4480 /* 4481 * We don't have the cpu and thread maps on the header, so 4482 * for allocating the perf_sample_id table we fake 1 cpu and 4483 * hattr->ids threads. 4484 */ 4485 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 4486 return -ENOMEM; 4487 4488 ids = perf_record_header_attr_id(event); 4489 for (i = 0; i < n_ids; i++) { 4490 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]); 4491 } 4492 4493 return 0; 4494 } 4495 4496 int perf_event__process_event_update(const struct perf_tool *tool __maybe_unused, 4497 union perf_event *event, 4498 struct evlist **pevlist) 4499 { 4500 struct perf_record_event_update *ev = &event->event_update; 4501 struct evlist *evlist; 4502 struct evsel *evsel; 4503 struct perf_cpu_map *map; 4504 4505 if (dump_trace) 4506 perf_event__fprintf_event_update(event, stdout); 4507 4508 if (!pevlist || *pevlist == NULL) 4509 return -EINVAL; 4510 4511 evlist = *pevlist; 4512 4513 evsel = evlist__id2evsel(evlist, ev->id); 4514 if (evsel == NULL) 4515 return -EINVAL; 4516 4517 switch (ev->type) { 4518 case PERF_EVENT_UPDATE__UNIT: 4519 free((char *)evsel->unit); 4520 evsel->unit = strdup(ev->unit); 4521 break; 4522 case PERF_EVENT_UPDATE__NAME: 4523 free(evsel->name); 4524 evsel->name = strdup(ev->name); 4525 break; 4526 case PERF_EVENT_UPDATE__SCALE: 4527 evsel->scale = ev->scale.scale; 4528 break; 4529 case PERF_EVENT_UPDATE__CPUS: 4530 map = cpu_map__new_data(&ev->cpus.cpus); 4531 if (map) { 4532 perf_cpu_map__put(evsel->core.pmu_cpus); 4533 evsel->core.pmu_cpus = map; 4534 } else 4535 pr_err("failed to get event_update cpus\n"); 4536 default: 4537 break; 4538 } 4539 4540 return 0; 4541 } 4542 4543 #ifdef HAVE_LIBTRACEEVENT 4544 int perf_event__process_tracing_data(struct perf_session *session, 4545 union perf_event *event) 4546 { 4547 ssize_t size_read, padding, size = event->tracing_data.size; 4548 int fd = perf_data__fd(session->data); 4549 char buf[BUFSIZ]; 4550 4551 /* 4552 * The pipe fd is already in proper place and in any case 4553 * we can't move it, and we'd screw the case where we read 4554 * 'pipe' data from regular file. The trace_report reads 4555 * data from 'fd' so we need to set it directly behind the 4556 * event, where the tracing data starts. 4557 */ 4558 if (!perf_data__is_pipe(session->data)) { 4559 off_t offset = lseek(fd, 0, SEEK_CUR); 4560 4561 /* setup for reading amidst mmap */ 4562 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 4563 SEEK_SET); 4564 } 4565 4566 size_read = trace_report(fd, &session->tevent, session->trace_event_repipe); 4567 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4568 4569 if (readn(fd, buf, padding) < 0) { 4570 pr_err("%s: reading input file", __func__); 4571 return -1; 4572 } 4573 if (session->trace_event_repipe) { 4574 int retw = write(STDOUT_FILENO, buf, padding); 4575 if (retw <= 0 || retw != padding) { 4576 pr_err("%s: repiping tracing data padding", __func__); 4577 return -1; 4578 } 4579 } 4580 4581 if (size_read + padding != size) { 4582 pr_err("%s: tracing data size mismatch", __func__); 4583 return -1; 4584 } 4585 4586 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); 4587 4588 return size_read + padding; 4589 } 4590 #endif 4591 4592 int perf_event__process_build_id(struct perf_session *session, 4593 union perf_event *event) 4594 { 4595 __event_process_build_id(&event->build_id, 4596 event->build_id.filename, 4597 session); 4598 return 0; 4599 } 4600