1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 #include <tools/libc_compat.h> // reallocarray
28
29 #include "dso.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "util/evsel_fprintf.h"
33 #include "header.h"
34 #include "memswap.h"
35 #include "trace-event.h"
36 #include "session.h"
37 #include "symbol.h"
38 #include "debug.h"
39 #include "cpumap.h"
40 #include "pmu.h"
41 #include "pmus.h"
42 #include "vdso.h"
43 #include "strbuf.h"
44 #include "build-id.h"
45 #include "data.h"
46 #include <api/fs/fs.h>
47 #include <api/io_dir.h>
48 #include "asm/bug.h"
49 #include "tool.h"
50 #include "time-utils.h"
51 #include "units.h"
52 #include "util/util.h" // perf_exe()
53 #include "cputopo.h"
54 #include "bpf-event.h"
55 #include "bpf-utils.h"
56 #include "clockid.h"
57
58 #include <linux/ctype.h>
59 #include <internal/lib.h>
60
61 #ifdef HAVE_LIBTRACEEVENT
62 #include <event-parse.h>
63 #endif
64
65 /*
66 * magic2 = "PERFILE2"
67 * must be a numerical value to let the endianness
68 * determine the memory layout. That way we are able
69 * to detect endianness when reading the perf.data file
70 * back.
71 *
72 * we check for legacy (PERFFILE) format.
73 */
74 static const char *__perf_magic1 = "PERFFILE";
75 static const u64 __perf_magic2 = 0x32454c4946524550ULL;
76 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
77
78 #define PERF_MAGIC __perf_magic2
79 #define DNAME_LEN 16
80
81 const char perf_version_string[] = PERF_VERSION;
82
83 struct perf_file_attr {
84 struct perf_event_attr attr;
85 struct perf_file_section ids;
86 };
87
perf_header__set_feat(struct perf_header * header,int feat)88 void perf_header__set_feat(struct perf_header *header, int feat)
89 {
90 __set_bit(feat, header->adds_features);
91 }
92
perf_header__clear_feat(struct perf_header * header,int feat)93 void perf_header__clear_feat(struct perf_header *header, int feat)
94 {
95 __clear_bit(feat, header->adds_features);
96 }
97
perf_header__has_feat(const struct perf_header * header,int feat)98 bool perf_header__has_feat(const struct perf_header *header, int feat)
99 {
100 return test_bit(feat, header->adds_features);
101 }
102
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)103 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
104 {
105 ssize_t ret = writen(ff->fd, buf, size);
106
107 if (ret != (ssize_t)size)
108 return ret < 0 ? (int)ret : -1;
109 return 0;
110 }
111
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)112 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
113 {
114 /* struct perf_event_header::size is u16 */
115 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
116 size_t new_size = ff->size;
117 void *addr;
118
119 if (size + ff->offset > max_size)
120 return -E2BIG;
121
122 while (size > (new_size - ff->offset))
123 new_size <<= 1;
124 new_size = min(max_size, new_size);
125
126 if (ff->size < new_size) {
127 addr = realloc(ff->buf, new_size);
128 if (!addr)
129 return -ENOMEM;
130 ff->buf = addr;
131 ff->size = new_size;
132 }
133
134 memcpy(ff->buf + ff->offset, buf, size);
135 ff->offset += size;
136
137 return 0;
138 }
139
140 /* Return: 0 if succeeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)141 int do_write(struct feat_fd *ff, const void *buf, size_t size)
142 {
143 if (!ff->buf)
144 return __do_write_fd(ff, buf, size);
145 return __do_write_buf(ff, buf, size);
146 }
147
148 /* Return: 0 if succeeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)149 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
150 {
151 u64 *p = (u64 *) set;
152 int i, ret;
153
154 ret = do_write(ff, &size, sizeof(size));
155 if (ret < 0)
156 return ret;
157
158 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
159 ret = do_write(ff, p + i, sizeof(*p));
160 if (ret < 0)
161 return ret;
162 }
163
164 return 0;
165 }
166
167 /* Return: 0 if succeeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)168 int write_padded(struct feat_fd *ff, const void *bf,
169 size_t count, size_t count_aligned)
170 {
171 static const char zero_buf[NAME_ALIGN];
172 int err = do_write(ff, bf, count);
173
174 if (!err)
175 err = do_write(ff, zero_buf, count_aligned - count);
176
177 return err;
178 }
179
180 #define string_size(str) \
181 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
182
183 /* Return: 0 if succeeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)184 static int do_write_string(struct feat_fd *ff, const char *str)
185 {
186 u32 len, olen;
187 int ret;
188
189 olen = strlen(str) + 1;
190 len = PERF_ALIGN(olen, NAME_ALIGN);
191
192 /* write len, incl. \0 */
193 ret = do_write(ff, &len, sizeof(len));
194 if (ret < 0)
195 return ret;
196
197 return write_padded(ff, str, olen, len);
198 }
199
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)200 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
201 {
202 ssize_t ret = readn(ff->fd, addr, size);
203
204 if (ret != size)
205 return ret < 0 ? (int)ret : -1;
206 return 0;
207 }
208
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)209 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
210 {
211 if (size > (ssize_t)ff->size - ff->offset)
212 return -1;
213
214 memcpy(addr, ff->buf + ff->offset, size);
215 ff->offset += size;
216
217 return 0;
218
219 }
220
__do_read(struct feat_fd * ff,void * addr,ssize_t size)221 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
222 {
223 if (!ff->buf)
224 return __do_read_fd(ff, addr, size);
225 return __do_read_buf(ff, addr, size);
226 }
227
do_read_u32(struct feat_fd * ff,u32 * addr)228 static int do_read_u32(struct feat_fd *ff, u32 *addr)
229 {
230 int ret;
231
232 ret = __do_read(ff, addr, sizeof(*addr));
233 if (ret)
234 return ret;
235
236 if (ff->ph->needs_swap)
237 *addr = bswap_32(*addr);
238 return 0;
239 }
240
do_read_u64(struct feat_fd * ff,u64 * addr)241 static int do_read_u64(struct feat_fd *ff, u64 *addr)
242 {
243 int ret;
244
245 ret = __do_read(ff, addr, sizeof(*addr));
246 if (ret)
247 return ret;
248
249 if (ff->ph->needs_swap)
250 *addr = bswap_64(*addr);
251 return 0;
252 }
253
do_read_string(struct feat_fd * ff)254 static char *do_read_string(struct feat_fd *ff)
255 {
256 u32 len;
257 char *buf;
258
259 if (do_read_u32(ff, &len))
260 return NULL;
261
262 buf = malloc(len);
263 if (!buf)
264 return NULL;
265
266 if (!__do_read(ff, buf, len)) {
267 /*
268 * strings are padded by zeroes
269 * thus the actual strlen of buf
270 * may be less than len
271 */
272 return buf;
273 }
274
275 free(buf);
276 return NULL;
277 }
278
279 /* Return: 0 if succeeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)280 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
281 {
282 unsigned long *set;
283 u64 size, *p;
284 int i, ret;
285
286 ret = do_read_u64(ff, &size);
287 if (ret)
288 return ret;
289
290 set = bitmap_zalloc(size);
291 if (!set)
292 return -ENOMEM;
293
294 p = (u64 *) set;
295
296 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
297 ret = do_read_u64(ff, p + i);
298 if (ret < 0) {
299 free(set);
300 return ret;
301 }
302 }
303
304 *pset = set;
305 *psize = size;
306 return 0;
307 }
308
309 #ifdef HAVE_LIBTRACEEVENT
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)310 static int write_tracing_data(struct feat_fd *ff,
311 struct evlist *evlist)
312 {
313 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
314 return -1;
315
316 return read_tracing_data(ff->fd, &evlist->core.entries);
317 }
318 #endif
319
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)320 static int write_build_id(struct feat_fd *ff,
321 struct evlist *evlist __maybe_unused)
322 {
323 struct perf_session *session;
324 int err;
325
326 session = container_of(ff->ph, struct perf_session, header);
327
328 if (!perf_session__read_build_ids(session, true))
329 return -1;
330
331 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
332 return -1;
333
334 err = perf_session__write_buildid_table(session, ff);
335 if (err < 0) {
336 pr_debug("failed to write buildid table\n");
337 return err;
338 }
339
340 return 0;
341 }
342
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)343 static int write_hostname(struct feat_fd *ff,
344 struct evlist *evlist __maybe_unused)
345 {
346 struct utsname uts;
347 int ret;
348
349 ret = uname(&uts);
350 if (ret < 0)
351 return -1;
352
353 return do_write_string(ff, uts.nodename);
354 }
355
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)356 static int write_osrelease(struct feat_fd *ff,
357 struct evlist *evlist __maybe_unused)
358 {
359 struct utsname uts;
360 int ret;
361
362 ret = uname(&uts);
363 if (ret < 0)
364 return -1;
365
366 return do_write_string(ff, uts.release);
367 }
368
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)369 static int write_arch(struct feat_fd *ff,
370 struct evlist *evlist __maybe_unused)
371 {
372 struct utsname uts;
373 int ret;
374
375 ret = uname(&uts);
376 if (ret < 0)
377 return -1;
378
379 return do_write_string(ff, uts.machine);
380 }
381
write_e_machine(struct feat_fd * ff,struct evlist * evlist __maybe_unused)382 static int write_e_machine(struct feat_fd *ff,
383 struct evlist *evlist __maybe_unused)
384 {
385 /* e_machine expanded from 16 to 32-bits for alignment. */
386 uint32_t e_flags;
387 uint32_t e_machine = perf_session__e_machine(evlist->session, &e_flags);
388 int ret;
389
390 ret = do_write(ff, &e_machine, sizeof(e_machine));
391 if (ret)
392 return ret;
393
394 return do_write(ff, &e_flags, sizeof(e_flags));
395 }
396
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)397 static int write_version(struct feat_fd *ff,
398 struct evlist *evlist __maybe_unused)
399 {
400 return do_write_string(ff, perf_version_string);
401 }
402
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)403 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
404 {
405 FILE *file;
406 char *buf = NULL;
407 char *s, *p;
408 const char *search = cpuinfo_proc;
409 size_t len = 0;
410 int ret = -1;
411
412 if (!search)
413 return -1;
414
415 file = fopen("/proc/cpuinfo", "r");
416 if (!file)
417 return -1;
418
419 while (getline(&buf, &len, file) > 0) {
420 ret = strncmp(buf, search, strlen(search));
421 if (!ret)
422 break;
423 }
424
425 if (ret) {
426 ret = -1;
427 goto done;
428 }
429
430 s = buf;
431
432 p = strchr(buf, ':');
433 if (p && *(p+1) == ' ' && *(p+2))
434 s = p + 2;
435 p = strchr(s, '\n');
436 if (p)
437 *p = '\0';
438
439 /* squash extra space characters (branding string) */
440 p = s;
441 while (*p) {
442 if (isspace(*p)) {
443 char *r = p + 1;
444 char *q = skip_spaces(r);
445 *p = ' ';
446 if (q != (p+1))
447 while ((*r++ = *q++));
448 }
449 p++;
450 }
451 ret = do_write_string(ff, s);
452 done:
453 free(buf);
454 fclose(file);
455 return ret;
456 }
457
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)458 static int write_cpudesc(struct feat_fd *ff,
459 struct evlist *evlist __maybe_unused)
460 {
461 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
462 #define CPUINFO_PROC { "cpu", }
463 #elif defined(__s390__)
464 #define CPUINFO_PROC { "vendor_id", }
465 #elif defined(__sh__)
466 #define CPUINFO_PROC { "cpu type", }
467 #elif defined(__alpha__) || defined(__mips__)
468 #define CPUINFO_PROC { "cpu model", }
469 #elif defined(__arm__)
470 #define CPUINFO_PROC { "model name", "Processor", }
471 #elif defined(__arc__)
472 #define CPUINFO_PROC { "Processor", }
473 #elif defined(__xtensa__)
474 #define CPUINFO_PROC { "core ID", }
475 #elif defined(__loongarch__)
476 #define CPUINFO_PROC { "Model Name", }
477 #else
478 #define CPUINFO_PROC { "model name", }
479 #endif
480 const char *cpuinfo_procs[] = CPUINFO_PROC;
481 #undef CPUINFO_PROC
482 unsigned int i;
483
484 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
485 int ret;
486 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
487 if (ret >= 0)
488 return ret;
489 }
490 return -1;
491 }
492
493
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)494 static int write_nrcpus(struct feat_fd *ff,
495 struct evlist *evlist __maybe_unused)
496 {
497 long nr;
498 u32 nrc, nra;
499 int ret;
500
501 nrc = cpu__max_present_cpu().cpu;
502
503 nr = sysconf(_SC_NPROCESSORS_ONLN);
504 if (nr < 0)
505 return -1;
506
507 nra = (u32)(nr & UINT_MAX);
508
509 ret = do_write(ff, &nrc, sizeof(nrc));
510 if (ret < 0)
511 return ret;
512
513 return do_write(ff, &nra, sizeof(nra));
514 }
515
write_event_desc(struct feat_fd * ff,struct evlist * evlist)516 static int write_event_desc(struct feat_fd *ff,
517 struct evlist *evlist)
518 {
519 struct evsel *evsel;
520 u32 nre, nri, sz;
521 int ret;
522
523 nre = evlist->core.nr_entries;
524
525 /*
526 * write number of events
527 */
528 ret = do_write(ff, &nre, sizeof(nre));
529 if (ret < 0)
530 return ret;
531
532 /*
533 * size of perf_event_attr struct
534 */
535 sz = (u32)sizeof(evsel->core.attr);
536 ret = do_write(ff, &sz, sizeof(sz));
537 if (ret < 0)
538 return ret;
539
540 evlist__for_each_entry(evlist, evsel) {
541 ret = do_write(ff, &evsel->core.attr, sz);
542 if (ret < 0)
543 return ret;
544 /*
545 * write number of unique id per event
546 * there is one id per instance of an event
547 *
548 * copy into an nri to be independent of the
549 * type of ids,
550 */
551 nri = evsel->core.ids;
552 ret = do_write(ff, &nri, sizeof(nri));
553 if (ret < 0)
554 return ret;
555
556 /*
557 * write event string as passed on cmdline
558 */
559 ret = do_write_string(ff, evsel__name(evsel));
560 if (ret < 0)
561 return ret;
562 /*
563 * write unique ids for this event
564 */
565 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
566 if (ret < 0)
567 return ret;
568 }
569 return 0;
570 }
571
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)572 static int write_cmdline(struct feat_fd *ff,
573 struct evlist *evlist __maybe_unused)
574 {
575 struct perf_env *env = &ff->ph->env;
576 char pbuf[MAXPATHLEN], *buf;
577 int i, ret, n;
578
579 /* actual path to perf binary */
580 buf = perf_exe(pbuf, MAXPATHLEN);
581
582 /* account for binary path */
583 n = env->nr_cmdline + 1;
584
585 ret = do_write(ff, &n, sizeof(n));
586 if (ret < 0)
587 return ret;
588
589 ret = do_write_string(ff, buf);
590 if (ret < 0)
591 return ret;
592
593 for (i = 0 ; i < env->nr_cmdline; i++) {
594 ret = do_write_string(ff, env->cmdline_argv[i]);
595 if (ret < 0)
596 return ret;
597 }
598 return 0;
599 }
600
601
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)602 static int write_cpu_topology(struct feat_fd *ff,
603 struct evlist *evlist __maybe_unused)
604 {
605 struct perf_env *env = &ff->ph->env;
606 struct cpu_topology *tp;
607 u32 i;
608 int ret, j;
609
610 tp = cpu_topology__new();
611 if (!tp)
612 return -1;
613
614 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
615 if (ret < 0)
616 goto done;
617
618 for (i = 0; i < tp->package_cpus_lists; i++) {
619 ret = do_write_string(ff, tp->package_cpus_list[i]);
620 if (ret < 0)
621 goto done;
622 }
623 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
624 if (ret < 0)
625 goto done;
626
627 for (i = 0; i < tp->core_cpus_lists; i++) {
628 ret = do_write_string(ff, tp->core_cpus_list[i]);
629 if (ret < 0)
630 break;
631 }
632
633 ret = perf_env__read_cpu_topology_map(env);
634 if (ret < 0)
635 goto done;
636
637 for (j = 0; j < env->nr_cpus_avail; j++) {
638 ret = do_write(ff, &env->cpu[j].core_id,
639 sizeof(env->cpu[j].core_id));
640 if (ret < 0)
641 return ret;
642 ret = do_write(ff, &env->cpu[j].socket_id,
643 sizeof(env->cpu[j].socket_id));
644 if (ret < 0)
645 return ret;
646 }
647
648 if (!tp->die_cpus_lists)
649 goto done;
650
651 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
652 if (ret < 0)
653 goto done;
654
655 for (i = 0; i < tp->die_cpus_lists; i++) {
656 ret = do_write_string(ff, tp->die_cpus_list[i]);
657 if (ret < 0)
658 goto done;
659 }
660
661 for (j = 0; j < env->nr_cpus_avail; j++) {
662 ret = do_write(ff, &env->cpu[j].die_id,
663 sizeof(env->cpu[j].die_id));
664 if (ret < 0)
665 return ret;
666 }
667
668 done:
669 cpu_topology__delete(tp);
670 return ret;
671 }
672
673
674
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)675 static int write_total_mem(struct feat_fd *ff,
676 struct evlist *evlist __maybe_unused)
677 {
678 char *buf = NULL;
679 FILE *fp;
680 size_t len = 0;
681 int ret = -1, n;
682 uint64_t mem;
683
684 fp = fopen("/proc/meminfo", "r");
685 if (!fp)
686 return -1;
687
688 while (getline(&buf, &len, fp) > 0) {
689 ret = strncmp(buf, "MemTotal:", 9);
690 if (!ret)
691 break;
692 }
693 if (!ret) {
694 n = sscanf(buf, "%*s %"PRIu64, &mem);
695 if (n == 1)
696 ret = do_write(ff, &mem, sizeof(mem));
697 } else
698 ret = -1;
699 free(buf);
700 fclose(fp);
701 return ret;
702 }
703
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)704 static int write_numa_topology(struct feat_fd *ff,
705 struct evlist *evlist __maybe_unused)
706 {
707 struct numa_topology *tp;
708 int ret = -1;
709 u32 i;
710
711 tp = numa_topology__new();
712 if (!tp)
713 return -ENOMEM;
714
715 ret = do_write(ff, &tp->nr, sizeof(u32));
716 if (ret < 0)
717 goto err;
718
719 for (i = 0; i < tp->nr; i++) {
720 struct numa_topology_node *n = &tp->nodes[i];
721
722 ret = do_write(ff, &n->node, sizeof(u32));
723 if (ret < 0)
724 goto err;
725
726 ret = do_write(ff, &n->mem_total, sizeof(u64));
727 if (ret)
728 goto err;
729
730 ret = do_write(ff, &n->mem_free, sizeof(u64));
731 if (ret)
732 goto err;
733
734 ret = do_write_string(ff, n->cpus);
735 if (ret < 0)
736 goto err;
737 }
738
739 ret = 0;
740
741 err:
742 numa_topology__delete(tp);
743 return ret;
744 }
745
746 /*
747 * File format:
748 *
749 * struct pmu_mappings {
750 * u32 pmu_num;
751 * struct pmu_map {
752 * u32 type;
753 * char name[];
754 * }[pmu_num];
755 * };
756 */
757
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)758 static int write_pmu_mappings(struct feat_fd *ff,
759 struct evlist *evlist __maybe_unused)
760 {
761 struct perf_pmu *pmu = NULL;
762 u32 pmu_num = 0;
763 int ret;
764
765 /*
766 * Do a first pass to count number of pmu to avoid lseek so this
767 * works in pipe mode as well.
768 */
769 while ((pmu = perf_pmus__scan(pmu)))
770 pmu_num++;
771
772 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
773 if (ret < 0)
774 return ret;
775
776 while ((pmu = perf_pmus__scan(pmu))) {
777 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
778 if (ret < 0)
779 return ret;
780
781 ret = do_write_string(ff, pmu->name);
782 if (ret < 0)
783 return ret;
784 }
785
786 return 0;
787 }
788
789 /*
790 * File format:
791 *
792 * struct group_descs {
793 * u32 nr_groups;
794 * struct group_desc {
795 * char name[];
796 * u32 leader_idx;
797 * u32 nr_members;
798 * }[nr_groups];
799 * };
800 */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)801 static int write_group_desc(struct feat_fd *ff,
802 struct evlist *evlist)
803 {
804 u32 nr_groups = evlist__nr_groups(evlist);
805 struct evsel *evsel;
806 int ret;
807
808 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
809 if (ret < 0)
810 return ret;
811
812 evlist__for_each_entry(evlist, evsel) {
813 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
814 const char *name = evsel->group_name ?: "{anon_group}";
815 u32 leader_idx = evsel->core.idx;
816 u32 nr_members = evsel->core.nr_members;
817
818 ret = do_write_string(ff, name);
819 if (ret < 0)
820 return ret;
821
822 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
823 if (ret < 0)
824 return ret;
825
826 ret = do_write(ff, &nr_members, sizeof(nr_members));
827 if (ret < 0)
828 return ret;
829 }
830 }
831 return 0;
832 }
833
834 /*
835 * Return the CPU id as a raw string.
836 *
837 * Each architecture should provide a more precise id string that
838 * can be use to match the architecture's "mapfile".
839 */
get_cpuid_str(struct perf_cpu cpu __maybe_unused)840 char * __weak get_cpuid_str(struct perf_cpu cpu __maybe_unused)
841 {
842 return NULL;
843 }
844
get_cpuid_allow_env_override(struct perf_cpu cpu)845 char *get_cpuid_allow_env_override(struct perf_cpu cpu)
846 {
847 char *cpuid;
848 static bool printed;
849
850 cpuid = getenv("PERF_CPUID");
851 if (cpuid)
852 cpuid = strdup(cpuid);
853 if (!cpuid)
854 cpuid = get_cpuid_str(cpu);
855 if (!cpuid)
856 return NULL;
857
858 if (!printed) {
859 pr_debug("Using CPUID %s\n", cpuid);
860 printed = true;
861 }
862 return cpuid;
863 }
864
865 /* Return zero when the cpuid from the mapfile.csv matches the
866 * cpuid string generated on this platform.
867 * Otherwise return non-zero.
868 */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)869 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
870 {
871 regex_t re;
872 regmatch_t pmatch[1];
873 int match;
874
875 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
876 /* Warn unable to generate match particular string. */
877 pr_info("Invalid regular expression %s\n", mapcpuid);
878 return 1;
879 }
880
881 match = !regexec(&re, cpuid, 1, pmatch, 0);
882 regfree(&re);
883 if (match) {
884 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
885
886 /* Verify the entire string matched. */
887 if (match_len == strlen(cpuid))
888 return 0;
889 }
890 return 1;
891 }
892
893 /*
894 * default get_cpuid(): nothing gets recorded
895 * actual implementation must be in arch/$(SRCARCH)/util/header.c
896 */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused,struct perf_cpu cpu __maybe_unused)897 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused,
898 struct perf_cpu cpu __maybe_unused)
899 {
900 return ENOSYS; /* Not implemented */
901 }
902
write_cpuid(struct feat_fd * ff,struct evlist * evlist)903 static int write_cpuid(struct feat_fd *ff, struct evlist *evlist)
904 {
905 struct perf_cpu cpu = perf_cpu_map__min(evlist->core.all_cpus);
906 char buffer[64];
907 int ret;
908
909 ret = get_cpuid(buffer, sizeof(buffer), cpu);
910 if (ret)
911 return -1;
912
913 return do_write_string(ff, buffer);
914 }
915
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)916 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
917 struct evlist *evlist __maybe_unused)
918 {
919 return 0;
920 }
921
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)922 static int write_auxtrace(struct feat_fd *ff,
923 struct evlist *evlist __maybe_unused)
924 {
925 struct perf_session *session;
926 int err;
927
928 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
929 return -1;
930
931 session = container_of(ff->ph, struct perf_session, header);
932
933 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
934 if (err < 0)
935 pr_err("Failed to write auxtrace index\n");
936 return err;
937 }
938
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)939 static int write_clockid(struct feat_fd *ff,
940 struct evlist *evlist __maybe_unused)
941 {
942 return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
943 sizeof(ff->ph->env.clock.clockid_res_ns));
944 }
945
write_clock_data(struct feat_fd * ff,struct evlist * evlist __maybe_unused)946 static int write_clock_data(struct feat_fd *ff,
947 struct evlist *evlist __maybe_unused)
948 {
949 u64 *data64;
950 u32 data32;
951 int ret;
952
953 /* version */
954 data32 = 1;
955
956 ret = do_write(ff, &data32, sizeof(data32));
957 if (ret < 0)
958 return ret;
959
960 /* clockid */
961 data32 = ff->ph->env.clock.clockid;
962
963 ret = do_write(ff, &data32, sizeof(data32));
964 if (ret < 0)
965 return ret;
966
967 /* TOD ref time */
968 data64 = &ff->ph->env.clock.tod_ns;
969
970 ret = do_write(ff, data64, sizeof(*data64));
971 if (ret < 0)
972 return ret;
973
974 /* clockid ref time */
975 data64 = &ff->ph->env.clock.clockid_ns;
976
977 return do_write(ff, data64, sizeof(*data64));
978 }
979
write_hybrid_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)980 static int write_hybrid_topology(struct feat_fd *ff,
981 struct evlist *evlist __maybe_unused)
982 {
983 struct hybrid_topology *tp;
984 int ret;
985 u32 i;
986
987 tp = hybrid_topology__new();
988 if (!tp)
989 return -ENOENT;
990
991 ret = do_write(ff, &tp->nr, sizeof(u32));
992 if (ret < 0)
993 goto err;
994
995 for (i = 0; i < tp->nr; i++) {
996 struct hybrid_topology_node *n = &tp->nodes[i];
997
998 ret = do_write_string(ff, n->pmu_name);
999 if (ret < 0)
1000 goto err;
1001
1002 ret = do_write_string(ff, n->cpus);
1003 if (ret < 0)
1004 goto err;
1005 }
1006
1007 ret = 0;
1008
1009 err:
1010 hybrid_topology__delete(tp);
1011 return ret;
1012 }
1013
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1014 static int write_dir_format(struct feat_fd *ff,
1015 struct evlist *evlist __maybe_unused)
1016 {
1017 struct perf_session *session;
1018 struct perf_data *data;
1019
1020 session = container_of(ff->ph, struct perf_session, header);
1021 data = session->data;
1022
1023 if (WARN_ON(!perf_data__is_dir(data)))
1024 return -1;
1025
1026 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
1027 }
1028
1029 #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1030 static int write_bpf_prog_info(struct feat_fd *ff,
1031 struct evlist *evlist __maybe_unused)
1032 {
1033 struct perf_env *env = &ff->ph->env;
1034 struct rb_root *root;
1035 struct rb_node *next;
1036 int ret = 0;
1037
1038 down_read(&env->bpf_progs.lock);
1039
1040 ret = do_write(ff, &env->bpf_progs.infos_cnt,
1041 sizeof(env->bpf_progs.infos_cnt));
1042 if (ret < 0 || env->bpf_progs.infos_cnt == 0)
1043 goto out;
1044
1045 root = &env->bpf_progs.infos;
1046 next = rb_first(root);
1047 while (next) {
1048 struct bpf_prog_info_node *node;
1049 size_t len;
1050
1051 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1052 next = rb_next(&node->rb_node);
1053 len = sizeof(struct perf_bpil) +
1054 node->info_linear->data_len;
1055
1056 /* before writing to file, translate address to offset */
1057 bpil_addr_to_offs(node->info_linear);
1058 ret = do_write(ff, node->info_linear, len);
1059 /*
1060 * translate back to address even when do_write() fails,
1061 * so that this function never changes the data.
1062 */
1063 bpil_offs_to_addr(node->info_linear);
1064 if (ret < 0)
1065 goto out;
1066 }
1067 out:
1068 up_read(&env->bpf_progs.lock);
1069 return ret;
1070 }
1071
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1072 static int write_bpf_btf(struct feat_fd *ff,
1073 struct evlist *evlist __maybe_unused)
1074 {
1075 struct perf_env *env = &ff->ph->env;
1076 struct rb_root *root;
1077 struct rb_node *next;
1078 int ret = 0;
1079
1080 down_read(&env->bpf_progs.lock);
1081
1082 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1083 sizeof(env->bpf_progs.btfs_cnt));
1084
1085 if (ret < 0 || env->bpf_progs.btfs_cnt == 0)
1086 goto out;
1087
1088 root = &env->bpf_progs.btfs;
1089 next = rb_first(root);
1090 while (next) {
1091 struct btf_node *node;
1092
1093 node = rb_entry(next, struct btf_node, rb_node);
1094 next = rb_next(&node->rb_node);
1095 ret = do_write(ff, &node->id,
1096 sizeof(u32) * 2 + node->data_size);
1097 if (ret < 0)
1098 goto out;
1099 }
1100 out:
1101 up_read(&env->bpf_progs.lock);
1102 return ret;
1103 }
1104 #endif // HAVE_LIBBPF_SUPPORT
1105
cpu_cache_level__sort(const void * a,const void * b)1106 static int cpu_cache_level__sort(const void *a, const void *b)
1107 {
1108 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1109 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1110
1111 return cache_a->level - cache_b->level;
1112 }
1113
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1114 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1115 {
1116 if (a->level != b->level)
1117 return false;
1118
1119 if (a->line_size != b->line_size)
1120 return false;
1121
1122 if (a->sets != b->sets)
1123 return false;
1124
1125 if (a->ways != b->ways)
1126 return false;
1127
1128 if (strcmp(a->type, b->type))
1129 return false;
1130
1131 if (strcmp(a->size, b->size))
1132 return false;
1133
1134 if (strcmp(a->map, b->map))
1135 return false;
1136
1137 return true;
1138 }
1139
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1140 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1141 {
1142 char path[PATH_MAX], file[PATH_MAX];
1143 struct stat st;
1144 size_t len;
1145
1146 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1147 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1148
1149 if (stat(file, &st))
1150 return 1;
1151
1152 scnprintf(file, PATH_MAX, "%s/level", path);
1153 if (sysfs__read_int(file, (int *) &cache->level))
1154 return -1;
1155
1156 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1157 if (sysfs__read_int(file, (int *) &cache->line_size))
1158 return -1;
1159
1160 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1161 if (sysfs__read_int(file, (int *) &cache->sets))
1162 return -1;
1163
1164 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1165 if (sysfs__read_int(file, (int *) &cache->ways))
1166 return -1;
1167
1168 scnprintf(file, PATH_MAX, "%s/type", path);
1169 if (sysfs__read_str(file, &cache->type, &len))
1170 return -1;
1171
1172 cache->type[len] = 0;
1173 cache->type = strim(cache->type);
1174
1175 scnprintf(file, PATH_MAX, "%s/size", path);
1176 if (sysfs__read_str(file, &cache->size, &len)) {
1177 zfree(&cache->type);
1178 return -1;
1179 }
1180
1181 cache->size[len] = 0;
1182 cache->size = strim(cache->size);
1183
1184 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1185 if (sysfs__read_str(file, &cache->map, &len)) {
1186 zfree(&cache->size);
1187 zfree(&cache->type);
1188 return -1;
1189 }
1190
1191 cache->map[len] = 0;
1192 cache->map = strim(cache->map);
1193 return 0;
1194 }
1195
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1196 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1197 {
1198 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1199 }
1200
1201 /*
1202 * Build caches levels for a particular CPU from the data in
1203 * /sys/devices/system/cpu/cpu<cpu>/cache/
1204 * The cache level data is stored in caches[] from index at
1205 * *cntp.
1206 */
build_caches_for_cpu(u32 cpu,struct cpu_cache_level caches[],u32 * cntp)1207 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1208 {
1209 u16 level;
1210
1211 for (level = 0; level < MAX_CACHE_LVL; level++) {
1212 struct cpu_cache_level c;
1213 int err;
1214 u32 i;
1215
1216 err = cpu_cache_level__read(&c, cpu, level);
1217 if (err < 0)
1218 return err;
1219
1220 if (err == 1)
1221 break;
1222
1223 for (i = 0; i < *cntp; i++) {
1224 if (cpu_cache_level__cmp(&c, &caches[i]))
1225 break;
1226 }
1227
1228 if (i == *cntp) {
1229 caches[*cntp] = c;
1230 *cntp = *cntp + 1;
1231 } else
1232 cpu_cache_level__free(&c);
1233 }
1234
1235 return 0;
1236 }
1237
build_caches(struct cpu_cache_level caches[],u32 * cntp)1238 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1239 {
1240 u32 nr, cpu, cnt = 0;
1241
1242 nr = cpu__max_cpu().cpu;
1243
1244 for (cpu = 0; cpu < nr; cpu++) {
1245 int ret = build_caches_for_cpu(cpu, caches, &cnt);
1246
1247 if (ret)
1248 return ret;
1249 }
1250 *cntp = cnt;
1251 return 0;
1252 }
1253
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1254 static int write_cache(struct feat_fd *ff,
1255 struct evlist *evlist __maybe_unused)
1256 {
1257 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1258 struct cpu_cache_level caches[max_caches];
1259 u32 cnt = 0, i, version = 1;
1260 int ret;
1261
1262 ret = build_caches(caches, &cnt);
1263 if (ret)
1264 goto out;
1265
1266 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1267
1268 ret = do_write(ff, &version, sizeof(u32));
1269 if (ret < 0)
1270 goto out;
1271
1272 ret = do_write(ff, &cnt, sizeof(u32));
1273 if (ret < 0)
1274 goto out;
1275
1276 for (i = 0; i < cnt; i++) {
1277 struct cpu_cache_level *c = &caches[i];
1278
1279 #define _W(v) \
1280 ret = do_write(ff, &c->v, sizeof(u32)); \
1281 if (ret < 0) \
1282 goto out;
1283
1284 _W(level)
1285 _W(line_size)
1286 _W(sets)
1287 _W(ways)
1288 #undef _W
1289
1290 #define _W(v) \
1291 ret = do_write_string(ff, (const char *) c->v); \
1292 if (ret < 0) \
1293 goto out;
1294
1295 _W(type)
1296 _W(size)
1297 _W(map)
1298 #undef _W
1299 }
1300
1301 out:
1302 for (i = 0; i < cnt; i++)
1303 cpu_cache_level__free(&caches[i]);
1304 return ret;
1305 }
1306
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1307 static int write_stat(struct feat_fd *ff __maybe_unused,
1308 struct evlist *evlist __maybe_unused)
1309 {
1310 return 0;
1311 }
1312
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1313 static int write_sample_time(struct feat_fd *ff,
1314 struct evlist *evlist)
1315 {
1316 int ret;
1317
1318 ret = do_write(ff, &evlist->first_sample_time,
1319 sizeof(evlist->first_sample_time));
1320 if (ret < 0)
1321 return ret;
1322
1323 return do_write(ff, &evlist->last_sample_time,
1324 sizeof(evlist->last_sample_time));
1325 }
1326
1327
memory_node__read(struct memory_node * n,unsigned long idx)1328 static int memory_node__read(struct memory_node *n, unsigned long idx)
1329 {
1330 unsigned int phys, size = 0;
1331 char path[PATH_MAX];
1332 struct io_dirent64 *ent;
1333 struct io_dir dir;
1334
1335 #define for_each_memory(mem, dir) \
1336 while ((ent = io_dir__readdir(&dir)) != NULL) \
1337 if (strcmp(ent->d_name, ".") && \
1338 strcmp(ent->d_name, "..") && \
1339 sscanf(ent->d_name, "memory%u", &mem) == 1)
1340
1341 scnprintf(path, PATH_MAX,
1342 "%s/devices/system/node/node%lu",
1343 sysfs__mountpoint(), idx);
1344
1345 io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY));
1346 if (dir.dirfd < 0) {
1347 pr_warning("failed: can't open memory sysfs data '%s'\n", path);
1348 return -1;
1349 }
1350
1351 for_each_memory(phys, dir) {
1352 size = max(phys, size);
1353 }
1354
1355 size++;
1356
1357 n->set = bitmap_zalloc(size);
1358 if (!n->set) {
1359 close(dir.dirfd);
1360 return -ENOMEM;
1361 }
1362
1363 n->node = idx;
1364 n->size = size;
1365
1366 io_dir__rewinddir(&dir);
1367
1368 for_each_memory(phys, dir) {
1369 __set_bit(phys, n->set);
1370 }
1371
1372 close(dir.dirfd);
1373 return 0;
1374 }
1375
memory_node__delete_nodes(struct memory_node * nodesp,u64 cnt)1376 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1377 {
1378 for (u64 i = 0; i < cnt; i++)
1379 bitmap_free(nodesp[i].set);
1380
1381 free(nodesp);
1382 }
1383
memory_node__sort(const void * a,const void * b)1384 static int memory_node__sort(const void *a, const void *b)
1385 {
1386 const struct memory_node *na = a;
1387 const struct memory_node *nb = b;
1388
1389 return na->node - nb->node;
1390 }
1391
build_mem_topology(struct memory_node ** nodesp,u64 * cntp)1392 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1393 {
1394 char path[PATH_MAX];
1395 struct io_dirent64 *ent;
1396 struct io_dir dir;
1397 int ret = 0;
1398 size_t cnt = 0, size = 0;
1399 struct memory_node *nodes = NULL;
1400
1401 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1402 sysfs__mountpoint());
1403
1404 io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY));
1405 if (dir.dirfd < 0) {
1406 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1407 __func__, path);
1408 return -1;
1409 }
1410
1411 while (!ret && (ent = io_dir__readdir(&dir))) {
1412 unsigned int idx;
1413 int r;
1414
1415 if (!strcmp(ent->d_name, ".") ||
1416 !strcmp(ent->d_name, ".."))
1417 continue;
1418
1419 r = sscanf(ent->d_name, "node%u", &idx);
1420 if (r != 1)
1421 continue;
1422
1423 if (cnt >= size) {
1424 struct memory_node *new_nodes =
1425 reallocarray(nodes, cnt + 4, sizeof(*nodes));
1426
1427 if (!new_nodes) {
1428 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1429 ret = -ENOMEM;
1430 goto out;
1431 }
1432 nodes = new_nodes;
1433 size += 4;
1434 }
1435 ret = memory_node__read(&nodes[cnt], idx);
1436 if (!ret)
1437 cnt += 1;
1438 }
1439 out:
1440 close(dir.dirfd);
1441 if (!ret) {
1442 *cntp = cnt;
1443 *nodesp = nodes;
1444 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1445 } else
1446 memory_node__delete_nodes(nodes, cnt);
1447
1448 return ret;
1449 }
1450
1451 /*
1452 * The MEM_TOPOLOGY holds physical memory map for every
1453 * node in system. The format of data is as follows:
1454 *
1455 * 0 - version | for future changes
1456 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1457 * 16 - count | number of nodes
1458 *
1459 * For each node we store map of physical indexes for
1460 * each node:
1461 *
1462 * 32 - node id | node index
1463 * 40 - size | size of bitmap
1464 * 48 - bitmap | bitmap of memory indexes that belongs to node
1465 */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1466 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1467 struct evlist *evlist __maybe_unused)
1468 {
1469 struct memory_node *nodes = NULL;
1470 u64 bsize, version = 1, i, nr = 0;
1471 int ret;
1472
1473 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1474 (unsigned long long *) &bsize);
1475 if (ret)
1476 return ret;
1477
1478 ret = build_mem_topology(&nodes, &nr);
1479 if (ret)
1480 return ret;
1481
1482 ret = do_write(ff, &version, sizeof(version));
1483 if (ret < 0)
1484 goto out;
1485
1486 ret = do_write(ff, &bsize, sizeof(bsize));
1487 if (ret < 0)
1488 goto out;
1489
1490 ret = do_write(ff, &nr, sizeof(nr));
1491 if (ret < 0)
1492 goto out;
1493
1494 for (i = 0; i < nr; i++) {
1495 struct memory_node *n = &nodes[i];
1496
1497 #define _W(v) \
1498 ret = do_write(ff, &n->v, sizeof(n->v)); \
1499 if (ret < 0) \
1500 goto out;
1501
1502 _W(node)
1503 _W(size)
1504
1505 #undef _W
1506
1507 ret = do_write_bitmap(ff, n->set, n->size);
1508 if (ret < 0)
1509 goto out;
1510 }
1511
1512 out:
1513 memory_node__delete_nodes(nodes, nr);
1514 return ret;
1515 }
1516
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1517 static int write_compressed(struct feat_fd *ff __maybe_unused,
1518 struct evlist *evlist __maybe_unused)
1519 {
1520 int ret;
1521
1522 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1523 if (ret)
1524 return ret;
1525
1526 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1527 if (ret)
1528 return ret;
1529
1530 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1531 if (ret)
1532 return ret;
1533
1534 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1535 if (ret)
1536 return ret;
1537
1538 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1539 }
1540
__write_pmu_caps(struct feat_fd * ff,struct perf_pmu * pmu,bool write_pmu)1541 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1542 bool write_pmu)
1543 {
1544 struct perf_pmu_caps *caps = NULL;
1545 int ret;
1546
1547 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1548 if (ret < 0)
1549 return ret;
1550
1551 list_for_each_entry(caps, &pmu->caps, list) {
1552 ret = do_write_string(ff, caps->name);
1553 if (ret < 0)
1554 return ret;
1555
1556 ret = do_write_string(ff, caps->value);
1557 if (ret < 0)
1558 return ret;
1559 }
1560
1561 if (write_pmu) {
1562 ret = do_write_string(ff, pmu->name);
1563 if (ret < 0)
1564 return ret;
1565 }
1566
1567 return ret;
1568 }
1569
write_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1570 static int write_cpu_pmu_caps(struct feat_fd *ff,
1571 struct evlist *evlist __maybe_unused)
1572 {
1573 struct perf_pmu *cpu_pmu = perf_pmus__find_core_pmu();
1574 int ret;
1575
1576 if (!cpu_pmu)
1577 return -ENOENT;
1578
1579 ret = perf_pmu__caps_parse(cpu_pmu);
1580 if (ret < 0)
1581 return ret;
1582
1583 return __write_pmu_caps(ff, cpu_pmu, false);
1584 }
1585
write_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1586 static int write_pmu_caps(struct feat_fd *ff,
1587 struct evlist *evlist __maybe_unused)
1588 {
1589 struct perf_pmu *pmu = NULL;
1590 int nr_pmu = 0;
1591 int ret;
1592
1593 while ((pmu = perf_pmus__scan(pmu))) {
1594 if (!strcmp(pmu->name, "cpu")) {
1595 /*
1596 * The "cpu" PMU is special and covered by
1597 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1598 * counted/written here for ARM, s390 and Intel hybrid.
1599 */
1600 continue;
1601 }
1602 if (perf_pmu__caps_parse(pmu) <= 0)
1603 continue;
1604 nr_pmu++;
1605 }
1606
1607 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1608 if (ret < 0)
1609 return ret;
1610
1611 if (!nr_pmu)
1612 return 0;
1613
1614 /*
1615 * Note older perf tools assume core PMUs come first, this is a property
1616 * of perf_pmus__scan.
1617 */
1618 pmu = NULL;
1619 while ((pmu = perf_pmus__scan(pmu))) {
1620 if (!strcmp(pmu->name, "cpu")) {
1621 /* Skip as above. */
1622 continue;
1623 }
1624 if (perf_pmu__caps_parse(pmu) <= 0)
1625 continue;
1626 ret = __write_pmu_caps(ff, pmu, true);
1627 if (ret < 0)
1628 return ret;
1629 }
1630 return 0;
1631 }
1632
build_cpu_domain_map(u32 * schedstat_version,u32 * max_sched_domains,u32 nr)1633 struct cpu_domain_map **build_cpu_domain_map(u32 *schedstat_version, u32 *max_sched_domains, u32 nr)
1634 {
1635 char dname[DNAME_LEN], cpumask[MAX_NR_CPUS];
1636 struct domain_info *domain_info;
1637 struct cpu_domain_map **cd_map;
1638 char cpulist[MAX_NR_CPUS];
1639 char *line = NULL;
1640 u32 cpu, domain;
1641 u32 dcount = 0;
1642 size_t len;
1643 FILE *fp;
1644
1645 fp = fopen("/proc/schedstat", "r");
1646 if (!fp) {
1647 pr_err("Failed to open /proc/schedstat\n");
1648 return NULL;
1649 }
1650
1651 cd_map = zalloc(sizeof(*cd_map) * nr);
1652 if (!cd_map)
1653 goto out;
1654
1655 while (getline(&line, &len, fp) > 0) {
1656 int retval;
1657
1658 if (strncmp(line, "version", 7) == 0) {
1659 retval = sscanf(line, "version %d\n", schedstat_version);
1660 if (retval != 1)
1661 continue;
1662
1663 } else if (strncmp(line, "cpu", 3) == 0) {
1664 retval = sscanf(line, "cpu%u %*s", &cpu);
1665 if (retval == 1) {
1666 cd_map[cpu] = zalloc(sizeof(*cd_map[cpu]));
1667 if (!cd_map[cpu])
1668 goto out_free_line;
1669 cd_map[cpu]->cpu = cpu;
1670 } else
1671 continue;
1672
1673 dcount = 0;
1674 } else if (strncmp(line, "domain", 6) == 0) {
1675 struct domain_info **temp_domains;
1676
1677 dcount++;
1678 temp_domains = realloc(cd_map[cpu]->domains, dcount * sizeof(domain_info));
1679 if (!temp_domains)
1680 goto out_free_line;
1681 else
1682 cd_map[cpu]->domains = temp_domains;
1683
1684 domain_info = zalloc(sizeof(*domain_info));
1685 if (!domain_info)
1686 goto out_free_line;
1687
1688 cd_map[cpu]->domains[dcount - 1] = domain_info;
1689
1690 if (*schedstat_version >= 17) {
1691 retval = sscanf(line, "domain%u %s %s %*s", &domain, dname,
1692 cpumask);
1693 if (retval != 3)
1694 continue;
1695
1696 domain_info->dname = strdup(dname);
1697 if (!domain_info->dname)
1698 goto out_free_line;
1699 } else {
1700 retval = sscanf(line, "domain%u %s %*s", &domain, cpumask);
1701 if (retval != 2)
1702 continue;
1703 }
1704
1705 domain_info->domain = domain;
1706 if (domain > *max_sched_domains)
1707 *max_sched_domains = domain;
1708
1709 domain_info->cpumask = strdup(cpumask);
1710 if (!domain_info->cpumask)
1711 goto out_free_line;
1712
1713 cpumask_to_cpulist(cpumask, cpulist);
1714 domain_info->cpulist = strdup(cpulist);
1715 if (!domain_info->cpulist)
1716 goto out_free_line;
1717
1718 cd_map[cpu]->nr_domains = dcount;
1719 }
1720 }
1721
1722 out_free_line:
1723 free(line);
1724 out:
1725 fclose(fp);
1726 return cd_map;
1727 }
1728
write_cpu_domain_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1729 static int write_cpu_domain_info(struct feat_fd *ff,
1730 struct evlist *evlist __maybe_unused)
1731 {
1732 u32 max_sched_domains = 0, schedstat_version = 0;
1733 struct cpu_domain_map **cd_map;
1734 u32 i, j, nr, ret;
1735
1736 nr = cpu__max_present_cpu().cpu;
1737
1738 cd_map = build_cpu_domain_map(&schedstat_version, &max_sched_domains, nr);
1739 if (!cd_map)
1740 return -1;
1741
1742 ret = do_write(ff, &schedstat_version, sizeof(u32));
1743 if (ret < 0)
1744 goto out;
1745
1746 max_sched_domains += 1;
1747 ret = do_write(ff, &max_sched_domains, sizeof(u32));
1748 if (ret < 0)
1749 goto out;
1750
1751 for (i = 0; i < nr; i++) {
1752 if (!cd_map[i])
1753 continue;
1754
1755 ret = do_write(ff, &cd_map[i]->cpu, sizeof(u32));
1756 if (ret < 0)
1757 goto out;
1758
1759 ret = do_write(ff, &cd_map[i]->nr_domains, sizeof(u32));
1760 if (ret < 0)
1761 goto out;
1762
1763 for (j = 0; j < cd_map[i]->nr_domains; j++) {
1764 ret = do_write(ff, &cd_map[i]->domains[j]->domain, sizeof(u32));
1765 if (ret < 0)
1766 goto out;
1767 if (schedstat_version >= 17) {
1768 ret = do_write_string(ff, cd_map[i]->domains[j]->dname);
1769 if (ret < 0)
1770 goto out;
1771 }
1772
1773 ret = do_write_string(ff, cd_map[i]->domains[j]->cpumask);
1774 if (ret < 0)
1775 goto out;
1776
1777 ret = do_write_string(ff, cd_map[i]->domains[j]->cpulist);
1778 if (ret < 0)
1779 goto out;
1780 }
1781 }
1782
1783 out:
1784 free_cpu_domain_info(cd_map, schedstat_version, nr);
1785 return ret;
1786 }
1787
print_hostname(struct feat_fd * ff,FILE * fp)1788 static void print_hostname(struct feat_fd *ff, FILE *fp)
1789 {
1790 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1791 }
1792
print_osrelease(struct feat_fd * ff,FILE * fp)1793 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1794 {
1795 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1796 }
1797
print_arch(struct feat_fd * ff,FILE * fp)1798 static void print_arch(struct feat_fd *ff, FILE *fp)
1799 {
1800 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1801 }
1802
print_e_machine(struct feat_fd * ff,FILE * fp)1803 static void print_e_machine(struct feat_fd *ff, FILE *fp)
1804 {
1805 fprintf(fp, "# e_machine : %u\n", ff->ph->env.e_machine);
1806 fprintf(fp, "# e_flags : %u\n", ff->ph->env.e_flags);
1807 }
1808
print_cpudesc(struct feat_fd * ff,FILE * fp)1809 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1810 {
1811 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1812 }
1813
print_nrcpus(struct feat_fd * ff,FILE * fp)1814 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1815 {
1816 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1817 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1818 }
1819
print_version(struct feat_fd * ff,FILE * fp)1820 static void print_version(struct feat_fd *ff, FILE *fp)
1821 {
1822 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1823 }
1824
print_cmdline(struct feat_fd * ff,FILE * fp)1825 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1826 {
1827 int nr, i;
1828
1829 nr = ff->ph->env.nr_cmdline;
1830
1831 fprintf(fp, "# cmdline : ");
1832
1833 for (i = 0; i < nr; i++) {
1834 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1835 if (!argv_i) {
1836 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1837 } else {
1838 char *mem = argv_i;
1839 do {
1840 char *quote = strchr(argv_i, '\'');
1841 if (!quote)
1842 break;
1843 *quote++ = '\0';
1844 fprintf(fp, "%s\\\'", argv_i);
1845 argv_i = quote;
1846 } while (1);
1847 fprintf(fp, "%s ", argv_i);
1848 free(mem);
1849 }
1850 }
1851 fputc('\n', fp);
1852 }
1853
print_cpu_topology(struct feat_fd * ff,FILE * fp)1854 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1855 {
1856 struct perf_header *ph = ff->ph;
1857 int cpu_nr = ph->env.nr_cpus_avail;
1858 int nr, i;
1859 char *str;
1860
1861 nr = ph->env.nr_sibling_cores;
1862 str = ph->env.sibling_cores;
1863
1864 for (i = 0; i < nr; i++) {
1865 fprintf(fp, "# sibling sockets : %s\n", str);
1866 str += strlen(str) + 1;
1867 }
1868
1869 if (ph->env.nr_sibling_dies) {
1870 nr = ph->env.nr_sibling_dies;
1871 str = ph->env.sibling_dies;
1872
1873 for (i = 0; i < nr; i++) {
1874 fprintf(fp, "# sibling dies : %s\n", str);
1875 str += strlen(str) + 1;
1876 }
1877 }
1878
1879 nr = ph->env.nr_sibling_threads;
1880 str = ph->env.sibling_threads;
1881
1882 for (i = 0; i < nr; i++) {
1883 fprintf(fp, "# sibling threads : %s\n", str);
1884 str += strlen(str) + 1;
1885 }
1886
1887 if (ph->env.nr_sibling_dies) {
1888 if (ph->env.cpu != NULL) {
1889 for (i = 0; i < cpu_nr; i++)
1890 fprintf(fp, "# CPU %d: Core ID %d, "
1891 "Die ID %d, Socket ID %d\n",
1892 i, ph->env.cpu[i].core_id,
1893 ph->env.cpu[i].die_id,
1894 ph->env.cpu[i].socket_id);
1895 } else
1896 fprintf(fp, "# Core ID, Die ID and Socket ID "
1897 "information is not available\n");
1898 } else {
1899 if (ph->env.cpu != NULL) {
1900 for (i = 0; i < cpu_nr; i++)
1901 fprintf(fp, "# CPU %d: Core ID %d, "
1902 "Socket ID %d\n",
1903 i, ph->env.cpu[i].core_id,
1904 ph->env.cpu[i].socket_id);
1905 } else
1906 fprintf(fp, "# Core ID and Socket ID "
1907 "information is not available\n");
1908 }
1909 }
1910
print_clockid(struct feat_fd * ff,FILE * fp)1911 static void print_clockid(struct feat_fd *ff, FILE *fp)
1912 {
1913 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1914 ff->ph->env.clock.clockid_res_ns * 1000);
1915 }
1916
print_clock_data(struct feat_fd * ff,FILE * fp)1917 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1918 {
1919 struct timespec clockid_ns;
1920 char tstr[64], date[64];
1921 struct timeval tod_ns;
1922 clockid_t clockid;
1923 struct tm ltime;
1924 u64 ref;
1925
1926 if (!ff->ph->env.clock.enabled) {
1927 fprintf(fp, "# reference time disabled\n");
1928 return;
1929 }
1930
1931 /* Compute TOD time. */
1932 ref = ff->ph->env.clock.tod_ns;
1933 tod_ns.tv_sec = ref / NSEC_PER_SEC;
1934 ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1935 tod_ns.tv_usec = ref / NSEC_PER_USEC;
1936
1937 /* Compute clockid time. */
1938 ref = ff->ph->env.clock.clockid_ns;
1939 clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1940 ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1941 clockid_ns.tv_nsec = ref;
1942
1943 clockid = ff->ph->env.clock.clockid;
1944
1945 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL)
1946 snprintf(tstr, sizeof(tstr), "<error>");
1947 else {
1948 strftime(date, sizeof(date), "%F %T", <ime);
1949 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1950 date, (int) tod_ns.tv_usec);
1951 }
1952
1953 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1954 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1955 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1956 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1957 clockid_name(clockid));
1958 }
1959
print_hybrid_topology(struct feat_fd * ff,FILE * fp)1960 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1961 {
1962 int i;
1963 struct hybrid_node *n;
1964
1965 fprintf(fp, "# hybrid cpu system:\n");
1966 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1967 n = &ff->ph->env.hybrid_nodes[i];
1968 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1969 }
1970 }
1971
print_dir_format(struct feat_fd * ff,FILE * fp)1972 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1973 {
1974 struct perf_session *session;
1975 struct perf_data *data;
1976
1977 session = container_of(ff->ph, struct perf_session, header);
1978 data = session->data;
1979
1980 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1981 }
1982
1983 #ifdef HAVE_LIBBPF_SUPPORT
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1984 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1985 {
1986 struct perf_env *env = &ff->ph->env;
1987 struct rb_root *root;
1988 struct rb_node *next;
1989
1990 down_read(&env->bpf_progs.lock);
1991
1992 root = &env->bpf_progs.infos;
1993 next = rb_first(root);
1994
1995 if (!next)
1996 printf("# bpf_prog_info empty\n");
1997
1998 while (next) {
1999 struct bpf_prog_info_node *node;
2000
2001 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
2002 next = rb_next(&node->rb_node);
2003
2004 __bpf_event__print_bpf_prog_info(&node->info_linear->info,
2005 env, fp);
2006 }
2007
2008 up_read(&env->bpf_progs.lock);
2009 }
2010
print_bpf_btf(struct feat_fd * ff,FILE * fp)2011 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
2012 {
2013 struct perf_env *env = &ff->ph->env;
2014 struct rb_root *root;
2015 struct rb_node *next;
2016
2017 down_read(&env->bpf_progs.lock);
2018
2019 root = &env->bpf_progs.btfs;
2020 next = rb_first(root);
2021
2022 if (!next)
2023 printf("# btf info empty\n");
2024
2025 while (next) {
2026 struct btf_node *node;
2027
2028 node = rb_entry(next, struct btf_node, rb_node);
2029 next = rb_next(&node->rb_node);
2030 fprintf(fp, "# btf info of id %u\n", node->id);
2031 }
2032
2033 up_read(&env->bpf_progs.lock);
2034 }
2035 #endif // HAVE_LIBBPF_SUPPORT
2036
free_event_desc(struct evsel * events)2037 static void free_event_desc(struct evsel *events)
2038 {
2039 struct evsel *evsel;
2040
2041 if (!events)
2042 return;
2043
2044 for (evsel = events; evsel->core.attr.size; evsel++) {
2045 zfree(&evsel->name);
2046 zfree(&evsel->core.id);
2047 }
2048
2049 free(events);
2050 }
2051
perf_attr_check(struct perf_event_attr * attr)2052 static bool perf_attr_check(struct perf_event_attr *attr)
2053 {
2054 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
2055 pr_warning("Reserved bits are set unexpectedly. "
2056 "Please update perf tool.\n");
2057 return false;
2058 }
2059
2060 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
2061 pr_warning("Unknown sample type (0x%llx) is detected. "
2062 "Please update perf tool.\n",
2063 attr->sample_type);
2064 return false;
2065 }
2066
2067 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
2068 pr_warning("Unknown read format (0x%llx) is detected. "
2069 "Please update perf tool.\n",
2070 attr->read_format);
2071 return false;
2072 }
2073
2074 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
2075 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
2076 pr_warning("Unknown branch sample type (0x%llx) is detected. "
2077 "Please update perf tool.\n",
2078 attr->branch_sample_type);
2079
2080 return false;
2081 }
2082
2083 return true;
2084 }
2085
read_event_desc(struct feat_fd * ff)2086 static struct evsel *read_event_desc(struct feat_fd *ff)
2087 {
2088 struct evsel *evsel, *events = NULL;
2089 u64 *id;
2090 void *buf = NULL;
2091 u32 nre, sz, nr, i, j;
2092 size_t msz;
2093
2094 /* number of events */
2095 if (do_read_u32(ff, &nre))
2096 goto error;
2097
2098 if (do_read_u32(ff, &sz))
2099 goto error;
2100
2101 /* buffer to hold on file attr struct */
2102 buf = malloc(sz);
2103 if (!buf)
2104 goto error;
2105
2106 /* the last event terminates with evsel->core.attr.size == 0: */
2107 events = calloc(nre + 1, sizeof(*events));
2108 if (!events)
2109 goto error;
2110
2111 msz = sizeof(evsel->core.attr);
2112 if (sz < msz)
2113 msz = sz;
2114
2115 for (i = 0, evsel = events; i < nre; evsel++, i++) {
2116 evsel->core.idx = i;
2117
2118 /*
2119 * must read entire on-file attr struct to
2120 * sync up with layout.
2121 */
2122 if (__do_read(ff, buf, sz))
2123 goto error;
2124
2125 if (ff->ph->needs_swap)
2126 perf_event__attr_swap(buf);
2127
2128 memcpy(&evsel->core.attr, buf, msz);
2129
2130 if (!perf_attr_check(&evsel->core.attr))
2131 goto error;
2132
2133 if (do_read_u32(ff, &nr))
2134 goto error;
2135
2136 if (ff->ph->needs_swap)
2137 evsel->needs_swap = true;
2138
2139 evsel->name = do_read_string(ff);
2140 if (!evsel->name)
2141 goto error;
2142
2143 if (!nr)
2144 continue;
2145
2146 id = calloc(nr, sizeof(*id));
2147 if (!id)
2148 goto error;
2149 evsel->core.ids = nr;
2150 evsel->core.id = id;
2151
2152 for (j = 0 ; j < nr; j++) {
2153 if (do_read_u64(ff, id))
2154 goto error;
2155 id++;
2156 }
2157 }
2158 out:
2159 free(buf);
2160 return events;
2161 error:
2162 free_event_desc(events);
2163 events = NULL;
2164 goto out;
2165 }
2166
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)2167 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
2168 void *priv __maybe_unused)
2169 {
2170 return fprintf(fp, ", %s = %s", name, val);
2171 }
2172
print_event_desc(struct feat_fd * ff,FILE * fp)2173 static void print_event_desc(struct feat_fd *ff, FILE *fp)
2174 {
2175 struct evsel *evsel, *events;
2176 u32 j;
2177 u64 *id;
2178
2179 if (ff->events)
2180 events = ff->events;
2181 else
2182 events = read_event_desc(ff);
2183
2184 if (!events) {
2185 fprintf(fp, "# event desc: not available or unable to read\n");
2186 return;
2187 }
2188
2189 for (evsel = events; evsel->core.attr.size; evsel++) {
2190 fprintf(fp, "# event : name = %s, ", evsel->name);
2191
2192 if (evsel->core.ids) {
2193 fprintf(fp, ", id = {");
2194 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2195 if (j)
2196 fputc(',', fp);
2197 fprintf(fp, " %"PRIu64, *id);
2198 }
2199 fprintf(fp, " }");
2200 }
2201
2202 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2203
2204 fputc('\n', fp);
2205 }
2206
2207 free_event_desc(events);
2208 ff->events = NULL;
2209 }
2210
print_total_mem(struct feat_fd * ff,FILE * fp)2211 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2212 {
2213 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2214 }
2215
print_numa_topology(struct feat_fd * ff,FILE * fp)2216 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2217 {
2218 int i;
2219 struct numa_node *n;
2220
2221 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2222 n = &ff->ph->env.numa_nodes[i];
2223
2224 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
2225 " free = %"PRIu64" kB\n",
2226 n->node, n->mem_total, n->mem_free);
2227
2228 fprintf(fp, "# node%u cpu list : ", n->node);
2229 cpu_map__fprintf(n->map, fp);
2230 }
2231 }
2232
print_cpuid(struct feat_fd * ff,FILE * fp)2233 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2234 {
2235 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2236 }
2237
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)2238 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2239 {
2240 fprintf(fp, "# contains samples with branch stack\n");
2241 }
2242
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)2243 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2244 {
2245 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2246 }
2247
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)2248 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2249 {
2250 fprintf(fp, "# contains stat data\n");
2251 }
2252
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)2253 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2254 {
2255 int i;
2256
2257 fprintf(fp, "# CPU cache info:\n");
2258 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2259 fprintf(fp, "# ");
2260 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2261 }
2262 }
2263
print_compressed(struct feat_fd * ff,FILE * fp)2264 static void print_compressed(struct feat_fd *ff, FILE *fp)
2265 {
2266 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2267 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2268 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2269 }
2270
__print_pmu_caps(FILE * fp,int nr_caps,char ** caps,char * pmu_name)2271 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2272 {
2273 const char *delimiter = "";
2274 int i;
2275
2276 if (!nr_caps) {
2277 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2278 return;
2279 }
2280
2281 fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2282 for (i = 0; i < nr_caps; i++) {
2283 fprintf(fp, "%s%s", delimiter, caps[i]);
2284 delimiter = ", ";
2285 }
2286
2287 fprintf(fp, "\n");
2288 }
2289
print_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)2290 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2291 {
2292 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2293 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2294 }
2295
print_pmu_caps(struct feat_fd * ff,FILE * fp)2296 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2297 {
2298 struct perf_env *env = &ff->ph->env;
2299 struct pmu_caps *pmu_caps;
2300
2301 for (int i = 0; i < env->nr_pmus_with_caps; i++) {
2302 pmu_caps = &env->pmu_caps[i];
2303 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2304 pmu_caps->pmu_name);
2305 }
2306
2307 if (strcmp(perf_env__arch(env), "x86") == 0 &&
2308 perf_env__has_pmu_mapping(env, "ibs_op")) {
2309 char *max_precise = perf_env__find_pmu_cap(env, "cpu", "max_precise");
2310
2311 if (max_precise != NULL && atoi(max_precise) == 0)
2312 fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n");
2313 }
2314 }
2315
print_pmu_mappings(struct feat_fd * ff,FILE * fp)2316 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2317 {
2318 struct perf_env *env = &ff->ph->env;
2319 const char *delimiter = "# pmu mappings: ";
2320 char *str, *tmp;
2321 u32 pmu_num;
2322 u32 type;
2323
2324 pmu_num = env->nr_pmu_mappings;
2325 if (!pmu_num) {
2326 fprintf(fp, "# pmu mappings: not available\n");
2327 return;
2328 }
2329
2330 str = env->pmu_mappings;
2331
2332 while (pmu_num) {
2333 type = strtoul(str, &tmp, 0);
2334 if (*tmp != ':')
2335 goto error;
2336
2337 str = tmp + 1;
2338 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2339
2340 delimiter = ", ";
2341 str += strlen(str) + 1;
2342 pmu_num--;
2343 }
2344
2345 fprintf(fp, "\n");
2346
2347 if (!pmu_num)
2348 return;
2349 error:
2350 fprintf(fp, "# pmu mappings: unable to read\n");
2351 }
2352
print_group_desc(struct feat_fd * ff,FILE * fp)2353 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2354 {
2355 struct perf_session *session;
2356 struct evsel *evsel;
2357 u32 nr = 0;
2358
2359 session = container_of(ff->ph, struct perf_session, header);
2360
2361 evlist__for_each_entry(session->evlist, evsel) {
2362 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2363 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2364
2365 nr = evsel->core.nr_members - 1;
2366 } else if (nr) {
2367 fprintf(fp, ",%s", evsel__name(evsel));
2368
2369 if (--nr == 0)
2370 fprintf(fp, "}\n");
2371 }
2372 }
2373 }
2374
print_sample_time(struct feat_fd * ff,FILE * fp)2375 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2376 {
2377 struct perf_session *session;
2378 char time_buf[32];
2379 double d;
2380
2381 session = container_of(ff->ph, struct perf_session, header);
2382
2383 timestamp__scnprintf_usec(session->evlist->first_sample_time,
2384 time_buf, sizeof(time_buf));
2385 fprintf(fp, "# time of first sample : %s\n", time_buf);
2386
2387 timestamp__scnprintf_usec(session->evlist->last_sample_time,
2388 time_buf, sizeof(time_buf));
2389 fprintf(fp, "# time of last sample : %s\n", time_buf);
2390
2391 d = (double)(session->evlist->last_sample_time -
2392 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2393
2394 fprintf(fp, "# sample duration : %10.3f ms\n", d);
2395 }
2396
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)2397 static void memory_node__fprintf(struct memory_node *n,
2398 unsigned long long bsize, FILE *fp)
2399 {
2400 char buf_map[100], buf_size[50];
2401 unsigned long long size;
2402
2403 size = bsize * bitmap_weight(n->set, n->size);
2404 unit_number__scnprintf(buf_size, 50, size);
2405
2406 bitmap_scnprintf(n->set, n->size, buf_map, 100);
2407 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2408 }
2409
print_mem_topology(struct feat_fd * ff,FILE * fp)2410 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2411 {
2412 struct perf_env *env = &ff->ph->env;
2413 struct memory_node *nodes;
2414 int i, nr;
2415
2416 nodes = env->memory_nodes;
2417 nr = env->nr_memory_nodes;
2418
2419 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2420 nr, env->memory_bsize);
2421
2422 for (i = 0; i < nr; i++) {
2423 memory_node__fprintf(&nodes[i], env->memory_bsize, fp);
2424 }
2425 }
2426
print_cpu_domain_info(struct feat_fd * ff,FILE * fp)2427 static void print_cpu_domain_info(struct feat_fd *ff, FILE *fp)
2428 {
2429 struct cpu_domain_map **cd_map = ff->ph->env.cpu_domain;
2430 u32 nr = ff->ph->env.nr_cpus_avail;
2431 struct domain_info *d_info;
2432 u32 i, j;
2433
2434 fprintf(fp, "# schedstat version : %u\n", ff->ph->env.schedstat_version);
2435 fprintf(fp, "# Maximum sched domains : %u\n", ff->ph->env.max_sched_domains);
2436
2437 for (i = 0; i < nr; i++) {
2438 if (!cd_map[i])
2439 continue;
2440
2441 fprintf(fp, "# cpu : %u\n", cd_map[i]->cpu);
2442 fprintf(fp, "# nr_domains : %u\n", cd_map[i]->nr_domains);
2443
2444 for (j = 0; j < cd_map[i]->nr_domains; j++) {
2445 d_info = cd_map[i]->domains[j];
2446 if (!d_info)
2447 continue;
2448
2449 fprintf(fp, "# Domain : %u\n", d_info->domain);
2450
2451 if (ff->ph->env.schedstat_version >= 17)
2452 fprintf(fp, "# Domain name : %s\n", d_info->dname);
2453
2454 fprintf(fp, "# Domain cpu map : %s\n", d_info->cpumask);
2455 fprintf(fp, "# Domain cpu list : %s\n", d_info->cpulist);
2456 }
2457 }
2458 }
2459
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)2460 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2461 char *filename,
2462 struct perf_session *session)
2463 {
2464 int err = -1;
2465 struct machine *machine;
2466 u16 cpumode;
2467 struct dso *dso;
2468 enum dso_space_type dso_space;
2469
2470 machine = perf_session__findnew_machine(session, bev->pid);
2471 if (!machine)
2472 goto out;
2473
2474 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2475
2476 switch (cpumode) {
2477 case PERF_RECORD_MISC_KERNEL:
2478 dso_space = DSO_SPACE__KERNEL;
2479 break;
2480 case PERF_RECORD_MISC_GUEST_KERNEL:
2481 dso_space = DSO_SPACE__KERNEL_GUEST;
2482 break;
2483 case PERF_RECORD_MISC_USER:
2484 case PERF_RECORD_MISC_GUEST_USER:
2485 dso_space = DSO_SPACE__USER;
2486 break;
2487 default:
2488 goto out;
2489 }
2490
2491 dso = machine__findnew_dso(machine, filename);
2492 if (dso != NULL) {
2493 char sbuild_id[SBUILD_ID_SIZE];
2494 struct build_id bid;
2495 size_t size = BUILD_ID_SIZE;
2496
2497 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2498 size = bev->size;
2499
2500 build_id__init(&bid, bev->data, size);
2501 dso__set_build_id(dso, &bid);
2502 dso__set_header_build_id(dso, true);
2503
2504 if (dso_space != DSO_SPACE__USER) {
2505 struct kmod_path m = { .name = NULL, };
2506
2507 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2508 dso__set_module_info(dso, &m, machine);
2509
2510 dso__set_kernel(dso, dso_space);
2511 free(m.name);
2512 }
2513
2514 build_id__snprintf(dso__bid(dso), sbuild_id, sizeof(sbuild_id));
2515 pr_debug("build id event received for %s: %s [%zu]\n",
2516 dso__long_name(dso), sbuild_id, size);
2517 dso__put(dso);
2518 }
2519
2520 err = 0;
2521 out:
2522 return err;
2523 }
2524
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)2525 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2526 int input, u64 offset, u64 size)
2527 {
2528 struct perf_session *session = container_of(header, struct perf_session, header);
2529 struct {
2530 struct perf_event_header header;
2531 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2532 char filename[0];
2533 } old_bev;
2534 struct perf_record_header_build_id bev;
2535 char filename[PATH_MAX];
2536 u64 limit = offset + size;
2537
2538 while (offset < limit) {
2539 ssize_t len;
2540
2541 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2542 return -1;
2543
2544 if (header->needs_swap)
2545 perf_event_header__bswap(&old_bev.header);
2546
2547 len = old_bev.header.size - sizeof(old_bev);
2548 if (readn(input, filename, len) != len)
2549 return -1;
2550
2551 bev.header = old_bev.header;
2552
2553 /*
2554 * As the pid is the missing value, we need to fill
2555 * it properly. The header.misc value give us nice hint.
2556 */
2557 bev.pid = HOST_KERNEL_ID;
2558 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2559 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2560 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2561
2562 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2563 __event_process_build_id(&bev, filename, session);
2564
2565 offset += bev.header.size;
2566 }
2567
2568 return 0;
2569 }
2570
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2571 static int perf_header__read_build_ids(struct perf_header *header,
2572 int input, u64 offset, u64 size)
2573 {
2574 struct perf_session *session = container_of(header, struct perf_session, header);
2575 struct perf_record_header_build_id bev;
2576 char filename[PATH_MAX];
2577 u64 limit = offset + size, orig_offset = offset;
2578 int err = -1;
2579
2580 while (offset < limit) {
2581 ssize_t len;
2582
2583 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2584 goto out;
2585
2586 if (header->needs_swap)
2587 perf_event_header__bswap(&bev.header);
2588
2589 len = bev.header.size - sizeof(bev);
2590 if (readn(input, filename, len) != len)
2591 goto out;
2592 /*
2593 * The a1645ce1 changeset:
2594 *
2595 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2596 *
2597 * Added a field to struct perf_record_header_build_id that broke the file
2598 * format.
2599 *
2600 * Since the kernel build-id is the first entry, process the
2601 * table using the old format if the well known
2602 * '[kernel.kallsyms]' string for the kernel build-id has the
2603 * first 4 characters chopped off (where the pid_t sits).
2604 */
2605 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2606 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2607 return -1;
2608 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2609 }
2610
2611 __event_process_build_id(&bev, filename, session);
2612
2613 offset += bev.header.size;
2614 }
2615 err = 0;
2616 out:
2617 return err;
2618 }
2619
2620 /* Macro for features that simply need to read and store a string. */
2621 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2622 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2623 {\
2624 free(ff->ph->env.__feat_env); \
2625 ff->ph->env.__feat_env = do_read_string(ff); \
2626 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2627 }
2628
2629 FEAT_PROCESS_STR_FUN(hostname, hostname);
2630 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2631 FEAT_PROCESS_STR_FUN(version, version);
2632 FEAT_PROCESS_STR_FUN(arch, arch);
2633 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2634 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2635
process_e_machine(struct feat_fd * ff,void * data __maybe_unused)2636 static int process_e_machine(struct feat_fd *ff, void *data __maybe_unused)
2637 {
2638 int ret;
2639
2640 ret = do_read_u32(ff, &ff->ph->env.e_machine);
2641 if (ret)
2642 return ret;
2643
2644 return do_read_u32(ff, &ff->ph->env.e_flags);
2645 }
2646
2647 #ifdef HAVE_LIBTRACEEVENT
process_tracing_data(struct feat_fd * ff,void * data)2648 static int process_tracing_data(struct feat_fd *ff, void *data)
2649 {
2650 ssize_t ret = trace_report(ff->fd, data, false);
2651
2652 return ret < 0 ? -1 : 0;
2653 }
2654 #endif
2655
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2656 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2657 {
2658 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2659 pr_debug("Failed to read buildids, continuing...\n");
2660 return 0;
2661 }
2662
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2663 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2664 {
2665 struct perf_env *env = &ff->ph->env;
2666 int ret;
2667 u32 nr_cpus_avail, nr_cpus_online;
2668
2669 ret = do_read_u32(ff, &nr_cpus_avail);
2670 if (ret)
2671 return ret;
2672
2673 ret = do_read_u32(ff, &nr_cpus_online);
2674 if (ret)
2675 return ret;
2676 env->nr_cpus_avail = (int)nr_cpus_avail;
2677 env->nr_cpus_online = (int)nr_cpus_online;
2678 return 0;
2679 }
2680
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2681 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2682 {
2683 struct perf_env *env = &ff->ph->env;
2684 u64 total_mem;
2685 int ret;
2686
2687 ret = do_read_u64(ff, &total_mem);
2688 if (ret)
2689 return -1;
2690 env->total_mem = (unsigned long long)total_mem;
2691 return 0;
2692 }
2693
evlist__find_by_index(struct evlist * evlist,int idx)2694 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2695 {
2696 struct evsel *evsel;
2697
2698 evlist__for_each_entry(evlist, evsel) {
2699 if (evsel->core.idx == idx)
2700 return evsel;
2701 }
2702
2703 return NULL;
2704 }
2705
evlist__set_event_name(struct evlist * evlist,struct evsel * event)2706 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2707 {
2708 struct evsel *evsel;
2709
2710 if (!event->name)
2711 return;
2712
2713 evsel = evlist__find_by_index(evlist, event->core.idx);
2714 if (!evsel)
2715 return;
2716
2717 if (evsel->name)
2718 return;
2719
2720 evsel->name = strdup(event->name);
2721 }
2722
2723 static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2724 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2725 {
2726 struct perf_session *session;
2727 struct evsel *evsel, *events = read_event_desc(ff);
2728
2729 if (!events)
2730 return 0;
2731
2732 session = container_of(ff->ph, struct perf_session, header);
2733
2734 if (session->data->is_pipe) {
2735 /* Save events for reading later by print_event_desc,
2736 * since they can't be read again in pipe mode. */
2737 ff->events = events;
2738 }
2739
2740 for (evsel = events; evsel->core.attr.size; evsel++)
2741 evlist__set_event_name(session->evlist, evsel);
2742
2743 if (!session->data->is_pipe)
2744 free_event_desc(events);
2745
2746 return 0;
2747 }
2748
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2749 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2750 {
2751 struct perf_env *env = &ff->ph->env;
2752 char *str, *cmdline = NULL, **argv = NULL;
2753 u32 nr, i, len = 0;
2754
2755 if (do_read_u32(ff, &nr))
2756 return -1;
2757
2758 env->nr_cmdline = nr;
2759
2760 cmdline = zalloc(ff->size + nr + 1);
2761 if (!cmdline)
2762 return -1;
2763
2764 argv = zalloc(sizeof(char *) * (nr + 1));
2765 if (!argv)
2766 goto error;
2767
2768 for (i = 0; i < nr; i++) {
2769 str = do_read_string(ff);
2770 if (!str)
2771 goto error;
2772
2773 argv[i] = cmdline + len;
2774 memcpy(argv[i], str, strlen(str) + 1);
2775 len += strlen(str) + 1;
2776 free(str);
2777 }
2778 env->cmdline = cmdline;
2779 env->cmdline_argv = (const char **) argv;
2780 return 0;
2781
2782 error:
2783 free(argv);
2784 free(cmdline);
2785 return -1;
2786 }
2787
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2788 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2789 {
2790 u32 nr, i;
2791 char *str = NULL;
2792 struct strbuf sb;
2793 struct perf_env *env = &ff->ph->env;
2794 int cpu_nr = env->nr_cpus_avail;
2795 u64 size = 0;
2796
2797 env->cpu = calloc(cpu_nr, sizeof(*env->cpu));
2798 if (!env->cpu)
2799 return -1;
2800
2801 if (do_read_u32(ff, &nr))
2802 goto free_cpu;
2803
2804 env->nr_sibling_cores = nr;
2805 size += sizeof(u32);
2806 if (strbuf_init(&sb, 128) < 0)
2807 goto free_cpu;
2808
2809 for (i = 0; i < nr; i++) {
2810 str = do_read_string(ff);
2811 if (!str)
2812 goto error;
2813
2814 /* include a NULL character at the end */
2815 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2816 goto error;
2817 size += string_size(str);
2818 zfree(&str);
2819 }
2820 env->sibling_cores = strbuf_detach(&sb, NULL);
2821
2822 if (do_read_u32(ff, &nr))
2823 return -1;
2824
2825 env->nr_sibling_threads = nr;
2826 size += sizeof(u32);
2827
2828 for (i = 0; i < nr; i++) {
2829 str = do_read_string(ff);
2830 if (!str)
2831 goto error;
2832
2833 /* include a NULL character at the end */
2834 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2835 goto error;
2836 size += string_size(str);
2837 zfree(&str);
2838 }
2839 env->sibling_threads = strbuf_detach(&sb, NULL);
2840
2841 /*
2842 * The header may be from old perf,
2843 * which doesn't include core id and socket id information.
2844 */
2845 if (ff->size <= size) {
2846 zfree(&env->cpu);
2847 return 0;
2848 }
2849
2850 for (i = 0; i < (u32)cpu_nr; i++) {
2851 if (do_read_u32(ff, &nr))
2852 goto free_cpu;
2853
2854 env->cpu[i].core_id = nr;
2855 size += sizeof(u32);
2856
2857 if (do_read_u32(ff, &nr))
2858 goto free_cpu;
2859
2860 env->cpu[i].socket_id = nr;
2861 size += sizeof(u32);
2862 }
2863
2864 /*
2865 * The header may be from old perf,
2866 * which doesn't include die information.
2867 */
2868 if (ff->size <= size)
2869 return 0;
2870
2871 if (do_read_u32(ff, &nr))
2872 return -1;
2873
2874 env->nr_sibling_dies = nr;
2875 size += sizeof(u32);
2876
2877 for (i = 0; i < nr; i++) {
2878 str = do_read_string(ff);
2879 if (!str)
2880 goto error;
2881
2882 /* include a NULL character at the end */
2883 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2884 goto error;
2885 size += string_size(str);
2886 zfree(&str);
2887 }
2888 env->sibling_dies = strbuf_detach(&sb, NULL);
2889
2890 for (i = 0; i < (u32)cpu_nr; i++) {
2891 if (do_read_u32(ff, &nr))
2892 goto free_cpu;
2893
2894 env->cpu[i].die_id = nr;
2895 }
2896
2897 return 0;
2898
2899 error:
2900 strbuf_release(&sb);
2901 zfree(&str);
2902 free_cpu:
2903 zfree(&env->cpu);
2904 return -1;
2905 }
2906
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2907 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2908 {
2909 struct perf_env *env = &ff->ph->env;
2910 struct numa_node *nodes, *n;
2911 u32 nr, i;
2912 char *str;
2913
2914 /* nr nodes */
2915 if (do_read_u32(ff, &nr))
2916 return -1;
2917
2918 nodes = zalloc(sizeof(*nodes) * nr);
2919 if (!nodes)
2920 return -ENOMEM;
2921
2922 for (i = 0; i < nr; i++) {
2923 n = &nodes[i];
2924
2925 /* node number */
2926 if (do_read_u32(ff, &n->node))
2927 goto error;
2928
2929 if (do_read_u64(ff, &n->mem_total))
2930 goto error;
2931
2932 if (do_read_u64(ff, &n->mem_free))
2933 goto error;
2934
2935 str = do_read_string(ff);
2936 if (!str)
2937 goto error;
2938
2939 n->map = perf_cpu_map__new(str);
2940 free(str);
2941 if (!n->map)
2942 goto error;
2943 }
2944 env->nr_numa_nodes = nr;
2945 env->numa_nodes = nodes;
2946 return 0;
2947
2948 error:
2949 free(nodes);
2950 return -1;
2951 }
2952
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2953 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2954 {
2955 struct perf_env *env = &ff->ph->env;
2956 char *name;
2957 u32 pmu_num;
2958 u32 type;
2959 struct strbuf sb;
2960
2961 if (do_read_u32(ff, &pmu_num))
2962 return -1;
2963
2964 if (!pmu_num) {
2965 pr_debug("pmu mappings not available\n");
2966 return 0;
2967 }
2968
2969 env->nr_pmu_mappings = pmu_num;
2970 if (strbuf_init(&sb, 128) < 0)
2971 return -1;
2972
2973 while (pmu_num) {
2974 if (do_read_u32(ff, &type))
2975 goto error;
2976
2977 name = do_read_string(ff);
2978 if (!name)
2979 goto error;
2980
2981 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2982 goto error;
2983 /* include a NULL character at the end */
2984 if (strbuf_add(&sb, "", 1) < 0)
2985 goto error;
2986
2987 if (!strcmp(name, "msr"))
2988 env->msr_pmu_type = type;
2989
2990 free(name);
2991 pmu_num--;
2992 }
2993 /* AMD may set it by evlist__has_amd_ibs() from perf_session__new() */
2994 free(env->pmu_mappings);
2995 env->pmu_mappings = strbuf_detach(&sb, NULL);
2996 return 0;
2997
2998 error:
2999 strbuf_release(&sb);
3000 return -1;
3001 }
3002
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)3003 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
3004 {
3005 struct perf_env *env = &ff->ph->env;
3006 size_t ret = -1;
3007 u32 i, nr, nr_groups;
3008 struct perf_session *session;
3009 struct evsel *evsel, *leader = NULL;
3010 struct group_desc {
3011 char *name;
3012 u32 leader_idx;
3013 u32 nr_members;
3014 } *desc;
3015
3016 if (do_read_u32(ff, &nr_groups))
3017 return -1;
3018
3019 env->nr_groups = nr_groups;
3020 if (!nr_groups) {
3021 pr_debug("group desc not available\n");
3022 return 0;
3023 }
3024
3025 desc = calloc(nr_groups, sizeof(*desc));
3026 if (!desc)
3027 return -1;
3028
3029 for (i = 0; i < nr_groups; i++) {
3030 desc[i].name = do_read_string(ff);
3031 if (!desc[i].name)
3032 goto out_free;
3033
3034 if (do_read_u32(ff, &desc[i].leader_idx))
3035 goto out_free;
3036
3037 if (do_read_u32(ff, &desc[i].nr_members))
3038 goto out_free;
3039 }
3040
3041 /*
3042 * Rebuild group relationship based on the group_desc
3043 */
3044 session = container_of(ff->ph, struct perf_session, header);
3045
3046 i = nr = 0;
3047 evlist__for_each_entry(session->evlist, evsel) {
3048 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
3049 evsel__set_leader(evsel, evsel);
3050 /* {anon_group} is a dummy name */
3051 if (strcmp(desc[i].name, "{anon_group}")) {
3052 evsel->group_name = desc[i].name;
3053 desc[i].name = NULL;
3054 }
3055 evsel->core.nr_members = desc[i].nr_members;
3056
3057 if (i >= nr_groups || nr > 0) {
3058 pr_debug("invalid group desc\n");
3059 goto out_free;
3060 }
3061
3062 leader = evsel;
3063 nr = evsel->core.nr_members - 1;
3064 i++;
3065 } else if (nr) {
3066 /* This is a group member */
3067 evsel__set_leader(evsel, leader);
3068
3069 nr--;
3070 }
3071 }
3072
3073 if (i != nr_groups || nr != 0) {
3074 pr_debug("invalid group desc\n");
3075 goto out_free;
3076 }
3077
3078 ret = 0;
3079 out_free:
3080 for (i = 0; i < nr_groups; i++)
3081 zfree(&desc[i].name);
3082 free(desc);
3083
3084 return ret;
3085 }
3086
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)3087 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
3088 {
3089 struct perf_session *session;
3090 int err;
3091
3092 session = container_of(ff->ph, struct perf_session, header);
3093
3094 err = auxtrace_index__process(ff->fd, ff->size, session,
3095 ff->ph->needs_swap);
3096 if (err < 0)
3097 pr_err("Failed to process auxtrace index\n");
3098 return err;
3099 }
3100
process_cache(struct feat_fd * ff,void * data __maybe_unused)3101 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
3102 {
3103 struct perf_env *env = &ff->ph->env;
3104 struct cpu_cache_level *caches;
3105 u32 cnt, i, version;
3106
3107 if (do_read_u32(ff, &version))
3108 return -1;
3109
3110 if (version != 1)
3111 return -1;
3112
3113 if (do_read_u32(ff, &cnt))
3114 return -1;
3115
3116 caches = zalloc(sizeof(*caches) * cnt);
3117 if (!caches)
3118 return -1;
3119
3120 for (i = 0; i < cnt; i++) {
3121 struct cpu_cache_level *c = &caches[i];
3122
3123 #define _R(v) \
3124 if (do_read_u32(ff, &c->v)) \
3125 goto out_free_caches; \
3126
3127 _R(level)
3128 _R(line_size)
3129 _R(sets)
3130 _R(ways)
3131 #undef _R
3132
3133 #define _R(v) \
3134 c->v = do_read_string(ff); \
3135 if (!c->v) \
3136 goto out_free_caches; \
3137
3138 _R(type)
3139 _R(size)
3140 _R(map)
3141 #undef _R
3142 }
3143
3144 env->caches = caches;
3145 env->caches_cnt = cnt;
3146 return 0;
3147 out_free_caches:
3148 for (i = 0; i < cnt; i++) {
3149 free(caches[i].type);
3150 free(caches[i].size);
3151 free(caches[i].map);
3152 }
3153 free(caches);
3154 return -1;
3155 }
3156
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)3157 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
3158 {
3159 struct perf_session *session;
3160 u64 first_sample_time, last_sample_time;
3161 int ret;
3162
3163 session = container_of(ff->ph, struct perf_session, header);
3164
3165 ret = do_read_u64(ff, &first_sample_time);
3166 if (ret)
3167 return -1;
3168
3169 ret = do_read_u64(ff, &last_sample_time);
3170 if (ret)
3171 return -1;
3172
3173 session->evlist->first_sample_time = first_sample_time;
3174 session->evlist->last_sample_time = last_sample_time;
3175 return 0;
3176 }
3177
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)3178 static int process_mem_topology(struct feat_fd *ff,
3179 void *data __maybe_unused)
3180 {
3181 struct perf_env *env = &ff->ph->env;
3182 struct memory_node *nodes;
3183 u64 version, i, nr, bsize;
3184 int ret = -1;
3185
3186 if (do_read_u64(ff, &version))
3187 return -1;
3188
3189 if (version != 1)
3190 return -1;
3191
3192 if (do_read_u64(ff, &bsize))
3193 return -1;
3194
3195 if (do_read_u64(ff, &nr))
3196 return -1;
3197
3198 nodes = zalloc(sizeof(*nodes) * nr);
3199 if (!nodes)
3200 return -1;
3201
3202 for (i = 0; i < nr; i++) {
3203 struct memory_node n;
3204
3205 #define _R(v) \
3206 if (do_read_u64(ff, &n.v)) \
3207 goto out; \
3208
3209 _R(node)
3210 _R(size)
3211
3212 #undef _R
3213
3214 if (do_read_bitmap(ff, &n.set, &n.size))
3215 goto out;
3216
3217 nodes[i] = n;
3218 }
3219
3220 env->memory_bsize = bsize;
3221 env->memory_nodes = nodes;
3222 env->nr_memory_nodes = nr;
3223 ret = 0;
3224
3225 out:
3226 if (ret)
3227 free(nodes);
3228 return ret;
3229 }
3230
process_clockid(struct feat_fd * ff,void * data __maybe_unused)3231 static int process_clockid(struct feat_fd *ff,
3232 void *data __maybe_unused)
3233 {
3234 struct perf_env *env = &ff->ph->env;
3235
3236 if (do_read_u64(ff, &env->clock.clockid_res_ns))
3237 return -1;
3238
3239 return 0;
3240 }
3241
process_clock_data(struct feat_fd * ff,void * _data __maybe_unused)3242 static int process_clock_data(struct feat_fd *ff,
3243 void *_data __maybe_unused)
3244 {
3245 struct perf_env *env = &ff->ph->env;
3246 u32 data32;
3247 u64 data64;
3248
3249 /* version */
3250 if (do_read_u32(ff, &data32))
3251 return -1;
3252
3253 if (data32 != 1)
3254 return -1;
3255
3256 /* clockid */
3257 if (do_read_u32(ff, &data32))
3258 return -1;
3259
3260 env->clock.clockid = data32;
3261
3262 /* TOD ref time */
3263 if (do_read_u64(ff, &data64))
3264 return -1;
3265
3266 env->clock.tod_ns = data64;
3267
3268 /* clockid ref time */
3269 if (do_read_u64(ff, &data64))
3270 return -1;
3271
3272 env->clock.clockid_ns = data64;
3273 env->clock.enabled = true;
3274 return 0;
3275 }
3276
process_hybrid_topology(struct feat_fd * ff,void * data __maybe_unused)3277 static int process_hybrid_topology(struct feat_fd *ff,
3278 void *data __maybe_unused)
3279 {
3280 struct perf_env *env = &ff->ph->env;
3281 struct hybrid_node *nodes, *n;
3282 u32 nr, i;
3283
3284 /* nr nodes */
3285 if (do_read_u32(ff, &nr))
3286 return -1;
3287
3288 nodes = zalloc(sizeof(*nodes) * nr);
3289 if (!nodes)
3290 return -ENOMEM;
3291
3292 for (i = 0; i < nr; i++) {
3293 n = &nodes[i];
3294
3295 n->pmu_name = do_read_string(ff);
3296 if (!n->pmu_name)
3297 goto error;
3298
3299 n->cpus = do_read_string(ff);
3300 if (!n->cpus)
3301 goto error;
3302 }
3303
3304 env->nr_hybrid_nodes = nr;
3305 env->hybrid_nodes = nodes;
3306 return 0;
3307
3308 error:
3309 for (i = 0; i < nr; i++) {
3310 free(nodes[i].pmu_name);
3311 free(nodes[i].cpus);
3312 }
3313
3314 free(nodes);
3315 return -1;
3316 }
3317
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)3318 static int process_dir_format(struct feat_fd *ff,
3319 void *_data __maybe_unused)
3320 {
3321 struct perf_session *session;
3322 struct perf_data *data;
3323
3324 session = container_of(ff->ph, struct perf_session, header);
3325 data = session->data;
3326
3327 if (WARN_ON(!perf_data__is_dir(data)))
3328 return -1;
3329
3330 return do_read_u64(ff, &data->dir.version);
3331 }
3332
3333 #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)3334 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3335 {
3336 struct bpf_prog_info_node *info_node;
3337 struct perf_env *env = &ff->ph->env;
3338 struct perf_bpil *info_linear;
3339 u32 count, i;
3340 int err = -1;
3341
3342 if (ff->ph->needs_swap) {
3343 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3344 return 0;
3345 }
3346
3347 if (do_read_u32(ff, &count))
3348 return -1;
3349
3350 down_write(&env->bpf_progs.lock);
3351
3352 for (i = 0; i < count; ++i) {
3353 u32 info_len, data_len;
3354
3355 info_linear = NULL;
3356 info_node = NULL;
3357 if (do_read_u32(ff, &info_len))
3358 goto out;
3359 if (do_read_u32(ff, &data_len))
3360 goto out;
3361
3362 if (info_len > sizeof(struct bpf_prog_info)) {
3363 pr_warning("detected invalid bpf_prog_info\n");
3364 goto out;
3365 }
3366
3367 info_linear = malloc(sizeof(struct perf_bpil) +
3368 data_len);
3369 if (!info_linear)
3370 goto out;
3371 info_linear->info_len = sizeof(struct bpf_prog_info);
3372 info_linear->data_len = data_len;
3373 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3374 goto out;
3375 if (__do_read(ff, &info_linear->info, info_len))
3376 goto out;
3377 if (info_len < sizeof(struct bpf_prog_info))
3378 memset(((void *)(&info_linear->info)) + info_len, 0,
3379 sizeof(struct bpf_prog_info) - info_len);
3380
3381 if (__do_read(ff, info_linear->data, data_len))
3382 goto out;
3383
3384 info_node = malloc(sizeof(struct bpf_prog_info_node));
3385 if (!info_node)
3386 goto out;
3387
3388 /* after reading from file, translate offset to address */
3389 bpil_offs_to_addr(info_linear);
3390 info_node->info_linear = info_linear;
3391 info_node->metadata = NULL;
3392 if (!__perf_env__insert_bpf_prog_info(env, info_node)) {
3393 free(info_linear);
3394 free(info_node);
3395 }
3396 }
3397
3398 up_write(&env->bpf_progs.lock);
3399 return 0;
3400 out:
3401 free(info_linear);
3402 free(info_node);
3403 up_write(&env->bpf_progs.lock);
3404 return err;
3405 }
3406
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)3407 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3408 {
3409 struct perf_env *env = &ff->ph->env;
3410 struct btf_node *node = NULL;
3411 u32 count, i;
3412 int err = -1;
3413
3414 if (ff->ph->needs_swap) {
3415 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3416 return 0;
3417 }
3418
3419 if (do_read_u32(ff, &count))
3420 return -1;
3421
3422 down_write(&env->bpf_progs.lock);
3423
3424 for (i = 0; i < count; ++i) {
3425 u32 id, data_size;
3426
3427 if (do_read_u32(ff, &id))
3428 goto out;
3429 if (do_read_u32(ff, &data_size))
3430 goto out;
3431
3432 node = malloc(sizeof(struct btf_node) + data_size);
3433 if (!node)
3434 goto out;
3435
3436 node->id = id;
3437 node->data_size = data_size;
3438
3439 if (__do_read(ff, node->data, data_size))
3440 goto out;
3441
3442 if (!__perf_env__insert_btf(env, node))
3443 free(node);
3444 node = NULL;
3445 }
3446
3447 err = 0;
3448 out:
3449 up_write(&env->bpf_progs.lock);
3450 free(node);
3451 return err;
3452 }
3453 #endif // HAVE_LIBBPF_SUPPORT
3454
process_compressed(struct feat_fd * ff,void * data __maybe_unused)3455 static int process_compressed(struct feat_fd *ff,
3456 void *data __maybe_unused)
3457 {
3458 struct perf_env *env = &ff->ph->env;
3459
3460 if (do_read_u32(ff, &(env->comp_ver)))
3461 return -1;
3462
3463 if (do_read_u32(ff, &(env->comp_type)))
3464 return -1;
3465
3466 if (do_read_u32(ff, &(env->comp_level)))
3467 return -1;
3468
3469 if (do_read_u32(ff, &(env->comp_ratio)))
3470 return -1;
3471
3472 if (do_read_u32(ff, &(env->comp_mmap_len)))
3473 return -1;
3474
3475 return 0;
3476 }
3477
__process_pmu_caps(struct feat_fd * ff,int * nr_caps,char *** caps,unsigned int * max_branches,unsigned int * br_cntr_nr,unsigned int * br_cntr_width)3478 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3479 char ***caps, unsigned int *max_branches,
3480 unsigned int *br_cntr_nr,
3481 unsigned int *br_cntr_width)
3482 {
3483 char *name, *value, *ptr;
3484 u32 nr_pmu_caps, i;
3485
3486 *nr_caps = 0;
3487 *caps = NULL;
3488
3489 if (do_read_u32(ff, &nr_pmu_caps))
3490 return -1;
3491
3492 if (!nr_pmu_caps)
3493 return 0;
3494
3495 *caps = zalloc(sizeof(char *) * nr_pmu_caps);
3496 if (!*caps)
3497 return -1;
3498
3499 for (i = 0; i < nr_pmu_caps; i++) {
3500 name = do_read_string(ff);
3501 if (!name)
3502 goto error;
3503
3504 value = do_read_string(ff);
3505 if (!value)
3506 goto free_name;
3507
3508 if (asprintf(&ptr, "%s=%s", name, value) < 0)
3509 goto free_value;
3510
3511 (*caps)[i] = ptr;
3512
3513 if (!strcmp(name, "branches"))
3514 *max_branches = atoi(value);
3515
3516 if (!strcmp(name, "branch_counter_nr"))
3517 *br_cntr_nr = atoi(value);
3518
3519 if (!strcmp(name, "branch_counter_width"))
3520 *br_cntr_width = atoi(value);
3521
3522 free(value);
3523 free(name);
3524 }
3525 *nr_caps = nr_pmu_caps;
3526 return 0;
3527
3528 free_value:
3529 free(value);
3530 free_name:
3531 free(name);
3532 error:
3533 for (; i > 0; i--)
3534 free((*caps)[i - 1]);
3535 free(*caps);
3536 *caps = NULL;
3537 *nr_caps = 0;
3538 return -1;
3539 }
3540
process_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3541 static int process_cpu_pmu_caps(struct feat_fd *ff,
3542 void *data __maybe_unused)
3543 {
3544 struct perf_env *env = &ff->ph->env;
3545 int ret = __process_pmu_caps(ff, &env->nr_cpu_pmu_caps,
3546 &env->cpu_pmu_caps,
3547 &env->max_branches,
3548 &env->br_cntr_nr,
3549 &env->br_cntr_width);
3550
3551 if (!ret && !env->cpu_pmu_caps)
3552 pr_debug("cpu pmu capabilities not available\n");
3553 return ret;
3554 }
3555
process_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3556 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3557 {
3558 struct perf_env *env = &ff->ph->env;
3559 struct pmu_caps *pmu_caps;
3560 u32 nr_pmu, i;
3561 int ret;
3562 int j;
3563
3564 if (do_read_u32(ff, &nr_pmu))
3565 return -1;
3566
3567 if (!nr_pmu) {
3568 pr_debug("pmu capabilities not available\n");
3569 return 0;
3570 }
3571
3572 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3573 if (!pmu_caps)
3574 return -ENOMEM;
3575
3576 for (i = 0; i < nr_pmu; i++) {
3577 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3578 &pmu_caps[i].caps,
3579 &pmu_caps[i].max_branches,
3580 &pmu_caps[i].br_cntr_nr,
3581 &pmu_caps[i].br_cntr_width);
3582 if (ret)
3583 goto err;
3584
3585 pmu_caps[i].pmu_name = do_read_string(ff);
3586 if (!pmu_caps[i].pmu_name) {
3587 ret = -1;
3588 goto err;
3589 }
3590 if (!pmu_caps[i].nr_caps) {
3591 pr_debug("%s pmu capabilities not available\n",
3592 pmu_caps[i].pmu_name);
3593 }
3594 }
3595
3596 env->nr_pmus_with_caps = nr_pmu;
3597 env->pmu_caps = pmu_caps;
3598 return 0;
3599
3600 err:
3601 for (i = 0; i < nr_pmu; i++) {
3602 for (j = 0; j < pmu_caps[i].nr_caps; j++)
3603 free(pmu_caps[i].caps[j]);
3604 free(pmu_caps[i].caps);
3605 free(pmu_caps[i].pmu_name);
3606 }
3607
3608 free(pmu_caps);
3609 return ret;
3610 }
3611
process_cpu_domain_info(struct feat_fd * ff,void * data __maybe_unused)3612 static int process_cpu_domain_info(struct feat_fd *ff, void *data __maybe_unused)
3613 {
3614 u32 schedstat_version, max_sched_domains, cpu, domain, nr_domains;
3615 struct perf_env *env = &ff->ph->env;
3616 char *dname, *cpumask, *cpulist;
3617 struct cpu_domain_map **cd_map;
3618 struct domain_info *d_info;
3619 u32 nra, nr, i, j;
3620 int ret;
3621
3622 nra = env->nr_cpus_avail;
3623 nr = env->nr_cpus_online;
3624
3625 cd_map = zalloc(sizeof(*cd_map) * nra);
3626 if (!cd_map)
3627 return -1;
3628
3629 env->cpu_domain = cd_map;
3630
3631 ret = do_read_u32(ff, &schedstat_version);
3632 if (ret)
3633 return ret;
3634
3635 env->schedstat_version = schedstat_version;
3636
3637 ret = do_read_u32(ff, &max_sched_domains);
3638 if (ret)
3639 return ret;
3640
3641 env->max_sched_domains = max_sched_domains;
3642
3643 for (i = 0; i < nr; i++) {
3644 if (do_read_u32(ff, &cpu))
3645 return -1;
3646
3647 cd_map[cpu] = zalloc(sizeof(*cd_map[cpu]));
3648 if (!cd_map[cpu])
3649 return -1;
3650
3651 cd_map[cpu]->cpu = cpu;
3652
3653 if (do_read_u32(ff, &nr_domains))
3654 return -1;
3655
3656 cd_map[cpu]->nr_domains = nr_domains;
3657
3658 cd_map[cpu]->domains = zalloc(sizeof(*d_info) * max_sched_domains);
3659 if (!cd_map[cpu]->domains)
3660 return -1;
3661
3662 for (j = 0; j < nr_domains; j++) {
3663 if (do_read_u32(ff, &domain))
3664 return -1;
3665
3666 d_info = zalloc(sizeof(*d_info));
3667 if (!d_info)
3668 return -1;
3669
3670 assert(cd_map[cpu]->domains[domain] == NULL);
3671 cd_map[cpu]->domains[domain] = d_info;
3672 d_info->domain = domain;
3673
3674 if (schedstat_version >= 17) {
3675 dname = do_read_string(ff);
3676 if (!dname)
3677 return -1;
3678
3679 d_info->dname = dname;
3680 }
3681
3682 cpumask = do_read_string(ff);
3683 if (!cpumask)
3684 return -1;
3685
3686 d_info->cpumask = cpumask;
3687
3688 cpulist = do_read_string(ff);
3689 if (!cpulist)
3690 return -1;
3691
3692 d_info->cpulist = cpulist;
3693 }
3694 }
3695
3696 return ret;
3697 }
3698
3699 #define FEAT_OPR(n, func, __full_only) \
3700 [HEADER_##n] = { \
3701 .name = __stringify(n), \
3702 .write = write_##func, \
3703 .print = print_##func, \
3704 .full_only = __full_only, \
3705 .process = process_##func, \
3706 .synthesize = true \
3707 }
3708
3709 #define FEAT_OPN(n, func, __full_only) \
3710 [HEADER_##n] = { \
3711 .name = __stringify(n), \
3712 .write = write_##func, \
3713 .print = print_##func, \
3714 .full_only = __full_only, \
3715 .process = process_##func \
3716 }
3717
3718 /* feature_ops not implemented: */
3719 #define print_tracing_data NULL
3720 #define print_build_id NULL
3721
3722 #define process_branch_stack NULL
3723 #define process_stat NULL
3724
3725 // Only used in util/synthetic-events.c
3726 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3727
3728 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3729 #ifdef HAVE_LIBTRACEEVENT
3730 FEAT_OPN(TRACING_DATA, tracing_data, false),
3731 #endif
3732 FEAT_OPN(BUILD_ID, build_id, false),
3733 FEAT_OPR(HOSTNAME, hostname, false),
3734 FEAT_OPR(OSRELEASE, osrelease, false),
3735 FEAT_OPR(VERSION, version, false),
3736 FEAT_OPR(ARCH, arch, false),
3737 FEAT_OPR(NRCPUS, nrcpus, false),
3738 FEAT_OPR(CPUDESC, cpudesc, false),
3739 FEAT_OPR(CPUID, cpuid, false),
3740 FEAT_OPR(TOTAL_MEM, total_mem, false),
3741 FEAT_OPR(EVENT_DESC, event_desc, false),
3742 FEAT_OPR(CMDLINE, cmdline, false),
3743 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
3744 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
3745 FEAT_OPN(BRANCH_STACK, branch_stack, false),
3746 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
3747 FEAT_OPR(GROUP_DESC, group_desc, false),
3748 FEAT_OPN(AUXTRACE, auxtrace, false),
3749 FEAT_OPN(STAT, stat, false),
3750 FEAT_OPN(CACHE, cache, true),
3751 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3752 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3753 FEAT_OPR(CLOCKID, clockid, false),
3754 FEAT_OPN(DIR_FORMAT, dir_format, false),
3755 #ifdef HAVE_LIBBPF_SUPPORT
3756 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3757 FEAT_OPR(BPF_BTF, bpf_btf, false),
3758 #endif
3759 FEAT_OPR(COMPRESSED, compressed, false),
3760 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3761 FEAT_OPR(CLOCK_DATA, clock_data, false),
3762 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true),
3763 FEAT_OPR(PMU_CAPS, pmu_caps, false),
3764 FEAT_OPR(CPU_DOMAIN_INFO, cpu_domain_info, true),
3765 FEAT_OPR(E_MACHINE, e_machine, false),
3766 };
3767
3768 struct header_print_data {
3769 FILE *fp;
3770 bool full; /* extended list of headers */
3771 };
3772
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3773 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3774 struct perf_header *ph,
3775 int feat, int fd, void *data)
3776 {
3777 struct header_print_data *hd = data;
3778 struct feat_fd ff;
3779
3780 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3781 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3782 "%d, continuing...\n", section->offset, feat);
3783 return 0;
3784 }
3785 if (feat >= HEADER_LAST_FEATURE) {
3786 pr_warning("unknown feature %d\n", feat);
3787 return 0;
3788 }
3789 if (!feat_ops[feat].print)
3790 return 0;
3791
3792 ff = (struct feat_fd) {
3793 .fd = fd,
3794 .ph = ph,
3795 };
3796
3797 if (!feat_ops[feat].full_only || hd->full)
3798 feat_ops[feat].print(&ff, hd->fp);
3799 else
3800 fprintf(hd->fp, "# %s info available, use -I to display\n",
3801 feat_ops[feat].name);
3802
3803 return 0;
3804 }
3805
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)3806 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3807 {
3808 struct header_print_data hd;
3809 struct perf_header *header = &session->header;
3810 int fd = perf_data__fd(session->data);
3811 struct stat st;
3812 time_t stctime;
3813 int ret, bit;
3814
3815 hd.fp = fp;
3816 hd.full = full;
3817
3818 ret = fstat(fd, &st);
3819 if (ret == -1)
3820 return -1;
3821
3822 stctime = st.st_mtime;
3823 fprintf(fp, "# captured on : %s", ctime(&stctime));
3824
3825 fprintf(fp, "# header version : %u\n", header->version);
3826 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3827 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3828 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3829
3830 perf_header__process_sections(header, fd, &hd,
3831 perf_file_section__fprintf_info);
3832
3833 if (session->data->is_pipe)
3834 return 0;
3835
3836 fprintf(fp, "# missing features: ");
3837 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3838 if (bit)
3839 fprintf(fp, "%s ", feat_ops[bit].name);
3840 }
3841
3842 fprintf(fp, "\n");
3843 return 0;
3844 }
3845
3846 struct header_fw {
3847 struct feat_writer fw;
3848 struct feat_fd *ff;
3849 };
3850
feat_writer_cb(struct feat_writer * fw,void * buf,size_t sz)3851 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3852 {
3853 struct header_fw *h = container_of(fw, struct header_fw, fw);
3854
3855 return do_write(h->ff, buf, sz);
3856 }
3857
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist,struct feat_copier * fc)3858 static int do_write_feat(struct feat_fd *ff, int type,
3859 struct perf_file_section **p,
3860 struct evlist *evlist,
3861 struct feat_copier *fc)
3862 {
3863 int err;
3864 int ret = 0;
3865
3866 if (perf_header__has_feat(ff->ph, type)) {
3867 if (!feat_ops[type].write)
3868 return -1;
3869
3870 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3871 return -1;
3872
3873 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3874
3875 /*
3876 * Hook to let perf inject copy features sections from the input
3877 * file.
3878 */
3879 if (fc && fc->copy) {
3880 struct header_fw h = {
3881 .fw.write = feat_writer_cb,
3882 .ff = ff,
3883 };
3884
3885 /* ->copy() returns 0 if the feature was not copied */
3886 err = fc->copy(fc, type, &h.fw);
3887 } else {
3888 err = 0;
3889 }
3890 if (!err)
3891 err = feat_ops[type].write(ff, evlist);
3892 if (err < 0) {
3893 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3894
3895 /* undo anything written */
3896 lseek(ff->fd, (*p)->offset, SEEK_SET);
3897
3898 return -1;
3899 }
3900 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3901 (*p)++;
3902 }
3903 return ret;
3904 }
3905
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd,struct feat_copier * fc)3906 static int perf_header__adds_write(struct perf_header *header,
3907 struct evlist *evlist, int fd,
3908 struct feat_copier *fc)
3909 {
3910 int nr_sections;
3911 struct feat_fd ff = {
3912 .fd = fd,
3913 .ph = header,
3914 };
3915 struct perf_file_section *feat_sec, *p;
3916 int sec_size;
3917 u64 sec_start;
3918 int feat;
3919 int err;
3920
3921 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3922 if (!nr_sections)
3923 return 0;
3924
3925 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3926 if (feat_sec == NULL)
3927 return -ENOMEM;
3928
3929 sec_size = sizeof(*feat_sec) * nr_sections;
3930
3931 sec_start = header->feat_offset;
3932 lseek(fd, sec_start + sec_size, SEEK_SET);
3933
3934 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3935 if (do_write_feat(&ff, feat, &p, evlist, fc))
3936 perf_header__clear_feat(header, feat);
3937 }
3938
3939 lseek(fd, sec_start, SEEK_SET);
3940 /*
3941 * may write more than needed due to dropped feature, but
3942 * this is okay, reader will skip the missing entries
3943 */
3944 err = do_write(&ff, feat_sec, sec_size);
3945 if (err < 0)
3946 pr_debug("failed to write feature section\n");
3947 free(ff.buf); /* TODO: added to silence clang-tidy. */
3948 free(feat_sec);
3949 return err;
3950 }
3951
perf_header__write_pipe(int fd)3952 int perf_header__write_pipe(int fd)
3953 {
3954 struct perf_pipe_file_header f_header;
3955 struct feat_fd ff = {
3956 .fd = fd,
3957 };
3958 int err;
3959
3960 f_header = (struct perf_pipe_file_header){
3961 .magic = PERF_MAGIC,
3962 .size = sizeof(f_header),
3963 };
3964
3965 err = do_write(&ff, &f_header, sizeof(f_header));
3966 if (err < 0) {
3967 pr_debug("failed to write perf pipe header\n");
3968 return err;
3969 }
3970 free(ff.buf);
3971 return 0;
3972 }
3973
perf_session__do_write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit,struct feat_copier * fc,bool write_attrs_after_data)3974 static int perf_session__do_write_header(struct perf_session *session,
3975 struct evlist *evlist,
3976 int fd, bool at_exit,
3977 struct feat_copier *fc,
3978 bool write_attrs_after_data)
3979 {
3980 struct perf_file_header f_header;
3981 struct perf_header *header = &session->header;
3982 struct evsel *evsel;
3983 struct feat_fd ff = {
3984 .ph = header,
3985 .fd = fd,
3986 };
3987 u64 attr_offset = sizeof(f_header), attr_size = 0;
3988 int err;
3989
3990 if (write_attrs_after_data && at_exit) {
3991 /*
3992 * Write features at the end of the file first so that
3993 * attributes may come after them.
3994 */
3995 if (!header->data_offset && header->data_size) {
3996 pr_err("File contains data but offset unknown\n");
3997 err = -1;
3998 goto err_out;
3999 }
4000 header->feat_offset = header->data_offset + header->data_size;
4001 err = perf_header__adds_write(header, evlist, fd, fc);
4002 if (err < 0)
4003 goto err_out;
4004 attr_offset = lseek(fd, 0, SEEK_CUR);
4005 } else {
4006 lseek(fd, attr_offset, SEEK_SET);
4007 }
4008
4009 evlist__for_each_entry(session->evlist, evsel) {
4010 evsel->id_offset = attr_offset;
4011 /* Avoid writing at the end of the file until the session is exiting. */
4012 if (!write_attrs_after_data || at_exit) {
4013 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
4014 if (err < 0) {
4015 pr_debug("failed to write perf header\n");
4016 goto err_out;
4017 }
4018 }
4019 attr_offset += evsel->core.ids * sizeof(u64);
4020 }
4021
4022 evlist__for_each_entry(evlist, evsel) {
4023 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
4024 /*
4025 * We are likely in "perf inject" and have read
4026 * from an older file. Update attr size so that
4027 * reader gets the right offset to the ids.
4028 */
4029 evsel->core.attr.size = sizeof(evsel->core.attr);
4030 }
4031 /* Avoid writing at the end of the file until the session is exiting. */
4032 if (!write_attrs_after_data || at_exit) {
4033 struct perf_file_attr f_attr = {
4034 .attr = evsel->core.attr,
4035 .ids = {
4036 .offset = evsel->id_offset,
4037 .size = evsel->core.ids * sizeof(u64),
4038 }
4039 };
4040 err = do_write(&ff, &f_attr, sizeof(f_attr));
4041 if (err < 0) {
4042 pr_debug("failed to write perf header attribute\n");
4043 goto err_out;
4044 }
4045 }
4046 attr_size += sizeof(struct perf_file_attr);
4047 }
4048
4049 if (!header->data_offset) {
4050 if (write_attrs_after_data)
4051 header->data_offset = sizeof(f_header);
4052 else
4053 header->data_offset = attr_offset + attr_size;
4054 }
4055 header->feat_offset = header->data_offset + header->data_size;
4056
4057 if (!write_attrs_after_data && at_exit) {
4058 /* Write features now feat_offset is known. */
4059 err = perf_header__adds_write(header, evlist, fd, fc);
4060 if (err < 0)
4061 goto err_out;
4062 }
4063
4064 f_header = (struct perf_file_header){
4065 .magic = PERF_MAGIC,
4066 .size = sizeof(f_header),
4067 .attr_size = sizeof(struct perf_file_attr),
4068 .attrs = {
4069 .offset = attr_offset,
4070 .size = attr_size,
4071 },
4072 .data = {
4073 .offset = header->data_offset,
4074 .size = header->data_size,
4075 },
4076 /* event_types is ignored, store zeros */
4077 };
4078
4079 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
4080
4081 lseek(fd, 0, SEEK_SET);
4082 err = do_write(&ff, &f_header, sizeof(f_header));
4083 if (err < 0) {
4084 pr_debug("failed to write perf header\n");
4085 goto err_out;
4086 } else {
4087 lseek(fd, 0, SEEK_END);
4088 err = 0;
4089 }
4090 err_out:
4091 free(ff.buf);
4092 return err;
4093 }
4094
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)4095 int perf_session__write_header(struct perf_session *session,
4096 struct evlist *evlist,
4097 int fd, bool at_exit)
4098 {
4099 return perf_session__do_write_header(session, evlist, fd, at_exit, /*fc=*/NULL,
4100 /*write_attrs_after_data=*/false);
4101 }
4102
perf_session__data_offset(const struct evlist * evlist)4103 size_t perf_session__data_offset(const struct evlist *evlist)
4104 {
4105 struct evsel *evsel;
4106 size_t data_offset;
4107
4108 data_offset = sizeof(struct perf_file_header);
4109 evlist__for_each_entry(evlist, evsel) {
4110 data_offset += evsel->core.ids * sizeof(u64);
4111 }
4112 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
4113
4114 return data_offset;
4115 }
4116
perf_session__inject_header(struct perf_session * session,struct evlist * evlist,int fd,struct feat_copier * fc,bool write_attrs_after_data)4117 int perf_session__inject_header(struct perf_session *session,
4118 struct evlist *evlist,
4119 int fd,
4120 struct feat_copier *fc,
4121 bool write_attrs_after_data)
4122 {
4123 return perf_session__do_write_header(session, evlist, fd, true, fc,
4124 write_attrs_after_data);
4125 }
4126
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)4127 static int perf_header__getbuffer64(struct perf_header *header,
4128 int fd, void *buf, size_t size)
4129 {
4130 if (readn(fd, buf, size) <= 0)
4131 return -1;
4132
4133 if (header->needs_swap)
4134 mem_bswap_64(buf, size);
4135
4136 return 0;
4137 }
4138
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))4139 int perf_header__process_sections(struct perf_header *header, int fd,
4140 void *data,
4141 int (*process)(struct perf_file_section *section,
4142 struct perf_header *ph,
4143 int feat, int fd, void *data))
4144 {
4145 struct perf_file_section *feat_sec, *sec;
4146 int nr_sections;
4147 int sec_size;
4148 int feat;
4149 int err;
4150
4151 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
4152 if (!nr_sections)
4153 return 0;
4154
4155 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
4156 if (!feat_sec)
4157 return -1;
4158
4159 sec_size = sizeof(*feat_sec) * nr_sections;
4160
4161 lseek(fd, header->feat_offset, SEEK_SET);
4162
4163 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
4164 if (err < 0)
4165 goto out_free;
4166
4167 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
4168 err = process(sec++, header, feat, fd, data);
4169 if (err < 0)
4170 goto out_free;
4171 }
4172 err = 0;
4173 out_free:
4174 free(feat_sec);
4175 return err;
4176 }
4177
4178 static const int attr_file_abi_sizes[] = {
4179 [0] = PERF_ATTR_SIZE_VER0,
4180 [1] = PERF_ATTR_SIZE_VER1,
4181 [2] = PERF_ATTR_SIZE_VER2,
4182 [3] = PERF_ATTR_SIZE_VER3,
4183 [4] = PERF_ATTR_SIZE_VER4,
4184 0,
4185 };
4186
4187 /*
4188 * In the legacy file format, the magic number is not used to encode endianness.
4189 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
4190 * on ABI revisions, we need to try all combinations for all endianness to
4191 * detect the endianness.
4192 */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)4193 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
4194 {
4195 uint64_t ref_size, attr_size;
4196 int i;
4197
4198 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
4199 ref_size = attr_file_abi_sizes[i]
4200 + sizeof(struct perf_file_section);
4201 if (hdr_sz != ref_size) {
4202 attr_size = bswap_64(hdr_sz);
4203 if (attr_size != ref_size)
4204 continue;
4205
4206 ph->needs_swap = true;
4207 }
4208 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
4209 i,
4210 ph->needs_swap);
4211 return 0;
4212 }
4213 /* could not determine endianness */
4214 return -1;
4215 }
4216
4217 #define PERF_PIPE_HDR_VER0 16
4218
4219 static const size_t attr_pipe_abi_sizes[] = {
4220 [0] = PERF_PIPE_HDR_VER0,
4221 0,
4222 };
4223
4224 /*
4225 * In the legacy pipe format, there is an implicit assumption that endianness
4226 * between host recording the samples, and host parsing the samples is the
4227 * same. This is not always the case given that the pipe output may always be
4228 * redirected into a file and analyzed on a different machine with possibly a
4229 * different endianness and perf_event ABI revisions in the perf tool itself.
4230 */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)4231 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
4232 {
4233 u64 attr_size;
4234 int i;
4235
4236 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
4237 if (hdr_sz != attr_pipe_abi_sizes[i]) {
4238 attr_size = bswap_64(hdr_sz);
4239 if (attr_size != hdr_sz)
4240 continue;
4241
4242 ph->needs_swap = true;
4243 }
4244 pr_debug("Pipe ABI%d perf.data file detected\n", i);
4245 return 0;
4246 }
4247 return -1;
4248 }
4249
is_perf_magic(u64 magic)4250 bool is_perf_magic(u64 magic)
4251 {
4252 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
4253 || magic == __perf_magic2
4254 || magic == __perf_magic2_sw)
4255 return true;
4256
4257 return false;
4258 }
4259
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)4260 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
4261 bool is_pipe, struct perf_header *ph)
4262 {
4263 int ret;
4264
4265 /* check for legacy format */
4266 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
4267 if (ret == 0) {
4268 ph->version = PERF_HEADER_VERSION_1;
4269 pr_debug("legacy perf.data format\n");
4270 if (is_pipe)
4271 return try_all_pipe_abis(hdr_sz, ph);
4272
4273 return try_all_file_abis(hdr_sz, ph);
4274 }
4275 /*
4276 * the new magic number serves two purposes:
4277 * - unique number to identify actual perf.data files
4278 * - encode endianness of file
4279 */
4280 ph->version = PERF_HEADER_VERSION_2;
4281
4282 /* check magic number with one endianness */
4283 if (magic == __perf_magic2)
4284 return 0;
4285
4286 /* check magic number with opposite endianness */
4287 if (magic != __perf_magic2_sw)
4288 return -1;
4289
4290 ph->needs_swap = true;
4291
4292 return 0;
4293 }
4294
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)4295 int perf_file_header__read(struct perf_file_header *header,
4296 struct perf_header *ph, int fd)
4297 {
4298 ssize_t ret;
4299
4300 lseek(fd, 0, SEEK_SET);
4301
4302 ret = readn(fd, header, sizeof(*header));
4303 if (ret <= 0)
4304 return -1;
4305
4306 if (check_magic_endian(header->magic,
4307 header->attr_size, false, ph) < 0) {
4308 pr_debug("magic/endian check failed\n");
4309 return -1;
4310 }
4311
4312 if (ph->needs_swap) {
4313 mem_bswap_64(header, offsetof(struct perf_file_header,
4314 adds_features));
4315 }
4316
4317 if (header->size > header->attrs.offset) {
4318 pr_err("Perf file header corrupt: header overlaps attrs\n");
4319 return -1;
4320 }
4321
4322 if (header->size > header->data.offset) {
4323 pr_err("Perf file header corrupt: header overlaps data\n");
4324 return -1;
4325 }
4326
4327 if ((header->attrs.offset <= header->data.offset &&
4328 header->attrs.offset + header->attrs.size > header->data.offset) ||
4329 (header->attrs.offset > header->data.offset &&
4330 header->data.offset + header->data.size > header->attrs.offset)) {
4331 pr_err("Perf file header corrupt: Attributes and data overlap\n");
4332 return -1;
4333 }
4334
4335 if (header->size != sizeof(*header)) {
4336 /* Support the previous format */
4337 if (header->size == offsetof(typeof(*header), adds_features))
4338 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4339 else
4340 return -1;
4341 } else if (ph->needs_swap) {
4342 /*
4343 * feature bitmap is declared as an array of unsigned longs --
4344 * not good since its size can differ between the host that
4345 * generated the data file and the host analyzing the file.
4346 *
4347 * We need to handle endianness, but we don't know the size of
4348 * the unsigned long where the file was generated. Take a best
4349 * guess at determining it: try 64-bit swap first (ie., file
4350 * created on a 64-bit host), and check if the hostname feature
4351 * bit is set (this feature bit is forced on as of fbe96f2).
4352 * If the bit is not, undo the 64-bit swap and try a 32-bit
4353 * swap. If the hostname bit is still not set (e.g., older data
4354 * file), punt and fallback to the original behavior --
4355 * clearing all feature bits and setting buildid.
4356 */
4357 mem_bswap_64(&header->adds_features,
4358 BITS_TO_U64(HEADER_FEAT_BITS));
4359
4360 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4361 /* unswap as u64 */
4362 mem_bswap_64(&header->adds_features,
4363 BITS_TO_U64(HEADER_FEAT_BITS));
4364
4365 /* unswap as u32 */
4366 mem_bswap_32(&header->adds_features,
4367 BITS_TO_U32(HEADER_FEAT_BITS));
4368 }
4369
4370 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4371 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4372 __set_bit(HEADER_BUILD_ID, header->adds_features);
4373 }
4374 }
4375
4376 memcpy(&ph->adds_features, &header->adds_features,
4377 sizeof(ph->adds_features));
4378
4379 ph->data_offset = header->data.offset;
4380 ph->data_size = header->data.size;
4381 ph->feat_offset = header->data.offset + header->data.size;
4382 return 0;
4383 }
4384
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)4385 static int perf_file_section__process(struct perf_file_section *section,
4386 struct perf_header *ph,
4387 int feat, int fd, void *data)
4388 {
4389 struct feat_fd fdd = {
4390 .fd = fd,
4391 .ph = ph,
4392 .size = section->size,
4393 .offset = section->offset,
4394 };
4395
4396 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4397 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4398 "%d, continuing...\n", section->offset, feat);
4399 return 0;
4400 }
4401
4402 if (feat >= HEADER_LAST_FEATURE) {
4403 pr_debug("unknown feature %d, continuing...\n", feat);
4404 return 0;
4405 }
4406
4407 if (!feat_ops[feat].process)
4408 return 0;
4409
4410 return feat_ops[feat].process(&fdd, data);
4411 }
4412
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,struct perf_data * data)4413 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4414 struct perf_header *ph,
4415 struct perf_data *data)
4416 {
4417 ssize_t ret;
4418
4419 ret = perf_data__read(data, header, sizeof(*header));
4420 if (ret <= 0)
4421 return -1;
4422
4423 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4424 pr_debug("endian/magic failed\n");
4425 return -1;
4426 }
4427
4428 if (ph->needs_swap)
4429 header->size = bswap_64(header->size);
4430
4431 return 0;
4432 }
4433
perf_header__read_pipe(struct perf_session * session)4434 static int perf_header__read_pipe(struct perf_session *session)
4435 {
4436 struct perf_header *header = &session->header;
4437 struct perf_pipe_file_header f_header;
4438
4439 if (perf_file_header__read_pipe(&f_header, header, session->data) < 0) {
4440 pr_debug("incompatible file format\n");
4441 return -EINVAL;
4442 }
4443
4444 return f_header.size == sizeof(f_header) ? 0 : -1;
4445 }
4446
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)4447 static int read_attr(int fd, struct perf_header *ph,
4448 struct perf_file_attr *f_attr)
4449 {
4450 struct perf_event_attr *attr = &f_attr->attr;
4451 size_t sz, left;
4452 size_t our_sz = sizeof(f_attr->attr);
4453 ssize_t ret;
4454
4455 memset(f_attr, 0, sizeof(*f_attr));
4456
4457 /* read minimal guaranteed structure */
4458 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4459 if (ret <= 0) {
4460 pr_debug("cannot read %d bytes of header attr\n",
4461 PERF_ATTR_SIZE_VER0);
4462 return -1;
4463 }
4464
4465 /* on file perf_event_attr size */
4466 sz = attr->size;
4467
4468 if (ph->needs_swap)
4469 sz = bswap_32(sz);
4470
4471 if (sz == 0) {
4472 /* assume ABI0 */
4473 sz = PERF_ATTR_SIZE_VER0;
4474 } else if (sz > our_sz) {
4475 pr_debug("file uses a more recent and unsupported ABI"
4476 " (%zu bytes extra)\n", sz - our_sz);
4477 return -1;
4478 }
4479 /* what we have not yet read and that we know about */
4480 left = sz - PERF_ATTR_SIZE_VER0;
4481 if (left) {
4482 void *ptr = attr;
4483 ptr += PERF_ATTR_SIZE_VER0;
4484
4485 ret = readn(fd, ptr, left);
4486 }
4487 /* read perf_file_section, ids are read in caller */
4488 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4489
4490 return ret <= 0 ? -1 : 0;
4491 }
4492
4493 #ifdef HAVE_LIBTRACEEVENT
evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)4494 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4495 {
4496 struct tep_event *event;
4497 char bf[128];
4498
4499 /* already prepared */
4500 if (evsel->tp_format)
4501 return 0;
4502
4503 if (pevent == NULL) {
4504 pr_debug("broken or missing trace data\n");
4505 return -1;
4506 }
4507
4508 event = tep_find_event(pevent, evsel->core.attr.config);
4509 if (event == NULL) {
4510 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4511 return -1;
4512 }
4513
4514 if (!evsel->name) {
4515 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4516 evsel->name = strdup(bf);
4517 if (evsel->name == NULL)
4518 return -1;
4519 }
4520
4521 evsel->tp_format = event;
4522 return 0;
4523 }
4524
evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)4525 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4526 {
4527 struct evsel *pos;
4528
4529 evlist__for_each_entry(evlist, pos) {
4530 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4531 evsel__prepare_tracepoint_event(pos, pevent))
4532 return -1;
4533 }
4534
4535 return 0;
4536 }
4537 #endif
4538
perf_session__read_header(struct perf_session * session)4539 int perf_session__read_header(struct perf_session *session)
4540 {
4541 struct perf_data *data = session->data;
4542 struct perf_header *header = &session->header;
4543 struct perf_file_header f_header;
4544 struct perf_file_attr f_attr;
4545 u64 f_id;
4546 int nr_attrs, nr_ids, i, j, err;
4547 int fd = perf_data__fd(data);
4548
4549 session->evlist = evlist__new();
4550 if (session->evlist == NULL)
4551 return -ENOMEM;
4552
4553 session->evlist->session = session;
4554 session->machines.host.env = &header->env;
4555
4556 /*
4557 * We can read 'pipe' data event from regular file,
4558 * check for the pipe header regardless of source.
4559 */
4560 err = perf_header__read_pipe(session);
4561 if (!err || perf_data__is_pipe(data)) {
4562 data->is_pipe = true;
4563 return err;
4564 }
4565
4566 if (perf_file_header__read(&f_header, header, fd) < 0)
4567 return -EINVAL;
4568
4569 if (header->needs_swap && data->in_place_update) {
4570 pr_err("In-place update not supported when byte-swapping is required\n");
4571 return -EINVAL;
4572 }
4573
4574 /*
4575 * Sanity check that perf.data was written cleanly; data size is
4576 * initialized to 0 and updated only if the on_exit function is run.
4577 * If data size is still 0 then the file contains only partial
4578 * information. Just warn user and process it as much as it can.
4579 */
4580 if (f_header.data.size == 0) {
4581 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4582 "Was the 'perf record' command properly terminated?\n",
4583 data->file.path);
4584 }
4585
4586 if (f_header.attr_size == 0) {
4587 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4588 "Was the 'perf record' command properly terminated?\n",
4589 data->file.path);
4590 return -EINVAL;
4591 }
4592
4593 nr_attrs = f_header.attrs.size / f_header.attr_size;
4594 lseek(fd, f_header.attrs.offset, SEEK_SET);
4595
4596 for (i = 0; i < nr_attrs; i++) {
4597 struct evsel *evsel;
4598 off_t tmp;
4599
4600 if (read_attr(fd, header, &f_attr) < 0)
4601 goto out_errno;
4602
4603 if (header->needs_swap) {
4604 f_attr.ids.size = bswap_64(f_attr.ids.size);
4605 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4606 perf_event__attr_swap(&f_attr.attr);
4607 }
4608
4609 tmp = lseek(fd, 0, SEEK_CUR);
4610 evsel = evsel__new(&f_attr.attr);
4611
4612 if (evsel == NULL)
4613 goto out_delete_evlist;
4614
4615 evsel->needs_swap = header->needs_swap;
4616 /*
4617 * Do it before so that if perf_evsel__alloc_id fails, this
4618 * entry gets purged too at evlist__delete().
4619 */
4620 evlist__add(session->evlist, evsel);
4621
4622 nr_ids = f_attr.ids.size / sizeof(u64);
4623 /*
4624 * We don't have the cpu and thread maps on the header, so
4625 * for allocating the perf_sample_id table we fake 1 cpu and
4626 * hattr->ids threads.
4627 */
4628 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4629 goto out_delete_evlist;
4630
4631 lseek(fd, f_attr.ids.offset, SEEK_SET);
4632
4633 for (j = 0; j < nr_ids; j++) {
4634 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4635 goto out_errno;
4636
4637 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4638 }
4639
4640 lseek(fd, tmp, SEEK_SET);
4641 }
4642
4643 #ifdef HAVE_LIBTRACEEVENT
4644 perf_header__process_sections(header, fd, &session->tevent,
4645 perf_file_section__process);
4646
4647 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4648 goto out_delete_evlist;
4649 #else
4650 perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4651 #endif
4652
4653 return 0;
4654 out_errno:
4655 return -errno;
4656
4657 out_delete_evlist:
4658 evlist__delete(session->evlist);
4659 session->evlist = NULL;
4660 return -ENOMEM;
4661 }
4662
perf_event__process_feature(struct perf_session * session,union perf_event * event)4663 int perf_event__process_feature(struct perf_session *session,
4664 union perf_event *event)
4665 {
4666 struct feat_fd ff = { .fd = 0 };
4667 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4668 int type = fe->header.type;
4669 u64 feat = fe->feat_id;
4670 int ret = 0;
4671 bool print = dump_trace;
4672
4673 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4674 pr_warning("invalid record type %d in pipe-mode\n", type);
4675 return 0;
4676 }
4677 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4678 pr_warning("invalid record type %d in pipe-mode\n", type);
4679 return -1;
4680 }
4681
4682 ff.buf = (void *)fe->data;
4683 ff.size = event->header.size - sizeof(*fe);
4684 ff.ph = &session->header;
4685
4686 if (feat_ops[feat].process && feat_ops[feat].process(&ff, NULL)) {
4687 ret = -1;
4688 goto out;
4689 }
4690
4691 if (session->tool->show_feat_hdr) {
4692 if (!feat_ops[feat].full_only ||
4693 session->tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4694 print = true;
4695 } else {
4696 fprintf(stdout, "# %s info available, use -I to display\n",
4697 feat_ops[feat].name);
4698 }
4699 }
4700
4701 if (dump_trace)
4702 printf(", ");
4703
4704 if (print) {
4705 if (feat_ops[feat].print)
4706 feat_ops[feat].print(&ff, stdout);
4707 else
4708 printf("# %s", feat_ops[feat].name);
4709 }
4710
4711 out:
4712 free_event_desc(ff.events);
4713 return ret;
4714 }
4715
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)4716 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4717 {
4718 struct perf_record_event_update *ev = &event->event_update;
4719 struct perf_cpu_map *map;
4720 size_t ret;
4721
4722 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
4723
4724 switch (ev->type) {
4725 case PERF_EVENT_UPDATE__SCALE:
4726 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4727 break;
4728 case PERF_EVENT_UPDATE__UNIT:
4729 ret += fprintf(fp, "... unit: %s\n", ev->unit);
4730 break;
4731 case PERF_EVENT_UPDATE__NAME:
4732 ret += fprintf(fp, "... name: %s\n", ev->name);
4733 break;
4734 case PERF_EVENT_UPDATE__CPUS:
4735 ret += fprintf(fp, "... ");
4736
4737 map = cpu_map__new_data(&ev->cpus.cpus);
4738 if (map) {
4739 ret += cpu_map__fprintf(map, fp);
4740 perf_cpu_map__put(map);
4741 } else
4742 ret += fprintf(fp, "failed to get cpus\n");
4743 break;
4744 default:
4745 ret += fprintf(fp, "... unknown type\n");
4746 break;
4747 }
4748
4749 return ret;
4750 }
4751
perf_event__fprintf_attr(union perf_event * event,FILE * fp)4752 size_t perf_event__fprintf_attr(union perf_event *event, FILE *fp)
4753 {
4754 return perf_event_attr__fprintf(fp, &event->attr.attr, __desc_attr__fprintf, NULL);
4755 }
4756
perf_event__process_attr(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4757 int perf_event__process_attr(const struct perf_tool *tool __maybe_unused,
4758 union perf_event *event,
4759 struct evlist **pevlist)
4760 {
4761 u32 i, n_ids;
4762 u64 *ids;
4763 struct evsel *evsel;
4764 struct evlist *evlist = *pevlist;
4765
4766 if (dump_trace)
4767 perf_event__fprintf_attr(event, stdout);
4768
4769 if (evlist == NULL) {
4770 *pevlist = evlist = evlist__new();
4771 if (evlist == NULL)
4772 return -ENOMEM;
4773 }
4774
4775 evsel = evsel__new(&event->attr.attr);
4776 if (evsel == NULL)
4777 return -ENOMEM;
4778
4779 evlist__add(evlist, evsel);
4780
4781 n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4782 n_ids = n_ids / sizeof(u64);
4783 /*
4784 * We don't have the cpu and thread maps on the header, so
4785 * for allocating the perf_sample_id table we fake 1 cpu and
4786 * hattr->ids threads.
4787 */
4788 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4789 return -ENOMEM;
4790
4791 ids = perf_record_header_attr_id(event);
4792 for (i = 0; i < n_ids; i++) {
4793 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4794 }
4795
4796 return 0;
4797 }
4798
perf_event__process_event_update(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4799 int perf_event__process_event_update(const struct perf_tool *tool __maybe_unused,
4800 union perf_event *event,
4801 struct evlist **pevlist)
4802 {
4803 struct perf_record_event_update *ev = &event->event_update;
4804 struct evlist *evlist;
4805 struct evsel *evsel;
4806 struct perf_cpu_map *map;
4807
4808 if (dump_trace)
4809 perf_event__fprintf_event_update(event, stdout);
4810
4811 if (!pevlist || *pevlist == NULL)
4812 return -EINVAL;
4813
4814 evlist = *pevlist;
4815
4816 evsel = evlist__id2evsel(evlist, ev->id);
4817 if (evsel == NULL)
4818 return -EINVAL;
4819
4820 switch (ev->type) {
4821 case PERF_EVENT_UPDATE__UNIT:
4822 free((char *)evsel->unit);
4823 evsel->unit = strdup(ev->unit);
4824 break;
4825 case PERF_EVENT_UPDATE__NAME:
4826 free(evsel->name);
4827 evsel->name = strdup(ev->name);
4828 break;
4829 case PERF_EVENT_UPDATE__SCALE:
4830 evsel->scale = ev->scale.scale;
4831 break;
4832 case PERF_EVENT_UPDATE__CPUS:
4833 map = cpu_map__new_data(&ev->cpus.cpus);
4834 if (map) {
4835 perf_cpu_map__put(evsel->core.pmu_cpus);
4836 evsel->core.pmu_cpus = map;
4837 } else
4838 pr_err("failed to get event_update cpus\n");
4839 default:
4840 break;
4841 }
4842
4843 return 0;
4844 }
4845
4846 #ifdef HAVE_LIBTRACEEVENT
perf_event__process_tracing_data(const struct perf_tool * tool __maybe_unused,struct perf_session * session,union perf_event * event)4847 int perf_event__process_tracing_data(const struct perf_tool *tool __maybe_unused,
4848 struct perf_session *session,
4849 union perf_event *event)
4850 {
4851 ssize_t size_read, padding, size = event->tracing_data.size;
4852 int fd = perf_data__fd(session->data);
4853 char buf[BUFSIZ];
4854
4855 /*
4856 * The pipe fd is already in proper place and in any case
4857 * we can't move it, and we'd screw the case where we read
4858 * 'pipe' data from regular file. The trace_report reads
4859 * data from 'fd' so we need to set it directly behind the
4860 * event, where the tracing data starts.
4861 */
4862 if (!perf_data__is_pipe(session->data)) {
4863 off_t offset = lseek(fd, 0, SEEK_CUR);
4864
4865 /* setup for reading amidst mmap */
4866 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4867 SEEK_SET);
4868 }
4869
4870 size_read = trace_report(fd, &session->tevent, session->trace_event_repipe);
4871 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4872
4873 if (readn(fd, buf, padding) < 0) {
4874 pr_err("%s: reading input file", __func__);
4875 return -1;
4876 }
4877 if (session->trace_event_repipe) {
4878 int retw = write(STDOUT_FILENO, buf, padding);
4879 if (retw <= 0 || retw != padding) {
4880 pr_err("%s: repiping tracing data padding", __func__);
4881 return -1;
4882 }
4883 }
4884
4885 if (size_read + padding != size) {
4886 pr_err("%s: tracing data size mismatch", __func__);
4887 return -1;
4888 }
4889
4890 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4891
4892 return size_read + padding;
4893 }
4894 #endif
4895
perf_event__process_build_id(const struct perf_tool * tool __maybe_unused,struct perf_session * session,union perf_event * event)4896 int perf_event__process_build_id(const struct perf_tool *tool __maybe_unused,
4897 struct perf_session *session,
4898 union perf_event *event)
4899 {
4900 __event_process_build_id(&event->build_id,
4901 event->build_id.filename,
4902 session);
4903 return 0;
4904 }
4905